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Abstract

The development of distributed applications in the autaveaomain based on net-
works of electronic control units is getting increasingbnplex and error-prone. In
current practice, system-level views of the network areetyensed to characterise
broad technical constraints such as performance requirsmand to chose the hard-
and software components accordingly. In contrast, the semiategration of the dis-
tributed functions is typically deferred to later pointgfie development process, yield-
ing an outstanding effort for integrating and validatingtswlistributed functions. To
address in particular this issue, our paper advocates a stramgent use of high-level
models based on distinct abstractions and a well-defineavilmiral semantics. Cor-
responding notations, tools, and overall methodologysored to support a stepwise
development of distributed automotive applications anadéntroduced. Most im-
portantly, the paper details on the issues of using suchleigh models to facilitate
deployment and to obtain low-level implementations ofgn&ed system models.

1 Introduction

Until recently, the electronic control system in a vehiclaswnostly concerned with light
switches, windshield wipers, or starter motors all of whigdre, more or less, realised as
isolated systems provided from independent supplierdifioaally, the software for such
embedded systems was implemented in a relatively low-liagtlion as C, or Ada pro-
grams, and often directly in terms of native machine codes [kt decade, however, saw
an increasing use of integrated development toolkits sschSCET [4], or the Simulink
Real-Time Workshop [7] which facilitate reuse and provieargetable generation of code
based on dataflow models.

However, the nowadays increasing number of distributettrric control units (ECU)
in vehicles imposes fundamentally different problems li@r automotive industry which is
not tackled by the existing tool support alone. The sharfriata between ECUs that com-
municate via dedicated busses and bus protocols (e. g. CANg ™ allows the integration
of additional functionality at lower costs. Consequeritiis domain now requires different
abstraction levels to be able to capture the actual datafawden distributed ECUs inside
vehicles as well.

Such higher-level models are also necessary to simulateexifg the behaviour and
communication between ECUs to guarantee for safety arabitity of the deployed soft-
ware. Ideally, the abstract models also facilitate reuseasious levels of abstraction. In
a distributed system, isolated C solutions are clearly oithlle for these requirements.
However, high-level models raise a number of other issuesgh: for example, is it fea-
sible to use them directly for code generation in a domairctyhiraditionally, confronts



its users with devices bearing hardly any resources? (ieenany, stack space, number of
available registers, etc.)

Therefore in§ 2, this paper will first outline such a typical target platfofor (safety
critical) embedded software as we encounter it prominentiiye automotive domain. The
actual partitioning and deployment issues are describ&® ifor which we first introduce
abstractions and system descriptions that will also hedgsily the presented concepts
in a realistic automotive industry context. Additionalye briefly sketch the underlying
synchronously clocked computational model which we assiamdeployed applications
and use in our own tool prototypes.
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Figure 1: A distributed target architecture.

2 An Abstract Target Platform

Our abstract target consists of a network of ECUs connedted bus. As can be seen
in Fig. 1, each ECU is embedded intchast nodewhich consists of the ECU itself, an
operating system, a device driver module for interfacirgglihs, one or many application
tasks, and a dedicated communication layer.

The horizontal bar at the bottom of Fig. 1 indicates that tiecfionality contained
within a high-level system model may be arbitrarily distiteed among the nodes of the
network, i.e. distribution of a functionality is transpatdén a top-down systems view.
(Note that the terms “function” and “functionality” are wukas synonyms in this context to
describe a certain ability, or property of the system.)

The dedicated communication layer is merely a wrapper atthm inter-task commu-
nication between applications of spatially separated EQtdsnain purpose is to manage
resources needed to buffer signals whenever necessarglésgies.1). Communication
itself, however, is handled by the device drivers which carmbtomatically generated for
each ECU and protocol variant.

3 Abstraction & System Description

With the ongoing shift in the automotive industry towardstdbuted — and ideally re-
usable — software components, practitioners are not fadgdd avuniform system view
anymore, e. g. source code. Components are nhow designedatatdmmaticallydeployed
in a range of different vehicle types within a single classwnaf which offer, say, vary-
ing on-board electronic controllers and as well as a differeimber of available ECUs
for deployment. On a more abstract level, the behaviouei\of the rather differently
deployed components is expected to remain constant thokigh.2 illustrates how dif-
ferent abstract views on automotive software componemtseantegrated to a common
integrated system model.

The view on functional dependencies is, typically, the naistract model of an au-
tomotive system. It captures the structure as well as thetifumal dependencies common
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to a class of vehicles by the same manufacturer. A comporiewt wn the other hand,
contains the internal interaction patterns of individuaftware components in terms of
dataflow, communication and behaviour. This is alreadya@efitly useful and detailed to
allow for validation and simulation of designs, while thecogtional view, typically, con-
tains aspects which are unique to the actual target platfilaturally, reuse of components
gets increasingly difficult with a decreasing level of ahstion.

Each level needs to be associated to a number of custom plastiiechniques, first
to allow for independent top-down systems design, e. gradtstiefinition of sensor and
actuator components, and secondly for a subsequent refimeloen to a mapping onto
actual hardware.

Functional Dependencies. Common to this view are structure oriented views, i.e. sys-
tem structure diagrams (SSD), to describe the overall sreof a system. Typ-
ically, SSDs are specified as hierarchical component né&syavhere components
communicate vidypedanddirected channeland typedports similar to the visual
representation of UML-RT [10] and some Architecture Dgstton Languages.

Component View: In this abstraction, we require a description of the indiatsoft-
ware components to be complete with respect to behaviouereftre, the em-
ployed description techniques, typically, include finitate machines (FSM), low-
level dataflow diagrams (DFD), or more message-orientegrdias (see also [5]).
DFDs can be viewed upon as a refinement of SSDs and descritsgingthmic
dataflow occurring during a computation. They consist of ponents performing
the computation (i. e. blocks), interface elements of thmmaponents (i. e. ports),
and connections between those interface elements (i. enels.

Operational Model: The operational model employs a similar visual represemtats the
componentview — cluster communication diagrams (CCD) —ithsian implemen-
tation-driven refinement containing those details esakfdir deployment. CCDs
then represent the main computational units (i. e. clusédrstract tasks) that inter-
actdirectly with the real-time operating system (scheduler) and thécdest com-
putational layer; that is, clusters are the least distablet units from the integrated
system model: clusters are not split across two tasks aralaag's connected using
explicit signal sampling operators (s¢é and§5.2).

Note, at this point, we abstain from giving a more detailescdgtion of the individ-
ual visual representations and their exact properties@tportant graphical notations
relevant for this paper are introducedsid andg 5 by practical examples, respectively.

4 Computational Model & System Behaviour

The behavioural model of the systems described in this papbkat of current AToOFO-
cus|[1, 5] models. It is based on tlsynchrony hypothesissing a discrete notion of time.



The synchronous paradigm [2, 3] basically states that &syseacts to external stim-

uli within one instant, i. e. the delay between internal catations cannot be observed.
This approach has enjoyed widespread acceptance in thekcant hardware design do-
mains, and is largely compatible with the commercially eksaed tools such as ASCET,
or Simulink. As opposed to several other approaches use@ébitime specification and

programming, the discrete-time semantics and deterridrishcurrency keep behavioural
evaluation of large designs manageable. Ther@dFocus framework is based on such
a deterministic time-synchronous interpretatioomponentsommunicate through timed

streamswhere each stream uses the same global time base.

In order to support the multiform event patterns and fregiemnobserved in typical
real-time systems, each stream of signals is associatbedawlibck Similar to other syn-
chronous dataflow languages [2], awPoFocus clock can be thought of as a boolean
stream that merely indicates whether a value is currenggemt {t), or not (f). Clocks
characterise streams both external, such as frequengeséd by surrounding actors or
real-time constraints, and internal to the system: by uslogk inference properties the
internal clocks can be inferred from the according inpwspectively. (Think of the inte-
gration of black-box “legacy components”, for example.)

Our current tool prototypes provide both automated infeeeof internal clocks and
static checking of well-formedness of the model, i. e. ditgcabsence of causal cycles
and soundness verification of clocks. The implementatimeiig similar to that of a static
type system in strongly typed programming languages.

In AuToFocus, each clock is defined w. r. t.tzase clockk, which is the fastest clock
in and underlying a system. The base clock itself is reptesey the boolean expres-
sion tt, i. e. the expression that evaluates to true at any instahée & model’s clock
expressions are typically ordered using aelation.

Figure 3: Explicit signal sampling in DFDs.

Furthermore, in ATOFOCuUSIt is not only possible to infer clocks, but also to make
up new ones based on other clock expressions. The DFD giv€ig.ir8 bears an explicit
when operator which samples the input strearto the rate of boolean streabn that is,

a’ = a wheneve evaluates tdt. The output and input ports are depicted by black and
white rectangles, respectively.

In accordance with the notion of using clock expressiongfa system model’'s en-
tities can be represented using a dedicated language baggheral expressions. Conse-
guently,expressiontn AuToFocusrange over channels, ports, and combinations thereof
using dedicated operators.

Let Exp be the set of all such expressions used in a system modeltafid)g denote
the set of all boolean expressions. We can now introduce@ifumck which gives us the
actual clock of any elemeimte Exp:

ck : Exp — Fxpg.



Example. To illustrate how clocks are put into practice, let's assuhs the following
virtual values are being transmitted in the model as it iegiw Fig. 3 where- denotes an
absent signal/value:

a1 2 3 4 5 6 7 8
b: tt ff w ff tt ff tt ff
a =awhend: 1 7 3 7 5 1 7 7
cc 0 1 » 2 1 4 7

Here, thewhen operator projects the streaio the slower clock of streat However, up
sampling works accordingly and is achieved using the sareeatqr. O

In order to allow for well-defined feedback loops and to pdevinemory slots holding
temporary values, explicit delay operators are necesdaigy. 4 depicts a model which
makes use of an explicit delay block (black and white diamshape) that behaves as
follows: a value is held for one clock period respectivehe period is determined by the
clock speed of the stream setting that value.

Figure 4: DFD with delayed signal.

Here, the delay is used to “feed back” a previous valug'sfcomputation). For such
models, it is assumed that delay blocks are initialised @tiegly, although the exact value
does not matter in this case. Note, the use of delays doedfaot the clocks in any way;
that is, the clock ot is that ofb and if ck(a) = ck(b) thenck(a) = ck(b) = ck(a’).

5 Partitioning and Deployment

One inherent property of SSDs inukoFocus is the underlying assumption that com-
munication between components is always delayed (i. e. @auhecting channel contains
exactly one implicit delay operator) in order to allow foregetermined breaking points
within a system’s component model. From a methodologicaidtpaf view, this definition
facilitates the individual and also more independent dgwelent of each specified com-
ponent. In the graphical notation, delayed communicascaiso expressed with rounded
ports (see Fig. 5).

Delayed

communica}ion
o SSD

Components

Figure 5: Example SSD.

In practice, the nowaday’s development processes of lligédl automotive software
almost totally disregard deployment issues at highertigystem views. However, as we
will show in the following, a dedicated communication layerd the introduction of ex-
plicit delays in rather early stages of development in ametisynchronous system model



are formidable prerequisites helping to minimise the ¢fférdeploying a distributed ap-
plication across a network of ECUs.

5.1 Communication Layer

Instead of concerning each ECU-network node directly vath-level implementation de-
tails to manage 1/0, we define an abstract communication kg “wraps” all read and
write accesses, respectively (Sg2). This layer is a middleware between the operating
system’s scheduler and the application’s tasks running.ommiparticular, it provides a
write  handler (similar taSendMessage() service in OSEK COM [9]), and eead
handler for messages (similarReceiveMessage() in OSEK COM).

Effectively, the layer constitutes a transparent commatioé model for each node
and the tasks running on it, i. e. its technical realisatiosuees that sufficient heap space
is allocated when messages need buffering as is the casiesfance, when tasks with
different clock speeds exchange signal frames. The foligvgrerequisites are essential
for the communication layer to yield the desired behaviayrractice:

e Execution of an accurate static analysis for minimal messgigcation,
e and predetermination of an appropriate task schedulingyigion.

Our AuToFocusbased prototypes already provide for the former by allgwtime
static analysis and by associating temporaries to delatrseimodel. Theexactrequired
amount of temporary space in total is then determined by sespent “clock comparison”
of the communicating tasks (s6.2).

What is more, for the remainder, we assume rate-monotohiedsding, i. e. that the
operating system provides a fixed-priority preemptive dater, where task priorities are
statically assigned; this corresponds to the OSEK stan@ribr automotive operating
systems. Rate monotonicity simply asserts that tasks withller periods are assigned
higher priorities than tasks with greater periods [6].

5.2 Variablesand Message Slots

The operational system abstraction/view, as is also brekgtched ing 3, contains the
transition from the hierarchic and connected SSD comparterdclusteredsystem view
yielding all delay and sampling operators; that is, rel¢vaplementation details.

The CCDs then presenfflat description of the time-synchronous system model which
allows for the static analysis of the heap consumption imseof message buffers as well
as for (almost) arbitrary partitioning variants. Unlike[&Swhich are grouped according
to conceptual coherency and as reusable units, CCDs aatyppartitioned to yield a
maximum of technical efficiency in the implementation.

There are cases where it is required to partition CCD clssteng the same boundaries
as SSD components. For instance, if compondrasd B are known to be always mapped
to different processors, then the clustdrand B should be fully disjoint, i. e. there exists
no cluster containing parts of botkis and B’s functionalities.

Note that the semantics of SSD composition, i.e. every oblaimeorporates a de-
lay, ensures that the following delay constraints for CCBsraet given rate-monotonic
scheduling and when communication follows the boundarfi¢senSSD components. Let
A and B be a sending and a receiving cluster, respectively:

ck(A) = ck(B), i.e. equally fast clocks. In this case, the priority4i§ and B’s tasks are
the same, so communication is delayed; in effect, the midalie needs to provide
two message copies to avoid data inconsistencies.

ck(A) < ck(B). When the clock ofd is faster than the clock oB, i.e. the period is
smaller, we may use undelayed communication; only one rgessapy is needed.



ck(A) > ck(B). Communication is delayed, when the clockAfs slower than the clock
of B; in this case, two message copies are needed.

Obviously, the above comparison of task periods and stagimany analysis is only
possible by extending the clock associations from indiglgaorts, or channels to the en-
tire clusters themselves. Therefore, for periodic desigmtuster clockis inferred as the
“greatest common divisor'ged) of its individual clock periods. Note that internal clocks
cannot— by definition of blocks and DFDs — be faster than tis¢efat external clock, so
considering the external clocks in order to determine aefhock is fully sufficient. The
following examples elaborate on that.
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(a) Undelayed CCD. (b) “A-shape” timeline.

Figure 6: Fast cluster writes to slower cluster.

Example (fast cluster — slow cluster). Fig. 6(a) shows an example of a CCD with two
clustersA and B. For the sake of simplicity, we regard periodic clocks oalyg write the
clock periods next to the corresponding ports. The lahbe then denotes that partholds

a value every 6th tick, i. ek (A) = ged(6,3,3) = 3. A writes signak, which is sampled
by awhen-operator and read as sigriaby clusterB. Communication betweea and B is
not delayed.

Let's assume thatl corresponds to a tasky with period 30ms and deadline 30ms,
and thatB corresponds to a taskz with period 60ms and deadline 60n&4 andT’s are
released periodically at the beginning of their respeativgdes. Periods and deadlines of
T, andT’s are indicated by the black bars in Fig. 6(b).

Both tasks run on the same processor, and are schedulediimecty the rate mono-
tonic policy, soT'4 has higher priority thaff's. For instance7 s is preempted by’4 at
t = 30ms. To avoid data inconsistencies, for any stefi’z needs a stable valug of its
port b during the whole duration of its period. In the timeline stig indicated by a grey
“needb” bar.

A new value for port: is provided periodically by'4, indicated by the “provide” bar.
Note for some step of B, the “providea;” bar is always later than the “neeégd” bar.

Because ofl'4’s higher priority,b; will never actually be read befofE, has finished
its computation, and;, has been written. We indicate this by a dashed bar for “rtéed
duringT'4’s activation. Therefore, we can safely associgtevith b,, which corresponds
to immediate communication in the model. Since the writtanable and the read variable
correspond to the same memory location, the middleware dotekave to perform an
explicit copy operation. The example, therefore, illussahat communication from fast
to slow clusters does not require the introduction of a deldiie model. O
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Figure 7: Slow cluster writes to faster cluster.

Example (slow cluster — fast cluster). Fig. 7(a) depicts a CCD with clustersand B.
The cluster clock ofd is 6, B’s is 2. Now the slower clusted writes to the faster cluster,
and the clocks are relatedt(A) > ck(B). According to the rules on page 6, a delay is
imposed, indicated by the delay operator betweandb.

Fig. 7(b) shows how the delay relates to the timeline of twepamted taskg’y (pe-
riod/deadline 60ms) an@z (period/deadline 20ms). Because@f(A) > ck(B), the
“need b” period can be safely extendeditg's period of 60ms.

If all tasks meet their respective deadlines, for any &tefiz will never read;, before
ar—1 has been written. We can, therefore, safely assoeiate with b, for anyk, corre-
sponding to a delay in the model. The black double-headedarindicate copy operations
performed by the middleware. O

6 Conclusons& Summary

In this paper we have shown that deployment related issuéseimevelopment of dis-
tributed automotive controlling software, like insertiohexplicit delays in a time-syn-
chronous system model, must not necessarily be driven irttarbeup manner, but can
also be asserted high-level and from a top-down perspe@iven the underlying assump-
tions regarding schedulability and the various static yses, the use of delay operators in
early development stages that employ, say, SSDs bear bkegradvantages: firstly, the
delays constitute predetermined breaking points in sulm#qefinement and implemen-
tation processes, and secondly upon partitioning anderingt of the components, delays
must not be added manually, i. e. the original communicagioucture remains mostly un-
changed. The latter is particularly important, becauserdidly it means that a formerly
verified behavioural model of the system, remains stabldénimplementation; all the
implementation’s delays have been present in the strdatiga as well. This lowers the
validation and verification efforts drastically and incsea the reusability of components.

Although, as we have sketched§h.2, delays are not always essential to support, say,
the writing of a fast cluster to a slower cluster. Howeverlyeassertion of a delay does not
alter the communication’s behaviour if insertaftier the down sampling operator that lies
in between the CCD clusters. What is more, in that case ieigritically possible to assert
an arbitrary amount of delay operators after the down sargpiccurs; the result being a
higher memory consumption due to excessive message mgfferi

On the other hand, this example illustrates that top-doveerésd delay operators do
not necessarily guarantee for the most efficient implentiemtaf a distributed application.
In fact, this paper comprises a trade-off between theseaspgcts of optimisation and the



advantages of having separate, reusable and verifiabknsystmponents. In other words,
using the presented concepts results in lower verificatifonte, however, probably (but
not necessarily) in a less efficient realisation of the ayaypion.

Furthermore, ing 3 we have introduced and sketched several graphical noatm
support the presented development process of distribmdeaded systems: a hierarchic
SSD description to capture a system'’s overall structureD$® express a component’s
computation and dataflow, and CCDs to explicitly visualispldyment details and to fa-
cilitate partitioning according to, say, “clock boundatieor SSD component boundaries.
(Compared to SSD-driven partitioning, a clock-driven tegg groups clusters according
to common clock speeds which often results in faster impteat®ns.)

Editors for the discussed notations, the key algorithmsifalysis (e. g. clocks, mem-
ory allocation) and the various abstract system views aeady available in terms of tool
prototypes which we have based on and derived from the egisti TOFocusframework.
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