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Abstract. We provide a constructive approach to the stratification of the representation- and the
orbit space of linear actions of compact Lie groups contained in GLn(R) on Rn and we show that
any d-dimensional stratum, respectively, its closure can be described by d sharp, respectively, relaxed
polynomial inequalities and that d is also a lower bound for both cases. Strata of the representation
space are described as differences of closed sets given by polynomial equations while d-dimensional
strata of the orbit space are represented by means of polynomial equations and inequalities. All
algorithms have been implemented in SINGULAR V2.0.

Introduction

In 1983 Abud and Sartori [1] pointed out the relation between spontaneous symmetry breaking and
stratifications of linear actions of compact Lie groups and presented several applications in particle
physics. Spontaneous symmetry breaking can briefly be described as follows. Let G be a compact Lie
group which acts linearly on Rn, let φ0 ∈ Rn be the ground state of a physical system and let Vγ(z) be a
G-invariant potential which determines φ0 and depends on the parameter γ. Varying γ might change φ0

into φ′0 and the stabilizer group Gφ′0
of φ′0 may be “smaller” than the stabilizer Gφ0 (i.e., moving from φ0

to φ′0 amounts to a loss of symmetry), which can be seen as a breaking of symmetry. In this way various
patterns of spontaneous symmetry breaking occur, which correspond to distinct phases of the model. It
is well-known (see for instance [15]) that the orbit space Rn/G is a semialgebraic set and there exists a
disjoint decomposition of Rn/G in finitely many semialgebraic sets, called strata, whereas any stratum
consists of points of the same symmetry type. The knowledge of a description of each stratum in terms
of polynomial equations and inequalities is important for numerous applications (e.g., construction of
invariant potentials, symmetric bifurcation theory, see [1], [4], [9], [10]).

There are several approaches for constructing the stratification of the orbit space of a compact Lie
group1 starting with Abud and Sartori, see [1], while Gatermann [9] provides a systematic exposition for
compact Lie groups.

These algorithms (except [4], [5]) construct a stratification of the orbit space Rn/G of a compact Lie
group G by using the matrix grad(z) which is defined on Rn/G. We propose a different approach, namely,
to compute a stratification of the representation space of G, and only then to construct the stratification
of the orbit space (or the images of relevant strata) by means of elimination theory (equations) and
refinements of results of Procesi and Schwarz (inequalities), see [15]. Additional, our algorithms describe
any d-dimensional stratum and its closure by at most d inequalities, which turns out to be optimal. This
approach has several advantages compared to the present approach2, namely: Primary decomposition is
done before the (nonlinear) Hilbert map is applied, no superfluous components in the orbit space are
computed, the association of strata and their stabilizers is quite obvious and, finally, it is possible to
compute only those strata, which are relevant for the application under consideration. We also show how
to compute inequalities which describe a stratum only up to generic equivalence but contain fewer terms.
For several applications, like the construction of continuous potentials on the orbit space, this approach
may lead to easier computations. For polynomial potentials, inequalities need not be calculated since the
Zariski-closure of a stratum suffices.
1 Explicit algorithms for finite groups, which yield a minimal number of inequalities, are given in [5].
2 Equations for the (Zariski-closure) of strata are computed out of rank conditions on the matrix grad(z). The

locus where rank (grad(z)) ≤ d contains all d-dimensional strata of the orbit space and must be decomposed in
irreducible components in order to obtain equations defining these strata. Some of these components may be
superfluous, i.e., grad(z) is not positive semidefinite for some points.



In addition, we show that each d-dimensional stratum, respectively its closure, can be presented by
at most d strict, respectively relaxed, inequalities and that d is also a lower bound.

1 On Invariant Theory of Compact Lie Groups and Orbit Spaces

We present some background on invariants of compact Lie groups and orbit spaces. In both sections we
use fundamental facts from semialgebraic geometry like the Tarksi-Seidenberg principle, for which we refer
to [7]. For short, an basic open (basic closed) semialgebraic subset of the algebraic set V ⊆ Rn is of the
form {v ∈ V | gi(v) > 0, 1 ≤ i ≤ r}, respectively, ≥ instead of >, where g1, g2, . . . , gr ∈ R[x1, x2, . . . , xn].
In the sequel we call an inequality of the form f > 0, respectively, f ≥ 0 strict, respectively, relaxed. An
open (closed) semialgebraic subset of V is a finite union of basic open (basic closed) semialgebraic subsets
of V .

1.1 Invariants of Lie Groups

Let G be a compact Lie group and ρ : G→ GLn(R) be a faithful representation. In the sequel we identify
G and its image ρ(G) ⊂ GLn(R). It is well-known that Rn admits a G-invariant scalar product ( , )G

on Rn (see for instance [8]). By the Gram-Schmidt orthonormalization process there exists A ∈ GLn(n)
such that A ·G ·A−1 ⊆ OR, i.e, the representation ρ is equivalent to an orthogonal representation. From
now on we assume G ⊆ OR and that G acts as usual on Rn. In the sequel let K be on of the fields
R or C. For X ⊆ Kn we define I(X) := {f ∈ K[t1, t2, . . . , tn] | f(x) = 0 for all x ∈ X}, the ideal of
X and for an ideal I ⊆ K[x1, x2, . . . , xn] we define V(I) := {x ∈ Kn | f(x) = 0 for f ∈ I}, the variety
associated to I. A subset U ⊆ Kn is closed in the Zariski topology if and only if U = V(I) for some ideal
I ⊆ K[x1, x2, . . . , xn]. A polynomial f ∈ K[x1, x2, . . . , xn] is invariant w.r.t. G if f(g−1 ·x) = f(x) for all
g ∈ G. The ring K[x1, x2, . . . , xn]G, consisting of all invariant polynomials w.r.t. G, is called the invariant
ring of G (ρ will be omitted). By Hilbert’s Finiteness Theorem, the invariant ring is finitely generated
as a K−algebra. Homogeneous generators π1, π2, . . . , πm of K[x1, x2, . . . , xn]G are called fundamental
invariants (i.e., each invariant polynomial is a polynomial in π1, π2, . . . , πm). Fundamental invariants
define the projection

π : Kn −→ Kn/G ⊆ Km

x 7−→ (π1(x), π2(x), . . . , πm(x))

of Kn onto an embedding of the orbit space Kn/G ⊆ Km, also called the Hilbert map. Note that π maps
closed sets to closed sets3 and that each fiber contains precisely one closed orbit (see for instance[13]).
For K = C the image of π(Cn) ⊆ Cm equals the variety of the ideal of relations of π1, π2, . . . , πm (see
for instance[13]). Over R it is well-known that the image of π is a semialgebraic set.

Proposition 1. Let G ⊂ GLn(R) be a compact Lie group. The orbit space Rn/G of G is a semialgebraic
set semialgebraically homeomorphic to π(Rn).

Proof. It is well-known that the orbits of G can be separated by fundamental invariants of G (see for
instance Theorem 3.4.3. in [14]). By the Tarski-Seidenberg principle (see for instance [7]) the real image
of π is a semialgebraic set (it equals the projection of the graph, which is a real algebraic set). ut

Note that the orbit space of an algebraic group parameterizes all closed orbits. Hence the orbit space
of a compact Lie group G parameterizes all orbits of G since they are closed. Orbits which are not closed
cannot be separated by polynomials so group actions having non-closed orbits cannot be stratified by
using their invariant rings, see [16].

1.2 Inequalities defining Orbit Spaces

Procesi and Schwarz have constructed polynomial inequalities which have to be added to the equations
coming from the Hilbert map of a compact Lie group G, which need not be a subgroup of On(R),
in order to describe an embedding of the quotient Rn/G ⊂ Rm. Essential parts of the proof are the
existence of a closed orbit in each fiber of π (see for instance [13]) and the existence of a G-invariant inner

3 Note that the map π is proper.



product ( , ) on Rn, which is used to construct the m ×m matrix grad(v) = (dπi(v), dπj(v))i,j=1,...,m

for v ∈ Cn where π = (π1, π2, . . . , πn) is the Hilbert map. Here we have used the identification4 of Rn

with its dual Hom(Rn,R). They proved that a point z ∈ V(I), where I ⊂ R[z1, z2, . . . , zm] is the ideal
of relations among π1, π2, . . . , πm, lies in Rn/G if and only if the matrix grad(z) is positive semidefinite.
The constraint that grad(z) must be semidefinite yields inequalities for describing Rn/G. Recall that
the type of a real m×m Matrix M equals (p, q) where p, respectively, q denote the number of positive,
respectively, negative eigenvalues counted with multiplicities. Obviously, rank (M) = p+ q.

Proposition 2. An m×m matrix M over R is positive semidefinite (denoted by M ≥ 0) iff all symmetric
minors of M are non-negative. The matrix M is positive definite (denoted by M > 0) iff all principal
minors of M are positive.

Proof. We refer to, e.g., Section IX.72 in [18]. ut

In order to define the matrix grad(z) on the orbit space we have to show that all entries are invariant
w.r.t. G. By dπ(z) we denote the Jacobian matrix of π at z.

Proposition 3. Let G ⊂ GLn(R) be a compact Lie group. For σ ∈ Gv the Jacobian of the Hilbert map
π : Rn → Rn/G satisfies dπ(v) = dπ(v) ◦ σ. In particular, the functions v 7→ grad(v)ij are invariant.

Proof. Follows from π(v) = π(σ · v), the chain rule, and the fact that σ is linear. ut

Therefore the matrix grad(v) is also defined on Kn/G ⊆ Km and can be extended to the whole of
Km. Procesi and Schwarz provided the following description of the orbit space.

Theorem 1. (Procesi-Schwarz [15]) Let G ⊂ GLn(R) be a compact Lie group and let π = (π1, π2, . . . , πm)
be such that π1, π2, . . . , πm generate R[x1, x2, . . . , xn]G. The quotient space is given by

Rm/G = π(Rn) = {z ∈ Rm | grad(z) ≥ 0, z ∈ V(I)}

where I ⊂ R[y1, y2, . . . , ym] is the ideal of relations of π1, π2, . . . , πm.

Proof. We refer to [15]. ut

Inequalities for the orbit space can be obtained from the condition grad(z) ≥ 0. This can be checked
by means of Proposition 1.2.2, i.e., testing if all 2n−1 symmetric minors of grad(z) are ≥ 0. In subsequent
sections we use the theorem of Procesi and Schwarz and a modification of Decartes rule of signs to provide
an optimal description5 of the orbit space and all of its strata and their closures (defined in the following
section), which are useful for several applications.

Example 1. Consider the action of the compact Lie group G = O2 ⊂ GL2(R) on R4, given by (g · x, g ·
y), g ∈ G, x, y ∈ R2, and its complexification GC (see Section 3.1). We may choose three algebraically
independent fundamental invariants π1 = t21 + t22, π2 = t1t3 + t2t4, π3 = t23 + t24. The invariant ring of
G, respectively, GC equals K[t1, t2, t3, t4]G = K[π1, π2, π3] where K = R, respectively, K = C. The
Hilbert map is π = (π1, π2, π3) : K4 → K3. Since π1, π2, π3 are algebraically independent, we obtain
C4/GC = C3 = im(π). Over the reals, we apply Theorem 1.2.1 and Proposition 2.2.10 to the matrix

grad(z) =

4z1 2z2 0
2z2 z1 + z3 2z2
0 2z2 4z3

 and obtain the description

R4/G = im(π) =


 z1
z2
z3

 ∈ R3

∣∣∣∣ z1 + z3 ≥ 0, z2
1 − 2z2

2 + 6z1z3 + z2
3 ≥ 0,

z2
1z3 + z1z

2
3 − z2(z1 + z3) ≥ 0

 ( R3.

Remark 1. (a) For practical purposes the dependence on a G-invariant scalar product may be problem-
atic.

(b) It is not necessary that G ⊆ OR for computing inequalities if a G-invariant inner product is given in
an effective form.

4 Note that dπj is a differential form, so dπj(z) : Rn → R is a linear form.
5 The description is optimal in the number of inequalities , i.e., we show that this number is an upper and lower

bound.



2 On the Stratification of the Representation and Orbit Space

Consider a compact Lie group G ⊂ GLn(R), the set of points having the same symmetry type w.r.t.
G form a partition of Rn in finitely many distinct open sets, also called a stratification. We present
underlying definitions and properties of of strata and their closures (Zariski- or Euclidean topology).
These properties will be used in subsequent sections to compute equations and inequalities for describing
strata and their closures.

2.1 On the Stratification of the representation- and orbit space

We provide the definition of strata, respectively, stratifications and associated objects like orbit type, etc.
In the sequel G ⊂ GLn(R) denotes a compact Lie group and clZ(X), respectively, clE(X) denote the
closure of the set X in the Zariski, respectively, Euclidean topology.

Definition 1. Let E ⊆ Rn be a semialgebraic set. A stratification of E is a finite partition Eλ of E
where each Eλ is a semialgebraically connected locally closed6 equidimensional semialgebraic subset (or a
finite set of points) of Rn such that Eλ∩ clE(Eβ) 6= ∅ and λ 6= β implies Eλ ⊂ Eβ and dimEλ < dimEβ.
For λ ∈ Λ the set Eλ is called a stratum and clE(E)λ is called a semi-stratum of the stratification, and
if d = dimEλ then Eλ is called a d−stratum.

Given x ∈ Rn, the set G(x) = {g · x | g ∈ G} is called the orbit of x and the group Gx = {g ∈
G | g · x = x} is called the stabilizer of x.

Proposition 4. Let G be an algebraic group (defined over the field K) which acts algebraically (via α)
on Kn. For x ∈ Kn the stabilizer Gx and the set Xd = {x ∈ X | dimGx ≥ d} are closed.

Proof. Let π2 : X×X → X be the projection onto the second component, ix : G ↪→ G×X, ix(g) = (g, x)
be an injection for x ∈ X and define α′ : G × X → X × X by α′(g, x) = (α(g, x), x). All maps are
continuous (w.r.t. the Zariski-topology), hence the fibers of π2 ◦ α′ ◦ i are closed. The stabilizer of x is
closed since Gx is isomorphic to α′−1(x, x) = {(g, x) | α(g, x) = x}. We also obtain that Xd = {x ∈
X | dim(π2 ◦ α′ ◦ i)−1(x) ≥ d} hence the claim follows from upper-continuity of the fiber dimension. ut

Definition 2. For a subgroup H ⊆ G we denote the conjugacy class of H in G by by [H] = {gHg−1 | g ∈
G}. The orbit type of x ∈ Rn is [x] := [Gx]. For u, v ∈ Rn we define [u] < [v] if Gu ⊂ H for some H ∈ [v].
The associated stratum, respectively, semi-stratum of [x] is Σx := {y ∈ Rn | [x] = [y]}, respectively,
clE(Σx).

The orbit type is a measure for the symmetry of the points of Rn. We have [x] > [y] if the point x
has more symmetries than the point y, i.e., gGyg

−1 ⊂ Gx form some g ∈ G. The notation of strata is
justified by the fact that these sets, respectively, their images under the Hilbert map form a stratification
of the representation-, respectively, orbit space.

Proposition 5. Let G ⊂ GLn(R) be a compact Lie group.

(a) There are only finitely many different orbit types, i.e,. the set {[Gx] | x ∈ Rn} is finite.
(b) The orbit types form a lattice. For v ∈ Σp := {x0 ∈ Rn | rank (dπ(x)x0) is maximal} the orbit type

[v] is the least element.
(c) For each v ∈ Rn there exists a small neighborhood U ⊂ Rn of v such that u ∈ U implies [u] ≤ [v].

Proof. (a) see for instance Ch. IV.10 in [8].
(b) Note that rank (dπ(x)v) is maximal iff dimN0

v is maximal (see Section 2.2) hence the stabilizer of v
is contained in [w] for all w ∈ Rn.

(c) We refer, e.g., to [1].
ut

The set Σp, which is dense in Rn, is called the principal stratum of G.

Proposition 6. Let G ⊂ GLn(R) be a compact Lie group.

6 The set Eλ is open in its metric closure clE(Eλ).



(a) For a subgroup H ⊆ G of G the set Rn
H = {x ∈ Rn | H ⊆ Gx} is a vectorspace. In particular, the

set {x ∈ Rn | Gx = H} is Zariski-open in Rn
H .

(b) For 0 6= x ∈ Rn each stratum Σx is open in its closure (both metric and Zariski) and G(x) is a proper
subset of Σx.

Proof. (a) Let x, y ∈ Rn
H and g ∈ H. Obviously, g · (x+ y) and g · λx, λ ∈ R, are contained in Rn

H . The
set S = {x ∈ Rn

H | Gx ⊃ H} is of dimension less than Rn
H and can be written as the union of all

strata Σy with [y] > [H] intersected with Rn
H . By Proposition 2.1.5, the set S is closed, hence Rn

H \S
is Zariski-open.

(b) The first claim follows from Theorem 2.2.2. For the second claim note that G(x) is compact, hence
the set {λx | λ ∈ R, λ > 0} is not contained in G(x) but in Σx.

ut

Note that the closure of a stratum of the representation space need not be a finite union of vectorspaces,
as it is the case for finite groups, see Example 3.4.4. We conclude this section by giving a description
of the orbit space (and its stratification) in terms of equations and relaxed inequalities obtained from
Procesi’s and Schwarz’s Theorem. Here strata are described as differences of closed semialgebraic sets.

Corollary 1. Let G ⊂ GLn(R) be a compact Lie group, let x ∈ Rn and y = π(x).

(a) Let Σx ⊆ Rn be a stratum. Then clE(Σ̂y) = π(clE(Σx)) = {z ∈ Rm | grad(z) ≥ 0, z ∈ V(J)} where
J ⊂ R[z1, z2, . . . , zm] is the ideal of the image of Σx under π.

(b) Let clE(Σx) = Σx ∪ Bx be a disjoint union (Bx is a finite union of lower-dimensional strata). Then
Σ̂x = π(Σx) = π(clE(Σx))− π(Bx), i.e.,

Σ̂x = {z ∈ Rm | z ∈ clZ(π(Σx)), z 6∈ π(Bx), grad(z) ≥ 0}

2.2 Properties of Strata

We describe properties of strata and semi-strata on the representation and orbit space. In the representa-
tion space closures of strata, respectively, strata can be described by closed sets, respectively, differences
of closed sets. For a description of the orbit space Procesi and Schwarz have derived the condition that
grad(z) ≥ 0 (see Theorem 1.2.1), but they only provide the criterium given in Proposition 1.2.2, which
yields 2d − 1 inequalities (provided that d equals the dimension of the orbit space). These inequalities
may also be used to describe all topological closures of strata on the orbit space and therefore also all
strata by forming differences of closed sets (see Corollary 2.1.1). We show that a d-dimensional stratum
respectively, its closure can be described by d sharp, respectively, relaxed inequalities and the ideal of its
Zariski-closure in Rn/G and that d is also a lower bound. In particular, we provide effective descriptions
relying on equations and inequalities.

The stratification of the representation space of a compact Lie group is completely determined by the
matrix dπ(x)v. Since Rn admits a G-invariant inner product ( , )G we may define the orthogonal com-
plement Nv to Tv(G(v)) and the decomposition N=N

0
v ⊕N1

v , where N0
v = {w ∈ Nv | w is Gv-invariant}

and N1
v is the orthogonal complement of N0

v in Nv. Note that G need not be a subgroup of the orthogonal
group.

Proposition 7. Let G ⊂ GLn(R) be a compact Lie group. We have

ker dπ(x)x0 = Tx0G(x0)⊕N1
x0

and imdπ(x)x0
∼= N0

x0
.

Proof. Note that v ∈ Tx0G(x0) implies v ∈ ker dπ(x0) since π is G-invariant. Let V be the the vec-
torspace generated by the gradients (considered as elements of Rn) dπ1(x0), dπ2(x0), . . . , dπm(x0), i.e.,
V = im dπ(x0). Note that v ∈ ker dπ(x0) implies dπi(x0) · v = 0 so v ∈ Nx0 . By Proposition 2.2.3 we
have dπi(x0) ◦ σ = dπi(x0) for σ ∈ Gv, hence V ⊆ N0

v . Now v ∈ N0
x0
\ V implies v ∈ ker dπ(x0). Hence

the rank of the matrix dπ(x0) augmented by the column v equals the rank of dπ(x0) and so v ∈ V . ut

Proposition 8. Let G ⊂ GLn(R) be a compact Lie group. We have

Tx0Σx0 = Tx0G(x0)⊕N0
x0
.

In particular, Tπ(x0)Σ̂x0
∼= N0

x0
.



Proof. One has to show that any curve through x0 and contained in Σx0 has a tangent vector at x0 which
is contained in Tx0G(x0)⊕N0

x0
. This proof can be found in Section V of [1]. ut

Corollary 2. We have dimΣx0 = dimTx0+dimN0
x0

= dimG − dimGx0 + dimN0
x0

and dim Σ̂π(x0) =
dimN0

x0
.

Theorem 2. Let G ⊂ GLn(R) be a compact Lie group and π : Rn → Rn/G ⊆ Rm be the Hilbert map.

(a) The union Σ(d) of all strata whose image under π is of dimension d equals the open semi-algebraic
set

Σ(d) = {v ∈ Rn | rank (dπ(v)) = d} .
(b) The union Σd of all strata whose image under π is of dimension at most d equals the closed semi-

algebraic set
Σd = {v ∈ Rn | rank (dπ(v)) ≤ d}

In addition, clZ(Σ(d)) = clE(Σ(d)) = Σd.

Proof. (a) Note that a stratum is a smooth semi-algebraic set, so by Proposition 2.2.8 we have rank (dπ(v)) =
dim im(dπ(v)) = dimTπ(v)Σ̂π(v) = dim Σ̂π(v).

(b) The set Σd can be defined by the vanishing of all (d + i) × (d + i) minors of ∂π
∂x where i ≥ 1. If

d ≥ min{n,m} then Σd = Rn. Note that Σ(d) = Σd \Σd−1.
ut

So far we have only considered semistrata, respectively, strata on the representation space. Unfortu-
nately, we need at most 2n − 1 inequalities, obtained from the symmetric minors of grad(z). A direct
description of a d-dimensional stratum by means of equations and (strict) inequalities can be obtained
from the constraint that the type of grad(z) equals (d, 0). We apply Decartes rule of sign to the charac-
teristic polynomial of the matrix grad(z) in order to obtain an optimal number of inequalities.

A sequence a0, a1, . . . , an has a sign change if there exists i, j s.t. aiai+j < 0 and aiai+k ≥ 0 for 1 ≤ k <
j. For a polynomial f =

∑n
i=0 ait

i we define the number of sign changes N+(f) respectively alternative
sign changes N−(f) by the total number of sign changes of the sequence a0, a1, . . . , an respectively of
the sequence a0,−a1, a2, . . . , (−1)iai, . . . , (−1)nan. By Z+(f) respectively Z−(f) we denote the number
of positive respectively negative real roots of f .

Proposition 9. (Descartes rule of sign; see [18]) Let f ∈ R[t] be a nonzero polynomial. There exist
ρ+, ρ− ∈ N s.t. N+(f) = Z+(f)−2ρ+ and N−(f) = Z−(f)−2ρ−. Moreover, if f has only real roots then
N+(f) = Z+(f) and N−(f) = Z−(f).

We state a refinement of a well-known result in matrix analysis (see for instance Ch. 7 in [12]).

Corollary 3. Let M ∈ Matn(R) be a symmetric matrix of rank (M) = d > 0 and p(t) =
∑n

i=0 ait
i be

its characteristic polynomial. Then M is of type (d, 0) iff (−1)ian−i > 0 for 1 ≤ i ≤ d.

Proof. Note that an−d−1 = . . . = a0 = 0 and all roots of p(t) are real. By Proposition 2.2.9 we have
N+(p) = Z+(f) as required. ut

By relaxing all inequalities obtained from conditions about sign changes of the characteristic polyno-
mial we obtain a criterium for positive semidefiniteness without assumptions about the rank. This yields
an upper bound for the description of closures of strata.

Proposition 10. Let M ∈ Matn(R) be a symmetric matrix and p(t) =
∑n

i=0 ait
i be its characteristic

polynomial. Then M is positive semidefinite iff (−1)ian−i ≥ 0 for 1 ≤ i ≤ n.

Proof. Let M be a symmetric matrix of rank (M) = d > 0 having a negative eigenvalue. Note that
an−d−1 = an−d−2 = . . . = a0 = 0 and an = 1. By Decartes rule of sign (Proposition 2.2.9) there
exists a minimal i > 0 s.t. (−1)n(−1)n−iai < 0. For n even we obtain (−1)n−iai < 0 a contradiction
to (−1)n−ian−i ≥ 0 since (−1)i = (−1)n−i. In case n odd the sign change gives (−1)(−1)n−ian−i =
(−1)n−i+1an−i < 0, a contradiction to (−1)ian−i = (−1)n−i+1an−i ≥ 0. ut

Theorem 3. Let G ⊂ GLn(R) be a compact Lie group, let π1, π2, . . . , πm be fundamental invariants of
G and let I be their ideal of relations. Let d ≤ dimRn/G be an integer and Id be the ideal of all d × d
minors of grad(z). By pd(t) =

∑m
i=0(−1)m−iδit

i we denote the characteristic polynomial of grad z modulo
Id.



(a) We have

{z ∈ VR(I) | grad(z) ≥ 0, rank (grad(z)) = d} = {z ∈ VR(Id) | δ1(z) > 0, δ2(z) > 0, . . . , δd(z) > 0}.

(b) Relaxing the strict inequalities in part (a) gives the set {z ∈ VR(I) | grad(z) ≥ 0}.
(c) Let J be the ideal of the Zariski-closure of a d-dimensional stratum Σ̂d and δ′i = δi mod J . Then

Σ̂d = {z ∈ VR(J) | δ′1(z) > 0, δ′2(z) > 0, . . . , δ′d(z) > 0}. For the topological closure of Σ̂d we obtain
clE(Σ̂d) = {z ∈ VR(J) | δ′1(z) ≥ 0, δ′2(z) ≥ 0, . . . , δ′d(z) ≥ 0}.

(d) Let J be the ideal of the Zariski-closure of a d-dimensional stratum Σ̂d and suppose that grad(z) is
so arranged that the first d principal minors do not vanish identically on Σ̂d. Then Σ̂d is generically
equivalent (the symmetric difference has codimension at least 1) to {z ∈ VR(J) | ∆1(z) > 0,∆2(z) >
0, . . . ,∆d(z) > 0} where ∆1,∆2, . . . ,∆d are the first d principal minors of grad(z).

(e) Suppose that π1, π2, . . . , πd are algebraically independent. The principal stratum of Rn/G is given by
Σ̂p = {z ∈ Rd | ∆1(z) > 0,∆2(z) > 0, . . . ,∆d(z) > 0} where ∆1,∆2, . . . ,∆d are all principal minors
of grad(z).

Proof. Part (a),(b), and (c) follow from Proposition 2.2.9. For Part (d) note that ∆i(z) = 0 defines a
hypersurface in Σ̂d. Part (e) follows from I = {0}, i.e, V(I) = Rd and from rank (grad(z)) = d for all
z ∈ Σ̂p. ut

For a given d-dimensional stratum respectively its topological closure, the number of d inequalities
obtained from the previous theorem is optimal, as shown by the following example.

Example 2. Let G ⊂ GLn(R) be the finite group generated by all n × n diagonal matrices of the form
(1, 1, . . . , 1,−1, 1, . . . , 1). Fundamental invariants are given by t21, t

2
2, . . . , t

2
n. Hence the orbit space is the

positive orthant z1 ≥ 0, z2 ≥ 0, . . . zn ≥ 0 and any d-dimensional stratum respectively its topological
closure is given by equations zi1 = . . . = zin−d

= 0 and inequalities zin−d+1 > 0, . . . , zin > 0 respectively
≤ instead of >, where i1, i2, . . . , in is a permutation of 1, 2, . . . , n. It is well-known that any such set
cannot be described by fewer than d inequalities (see for instance [7]).

We obtain the following geometric statement:

Corollary 4. Let Σ̂d be a d-dimensional stratum of a compact Lie group G ⊂ GLn(R). The semialgebraic
set Σ̂d is basic open in its Zariski-closure. The topological closure of Σ̂d is a basic closed semialgebraic
set in its Zariski-closure. Moreover both sets can be described by at most d strict respectively relaxed
inequalities, which is optimal.

Remark 2. (a) Bröcker and Scheiderer have proved that any basic open set of dimension d can be de-
scribed by at most d sharp inequalities (unpublished, see Chapter 6.5 in [7]) and that d is also a lower
bound. For basic closed sets of dimension d Scheiderer has proved that d(d+1)

2 is an upper and lower
bound for the number of (relaxed) inequalities required for a description (see [17]). Since Theorem
2.2.3 states that for the (topological) closure of a d-dimensional stratum d inequalities suffice, closures
of strata (in particular orbit spaces) form a class of basic closed sets which are easier to describe.
Note that the dimension is still a lower bound. Hence there is no gain in efficiency when using generic
descriptions.

(b) Suppose that there exist algebraically independent fundamental invariants π1, π2, . . . , πm of G. If
|G| <∞, any d-dimensional stratum can be described by the first d principal minors of grad(z) (after
a permutation of π1, π2, . . . , πm), see [5]. If G is not finite, this is no longer true, see, e.g., Example
3.4.4 or Example 3 in [1].

(c) The upper bound d holds for all d-dimensional basic closed sets, where inequalities are obtained from
positive-semidefiniteness conditions on matrices.

3 Constructing the Stratification

As shown in Section 2.2 the d-dimensional components of the strata can be computed by conditions on
the rank of the matrix dπ(v). In this section we provide an algorithm together with necessary tools for
the construction of a stratification of the representation- and the orbit space.

More precisely, given a d-dimensional connected component C of a stratum (obtained from rank
conditions), the corresponding stratum is given by the orbit of C. The same holds true for the associated



semistrata. In this way we construct the stratification of the orbit space out of the stratification of the
representation space by computing the image of π (recall Corollary 2.2.1). It remains to add a set of
inequalities obtained from the Theorem of Procesi and Schwarz (Theorem 1.2.1), and its refinement
(Corollary 2.2.3 and Theorem 2.2.3). We also present an algorithm for computing the stabilizer of a
given vector subspace of Kn, which may be used to distinguish the symmetry type of strata7 of the same
dimension.

All used algorithms but the computation of inequalities rely on algebraically closed ground fields. For
this reason we present properties of complexifications of real varieties below.

3.1 On the Complexification of a Group-Action

We briefly mention some relations between a compact Lie group G and its complexification and the real-
and complex orbit space. More precisely, given fundamental invariants π1, π2, . . . , πm ∈ R[x1, x2, . . . , xn]
of G, in order to describe the orbit space we have to compute the image of the morphism π by Elimination
Theory, i.e., one computes the ideal I of relations among π1, π2, . . . , πm, which requires an algebraically
closed ground field. As we have already seen, the orbit space of G may be properly be contained in the
real algebraic set V(I) ⊆ Rm. Therefore we have to take care if the computations performed over an
algebraically closed field are valid over R. Several important results are based on Kempf-Ness Theory.
We refer, e.g., to [19].

Let G ⊂ GLn(R) be a compact Lie group defined by the ideal8 IG ⊂ R[s1, s2, . . . , sm]. The com-
plexification of G is the zero set of IG over the complex numbers, denoted by GC. Note that GC is a
complex reductive group with coordinate ring C[s1, s2, . . . , sm]/IG = R[s1, s2, . . . , sm]/IG⊗R C and that
G is Zariski-dense in GC. The ideals defining the (real) orbit and the stabilizer of a point v ∈ Rn can be
computed by Elimination Theory from the ideal IG and the necessary constructions.

By Hilbert’s Finiteness Theorem the invariant ring of G is finitely generated, hence R[t1, t2, . . . , tn]G =
R[h1, h2, . . . , hm] for some homogeneous invariants h1, h2, . . . , hm. The action of G complexifies to an
action of GC on Cn and the invariant ring of GC equals C[t1, t2, . . . , tn]GC = R[h1, h2, . . . , hm] ⊗R C.
Hence the Hilbert map π : Rn → Rm complexifies to πC : Cn → Cm and πC(Cn) = clZ(π(Rn)) (closure
in Cm). Let I be the ideal of relations of h1, h2, . . . , hm. Since V(I) = clZ(π(Rm)) over R, by Procesi and
Schwarz (see Theorem 1.2.1) we have Rn/G = {z ∈ V(I) ∩Rm | grad(z) ≥ 0} where the latter closure
is taken in Rm.

3.2 Stratification of the Representation Space

By using the results stated in Section 2 we are now able to provide an algorithm for computing a
stratification Σ1, Σ2, . . . , Σr of the representation space of a compact Lie group G. The stratification of
the orbit space Rm/G is obtained by computing the ideals of the images π(Σ1), π(Σ2), . . . , π(Σr) and
adding appropriate inequalities to each set of equations.

Algorithm 1 RepSpaceStrata(IG, ψ)
In: Ideal defining a compact Lie group G ⊂ GLnR, ψ a list of polynomials in R[s1, s2, . . . , sk, t1, t2, . . . , tn]
defining the action of G.
Out: list of equations defining the closures Σ1, Σ2, . . . , Σr of G and their generic stabilizer .
begin
π = (π1, π2, . . . , πr); // algebra generators of R[t1, t2, . . . , tn]G;
d = dimRm/G // dimension of the orbit space
for i = 1 to d do

Jd = d× d minors of dπ; // all d× d minors of the Jacobian
collectedSpaces = primary decomposition of

√
Jd.

c := 1;
for each V ∈ collectSpaces[i] do

orbitV = ψ(G,V ); // orbit of V
if orbitV 6∈

⋃c−1
j=1 Semistrata[d][j] then begin

Semistrata[d][c] = Semistrata[d][c] ∪ orbitV ;

7 Strata of the same dimension may have different stabilizers of the same dimension but different number of
connected components

8 Compact Lie groups are algebraic groups, see for instance [14].



stabilizer[d][c] = Stabilizer(IG, ψ, V ); // representative of the orbit-type
c = c+ 1;

end
end-for;

end-for;
return([Semistrata, stabilizer]);
end RepSpaceStrata.

A set of fundamental invariants for G may be computed by the algorithm given in [6], which works
for all reductive groups. Algorithms restricted to compact Lie groups can be found in [9].

We are left with the problem of computing a representative of an orbit type [v], i.e, given the closure
clZ(Σx), find equations for the ’generic’ stabilizer Gξ of clZ(Σx). By computing a primary decomposition
of the ideal of Gξ we obtain the index Gξ/(Gξ)0

Proposition 11. Let G be an algebraic group defined by the ideal IG ⊆ K[s1, s2, . . . , sm], let α :
G × Kn → Kn be a linear action, let V ⊆ Kn be an irreducible variety of dimension d, defined
by the ideal JV and let Ja = 〈ti − ai : 1 ≤ i ≤ n〉 ( K(a1, a2, . . . , ad)[t1, t2, . . . , tn]. Define the ideals
I = 〈IG, JV , Ja, αi(s, t)− ti : 1 ≤ i ≤ n〉 ⊂ K(a1, a2, . . . , ak)[s1, s2, . . . , sm, t1, t2, . . . , tn] and J = I ∩
K(a1, a2, . . . , ak)[s1, s2, . . . , sm] and the (partial) substitution map ϕb : K(a1, a2, . . . , ad) → K, ai 7−→ bi
for (b1, b2, . . . , bn) ∈ Kd. There exists a non-empty Zariski-open set U ⊆ V such that u ∈ U implies
ϕu(J) = I(Gu).

Proof. After a finite number of steps we obtain a Gröbner basis of I. In each step we collect the following
data: If multiplication by a polynomial f occurs then let Pf be the set of all coefficients of monomials in
f which contain some ai. When computing f − g then add all rational functions in a1, a2, . . . , ad which
are obtained from solving f − g = 0 by comparing coefficients. Exclude these sets from Kn. ut

Algorithm 2 Stabilizer(IG, ψ, IV )
In: ideal IG of a compact group G, ideal IV of a component of a stratum.
Out: equations of the stabilizer
Note: Basering is K(a1, a2, . . . , ak)[s1, s2, . . . , sk, t1, t2, . . . , tn].
begin
I = GroebnerBasis(IV );
c = 0;
for i = 1 to n do

if deg(NormalForm(ti, I)) > 0 then begin
c := c+ 1;
I = GroebnerBasis(I ∪ {ti − ac});

end-if
end-for
I = I ∪ {ψi − ti : 1 ≤ i ≤ n};
J = GroebnerBasis(I) ∩K(a1, a2, . . . , ak)[s1, s2, . . . , sk];
return(J);
end Stabilizer.

Remark 3. An alternative way to compute the number of connected components of the stabilizer is as
follows. Compute the generic orbit G(ξ) of V and determine a primary decomposition and the multiplicity
of G(ξ) (see [4]).

3.3 Stratification of the Orbit Space

Given a (semi-)stratification of the representation space, the computation of the stratification of the orbit
space is essentially the computation of the matrix grad(z) and its symmetric minors. If G is not finite
then the dimension of the representation space is strictly greater than the dimension of the orbit space.

The algorithm returns a list of strata of the orbit space of G sorted by dimension. Each stratum Σ̂d,i

is described as a triple [[f1, f2, . . . , fr], [g1, g2, . . . , g2d−1], [h1, h2, . . . , hs]] where Σ̂d,i = {z ∈ Rm | f1(z) =
0, . . . , fr(z) = 0, g1(z) > 0, . . . , g2d−1(z) > 0, h1(z) 6= 0, . . . , hs(z) 6= 0}.



Algorithm 3 OrbitSpaceStrata(π, repStrata)
In: π = π1, π2, . . . , πm fundamental invariants of G ⊆ OR,list of closures of strata of the representation
space. Assume that d = dimRn/G.
Out: list of strata of the orbit space (given by equations and inequalities)
begin
grad(z) = (dπi, dπj)

j=1..n
i=1..n ;

c = 0;
p(t) = det(grad(z)− t · idn); // assume p(z) = tm−d

∑d
i=0(−1)iδit

i, characteristic polynomial of grad(z)
for k = 1 to |repStrata| do

for i = 1 to |repStrata[k]| do
J = image of repStrata[k][i] under π. // by Elimination Theory
ineq = {NormalForm(δi, J) > 0 | 1 ≤ i ≤ d}
strata[d][i] = [semistratum[k][i], I, J ];

end-for
end-for
return(strata);
end OrbitSpaceStrata.

Remark 4. A stratification up to generic equivalence can be obtained by replacing the line defining I by
the line

I := set of first d × d principal minors of grad(z); // grad(z) arranged s.t. no principal minor
vanishes identically on repStrata[k][i].

Example 3. We consider the compact Lie group G = O2×Z2 ⊂ GL2(R) (O2 acts on the first two coordi-
nates, Z2 acts on the third coordinate) defined by the ideal

〈
s21 + s22 − 1, s23 + s24 − 1, s1s3 + s2s4, s

2
5 − 1

〉
.

The Jacobian of π : R3 → R2, (t1, t2, t3) 7→ (t21 +t22, t
2
3) equals

(
2t1 2t2 0
0 0 2t3

)
, hence we have (all variables

range over R)

Σ0 = {v = (a, b, c) | rank (dπ(v)) = 0} = {(0, 0, 0)}
Σ1,1 ∪Σ1,2 = {v = (a, b, c) | rank (dπ(v)) = 1} = {(a, b, 0) | a 6= 0 or b 6= 0} ∪ {(0, 0, c) | c 6= 0}

Σ2 = {v = (a, b, c) | rank (dπ(v)) = 2} = {(a, b, c) | ac 6= 0 or bc 6= 0}

By using the algorithm Stabilizer we obtain for the associated stabilizers the table

Stratum Σ0 Σ1,1 Σ1,2 Σ2

Stabilizer O2 × Z2 Z2 × Z2 O2 Z2

As an example, the ideal I ⊂ R(a1, a2)[s1, s2, . . . , s5] defining the generic stabilizer of Σ1,1 is given by

I = 〈a1s3 + a2s4 − a2, a
3
1s2 + a1a

2
2s3 + a2

1a2 + a3
2s4 − a2

1a2 − a3
2,

a1s1 + a2s2 − a1, s
2
5 − 1, a2

1 + a2
2s

2
4 + a1a2s3 − a2

2s4 − a2
1〉

Substitution of (a, b) ∈ Σ1,1 for (a1, a2) yields the the ideal of the stabilizer of the point (a, b). Inequalities

for describing strata of the orbit space are derived from the matrix grad(z) =
(
z1 0
0 z2

)
:

Σ̂0 = {(0, 0)}
Σ̂1,1 ∪ Σ̂1,2 = {(z1, 0) | z1 > 0} ∪ {(0, z2) | z2 > 0}

Σ̂2 = {(z1, z2) | z1 > 0, z1z2 > 0}

3.4 Examples

We present three examples, two from [1], in order to demonstrate our algorithms. Note that in all three
examples the ideals of minors of grad(z) contain primary components, which do contribute to the strat-
ification, while our algorithms avoid the occurrence of superfluous components. All computations have
been performed in the computer algebra system SINGULAR 2.0 [11], wherein all algorithms have been
implemented. Fundamental invariants have been computed by means of the algorithm given in [6], but
in example 5 we have used invariants given in [1].



Example 4. (See Example 1.2.1) We consider the action of the representation id⊕ id on R4 of G = O2 ⊂
GLn(2)R, where id : G → GLn(2)R. Note that the chosen fundamental invariants are algebraically
independent. The representation- and orbit space can be decomposed in three strata of dimension 0, 2, 3

respectively. The matrix grad(z) is given by grad(z) =

4z1 2z2 0
2z2 z1 + z3 2z2
0 2z2 4z3

. Note that the ideal of 3 × 3

minors of grad(z) contains the ideal 〈z1 + z3〉 as a primary component, but z1 = −z3, z1 6= 0 prevents
grad(z) to be positive semidefinite, hence this component does not contribute to the stratification. Strata
of the representation space are obtained from rank conditions on dπ(x).

Dim. strata on rep. space strata of orbit space

0 Σ0 = {(0, 0, 0, 0)} Σ̂0 = {(0, 0, 0)}

2 Σ2 =

8>><>>:
0BB@

t1
t2
t3
t4

1CCA |t1t4 − t2t3 = 0

9>>=>>; \Σ0

8<:
0@ z1

z2

z3

1A ∈ R3

˛̨̨̨
z2
2 − z1z3 = 0

z1 + z3 > 0, z2
1 + 4z1z3 + z2

3 > 0

9=;
3 Σ3 = R4 \ (Σ0 ∪Σ2)

8<:
0@ z1

z2

z3

1A ∈ R3

˛̨̨̨
z1 + z3 > 0, z2

1 − 2z2
2 + 6z1z3 + z2

3 > 0,
z2
1z3 + z1z

2
3 − z2(z1 + z3) > 0

9=;
Note that the inequality z2

1 + 4z1z3 + z2
3 > 0 for the description of Σ̂2 can be omitted. The inequality

z1 + z3 > 0 cannot be substituted by the principal minors z1, respectively z3, which do not vanish
identically on clZ(Σ̂2), since such a choice excludes points of the form z = (0, 0, z3), z3 > 0, respectively
z = (z1, 0, 0), z1 > 0. By using the algorithm Stabilizer we obtain for the associated stabilizers the table

Stratum Σ0 Σ2 Σ3

Stabilizer O2 Z2 {id}

Example 5. The action of id⊕ id of the group G = SO2 on R4 (cf. Example 1 in [1]). The polynomials
π1 = t21 + t22 + t23 + t24, π2 = t21 + t22 − t23 − t24, π3 = −2t1t4 + 2t2t3, π4 = 2t1t3 + 2t2t4, as given in [1],
form a minimal set of fundamental invariants of R[t1, t2, . . . , t4]

G. Since π1, π2, . . . , π4 satisfy the relation
π2

1−π2
2−π2

3−π2
4 , the orbit space is embedded in the hypersurface of R4. There are only two strata of the

orbit space. The 4× 4 matrix grad(z) has rank at most 3 and is given by grad(z) =


4z1 4z2 4z3 4z4
4z2 4z1 0 0
4z3 0 4z1 0
4z4 0 0 4z1

.

Note that the ideal of 3× 3 minors of grad(z) contains the ideal 〈z1〉 as a primary component, but, as in
the previous example, z1 = 0, zi 6= 0 for some 1 < i ≤ 4 prevents grad(z) ≥ 0, hence this component does
not contribute to the stratification. We obtain the following description.

Dim. strata on rep. space strata of orbit space

0 Σ0 = {(0, 0, 0, 0)} {(0, 0, 0, 0)}

3 Σ3 = R4 \Σ0

8>><>>:
0BB@

z1

z2

z3

z4

1CCA ∈ R4

˛̨̨̨
˛̨ z2

1 − z2
2 − z2

3 − z2
4 = 0

z1 > 0, z2
2 + z2

3 + z2
4 > 0,

z1z
2
2 + z1z

2
3 + z1z

2
4 > 0

9>>=>>; ( R4.

Obviously, Σ̂3, respectively R4/G can be described by the inequality z1 > 0, respectively z1 ≥ 0. The
stabilizer associated to Σ0, respectively, Σ3 is SO2, respectively, {id}.

Example 6. We consider the action of the representation id⊕det · id on R6 of G = O3 ⊂ GLn(3)R, where
id : G→ GLn(3)R (i.e., (g, (x, y)) 7→ (g ·x, det(g)g ·y). Algebraically independent fundamental invariants
are given by π1 = t24 + t25 + t26, π2 = t21 + t22 + t23, π3 = t21t

2
5 + t21t

2
6 − 2t1t2t4t5 − 2t1t3t4t6 + t22t

2
4 + t22t

2
6 −

2t2t3t5t6 + t23t
2
4 + t23t

2
5. The representation- and orbit space can be decomposed in six strata of dimension

0, 1, 1, 2, 2, 3 respectively. The matrix grad(z) is given by

4z1 0 4z3
0 4z2 4z3

4z3 4z3 4z1z3 + 4z2z3

. As above, the ideal

of 3 × 3 minors of grad(z) contains the primary component 〈z1 + z2〉, which must be excluded, because
grad(z) 6≥ 0 for z1 = −z2 6= 0. A decomposition of the representation- and the 3-dimensional orbit space
is given in the table below.



rk strata of rep.space strata of orbit space

0 Σ0 = {(0, 0, 0, 0, 0, 0)} Σ̂0 = {(0, 0, 0)} ∈ R3

1 Σ1,1 = {(t1, t2, t3, 0, 0, 0)} \Σ0 Σ̂1,1 =

8<:
0@ 0

z2

0

1A ∈ R3
˛̨

z2 > 0

9=;
1 Σ1,2 = {(0, 0, 0, t4, t5, t6)} \Σ0 Σ̂1,2 =

8<:
0@ z1

0
0

1A ∈ R3
˛̨

z1 > 0

9=;
2 Σ2,1 = {t | t1t4 + t2t5 + t3t6 = 0} \ (Σ1,1 ∪Σ1,2 ∪Σ0)

8<:
0@ z1

z2

z1z2

1A ∈ R4

˛̨̨̨
z2
1z3 + z2

2z3 + z3 > 0,
z1z3 + z2z3 + z1 + z2 > 0

9=;
2 Σ2,2 =

8<:t |
t2t6 − t3t5 = 0
t1t6 − t3t4 = 0
t1t5 − t2t4 = 0

9=; \ (Σ1,1 ∪Σ1,2 ∪Σ0)

8<:
0@ z1

z2

0

1A ∈ R4
˛̨

z1 + z2 > 0, z1z2 > 0

9=;
3 Σp = R6 \ (Σ2,1 ∪Σ2,2 ∪Σ1,1 ∪Σ1,2 ∪Σ0))

8<:
0@ z1

z2

z3

1A ∈ R3

˛̨̨̨
z1 > 0, z1z2 > 0,
z2
1z2z3 + z1z

2
2z3 − z1z

2
3 − z2z

2
3 > 0

9=;
Without Theorem 2.2.3.(e), the description of the principal stratum is

Σ̂p =

8<:
0@ z1

z2

z3

1A ∈ R3

˛̨̨̨
˛̨ z2

1z2z3 + z1z
2
2z3 − z1z

2
3 − z2z

2
3 > 0

z2
1z3 + 2z1z2z3 + z2

2z3 + z1z2 − 2z2
3 > 0

z1z3 + z2z3 + z1 + z2 > 0

9=; .

The algorithm Stabilizer yields equations defining the stabilizer for each stratum, in particular, the
dimension and the number of connected components. After some (easy) calculation for the strata Σ1,1

and Σ1,2 we obtain the following table.

Stratum Σ0 Σ1,1 Σ1,2 Σ2,1 Σ2,2 Σp

Stabilizer O3 O2 Z2 × SO2 Z2 SO2 {id}

Conclusion

We have presented an alternative approach for the computation of stratifications of compact Lie groups
and have pointed out, that the dimension of a stratum, respectively, its closure is an upper and lower
bound for the number of inequalities, which are necessary in order to describe it. In particular, the
number of inequalities for describing orbit spaces is bounded by their dimension. The advantage of the
approach lies in the fact, that several applications (like the construction of polynomial potentials) do not
necessarily need inequalities at all, and that primary decomposition is faster on the representation space
than on the orbit space. Additionally, if the representation of G is not orthogonal, out approach may be
used to compute the Zariski-closures of the strata of the orbit space. From a practical point of view, the
dependence on orthogonal representations should be avoided.
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