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Abstract

In this paper, we survey some of our new results on the complexity of a number
of problems related to polynomial ideals. We consider multivariate polynomials
over some ring, like the integers or the rationals. For instance, a polynomial ideal
membership problem is a (w+1)-tuple P = (f, g1, 92, - . ., g) Where f and the g; are
multivariate polynomials, and the problem is to determine whether f is in the ideal
generated by the g¢;. For polynomials over the integers or rationals, this problem
is known to be exponential space complete. We discuss further complexity results
for problems related to polynomial ideals, like the word and subword problems for
commutative semigroups, a quantitative version of Hilbert’s Nullstellensatz in a
complexity theoretic version, and problems concerning the computation of reduced
polynomials and Grébner bases.

1 Introduction

Polynomial rings and their ideals are fundamental in many areas of mathematics, and
they also have a surprising number of applications in various areas of computer science,
like language generating and term rewriting systems, tiling problems, the complexity of
algebraic manifolds, and the complexity of some models for parallel systems. They have
also been used in some constraint logic programming software systems, like [1].

The decidability of the membership problem for polynomial ideals over a field or ring
was established in [25], [52], and [50]. The computational complexity of the polynomial
ideal membership problem was first discussed in [43] where the special case of the word
problem for commutative semigroups was investigated and solved. The bounds derived
there imply an exponential space lower bound for the membership problem in polynomial
ideals over Z (the integers) or Q (the rationals), in fact over arbitrary infinite fields, as well
as a doubly exponential lower bound for the time requirements for any Turing machine
solving the polynomial ideal membership problem over the rationals or integers. Other,
rather special cases of the polynomial ideal membership problem (given by restrictions
on the form of the generators) and their complexity have been investigated in [26], and,
for the case of special test polynomials, in e.g. [10], [4], [7], and [24]. Some other re-
lated complexity results, using, however, a different model (algebraic circuits) for parallel
computation, can be found in [20].



In this paper, we give a survey on basic algorithmic problems involving polynomial
ideals, on some new complexity bounds for these problems and algorithms for them, and
on some applications of polynomial ideals in other areas of computer science. It should be
emphasized, however, that this survey is not intended to be comprehensive and complete,
a remark that just as well applies to the list of references cited at the end.

2 Notations and Some Fundamental Concepts

2.1 Polynomials and Ideals

Consider the finite set {x1,...,2,} of indeterminates and let Q[z] denote the (commu-
tative) ring of polynomials in x1,...,x, with rational coefficients. An ideal in Q[z] is
defined in the ordinary way to be any subset Z of Q[z] satisfying

(i) pa€l = p—q€T;
(i) peZ,reqQz] = rpel.

For polynomials ¢1,...,¢, € Q[z], let (g1,...,9.) C Q[x] denote the ideal generated
by {917 s 7gw}7 i'e';

(G153 Guw) = { Y pigiipi € Q[x]}-
1<e<w
UZ="(g1,---r9u), {91,-.-, 90} is called a basis of T.
A term 7 in xq,...,x, is a product of the form

On

f— a]‘ a2lll
T = X1 Xy Ly

with a = (a1,...,a,) € N* the degree vector of 7 and deg(7) = 3>°7_; a; the total degree
of 7. For succinctness, we also write 7 = .
Each polynomial f(xy,...,2,) € Q[x] is a finite sum

flae, ..., x,) = Z ¢z,

1<e<r

with ¢; € Q — {0} the coefficient and «; € N™ the degree vector of the ith term of f. The
product ¢; - % is called the :th monomial of the polynomial f. The total degree of a
polynomial is the maximum of the total degrees of its monomials.

Example: Consider Q[z1, x2, 23], the ring of polynomials in zq, x5, 23 with rational
coefficients. Then the ideal (27, z323) consists of all polynomials f € Q[xy, 2, 3] such
that each term of f is divisible by a7 or by zaas.

An admissible term ordering in Q[x] is given by any total order < on N™ satisfying the
following two conditions:

L. a»(0,...,0) for all @ € N* — {(0,...,0)};

2. for all a, 3,y € N,
a<Ff=>a+y<0+~.

If o = 3, we say that the term z® is greater in the term ordering than the term 2, and,
for a polynomial f(x) = >/_; ¢;- 2™, we always assume that aq = az > ... > «a,. We call

LT(f) = x* the leading term and LM(f) = ¢; - 2 the leading monomial of f. Since
2



we are dealing with polynomials with coefficients from the field Q, we shall also usually
assume that polynomials are normalized, i.e., their leading coefficient ¢; is one. In an
abuse of notation, we also write < for the term ordering induced by the order < on the
degree vectors.

Example: Let < be the lexicographic ordering on N", i.e., if o, € N*, a # 3,
a=(a,...,a,) and = (f1,...,03,) then

a < 8 iff there is an ¢ such that for all 7 <7 o; = §;, and oy < ;.

Then, in the term ordering,
Ty~ Tg T3 1,

and the leading monomial (and the leading term) of the polynomial

5, 2.4, 2.5 22
flar, xe,x3) = o] + ajay + ajas + 3vases; — 1

o B
1s 7.

Example: Let < be the so-called graded reverse lexicographic (grevlex) ordering on

N, ie.,ifa,B €N a# [, a=(01,...,0,) and 8= (Fy,...,5,) then

a< it Y a <X B, or
Yoo = >y Bi, and there is an 1
such that o; = 3, for all j > 1 and
a; > [
Then, in the term ordering,
Ty > X9 3 - 1,

the polynomial of the previous example is written

2.5 | 2.4 5 2.2
flar, 20, x3) = xjes + xjvy + @] + 3aase; — 1,

and its leading term is z%x3.

Let Z be an ideal in Q[z], and let some admissible term order < on Q[z] be given. A
finite set {¢1,..., 9.} of polynomials from Q[z] is called a Grébner basis of Z (wrt. <), if

(i) {g1,--.,9-} is a basis of Z;

(ii) {LT(¢1),..., LT (g,)} is a basis of the leading term ideal of Z, which is the smallest
ideal containing the leading terms of all f € Z: or, equivalently: if f € Z, then

LT(f) e (LT(q1),...,LT(g.))-

Grobner bases have been introduced in [8]. For an excellent exposition of their numer-
ous useful properties, see e.g. [9]. A basis is called minimal if it does not strictly contain
some other basis of the same ideal. A Grobner basis is called reduced if no term in any
one of its polynomials is divisible by the leading term of some other polynomial in the
basis.

A polynomial f € Q[x] is called homogeneous (of degree d) if all of its monomials have
the same total degree d. Let f € Q[z] be some arbitrary polynomial. Then f can uniquely
be written as f = 3 f;, where each f; is homogeneous and deg( f;) # deg(f;) fori # j. The
fi are called the homogeneous components of f. An ideal Z C Q[z] is called homogeneous,
if, whenever Z contains some polynomial f, it also contains the homogeneous components
of f. It can be shown that this is equivalent to the following definition: An ideal Z C Q[x]
is homogeneous if it has a basis consisting of homogeneous polynomials.

3



2.2 Commutative Semigroups

A commutative semigroup (H, o) is a set H with a binary operation o which is associative
and commutative. Usually we shall write ab for a o b.

A commutative semigroup H is said to be finitely generated by a finite subset S =
{s1,...,8,} C Hif

H={s{"s5?---s2": o, eNfore=1,...,n}.

k23 ?

(Note: s is short for s;---s;.) There is a canonical homomorphism from N" to H,
N

mapping o € N to s* € . Tf this homomorphism actually is a bijection, then H is the

free commutative semigroup generated by {si,...,s,}, which is also denoted by S*. For

a word m = s{"s5%---s%" € 5% the sum a1 + ay + ... + «, is called the length of m.

Note that a term @ € Q[x] can also be looked at as an element of the commutative
semigroup generated by xy, ..., x.

A finitely presented commutative semigroup over S is given by a finite set P of con-
gruences [; = r;, where l;, r; € S*. A word m' € S* is derived in one step from m € S*
(written m <> m/(P)) via the congruence (I; = r;) € P iff, for some m € S*, we have
m = ml; and m’ = r;, or m = rmr; and m’ = ml;. The word m derives m/ iff m & m'(P),
where & is the reflexive transitive closure of ++. A sequence (mo, ..., m,) of words m; € S*
with m; <> m1(P) fori =0,...,r — 1 is called a derivation (of length r) of m, from myq
in P. Derivability establishes a congruence =p on S* by the rule

m =p m' Sqer m & m'(P).

Clearly, commutative semigroups are a concept equivalent to commutative Thue sys-
tems.

If it is understood that P is a commutative Thue system then the commutativity
productions are not explicitly mentioned in P, nor is their application within a derivation
in P counted as a step.

A commutative Thue system P is also called a presentation of the quotient semigroup
S*/ =p. For m € 5*, we use [m] to denote the congruence class of m wrt. =p.

2.3 Semilinear Sets

A linear subset L of N” is a set of the form
¢
L= {a—l—Znib(i); n; € N for 1 = 1,...,t}
=1

for some vectors a,b(!), ... b € N
A semilinear set SL is a finite union of linear sets:

k 4 '
SL = U {aj+2nib§,2); n; € N for 1 = 17‘_‘7%}

for some vectors aj,bgl), .. .,b;tj) EN, j=1,....k.

A uniformly semilinear subset UL of N is a set of the form
k t
UL = U {ay‘ ‘|‘an’b(i); n; € N for 1 = 1,...,t}
j:l =1

for some vectors aj,b(l), b enNt j =1, k.

We have (see [17]) the following



Theorem 1 Let = be any congruence relation on N™. Then the congruence class [u] of
any element u € N* with respect to = is a uniformly semilinear set in N".

2.4 Some Complexity Issues

Since we are mainly concerned with the computational complexity of problems, it is
necessary to speak about how we measure complexity. We consider the standard multi-
tape Turing machine model (see, e.g., [2]). For space bounds, we only count, as is usual,
the space used on the work tapes, and we do not take into account the space used on the
write-only output tape (which may be exponentially larger). We state complexity bounds
as worst-case bounds in terms of the input size, which is the number of bits used to encode
the input. For encoding, we can, unless stated otherwise, use any standard encoding, i.e.,
write numbers in binary, write vectors as delimited lists of numbers, etc..

We should also remark here that our results really do not depend much on the chosen
encoding. In fact, all our upper bounds hold if we encode numbers in binary (i.e., use a
succinet encoding), while all our lower bounds hold even if we encode numbers in unary
notation (i.e., are very generous with the space required to write down the input; the
reason is that the numbers occuring in the input of the problem instances for our lower
bounds are all very small). Note that this independence from the details of the encoding
of the input makes our results (upper as well as lower bounds) even stronger!

Occasionally, we also mention the Parallel Random Access Machine or PRAM as
a machine model for parallel computation. Such a machine consists of an unbounded
number of processors (each with the basic capabilities of a Random Access Machine, a
model quite similar to actual microprocessors) and a global shared memory of unbounded
size and consisting of memory cells, each of which can store an arbitrary integer. Each
processor can access any cell of the global memory cell in one step, and appropriate
measures are taken to resolve (or forbid a priori) memory access conflicts. For more
details on this model, see [21].

We use the abbreviation PSPACE to refer to the class of problems that can be decided
by (multi-tape) Turing machines using an amount of work space that is polynomial in the
size of the input. PSPACE is a very fundamental and (with respect to variations of the
machine model) very robust complexity class. For more details, see [2].

3 Basic Results

In this section, we are going to review several very basic and fundamental complexity
results for the structures we have presented in the previous section. Arguably one of the
most central problems for almost all of these structures turns out to be the uniform word
problem for commutative semigroups which is defined as follows:

Definition 3.1 Let S be a finite set of generators, and P a finite set of congruences on
S*. Let m,m’ € S*.

(i) Decision Problem: Given S, P,m, and m’ as input, decide whether
m=pm;

(ii) Representation Problem: Given S,P,m, and m’ as input, decide whether
m=p m' R

and if so, find a derivation of m' from m in P.
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Another problem, just as central, is the polynomial ideal membership problem (PIMP).
It is

Definition 3.2 Let f,qg1,...,9, be polynomials in Qz] = Q[z1,...,z,], and let T =
(G1s- -y Gu)-
(i) Decision Problem: Given f,q1,...,¢u, decide whether
fel;
(ii) Representation Problem: Given f,¢1,...,q,, decide whether f € I, and if so,
find p; € Qlx] such that
flx) = pig:.
=1
It is well known (see, e.g., [12]) that the word problem for commutative semigroups

can be reduced to PIMP, simply by interpreting each word m € 5* as a monomial in the
indeterminates sy, ..., s, and observing that

m=pm <= m'—me€(ri—l,...,ru — L) CTQ[s1,...,8],

where [; = r;, 1 = 1,...,w are the congruences in P.
In the fundamental paper [25], G. Hermann gave a doubly exponential degree bound

for PIMP:

Theorem 2 Let f,qg1,...,9, be polynomials € Q[z], and let d = max{deg(g;); ¢ =
L...;,wb. If f € (g1,---,9u), then there exist py,...,p, € Q[z] such that

1. f =3 pigi; and

2. deg(p;) < deg(f) + (wd)*", for alli,i=1,...,w.

For improved proofs of this theorem, see [52] and [43].

In [11] and [43] it was shown how to transform this degree bound for PIMP into a
space bound for the special case of PIMP, the uniform word problem for commutative
semigroups:

Theorem 3 The uniform word problem for finitely presented commutative semigroups
can be decided in exponential space (i.e., space 2009 with n here the size of the input).

In [41, 42], this exponential space upper bound (for the Turing machine model) was

generalized to PIMP:

Theorem 4 Let P be a polynomial ideal membership problem over Q, and let s be the
size of the input for P. Then there is a PRAM algorithm which solves P in parallel time
200) ysing 2200 Processors.

Using the Parallel Computation Thesis ([21]) and techniques from [47], one obtains

Theorem 5 The polynomial ideal membership problem is solvable in sequential space
exponential in the size of the problem instance.

for the decision problem, and also, for the representation problem,
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Theorem 6 Let f and g1, ..., g, be multivariate polynomials over the rationals. If [ is
an element of the ideal generated by the g; then a representation

= pg

1<e<w
can be found in exponential space.

As is customary, the space bound for the representation problem bounds the work
space, not the space on the output tape needed to write down the p;s. This distinction is
crucial, since, as we shall see below, the total length needed for writing down the p;s can
be double exponential in the size of the input. For a detailed proof of these two theorems,
see [41].

As we have already mentioned, Grobner bases play an important role in the algorithmic
treatment of problems in polynomial ideals. The complexity of algorithms for generating
a Grobner basis from a given set of generators for an ideal has been the subject of intensive
study (see e.g. [18] for a rather comprehensive survey). From the numerous complexity
results, we would like to mention the following:

Theorem 7 Let T = (¢1,...,9w) C Qlr1,...,2,] be an ideal, let d be the mazimal total
degree of the g;, 1 = 1,...,w, and let < be any admissible ordering on Q[z]. Then the
reduced Grobner basis for T consists of polynomials whose total degree is bounded by
d2 n—1
2= —+d)* .
& va)

An elegant, elementary proof of this doubly exponential degree bound is given in [15].
For earlier, somewhat weaker doubly exponential degree bounds, also see [23] and [35].
Similar results, but for more restricted subproblems, can also be found in e.g. [3], [40], or
[45].

Let g1,..., 0w € Q[x1,...,1,] be given. A syzygy for the g; is any vector (p1,...,py) €
(Q[z])" such that >, p;gi = 0. The set of syzygies forms a (finite dimensional) Q[x]-
module ([25]).

Theorem 8 Let g1,...,9, € Q[zy,...,2,] be given, and let d be a bound on the total
degree of the g;. Then there is a basis for the module of syzygies whose polynomials have
a total degree bounded by
d2 n—1
2= —+d)* .
&+ a)

For a proof, see [25] (for corrections to this paper, see e.g., [39], [52], and [43]) and
[15].

In the remainder of this section, we turn to lower bounds for the algorithmic problems

considered so far. The central result here is the lower bound for the uniform word problem
for finitely presented commutative semigroups shown in [43]:
Theorem 9 There is an infinite family of instances (m(i), m’(i),P(i)) of the uniform word
problem for finitely presented commutative semigroups and a constant ¢ > 0 such that each
derivation of m/® from m® in PO contains a word of length > 2%, where s denotes the
input size.

Using commutative semigroups to simulate counter or Minsky automata ([44]), this
result implies (cf. [43]):



Theorem 10 The uniform word problem for finitely presented commutative semigroups
requires exponential space, and is therefore, together with the matching upper bound, ex-
ponential space complete.

Since the word problem for commutative semigroups is a special case of PIMP (the
corresponding ideals are also called (pure difference) binomial ideals, see [19]), we also
obtain an exponential space lower bound (and thus completeness for exponential space)
for PIMP. The construction in [43] has been sharpened in [53] (which greatly improves the
constant in the exponent from 1/14 to basically 1/2) to yield the following lower bounds:

Theorem 11 Let n be the number of indeterminates and d the maximal total degree of
the generating polynomials in Qz] = Q[xy,...,x,]. Then there is an infinite family of
instances of PIMP, including infinitely many n, such that, for each of these instances,
say with generators g1, ..., G,

(i) there is a polynomial f € Q[xy,...,x,] with total degree < d, such that f €
(917 <o 7gw) and, whenever

f(l') = ipigm

2277,/2—0(\/5) .

then the mazimal total degree of the p; is > ;
(ii) any syzygy basis for the g1, ..., g, contains polynomials of degree

> 2277,/2—0(\/@

4 Complexity Results for Commutative Semigroups

As shown in [30], we get the following exponential space complexity bounds from the
results in [43] and [41].

Definition 4.1 Let P be a finite set of congruences on S*, S = {s1,...,s,}, and let
m,m’ € 5*.

1. The Boundedness Problem is: Given S, P, and m, decide whether [m] is finite.

2. The Coverability Problem is: Given S, P,m, and m’, decide whether there is an
m” € [m] such that m’ is a subword of m”.

3. The Selfcoverability Problem is: Given S, P, and m, decide whether there is an
m" € [m] such that m is a proper subword of m".

In [30] we show that, in terms of upper bounds, the boundedness, coverability and
selfcoverability problems can all be reduced to instances of PIMP for binomial ideals,
and hence are in exponential space. An exponential space lower bound can be obtained
by observing that the construction in [43] actually proves the following, slightly stronger
statement:

Theorem 12 There is an infinite family of instances (m,m’, P) of the commutative semi-
group word problem such that for each of them

(i) [m] is finite,



(it) m' is not a proper subword of any word in [m], and

(tii) any Turing machine requires exponential space on an infinite number of these in-
stances.

Furthermore, the uniform word problem for finitely generated commutative semigroups
with the above restrictions is still complete for exponential space under log-lin reductions.

Using this version, we can reduce exponential space to any of the boundedness, cover-
ability, or selfcoverability problem for commutative semigroups, establishing an exponen-
tial space lower bound and thus exponential space completeness for these three problems.

Next, we consider the generalized subword problem for commutative semigroups, uni-
fying several of the problems above.

Let V C S be a subset of S = {s1,...,5,}, wlog V = {sy,...,5}, and let V =5 -V,
Further, let Y be the subset {s;,...,s,} of X with Il > [ (if ; > [ then Y = 0).
Similarly, let Z = {s;,,...,s,} be another subset of S, with {; < I3, and Z = () if I3 > n.

Then, for the case [} < <y < I3 < n, we get the following picture:

V V
Sy o9 Sli=1y Slygev3Sly Sl41y+35Slyy SloFlyev-3Sl3—1y Slgy---,5n

—————

Y Z

With this notation, we define the generalized subword problem as follows.

Definition 4.2 Given S, P, V. C S, u € S*, v € V*, Y and Z as above, and with y =
81y *+* 81, decide whether there is a u' € [u] such that ' = v-y-w for some w € (Y U Z)*.

We see that the word problem and the coverability problem are special cases of the
generalized subword problem. If Y and Z are both empty, then the generalized subword
problem is equivalent to the word problem. If Y is the empty set and Z = X, then the
subword problem is equivalent to the coverability problem.

Theorem 13 The generalized subword problem is decidable in space exponential in the
size of the input.

Proof: [Sketch] In addition to sq,..., s, we introduce three new variables s, s, and ¢. Let
Sy = SU{s,s,t}. Given P and the two words u,v € S*, we construct a new commutative
semigroup presentation P; over S; as follows: For every congruence [; = r; in P, Py
contains the congruence tel; =17,

Then we add to P; the congruences s=t-u,

and t-vy-v =s.

Let < be any lexicographic term ordering satisfying
st s 5" = 5m 5,75,

foralls’ €V —(YUZ),s"eV—-(YUZ),s,€Y and s, € Z.

Let ms be the minimal element wrt < of the congruence class [s]p, of s in P;. As
shown in [34], the binomial s — m; is an element of the reduced Grobner basis of I(P;),
the ideal generated by the congruences in P; considered as binomials. It is also shown
that, because of the particular term ordering, there is a u’ € [u]p such that v’ =v -y - w’
for some w' € (Y U Z)" iff my; = 5w for some w € (Y U Z)*.

The claim of the theorem now follows from the degree bound given in Theorem 7. []

9



As an example, consider the finite commutative semigroup presentation P = {s; =
5283, S| = S283, S253 = S3} over S = {sy, 52, 83}, the words u = s1, v = s; and the sets
Y = {s3} and Z = (). In this special case, the subword problem is to decide whether there
is a u’ € [s1]p such that u' = s1s5 - w’ for some w’ € {s3}*.

Using the construction in the proof of Theorem 13 we compute the reduced Grobner

basis G of the ideal
T = (ts) —tsysy, ts) — sy, ts9s5 — 189, s — 151, 15153 — 5 )
wrt the lexicographic term ordering > satisfying
S 1> 51 > 82 >8> 53.

We obtain

_ 9 _ _ _ _ _
G = {585 — 8, 881 — 88283, lsy — 5, 8] — 883, $ — 883} .

The binomial s — 5s3 provides the solution w = s3 and v’ = s;52, resp., which can be
verified by the following derivation in P:

U= 8] ¢ 5983 & 5985 &> 5185 = u' (P) .

In further constructions in [34], the algorithm for the generalized subword problem
is then used to obtain explicit semilinear representations of congruence classes in finitely
presented commutative semigroups, and, using these, to solve the equivalence problem,
i.e., to decide, given two commutative semigroup presentations P and P’ over the same
alphabet S, and two words u,u’ € S*, whether the two respective congruence classes are
equal, i.e., whether

[ulp = [u]ps
Since this new algorithm for the equivalence problem also requires only exponential space,
it closes the gap left by the earlier algorithm given in [26].

5 Results for the Membership Problem for Polyno-
mial Ideals

In this section, we are going to summarize some results (upper and lower bounds) on
the complexity of PIMP, the polynomial ideal membership problem. We have already
mentioned (see Theorem 5) the exponential space upper bound for Q[xy, ..., x,] obtained
in [41], [42], and also the matching lower bound coming from the lower bound for the
special case, the uniform word problem for commutative semigroups, in [43].

While the exponential space bound in [41] is based on the classical construction in
[25], more recently exciting improvements have been obtained for the degree bound for
a number of special cases of PIMP. Among them, maybe the most prominent are the
following:

Theorem 14 Let g;, i = 1,...,w, be polynomials in Q[xy,...,x,], let d be the mazimal
degree of the g;, and assume that the g; have no common zero in C*. Then

=3 pigi
=1

for p; with deg(p;) < pnd* + pd, with ;1 = min{n,w}.
10



For a proof, see [7].
Using the so-called “Rabinovich trick”, Brownawell [7] also obtained

Theorem 15 Let f,g; € Qz1,...,x,] for i = 1,...,w, let d and p be as above, and
assume that f(x) =0 for all common zeros x (in C") of the g;. Then there are

c €N, e < (u+1)(n+2)(d+ 1),

pi € Qlay, ..., x,), with deg(p;) < (u+1)(n+2)(d+ 1)“"'2
such that y
fe=>"pigi.
=1

For proofs of these and similar exponential degree bounds, see [7], [4], and [29]. The
method of [41] immediately yields

Corollary 15.1 Whether
Le€(g1y. -y 00)

can be tested in PSPACE.
Corollary 15.2 Whether there is an e € N such that

9 € (g1, 9uw)

can be tested in PSPACFE.

These two corollaries could be termed quantitative versions of Hilbert’s Nullstellensatz
(see, e.g., [54]), one variant of which is

Theorem 16 (Hilbert’s Nullstellensatz) Let k be some algebraically closed field, let
frgi € klaq, ... x,], fori=1,...,w, and assume that f(x) =0 for all common zeros x
of the g;. Then (and only then) there is an integer e > 1 such that

fBE Qh,”.,gw).

There are a few more special cases of PIMP, where we get a PSPACE upper bound.
An ideal Z = (¢g1,...,94) C Q[z] is called zero-dimensional if the common zeros (in C")
of the g; are a finite set (for an exact definition of the dimension of an algebraic variety
or an ideal we refer the reader to e.g. [13]). For zero-dimensional ideals, an exponential
degree upper bound is known for the presentation problem [10]; also see [38]. Such an
exponential degree upper bound also holds for complete intersections (the dimension of
the algebraic variety defined by the ¢; (in C*) is n — w), as shown in [4].

Another “easy” case is when the generators g1, ..., ¢, € Q[z] are homogeneous. Then
the question whether a general f € Q[z] is an element of the ideal (g1,...,¢.) can be
solved by treating each homogeneous component of f separately. Hence, we may assume
that f is homogeneous. In this case, f € (g1,...,9.) iff f(2) =32, pigi for homogeneous

polynomials p; with deg(p;) = deg(f) — deg(g;). Since a homogeneous polynomial in n
n+d—1

77" ) distinct monomials, the method

variables and of degree d can consist of at most
of [41] again yields a PSPACE algorithm.

Finally, we present another lower bound, concerning PIMP restricted to homogeneous
ideals.
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Theorem 17 The polynomial ideal membership problem, when restricted to homogeneous
ideals, requires space n™V | and hence is PSPACE-complete.

Proof: [Sketch] We merely sketch a proof here. Let M be any deterministic Turing
machine with just one tape (functioning as input, work, and output tape), with the
additional restriction that the tape head must never move outside the section of the tape
initially occupied by the input (this variant is also called a (deterministic) linear bounded
automaton (LBA)). Wlog we assume that the tape alphabet of M is {0,1}, and that
M has unique accepting and rejecting final configurations. Let m be some input for
M of length n. Construct a homogeneous instance of PIMP as follows. Let the set of
indeterminates be {z;,y;,2z;; i = 1,...,n} UQ, where @) is the set of states of the finite
control of M. We use z; and y; to denote that the contents of the ith cell of M’s tape
contains a 0 (resp., a 1), and z; to denote the fact that M’s head is positioned over the ith
tape cell. Then the initial configuration of M can be represented by a term 7 over these
indeterminates, and the unique final accepting configuration by some term 7/. Also, if we
allow that each transition of M can also be reversed (i.e., if we turn M from a semi-Thue
system into a Thue system), the transition relation of this “symmetric” machine can be
represented by a linear (in n) number of polynomials g; in the above indeterminates, each
of which is a difference of two terms. FEach of these polynomials simply expresses the
local change that occurs when M, with its head at some position ¢, executes one step (in
forward or backward direction). Also, the polynomial 7" — 7 and the polynomials g; are
homogeneous, the g; of degree say 3 and 7/ — 7 of degree roughly n. Now,

M accepts m iff 7 — 7 is in the ideal generated by the g; .

As already noted in [48], the fact that we have replaced the semi-Thue system underlying
M by a Thue system does not hurt us since M was assumed to be deterministic. []

We also remark that the exponential space lower bound for PIMP also holds if we
replace Q by an infinite field of finite characteristic, say 2. The reason is that the lower
bound proof in [43] uses commutative semigroups or, equivalently, pure difference binomial
ideals. Closer inspection also shows that even +1 and —1 need not be distinguishable,
since the exponential space lower bound is actually obtained for the question whether, in a
commutative semigroup, there is a derivation between some two given words. This setting
also works in the case of finite characteristic. Note, however, that for the exponential space
lower bound to hold, we must not add the Fermat polynomials #? — z; to the generators.

Even this restriction can be dropped in the homogeneous case discussed above. Based
on the same reasoning, the PSPACE lower bound also holds for Z[xy, ..., x,].

6 Grobner Bases and Reductions

It is not hard to see that binomial ideals have binomial reduced Grobner bases, i.e.,
each polynomial in such a basis is the difference of two terms (one of them possibly
1, corresponding to the empty word). Using the relationship of such ideals to (finitely
presented) commutative semigroups, we immediately obtain the following lower bounds
for Grobner bases.

Theorem 18 There are infinitely many n >0 and a d > 0 (d =5 suffices) such that for
every such n, there is a generating set gy, ..., ¢, (with w depending linearly on n), such
that each g; is a difference of two monomials, deg(g;) < d, and there is a constant ¢ > 0
(¢ is roughly %) such that
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(i) every Grobner basis for (gi,...,¢,) contains a polynomial of total degree > 2*°";
and

(ii) every Grébner basis for (gi,...,¢) contains at least 2*°" elements.

For a proof, also see [27].

Since we can always homogenize the generators of some ideal in Q[zy,...,z,] intro-
ducing an additional indeterminate ¢, this double exponential lower bound for Grobner
bases also holds for homogeneous ideals.

Note that the exponential space lower bound implied by Theorem 18 already holds
for pure difference binomial ideals (homogeneous or not), and hence of course also for
general ideals. The bound also holds for finite characteristic, with the same provisions as
mentioned above.

In terms of upper bounds, we now present two exponential space algorithms, one for
binomial ideals, and one for the general case. We give a separate algorithm for the case
of binomials since, even though both algorithms are exponential space, this one is much
simpler and could be termed “combinatorial”.

6.1 Computing Grobner Bases for Binomial Ideals

We first consider pure difference ideals in Q[z1,...,x,], i.e., ideals with a basis in which
each polynomial is a difference of two terms. Let B be such a binomial ideal in Q[z1, ...,
z,]. Given an admissible term ordering <, the reduced Grobner basis is uniquely deter-
mined. We call a term 7 € {xy,...,2,}* minimal reducible iff its normal form N (1), i.e.,
the minimal (wrt <) term in 7 4 B, is strictly smaller (wrt <) than 7 itself, and the term
7 is minimal (wrt divisibility) with this property.

In [33], we show the

Theorem 19 The reduced Grobner basis of B with the term ordering < consists exactly
of all the binomials h — N(h), where h is minimal reducible.

Based on the degree bound from Theorem 7, we can, in exponential space, enumerate
all binomials below this degree bound and check which ones satisfy the condition stated
in the theorem.

For general binomial ideals, i.e., ideals generated wlog by a finite set of polynomials
each of which is the difference of a term and a monomial (with a coefficient from Q,
including 0), the situation becomes slightly more difficult since now cancellation of terms
can occur, and since the coefficients can become extremely large (up to triple exponential
in the input size). Nonetheless, as shown in [31] (also see [32]), there is still a very close
relationship to the corresponding pure difference binomial ideal (where the coefficients
in the basis binomials are replaced by 1 and -1, as appropriate). Once the terms in
the binomials of the reduced Grobner basis (of the general binomial ideal) are known,
their coefficients can be determined in exponential space using the Chinese Remainder
Theorem.

Theorem 20 The reduced Grobner basis of a binomial ideal can be computed in expo-
nential space.
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6.2 Computing Reduced Forms and Grobner Bases in General
Polynomial Ideals

We now consider general polynomial ideals in Q[a1, ..., z,], together with some admissible
term ordering <. As before, the term ordering is assumed to be represented by n linear
forms with integer coefficients [51]. Let Z be such an ideal, generated by the polynomials
Jis- -y 9w € Q[x1, ..., 2,], let d be an upper bound on the total degree of the g;, and let <
be some given term ordering, with A an upper bound on the absolute value of the integer
coefficients in the linear forms representing <.

In [36] (also see [37]), we show, based on an estimate originally given in [16], the
following

Proposition 1 Let Z, d, < and A be as stated. Then the degree of the unique normal
form of a given polynomial p wrt the given ideal T and the term order < is bounded by

(2A(F +d)" +1)" deg(p))™+.

Based on this degree bound, we can use the construction given in [41] and [42] to
reduce the question, whether a given term or polynomial is reducible modulo Z, to solving
a linear system of equations with coefficients in Q: The columns of the matrix correspond
to the terms less than (wrt <) the given term (respectively, the leading term of the
given polynomial) and, in terms of their degree, bounded by the quantity stated in the
above Proposition. The rows of the matrix are determined by the Fundamental Theorem
of Algebra stating that a (multivariate) polynomial over @ is identically zero iff all of its
coefficients are zero. The dimensions of the resulting matrix are double exponential in the
size of the input, hence we cannot afford to write this matrix down in storage. Computing
its entries whenever they are needed, and using fast parallel algorithms for parallel rank
computation ([28],[46]) and the relationship between parallel time and sequential space as
expressed in the Parallel Computation Thesis [21], we can determine within exponential
space whether a given term 7 is minimal reducible, and, of course, also whether it is
irreducible.

Using the above algorithm as a subroutine, we can determine the normal form N(p)
of a given polynomial p wrt the ideal Z and the term ordering < as follows: Using once
again the degree bound from Proposition 1, we check whether there is a polynomial p —p
in Z, where p contains just terms that are irreducible wrt Z. If such a p exists, it is N(p),
and we can compute it using just exponential work space. For this, we again employ the
Parallel Computation Thesis and efficient parallel algorithms for the solution of linear
systems of equations ([14],[49],[6],[5],[47],[22]).

We thus obtain

Theorem 21 Gliven the basis of an ideal Z, a term ordering <, and a polynomial p, the
unique normal form of p wrt (Z,=<) can be computed in exponential space.

Given a basis for some ideal Z and an admissible term ordering, it is now quite straight-
forward to compute the uniquely determined reduced Grobner basis of Z wrt <: We just
combine our algorithm for finding the minimal reducible terms 7 with the normal form al-
gorithm. The reduced Grébner basis consists of the polynomials 7 — N(7), with 7 ranging
over the minimal reducible terms.

Theorem 22 Given the basis of an ideal T C Q[z1,...,2,] and a term ordering <, the
unique reduced Grobner basis of T wrt < can be computed using exponential space.
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We have now presented several algorithms for computing (reduced) Grébner bases of
binomial resp. general polynomial ideals. While these algorithms are space optimal in
the asymptotic sense, this does not mean, and we do not claim that they are practical.
However, our algorithms are asymptotically space optimal (requiring workspace 2°™),
whereas for instance Buchberger’s algorithm, in the worst case, uses double exponential
workspace.

7 Conclusion

In this survey, we have highlighted some of the connections between such different areas
as the algebraic theory of multivariate polynomial ideals, elimination theory and complex
function theory providing complexity bounds, algebraic geometry, and the very fundamen-
tal commutative semigroups. These interrelationships are quite intriguing since a large
number of very basic complexity results for these structures has been obtained using
these connections. And this maybe even more so, if one realizes that in several instances,
a lower bound has been shown (how else?) using basical string rewriting techniques while
matching upper bounds have been established using (sometimes quite elaborate and deep)
techniques from analysis or complex function theory.

Another phenomenon that is quite indicative here and possibly typical for other prac-
tical areas (and computer algebra and Grébner bases are being used in practice, even if
quite often with some frustration and long waiting hours, as this author can attest to)
could be the following: while the worst-case lower bounds for PIMP and Grobner bases
are terrible, seemingly precluding any application in practice, it turns out that much bet-
ter (more “encouraging”) bounds can be derived for the cases that really tend to occur
in practical applications, like radical membership or regular intersections. And there are
interesting developments to even characterize some really applicable cases (bounds better
than PSPACE).

While such advances will be necessary in order to apply polynomial ideals in fields
like robotics, motion planning, vision, modeling, constrained programming, and others,
there also remain a few fundamental questions concerning complexity issues of polynomial
ideals and related structures. One is to obtain explicit upper (and possibly better lower)
bounds for ideals in Z[x] (or other nice and effective rings in place of Z). So far, we
just have the double exponential lower bounds from the word problem for commutative
semigroups, and no explicit upper bounds. Another open problem is the complexity
of the reachability problem for (general) Petri nets. While this complexity has been
characterized for many subclasses of Petri nets, these subclasses are all so restricted that
they are of little practical value. This means that we should try, on the one hand, to
upper bound the complexity of the general Petri net reachability problem, but also to find
characterizations of new subclasses of Petri nets which are of practical relevance and at
the same time permit efficient solutions of basic problems like reachability, boundedness,
or absence of deadlock. One might object that these goals are contradictory in themselves,
since e.g. the reachability problem is already PSPACE-complete for 1-safe Petri nets, but
this only says that different types of characterizations probably should be investigated,
as the example of PIMP seems to indicate in a (slightly?) different area.
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