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Some Complexity Results for Polynomial IdealsErnst W. MayrInstitut f�ur InformatikTechnische Universit�at M�unchenD-80290 M�unchen, GERMANYe-mail: mayr@informatik.tu-muenchen.deWWW: http://wwwmayr.informatik.tu-muenchen.de/January 11, 1997AbstractIn this paper, we survey some of our new results on the complexity of a numberof problems related to polynomial ideals. We consider multivariate polynomialsover some ring, like the integers or the rationals. For instance, a polynomial idealmembership problem is a (w+1)-tuple P = (f; g1; g2; : : : ; gw) where f and the gi aremultivariate polynomials, and the problem is to determine whether f is in the idealgenerated by the gi. For polynomials over the integers or rationals, this problemis known to be exponential space complete. We discuss further complexity resultsfor problems related to polynomial ideals, like the word and subword problems forcommutative semigroups, a quantitative version of Hilbert's Nullstellensatz in acomplexity theoretic version, and problems concerning the computation of reducedpolynomials and Gr�obner bases.1 IntroductionPolynomial rings and their ideals are fundamental in many areas of mathematics, andthey also have a surprising number of applications in various areas of computer science,like language generating and term rewriting systems, tiling problems, the complexity ofalgebraic manifolds, and the complexity of some models for parallel systems. They havealso been used in some constraint logic programming software systems, like [1].The decidability of the membership problem for polynomial ideals over a �eld or ringwas established in [25], [52], and [50]. The computational complexity of the polynomialideal membership problem was �rst discussed in [43] where the special case of the wordproblem for commutative semigroups was investigated and solved. The bounds derivedthere imply an exponential space lower bound for the membership problem in polynomialideals over Z (the integers) or Q (the rationals), in fact over arbitrary in�nite �elds, as wellas a doubly exponential lower bound for the time requirements for any Turing machinesolving the polynomial ideal membership problem over the rationals or integers. Other,rather special cases of the polynomial ideal membership problem (given by restrictionson the form of the generators) and their complexity have been investigated in [26], and,for the case of special test polynomials, in e.g. [10], [4], [7], and [24]. Some other re-lated complexity results, using, however, a di�erent model (algebraic circuits) for parallelcomputation, can be found in [20]. 1



In this paper, we give a survey on basic algorithmic problems involving polynomialideals, on some new complexity bounds for these problems and algorithms for them, andon some applications of polynomial ideals in other areas of computer science. It should beemphasized, however, that this survey is not intended to be comprehensive and complete,a remark that just as well applies to the list of references cited at the end.2 Notations and Some Fundamental Concepts2.1 Polynomials and IdealsConsider the �nite set fx1; : : : ; xng of indeterminates and let Q[x] denote the (commu-tative) ring of polynomials in x1; : : : ; xn with rational coe�cients. An ideal in Q[x] isde�ned in the ordinary way to be any subset I of Q[x] satisfying(i) p; q 2 I ) p� q 2 I;(ii) p 2 I, r 2 Q[x] ) rp 2 I.For polynomials g1; : : : ; gw 2 Q[x], let (g1; : : : ; gw) � Q[x] denote the ideal generatedby fg1; : : : ; gwg, i.e., (g1; : : : ; gw) = 8<: X1�i�w pigi ; pi 2 Q[x]9=; :If I = (g1; : : : ; gw), fg1; : : : ; gwg is called a basis of I.A term � in x1; : : : ; xn is a product of the form� = x�11 x�22 � � �x�nn ;with � = (�1; : : : ; �n) 2 Nn the degree vector of � and deg(� ) = Pnj=1 �j the total degreeof � . For succinctness, we also write � = x�.Each polynomial f(x1; : : : ; xn) 2 Q[x] is a �nite sumf(x1; : : : ; xn) = X1�i�r ci � x�i ;with ci 2 Q� f0g the coe�cient and �i 2 Nn the degree vector of the ith term of f . Theproduct ci � x�i is called the ith monomial of the polynomial f . The total degree of apolynomial is the maximum of the total degrees of its monomials.Example: Consider Q[x1; x2; x3], the ring of polynomials in x1; x2; x3 with rationalcoe�cients. Then the ideal (x31; x2x3) consists of all polynomials f 2 Q[x1; x2; x3] suchthat each term of f is divisible by x31 or by x2x3.An admissible term ordering in Q[x] is given by any total order � on Nn satisfying thefollowing two conditions:1. � � (0; : : : ; 0) for all � 2 Nn � f(0; : : : ; 0)g;2. for all �; �; 
 2 Nn, � � � ) �+ 
 � � + 
 :If � � �, we say that the term x� is greater in the term ordering than the term x�, and,for a polynomial f(x) = Pri=1 ci �x�i, we always assume that �1 � �2 � : : : � �n. We callLT (f) = x�1 the leading term and LM(f) = c1 � x�1 the leading monomial of f . Since2



we are dealing with polynomials with coe�cients from the �eld Q, we shall also usuallyassume that polynomials are normalized, i.e., their leading coe�cient c1 is one. In anabuse of notation, we also write � for the term ordering induced by the order � on thedegree vectors.Example: Let � be the lexicographic ordering on Nn, i.e., if �; � 2 Nn, � 6= �,� = (�1; : : : ; �n) and � = (�1; : : : ; �n) then� � � i� there is an i such that for all j < i �j = �j, and �i < �i :Then, in the term ordering, x1 � x2 � x3 � 1 ;and the leading monomial (and the leading term) of the polynomialf(x1; x2; x3) = x51 + x21x42 + x21x53 + 3x1x22x23 � 1is x51.Example: Let � be the so-called graded reverse lexicographic (grevlex) ordering onNn, i.e., if �; � 2 Nn, � 6= �, � = (�1; : : : ; �n) and � = (�1; : : : ; �n) then� � � i� Pni=1 �i < Pni=1 �i, orPni=1 �i = Pni=1 �i, and there is an isuch that �j = �j for all j > i and�i > �i.Then, in the term ordering, x1 � x2 � x3 � 1 ;the polynomial of the previous example is writtenf(x1; x2; x3) = x21x53 + x21x42 + x51 + 3x1x22x23 � 1 ;and its leading term is x21x53.Let I be an ideal in Q[x], and let some admissible term order � on Q[x] be given. A�nite set fg1; : : : ; grg of polynomials from Q[x] is called a Gr�obner basis of I (wrt. �), if(i) fg1; : : : ; grg is a basis of I;(ii) fLT (g1); : : : ; LT (gr)g is a basis of the leading term ideal of I, which is the smallestideal containing the leading terms of all f 2 I; or, equivalently: if f 2 I, thenLT (f) 2 (LT (g1); : : : ; LT (gr)) :Gr�obner bases have been introduced in [8]. For an excellent exposition of their numer-ous useful properties, see e.g. [9]. A basis is called minimal if it does not strictly containsome other basis of the same ideal. A Gr�obner basis is called reduced if no term in anyone of its polynomials is divisible by the leading term of some other polynomial in thebasis.A polynomial f 2 Q[x] is called homogeneous (of degree d) if all of its monomials havethe same total degree d. Let f 2 Q[x] be some arbitrary polynomial. Then f can uniquelybe written as f = P fi, where each fi is homogeneous and deg(fi) 6= deg(fj) for i 6= j. Thefi are called the homogeneous components of f . An ideal I � Q[x] is called homogeneous,if, whenever I contains some polynomial f , it also contains the homogeneous componentsof f . It can be shown that this is equivalent to the following de�nition: An ideal I � Q[x]is homogeneous if it has a basis consisting of homogeneous polynomials.3



2.2 Commutative SemigroupsA commutative semigroup (H; �) is a set H with a binary operation � which is associativeand commutative. Usually we shall write ab for a � b.A commutative semigroup H is said to be �nitely generated by a �nite subset S =fs1; : : : ; sng � H if H = fs�11 s�22 � � � s�nn ; �i 2 N for i = 1; : : : ; ng :(Note: s�ii is short for si � � � si| {z }�i .) There is a canonical homomorphism from Nn to H,mapping � 2 Nn to s� 2 H. If this homomorphism actually is a bijection, then H is thefree commutative semigroup generated by fs1; : : : ; sng, which is also denoted by S�. Fora word m = s�11 s�22 � � � s�nn 2 S�, the sum �1 + �2 + : : :+ �n is called the length of m.Note that a term x� 2 Q[x] can also be looked at as an element of the commutativesemigroup generated by x1; : : : ; xk.A �nitely presented commutative semigroup over S is given by a �nite set P of con-gruences li � ri, where li, ri 2 S�. A word m0 2 S� is derived in one step from m 2 S�(written m $ m0(P)) via the congruence (li � ri) 2 P i�, for some ~m 2 S�, we havem = ~mli andm0 = ~mri, or m = ~mri and m0 = ~mli. The wordm derives m0 i�m �$ m0(P),where �$ is the re
exive transitive closure of$. A sequence (m0; : : : ;mr) of wordsmi 2 S�with mi $ mi+1(P) for i = 0; : : : ; r� 1 is called a derivation (of length r) of mr from m0in P. Derivability establishes a congruence �P on S� by the rulem �P m0 ,def m �$ m0(P):Clearly, commutative semigroups are a concept equivalent to commutative Thue sys-tems.If it is understood that P is a commutative Thue system then the commutativityproductions are not explicitly mentioned in P, nor is their application within a derivationin P counted as a step.A commutative Thue system P is also called a presentation of the quotient semigroupS�= �P. For m 2 S�, we use [m] to denote the congruence class of m wrt. �P .2.3 Semilinear SetsA linear subset L of Nn is a set of the formL = (a+ tXi=1 nib(i); ni 2 N for i = 1; : : : ; t)for some vectors a; b(1); : : : ; b(t) 2 Nn.A semilinear set SL is a �nite union of linear sets:SL = k[j=18<:aj + tjXi=1 nib(i)j ; ni 2 N for i = 1; : : : ; tj9=;for some vectors aj; b(1)j ; : : : ; b(tj)j 2 Nn, j = 1; : : : ; k.A uniformly semilinear subset UL of Nn is a set of the formUL = k[j=1(aj + tXi=1 nib(i); ni 2 N for i = 1; : : : ; t)for some vectors aj; b(1); : : : ; b(t) 2 Nn, j = 1; : : : ; k.We have (see [17]) the following 4



Theorem 1 Let � be any congruence relation on Nn. Then the congruence class [u] ofany element u 2 Nn with respect to � is a uniformly semilinear set in Nn.2.4 Some Complexity IssuesSince we are mainly concerned with the computational complexity of problems, it isnecessary to speak about how we measure complexity. We consider the standard multi-tape Turing machine model (see, e.g., [2]). For space bounds, we only count, as is usual,the space used on the work tapes, and we do not take into account the space used on thewrite-only output tape (which may be exponentially larger). We state complexity boundsas worst-case bounds in terms of the input size, which is the number of bits used to encodethe input. For encoding, we can, unless stated otherwise, use any standard encoding, i.e.,write numbers in binary, write vectors as delimited lists of numbers, etc..We should also remark here that our results really do not depend much on the chosenencoding. In fact, all our upper bounds hold if we encode numbers in binary (i.e., use asuccinct encoding), while all our lower bounds hold even if we encode numbers in unarynotation (i.e., are very generous with the space required to write down the input; thereason is that the numbers occuring in the input of the problem instances for our lowerbounds are all very small). Note that this independence from the details of the encodingof the input makes our results (upper as well as lower bounds) even stronger!Occasionally, we also mention the Parallel Random Access Machine or PRAM asa machine model for parallel computation. Such a machine consists of an unboundednumber of processors (each with the basic capabilities of a Random Access Machine, amodel quite similar to actual microprocessors) and a global shared memory of unboundedsize and consisting of memory cells, each of which can store an arbitrary integer. Eachprocessor can access any cell of the global memory cell in one step, and appropriatemeasures are taken to resolve (or forbid a priori) memory access con
icts. For moredetails on this model, see [21].We use the abbreviation PSPACE to refer to the class of problems that can be decidedby (multi-tape) Turing machines using an amount of work space that is polynomial in thesize of the input. PSPACE is a very fundamental and (with respect to variations of themachine model) very robust complexity class. For more details, see [2].3 Basic ResultsIn this section, we are going to review several very basic and fundamental complexityresults for the structures we have presented in the previous section. Arguably one of themost central problems for almost all of these structures turns out to be the uniform wordproblem for commutative semigroups which is de�ned as follows:De�nition 3.1 Let S be a �nite set of generators, and P a �nite set of congruences onS�. Let m;m0 2 S�.(i) Decision Problem: Given S;P;m; and m0 as input, decide whetherm �P m0 ;(ii) Representation Problem: Given S;P;m; and m0 as input, decide whetherm �P m0 ;and if so, �nd a derivation of m0 from m in P.5



Another problem, just as central, is the polynomial ideal membership problem (PIMP).It isDe�nition 3.2 Let f; g1; : : : ; gw be polynomials in Q[x] = Q[x1; : : : ; xn], and let I =(g1; : : : ; gw).(i) Decision Problem: Given f; g1; : : : ; gw, decide whetherf 2 I ;(ii) Representation Problem: Given f; g1; : : : ; gw, decide whether f 2 I, and if so,�nd pi 2 Q[x] such that f(x) = wXi=1 pigi :It is well known (see, e.g., [12]) that the word problem for commutative semigroupscan be reduced to PIMP, simply by interpreting each word m 2 S� as a monomial in theindeterminates s1; : : : ; sn and observing thatm �P m0 () m0 �m 2 (r1 � l1; : : : ; rw � lw) � Q[s1; : : : ; sn] ;where li � ri, i = 1; : : : ; w are the congruences in P.In the fundamental paper [25], G. Hermann gave a doubly exponential degree boundfor PIMP:Theorem 2 Let f; g1; : : : ; gw be polynomials 2 Q[x], and let d = maxfdeg(gi); i =1; : : : ; wg. If f 2 (g1; : : : ; gw), then there exist p1; : : : ; pw 2 Q[x] such that1. f = Pwi=1 pigi; and2. deg(pi) � deg(f) + (wd)2n, for all i, i = 1; : : : ; w.For improved proofs of this theorem, see [52] and [43].In [11] and [43] it was shown how to transform this degree bound for PIMP into aspace bound for the special case of PIMP, the uniform word problem for commutativesemigroups:Theorem 3 The uniform word problem for �nitely presented commutative semigroupscan be decided in exponential space (i.e., space 2O(n), with n here the size of the input).In [41, 42], this exponential space upper bound (for the Turing machine model) wasgeneralized to PIMP:Theorem 4 Let P be a polynomial ideal membership problem over Q, and let s be thesize of the input for P . Then there is a PRAM algorithm which solves P in parallel time2O(s) using 22O(s) processors.Using the Parallel Computation Thesis ([21]) and techniques from [47], one obtainsTheorem 5 The polynomial ideal membership problem is solvable in sequential spaceexponential in the size of the problem instance.for the decision problem, and also, for the representation problem,6



Theorem 6 Let f and g1; : : : ; gw be multivariate polynomials over the rationals. If f isan element of the ideal generated by the gi then a representationf = X1�i�w pigican be found in exponential space.As is customary, the space bound for the representation problem bounds the workspace, not the space on the output tape needed to write down the pis. This distinction iscrucial, since, as we shall see below, the total length needed for writing down the pis canbe double exponential in the size of the input. For a detailed proof of these two theorems,see [41].As we have already mentioned, Gr�obner bases play an important role in the algorithmictreatment of problems in polynomial ideals. The complexity of algorithms for generatinga Gr�obner basis from a given set of generators for an ideal has been the subject of intensivestudy (see e.g. [18] for a rather comprehensive survey). From the numerous complexityresults, we would like to mention the following:Theorem 7 Let I = (g1; : : : ; gw) � Q[x1; : : : ; xn] be an ideal, let d be the maximal totaldegree of the gi, i = 1; : : : ; w, and let � be any admissible ordering on Q[x]. Then thereduced Gr�obner basis for I consists of polynomials whose total degree is bounded by2(d22 + d)2n�1 :An elegant, elementary proof of this doubly exponential degree bound is given in [15].For earlier, somewhat weaker doubly exponential degree bounds, also see [23] and [35].Similar results, but for more restricted subproblems, can also be found in e.g. [3], [40], or[45].Let g1; : : : ; gw 2 Q[x1; : : : ; xn] be given. A syzygy for the gi is any vector (p1; : : : ; pw) 2(Q[x])w such that Pwi=1 pigi = 0. The set of syzygies forms a (�nite dimensional) Q[x]-module ([25]).Theorem 8 Let g1; : : : ; gw 2 Q[x1; : : : ; xn] be given, and let d be a bound on the totaldegree of the gi. Then there is a basis for the module of syzygies whose polynomials havea total degree bounded by 2(d22 + d)2n�1 :For a proof, see [25] (for corrections to this paper, see e.g., [39], [52], and [43]) and[15].In the remainder of this section, we turn to lower bounds for the algorithmic problemsconsidered so far. The central result here is the lower bound for the uniform word problemfor �nitely presented commutative semigroups shown in [43]:Theorem 9 There is an in�nite family of instances (m(i);m0(i);P(i)) of the uniform wordproblem for �nitely presented commutative semigroups and a constant c > 0 such that eachderivation of m0(i) from m(i) in P(i) contains a word of length � 22c�s, where s denotes theinput size.Using commutative semigroups to simulate counter or Minsky automata ([44]), thisresult implies (cf. [43]): 7



Theorem 10 The uniform word problem for �nitely presented commutative semigroupsrequires exponential space, and is therefore, together with the matching upper bound, ex-ponential space complete.Since the word problem for commutative semigroups is a special case of PIMP (thecorresponding ideals are also called (pure di�erence) binomial ideals, see [19]), we alsoobtain an exponential space lower bound (and thus completeness for exponential space)for PIMP. The construction in [43] has been sharpened in [53] (which greatly improves theconstant in the exponent from 1/14 to basically 1/2) to yield the following lower bounds:Theorem 11 Let n be the number of indeterminates and d the maximal total degree ofthe generating polynomials in Q[x] = Q[x1; : : : ; xn]. Then there is an in�nite family ofinstances of PIMP, including in�nitely many n, such that, for each of these instances,say with generators g1; : : : ; gw,(i) there is a polynomial f 2 Q[x1; : : : ; xn] with total degree � d, such that f 2(g1; : : : ; gw) and, whenever f(x) = wXi=1 pigi ;then the maximal total degree of the pi is � 22n=2�O(pn);(ii) any syzygy basis for the g1; : : : ; gw contains polynomials of degree� 22n=2�O(pn) :4 Complexity Results for Commutative SemigroupsAs shown in [30], we get the following exponential space complexity bounds from theresults in [43] and [41].De�nition 4.1 Let P be a �nite set of congruences on S�, S = fs1; : : : ; sng, and letm;m0 2 S�.1. The Boundedness Problem is: Given S;P, and m, decide whether [m] is �nite.2. The Coverability Problem is: Given S;P;m, and m0, decide whether there is anm00 2 [m] such that m0 is a subword of m00.3. The Selfcoverability Problem is: Given S;P, and m, decide whether there is anm00 2 [m] such that m is a proper subword of m00.In [30] we show that, in terms of upper bounds, the boundedness, coverability andselfcoverability problems can all be reduced to instances of PIMP for binomial ideals,and hence are in exponential space. An exponential space lower bound can be obtainedby observing that the construction in [43] actually proves the following, slightly strongerstatement:Theorem 12 There is an in�nite family of instances (m;m0;P) of the commutative semi-group word problem such that for each of them(i) [m] is �nite, 8



(ii) m0 is not a proper subword of any word in [m], and(iii) any Turing machine requires exponential space on an in�nite number of these in-stances.Furthermore, the uniform word problem for �nitely generated commutative semigroupswith the above restrictions is still complete for exponential space under log-lin reductions.Using this version, we can reduce exponential space to any of the boundedness, cover-ability, or selfcoverability problem for commutative semigroups, establishing an exponen-tial space lower bound and thus exponential space completeness for these three problems.Next, we consider the generalized subword problem for commutative semigroups, uni-fying several of the problems above.Let V � S be a subset of S = fs1; : : : ; sng, wlog V = fs1; : : : ; slg, and let �V = S �V .Further, let Y be the subset fsl1; : : : ; sl2g of X with l2 � l (if l1 > l2 then Y = ;).Similarly, let Z = fsl3; : : : ; sng be another subset of S, with l2 < l3, and Z = ; if l3 > n.Then, for the case l1 < l < l2 < l3 < n, we get the following picture:Vz }| {s1; : : : ; sl1�1; sl1; : : : ; sl; �Vz }| {sl+1; : : : ; sl2; sl2+1; : : : ; sl3�1; sl3; : : : ; sn| {z }Y | {z }ZWith this notation, we de�ne the generalized subword problem as follows.De�nition 4.2 Given S, P, V � S, u 2 S�, v 2 V �, Y and Z as above, and with y =sl1 � � � sl2, decide whether there is a u0 2 [u] such that u0 = v � y �w for some w 2 (Y [Z)�.We see that the word problem and the coverability problem are special cases of thegeneralized subword problem. If Y and Z are both empty, then the generalized subwordproblem is equivalent to the word problem. If Y is the empty set and Z = X, then thesubword problem is equivalent to the coverability problem.Theorem 13 The generalized subword problem is decidable in space exponential in thesize of the input.Proof: [Sketch] In addition to s1; : : : ; sn we introduce three new variables s, �s, and t. LetSt = S [fs; �s; tg. Given P and the two words u; v 2 S�, we construct a new commutativesemigroup presentation Pt over St as follows: For every congruence li � ri in P, Ptcontains the congruence t � li � t � ri.Then we add to Pt the congruences s � t � u,and t � v1 � v � �s.Let � be any lexicographic term ordering satisfyings � t � s0 � s00 � �s � sy � sz ;for all s0 2 V � (Y [ Z), s00 2 �V � (Y [ Z), sy 2 Y and sz 2 Z.Let ms be the minimal element wrt � of the congruence class [s]Pt of s in Pt. Asshown in [34], the binomial s �ms is an element of the reduced Gr�obner basis of I(Pt),the ideal generated by the congruences in Pt considered as binomials. It is also shownthat, because of the particular term ordering, there is a u0 2 [u]P such that u0 = v � y � w0for some w0 2 (Y [ Z)� i� ms = �s � w for some w 2 (Y [ Z)�.The claim of the theorem now follows from the degree bound given in Theorem 7.9



As an example, consider the �nite commutative semigroup presentation P = fs1 �s2s3 ; s1 � s2s33 ; s2s43 � s2g over S = fs1; s2; s3g, the words u = s1, v = s1 and the setsY = fs3g and Z = ;. In this special case, the subword problem is to decide whether thereis a u0 2 [s1]P such that u0 = s1s3 � w0 for some w0 2 fs3g�.Using the construction in the proof of Theorem 13 we compute the reduced Gr�obnerbasis G of the idealI := ( ts1 � ts2s3 ; ts1 � ts2s33 ; ts2s43 � ts2 ; s� ts1 ; ts1s3 � �s )wrt the lexicographic term ordering � satisfyings � t � s1 � s2 � �s � s3 :We obtain G = f�ss23 � �s ; �ss1 � �ss2s3 ; ts2 � �s ; ts1 � �ss3 ; s� �ss3g :The binomial s � �ss3 provides the solution w = s3 and u0 = s1s23, resp., which can beveri�ed by the following derivation in P:u = s1 $ s2s3 $ s2s53 $ s1s23 = u0 (P) :In further constructions in [34], the algorithm for the generalized subword problemis then used to obtain explicit semilinear representations of congruence classes in �nitelypresented commutative semigroups, and, using these, to solve the equivalence problem,i.e., to decide, given two commutative semigroup presentations P and P 0 over the samealphabet S, and two words u; u0 2 S�, whether the two respective congruence classes areequal, i.e., whether [u]P = [u0]P 0Since this new algorithm for the equivalence problem also requires only exponential space,it closes the gap left by the earlier algorithm given in [26].5 Results for the Membership Problem for Polyno-mial IdealsIn this section, we are going to summarize some results (upper and lower bounds) onthe complexity of PIMP, the polynomial ideal membership problem. We have alreadymentioned (see Theorem 5) the exponential space upper bound for Q[x1; : : : ; xn] obtainedin [41], [42], and also the matching lower bound coming from the lower bound for thespecial case, the uniform word problem for commutative semigroups, in [43].While the exponential space bound in [41] is based on the classical construction in[25], more recently exciting improvements have been obtained for the degree bound fora number of special cases of PIMP. Among them, maybe the most prominent are thefollowing:Theorem 14 Let gi, i = 1; : : : ; w, be polynomials in Q[x1; : : : ; xn], let d be the maximaldegree of the gi, and assume that the gi have no common zero in Cn. Then1 = wXi=1 pigifor pi with deg(pi) � �nd� + �d, with � = minfn;wg.10



For a proof, see [7].Using the so-called \Rabinovich trick", Brownawell [7] also obtainedTheorem 15 Let f; gi 2 Q[x1; : : : ; xn] for i = 1; : : : ; w, let d and � be as above, andassume that f(x) = 0 for all common zeros x (in Cn) of the gi. Then there aree 2 N; e � (�+ 1)(n + 2)(d+ 1)�+1;pi 2 Q[x1; : : : ; xn]; with deg(pi) � (�+ 1)(n + 2)(d+ 1)�+2such that f e = wXi=1 pigi:For proofs of these and similar exponential degree bounds, see [7], [4], and [29]. Themethod of [41] immediately yieldsCorollary 15.1 Whether 1 2 (g1; : : : ; gw)can be tested in PSPACE.Corollary 15.2 Whether there is an e 2 N such thatge 2 (g1; : : : ; gw)can be tested in PSPACE.These two corollaries could be termed quantitative versions of Hilbert's Nullstellensatz(see, e.g., [54]), one variant of which isTheorem 16 (Hilbert's Nullstellensatz) Let k be some algebraically closed �eld, letf; gi 2 k[x1; : : : ; xn], for i = 1; : : : ; w, and assume that f(x) = 0 for all common zeros xof the gi. Then (and only then) there is an integer e � 1 such thatf e 2 (g1; : : : ; gw) :There are a few more special cases of PIMP, where we get a PSPACE upper bound.An ideal I = (g1; : : : ; gw) � Q[x] is called zero-dimensional if the common zeros (in Cn)of the gi are a �nite set (for an exact de�nition of the dimension of an algebraic varietyor an ideal we refer the reader to e.g. [13]). For zero-dimensional ideals, an exponentialdegree upper bound is known for the presentation problem [10]; also see [38]. Such anexponential degree upper bound also holds for complete intersections (the dimension ofthe algebraic variety de�ned by the gi (in Cn) is n� w), as shown in [4].Another \easy" case is when the generators g1; : : : ; gw 2 Q[x] are homogeneous. Thenthe question whether a general f 2 Q[x] is an element of the ideal (g1; : : : ; gw) can besolved by treating each homogeneous component of f separately. Hence, we may assumethat f is homogeneous. In this case, f 2 (g1; : : : ; gw) i� f(x) = Pwi=1 pigi for homogeneouspolynomials pi with deg(pi) = deg(f) � deg(gi). Since a homogeneous polynomial in nvariables and of degree d can consist of at most �n+d�1n�1 � distinct monomials, the methodof [41] again yields a PSPACE algorithm.Finally, we present another lower bound, concerning PIMP restricted to homogeneousideals. 11



Theorem 17 The polynomial ideal membership problem, when restricted to homogeneousideals, requires space n
(1), and hence is PSPACE-complete.Proof: [Sketch] We merely sketch a proof here. Let M be any deterministic Turingmachine with just one tape (functioning as input, work, and output tape), with theadditional restriction that the tape head must never move outside the section of the tapeinitially occupied by the input (this variant is also called a (deterministic) linear boundedautomaton (LBA)). Wlog we assume that the tape alphabet of M is f0; 1g, and thatM has unique accepting and rejecting �nal con�gurations. Let m be some input forM of length n. Construct a homogeneous instance of PIMP as follows. Let the set ofindeterminates be fxi; yi; zi; i = 1; : : : ; ng [ Q, where Q is the set of states of the �nitecontrol of M . We use xi and yi to denote that the contents of the ith cell of M 's tapecontains a 0 (resp., a 1), and zi to denote the fact that M 's head is positioned over the ithtape cell. Then the initial con�guration of M can be represented by a term � over theseindeterminates, and the unique �nal accepting con�guration by some term � 0. Also, if weallow that each transition of M can also be reversed (i.e., if we turn M from a semi-Thuesystem into a Thue system), the transition relation of this \symmetric" machine can berepresented by a linear (in n) number of polynomials gj in the above indeterminates, eachof which is a di�erence of two terms. Each of these polynomials simply expresses thelocal change that occurs when M , with its head at some position i, executes one step (inforward or backward direction). Also, the polynomial � 0 � � and the polynomials gj arehomogeneous, the gj of degree say 3 and � 0 � � of degree roughly n. Now,M accepts m i� � 0 � � is in the ideal generated by the gj :As already noted in [48], the fact that we have replaced the semi-Thue system underlyingM by a Thue system does not hurt us since M was assumed to be deterministic.We also remark that the exponential space lower bound for PIMP also holds if wereplace Q by an in�nite �eld of �nite characteristic, say 2. The reason is that the lowerbound proof in [43] uses commutative semigroups or, equivalently, pure di�erence binomialideals. Closer inspection also shows that even +1 and �1 need not be distinguishable,since the exponential space lower bound is actually obtained for the question whether, in acommutative semigroup, there is a derivation between some two given words. This settingalso works in the case of �nite characteristic. Note, however, that for the exponential spacelower bound to hold, we must not add the Fermat polynomials x2i � xi to the generators.Even this restriction can be dropped in the homogeneous case discussed above. Basedon the same reasoning, the PSPACE lower bound also holds for Z[x1; : : : ; xn].6 Gr�obner Bases and ReductionsIt is not hard to see that binomial ideals have binomial reduced Gr�obner bases, i.e.,each polynomial in such a basis is the di�erence of two terms (one of them possibly1, corresponding to the empty word). Using the relationship of such ideals to (�nitelypresented) commutative semigroups, we immediately obtain the following lower boundsfor Gr�obner bases.Theorem 18 There are in�nitely many n > 0 and a d > 0 (d = 5 su�ces) such that forevery such n, there is a generating set g1; : : : ; gw (with w depending linearly on n), suchthat each gi is a di�erence of two monomials, deg(gi) � d, and there is a constant c > 0(c is roughly 12) such that 12



(i) every Gr�obner basis for (g1; : : : ; gw) contains a polynomial of total degree � 22c�n ;and(ii) every Gr�obner basis for (g1; : : : ; gw) contains at least 22c�n elements.For a proof, also see [27].Since we can always homogenize the generators of some ideal in Q[x1; : : : ; xn] intro-ducing an additional indeterminate x0, this double exponential lower bound for Gr�obnerbases also holds for homogeneous ideals.Note that the exponential space lower bound implied by Theorem 18 already holdsfor pure di�erence binomial ideals (homogeneous or not), and hence of course also forgeneral ideals. The bound also holds for �nite characteristic, with the same provisions asmentioned above.In terms of upper bounds, we now present two exponential space algorithms, one forbinomial ideals, and one for the general case. We give a separate algorithm for the caseof binomials since, even though both algorithms are exponential space, this one is muchsimpler and could be termed \combinatorial".6.1 Computing Gr�obner Bases for Binomial IdealsWe �rst consider pure di�erence ideals in Q[x1; : : : ; xn], i.e., ideals with a basis in whicheach polynomial is a di�erence of two terms. Let B be such a binomial ideal in Q[x1; : : : ;xn]. Given an admissible term ordering �, the reduced Gr�obner basis is uniquely deter-mined. We call a term � 2 fx1; : : : ; xng� minimal reducible i� its normal form N(� ), i.e.,the minimal (wrt �) term in � +B, is strictly smaller (wrt �) than � itself, and the term� is minimal (wrt divisibility) with this property.In [33], we show theTheorem 19 The reduced Gr�obner basis of B with the term ordering � consists exactlyof all the binomials h�N(h), where h is minimal reducible.Based on the degree bound from Theorem 7, we can, in exponential space, enumerateall binomials below this degree bound and check which ones satisfy the condition statedin the theorem.For general binomial ideals, i.e., ideals generated wlog by a �nite set of polynomialseach of which is the di�erence of a term and a monomial (with a coe�cient from Q,including 0), the situation becomes slightly more di�cult since now cancellation of termscan occur, and since the coe�cients can become extremely large (up to triple exponentialin the input size). Nonetheless, as shown in [31] (also see [32]), there is still a very closerelationship to the corresponding pure di�erence binomial ideal (where the coe�cientsin the basis binomials are replaced by 1 and -1, as appropriate). Once the terms inthe binomials of the reduced Gr�obner basis (of the general binomial ideal) are known,their coe�cients can be determined in exponential space using the Chinese RemainderTheorem.Theorem 20 The reduced Gr�obner basis of a binomial ideal can be computed in expo-nential space. 13



6.2 Computing Reduced Forms and Gr�obner Bases in GeneralPolynomial IdealsWe now consider general polynomial ideals in Q[x1; : : : ; xn], together with some admissibleterm ordering �. As before, the term ordering is assumed to be represented by n linearforms with integer coe�cients [51]. Let I be such an ideal, generated by the polynomialsg1; : : : ; gw 2 Q[x1; : : : ; xn], let d be an upper bound on the total degree of the gi, and let �be some given term ordering, with A an upper bound on the absolute value of the integercoe�cients in the linear forms representing �.In [36] (also see [37]), we show, based on an estimate originally given in [16], thefollowingProposition 1 Let I, d, � and A be as stated. Then the degree of the unique normalform of a given polynomial p wrt the given ideal I and the term order � is bounded by((2A(d22 + d)2n�1 + 1)n deg(p))n+1.Based on this degree bound, we can use the construction given in [41] and [42] toreduce the question, whether a given term or polynomial is reducible modulo I, to solvinga linear system of equations with coe�cients in Q: The columns of the matrix correspondto the terms less than (wrt �) the given term (respectively, the leading term of thegiven polynomial) and, in terms of their degree, bounded by the quantity stated in theabove Proposition. The rows of the matrix are determined by the Fundamental Theoremof Algebra stating that a (multivariate) polynomial over Q is identically zero i� all of itscoe�cients are zero. The dimensions of the resulting matrix are double exponential in thesize of the input, hence we cannot a�ord to write this matrix down in storage. Computingits entries whenever they are needed, and using fast parallel algorithms for parallel rankcomputation ([28],[46]) and the relationship between parallel time and sequential space asexpressed in the Parallel Computation Thesis [21], we can determine within exponentialspace whether a given term � is minimal reducible, and, of course, also whether it isirreducible.Using the above algorithm as a subroutine, we can determine the normal form N(p)of a given polynomial p wrt the ideal I and the term ordering � as follows: Using onceagain the degree bound from Proposition 1, we check whether there is a polynomial p� ~pin I, where ~p contains just terms that are irreducible wrt I. If such a ~p exists, it is N(p),and we can compute it using just exponential work space. For this, we again employ theParallel Computation Thesis and e�cient parallel algorithms for the solution of linearsystems of equations ([14],[49],[6],[5],[47],[22]).We thus obtainTheorem 21 Given the basis of an ideal I, a term ordering �, and a polynomial p, theunique normal form of p wrt (I;�) can be computed in exponential space.Given a basis for some ideal I and an admissible term ordering, it is now quite straight-forward to compute the uniquely determined reduced Gr�obner basis of I wrt �: We justcombine our algorithm for �nding the minimal reducible terms � with the normal form al-gorithm. The reduced Gr�obner basis consists of the polynomials ��N(� ), with � rangingover the minimal reducible terms.Theorem 22 Given the basis of an ideal I � Q[x1; : : : ; xn] and a term ordering �, theunique reduced Gr�obner basis of I wrt � can be computed using exponential space.14



We have now presented several algorithms for computing (reduced) Gr�obner bases ofbinomial resp. general polynomial ideals. While these algorithms are space optimal inthe asymptotic sense, this does not mean, and we do not claim that they are practical.However, our algorithms are asymptotically space optimal (requiring workspace 2c�n),whereas for instance Buchberger's algorithm, in the worst case, uses double exponentialworkspace.7 ConclusionIn this survey, we have highlighted some of the connections between such di�erent areasas the algebraic theory of multivariate polynomial ideals, elimination theory and complexfunction theory providing complexity bounds, algebraic geometry, and the very fundamen-tal commutative semigroups. These interrelationships are quite intriguing since a largenumber of very basic complexity results for these structures has been obtained usingthese connections. And this maybe even more so, if one realizes that in several instances,a lower bound has been shown (how else?) using basical string rewriting techniques whilematching upper bounds have been established using (sometimes quite elaborate and deep)techniques from analysis or complex function theory.Another phenomenon that is quite indicative here and possibly typical for other prac-tical areas (and computer algebra and Gr�obner bases are being used in practice, even ifquite often with some frustration and long waiting hours, as this author can attest to)could be the following: while the worst-case lower bounds for PIMP and Gr�obner basesare terrible, seemingly precluding any application in practice, it turns out that much bet-ter (more \encouraging") bounds can be derived for the cases that really tend to occurin practical applications, like radical membership or regular intersections. And there areinteresting developments to even characterize some really applicable cases (bounds betterthan PSPACE).While such advances will be necessary in order to apply polynomial ideals in �eldslike robotics, motion planning, vision, modeling, constrained programming, and others,there also remain a few fundamental questions concerning complexity issues of polynomialideals and related structures. One is to obtain explicit upper (and possibly better lower)bounds for ideals in Z[x] (or other nice and e�ective rings in place of Z). So far, wejust have the double exponential lower bounds from the word problem for commutativesemigroups, and no explicit upper bounds. Another open problem is the complexityof the reachability problem for (general) Petri nets. While this complexity has beencharacterized for many subclasses of Petri nets, these subclasses are all so restricted thatthey are of little practical value. This means that we should try, on the one hand, toupper bound the complexity of the general Petri net reachability problem, but also to �ndcharacterizations of new subclasses of Petri nets which are of practical relevance and atthe same time permit e�cient solutions of basic problems like reachability, boundedness,or absence of deadlock. One might object that these goals are contradictory in themselves,since e.g. the reachability problem is already PSPACE-complete for 1-safe Petri nets, butthis only says that di�erent types of characterizations probably should be investigated,as the example of PIMP seems to indicate in a (slightly?) di�erent area.References[1] Akira Aiba, Kô Sakai, Yosuke Sato, David J. Hawley, and Ryuzo Hasegawa. Con-15
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