
T U M
I N S T I T U T F Ü R I N F O R M A T I K

Threat Scenarios as a Means to Formally
Develop Secure Systems

Volkmar Lotz

������
TUM-I9709

April 1997

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N

TUM-INFO-04-1997-I9709-350/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
1997 MATHEMATISCHES INSTITUT UND
INSTITUT F ÜR INFORMATIK
TECHNISCHE UNIVERSIT̈AT M̈UNCHEN

Typescript: ---

Druck: Mathematisches Institut und
Institut für Informatik der
Technischen Universität München

Threat Scenarios as a Means to Formally DevelopSecure SystemsVolkmar LotzSiemens AG, Corporate Technology, ZT IK 3D{81730 M�unchene{mail: Volkmar.Lotz@mchp.siemens.deApril 10, 1997AbstractWe introduce a new method for the formal development of secure sys-tems that closely corresponds to the way secure systems are developed inpractice. It is based on Focus, a general-purpose approach to the designand veri�cation of distributed, interactive systems. Our method utilizesthreat scenarios which are the result of threat identi�cation and risk analy-sis and model those attacks that are of importance to the system's security.We describe the adversary's behaviour and in
uence on interaction. Givena suitable system speci�cation, threat scenarios can be derived systemat-ically from that speci�cation. Security is de�ned as a particular relationon threat scenarios and systems. Security relations covering di�erent as-pects as authenticity and availability are given. We show the usefulness ofour approach by developing an authentic and available server component,based on standardized cryptographic protocols.Keywords. Security, Formal Methods, Threat Identi�cation, RiskAnalysis, Stream Processing Functions, Authenticity, Availability, Cryp-tographic Protocols.

1

Contents1 Introduction 32 System Speci�cation and Development with Focus 42.1 Streams . 52.2 Timed Streams . 62.3 Stream Processing Functions . 62.4 Composition . 72.5 Speci�cations . 82.6 Re�nement . 93 System Security 103.1 Development of Secure Systems 103.1.1 Relation to System Development Activities 103.1.2 Security Speci�c Development Activities 113.2 Threat Scenarios . 133.3 The Security Property . 163.4 Security Mechanisms . 194 A Sample Development 194.1 A Simple Server . 204.2 The Threat Scenario . 214.3 An Authentication Protocol . 234.3.1 Speci�cation . 234.3.2 Authenticity . 314.3.3 Availability . 344.4 A Variant of the Authentication Protocol 384.5 Discussion of the Example . 395 Related Work 416 Conclusion and Further Work 42Acknowledgements 43References 43

2

1 IntroductionWhen developing IT-systems for security critical applications, it is of particu-lar importance to show that the proposed solution maintains security. Formalmethods can be used to prove security on a mathematically sound basis accord-ing to the underlying semantic model, provided an appropriate formalization ofsecurity is given. However, there is no general notion of security: for each appli-cation, di�erent aspects of security, as con�dentiality, authenticity/integrity oravailability, may be relevant. Though abstract security policies may be de�ned,the concrete security requirements are heavily in
uenced by the kind of attacksthat are expected for the given system and the application domain.Informal approaches that have been shown useful in practice are there-fore based on threat identi�cation and risk analysis, where the system andits environment are investigated in detail in order to determine the kind ofpossible attacks, their probability, and the loss in case of the attack being per-formed. Thus, critical system components are identi�ed for which the associatedrisk cannot be tolerated, leading to application speci�c security requirements.[HMS93] gives an overview of typical requirements on several security applica-tion domains. In general, mechanisms as for example access control, encryptionor authentication protocols ([FFKK93]) have to be implemented to ensure se-curity. It is the system designer's task to show that a speci�c set of mechanismsis suitable to meet the security requirements.A formal method for the development of secure systems that is intended tobe supportive in practice should be based on the above considerations. In par-ticular, it should employ a de�nition of security that is independent of securitymechanisms and is therefore suitable to show the e�ectiveness of a mechanism.It should allow the formalization of individual security notions. Additionally,and probably most important with respect to practice, such a method shouldo�er the opportunity of integrating security analysis and functional system de-velopment by providing a clear formal relationship between security analysisresults and system design speci�cations. The latter can be achieved by using ageneral-purpose system design and veri�cation method.Methods achieving all these goals are currently not available. Though alot of formal security models have been proposed and continuously developedduring the last 20 years ([BLP73], [GoMe82], [TeWi89], to mention but a few),they, in general, consider speci�c security policies and concentrate on particularsecurity aspects or even mechanisms. Additionally, the relationship to systemdesign and implementations is often vague (one of the few exceptions is givenby [BLP76]), because security analysis is performed with respect to an abstractsystem model and speci�c description techniques are used. This may explain,why these models have not been heavily used in commercial practice.However, there exist approaches going beyond security modelling. [BAN89],[Mea94] and [Sne95], for example, dedicated to the formal analysis of certainclasses of hard-to-understand mechanisms, namely cryptographic protocols, arepromising, but often employ speci�cation techniques and/or semantics exclu-sively dedicated to support security analysis and, by their nature, are not suitedfor the analysis of di�erent security aspects. In the context of process algebras,3

CSP in particular, approaches have been presented ([Jac90], [RWW94], [Low96],[Sch96], [ScSi96]) that meet a lot of the requirements stated above, in particularusing general-purpose speci�cation languages and de�ning security as a prop-erty of the system itself in order to avoid correspondence checks with an explicitsecurity model. But even those methods seem to be either too restrictive forcertain applications of communication systems, for example, if only authenticityis required, or they do not o�er the degree of
exibility needed in practice.In this report, we introduce a new formal method for the development ofsecure systems that is intended to meet all of the requirements mentioned above.Since we are mainly interested in applications of communication systems, weutilize a general-purpose approach to the design and veri�cation of distributed,interactive systems. Focus ([BDD+93], [Br95], [BrSt96]) models agents bystream processing functions and is compositional with respect to re�nement. Inour approach threat analysis results in the de�nition of threat scenarios. Theyare speci�ed in Focus and can be easily derived from a system speci�cation.Security analysis is then performed by checking the relationship between threatscenario and system speci�cation. If the security relation holds, the threatscenario can be dropped, and system development proceeds as usual. Becauseof compositionality, further system re�nements are secure with respect to theinitial threat scenario.Section 2 gives a brief overview of the Focus method and its basic notions.The properties of the semantic model of Focus are exploited in Sect. 3 to de�nethreat scenarios and several notions of security that correspond to di�erent seu-rity aspects. Using transmission media and typical attacks on them as example,we demonstrate how threat scenario templates can be de�ned. The usefulnessof our approach is shown by example in Sect. 4, where we analyse two simpleprotocols based on ISO 9798-2 and ISO 10181-2 with respect to authenticity.It turns out, that, depending on protocol embedment, authenticity is achievedat the expense of losing availability if an attack occurs. Thus, a protocol vari-ant is speci�ed that considers time aspects and preserves availability in case ofthe adversary obeying certain fairness conditions. In Sect. 5 we compare ourapproach to the advanced methods mentioned above.2 System Speci�cation and Development with Fo-cusIn the following, we give a short introduction to the basic notions of Focus.We de�ne the concepts and notations that are used in the remainder of thereport. For further reading we refer to [BDD+93] and [Br95]. The reader isexpected to be familiar with set theory. We use N to denote the set of naturalnumbers, and B = f0; 1g to denote the set of bits. P(M) denotes the powersetof a set M .
4

2.1 StreamsIn Focus, systems are viewed as communicating asynchronously via namedchannels. Communication histories of channels are modelled by streams of mes-sages, where a stream is de�ned to be a �nite or in�nite sequence of messages.Given a set of messages M , we de�ne M!, M� and M1 to denote the set ofstreams, �nite streams and in�nite streams of messages from M , respectively.We have M! =M� [M1.Streams can be viewed as functions mapping natural numbers to messages.For example, a �nite stream s 2 M� of length n 2 N is an element of thefunction space [1::n] ! M . With dom:s and rng:s we denote the domain andthe range, respectively, of a function modelling a stream.Let hi denote the empty stream, which is the unique �nite stream thatcontains no messages, and hm1;m2; : : : ;mni denote the �nite stream containingthe n messages m1, m2, . . . , mn. We utilize a number of operations on streams:� s_ t denotes the concatenation of two streams s and t. s_ t yields thestream that starts with s and proceeds with the elements of t, if s is �nite.If s 2M1, we have s_ t = s. We overload the concatenation operator tomessages, with m_s denoting the result of appending the message m tos.� #s denotes the length of a stream s with #s =1 if s 2M1 and #s = nif s = hm1; : : : ;mni. Note that we also use the operator # to denote thenumber of elements of a set. This is not expected to cause confusion,since its interpretation will always be clear from the context.� A c
s denotes the stream generated from s by �ltering away all elementsnot in A.� For s 2 M! and i 2 N, s:i denotes the i-th element of a stream s, ifi � #s. Otherwise, s:i is unde�ned.� s v t denotes the pre�x relation on streams. We have s v t if and only if9 r 2M! : s_r = t.� sji denotes the pre�x of length i of a stream s, if i � #s, otherwise ityields s.� map(s; f) for a stream s 2 M! and a function f : M ! A, A being anarbitrary set, yields the stream resulting from applying f to all elementsof s.� sn denotes the n-time iteration of the stream s. We have s0 = hi andsn+1 = s_sn. When applying the iteration operator to an explicitly givenone-element stream, e.g. hai, we often leave out the delimiting bracketsand write an instead of hain.Some of the above operators are overloaded to tuples of streams in a straight-forward way. In particular, #(s1; : : : ; sn) = minf#s1; : : : ;#sng yields the5

length of the shortest stream in (s1; : : : ; sn), andA c
(s1; : : : ; sn) = (A c
s1; : : : ;A c
sn) �lters each stream of (s1; : : : ; sn) with respect to A. We use the operator(A1 � : : :�An) �c
(s1; : : : ; sn) to denote the substream of those (s1:i; : : : ; sn:i)that are elements of A1� : : :�An. To select the i-th element of a tuple, we usethe projection function �i.We use s� t (\s is a substream of t") for two streams s and t to denote thesubstream predicate, which is formally de�ned by s� t � 9h 2 B! : sel(t; h) = swith sel being de�ned by 8x 2M!; h 2 B! : sel(x; h) = �1((M�1) �c
(x; h)).2.2 Timed StreamsTo model the progress of time, we use so-called timed streams. In timed streams,the special symbol p (\tick"), which is not an element of M , occurs. Eachoccurrence of p denotes that a time unit of a particular length has passed.Messages occurring between two successive ticks are assumed to be communi-cated within the same time unit. Since time never halts, each in�nite timedstream contains in�nitely many ocurrences of p. By M!, M� and M1 we de-note the set of timed streams, �nite timed streams and in�nite timed streamsof messages of M , respectively. We have M! =M� [M1.For timed streams, we may use all of the operators de�ned on (untimed)streams, with ticks interpreted as ordinary messages. Moreover, we use s#jto de�ne the least pre�x of S that contains j occurrences of p. s#j thereforedescribes the history of a channel up to the j-th time unit. The part of a streambeginning right after the j-th time unit is denoted by s"j and formally de�nedby s"0 = s and, if j > 0, hi"j = hi, (m_s)"j = s"j, and (p_s)"j = s"(j�1). Bytm(s; j) we denote the time unit at which the jth non-tick message occurs.Abstraction from time is denoted by �s, where �s results from s by removingall ocurrences of p. We further de�ne a timed substream predicate s �t tde�ning that s is a substream of t, such that each message of s occurs withinthe same time unit as it occurs in t. It is formally de�ned by s �t t � 9h 2B! : tsel(t; h)) = s with tsel being de�ned by tsel(hi; h) = hi, tsel(p_t; h) =p_tsel(t; h), tsel(m_ t; 0_h) = tsel(t; h), and tsel(m_ t; 1_h)=m_tsel(t; h).2.3 Stream Processing FunctionsFocus models deterministic system components by stream processing func-tions. In order to distinguish channels, stream processing functions usuallywork on named stream tuples instead of simple stream tuples. We de�ne namedstream tuples by assigning names to the input and output channels of a compo-nent, and de�ne a mapping � 2 Q!M!; provided a set of channel identi�ersQ is given. The operators on stream tuples that have been introduced so far areoverloaded to named stream tuples, if necessary. In particular, time abstractionis lifted to named stream tuples, and denoted by �� for a named stream tuple�. If Q \ P = ;, we de�ne �] � to denote the element of Q [P ! M! suchthat c 2 Q) (�] �)(c) = �(c) and c 2 P) (�] �)(c) = �(c):Moreover, we use ~Q as a shorthand for Q!M!. In Sects. 3 and 4 we oftenidentify streams and channel names, if this is expected not to cause confusion.6

We model a deterministic component C with input channels I and outputchannels O by a function � 2 ~I ! ~O that maps communication histories forthe input channels to communication histories for the output channels.To correctly re
ect the behaviour of real-life components, we require for eachstream-processing function modelling a component, that its output at any timej is completely determined by its input received so far, which means up to timej. If additionally a possible delay of the component is considered, requiring theoutput at time j + 1 being completely determined by the input up to time j,we call the function strongly pulse driven. The requirements on strongly pulsedriven functions � are formally described by�#j = �#j) �(�)#j+1 = �(�)#j+1 :The arrow s! is used to model domains of strongly pulse driven functions.2.4 CompositionStrongly pulse driven functions can be composed using a number of di�erentcomposition operators. For the outline of our approach, we need sequentialcomposition, parallel composition, and feedback, which are depicted in Fig. 1below.
C1 C2C1C2? C(b)(a) (c)
? ?? ??

? ????Figure 1: Composition: (a) sequential, (b) parallel, (c) feedbackGiven two strongly pulse driven stream processing functions �1 2 ~I1 s! ~O1; �2 2~I2 s! ~O2; we use the operator \ � " to denote sequential composition ifO1 = I2,and the operator \k" to denote parallel composition if I1 \ I2 = O1 \ O2 = ;.Formally, we have(�1 � �2)(�) def= �2(�1(�)) ;(�1 k �2)(�) def= �1(�jI1)] �2(�jI2) :where �jY denotes the restriction of the named stream tuple � to those channelscontained in Y . The functions resulting from sequential and parallel compo-sition of strongly pulse driven stream-processing functions are strongly pulsedriven as well ([BrSt96]).Given � 2 ~I s! ~O we de�ne feedback by identifying a subset of � 's outputchannels with a subset of � 's input channels. Let X � O and r 2 X ! I be a7

bijection that associates a subset of � 's input channels with X. We then de�ne�X(�) 2 ~(I n r(X))! ~O by�X(�)(�) = � where � = �(�] �jr(X)) :Because of the properties of strongly pulse driven stream-processing func-tions, it can be shown that for each � there is a unique � that satis�es theabove equation. Moreover, �X(�) is itself strongly pulse driven ([BrSt96]).Network components are modelled by sets of stream processing functions,with this set being a singleton, if the component is deterministic. For a com-ponent C � ~I s! ~O we de�ne the set Ci=o of input/output-behaviours byCi=o = f(�; �) j 9� 2 C : �(�) = �g:The composition operators for stream processing functions are lifted uni-formly to components. If C, C1 and C2 are appropriately de�ned, we haveC1 � C2 = f� 2 ~I s! ~O j 8� : 9�1 2 C1; �2 2 C2 : �(�) = (�1 � �2)(�)g ;C1 k C2 = f�1 k �2 j �1 2 C1 ^ �2 2 C2g ;�X(C) = f� j 8� 2 ~(I n r(X)) : 9� 0 2 C : �(�) = �X :� 0(�)g :The speci�c kind of the de�nitions for sequential composition and feedbackis provided in order to achieve full abstractness of the semantic model, see[Br95] and [BrSt96] for details.2.5 Speci�cationsFocus provides many di�erent speci�cation formats, whose semantics are basedon the mathematical model introduced above. For our purposes, we are particu-larly interested in time-independent (ti) and time-dependent (td) speci�cations.Let I be a set of input channel names and O be a set of output channel names.The two speci�cation formats are syntactically given byS � (I �O) ti:: R ;S � (I �O) td:: R ;where S is the name of the speci�cation, and R is a predicate logic formulawith elements of I and O as its only free variables. Semantically, a speci�cationis interpreted to describe the set of strongly pulse driven stream processingfunctions that \satisfy" R.To formally de�ne the semantics of a speci�cation, we �rst de�ne what itmeans for a named stream tuple to satisfy a predicate: For any named streamtuple � 2 C ! M1 and formula P , whose free variables are contained in C,we de�ne � j= P to hold i� P evaluates to true when each free variable c in Pis interpreted as �(c). We then de�ne the denotation of the time-independentand time-dependent speci�cation format by8

[[S]] def= f� 2 ~I s! ~O j 8� : (�] �(�)) j= Rg ;[[S]] def= f� 2 ~I s! ~O j 8� : (�] �(�)) j= Rg ;respectively. Note the use of the time abstraction operator for named streamtuples in the �rst line, describing the semantics for time-independent speci�-cations. For each time-independent speci�cation, there is an equivalent time-dependent speci�cation, resulting from substituting streams with their timeabstractions.Speci�cations can be composed using the same composition operators as de-�ned for components. Since speci�cations describe components, the semanticsof composite speci�cations is straightforward. Composite speci�cations can besyntactically given in an operator style, using the composition operators, or ina constraint style, using equations on named channels and renaming. For ex-ample, if S is a speci�cation with interface (i� o), then a constraint (o0 := S(i0)describes the identi�cation of S's input channels i and the named stream tuplei0, as well as S's ouput channels o and the named stream tuple o0. Formally, theabove constraint represents the speci�cation Si0o0 � rm1 � S � rm2 where m1and m2 are bijections mapping the identi�ers of i0 to i and o to o0, respectively,and rf denotes the speci�cation that performs the renaming according to f .Let RS be the specifying relation of S, then the specifying relation of Si0o0 isgiven byRSi0o0 � RS � ii0 oo0 �with R h c1c01 :::::: cnc0n i denoting the substitution of free channel variables c1; : : : ; cn byc01; : : : ; c0n, respectively, in R.If S is a composite speci�cation given in constraint style, consisting of nelementary speci�cations (constraints) S1; : : : ;Sn, a relational speci�cation of Sis given byRS � 9 v1; : : : ; vn : ^nj=1RSjwith v1; : : : ; vn representing the communication histories of the internal chan-nels. Due to its better readability, the constraint style is often preferred inpractice.2.6 Re�nementWhen formally developing systems, the notion of re�nement plays a centralrole. Focus o�ers a number of re�nement techniques ([Br93]), of which onlybehaviour re�nement is of interest for the following exposition. With respectto behaviour re�nement, a system de�ned by a speci�cation T is said to re�nea system given by a speci�cation S, if each function modelling a behaviour ofT also describes a behaviour of S. If T re�nes S, we write S ; T and formallyde�ne 9

S ; T � [[T]] � [[S]] :In order to prove that T is a re�nement of S, it su�ces to show that RT)RS .3 System Security3.1 Development of Secure Systems3.1.1 Relation to System Development ActivitiesAs already stated in the introduction, the most important feature of a practi-cally useful formal method for the development of secure systems is the closecorrespondence of security speci�c and general system development activities.We therefore turn our attention to system development with respect to func-tional speci�cation.The key observation concerning security is, that system development, start-ing from a requirement speci�cation, goes through several design steps, in eachof which the system is described on a less abstract level. Eventually, a speci�ca-tion is achieved that can be executed on a given machine, or easily transformedto a program in a high-level programming language. A given design speci�-cation, in general, is a re�nement of the speci�cation describing the resultsof the preceding design step: we may eliminate underspeci�cation, introducenew components, replace abstract data types by more concrete ones, re�ne theinterface of the system, and more. Fig. 2 gives an abstract view of system de-velopment in these terms: starting from a requirements speci�cation, we yield asequence of design speci�cations S1, S2, . . . , Sn, where Sn is the most concreteone: the implementation. Security analysis activities have to take place at eachRequirements
Behavioural/Structural/Data Re�nementInterface/

Implementation Sn?
?6
-Design Si

Figure 2: An Abstract View of System Developmentdesign step, since new components may be introduced that are expected to be10

subject to attack, or data types may be speci�ed that induce additional securityrequirements.In this report, we do not want to argue about methodological issues covering,for example, the question of which abstraction level being appropriate to reasonabout particular security requirements, but rather give a foundation for theformal treatment of security activities at each single design step.3.1.2 Security Speci�c Development ActivitiesSecurity development with respect to a given design speci�cation Si is itselfperformed in a stepwise manner, as depicted in Fig. 3. It is guided by a setof global security requirements, which, for example, describe the relevant se-curity aspects (con�dentiality, authenticity, . . .) and the kind of informationconsidered to be security relevant. Global security requirements are often givenin form of a system security policy. In general, Si is not secure and has to bemodi�ed by introducing security mechanisms which counter those threats thathave been identi�ed as critical. The system resulting from this modi�cationshould be a re�nement of Si, since suitable security mechanisms are expectednot to a�ect the speci�ed system behaviour. Constructing a secure system isagain an iterative process, since security mechanisms, as other re�nements per-formed within system development, introduce new components and/or data tothe system which may themselves be subject to attack and have to be securedby further mechanisms. For example, considering a cryptographic mechanismthat relies on secret keys, we need a mechanism to keep these keys con�dential.Security Policy / Global Security RequirementsThreat Identi�cation / Risk Analysis
Mechanism Embedment Sij+1; Bij+1Mechanism SelectionSecurity Proof RSec(Sij ; Bij)Threat Scenario Bij-

? ??
?? ?

? �.
.

. . .
Design Si no threats

fail ok
Figure 3: Security Speci�c Development StepsThe single analysis steps, as shown in Fig. 3, are described as follows. LetSi0 = Si and Sij; j 2 f1; : : : ;mg, denote the system speci�cations resulting11

from each iteration within the security analysis of Si.1. Threat Identi�cation and Risk Analysis. This is an application spe-ci�c task that has to be carried out each time a security analysis is tobe performed. Though classes of possible threats can be de�ned with re-spect to component types and application domains, the actual assessmentof threats and associated risks heavily depends on the given speci�cationSij . For example, if transmission media are considered, the associatedrisk depends, among others, on whether they are located in a secure orin a public area. Threat identi�cation and risk analysis results in a clas-si�cation of system components with respect to their criticality, and adescription of the attacks that critical components may be subject to.Threat descriptions are concrete in the sense of referring to particularsystem components, and multiple occurences of the same kind of threatare possible (for example, if there are several communication links thatare assumed to be eavesdropped).2. De�nition of Threat Scenario. The results of threat identi�cation andrisk analysis are used to specify a formal threat scenario Bij, in whichcritical components are replaced by subsystems that specify the relevantattacks. Thus, Bij models the system behaviour in a situation whereall of the relevant attacks occur, which is the worst case with respect tosecurity. Obviously, Bij is not necessarily a re�nement of Sij.3. Security Proof. In order to proceed with system development withrespect to functional requirements, we have to show that Sij is secure,which is performed by proving that the security property, describing thosedeviations in system behaviour being permitted in case of an attack (andthus being a relation between system speci�cation and threat scenario),holds with respect to Sij and Bij . The concrete structure of the securityproperty depends on the security policy and the security requirements,see Sect. 3.3 for details. If the proof fails, appropriate mechanisms haveto be selected, otherwise it has to be checked whether the mechanismsintroduced so far give rise to new relevant threats (i.e. return to step 1).4. Selection or Development of Mechanisms. During this activity,suitable security mechanisms are selected or developed, where \suitable"means that the mechanisms are able to counter the threats as well as thatthey satisfy further criteria, including non-technical ones as, for example,cost and performance.5. Mechanism Embedment. Sij is extended by a speci�cation of the se-lected mechanisms. We yield a system speci�cation Sij+1 and, implicitly,a re�ned threat scenario Bij+1. It has to be shown that Sij+1 is a re�ne-ment of Sij. Next, the security proof (Step 3) has to be repeated with jreplaced by j + 1.The process is �nished with a secure system Sim at design step i, if riskanalysis does not identify further threats that have to be countered, the re-maining threats are countered by non-technical mechanisms that are beyond12

the scope of our approach, or the remaining risk will be tolerated. Thus, step1 must always follow step 3, which ensures that new threats resulting from theintroduction of mechanisms are always considered. However, it often turns outto be useful to already include such new threats in the construction of Bij+1,which, for example, is done in Sect. 4. Additionally, in most cases it is obviousthat Si is not secure, which allows to omit step 3 in the �rst iteration.Our approach aims at the formal foundation of the development steps de-scribed above. However, risk analysis and selection of mechanisms are excluded,since they heavily depend on non-technical arguments and thus are out of reachof formal treatment. Since all of the formal work is performed within the Focusframework, at each time of security development there is a unique relationship tosystem development according to its functional speci�cation. However, method-ological issues of integrated functional and security development are beyond thescope of this report, and further work will be dedicated to this subject.3.2 Threat ScenariosA threat scenario is a modi�cation of a system speci�cation that describes asituation in which the system is attacked by an adversary, according to theresults of threat identi�cation and risk analysis. In most application cases, thethreat scenario can be derived systematically from the system speci�cation:threat identi�cation and risk analysis are typically performed on the basis ofan architectural view of the system, which means that we have a compositionalspeci�cation as starting point of security considerations. For each of the compo-nents, it can then be determined, whether it is likely to be subject to adversaryactions. In the derivation of a threat scenario, the critical components will thenbe replaced by speci�cations modelling the adversary's in
uence on them.Candidates for critical components can often be de�ned on the basis ofan analysis of the application domain and the type of the component, or itsrole within the system speci�cation. This o�ers the opportunity of de�ningtemplates describing abstract attacks on the component types of interest. Usinginstantiations of these templates for the modi�cation of critical componentsidenti�ed by risk analysis, application speci�c threat scenarios can be easilyconstructed. Note that not necessarily each of the components of a given typehas to be replaced, but if risk analysis leads to a speci�c component of thattype being classi�ed as critical, the template can be used.In distributed communication systems and networks, it is mainly the com-munication medium rather than the communicating entities (users or computersystems) that are considered to be at risk (imagine logical communication chan-nels being implemented by using public telephone lines). Therefore, in orderto perform a risk analysis reasonably, we require the speci�cation to explic-itly model media as network agents, using an appropriate level of abstraction.However, this does not seem to cause problems in practice: if the medium issubject to further development, for example, if it is going to be implementedby a protocol working on an unreliable physical medium, it will be explicitlyspeci�ed, otherwise it can be simply modelled by an agent behaving like theidentity on its input. In the following, we provide a template for the construc-13

tion of threat scenarios describing attacks on communication media. Given theresults of the threat identi�cation and risk analysis for a particular link of thesystem to be secured, the template can be easily instantiated, leading to anappropriate threat scenario for the given link. This will be demonstrated inSect. 4.Suppose M being a set of arbitrary messages, and MD being the speci�ca-tion of a medium transmitting messages of M , formally de�ned byMD � (i :M � o :M) :: RMD ;with RMD being an arbitrary predicate describing the communication behaviourof MD. If risk analysis identi�es MD as critical, in the worst case an adversaryis able to eavesdrop communication as well as to in
uence the transmissionbehaviour of the channel. Such an attack can be modelled by a network asdepicted in Fig. 4, which is to replace MD in the threat scenario construction.The threat scenario template is based on an explicit model of the adversary,- ? 66 -i
A(V)
DMD ciA d o

Figure 4: Threat scenario for communication channelstogether with the initial information available to her and the set of functionsshe can use to compute new information. As in [Sne95] and [Mea94], we usean explicit model of the adversary's in
uence on communication, based on thesemantic model of Focus: the \data
ow component" DMD speci�es how theadversary in
uences the behaviour of the transmission medium. For example,the adversary may insert or delete messages. Obviously, the speci�cation ofDMD has to take into account properties of the medium MD, indicated by theindex MD. A formal speci�cation of the threat scenario MDThr, an instance ofwhich is to replace each speci�cation of a critical medium of the system analysedis given below. For better readability, the speci�cation is given in constraintstyle. MDThr � (i :M � o :M) ::(iA; o) := DMD(i; d; c); (d; c) := A(V)(iA) :The two components represent the basic parts of the threat scenario speci-�cation: DMD models the in
uence on communication with output channel iA14

modelling those messages that leak through the medium and o modelling theoutput of the medium after possibly being modi�ed by the adversary, and A(V)describes the adversary's abilities to generate new messages. Let U be a set ofvalues, elements of which the adversary may use to perform her attacks. V � Urepresents the set of values that are initially available to the adversary. Eachtime the adversary eavesdrops a message sent by a client, this set of valuesis extended according to the contents of this message and the set of functionsthe adversary may use to compute new values from already known ones. LetF � (Sn2N Un ! U) � N be a set of functions together with their arities thatoperate on messages, formally, if n 2 N and (f; n) 2 F , then f 2 Un ! U . Theset of new messages CF the adversary may get by stepwise computation fromV using functions from F is then given byCF (V) = Sn2NCNF (n; V) ;where CNF (0; V) = V and CNF (m+1; V) = fx 2 U j 9(f; n) 2 F; x1; : : : ; xn 2CNF (m;V) : x = f(x1; : : : ; xn)g .Note that we are only interested in values satisfying the type constraints onMD's interface, since other values do not help the adversary in compromisingthe system. The formal speci�cation of the adversary is given byA(V) � (iA : M � d : M; c : C) ti::9f : d = f(V; iA)where 8 W � U; i 2M!; i0 2M : 9d0; d1 2M� \W � :f(W; hi) = d0f(W; i0_ i) = d1_f(CF (W [fi0g); i)Whenever the adversary is able to eavesdrop a message from i, modeledby the output iA of DMD, the set of messages known to her will be updatedaccording to the functions in F . At any point, the adversary may output�nitely many fraudulent messages taken from the set of values known to herat that point, described by the �nite streams d0, d1. These messages are usedto in
uence communication, e.g. by inserting them. The complete possiblyin�nite stream of fraudulent messages issued by the adversary is modeled byd. In some applications, it may turn out to be necessary to explicitly specifythe in
uence of the adversary on the legitimate entity's communication, forexample by determining the point at which a fraudulent message is inserted.We use c to model this kind of control, where data from a set of controls Care issued. Typically, we have C = B. Within the template, we do not imposefurther restrictions on c, however, in an instantiation of the template furtherconstraints can be introduced.In our template for attacks on communication channels, the data
ow com-15

ponent DMD is not further speci�ed, since the adversary's in
uence on com-munication is considered to be application speci�c. However, the syntacticalinterface of DMD (legitimate messages on i, fraudulent messages on d, and con-trols on c) allows all kinds of possible attacks, as for example listed in [Mun93],to be speci�ed. Often, reliability aspects of the medium and speci�c attack de-scriptions can be separated, leading to a simple structure of DMD with respectto its parameter MD:DMD � (i; d; c� iA; o) :: D0 � (ID k MD)for some D' (with ID denoting the identity component, applied to input iA).If, for example, the adversary may only insert new messages, without in�nitelyblocking legitimate messages, but is not able to determine the position whereto insert, D' is given by the speci�cation of the fair merge agent in [BDD+93],with the interface being adjusted.This concludes the speci�cation of the threat scenario template for trans-mission media. Its parameters are given by the adversary's initial set of valuesV , the set F of functions available, the type of control messages C, and thespeci�cation of the data
ow component D. In addition, for some applicationsit may be suitable to further strengthen A. Sect. 4 shows a sample use of thistemplate.The kind of adversary model used in the threat scenario speci�cation is closeto the approach taken in [Sne95] and [Mea94], where it turned out to be usefulfor the analysis of cryptographic protocols. Di�erences occur, however, in theexplicit modelling of the adversary's in
uence on communication, which in ourapproach can be tailored to the application at hand.3.3 The Security PropertyGiven a system speci�cation S and a threat scenario B that has been derivedfrom S, security can be expressed using a particular binary relation RSec onspeci�cations. If RSec(S;B) holds, S is said to be secure with respect to thethreats represented in B. However, the implications of RSec(S;B) on the se-curity of a system being implemented according to S depend heavily on theconcrete de�nition of RSec. In the remainder of this section we want to intro-duce a number of variants of such a de�nition, which correspond to di�erentkinds of security notions. Thus, our interpretation of security is split into twoparts: a system speci�c part, which relates to vulnerabilities of the systemunder development, the speci�c abilities of an attacker to that system, andthe environment of it, being modelled in a threat scenario, and a general partexpressing common security requirements, being modelled using a particularsecurity relation.We start with the de�nition of the most restrictive type of security, in whichadversary interference is expected to have no in
uence on the behaviour of thesystem. In this case, the threat scenario must be a re�nement of the originalsystem.De�nition 1 A system S with syntactic interface (I,O) is called absolutely16

secure with respect to a threat scenario B, with the same interface, if RS(S;B)holds, with RS being de�ned by RS(S;B) � S; B : 2In practice, absolute security is usually hard to achieve, and sometimes it iseven not desired: if there are interactions that are not considered to be securityrelevant, then an adversary may in
uence these without compromising security.If the security requirements on the application at hand are known exactly,we may use only these to de�ne the system's security.De�nition 2 Given a predicate P , a system S with syntactic interface (I,O)is called P -secure with respect to a threat scenario B, with the same interface,if P (B) holds. 2Formal de�nitions can be provided for certain common aspects of security,like integrity, authenticity, con�dentiality, or availability. Using these de�ni-tions in a security analysis, the analyst need not formalise particular securityrequirements, but may only use the de�nition covering the aspects that areof importance to her application. Since in Sect. 4 we focus on authenticationmechanisms and their impact on availability, we provide general de�nitions forauthenticity and availability of a system.We distinguish between a strong and a weak variant of authenticity. Bystrong authenticity we mean message origin authentication, which from a func-tional point of view can be described by each output being triggered by alegitimate input message.De�nition 3 A system S with syntactic Interface (I,O) is called strongly au-thentic with respect to a threat scenario B, with the same interface, if RsAth(S;B)holds, with RsAth being de�ned byRsAth(S;B) � 8f 2 ~I s! ~O : f 2 [[B]])8x 2 ~I 9x0 2 ~I; f 0 2 [[S]] : x0 � x ^ f 0(x0) = f(x) :2The above de�nition states, that, if (x; f(x)) is an i/o-behaviour of B, thenthere is a substream x0 of x such that (x0; f(x)) is an i/o-behaviour of S. Thismeans that each output of B is caused by a \legitimate" input, but we do notrequire the attacked system to respond to all legitimate inputs.We yield a weaker variant of authenticity, if the above property is onlyrequired with respect to some message abstraction de�ned by an abstractionfunction abs. Thus, an adversary is allowed to manipulate some parts of amessage that are considered irrelevant with respect to authenticity.De�nition 4 A system S with syntactic Interface (I,O) is called weakly au-thentic with respect to a threat scenario B, with the same interface, and anabstraction function abs : (~I ! M!) ! (~I ! S!), with S being an arbitraryset of message abstractions, if RwAth(S;B) holds, with RwAth being de�ned byRwAth(S;B) � 8f 2 ~I s! ~O : f 2 [[B]])8x 2 ~I 9x0 2 ~I; f 0 2 [[S]] : abs(x0)� abs(x) ^ f 0(x0) = f(x):17

2With the weak authenticity de�nition we may, for example, formalize peerentity authentication, if messages allow the derivation of the entity identi�erwhere they claim to come from, and the abstraction function is de�ned toextract this identi�er from a given message.Considering availability, we again distinguish between a strong and a weakvariant. By strong availablity, we mean that for each legitimate input, theremust be an appropriate system reaction.De�nition 5 A system S with syntactic Interface (I,O) is called strongly avail-able with respect to a threat scenario B, with the same interface, if RsAval(S;B)holds, with RsAval being de�ned byRsAval(S;B) � 8f 2 ~I s! ~O : f 2 [[B]])8x 2 ~I 9f 0 2 [[S]] : f 0(x)� f(x) : 2Note that in the case of strong availability the system is not only requiredto somehow react to each legitimate input in case of an attack ocurring, butalso to react in exactly the same way as in the non-attack case.However, in many practical situations strong availability cannot be achievednor is even desired: in these cases it is su�cient that at each point of time thesystem will eventually react to a legitimate input. If the input is provided byanother component under the control of the system designer, this componentmay be speci�ed to retransmit messages until the appropriate system reactionis observed.To formalize weak availability, we have to switch to timed streams, in con-trast to the de�nitions above which refer to untimed streams only.De�nition 6 A system S with syntactic Interface (I,O) is called weakly avail-able with respect to a threat scenario B, with the same interface, if RwAval(S;B)holds, with RwAval being de�ned byRwAval(S;B) � 8f 2 ~I s! ~O : f 2 [[B]])8x 2 ~I : #�x =1)9x0 2 ~I; f 0 2 [[S]] : # �x0 =1 ^ x0 �t x ^ f 0(x0)� f(x) :2Note that both availabilty de�nitions refer only to the existence of a re-sponse to a legitimate input, not to the amount of time between request andcorresponding response.
18

3.4 Security MechanismsWhen threat identi�cation and risk analysis is performed, systems, in general,turn out not to be secure. Therefore, we have to specify particular means, calledsecurity mechanisms, that are suited to counter the threats that have been iden-ti�ed as critical. We distinguish between technical mechanisms, which are givenby a particular functionality of an IT system, and non-technical mechanisms,which are organisational or physical means located in the system's environment.As an example of non-technical means, take a messenger delivering a secret key,or a mechanical door lock preventing an intruder from accessing a computer sys-tem located in a particular room. In our approach, we only consider technicalmechanisms, since they form a part of the system to be developed and cantherefore be treated in the same way as functional requirements. However,assumptions based on non-technical mechanisms may in
uence the adversarymodel.A lot of basic technical mechanisms suited to meet di�erent security re-quirements have been proposed. [FFKK93] gives a representative overview. Ingeneral, for a given security problem, there are several mechanisms that aresuited to meet the requirements, di�ering only with respect to non-functionalcriteria as performance, cost, and legal issues (patents, licences). Though thesecriteria may be of major importance to the application, they do not contributeto security analysis as described in the previous sections. Therefore, the selec-tion problem is considered to be out of scope of our approach.The mechanisms we are particularly interested in, include those based oncryptographic methods. They are based on concepts as common secrets, cryp-tographic keys, random numbers, nonces, and so on. In our approach, each ofthese concepts is modelled by a speci�c data type, where the adversary's abil-ities on the usage of elements of these data types are restricted. Consider, forexample, the set of cryptographic keys and cryptograms in Sect. 4. The modelof communication and the semantics of Focus allows to bene�t from results ofapproaches speci�cally dedicated to the description of cryptographic systems,for example [Sne95] or [Mea94].4 A Sample DevelopmentIn this section, we show the application of the method introduced above bygiving a detailed example. We �rst give the speci�cation of a simple systemwhich, however, may occur in real-world applications in a similar form. Then,a threat scenario is described, which is based on the results of a �cticiousthreat identi�cation and risk analysis. Despite of their �cticious nature, theseresults could as well have been achieved by a real-world analysis. We show thatour example system is not authentic without adding particular authenticationmechanisms. We provide such a mechanism by specifying a challenge-responseprotocol with encrypted response which is a simpli�cation of the ISO 9798-2 protocol ([ISO92]). Speci�cations are given in state-transition style, whichcorresponds closely to the way cryptographic protocols are usually presented,and relational style, which gives a more abstract view of the protocol and is19

well suited for the conduction of correctness proofs. The relational speci�cationis shown to be satis�ed by the state-transition speci�cation, and it is shownthat the introduction of the authentication mechanism does not violate theoriginal system speci�cation, i.e. is a re�nement of the original system. Givena simpli�ed adversary model, we prove strong authenticity of the system. Witha more complex adversary model, only weak authenticity can be shown.With the proof of authenticity of the system including the authenticationprotocol, it turns out that availability is lost in case of an attack even withinthe simple adversary model. We therefore have to modify our protocol speci-�cation by considering the timing of messages. The time-dependent protocolis then shown to be both authentic and available, with respect to some fair-ness assumptions on the adversary's behaviour, and it still re�nes the originalspeci�cation.Finally, a variant of the protocol using encrypted random numbers as chal-lenges is introduced, corresponding to the ISO 10181-2 protocol ([ISO93]). Us-ing the same adversary model as before, the variant turns out to be not au-thentic, due to the fact that the adversary may guess responses in case aninappropriate pseudo random number generator is used.4.1 A Simple ServerOur example provides the speci�cation of a very simple, idealized server com-ponent that is able to receive requests submitted by a client via a transmissionmedium and to respond to those requests that have been issued by authorizedclients by sending results using a di�erent communication channel. Since themain focus of the example is on security analysis of the server, the detailedstructure and contents of requests and results are not important. However, iflooking for possible applications for servers of this kind, imagine an electronicdoor lock which is only released upon request, for example by inserting a smartcard, or a mobile phone system, in which connect requests are received by aserver and, possibly supplied with additional data about the requestor, for-warded to a switching center. We assume that there are several clients usingzi o- - -SVMDFigure 5: A simple serverthe same request channel, thus each request has to be tagged with the client'sidenti�er. Figure 5 shows an abstract view of the server, consisting of a servercomponent SV and the transmission mediumMD. To formally specify the serverin Focus, let Id be a set of identi�ers, each of which is assumed to be autho-rized to sending requests, and Req, Res represent the set of requests and results,respectively. As argued above, Req and Res are not speci�ed in detail. Using20

the operator style of speci�cation, the server is described byS � (i : Id�Req� o : Res) :: MD � SV ;with the component speci�cations given byMD � (i : Id�Req� z : Id�Req) ti:: z = i ;SV � (z : Id�Req� o : Res) ti:: #o = #z :Note that we assume an ideal transmission medium, resulting in the componentMD being simply the identity on its input channel. This has been chosen inorder to keep the simplicity of the example. Section 3.2 outlines how one maydeal with more sophisticated media speci�cations.SV states that each request of an authorized client, and only those, willbe served. Because of the semantic model of time independent speci�cationsin Focus, SV ist quite implicit: from the strong pulse-driveness constraint onfunctions satisfying SV it follows that requests are served in order of their re-ceipt, and that no responses are issued in advance, anticipating future requests.4.2 The Threat ScenarioIn Sect. 3.2 we stated that each threat scenario is the result of an applicationspeci�c threat identi�cation and risk analysis, where templates can be used inthe construction of the scenario. Since risk analysis heavily depends on non-technical arguments, for example consideration of associated �nancial loss, it isnot completely covered by our method. For our example, we therefore assumethat a risk analysis has been carried out, with the supposed result of the ad-versary being assessed as being able to eavesdrop the transmitted messages, toknow about the set of client identi�ers and requests, and to insert fraudulentmessages. These assumptions are intended to completely describe the adver-sary's behaviour, particularly she cannot manipulate or delete messages on theinput channel i in our example scenario.Since MD models a transmission medium as discussed in Sect. 3.2, thetemplate given there can be used to construct the threat scenario B. Thus,B � (i : Id�Req� o : Res) :: MDThr � SV ;with MDThr as de�ned in Sect. 3.2, using the message set M = Id�Req. LetV = M and F = ;, which states that the adversary knows the complete setof request messages that may be transmitted. Moreover, let C = B be the setof control messages. We assume the adversary to keep the consistency of hercontrol and data output by adding the conjunct#1 c
c = #d
21

to the speci�cation of A in the scenario template MDThr of Sect. 3.2, statingthat for each message in d we have a corresponding 1 in c.We still have to instantiate the data
ow component DMD of MDThr. Sincewe have decided to strengthen the adversary model A(V) by adding consistencyrequirements, we may use a quite general speci�cation of DMD, which will besuited for other analyses as well. We de�neDMD � (i : M;d :M; c : B� iA :M; z : M) ti::i w �1((M�0) �c
(z; c0_01)) ^ djn = �1((M�1) �c
(z; c0)) ^iA = iwhere n = min(#d;#1 c
c) ^ c0 v c ^ #1 c
c0 = n :The equation iA = i in the specifying relation states that all input messagesmay be eavesdropped by the adversary.Note that DMD to some extent corresponds to the speci�cation of a mergecomponent, with the oracle partly determined by the control sequence c. Fair-ness of DMD depends on the control sequence input: if, and only if, the controlsequence allows the insertion of in�nitely many messages, transmission of mes-sages of i may be suspended for ever, this fact being re
ected by using the pre�xrelation instead of equality with respect to i, and by extending the control se-quence in the �rst conjunct. On the other hand, given an appropriate controlsequence, each of the adversary's messages will indeed be inserted. Potentialloss of fairness is intentional, since it does not seem to be reasonable to alwaysassume a fair adversary. The auxiliary values n and c0 are introduced to handlecases where the control sequence and the messages sent by the adversary donot �t together, meaning that there are less 1's in c than messages in d or viceversa. However, from our speci�cation of A(V), we always have appropriatecontrol sequences, simplifying the specifying relation of DMD toi w �1((M�0) �c
(z; c_01)) ^ d = �1((M�1) �c
(z; c)) ^ iA = i :So far, we have not introduced any fairness constraints on the adversary spec-i�cation of our example, in fact, we need not assume fairness of the adversaryin order to prove authenticity of the mechanism introduced below. However,fairness has to be considered when reasoning about availability in Sect. 4.3.3.S as speci�ed above, which means not containing any particular securitymechanism, is not authentic with respect to B, as is shown in the followingtheorem.Theorem 1 S is not authentic w.r.t. B, i.e. RAth(S;B) does not hold.Proof. Choose i = hi, d = h(id0; rq)i for some id0 2 Id, rq 2 Req, and c = h1ias existential witnesses. Then, (i; (d; c)) is a possible i/o-behaviour of A(V). Inthis case, by the de�nition of D, we have z = h(id0; rq)i, leading to #o = 1 bythe de�nition of SV. Since for all x 2 M!, x � hi) x = hi, authenticity of S22

would require (i; o) to be an i/o-behaviour of S, which is obviously not the case,because for all f 2 [[S]], we have #x = #f(x). 24.3 An Authentication ProtocolIn order to specify an authentic server, we have to re�ne S by introducing anappropriate security mechanism. ISO proposes a simple challenge-response au-thentication protocol ([ISO92]) that is considered to be suited for applicationslike our server. We give a speci�cation of this protocol and analyse authenticityand availability in detail. A variant of this protocol, di�ering in type of chal-lenges and responses and proposed by [ISO93] is then introduced and comparedto the �rst one.4.3.1 Speci�cationCryptographic SystemsThe protocol is based on symmetric cryptoalgorithms and pseudo random num-ber generators, and assumes that the server and each of the clients share a secretkey not known to the adversary. To model cryptographic systems, a value spaceas for example de�ned in [Sne95] is suited for our stream based communicationmodel as well.To describe the cryptographic system used in our example, let K be a setof cryptographic keys, Cr a set of cryptograms, and Ms a set of messages withCr \ Ms = ; meaning that messages and cryptograms can be distinguished.We have an encryption function E : K � (Cr [Ms) ! Cr and a decryptionfunction D : K � (Cr [Ms) ! (Cr [Ms). In symmetric cryptosystems, wehaveD(k;E(k; x)) = x; x 2 Ms [Cr ;E(k; x1) = E(k; x2)) x1 = x2; k 2 K;x1; x2 2 Ms [Cr :Further properties hold with high probability. Since Focus, like almost allother approaches to distributed systems design and veri�cation, is not intendedto deal with probabilities, we have to approximate them by predicate logicformul�. A reasonable idealization is to take properties that hold with highprobability for granted.It is considered to be improbable that the adversary constructs cryptograms(by simply guessing or taking arbitrary keys and messages { which in goodcryptosystems both are of nearly equal probability) that match cryptogramsbeing issued by legitimate users. We model this fact byE(k1; x) = E(k2; x)) k1 = k2; k1; k2 2 K;x 2 Ms [Cr;E(k1;m1) = E(k2;m2)) k1 = k2 ^m1 = m2; k1; k2 2 K;m1;m2 2 Ms;23

and assume that the adversary does not exploit the �niteness of the set ofcryptograms. Note that the latter formula is modelled to only hold for messagesof Ms, and requires that Ms is of considerably less cardinality than Cr.The protocols also use random numbers. We choose a set R of values fromwhich random numbers are taken. For each stream r 2 R! of random numbers,we at least require that no duplications occur, described by PRN(r), withPRN(r) � 8j 2 dom:r : r:j 62 rng: (rjj�1) :PRN obviously does not completely characterize random numbers, but issu�cient to show authenticity of the protocol based on [ISO92]. With respectto the variant of Sect. 4.4, requirements characterizing a stream of (pseudo)random numbers have to be strengthened.State Transition Speci�cationWe are now ready to specify the authentication protocol. In [ISO92], thisprotocol, using random numbers as challenges and encrypted random numbersas responses, is given as shown in Fig. 6. A and B denote the entities involvedATokenAB = Text3 k E(kAB B k B k Text2), R -
� B(2) TokenAB(1) RB k Text1

Figure 6: Protocol Description of ISO 9798-2in the execution of the protocol. B initializes a run by sending the challenge,optionally augmented with a text message, to A, who responds by encryptingthe challenge and B's name with the secret key of A and B. If the decryptionyields the challenge B has issued before, A has been successfully authenticated.To formalize the protocol according to the method described in Sect. 3.1,we have to specify both the single protocol steps and their embedment into thesystem as it has been speci�ed so far. In addition to the description of Fig. 6we therefore have to consider structural aspects, in particular relating protocolentities' activities to components of system S, as well as the coordination ofsequences of protocol runs.For simplicity of the example, we specify a slight abstraction of the ISO-protocol by leaving out the optional text �elds and without considering theinclusion of the veri�er's identi�er in the response. With the latter, we loseprotection against re
ection attacks, which is, however, of less importance withrespect to the demonstration of how our approach works. We consider only one-side authentication, where the clients are responsible for passing on requests and24

suitable responses (authentication tokens), and the server is intended to sendchallenges and verify authentication tokens before further working on requests.
SVAthAthC ---�- -zMD vvvx ri SV o

Figure 7: An authentication mechanismFig. 7 shows a structural view of the re�ned server SA, including the au-thentication mechanism. Two components AthC and AthSV have been addedto control protocol runs on the client and server side, respectively. A formalspeci�cation in constraint style is given bySA � (i : Id�Req� o : Res) ::(x) := AthC(i; r); (v) := MD(x) (z; r) := AthSV(v); (o) := SV(z);where MD and SV are speci�ed as in Sect. 4.1. For the speci�cation of the newcomponents, we assume that AthSV will ignore requests, if they are not followedby an appropriate authentication token, and authentication tokens, if it is notwaiting for them. For the moment, AthC is speci�ed to bu�er all incomingchallenges.The �rst version of the speci�cation is given in state transition style, forthis style being the one corresponding most closely to presentations like Fig. 6,which are quite common in protocol description. Since so far we do not refer totiming of streams, a time independent speci�cation will su�ce. If each clientshares a secret key with the server, meaning that there is a set K0 � K withK0 = fkid j id 2 Idg, we have (with M = Id�Req as in Sect. 4.2)AthC � (i :M; r : R�x :M [Cr) ti::9 f1; f2 : x = f1(i; r)where 8i 2M!; r 2 R!; (id; req) 2M; rn 2 R :f1(hi; r) = hi ;f1((id; req)_ i; r) = (id; req)_f2(id; i; r) ;f2(id; i; hi) = hi ;f2(id; i; rn_r) = E(kid; rn)_f1(i; r) :and 25

AthSV � (v :M [Cr� r : R; z : M) ti::9 f3; f4 : (z; r) = f3(v) ^ PRN(r)where 8v 2 (M [Cr)!; (id; req) 2M; rn 2 R;m; cr 2M [Cr :f3(hi) = (hi; hi) ;m 2M) 9rn 2 R : f3(m_v) = (hi; rn)_f4(m; rn; v) ;m =2M) f3(m_v) = f3(v) ;f4(m; rn; hi) = (hi; hi) ;D(kid; cr) = rn) f4((id; req); rn; cr_v) = ((id; req); hi)_f3(v) ;D(kid; cr) 6= rn) f4((id; req); rn; cr_v) = f3(cr_v) :In the above speci�cation, sequences of protocol runs are treated by intro-ducing states denoted by f1, f2 in AthC and by f3, f4 in AthSV. If AthC isin state f2 waiting for challenges, any incoming request will be delayed untilthe authentication token has been constructed and AthC set back in state f1waiting for requests. If AthSV waits for a response in state f4, anything ex-cept the response awaited will be rejected, with AthSV returning to state f3.If authentication tokens are received in state f3, where there are no requestsremaining to be authenticated, they are simply ignored.Relational Speci�cationThe state-transition speci�cation given above closely follows the informal spec-i�cation of Fig. 6, even in the sense of giving a rather operational view of bothactors of the protocol. In order to gain a deep understanding of the protocoland to easily conduct correctness and security proofs, it is, however, often usefulto take a more abstract view of the protocol by specifying those properties ofthe protocol that are considered to be essential in a relational style. In proofs, arelational speci�cation often helps to avoid complex inductions or considerationof lots of irrelevant technical detail.A more abstract, relational speci�cation of our authentication protocol isgiven below, indicated by superscript R. We have the client's part of the pro-tocol speci�ed byAthRC � (i :M; r : R�x :M [Cr) ti::M c
x v i (1)#r � #i) #M c
x = #i (2)#r < #i) #M c
x = #r + 1 (3)8y : y v x) #Cr c
y � #M c
y � #Cr c
y + 1 (4)8j 2 dom:x : xj+1 2 Cr) xj+1 = E(k�1(xj); r#M c
xjj) (5)26

The �rst conjunct (1) states that the authentication component does not pro-duce messages on its own. Each message being output has occurred in theinput, and the sequence of messages is kept, denoted by the pre�x operator. Ifthere is a su�cient number of challenges, an authentication token can be con-structed for each message, thus each input message will be output, as stated by(2). Otherwise, if there are not enough challenges, all messages, for which anauthentication token can be computed, are output, plus the following message(formula (3)). In other words, the authentication component at the client'sside sends a message received at i, and then waits for a challenge to constructthe authentication token. If there are no further challenges, no more output isgenerated, otherwise the next challenge from the communication bu�er is used.Messages and corresponding authentication tokens are output in an alternatingway starting with a message and desribed by property (4). (5) then describesthe structure of an authentication token corresponding to the immediately pre-ceding message m: it is a cryptogram E(kid; c), with id being the identi�ercomponent of m, and c the corresponding challenge, where the nth challengeof r corresponds to the nth message sent along x.A relational speci�cation of the authentication component at the server'sside looks as follows.AthRSV � (v : M [Cr� r : R; z :M) ti::#r = #M c
v (6)PRN(r) (7)8j 2 dom:z : 9l 2 dom:v : zj = vl ^D(k�1(vl); vl+1) = rn (8)z �M c
v (9)#z = #fl 2 dom:v j vl 2M ^ l + 1 2 dom:v ^D(k�1(vl); vl+1) = rng (10)where rn = r#M c
vjlThe speci�cation states, that for each message received a challenge will be out-put (6), and that the stream of challenges satis�es the requirements on pseudorandom numbers (7). From Property (8) it follows that only those messages willforwarded to the server component SV, that are correctly authenticated by thetoken immediately following the message in stream v. Correctly authenticatedmeans that decryption of the token with kid, id being the identi�er componentof the message, yields the challenge expected, which for the nth message in vis the nth challenge issued. The authentication component should preserve thesequence of messages as speci�ed by (9). Assuming (9), (10) states that allcorrectly authenticated messages are indeed output. The shape of (9) and (10)may be surprising at the �rst glance, since one may have expected a formulalike 27

8j 2 dom:v : vj 2M ^D(k�1(vl); vl+1) = r#M c
vjl) 9l 2 dom:z : zl = vj (11)with sequece preservation given implicitly by the pulse driveness constraintsof Focusspeci�cations. However, (11) does not cover the case that the samerequest is issued (and correctly authenticated) more than once. We thereforehave to add the requirement that the number of messages output equals thenumber of correctly authenticated messages. Of course, (11) follows from (8),(9) and (10).From the relational speci�cation of the authentication protocol, we get arelational variant SAR of the speci�cation of SA by the analoguous constraintspeci�cationSAR � (i : Id�Req� o : Res) ::(x) := AthRC(i; r); (v) := MD(x); (z; r) := AthRSV(v); (o) := SV(z):Proof of Re�nementFollowing the method of secure systems development as described in Sect. 3.1,the �rst step in order to show that the system indeed has become secure byintroducing the authentication mechanism as speci�ed above is to show thatthe introduction of the mechanism does not violate the functional requirementsof the server. This is done by proving that SA, the system including the au-thentication protocol, is a re�nement of S, the original server speci�cation ofSect. 4.1. Since we gave a relational as well as a state-transition speci�cationof AthC and AthSV and therefore of SA, our proof is twofold: We �rst showthat SA is a (behavioural) re�nement of SAR and then prove that SAR is a(structural) re�nement of S.Theorem 2 SAR ; SA, i.e. for all f 2 M! ! M! we have f 2 [[SA]])f 2 [[SAR]].Proof. Since Focus is compositional with respect to re�nement, and SA andSAR share exactly the same structure, it su�ces to show AthRC ; AthC andAthRSV ; AthSV, respectively. From AthC, AthSV and the de�nition of thedenotation of a (relational) speci�cation, it follows that we have to showf(i; x1); (r; x2)g] f(x; f1(x1; x2))g j= RAthRCand f(v; x1)g] f(z;�1(f3(x1))); (r;�2(f3(x1)))g j= RAthRSVrespectively. Since we have RAthRC � (1) ^ (2) ^ (3) ^ (4) ^ (5) and RAthRSV �(6)^ (7)^ (8)^ (9)^ (10), we may prove the assertion for each of the propertiesseparately. 28

For the sake of brevity, we only prove the assertion for properties (2) and(3) of RAthRC and (10) of RAthRSV . The proof of the remaining properties is quitesimilar and in general employs induction on the input streams.Proof of (2). We have to show that #x2 � #x1) #M c
f1(x1; x2) = #x1.The proof is by induction on the structure of x1.x1 = hi. We have #M c
f1(x1; x2) = #M c
hi = #hi = #x1.x1 = m_x01. From the assumption #x2 � #x1, we have x2 = rn_x02 for somern 2 R, and #x01 � #x02, with the induction hypothesis, this leads to#M c
f1(x1; x2) = #M c
(m_f2(�1(m); x01; rn_x02))= #M c
(m_e_f1(x01; x02))= 1 +#M c
f1(x01; x02)= 1 +#x01= #x1with e being a suitable cryptogram, which detailed structure is not of interesthere due to message �ltering.Proof of (3). We have to show #x2 < #x1) #M c
f1(x1; x2) = #x2 + 1.The proof is by induction on the structure of x1.x1 = hi. Since the antecedent evaluates to false, the assertion follows.x1 = hmi. From the antecedent, we have #x2 = 0 and thus x2 = hi. We thenhave #M c
f1(x1; x2) = #M c
(m_f2(�1(m); hi; hi))= #M c
(m_hi)= 1= #x2 + 1x1 = m_x01, with #x01 > 0. If x2 = hi, the proof is the same as in theprevious case. Let therefore be x2 = rn_x02, with #x02 < #x01 following fromthe assumption. With the induction hypothesis #M c
f1(x01; x02) = #x02+1, wehave #M c
f1(x1; x2) = #M c
(m_e_f1(x01; x02))= 1 +#M c
f1(x01; x02)= 1 +#x02 + 1= #x2 + 1with e being a suitable cryptogram, which detailed structure is not of interesthere due to message �ltering.Proof of (10). With suitable abbreviations introduced, we have to show#�1(f3(x1)) = #S(x1) with S(x) = fl 2 dom:x j P (x; l)g, P (x; l) � xl 2 M ^l + 1 2 dom:x ^D(k�1(xl); xl+1) = rn(x; l), and rn(x; l) = �2(f3(x))#M c
xjl .The proof is by induction on x1. 29

x1 = hi. Since dom:hi = ;, we have S(hi) = ;, and thus #�1(f3(hi)) = #hi =0 = #S(hi).x1 = hmci. Since dom:x1 = f1g, we do not �nd an l 2 N+ with l+ 1 2 dom:x1,thus again we have S(x1) = ;, and #�1(f3(x1)) = #hi = 0 = #S(x1).x1 = x1;1_x1;2_x01. We have to distinguish several cases.Case 1: x1;1 =2M .#�1(f3(x1;1_x1;2_x01)) = #�1(f3(x1;2_x01))= #S(x1;2_x01) (Ind:Hyp:)= #S(x1) (by Def: S and x1;1 =2M)Case 2: x1;1 2M . We distinguish between two further subcases.Case 21: D(k�1(x1;1); x1;2) 6= �2(f3(x1))1.#�1(f3(x1;1_x1;2_x01)) = #�1(f3(x01)) (Def: of f3)= #S(x01) (Ind:Hyp:)= #S(x1)The latter holds, because from the case assumptions it follows that P (x1; 1)and P (x1; 2) do not hold.Case 22: D(k�1(x1;1); x1;2) = �2(f3(x1))1.#�1(f3(x1;1_x1;2_x01)) = #�1((x1;1;�2(f3(x1))1)_f3(x01)) (Def: of f3)= 1 +#�1(f3(x01))= 1 +#S(x01) (Ind:Hyp:)= #S(x1)The latter follows from the fact, that in this case P (x1; 1) holds, and P (x1; 2)does not hold. 2Since we now have shown that the state-transition speci�cation representingan operational view of the authentication protocol satis�es the properties givenby the relational speci�cation representing an abstract view, it remains to showthat the relational speci�cation is a structural re�nement of the original serverspeci�cation. Note that Theorem 2 contributes to the validation of both thestate-transition and the relational speci�cation.Theorem 3 S; SAR, i.e. for all f 2M! !M! we have f 2 [[SAR]]) f 2[[S]].Proof. Since S and SAR have the same external interface, it su�ces to showRSAR) RS, which reduces to RAthRC ^ RMD h ix zv i ^ RAthRSV) RMD, becausein both composite speci�cations the component speci�cation as well as thespecifying constraints of SV coincide. Considering the speci�cation of MD, theassertion further reduces toRAthRC ^RAthRSV �vx�) z = i : 30

We �rst show that #r = #i (*) by contradiction.If #r 6= #i, we have either #r > #i or #r < #i. If #r > #i, we have#M c
x = #i from property (2) of RAthRC and #M c
x = #r from property(6) of RAthRSV , thus #r = #i, which contradicts the assumption. Otherwise,if #r < #i, (3) leads to #M c
x = #r + 1, which contradicts #M c
x = #rderived from (6). Thus, (*) holds.From (*), (1) and (2) we conclude M c
x = i, which together with (9) leadsto z � i (**).(4) and (5) lead to #S(x) = #M c
x, with S(x) denoting the set on theright-hand side of (10), meaning that AthC computes the correct authenticationtoken for all input messages. With (10) and M c
x = i from above we conclude#z = #i, which together with (**) gives z = i. 2Having now proved that the insertion of the authentication protocol doesnot violate the requirements on the server, we may turn our attention to au-thenticity.4.3.2 AuthenticityThe Threat Scenario RevisitedSince with the de�nition of the security mechanism additional channels andnew message types have been introduced, it is appropriate to update the threatscenario parameters, as already argued in Sect. 3.1. For our example, weassume that challenges are transmitted via a secure channel (remember Fig.7, where the threatened medium is only speci�ed for the request and responsechannel), but that the adversary knows the set of possible random values R, andthus can guess one of them. In addition, she has some keys available, but notthose of the legitimate clients, and may encrypt as well as decrypt. Formally,we have the threat scenario instantiation given by V = M [R [KA for someKA � K nK0, F = fE;Dg, D as de�ned in Sect. 4.2In order to show the expressiveness of our approach with respect to reason-ing about di�erent adversary models, we will further distinguish between twodi�erent adversary characterizations.First, we consider an adversary with limited capabilities. This kind of ad-versary only inserts fake requests and immediately tries to give an appropriateauthentication response. This is an appropriate characterization of a door locksecured by a card reader, where the adversary tries to insert a fake card andtherefore has to wait until the door is left unsupervised. We further refer tothis kind of adversary model as the simple adversary model, formally de�nedby A strenghtened by9h 2 B!; n 2 N [f1g : h = h0; 1in ^ sel(h; d) 2 Cr! ^ sel(�h; d) 2M! (12)9 i; j 2 N; k 2 N [f1g : c = (h0i2i _h1; 1i_ h0i2j)k ; (13)with �h denoting the bitwise complement of a bitstream h. Note that the basisfor this strengthening is the adversary specifcation A of Sect. 4.2, not the onefrom Sect. 3.2, which means that #1 c
c = #d is still being asserted. Let MDsThr31

denote the speci�cation of the threatened medium within the simple adversarymodel.An advanced adversary model is given by the speci�cation A of Sect. 4.2without adding further constraints. An adversary which behaves accordingto that model may insert arbitray messages or cryptograms at each point ofthe original message stream, which may occur if messages and responses aretransmitted via publicly accessible communication links, with mobile phonesystems being an example. Let MDaThr denote the speci�cation of the threatenedmedium within the advanced adversary model.Authenticity with Simple Adversary ModelWith BAs denoting the threat scenario instantiation for the simple adversarymodel, we can showTheorem 4 SAR is strongly authentic w.r.t. BAs, i.e. RAth(SAR;BAs) holds.Proof. From the de�nitions in Sect. 3.3 and the speci�cation of SV, it followsthat strong authenticity holds in case ofRAthRC ^RMDThr ^RAthRSV) 9h 2 B! : z = sel(h; i)being valid. We show the assertion by contradiction. Assume that 8h 2 B! :z 6= sel(h; i) (*) holds. Then, particularly we have z 6= i by chosing h = 11.Three cases may occur.Case 1: z < i. But then we have z = sel(h; i) for h = 1#z_01, whichcontradicts (*).Case 2: There is a j 2 dom:i \ dom:z with zj 6= ij. Let j0 be the least suchj, i.e. there is i0 with i = i0_ij0 _ i00 and z = i0_zj0_z00 for some i00 and z00,respectively. From speci�cation properties (1), (8) and zj0 6= ij0 , as well as(13) from the revised threat scenario, we conclude that there is an odd l withcl = 1, cl+1 = 1, dl = zj0 = (id0; req0) for some id0 2 Id and req0 2 Req, andD(kid0 ; dl+1) = rM c
vjl = rj0 .Without restricting generality, we may assume that this is the �rst attack,i.e. l = 2j0 � 1. (Otherwise, a contradiction can be constructed following theargumentation below.) From the adversary speci�cation and closure proper-ties of CF , it follows that dl+1 2 CF (V [rng:xj2(j0�1)). Two cases must bedistinguished.Case21: dl+1 is a eavesdropped cryptogram, i.e. dl+1 2 rng:Cr c
xj2(j0�1),which from the speci�cation of AthRC is equivalent to dl+1 = E(kid; rj) for somej < j0 and id 2 Id. But from PRN(r) it follows that rj 6= rj0 for all j < j0.This leads to a contradiction to the properties of the cryptographic system,since di�erent challenges lead to di�erent cryptograms.Case 22: dl+1 is a cryptogram constructed by the adversary herself, i.e. dl+1 =E(k; rn) for some k 2 KA and rn 2 R. But since then k =2 K0, we havedl+1 6= E(kid; rj0) for all id 2 Id by the properties of the cryptographic system,which leads to contradiction of the assumption, that dl+1 is an appropriateauthentication token wrt. some id0 2 Id.32

Case 3: i < z. We have z = i_z#i+1_z0 The proof is analoguous to Case 2with l set to 2#i+ 1. 2The cruical point of the proof of Theorem 4 is the validity of the assumption,that the insertion of messages dl, dl+1 is the �rst attack occurring. That theassumption does indeed hold, follows fromc = 02j _h11i_01) #z � jwhich states that after the �rst attack all forthcoming authentications, whetherby a legitimate user or the adversary, will fail. We demonstrate the validityof the above formula by means of an example, assuming j = 0. A proof forarbitrary j can be obtained by induction on j and exploitation of pulse-drivenessof functions satisfying the component speci�cations.Let c = h11i_01. We show that z = hi. From property (10), we have#z = #S(v), with S(v) denoting the set on the right-hand side of (10). Fromthe particular de�nition of c, it follows that v = v1_v2_x, with v1, v2 beinginserted by the adversary, and x having properties as speci�ed by AthRC. Thismeans that for all even j we havexj = E(k�1(xj�1); r#M c
xjj�1)= E(k�1(xj�1); r�#M c
vjj�1��1)Thus, for all j we have vj 2 M) D(k�1(vj); vj+1) 6= r#M c
vjj . Informally,the adversary's authentication fails for reasons already discussed in the proof ofTheorem 4, and the legitimate clients' authentications fail, because they takethe wrong challenge. Altogether, we have #S(v) = 0, which leads to z = hi.The argumentation above, being driven by the conduction of the authentic-ity proof, shows that the protocol speci�ed so far preserves authenticity at theexpense of losing availability in case of an attack. This is essentially a conse-quence of the particular embedment of the protocol in the server environment,and could not have been detected by merely considering the protocol as given in[ISO92]. Thus, it shows the importance of considering mechanism embedmentas well as the ability to deal with di�erent security aspects within our approach.We further consider availability below.Authenticity with Advanced Adversary ModelConsidering the advanced adversary model, given by the threat scenario instan-tiation including MDaThr of Sect. 4.2, the adversary is expected to insert singlemessages or authentication tokens at any position within stream x. In thatcase, we potentially lose strong authenticity, since an adversary may force theserver to accept a fake request, as long as the identi�er component of the fakerequest corresponds to the identi�er of a legitimate and correctly authenticatedmessage. The situation is illustrated by an example.Let i = h(id; req1)i, x = h(id; req1); E(kid; r1)i andv = h(id; req1); (id; req2); E(kid; r1)i, then (x; v) is a possible I/O-behaviourof the advanced version MDaThr. From the speci�cation of AthRSV, we yield33

z = h(id; req2)i and (i; z) being an I/O-behaviour of � (AthRC � MD � AthRSV),describing the system without the server component SV. Since in our examplespeci�cation of SV we only refer to the length of the input, authenticity is nota�ected, but we will lose strong authenticity, if the output of SV di�ers betweenreq1 and req2. However, weak authenticity is preserved in any case, if we takef : Id � Req ! Id with f((id; req)) = id as abstraction function, since a fakerequest will only be successfully authenticated if there is a legitimate message(for which the authentication token has been originally constructed by AthRC)with the same identi�er.The insertion of single authentication tokens by the adversary of the ad-vanced model is of less criticality. As shown in the proof of Theorem 4, theadversary cannot construct authentication tokens corresponding to any legiti-mate message, and even eavesdropping legitimate tokens does not help, sincefrom PRN(r) and the properties of the cryptographic system it follows that allcorrect tokens are distinct. Therefore, the worst case that may occur is a faketoken inserted immediately after a legitimate request, leading to the requestbeing refused by the server. However, this does not a�ect authenticity.From the above considerations we conclude, withSARa = � (AthRC � MD � AthRSV) denoting the system excluding the particularserver component SV and BAa = � (AthRC � MDaThr � AthRSV) denoting thethreat scenario corresponding to SARa , thatTheorem 5 SARa is weakly authentic w.r.t. BAa and abstraction function �1,i.e. RwAth(�1;SAR;BAs) holds.The proof follows the argumentation above, but is omitted for reasons of space.The advanced adversary model applies in situations, in which requests andauthentication tokens are transmitted via publicly accessible communicationlinks, with mobile phone systems being an example. Since the formal analy-sis shows that the protocol only provides peer entity authentication, but notmessage origin authentication, it is only suitable in application scenarios likethe one described, if there is one type of requests (as in our example where thestructure and/or value of requests is not referred to), or the given request canbe checked with respect to context information. Such considerations have tobe taken into account when, for a given application, security requirements arede�ned and the adversary model is constructed.4.3.3 AvailabilityThe reason for the potential loss of availability in the protocol as speci�edabove lies in the fact that the protocol component on the client side bu�ers allincoming challenges, even if there is no actual request that requires the com-putation of an authentication token, and that in case of the construction ofa new token the oldest challenge is used. Since the server cannot distinguishbetween legitimate and fraudulent messages, and therefore has to send a chal-lenge whenever a request is received, the key to increased availability lies in thede�nition of what is considered to be the appropriate challenge for a token to34

be constructed by the client. It seems to be reasonable to not take a challengethat has been received at the client before the actual request has occurred, sincesuch a challenge cannot be the appropriate one due to the non-zero delay, i.e.strong pulse-driveness, of both the medium and the server. Thus, the client hasto take the next challenge that is received after the request. This, in fact, doesnot completely avoid taking the wrong challenge, but is a necessary conditionfor the achievement of availability.In order to revise our speci�cation of AthRC according to these arguments, wehave to switch to the time-dependent format, which allows us to appropriatelyformalize the notion of \next challenge received". Besides replacing streamsoccurring in the specifying properties by their time abstractions, we only haveto replace the description of the authentication token in property (5). Thetime-dependent speci�cation AthTC ignores all incoming challenges until it hasissued a new request and is given byAthTC � (i : M; r : R�x : M [Cr) td::M c
�x v �i (14)#�r � #�i) #M c
�x = #�i (15)#�r < #�i) #M c
�x = #�r + 1 (16)8y : �y v �x) #Cr c
�y � #M c
�y � #Cr c
�y + 1 (17)8j 2 dom:�x : �xj+1 2 Cr) �xj+1 = E(k�1(�xj); (r"tm(x; j))1) (18)In property (18), r"tm(x; j) describes the stream of challenges after that timeunit in which the message �xj has been forwarded to the server, from which the�rst non-p element is taken as the actual challenge.In analogy to SAR the time-dependent speci�cation of the server is givenby the constraint speci�cationSAT � (i : Id�Req� o : Res) ::(x) := AthTC(i; r); (v) := MD(x); (z; r) := AthRSV(v); (o) := SV(z) :The time-dependent protocol speci�cation still re�nes the original serverspeci�cation SV.Theorem 6 S; SAT , i.e. for all f 2M! !M! we have f 2 [[SAT]]) f 2[[S]].Proof. Analogous to the proof of Theorem 3. The additional requirement onequivalence of the di�ering authentication token descriptions on the client andthe server side, formally(r"tm(x; j))1 = �r#M c
�xjjfollows from pulse-driveness of the component behaviour. Note the use of thetime abstraction operator on the right-hand side of the equation, resulting from35

converting the time-independent speci�cation AthRSV to time-dependent format.2 Since taking the next incoming challenge is only a necessary, but not asu�cient condition for availability, we have to make further assumptions onfairness of the adversary in order to reason about availability. We �rst introducea strong fairness condition that is su�cient for strong availability.To estimate the time between an attack occurring and the challenge resultingfrom that attack being received by the client, we must know the maximum timedelay caused by the server on its challenge output channel r. Let dist be anupper bound on that delay, we may add the property8j 2 dom:�r : tm(r; j) � tm(M [fpg c
v; j) � dist (19)to the time-dependent version AthTSV of AthRSV. Besides adding (19) to thespeci�cation, AthTSV is derived from AthRSV by replacing occurrences of streamswith their time abstraction.Considering the simple adversary model, a fair adversary is then given ifthere are more than dist time intervals between an attack and the next legiti-mate request, and an attack only occurs if there is no legitimate request pending.Formally, we add the following requirement to the adversary speci�cation A ofthe time-dependent version of MDThr.8j 2 dom:v : vj 2M ^ Pd(v; j; c)) tm(x; l + 1)� tm(v;#vjj) > dist (20)where l = #0 c
�cj#vjjwith l describing the number of legitimate requests and authentication tokensthat have been forwarded by the threatened medium before the point of timeat which vj occurs, andPd(v; j; c) � �c#vjj = 1 ^ vj 6= pbeing valid, if the jth element of v is not a tick and has been inserted by theadversary. Informally, from the above formula being valid, it follows that eachchallenge that has been issued with respect to a fraudulent message is receivedby the client before the next authentication token for a legitimate request hasto be computed.Additionally, fairness of the adversary includes the requirement on not in-serting a sequence of in�nitely many messages by the adversary. Within thesimple adversary model, this is formally de�ned by replacing property (13) inthe adversary speci�cation A by9 i; j 2 N; k 2 N� f0g; l 2 N [f1g : c = (h0i2i _h1i2j _h0i2k)l ; (21)
36

Though the fairness requirement seems to be considerably strong, it is suf-�cient in many cases in which the simple adversary model applies, namely inthe door lock scenario.From the fragments above, we straightforwardly yield a time dependentthreat scenario (with simple adversary model) BATs , corresponding to SAT andincluding a fair variant MDT;sThr of the threatened medium.Theorem 7 Assuming the fair adversary, SAT is strongly available wrt. threatscenario BATs .Proof. We only give a sketch of the proof by considering a single message in x.The complete result follows from induction, pulse-driveness and the specifyingproperties. Let m be the lth message of x, i.e. m = �xl, and j the point oftime in which m occurs in x, i.e. j = tm(x; l). Let i be the message index ofm in v, i.e. m = (�vji)#�vji . i must exist, since, from the threat scenario, theadversary cannot delete messages from x, and the fairness property (21) holds.Furthermore, i > l from pulse-driveness of the threatened medium.We have to show that(r"tm(x; l))1 = �r#M c
�vjiwhere the left-hand side originates from (18) and the right-hand side from thetime-dependent version of (10). The equation states that the challenge takenby AthTC for the construction of the authentication token for m is exactly theone expected by AthTSV.From pulse-driveness of MDT;sThr and AthTSV we concludetm(v; i) > tm(x; l) (22)tm(r;#M c
�vji) > tm(v; i) (23)From the fairness property, pulse-driveness and the speci�cations AthTC andAthTSV, in particular property (19), we then havetm(r; j) < tm(x; l) for all j < #M c
�vji (24)To understand the derivation of (24), consider for example that the message pre-cedingm in v has been inserted by the adversary, i.e. �vi�2 2M and Pd(v; i�2; c).From fairness we have tm(v; i � 2) < tm(x; l) � dist and thus, from property(19), tm(r;#M c
�vji�2) < tm(x; l).The assertion then follows from (22), (23), (24) and the de�nition of ". 2There may be application situations in which the strong fairness conditionas it is assumed in the proof above cannot be asserted. The weak variant ofavailability as being de�ned in Sect. 3.3 can be shown with a weaker fairnesscondition holding: If for a variant of the timed threatened medium MDT;sThr,in�nite input x provided, it can be assumed that in the output v in�nitelymany times a situation occurs for which the above fairness constraint holds,then it can be shown that in�nitely many legitimate requests are indeed being37

served, thus satisfying the weak availability de�nition of Sect. 3.3. Formally,the weak fairness constraint is de�ned by#�x =1) #S =1 (25)where S = fj 2 dom:v jvj 2M ^ Pd(v; j; c)) tm(x; l + 1)� tm(v;#vjj) > distg^ l = #0 c
�cj#vjjA formal proof of weak availability is omitted, since it basically relies on thesame arguments as the proof of strong availability in Theorem 7.The time-dependent server speci�cation SAT keeps authenticity as the time-independent variant SVR does. The proof follows the same line of argumen-tation as the proof of Theorem 4. The only di�erence is that the simplifyingassumption stating that the �rst successsful attack is the �rst attack at all hasto be omitted, thus raising the need for explicit computation of challenge indiceswith respect to the number of non-successful attacks occurring before. How-ever, the argument that the adversary is not able to compute an appropriateresponse applies to the time-dependent case as well. We therefore have, withBATs being the threat scenario instantiation for the timed server and the simpleadversary modelTheorem 8 SAT is strongly authentic w.r.t. BATs , i.e. RAth(SAT ;BATs) holds.Concerning the advanced adversary model, the authenticity considerations forthe time-independent case apply to the time-dependent case as well. Withrespect to availability, additional fairness properties have to be speci�ed inorder to deal with the insertion of fake authentication tokens leading to a failingauthentication for a legitimate request.4.4 A Variant of the Authentication ProtocolISO 10181-2 ([ISO93]) proposes a variant of the protocol analysed above thatdi�ers only in the type of challenges and responses: [ISO93] uses encryptedrandom numbers as challenges and plain random numbers as responses. Withagain abstracting from optional text �elds and the inclusion of the veri�er'sname in order to avoid replay attacks, we derive a formal speci�cation of theISO 10181-2 protocol straightforwardly from the formal speci�cations of Sect.4.3. For a relational speci�cation in the time-independent case, denoted bysuperscript V , we yield (with the additional assumption that M \ R = ;, sothat requests and responses can be distinguished)AthVC � (i :M; r : Cr�x : M [R) ti::38

M c
x v i (26)#r � #i) #M c
x = #i (27)#r < #i) #M c
x = #r + 1 (28)8y : y v x) #R c
y � #M c
y � #R c
y + 1 (29)8j 2 dom:x : xj+1 2 R) xj+1 = D(k�1(xj); r#M c
xjj) (30)and AthVSV � (v : M [R� r : Cr; z :M) ti::#r = #M c
v (31)8j 2 dom:z : 9l 2 dom:v : zj = vl ^E(k�1(vl); vl+1) = en (32)z �M c
v (33)#z = #fl 2 dom:v j vl 2M ^ l + 1 2 dom:v ^E(k�1(vl); vl+1) = eng (34)where en = r#M c
vjlHowever, even in the case of the time-independent, thus non-available, speci�ca-tion and the simple adversary model, the two protocols show subtle di�erenceswith respect to authenticity. Since the set of random numbers R is assumedto be known to the adversary, she may succeed in guessing an appropriate re-sponse, thus losing authenticity even with the simple adversary model. Let SAVdenote the variant of the server speci�cation SAR including AthVC and AthVSV ,and BAVs denote the threat scenario instantiation with respect to SAV and thesimple adversary model, including MDsThr, then the following theorem holds.Theorem 9 SAV is not strongly authentic w.r.t. BAVs , i.e. RAth(SAV ;BAVs)does not hold.Proof. Since the set of random values is available to the adversary, she mayguess an appropriate response without knowledge of the challenge cryptogram.Take i = hi, r = hE(kid0 ; rn)i, d = h(id0; req0); rni, and c = h1; 1i as existentialwitnesses. 2For the same reasons, SAV is even not weakly authentic. The further anal-ysis of the ISO 10181-2 variant with respect to the advanced adversary modeland availability can be performed analogous to Sect. 4.3, but does not give newinsights with respect to our approach and is therefore omitted here.4.5 Discussion of the ExampleBy the conduction of the example above, including the speci�cation of a servercomponent, the introduction of a security mechanism (a challenge response pro-tocol based on [ISO92]) in order to achieve authenticity, the development of a39

variant of the protocol o�ering availability as well, and the discussion of anothervariant based on [ISO93], it has been shown that the approach outlined in Sect.3 is well suited for the formal treatment of those tasks that occur within thedevelopment of secure systems. In particular, it turned out that the approachallows a �ne-grained analysis with respect to di�erent adversary characteriza-tions and security notions. The example points out the consequences of theadversary's behaviour to the security of the system: assuming the simple ad-versary model, stronger security properties have been proved than within theadvanced model. Thus, the critical role of threat identi�cation and risk analysisis re
ected in our approach. For example, it has been clearly pointed out thatthe protocol provides only peer entity authentication, but that in case of theadvanced adversary model message origin authentication is necessary to providestrong authenticity.Two di�erent styles have been utilized in the formal speci�cation of theprotocol: the state transition style allows protocol speci�cation from an oper-ational point of view that can be straightforwardly derived from an informalspeci�cation as for example given in the standard documents, whereas the re-lational style provides a more abstract view that is well suited for analysisand proof. Providing these di�erent views, protocol design as well as analysisis supported, with the formal relationship between them given by the Focusre�nement notions. Within our method, both styles of speci�cation have toconsider mechanism embedment. The example demonstrates that mechanismembedment is of equal importance to security as protocol design itself: The lossof availability coming along with the �rst protocol variant is a consequence ofthe particular embedment, namely the bu�ering of challenges.The loss of availability emphasises the need of consideration of the interde-pendence of di�erent security aspects instead of concentrating on single aspects:Though the �rst variant perfectly satis�es authenticity requirements, it will onlybe of little use in practice. It is important to notice that the conduction of theauthenticity proof has turned our attention to availability considerations.The approach is suited to discuss particular protocol properties dependingon properties of cryptographic algorithms and pseudo random numbers. Typi-cal algebraic characterizations of cryptographic systems, as they are also usedin [Mea94] and [Sne95], for example, and pseudo random numbers can be uti-lized by our method as well. Thus, it has been possible to discuss the subtledi�erences that occur between the ISO 9798-2 and the ISO 101181-2 variantof the challenge response protocol. However, in both cases we had to assumethat the veri�er can recognize messages and thus is able to distinguish betweenmessages and authentication tokens.The de�nition of the threat scenario template of Sect. 3.2 has turned outto be advantageous in our example: The de�nition of the simple and the ad-vanced adversary model have been de�ned using the template, where the addedproperties only refer to the distinguishing properties of the di�erent adversarycharacterizations. Considering practical applications of the method, it seemsto be important to provide further templates for standard situations, aiming ata comprehensive library of threat scenario templates.In our example, the proofs have been performed using pencil and paper. In40

their presentation, some technical details had to be omitted in order to providereadable proofs, typically with respect to induction, admissibility and the ex-ploitation of pulse-driveness of component behaviour. However, since there isautomated proof support available within Focus, as for example described in[SaMu96], we are able to even conduct proofs formally.5 Related WorkAs already mentioned in the introduction, mere security modelling, even if per-formed on a mathematical basis, in general is not suited to meet the require-ments on a practically applicable and useful method to the design of securesystems, mainly due to particular mechanisms being an essential part of themodel and the vagueness of the relationship between the abstract model andthe system development activities. In order to evaluate our approach, we haveto compare it with advanced methods going beyond security modelling.A lot of research has been performed in order to formally analyse a particularclass of cryptographic mechanisms, authentication protocols, with authentica-tion logics originating from [BAN89] being the most popular technique. Theyhave to be mentioned since they strictly separate the protocols to be analyzedand the security requirements the protocol is expected to satisfy. Their practicalrelevance is due to the ease of analysis and the high degree of possible automiza-tion. Thus they are suited for the e�cient analysis of even complex protocols.On the other hand, they use a restricted communication and adversary modelwhich allow only certain classes of attacks to be identi�ed. Appraches based onterm rewriting [Mea94] and higher order logic [Sne95] extend these models andallow more complex kinds of attacks to be analyzed. However, all of them useparticular formalisms and/or communication and adversary models, and do notexplicitly address embedment and system development issues. Thus, they canonly be viewed as an ingredient of a method meeting the requirements as statedin Sect. 1. However, it seems to be worthwile to use authentication logics orrelated methods for a quick analysis of a proposed authentication mechanismand use the results as part of a relational speci�cation of a mechanism in ourmethod. Further analysis with respect to embedment and those security as-pects that are intentionally not covered by the authentication protocol analysismethods is then performed within the Focus security development approach.A lot of work covering similar topics as ours has been performed usingprocess algebras, CSP in particular. Like in Focus, di�erent security aspectsand mechanisms can be analysed within CSP, ranging from non-interference([Jac90], [RWW94]), authenticity ([Low96], [Sch96]) and general con�dentiality[Sch96] to anonymity ([ScSi96]). Besides utilizing a well-known and establishedspeci�cation and veri�cation technique, this work is remarkably characterizedby treating security as a property of the system itself. The main technicaldi�erence between this work and ours occurs with respect to the communi-cation model: CSP is based on synchronous communication, whereas the Fo-cus semantics employs asynchronous communication. Though the synchronousmodel often allows easy and highly automated proofs, we consider the asyn-41

chronous approach as advantageous: It o�ers a higher degree of abstraction,which makes the approach especially suitable for security analysis in early de-velopment phases, and more
exibility with respect to the speci�cation of theadversary's in
uence on communication (e.g. the deletion of messages, thoughnot included in the example of Sect. 4).We also consider the explicit provision of a threat scenario as useful withrespect to further system development. Once security analysis is �nished, thethreat scenario can de dropped, and system development proceeds as usual. In[Sch96]'s con�dentiality considerations, for example, the adversary process is anintegral part of the system speci�cation, thus increasing speci�cation complex-ity. Moreover, threat scenarios allow a uniform treatment of di�erent securityaspects, whereas the CSP papers employ several techniques, for example infer-ence functions in [Jac90] and certain system abstractions in [RWW94] in orderto express non-interference properties.6 Conclusion and Further WorkWe have introduced a new approach to the formal development of secure sys-tems that is based on a procedure being established in practice and aims ata mechanism independent security notion,
exibility with respect to securityaspects as well as integration of security analysis and development accordingto the functional requirements on the system. Application speci�c security re-quirements, as a result of threat identi�cation and risk analysis, are formallymodelled by threat scenarios which specify the anticipated behavior of the ad-versary, in particular her in
uence on communication. Security is de�ned as arelation on threat scenarios and systems.The main focus of this report has been to show the basic principles of ourapproach by conducting a comprehensive sample development of an authenticand available server. For purposes of presentation, our example has been sim-pli�ed: we provide simple protocols, and restrict the behaviour of the adversary(for example, by not considering attacks possibly leading to deletion of mes-sages). However, our example is of practical relevance, since the protocols areonly slight abstractions of standard protocols ([ISO92], [ISO93]) and the adver-sary characterization seems to be reasonable for certain application situations(for example, a secure door lock).The example shows a number of promising results that raise evidence thatthe approach is well-suited to support the formal development of secure systemsin practice. By forcing to specify mechanism embedment as well, our methodturns out to be suitable for the analysis of e�ects resulting from multiple ex-ecutions of protocols and particular properties of communication, because thesemantic model guarantees the consideration of the whole lifetime of the systeminstead of just a single protocol run. Additionally, it o�ers the opportunity toreason about di�erent security aspects. Formal de�nitions of several securitynotions have been given.Applicability of our method is supported by dividing the security notion inan application speci�c part (threat scenario) and a general part (security rela-42

tion). In common applications, threat scenarios may be derived systematicallyfrom compositional system speci�cations, which has been shown for componentsmodelling transmission media in communication systems.Our approach particularly bene�ts from choosing Focus as the basis offormalization. Since Focus is a general purpose formal development method, ito�ers the opportunity to continue system development from those speci�cationsthat result from security analysis. On the other hand, security analysis can beperformed at each stage of the system development. Systematic derivation ofthreat scenarios is supported: information
ow to the adversary is modelled bysimply adding (logical) channels to the system speci�cation.However, a lot of work remains to be done: the approach has to be gen-eralized by de�ning further security relations, corresponding, for example, tocon�dentiality. E�ects of multiple attacks, which may occur if an adversary isable to simultaneously attack several critical components, and of interleavingof protocol runs have to be investigated. To improve practicability, it is im-portant to provide a set of threat scenario templates that can be instantiatedfor a variety of common threat analysis results, and a set of basic mechanismspeci�cations. The approximation of cryptographic algorithms has to be fur-ther improved. A notion of compositionality with respect to di�erent threatsand threatened components is desirable.Even in its initial state, our approach provides signi�cant progress with re-spect to a formal method that reaches the aims mentioned above. With furtherwork being performed, we will get close to a method that can be pro�tablyapplied in practice.AcknowledgementsThis report is an extended version of [Lot96] published at ESORICS 96. Theauthor is grateful to Manfred Broy, Walter Fumy, Ursula Hinkel, Christoph Hof-mann, Volker Kessler, Helmut Kurth, Michael Munzert and several anonymousreferees for helpful comments on earlier versions of this report. The author isalso grateful to Manfred Broy and Heribert Peuckert for motivating the workon this subject.References[BLP73] D.E. Bell, L. LaPadula: Secure Computer Systems: Mathemat-ical Foundations (NTIS AD-770 768), A Mathematical Model(NTIS AD-771 543), A Re�nement of the Mathematical Model(NTIS AD-780 528), MTR 2547 Vol. I-III, ESD-TR-73-278, MitreCorporation, Bedford MA, 1973[BLP76] D.E. Bell, L. LaPadula: Secure Computer Systems: Uni�ed Expo-sition and Multics Interpretation, NTIS AD-A023 588, MTR 2997,ESD-TR-75-306, Mitre Corporation, Bedford MA, 197643

[BDD+93] M. Broy, F. Dederichs, C. Dendorfer, M. Fuchs, T.F. Gritzner, R.Weber: The Design of Distributed Systems { An Introduction toFOCUS { Revised Version, Technical Report TUM-19202-2, Tech-nische Universit�at M�unchen, 1993[Br93] M. Broy: (Inter-)Action Re�nement: The Easy Way, in: M. Broy(Ed.): Program Design Calculi, NATO ASI Series F, Vol. 118,Springer, 1993[Br95] M. Broy: Advanced Component Interface Speci�cation, in: T. Ito,A. Yonezawa (Eds.): Theory and Practice of Parallel Program-ming, Proceedings TPP '94, Springer LNCS 907, 1995[BrSt96] M. Broy, K. St�len: Interactive System Design, Book Manuscript,1996[BAN89] M. Burrows, M. Abadi, R. Needham: A Logic of Authentication,Report 39, Digital Systems Research Center, Palo Alto, 1989[FFKK93] O. Fries, A. Fritsch, V. Kessler, B. Klein (Hrsg.): Sicherheitsmech-anismen: Bausteine zur Entwicklung sicherer Systeme, REMO Ar-beitsberichte, Oldenbourg Verlag, M�unchen 1993 (in German)[GoMe82] J.A. Goguen, J. Meseguer: Security Policies and Security Mod-els, Proc. of the IEEE Symposium on Security and Privacy, 1982,pp. 11{20[HMS93] S. Herda, S. Mund, A. Steinacker (Hrsg.): Szenarien zur Sicherheitinformationstechnischer Systeme, REMO Arbeitsberichte, Olden-bourg Verlag, M�unchen 1993 (in German)[ISO92] ISO/IEC CD 9798: Information Technology { Security Techniques{ Entity Authentication Mechanisms, Part 2: Entity Authentica-tion Using Symmetric Techniques, 1992[ISO93] ISO/IEC DIS 10181-2.2: Information Technology { Open SystemsInterconnection { Security Framework for Open Systems: Authen-tication Framework, 1993[Jac90] J.L. Jacob: Specifying Security Properties, in: C.A.R. Hoare (ed.):Developments in Concurrency and Communications, Addison-Wesley, 1990[Lot96] V. Lotz: Threat Scenarios as a Means to Formally Develop SecureSystems, in: E. Bertino, H. Kurth, G. Martella, E. Montolivo:Computer Security { ESORICS '96, Springer LNCS 1146, 1996[Low96] G. Lowe: Breaking and Fixing the Needham-Schroeder Public KeyProtocol Using CSP and FDR, in: T. Margaria, B. Ste�ens (eds.):Tools and Algorithms for the Construction of Systems, TACAS'96, Springer Verlag, LNCS 1055, 199644

[Mea94] C. Meadows: The NRL Protocol Analyzer: An Overview, Journalof Logic Programming, Vol. 19, 1994[Mun93] S. Mund: Sicherheitsanforderungen { Sicherheitsma�nahmen, VIS`93 (Herausgeber: P. Horster, G. Weck), Vieweg Verlag, 1993 (inGerman)[RWW94] A.W. Roscoe, J.C.P. Woodcock, L. Wulf: Non-interference throughDeterminism, in: D. Gollmann: Computer Security { ESORICS'94, Springer LNCS 875, 1994[SaMu96] R. Sandner, O. M�uller: Theorem Prover Support for the Re�ne-ment of Stream Processing Functions, in: Proceedings of TACAS'97, Springer LNCS, 1997[Sch96] S. Schneider: Security Properties and CSP, Proc. of the IEEESymposium on Security and Privacy, 1996[ScSi96] S. Schneider, A. Sidiropoulos: CSP and Anonymity, in: E. Bertino,H. Kurth, G. Martella, E. Montolivo: Computer Security { ES-ORICS '96, Springer LNCS 1146, 1996[Sne95] E. Snekkenes: Formal Speci�cation and Analysis of CryptographicProtocols, PhD thesis, 1995[TeWi89] P. Terry, S. Wiseman: A `New' Security Policy Model, Proc. of theIEEE Symposium on Security and Privacy, 1989, pp. 215{228

45

