
T U M
I N S T I T U T F Ü R I N F O R M A T I K

AutoMate - From UML Models to
Multi-Tier-Architectures

Klaus Bergner, Andreas Rausch, Marc Sihling

ABCDEFGHIJKLMNO
TUM-I0015

Oktober 00

T E C H N I S C H E U N I V E R S I TÄ T M Ü N C H E N



TUM-INFO-10-I0015-100/1.-FI
Alle Rechte vorbehalten
Nachdruck auch auszugsweise verboten

c
2000

Druck: Institut f ür Informatik der
Technischen Universit ät M ünchen



AutoMate { From UML Models toMulti-Tier-Ar
hite
turesKlaus Bergner, Andreas Raus
h, Mar
 Sihlingfbergner,raus
h,sihlingg�in.tum.deInstitut f�ur InformatikTe
hnis
he Universit�at M�un
hen80290 Muni
h, GermanyAbstra
tTo 
reate multi-tier ar
hite
tures with a transparent a

ess of distributed, persistantobje
ts on the appli
ation layer, a te
hni
al solution is required whi
h usually drasti
ally
ompli
ates the overall implementation. In this paper, we present the tool AutoMatewhi
h generates on one hand large parts of the 
orresponding realization, releaving thedeveloper from s
hemati
 
ode. On the other hand, AutoMate provides a 
onvenientframework to manage the appli
ation�s business obje
ts in an elegant, 
omprehensibleway. This way, the overall time and 
ost of the development pro
ess is noti
eably redu
ed.KeywordsMulti-tier ar
hite
ture, Client/Server, Codegeneration, OODBMS, CORBA1 Introdu
tionMulti-tier ar
hite
tures have grown to be standard solutions in various appli
ation domains inthe last 
ouple of years. For example, the three-tier ar
hite
ture 
onsisting of the presentationlayer, the appli
ation layer and the database layer is already 
alled the \
lassi
" solution forall kind of information systems [5℄. The su

ess and a

eptan
e of this kind of ar
hite
turehas been espe
ially stressed by the support of standardized interfa
es as, for instan
e, to therespe
tive database.Appli
ation development in the obje
t-oriented world is te
hni
ally rather straightforward andadditionally well supported by tools in the presentation and appli
ation layer. Various CASEtools help in elaborating analysis and design of the system model, graphi
al tools o�er sup-port for the design of the user interfa
e, and most development environments keep a sto
k ofstandardized, prefabri
ated 
omponents whi
h are easy to be adapted to the given appli
ationdomain. However, development of the server side is almost always hand-made although it oftenbrings along the same set of te
hni
al problems:1



Most appli
ations require some kind of 
ommuni
ation middleware. For example, CORBA-based obje
t request brokers allow for 
ooperation within a single layer or also between severallayers of the ar
hite
ture. This way, method 
alls are transparently forwarded to the 
alledobje
t eventually swit
hing to other pro
esses or 
omputers. However, modern middlewarete
hnologies drasti
ally 
ompli
ate development as they require, for example, a plethora ofadditional helper obje
ts like stubs and skeletons. Similarly, the a
tual transparent usage ofpersistent obje
ts stored within the database is pre
eded by the rather 
ompli
ated developmentof a 
ustom-made solution for persisten
e.By and large, the implementation of transparent a

ess from \everywhere" to persistent obje
tsof the appli
ation layer still la
ks standard solutions and thus renders development of the serverside unne
essarily 
ompli
ated. This is espe
ially due to the tri
ky interplay of appli
ationobje
ts, middleware, and the underlying database.In this paper, we present the tool AutoMate whi
h 
urrently o�ers transparent a

ess to obje
t-oriented Java databases via CORBA. Its spe
ial feature: the server 
ode of a distributed three-tier ar
hite
ture 
an be generated automati
ally from UML 
lass diagrams, thus greatly redu
-ing the required programming e�ort.AutoMate builds on established 
ommer
ial 
omponents. In its 
urrent version, the appli
ationlayer relies on the CORBA obje
t request broker Iona OrbixWeb [2℄. The database layer usesthe obje
t-oriented database system Versant [7℄. Clients in the presentation layer a

ess Javaobje
ts on the appli
ation layer via standardized, easy-to-use interfa
es, while the data is storedon the database layer transparently. The resulting three-tier ar
hite
ture is very 
exible withrespe
t to the distribution of data and fun
tionality, making it espe
ially suitable for largeenterprise appli
ations like 
omputer-aided engineering environments.The software 
onsists of two parts: a generator for the obje
t model of the CORBA Javaobje
t database, and a set of manager 
omponents in the appli
ation layer of the server. Theobje
t model generator is integrated within the CASE tool Rational Rose [4℄. It uses UML
lass diagrams to generate the Java 
ode for the server obje
ts, and starts up the appli
ationand database servers. Implementations for server-side methods on the appli
ation layer maythen be added to the server at runtime. With respe
t to the manager 
omponents, the 
urrentversion of AutoMate 
ontains 
omponents for obje
t 
reation, naming, queries, and transa
tionmanagement. Additional fun
tionality like s
hema evolution, version management, and obje
tmigration, as well as support for other CORBA obje
t request brokers, obje
t-oriented databasesystems, and CASE tools is 
onsidered in future versions.In the following, we present our vision of the overall ar
hite
ture of 
omputer-aided engineeringenvironments. We show how a tool like AutoMate 
an help software engineers in developingsu
h systems, and dis
uss the basi
 
on
epts and design de
isions of AutoMate. Finally, wedemonstrate the usage of AutoMate and present a small appli
ation example.2 Ar
hite
ture OverviewThe overall ar
hite
ture of an AutoMate system is shown in Figure 1. It 
onsists of the followingthree tiers:� The database layer is responsible for storing and a

essing persistent Java obje
ts. Theinterfa
e of the layer is 
urrently based on the ODMG 2.0 standard [1℄. Thus, di�erent2



Persistent

CORBA Objects


O
bjectM

anager


T
ransactionM

anager


N
am

ingM
anager


A
dditional M

anagers


Object-Oriented Database Management System


CORBA Interface


OODBMS Interface


Client 1
 Client n
. . .


Q
ueryM

anager


R
eception


Presentation

Layer


Application

Layer


Database

Layer
Figure 1: Overall Ar
hite
ture of an AutoMate Systemeven distributed databases 
an be integrated behind this layer. However, the 
urrentversion of AutoMate is based on the Versant OODBMS.� The appli
ation layer uses Iona's CORBA ORB OrbixWeb. On the one hand, it providesCORBA interfa
es to the system's base fun
tionality, represented by a set of managerobje
ts. On the other hand, it makes the persistent Java obje
ts in the database layera

essible via CORBA. The whole appli
ation layer 
an be distributed as ea
h managerand ea
h persistent CORBA obje
t may be a CORBA server itself.� The 
lients in the presentation layer a

ess the appli
ation layer via portable CORBAoperation 
alls.The IDL interfa
es to the persistent CORBA database obje
ts are des
ribed further in Se
tion 3.Basi
ally, they o�er support for a

essing the internal state of the obje
t attributes as wellas fun
tionality for navigating between obje
ts. The 
urrent version does also support theexe
ution of additional, user-de�ned Java 
ode in this layer.The IDL interfa
es to the manager obje
ts are explained in Se
tion 5. They o�er supportfor obje
t 
reation and destru
tion, naming and lookup of named obje
ts, and transa
tionmanagement. We also o�er support for querying obje
ts by means of standard OQL queries.Note that the appli
ation and database layers may be fully generated from an UML model
reated with Rational Rose. Custom programming is only ne
essary to implement the 
lientsin the presentation layer. In the future, we will provide support for the implementation of
lients, for example, by providing a me
hanism for event noti�
ation between the server andthe 
lients. 3



Other planned extensions are 
on
erned with s
alability improvements for large appli
ations, forexample, by means of 
lient-side 
a
hing, support for a
tivation and passivation, and resour
epooling.3 Modeling Te
hniques and Generated IDL Interfa
esAutoMate fully automates the 
reation and startup of a CORBA obje
t database server. Beforewe go into details about the generation itself and the te
hni
al infrastru
ture we �rst explainhow UML 
lass diagrams modeled in Rational Rose are used to generate IDL interfa
es fora

essing remote persistent CORBA obje
ts. The next se
tion will show how a running servermay be generated and started.Currently, AutoMate only relies on UML 
lass diagrams for the generation of a CORBA obje
tdatabase server. In the following, the supported modeling elements are explained. For ea
hmodeling element, the IDL interfa
es 
on
erned with a

essing modeled obje
ts on the serverare given. Note that the 
urrent version of AutoMate o�ers only simplisti
, minimal CORBAa

ess interfa
es for obje
ts. Although this is already suÆ
ient for a wide range of appli
ations,future versions will provide more 
omfortable interfa
es with added fun
tionality and supportfor additional modeling 
on
epts.3.1 Classes and Pa
kagesTo generate support for a 
ertain 
lass within the CORBA obje
t database, the persisten
y
ag for this 
lass has to be set. This 
ag 
an be found in the \Detail" tab in the \ClassSpe
i�
ation" dialog, as shown in 2.

Figure 2: Marking a Class as PersistentClasses that are not marked as persistent will be treated as transient. This means identi
alinterfa
es are generated for this 
lasses, but they are never made persistent. Thus, programmers
an use persistent and transient 
lasses in an identi
al manner | they are also part of thetransa
tional 
ontext.Classes belong to Rose pa
kages. Ea
h Rose pa
kage maps to a 
orresponding IDL moduleon the 
lient, and to a 
orresponding Java pa
kage on the server. Note that ea
h 
lass for apersistent CORBA obje
t has to be 
ontained in at least one pa
kage.4



All generated interfa
es extend the (empty) IDL interfa
e de::tum::automate::
ore::Ele-ment whi
h serves as a 
ommon base type for all persistent obje
ts. The implementation ofthis basi
 
lass provides the hooks for the manager framework, like the transa
tion or querymanager:module server{ interfa
e Car : de::tum::automate::
ore::Element{ // generated attribute a

ess// generated asso
iations and navigations// generated user-defined methods};};3.2 EnumsIn 
ontrast to the obje
t models of C++ and CORBA, the obje
t models of Rational Rose andUML do not in
lude the 
on
ept of an enum, that is, a type whose instan
es are attributeswith a restri
ted number of possible, spe
i�ed values. Do not 
onfuse user-de�ned enums withJava enumerations used to iterate over the obje
ts in a 
ontainer. (
f. Se
tion 3.4).In AutoMate, support for enums is provided with the help of the spe
ial stereotype <<Enum>>.To 
reate an enum, you have to add the stereotype <<Enum>> to a Rose 
lass. This 
an be doneon the \General" tab in the \Class Spe
i�
ation" dialog, as shown in Figure 3.
Figure 3: Creating an Enum

Figure 4: Spe
ifying the Possible Values of an Enum5



The possible values of an enum are spe
i�ed as attributes of the same type as the enum itself.An example 
an be seen in Figure 4. The IDL interfa
e generated from this example isenum TireType { SUMMER, WINTER, ALLROUND };3.3 AttributesAttributes 
an be of the base types: short, float, double, 
har, boolean, int, long,and java.lang.String or they may be user-de�ned enums, or referen
es to user-de�ned per-sistent CORBA obje
ts. For an attribute x of type A, two a

ess methods are generated in theIDL interfa
e:A getX();void setX(in A);3.4 Asso
iations and AggregationsThe 
urrent version of AutoMate treats aggregations as simple asso
iations and does not gen-erate spe
ial 
ode for aggregations. All AutoMate asso
iations are bidire
tional.Multipli
ities: For ea
h asso
iation or aggregation between persistent CORBA obje
ts, themultipli
ity for both dire
tions has to be spe
i�ed. The 
urrent version of AutoMate onlysupports the following multipli
ities:0..1-to-0..10..1-to-*Multipli
ities of exa
tly 1 (like, for example, in 1-to-0..1) may be spe
i�ed, but are treatedas 0..1.AutoMate does not in
lude the 
on
ept of a *-to-* asso
iation. If su
h asso
iations are needed,they must be broken up into two 0..1-to-* asso
iations.Iteration via Enumerations: When an 0..1-to-* asso
iation is used, a single obje
t maybe asso
iated with arbitrarily many other obje
ts. For a

essing these obje
ts, we providetyped iterators. They are designed following the standard Java Enumeration 
lass. Note thatenumerations are not related to CORBA enums (
f. Se
tion 3.2).For ea
h 
lass A, a 
orresponding IDL enumeration interfa
e is generated as follows:interfa
e AEnumeration{ boolean hasMoreElements();A nextElement();};
6



Navigating, Creating, and Removing Asso
iations: The generated a

ess operationsin the IDL interfa
es obey the following two rules, i� there are no name 
on
i
ts with othera

ess operations:� On the x side of a 0..1-to-x asso
iation (with x being 0..1 or *) between two 
lasses Aand B, two a

ess operationsA getA();void setA(in A);are generated in B's interfa
e.� On the x side of an x-to-* asso
iation (with x being 0..1 or *) between two 
lasses Aand B, two a

ess operationsBEnumeration getBs();void addB(in B);are generated in A's interfa
e.If this transformation would result in name 
on
i
ts with other a

ess operations, role namesfor the asso
iation endpoints have to be used in modeling. The a

ess operations are thengenerated based on these role names instead of the 
lass names. Name 
on
i
ts generallyarise only when there are two or more asso
iations between two 
lasses or when there is a0..1-to-0..1 asso
iation from a 
lass to itself. If role names are used, the generated a

essoperations in the IDL interfa
es obey the following two rules:� On the x side of a 0..1-to-x asso
iation (with x being 0..1 or *) between two 
lasses Aand B with the role name R on the A side, two a

ess operationsR getR();void setR(in A);are generated in B's interfa
e.� On the x side of an x-to-* asso
iation (with x being 0..1 or *) between two 
lasses Aand B with the role name R on the B side, two a

ess operationsBEnumeration getRs();void addR(in B);are generated in A's interfa
e.Note that the 
urrent, minimal IDL interfa
es 
ontain no operations for removing asso
iationinstan
es. To remove an x-to-0..1 asso
iation link between obje
ts of 
lasses X and Y, themethod setX with parameter null has to be 
alled on the instan
e of Y whi
h wants to beex
luded.
7



Figure 5: Spe
i�
ation of Server-Side Methods3.5 Server-Side MethodsAutoMate allows the exe
ution of Java 
ode on the appli
ation server layer. Methods must bespe
i�ed with the publi
 visibility in Rational Rose, as shown in Figure 5.The 
ode of server-side methods is not spe
i�ed in Rational Rose, but has to be written inspe
ial Java �les, lo
ated in the servermethods dire
tory below the working dire
tory with the
orresponding Rose model �le.The subdire
tory stru
ture within servermethods 
orresponds to the pa
kage stru
ture of theproje
t. The 
ode for the example 
lass server.Car of Figure 5 is, therefore, lo
ated in the�le servermethodsnservernCarmethods.java.Server-side methods are spe
i�ed in a spe
ial 
lass with the suÆx Methods. This 
lass mustextend the 
orresponding persistent server 
lass with suÆx ImplPers. For the example ofFigure 5, the 
lass de�nition looks like this:pa
kage server;import de.tum.automate.manager.*;import de.tum.automate.manager.impl.*;import de.tum.automate.
ore.*;import de.tum.automate.
ore.impl.*;publi
 
lass CarMethods extends server.CarImplPers{ ...}Server-side methods should only rely on server-side 
lasses and other server-side methods, asprogrammers should not see and use the types of the AutoMate framework. Instead of theCORBA method and 
lass names spe
i�ed in Rational Rose, their server-side 
ounterpartsshould be used, therefore.The 
ode for the server-side methodpubli
 
hangeAllTires(
ount : int, fromOtherCar : Car) : booleanof Figure 5 may be as followspubli
 boolean 
hangeAllTiresImpl(int 
ount, CarImplPers fromOtherCar){if (getImplModel() == fromOtherCar.getImplModel()){ 8



TireEnumerationImpl myTires = getImplTires();TireEnumerationImpl otherTires = fromOtherCar.getImplTires();while(myTires.hasMoreElementsImpl() &&otherTires.hasMoreElementsImpl()){TireImplPers myTire = myTires.nextElementImpl();TireImplPers otherTire = otherTires.nextElementImpl();myTire.setImplAbrasion(otherTire.getImplAbrasion());}return true;} else {return false;}}Note that attribute 
alls have to be performed via 
alls to the 
orresponding getImpl andsetImpl methods. Furthermore, an AutoMate server may be started without all server-sidemethod Java �les present. Calls to su
h server-side methods return default values, and arelogged in the log �le. This way, the tool 
an be used very easily for prototyping and in
rementaldevelopment.4 Creating the ServerGenerating a server requires that the OrbixWeb Java Daemon is running. All remaining a
-tivities are fully automated and 
an be sele
ted and started from the AutoMate main dialogwindow, whi
h may be opened in Rose via the menu bar. On
e the generation is started thefollowing steps are exe
uted:
generation

Figure 6: Overview of an exemplary generation pro
ess9



1. Generate, Compile, and Enhan
eThis step relates to the generation and preparation of the IDL �les and the 
lasses of thepersistent CORBA obje
ts on the server.2. New DatabaseIn this step, a new Versant Java database is 
reated and its s
hema is populated with theJava 
lasses generated in the previous step.3. CORBA StartupIn this step, OrbixWeb is initialized with the generated IDL interfa
es, 
onne
ted withthe Versant database, and made available as a new server in the network.Figure 6 shows all �les that have been generated for the example 
lass Car. The interfa
eCar represents the CORBA 
lient interfa
e. The stub and skeleton 
lasses CarStub, tie Car,CarSkeleton) are usually transparent to programmers. The persistent 
lass CarImplPers hasthe same operations as the stub and skeleton 
lasses, but implements a di�erent interfa
e, theinterfa
e CarOperations. Thus, CORBA obje
ts and database obje
ts are 
learly separated.

Figure 7: Examplary interplay of the generated 
lassesFinally, if all the �les are generated and 
ompiled and if the database and CORBA have beenproperly started, programmers 
an use the Car CORBA obje
t. Figure 7 shows the appearingintera
tions if the method setClut
h is 
alled via CORBA on a Car obje
t.5 Servi
es and ManagersTo a

ess the persistent CORBA obje
ts living in an AutoMate obje
t database, 
lients needto a

ess so-
alled manager obje
ts providing base fun
tionality. In 
ontrast to the persistentobje
ts living on the AutoMate server, whi
h may be 
reated and deleted dynami
ally, themanager obje
ts are part of the stati
 ar
hite
ture of AutoMate (
f. Se
tion 2). All managersare so-
alled singleton obje
ts|there exists only a single instan
e of ea
h manager 
lass.The IDL interfa
es of all managers are de�ned in the module de::tum::automate::managerprovided in the �le Manager.idl. This �le in
ludes the Core.idl �le where the Elementinterfa
e (
f. Se
tion 3.1) and a basi
 ex
eption interfa
e named Basi
Ex
eption are de�ned.Almost all interfa
es follow the 
orresponding standards of the OMG interfa
es (
.f. [3℄).10



5.1 Transa
tionsThe Transa
tion 
ontext interfa
e o�ers the three standard transa
tion operations: The beginoperation starts a new transa
tion, the 
ommit operation tries to perform the 
hanges madewithin the transa
tion, and the abort operation takes ba
k all those 
hanges. All three opera-tions may result in ex
eptions.It is possible to begin and end multiple transa
tions within one transa
tion 
ontext by 
allingthe begin and 
ommit operations repeatedly on a single Transa
tion obje
t. However, ea
hbegin must be followed by a 
ommit or abort. Calling begin twi
e in a row results in anex
eption.interfa
e Transa
tion {void begin() raises(de::tum::automate::
ore::Basi
Ex
eption);void 
ommit() raises(de::tum::automate::
ore::Basi
Ex
eption);void abort() raises(de::tum::automate::
ore::Basi
Ex
eption);};Currently, optimisti
 as well as pessimisti
 transa
tion logi
 is supported. Database obje
ts maybe lo
ked a

ording to four di�erent strategies: ex
lusive, read/write, read, and not repeatableread. This allows the programmer to optimize the strategy used in AutoMate.The Transa
tionManager interfa
e (
f. Figure 8) provides support for 
reating and deletingtransa
tion 
ontexts via the open and 
lose operations. Note that these two operations arerather heavyweight 
ompared to the transa
tion operations of Se
tion 5.1.In the 
urrent version of AutoMate, CORBA obje
t referen
es to obje
ts of type Elementare only valid within a single transa
tion (starting with a begin and ending with a 
ommit orabort). If a durable obje
t referen
e is needed, it 
an be a
quired by 
alling the obje
tToHandleoperation on an arbitrary persistent Element. This results in a portable string that may bestored persistently on the 
lient, for example. The 
onverse operation handleToObje
t 
onvertsthis string to an obje
t referen
e again.5.2 NamingThe naming fun
tionality (
f. Figure 9) is used to assign (or bind) string names to databaseobje
ts. Names may be unassigned using the unbind operation. The lookup operation returnsthe database obje
t assigned with a 
ertain name.Note that the bind operation does not need a Transa
tion parameter be
ause its Elementparameter is already 
onne
ted with a transa
tion 
ontext.Obje
ts of type Element returned by the lookup method have to be 
ast to a more spe
i�
CORBA type before their spe
i�
 methods 
an be a

essed. This 
an be done with the helpof the narrow method of the 
orresponding Helper interfa
e, as demonstrated in the following
lient 
ode example: 11



interfa
e Transa
tionManager {Transa
tion open(in string dbName, in Lo
king lo
king,in Transa
tionLogi
 transa
tionLogi
)raises (de::tum::automate::
ore::Basi
Ex
eption);void 
lose(in Transa
tion transa
tion)raises (de::tum::automate::
ore::Basi
Ex
eption);string obje
tToHandle(in de::tum::automate::
ore::Element element)raises (de::tum::automate::
ore::Basi
Ex
eption);de::tum::automate::
ore::Element handleToObje
t(in Transa
tion transa
tion, in string handle)raises (de::tum::automate::
ore::Basi
Ex
eption);}; Figure 8: Interfa
e of the transa
tion manager
interfa
e NamingManager {void bind(in de::tum::automate::
ore::Element element, in string name)raises (de::tum::automate::
ore::Basi
Ex
eption);void unbind(in Transa
tion transa
tion, in string name)raises (de::tum::automate::
ore::Basi
Ex
eption);de::tum::automate::
ore::Element lookup(in Transa
tion transa
tion, in string name)raises (de::tum::automate::
ore::Basi
Ex
eption);}; Figure 9: Interfa
e of the naming manager

12



interfa
e Obje
tManager {de::tum::automate::
ore::Element 
reate(in Transa
tion transa
tion, in string obje
tType)raises (de::tum::automate::
ore::Basi
Ex
eption);void delete(in de::tum::automate::
ore::Element element)raises (de::tum::automate::
ore::Basi
Ex
eption);}; Figure 10: Interfa
e of the obje
t managerCar 
arModel = CarHelper.narrow(namingManager.lookup(transa
tion,"Donatas 2000 GLX"));5.3 QueriesApart from �nding existing obje
ts via the lookup operation of the naming manager, OQLqueries may be used. The syntax of these queries follows the Versant variant of OQL asdes
ribed in the Versant manuals.interfa
e QueryManager {de::tum::automate::
ore::ElementEnumeration query(in Transa
tion transa
tion, in string query)raises (de::tum::automate::
ore::Basi
Ex
eption);};The query manager returns an enumeration of generi
 Element CORBA obje
ts. Analogous toobje
ts returned by the lookup method of the NamingManager, the obje
ts in the enumerationhave to be 
ast to a more spe
i�
 CORBA type before their spe
i�
 methods 
an be used.Furthermore, that queries rely on persistent server 
lasses, and not on CORBA interfa
es.Given the example 
lass of Figure 5 on page 8, a possible query string 
ould besele
t selfoid from server.CarImplPers where _Model == "Beetle"5.4 Obje
t Creation and Destru
tionNew persistent obje
ts on the AutoMate server may be 
reated by 
alling the generi
 fa
torymethod 
reate of the AutoMate Obje
tManager. On 
reation, the new obje
t has to be
onne
ted with a transa
tion 
ontext. The obje
tType string parameter must 
ontain a full,quali�ed Java 
lass name with the pa
kage quali�ers a

ording to the 
orresponding UMLpa
kages and IDL modules (an example is the string "server.Car", whi
h denotes 
lass Carwithin module server). If one wants to remove a persistent obje
t from the server AutoMateprovides the delete operation.
13



interfa
e Re
eption {Transa
tionManager getTransa
tionManager()raises (de::tum::automate::
ore::Basi
Ex
eption);Obje
tManager getObje
tManager()raises (de::tum::automate::
ore::Basi
Ex
eption);NamingManager getNamingManager()raises (de::tum::automate::
ore::Basi
Ex
eption);QueryManager getQueryManager()raises (de::tum::automate::
ore::Basi
Ex
eption);}; Figure 11: Interfa
e of the re
eption manager5.5 Re
eptionThe Re
eption obje
t (
f. Figure 11) serves as 
entral entry point to the AutoMate system,analogous to the re
eption of a hotel. Its purpose is to provide 
lients with referen
es to theother managers on the server, e.g. the transa
tion, obje
t, naming, and query managers. Thusthe re
eptions 
an be used to authentify and authorify users. Future managers, like the plannedversion manager, will also be available via the re
eption.6 The Client Side

Figure 12: Example Class DiagramIn the previous se
tions, we demonstrated features as well as usage of the AutoMate frameworkusing the simple example of a 
ar. Now, we'd like to have a look from the viewpoint of theappli
ation programmer using the very same example.We start out by the 
reation of the business 
lass diagram as depi
ted in Figure 12. Basi
ally,a 
ar is modeled to have several wheels and an optional 
lut
h. This spe
i�
ation is enri
hedwithin the tool Rational Rose with further information regarding the 
lasses' persisten
y. Then,the server obje
ts are 
reated using the AutoMate-extension within Rational Rose whi
h takesroughly �ve to ten minutes on a regular PC with Windows NT. After the generation pro
ess(see Figure 6), the AutoMate-framework together with the respe
tive appli
ation obje
ts isready to use. Consider, a simple example of a 
lient that instantiates a 
ar and does somemodi�
ations (
f. Figure 13). 14



// initialize the ORBORB orb = ORB.init();// get a CORBA referen
e to the re
eptionRe
eption re
eption = Re
eptionHelper.bind("AutoMateRe
eption", "automate.tum.de");// get CORBA referen
es to the managersTransa
tionManager transa
tionManager =re
eption.getTransa
tionManager();Obje
tManager obje
tManager = re
eption.getObje
tManager();NamingManager namingManager = re
eption.getNamingManager();QueryManager queryManager = re
eption.getQueryManager();// 
reate and start a new transa
tion on the 
ar databaseTransa
tion transa
tion = transa
tionManager.open("
ars", Lo
king.READ_WRITE,Transa
tionLogi
.PESSIMISTIC);transa
tion.begin();// get a referen
e to the obje
t named "Donatas 2000 GLX"Car 
arModel = CarHelper.narrow(namingManager.lookup(transa
tion, "Donatas 2000 GLX"));// set the size of all wheels to 5WheelEnumeration wheels = 
arModel.getWheels();while (wheels.hasMoreElements())wheels.nextElement().setSize(5);// 
reate a new persistent Clut
h obje
tClut
h 
lut
h = Clut
hHelper.narrow(obje
tManager.
reate(transa
tion,"de.tum.automate.
ars.Clut
h"));// add the 
reated 
lut
h to the 
ar model
arModel.setClut
h(
lut
h);// sear
h for all 
ars named "Bug" and rename them to "Beetle"ElementEnumeration bugCars = queryManager.query(transa
tion,"sele
t selfoid from server.CarImplPers where _Name == \"Bug\"");while (bugCars.hasMoreElements())CarHelper.narrow(bugCars.nextElement()).setName("Beetle");// 
ommit and destroy the transa
tiontransa
tion.
ommit();transa
tionManager.
lose(transa
tion);Figure 13: Implementation of the 
ar 
lient example15



After initialization of the obje
t request broker and the database, the 
ode gets to know allmanagers as, for instan
e, the query manager. An appropriate transa
tion 
ontext is 
reatedand at this point, the te
hni
al preparation is done. Now, the business model is easily 
reatedand modi�ed. Consider, in parti
ular, the transparent usage of all appli
ation obje
ts. Itdoesn't make a di�eren
e whether they are transient or persistent, remote or lo
al.7 Con
lusion and Further WorkIn this work, we presented and demonstrated AutoMate, a development tool essentially speedingup the 
reation of software systems based on three-tier ar
hite
tures. Using the tool, appli
ationprogrammers 
an abstra
t away from te
hni
al details asso
iated with underlying me
hanismsand at the same time, exploit the properties of a software tool that in
orporates a variety ofexisting standards, implementations , and spe
i�
ations. For example, the ODMG 2.0 interfa
efor obje
t-oriented databases, the middleware CORBA, and existing transa
tion servi
es.But although the 
urrent version of AutoMate is already robust and fast enough to be usedfor some small to medium-sized three-tier appli
ations, it is mainly intended as a �rst initialversion. The basi
 ar
hite
ture has the potential for many optimizations and extensions withrespe
t to fun
tionality as well as to s
alability for large systems. We plan to o�er support for� the portable obje
t adapter spe
i�
ation by the OMG. Besides being independant fromthe a
tual ORB in use, we result in an eased usage of obje
t identi�ers. In parti
ular, we
ould get rid of the method Obje
tToHandle of the Transa
tionManager interfa
e.� the new ODMG 3.0 interfa
e spe
i�
ation. Here, a variety of new data types is introdu
edand ready to use also for navigational purposes. Moreover, several databases might beused at the same time.� s
heme evolution whi
h is essentially model evolution resp. 
lass diagram evolution.Basi
ally, the designer spe
i�es a set of transformation primitives whi
h appli
ation resultsin the new model. For this purpose, we implemented another tool 
alled ShapeShifterwhi
h does exa
lty these steps using XMI/XML spe
i�
ations. ShapeShifter is about tobe integrated in AutoMate within the next 
ouple of months.Those interested in trying out AutoMate are invited to download a fully fun
tional 
opy fromour website [6℄.Referen
es[1℄ R. Cottell. Obje
t Database Standard: ODMG 2.0. Morgan Kaufmann, 1997.[2℄ Iona Te
hnologies. Iona Home Page, http://www.iona.
om, 1998.[3℄ Robert Orfali and Dan Harkey. Client/Server Programming with Java and CORBA. JohnWiley & Sons, 2nd edition, 1998.[4℄ Rational Rose. Rational Rose, http://www.rational.
om, 1998.16



[5℄ Klaus Renzel and Wolfgang Keller. Three Layer Ar
hite
ture. Software Ar
hite
tures andDesign Patterns in Business Appli
ations, TUM-I9746, 1997.[6℄ The Automate Homepage, Te
hnis
he Universit�at M�un
hen. http://automate.informatik.tu-muen
hen.de, 2000.[7℄ Versant Obje
t Te
hnology. Versant Home Page, http://www.versant.
om, 1999.

17


