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Checking System Properties via IntegerProgramming?Stephan Melzer and Javier EsparzaInstitut f�ur InformatikTechnische Universit�at M�unchenArcisstr. 21, D-80290 M�unchene-mail:fmelzers,esparzag@informatik.tu-muenchen.deAbstract. The marking equation is a well known veri�cation methodin the Petri net community. It has also be applied by Avrunin, Corbettet al. to automata models. It is a semidecision method, and it may fail togive an answer for some systems, in particular for those communicatingby means of shared variables. In this paper, we complement the mark-ing equation by a so called trap equation. We show that both togethersigni�cantly extend the range of veri�able systems by conducting severalcase studies.1 IntroductionThe use of linear algebra and integer programming for veri�cation purposeshas a long tradition in Petri net theory [6, 16, 15, 17]. One of the best knowntechniques is the state ormarking equation [6, 17]. This is a linear equation whichcan be easily derived from the description of the net and its initial marking (inlinear time). It can be seen as a set of linear constraints L that every reachablemarking must satisfy. In other words, the solutions of L are a superset of thereachable markings. In order to use the marking equation, we add to it newlinear constraints LP , which specify the markings which do not satisfy a desirableproperty P.2 Then, we use integer programming to solve the system L [ LP : ifthe system has no solution, every reachable marking satis�es P.The disadvantage of this technique is the fact that the markings satisfyingL are only a superset of the reachable markings: the solutions of L[LP may ormay not correspond to a reachable marking. Therefore, the marking equation isonly a semidecision method. Its main advantage is that it does not explore thestate space, and therefore it avoids the state explosion problem. It can also beused to verify systems having in�nite state spaces.The marking equation can be applied to many di�erent models of concur-rency, not only to Petri nets. Actually, the most comprehensive study of itsapplications for veri�cation has been carried out by Avrunin, Corbett et al. us-ing coupled automata as a model [2, 3, 8]. They have developed the Constrained? This work was partially supported by the Sonderforschungsbereich SFB-342 A3.2 It is also possible to impose linear constraints on the occurrence sequence leadingto those markings. This is a very useful feature, but we omit it here for the sake ofsimplicity.



Expression Toolset, later updated to the Inequality Necessary Condition Ana-lyzer (INCA), a tool for the veri�cation of a large class of safety and livenessproperties. It is easy to see that the basis of the technique implemented in INCAis equivalent to the marking equation. In [7], Corbett shows that INCA is ableto prove deadlock freedom for 19 di�erent examples taken from di�erent sources,and can compete with symbolic and partial order theorem provers.One of the main limitations of the marking equation is that it tends to failfor systems which communicate via shared variables. For instance, it cannotprove mutual exclusion of any of the most popular mutual exclusion algorithms(Dekker's, Dijkstra's, Knuth's, Peterson's etc.) without user's help. The reason isthat the method is not sensitive to the guards which allow to perform an actiononly if a variable has a certain value, in the sense that the systems with or withoutthe guards are assigned the same set of constraints. Since the correctness of thesealgorithms crucially depends on these guards, the method fails.In this paper, we show how to obtain a set of constraints which better ap-proximate the set of reachable markings, and are sensitive to these guards. Wethen test the improved algorithm on a number of examples. In particular, weautomatically prove mutual exclusion of �ve mutual exclusion algorithms.This re�ned set of constraints is derived from some results of Petri net the-ory concerning so called traps. Therefore, it is convenient to present our resultsin Petri net terms. However, there would be no problem in recasting them for,say, the communicating automata of Corbett [7], the synchronized products oftransition systems of Arnold and Nivat (see, for instance, [1]), or for CCS pro-cesses of the form (P1 j : : : j Pn)nL, where the Pi are regular. All of them can beeasily translated into (1-safe) Petri nets. The common idea of the translationsis simple: each sequential component is modelled by means of a Petri net, justmapping states to places and transitions of the transition system into transitionsof the Petri net. Communication is then modelled by merging transitions.The paper is organised as follows. In Section 2 we introduce some basicde�nitions. Section 3 describes the marking equation. In Section 4 we introducetraps, and present our improved method. In Section 5 we apply the results toexamples. In Section 6 we present a result on checking deadlock freedom. Finally,we present our conclusions in Section 7.2 Basic notationsA net is a triple N = (P; T;W ) where P \T = ; and W : (P�T )[(T �P )! IN .P is the set of places (symbolized by circles), T the set of transitions (symbolizedby rectangles) andW is the weight function. The pre-set of x 2 P[T is �x = fy 2P[T jW (y; x) > 0g. The post-set of x 2 P[T is x� = fy 2 P[T jW (x; y) > 0g.The pre- and post-set of a subset of P [T are the union of the pre- and post-setsof its elements.All the examples of Section 5 (and all the examples of [7]) can be modelledby ordinary nets, in which the weight function has codomain f0; 1g. However,



more general weight functions play an important role in the development of theresults of Section 4, and that is why we de�ne nets in this generality.A function M : P ! IN is called a marking. A Petri net is a pair (N;M0)where N is a net and M0 a marking of N called initial marking. A transitiont 2 T is enabled at M iff 8p 2 �t : M (p) � W (p; t). If t is enabled at M , thent may �re or occur, yielding a new marking M 0 (denoted M t�! M 0), whereM 0(p) =M (p) +W (t; p)�W (p; t).A sequence of transitions, � = t1t2 : : : tr is an occurrence sequence of (N;M0)iff there exist markings M1; : : :Mr such that M0 t1�! M1 t2�! M2 : : : tr�! Mr .The markingMr is said to be reachable fromM0 by the occurrence of � (denotedM ��!Mr).A Petri net (N;M0) is safe iffM (p) � 1 for every reachable markingM andevery place p.A linear programming problem or linear problem is a system A � X � B oflinear (in)-equalities called the constraints, plus maybe a linear function CT �Xcalled the objective function. A solution of the problem is a vector of rationalnumbers that satisfy the constraints. A solution is optimal if it maximises thevalue of the objective function (over the set of all solutions).An integer programming problem consists of the same elements as a linearprogramming problem, but only integer solutions are allowed. In a mixed pro-gramming problem, some variables may take rational values, and some only in-teger ones.A linear, integer or mixed programming problem is feasible if it has a solution.Otherwise it is infeasible.3 The marking equationEach place p of a net has associated a token conservation equation. Given anoccurrence sequence M0 ��! M , the number of tokens that p contains at themarkingM is equal to the number of tokens it contains at M0, plus the tokensadded by (the �rings of) the input transitions of p, minus the tokens removedby the output transitions. If we denote by #(�; t) the number of times that atransition t occurs in �, we can write the token conservation equation for p as:M (p) = M0(p) +Xt2�p#(�; t)W (t; p)�Xt2p� #(�; t)W (p; t)The token conservation equations for every place are usually written in thefollowing matrix form: M = M0 +N � !�where !� = (#(�; t1); : : : ;#(�; tm)) is called the Parikh vector of �, and Ndenotes the incidence matrix of N , a P � T integer matrix given byN(p; t) = W (p; t)�W (t; p)



If a given marking M is reachable from M0, then there exists a sequence �satisfyingM0 ��!M . So the following problem has at least one solution, namelyX :=!� . Variables: X, integer.M = M0 +N �XX � 0The equation M = M0 +N � X (and, by extension, the whole problem) iscalled the marking equation. If the marking equation has no solution, then M isnot reachable fromM0.We wish to verify that every reachable marking satis�es a desirable property,or, equivalently, that no marking satisfying the negation of this desirable prop-erty is reachable. The negation of the property can often be expressed by meansof linear constraints on the markings of the net. Here are two examples:{ Mutual exclusion.In Petri net models of mutual exclusion algorithms the possible states ofa process (idle, requesting, critical, : : : ) are modelled by places which canhold at most one token. The process is in the critical section if the corre-sponding place is marked. If s1; : : : ; sn are the places corresponding to thecritical sections, then the reachable markings that violate the mutual exclu-sion property are those satisfyingM (s1) + : : :+M (sn) � 2{ Deadlock freedom in safe Petri nets.A marking is a deadlock if it does not enable any transition. In safe Petrinets a place can hold at most one token, and therefore a transition is enabledif and only if the total number of tokens in its input places is at least equalto the number of input places. In other words, the reachable deadlockedmarkings satisfy Xs2�tM (s) � j�tjfor every transition t.A linear property of N is a predicate P on the markings ofN (or, equivalently,a subset of the markings of N ) such thatP(M ), A �M � bfor some matrix A and vector b. We can use the marking equation to verifyproperties whose negation is linear. If some marking satisfying P is reachablefromM0, then the generalised marking equationVariables: M , X: integerM = M0 +N �XA �M � bM;X � 0



has a solution.3 Therefore, if the generalised marking equation is infeasible, everyreachable marking satis�es the negation of P. We can use integer programmingto check infeasibility.The implication \infeasibility ) P holds for every reachable marking" stillholds if M and X are allowed to take rational values. So, in principle, one maytry to use ordinary linear programming to check infeasibility. Unfortunately, theexperiments show that in most cases even though the desired property holds, themarking equation has non-integer solutions, and therefore linear programmingis of little use. Using integer programming leads to much better results [7, 8].Unfortunately, the marking equation still fails very often when the Petrinet models a distributed system with shared variables. The components of thiskind of systems test the value of a variable to determine the 
ow of control.Now, consider the two Petri nets of Figure 1. The Petri net of the left modelsa component which may change of state, from s0 to s1, only if the variable xhas value 0, which happens not to be the case. In the Petri net on the right, thecomponent can change its state independently of the value of x. Obviously, themarking fs1g is not reachable on the left, and reachable on the right. However,the marking equations of these two nets coincide. Therefore, the generalisedmarking equation cannot be used to prove that fs1g is not reachable on the left.
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x=0Fig. 1. A limitation of the marking equationWe could of course prove this by constructing the reachability graph, whichis very small in this example, but may grow exponentially in the size of the net(or be in�nite). An alternative is the use of traps [21, 9].De�nition1. TrapsA set R of places of a net is a trap if R� � �R. 1In the sequel, we shall use the letter � to denote traps. Traps have thefollowing fundamental property:3 Since M is in fact a linear function of X, it would still be more general to adda constraint of the form C � X � d, and this is in fact the approach of [8]. Sincethe examples of this paper only consider constraints on markings, we will use theconstraint shown above for clarity.



Proposition2. Marked traps remain markedLet (N;M0) be a Petri net, and let � be a trap of N . If � is marked atM0 (i.e., if Pp2�M0(p) > 0), then � remains marked at every reachablemarking. 2The set fs0; s2g is a trap of the net on the left, and this trap is marked atthe initial marking fs0g. However, the trap is not marked at fs1g. Therefore,the marking fs1g is not reachable.If a marking marks every trap that is marked at M0 we say that it satis�esthe trap property. Proposition 2 states that, on top of the marking equation, areachable marking must satisfy the trap property as well. We have thus a re�nedtest of non-reachability.In order to check that every marking satisfying a linear property P violatesthe trap property we may compute all the traps marked at M0, say �1; : : : ; �n,and then compute iteratively the subsetes Pi of P that mark the traps �1; : : : ; �ifor 1 � i � n. However, this method is very ine�cient, because the number oftraps may be exponential in the size of the net4. In order to make traps usefulfor automatic veri�cation, we have to �nd an alternative, which we present inthe next section.4 The trap equationIn this section we obtain the generalised trap equation for a linear property P.This is a linear equation which has a solution if and only if no marking satis�essimultaneously P and the trap property.The �rst step towards our goal is to �nd a link between traps and linear alge-bra. Fortunately, we can pro�t from several existing results. In [14], Lautenbachshowed that there exists a tight relation between the traps of a net N and thesolutions of the equation Y T �N� = 0, where N� is obtained fromN by means ofa relatively complicated transformation. Later, Lautenbach's results were usedand slightly improved by Esparza and Silva in [10]. Finally, Ezpeleta, Couvreurand Silva found another improvement [11]. They showed that Lautenbach's netN� can be replaced by a simpler one. N and the new N� have the same places,transitions and arcs: they only di�er in the weights of some arcs leading fromtransitions to places.Theorem3. Algebraic characterization of traps [11]Let N = (P; T;W ) be a net. Let N� = (P; T;W�), whereW�(p; t) = W (p; t)W�(t; p) = �Pp02�tW (p0; t) if p 2 t�0 otherwise4 In fact, it su�ces to compute all minimal traps, which are the nonempty traps notincluded in any other trap. However, there may also be exponentially many minimaltraps.



A set � � P is a trap of the net N if and only if the equation Y T �N� � 0has a nonnegative solution Y such that kY k = �. 3We illustrate this result on the Petri net of Figure 2. The vectors Y T1 andY T2 satisfy the equation of Theorem 3, and therefore fs3; s5g and fs3; s4; s6g aretraps of the net. The vector Y T3 does not satisfy it, and in fact fs1; s2g is not atrap.
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T1 T2

T3 T4 T5Fig. 2. An example.N� = 0BBBBBB@�1 0 0 0 00 �1 0 0 01 0 1 �1 00 1 0 �1 10 0 �1 2 00 0 0 2 �11CCCCCCA Y T1 = (1; 0; 1; 0; 1;0)Y T2 = (0; 0; 1; 1; 0;1)Y T3 = (1; 1; 0; 0; 0;0)We can use Proposition 3 to test if a markingM violates the trap property.Proposition4.Let (N;M0) be a Petri net, and let M be a marking of N . M satis�es thetrap property if and only if the problem below is infeasible.Variables: Y : rational.Y T �N� � 0Y � 0 h� = kY k is a trapiY T �M0 > 0 h� is initially markediY T �M = 0 h� is not marked at M iProof: By Proposition 3, a solution of the problem corresponds to a trap initiallymarked, but unmarked at M , and vice versa. 4Now, in order to test if M violates the trap property we solve a linear pro-gramming problem instead, which intensionally checks if every initially markedtrap remains marked at M .



However, Proposition 4 is not directly useful when we consider linear prop-erties. If M becomes a variable subject to the linear condition A �M � b, thenthe equation Y T �M = 0 becomes non-linear, which very much complicates theveri�cation. To remove this di�culty we shall use one of the many versions ofthe Minkowski-Farkas Lemma (see, for instance, [22]).Theorem5. Minkowski-Farkas LemmaOne and only one of the following two problems is feasible:Variables: X: rational. Variables: Y : rational.A �X � bX � 0 Y T �A � 0Y T � b < 0Y � 0In order to apply this theorem, we �rst have to modify the problem of Propo-sition 4. We observe that, since M is a nonnegative vector and any solution Ymust also be nonnegative, the constraint Y T �M = 0 can be safely replaced byY T �M � 0. So the problem is equivalent to (i.e., has the same solutions as):Variables: Y : rational.Y T � (N� j �M ) � 0Y T � (�M0) < 0Y � 0where (N� j�M ) denotes the matrix obtained by adding�M toN� as rightmostcolumn.Now, by Proposition 4 and the Minkowski-Farkas Theorem, M satis�es thetrap property if and only if the following problem is feasible:Variables: X: rational.(N� j �M ) �X � �M0X � 0Notice that the dimension of X is equal to the number of transitions of Nplus 1, because of the addition of the column M . De�ne X = (X0 j x), i.e., X0is the vector containing all the components of X but the last, and x is the lastcomponent of X. With these notations, we can rewrite the problem as:Variables: X 0, x: rational.xM � M0 +N� �X 0X0; x � 0Assume that this problem has a solution for x = 0. Then, sinceM is nonnega-tive, it also has a solution for every x > 0. So we can replace x � 0 by x > 0, andthe resulting problem is still feasible if and only ifM satis�es the trap property.Now, since x > 0, we can divide the �rst inequality by it. Rede�ning X := 1xX 0and then x := 1x , we �nally get the trap equation:



Variables: M :integer; X, x: rational.M � xM0 +N� �XX � 0x > 0We have reached our goal: the trap equation is linear, andM appears isolatedon the left side, as in the marking equation. We can thus generalise it to linearproperties by adding the constraint A �M � b.Theorem6. Generalised trap equationLet (N;M0) be a Petri net, and let P be a linear property of the markings ofN , characterised by the equation A�M � b. If the problem below is infeasible,then no marking satis�es both P and the trap property.Variables: M : integer; X, x: rationalM � xM0 +N� �XA �M � bM;X � 0x > 0 6Finally, putting together the marking and trap equations we obtain a negativetest for linear properties:Corollary7.Let (N;M0) be a Petri net, and let P be a linear property of the markings ofN , characterised by the equation A�M � b. If the problem below is infeasible,then every reachable marking satis�es the negation of P.Variables: M , X1: integer; X2, x: rationalM = M0 +N �X1M � xM0 +N� �X2A �M � bM;X1; X2 � 0x > 0 7This problem can be solved usingmixed programming, a combination of linearand integer programming.Mixed programming solves systems of the formA�X �b, where part of the variables are required to take integer values, while othersmay be rational. The constraint x > 0 does not �t in this format, but thisproblem can be easily solved making use of the optimization facilities of mixedprogramming solvers: we solve the system with x � 0 as constraint, but searchfor the solution with maximal value of x. If this value is 0, then the originalproblem is infeasible.



5 ExamplesIn this section we show that a number of properties of several systems that couldnot be veri�ed by the marking equation alone can be veri�ed by the combinationof the marking equation and the trap equation.As a �rst case study, we consider �ve popular mutual exclusion algorithmstaken from [20], namely those by De Bruijn, Dekker, Dijkstra, Knuth and Pe-terson. For each of them we verify deadlock freeness and mutual exclusion.The algorithms are easily encoded in B(PN)2 (Basic Petri net ProgrammingNotation), an imperative language designed to have a simple Petri net seman-tics [5]. 1-safe Petri nets are then automatically generated by the PEP-tool [4].We then generate the corresponding mixed problems, which are solved usingCPLEXTM (version 3.0) on a SUN SPARC 20/712.None of the properties can be proved using linear programming. However,we do not have to require both M and X1 to be integer in Corollary 7: it su�cesto require it for M . The results of the two tables below correspond to this case.In the table on the left we have considered algorithms for two processes. Onthe right we have considered Dijkstra's algorithm for n processes.Both tables have the same structure. The �rst column shows the name ofexample, e.g. Dijkstra 5 means Dijkstra's mutex algorithm for 5 processes. Thenext two numbers indicate the numer of places and transitions of the Petrinet. PEP generates a number of redundant places and transitions, which havenot been removed for the case study. The fourth column describes the veri�edproperty: Deadlock (actually deadlock-freedom) or Mutex (mutual exclusion).The next column shows which constraints were needed to verify the property:ME (marking equation) or ME + TE (marking equation plus trap equation).The last column gives the CPU time in seconds.Example jP j jT j Property Program TimeMutex TE + ME 0.27Dekker 50 75 Deadlock TE + ME 0.61Mutex TE + ME 0.31Peterson 40 69 Deadlock ME 0.44Mutex TE + ME 0.22Dijkstra 2 64 89 Deadlock ME 0.25Mutex TE + ME 0.67Knuth 2 74 140 Deadlock ME 0.67Mutex TE + ME 0.91De Bruijn 2 80 166 Deadlock ME 1.09 Example jP j jT j Property Program TimeMutex TE + ME 0.22Dijkstra 2 64 89 Deadlock ME 0.25Mutex TE + ME 5.02Dijkstra 3 98 160 Deadlock ME 0.88Mutex TE + ME 28.50Dijkstra 4 134 257 Deadlock ME 1.55Mutex TE + ME 120.12Dijkstra 5 172 386 Deadlock ME 10.45Mutex TE + ME 144.37Dijkstra 6 212 553 Deadlock ME 53.30The next table shows results for a a slotted ring protocol described in [18], inwhich n processes are placed in a ring. In [18] the state space of the example wasencoded into BDDs and then used to check di�erent properties, one of whichwas deadlock freedom. The construction of the BDD for a ring of 9 processes(the largest ring considered in [18]) took 4080 seconds. Using our method wecan prove deadlock-freedom in 0.68 seconds. The trap equation is not needed inthis case. The example shows that linear constraint methods can compete withsymbolic model checkers (there exist other examples (see [7]) in which BDDmethods are more e�cient).



Example jP j jT j Property Program TimeSlotted Ring 2 20 20 Deadlock ME 0.02Slotted Ring 3 30 30 Deadlock ME 0.03Slotted Ring 4 40 40 Deadlock ME 0.03Slotted Ring 5 50 50 Deadlock ME 0.07Slotted Ring 6 60 60 Deadlock ME 0.20Slotted Ring 7 70 70 Deadlock ME 0.32Slotted Ring 8 80 80 Deadlock ME 0.63Slotted Ring 9 90 90 Deadlock ME 0.68Slotted Ring 10 100 100 Deadlock ME 2.72Finally, we consider a less academic example. We prove deadlock freedomof two versions of a call handling for intelligent telephone networks which isclosely related to a Basic Call State Model [19] of the ITU{T (former CCITT)standardization committee. The systems are described in [13]. We have used theB(PN)2 translations of [12]. The �rst version (Telephone) is the original protocol,while the second version (Telephone (par)) is a re�nement which allows parallelcommunications. Example jP j jT j Property Program TimeTelephone 87 188 Deadlock ME + TE 10.82Telephone(par) 232 672 Deadlock ME + TE 705.686 SiphonsIn Petri net theory, traps are usually studied together with siphons [21, 9]. Theresults of Section 4 lead to `dual' results about siphons. We study their possibleapplications in this section.De�nition8. Siphons, proper siphonsA set R of places of a net is a siphon if �R � R�. A siphon is called properif it is not the empty set. 8In the sequel, we shall use the letter � to denote siphons. Since a transitionwhich puts tokens in the places of a siphon also removes tokens from them, wehave the following fundamental property:Proposition9. Unmarked siphons remain unmarkedLet (N;M0) be a Petri net, and let � be a siphon of N . If � is unmarkedat M0, then � remains unmarked at every reachable marking. 9Proposition 9 provides a further negative test for reachability: if M markssome siphon unmarked at M0, then M is not reachable. Using another versionof the Alternatives Theorem we can obtain a siphon equation, which may beadded to the marking and trap equations. However, the siphon equation has littleinterest. The reason is the following: since a siphon � unmarked at M0 remainsunmarked, no transition of �� can ever occur. This is usually undesirerable anda very serious design error. In all the Petri net models we have considered so far



(correct or incorrect), the initial marking marks every siphon, and so the siphonequation does not add discriminating power.Siphons do help in a di�erent way. In Section 3 we showed that the set ofdeadlocked markings of a Petri net that put at most one token on a place islinear. It is easy to see that this property ceases to hold if the deadlocks mayput more than one token. In general, all we can say is that the set of deadlocksis the union of a �nite number of linear sets, namely those characterised byequations of the form M (s1) + : : :+M (sn) = 0where the set fs1; : : : ; sng contains exactly one input place of each transition.So in principle we could verify deadlock freedom by solving as many integerproblems as linear sets. However, this is very ine�cient, because the number oflinear sets may be exponential in the size of the net.The following observation is the key to a better method:Proposition10.Let N = (P; T;W ) be a net, and let M be a deadlocked marking of N . Theset � = fp 2 P j M (p) = 0g is a proper siphon of N . 10By this proposition, in order to check deadlock freedom it su�ces to verifythat every proper siphon remains marked at every reachable marking.Moreover,this new property is not too strong: most correct systems satisfy it, because theinput transitions of an unmarked siphon cannot occur anymore, and, once again,this is undesirable in all the examples we have examined.We borrow again a result from [11] :Theorem11. Algebraic characterization of siphons [11]Let N = (P; T;W ) be a net. Let N� = (P; T;W�), whereW�(p; t) = �Pp02t� W (t; p0) if p 2 �t0 otherwiseW�(t; p) = W (t; p)A set � � P is a siphon of the net N if and only if the equation Y T �N� � 0has a nonnegative solution Y such that kY k = �. 11So a markingM of N satis�es the siphon property iff the problemVariables: Y :rational.Y T �N� � 0Y � 0 h� = kY k is a siphon.iY T �M = 0 h� is not marked at M .i



is feasible. Using another version of the Alternatives Theorem and followinga procedure similar to the one we used for the trap equation, we obtain thatthe markings satisfying the siphon property are the solutions of the equationM > N� �X, where X � 0. Then, the markings which violate the property arethose satisfying Mi � (N�)i � X, where Mi is the i-th component of M , and(N�)i the i-th row of N� . So we have:Theorem12.Let (N;M0) be a Petri net. If none of the problems below is feasible, thenevery reachable marking marks all siphons, and (N;M0) is deadlock free.Variables: M , X1: integer; X2: rationalM = M0 +N �X1Mi � (N�)i �X2M;X1 � 0X2 � 0where Mi is the i-th component of M , and (N�)i the i-th row of N� . 12The number of inequation systems to solve is equal to the number of placesof the net. So we have reduce the possibly exponential number of systems tolinearly many.7 ConclusionWe have extended the range of systems that can be veri�ed using linear con-straints by adding to the marking equation a new trap equation. The newequation proves to be very useful for the analysis of systems communicatingby means of shared variables. We have proved properties of �ve mutual exclu-sion algorithms and a telephone communication protocol, none of which couldbe automatically proved before by linear methods.We have also given a natural solution to a limitation of the method, namelythe fact that deadlock-freedom is not a linear property for arbitrary Petri nets.We have introduce a slightly stronger property, in practice as desirable as dead-lock freedom, which can be computed more easily.References1. Andr�e Arnold. Veri�cation and comparison of transition systems. In M.C. Gaudeland J.P. Jouannaud, editors, TAPSOFT '93: Theory and Practice of SoftwareDevelopment, volume 668 of Lecture Notes in Computer Science, pages 121{135.Springer-Verlag, 1993.2. G. S. Avrunin, J. C. Corbett, and U. A. Buy. Integer Programming in the Analysisof Concurrent Systems. In K.G. Larsen and A. Skou, editors, Computer AidedVeri�cation, volume 575 of Lecture Notes in Computer Science, pages 92{102,1991.
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