
T U M

I N S T I T U T F Ü R I N F O R M A T I K

Formal Validation of Core SALT Translation to

LTL in Isabelle/HOL

David Trachtenherz

ABCDEFGHIJKLMNO
TUM-I1105

März 11

T E C H N I S C H E U N I V E R S I T Ä T M Ü N C H E N

TUM-INFO-03-I1105-0/1.-FI

Alle Rechte vorbehalten

Nachdruck auch auszugsweise verboten

c©2011

Druck: Institut für Informatik der

Technischen Universität München

Formal Validation of Core SALT Translation to LTL in
Isabelle/HOL

Formal semantics definition, translation to LTL, and formal translation

validation for core SALT in the Isabelle/HOL theorem prover

David Trachtenherz

February 2011

Abstract

Temporal notations are widely accepted for formal specification of functional properties amenable
to automated formal verification. The SALT temporal specification language was developed as an ex-
tension of the popular LTL notation to simplify creating temporal specifications: it provides, among
others, concise operators and restricted regular expressions. SALT formulas can be translated to LTL by
a freely available compiler and thereby directly used for model checking. Clearly defined semantics of
the specification notation is indispensable for creating precise unambiguous descriptions of the desired
behavioural properties and for making subsequent formal verification meaningful. SALT semantics has
been given through translation to LTL so far, which is in parts rather sophisticated and not easily com-
prehensible. This report presents a clear and explicit semantics formalisation for a substantial language
subset of SALT through translation to an expressive interval temporal logic with explicit time variables.
The formal definition and validation is performed in the Isabelle/HOL theorem prover. In the course
of the formal validation we particularly prove that the semantics resulting from translation to LTL is
equivalent to the explicit semantics definition.

1

Contents
1 Introduction and motivation 3

2 ILET 4
2.1 Shallow embedding . 4
2.2 Regular expressions (deep embedding) . 7

2.2.1 Syntax . 7
2.2.2 Semantics . 7
2.2.3 Sequence operators and expressions matching empty words 8

3 LTL 11
3.1 Syntax . 11
3.2 Semantics . 11

4 Core SALT 12
4.1 Syntax . 12
4.2 Translation to LTL . 13

4.2.1 Translation of regular expressions to LTL . 13
4.2.2 Translation of until and from operators to LTL . 15
4.2.3 Translation of core SALT formulas to LTL . 16

4.3 Semantics . 18
4.3.1 Translation of regular expressions to ILET . 18
4.3.2 Translation of until and from operators to ILET 19
4.3.3 Translation of core SALT formulas to ILET . 19

4.4 Sequence operators and expressions matching empty words 20
4.5 Formal validation of core SALT translation to LTL . 22

4.5.1 Selected auxiliary translation validation lemmas 22
4.5.2 Main translation validation theorem . 23

5 Additional results for core SALT 23
5.1 LTL operators until, weak until, release in core SALT . 23
5.2 Expressive equivalence of core SALT and LTL . 24

2

1 Introduction and motivation
SALT [BLS06] is a temporal specification language based on the linear temporal logic LTL [Pnu77] and
incorporating aspects of further specification formalisms and frameworks [BBDE+01, DAC99], e.g., re-
stricted regular expressions, specification patterns and further operators. SALT is meant particularly as a
bridge to formal but not always user-friendly LTL specification – allowing macro definitions and using
textual operator names it much more resembles a programming language than LTL does, and furthermore
the operators provided by SALT make it possible to conveniently specify requirements, which can hardly
be formulated in LTL without errors due to the complexity of corresponding LTL formulas – compare, for
instance, a simple SALT regular expression and the corresponding LTL formula:

/ p ; q ∗ [≥ 3] ; r / ⇔ p ∧ © (q U (q ∧ © (q ∧ © (q ∧ © r))))
This example also shows an important and critical point about SALT translation to LTL – the concise and
quite intuitive SALT operators have to be expressed using the well-defined but minimalist set of LTL oper-
ators so that the translation is in parts complex and therefore not easy to comprehend and especially being
checked for correctness.

The meaning of SALT operators is informally explained in [Str06]. The translation of SALT to LTL,
described in [Str06] and implemented by the SALT compiler [SAL], implicitly gives a SALT semantics.
However, there existed no explicit formal semantics definition so far. The advantages of creating such an
explicit semantics definition are manifold. [Gor03, Section 2] discusses several aspects that motivated the
semantics validation for PSL [Acc04]. This discussion largely applies also to our work, particularly the
issues of obtaining a machine-processible semantics as well as the prospect of combining model checking
and theorem proving for formal verification of temporal properties of programs.

The main motivation concerns the actual purpose of SALT as language for formal specification of
program properties. Similarly to LTL, SALT and many other formal notations are intended to be used
for clear and unambiguous specification of functional properties, and in many instances for a subsequent
verification. It is thus of crucial importance that their own semantics is clearly and precisely defined.
Formalising SALT in a mechanized theorem prover and proving the correctness of its translation to LTL
provides both a clear, machine-processible semantics definition of SALT and a formal evidence for the
fact that formal verification (e.g., by model checking) of an LTL specification generated from a SALT
specification is equivalent to formally verifying the original SALT specification. This would give the firm
confidence that we can, instead of manually creating LTL specifications, safely use SALT for creating
formal functional specifications and then automatically translate them by means of the SALT compiler into
LTL for further applications, especially model checking.

Our first goal is an explicit definition of semantics for a selected SALT subset, comprising most of the
core SALT operators (cf. Section 4), performed by translation to the expressive temporal logic ILET [Tra09,
Chapter 4.2] [Tra11]. We have chosen ILET for several reasons. Firstly, it makes use of simple syntax and
semantics with few basic constructs and allows explicit access to time variables, thus simplifying definitions
of both further temporal operators and complete temporal logic notations. Secondly, there already exists a
developed Isabelle/HOL theory for its temporal operators including verified results for time intervals and
temporal operators, which are directly transferable to temporal logic notations defined through translation
to ILET. Finally, it includes operators and verification results for working with bounded time intervals,
which is significant with regard to future work comprising translation validation for SALT operators that
simulate bounded time intervals (e.g., the upto operator).

The explicit semantics definition through translation to ILET prepares the ground for the second goal
of formally validating the translation of the selected SALT subset to LTL by verifying that the semantics
resulting from translation to LTL is equivalent to the explicit semantics definition.

We perform the semantics definition and the formal translation validation in the Isabelle/HOL interac-
tive theorem prover. Familiarity with higher-order logic and Isabelle/HOL notation or similar ones is not
required to understand the proof documentation in the presented work, though it would be helpful when
reading it. A detailed tutorial on Isabelle/HOL can be found in [NPW02].

3

2 ILET
ILET (Interval Logic with Explicit Time, [Tra11], BPDL in [Tra09, Chapter 4.2]) is a propositional interval
temporal logic providing explicit access to time variables and intervals and using natural numbers as time
domain.

The propositional part of ILET provides atomic propositions on system computation states and the
common Boolean operators. Due to explicity of time variables, propositions can be evaluated on states for
any point of time given by an arithmetic expression on time variables.

The temporal part of ILET has a simple syntax and semantics with three basic constructs:1

• Temporal operators � and 2 corresponding to universal and existential quantification on time do-
main.

• Interval step operator inext calculating the next element of an interval I ⊆ N with respect to a given
element n ∈ I .

• Interval cut operators ↓< and ↓≤ restricting an interval I ⊆ N to its elements less / less or equal a
given cutting point n ∈ N.

These constructs are sufficient to define further operators, common to various linear temporal logics, e.g.,
next or until.

2.1 Shallow embedding
Selected definitions and results for ILET.

Interval cut operators

Cutting intervals/sets at given point. The resulting interval contains all elements of original intervals less /
less or equal the cutting point.

consts
cut-le :: ′a::linorder set ⇒ ′a ⇒ ′a set (infixl ↓≤ 100)
cut-less :: ′a::linorder set ⇒ ′a ⇒ ′a set (infixl ↓< 100)

defs
cut-le-def : I ↓≤ t ≡ { x∈I. x ≤ t }
cut-less-def : I ↓< t ≡ { x∈I. x < t }

Relations between cut operators:
lemma cut-less-le-conv: I ↓< t = (I ↓≤ t) − {t}
lemma cut-less-le-conv-if : I ↓< t = (if t ∈ I then (I ↓≤ t) − {t} else (I ↓≤ t))
lemma nat-cut-le-less-conv: I ↓≤ t = I ↓< Suc t
lemma nat-cut-less-le-conv: 0 < t =⇒ I ↓< t = I ↓≤ (t − Suc 0)

Operator inext for stepping forwards through intervals

Minimal element of a well-ordered set.
constdefs
iMin :: ′a::wellorder set ⇒ ′a
iMin I ≡ LEAST x. x ∈ I

Function returning the next element of a natural interval/set I with respect to a given number n. If I
contains no greater elements (n is maximal element) or n is not in I, then n is returned.

constdefs
inext :: nat ⇒ nat set ⇒ nat
inext n I ≡ (
if (n ∈ I ∧ (I ↓> n 6= {}))

1Here ILET constructs required below are introduced. A complete ILET definition (including further constructs, e.g., operator
iprev, which is dual to inext and calculates the previous element of I ⊆ N w.r.t. some n ∈ I) is given in [Tra09, Chapter 4].

4

then iMin (I ↓> n)
else n)

Operator inext on continuous natural intervals.
lemma inext-atLeast: n ≤ t =⇒ inext t {n..} = Suc t
lemma inext-atMost: t < n =⇒ inext t {..n} = Suc t
lemma inext-lessThan: Suc t < n =⇒ inext t {..<n} = Suc t
lemma inext-atLeastAtMost: [[m ≤ t; t < n]] =⇒ inext t {m..n} = Suc t

Temporal operators

ILET uses natural numbers as time domain.
types Time = nat
types iT = Time set

Basic operators always and eventually corresponding to universal/existential quantification for time
variables over time intervals.

consts
iAll :: iT ⇒ (Time ⇒ bool) ⇒ bool — Always
iEx :: iT ⇒ (Time ⇒ bool) ⇒ bool — Eventually

defs
iAll-def : iAll I P ≡ ∀ t∈I. P t
iEx-def : iEx I P ≡ ∃ t∈I. P t

syntax (xsymbols)
-iAll :: Time ⇒ iT ⇒ (Time ⇒ bool) ⇒ bool ((32 - -./ -) [0, 0, 10] 10)
-iEx :: Time ⇒ iT ⇒ (Time ⇒ bool) ⇒ bool ((33 - -./ -) [0, 0, 10] 10)

translations
2 t I. P
 iAll I (λt. P)
3 t I. P
 iEx I (λt. P)

Weak and strong next operator. The bound formula is evaluated at the next time point in I relatively to
t0. If inext t0 I = t0 (i.e., t0 is maximal element or t0 /∈ I) then weak next evaluates to true and strong
next to false.

consts
iNextWeak :: Time ⇒ iT ⇒ (Time ⇒ bool) ⇒ bool
iNextStrong :: Time ⇒ iT ⇒ (Time ⇒ bool) ⇒ bool

defs
iNextWeak-def : iNextWeak t0 I P ≡ (2 t {inext t0 I} ↓> t0. P t)
iNextStrong-def : iNextStrong t0 I P ≡ (3 t {inext t0 I} ↓> t0. P t)

syntax (xsymbols)
-iNextWeak :: Time ⇒ Time ⇒ iT ⇒ (Time ⇒ bool) ⇒ bool

((3©W - - -./ -) [0, 0, 10] 10)
-iNextStrong :: Time ⇒ Time ⇒ iT ⇒ (Time ⇒ bool) ⇒ bool

((3©S - - -./ -) [0, 0, 10] 10)
translations
©W t t0 I. P
 iNextWeak t0 I (λt. P)
©S t t0 I. P
 iNextStrong t0 I (λt. P)

Operator until: the second formula Q must hold at some time t ∈ I and the first formula P must hold
until this time point.

consts
iUntil :: iT ⇒ (Time ⇒ bool) ⇒ (Time ⇒ bool) ⇒ bool

defs
iUntil-def : iUntil I P Q ≡ 3 t I. Q t ∧ (2 t ′ (I ↓< t). P t ′)

syntax (xsymbols)
-iUntil :: Time ⇒ Time ⇒ iT ⇒ (Time ⇒ bool) ⇒ (Time ⇒ bool) ⇒ bool

((-./ - (3U - -)./ -) [10, 0, 0, 0, 10] 10)
translations
P. t U t ′ I. Q
 iUntil I (λt. P) (λt ′. Q)

5

Operator weak until (also waiting for, unless): either the previously defined until operator must hold,
or the first formula P must always hold in I .

consts
iWeakUntil :: iT ⇒ (Time ⇒ bool) ⇒ (Time ⇒ bool) ⇒ bool

defs
iWeakUntil-def : iWeakUntil I P Q ≡

(2 t I. P t) ∨ (3 t I. Q t ∧ (2 t ′ (I ↓< t). P t ′))
syntax (xsymbols)
-iWeakUntil :: Time ⇒ Time ⇒ iT ⇒ (Time ⇒ bool) ⇒ (Time ⇒ bool) ⇒ bool

((-./ - (3W - -)./ -) [10, 0, 0, 0, 10] 10)
translations
P. t W t ′ I. Q
 iWeakUntil I (λt. P) (λt ′. Q)

Operator release: the second formula Q must always hold in I or it must hold until it is released by the
first formula P.

consts
iRelease :: iT ⇒ (Time ⇒ bool) ⇒ (Time ⇒ bool) ⇒ bool

defs
iRelease-def : iRelease I P Q ≡

(2 t I. Q t) ∨ (3 t I. P t ∧ (2 t ′ (I ↓≤ t). Q t ′))
syntax (xsymbols)
-iRelease :: Time ⇒ Time ⇒ iT ⇒ (Time ⇒ bool) ⇒ (Time ⇒ bool) ⇒ bool

((-./ - (3R - -)./ -) [10, 0, 0, 0, 10] 10)
translations
P. t R t ′ I. Q
 iRelease I (λt. P) (λt ′. Q)

Selected results for temporal operators

The interval conversions given below hold for arbitrary intervals/sets of natural numbers I ⊆ N.

Conversion between basic operators always and eventually.
lemma iAll-iEx-conv: (2 t I. P t) = (¬ (3 t I. ¬ P t))
lemma iEx-iAll-conv: (3 t I. P t) = (¬ (2 t I. ¬ P t))
Expressing eventually operator through until operator analogously to the LTL rule 2 ϕ = true U ϕ.

lemma iUntil-iEx-conv: (True. t ′ U t I. P t) = (3 t I. P t)

Conversions between until and weak until.
lemma iWeakUntil-iUntil-conv:

(P t ′. t ′ W t I. Q t) = ((P t ′. t ′ U t I. Q t) ∨ (2 t I. P t))
lemma iUntil-iWeakUntil-conv:

(P t ′. t ′ U t I. Q t) = ((P t ′. t ′ W t I. Q t) ∧ (3 t I. Q t))
lemma iWeakUntil-conj-iUntil-conv:

(P t1. t1 W t2 I. (P t2 ∧ Q t2)) = (¬ (¬ Q t1. t1 U t2 I. ¬ P t2))
Conversion between release and weak until.

lemma iRelease-iWeakUntil-conv: (P t ′. t ′ R t I. Q t) = (Q t ′. t ′ W t I. (Q t ∧ P t))
Weak and strong next operators are dual.

lemma not-iNextWeak : (¬ (©W t t0 I. P t)) = (©S t t0 I. ¬ P t)
lemma not-iNextStrong: (¬ (©S t t0 I. P t)) = (©W t t0 I. ¬ P t)
Weak and strong next operators are equivalent for infinite intervals (provided the evaluation time point

is in the interval, which is always true for the interval {0..} used in LTL and core SALT semantics definition,
cf. functions ltl-valid in Sec. 3.2 and core-salt-valid in Sec. 4.3.3).

lemma infin-imp-iNextStrong-eq-iNextWeak :
[[infinite I; t0 ∈ I]] =⇒ (©S t t0 I. P t) = (©W t t0 I. P t)

On the interval {0..} weak and strong next operators are equivalent to adding 1 to the time point of
evaluation.

lemma

6

iNextWeak-atLeast-0: (©W t t0 {0..}. P t) = P (Suc t0) and
iNextStrong-atLeast-0: (©S t t0 {0..}. P t) = P (Suc t0)

2.2 Regular expressions (deep embedding)
Though ILET is formalised in shallow embedding manner, the regular expressions are first deeply embed-
ded using standalone data types, which allow imposing syntactical restrictions (needed for the repetition
operator ∗[≤ n]), and dedicated evaluation functions, which process a regular expression recursively over
its structure. The ILET regular expressions can then be translated to the conventional shallow embedding
formulas. We use the deep embedding of regular expressions as an intermediate step that especially fa-
cilitates working with ILET regular expressions because the shallow embedded ILET formulas giving the
semantics of regular expressions do not resemble familiar regular expression notations.

2.2.1 Syntax

Data types for ILET regular expressions.
datatype ilet-reg-exp-bool =
BREAtom2 Time ⇒ bool (BREAtom - [115] 115)
| BRENot ilet-reg-exp-bool (¬bre - [40] 40)
| BREAnd ilet-reg-exp-bool ilet-reg-exp-bool ((- ∧bre -) [36, 35] 35)
| BREOr ilet-reg-exp-bool ilet-reg-exp-bool ((- ∨bre -) [31, 30] 30)
| BREImp ilet-reg-exp-bool ilet-reg-exp-bool ((- →bre -) [26, 25] 25)
| BREEquiv ilet-reg-exp-bool ilet-reg-exp-bool ((- ↔bre -) [26, 25] 25)

datatype ilet-reg-exp =
BREBool ilet-reg-exp-bool (BREBool - [115] 115)
| BREEmpty (ε)
| BRERegExpOr ilet-reg-exp ilet-reg-exp ((- ∨ -) [30, 31] 30)
| BRESeqSubsequent ilet-reg-exp ilet-reg-exp ((- ′′; ′′

bre -) [111, 110] 110)
| BRESeqOverlap ilet-reg-exp ilet-reg-exp ((- ′′: ′′

bre -) [111, 110] 110)
| BRERegOp-StarGe ilet-reg-exp-bool nat ((- ′′∗ ′′ [≥ -]bre) [110, 110] 111)

2.2.2 Semantics

Validity function for Boolean terms in ILET regular expressions.
consts
ilet-reg-exp-bool-valid :: Time ⇒ ilet-reg-exp-bool ⇒ bool
((|=brebool - -) [80, 80] 80)

primrec
|=brebool t (BREAtom a) = a t
|=brebool t (¬bre f) = (¬ |=brebool t f)
|=brebool t (f1 ∧bre f2) = (|=brebool t f1 ∧ |=brebool t f2)
|=brebool t (f1 ∨bre f2) = (|=brebool t f1 ∨ |=brebool t f2)
|=brebool t (f1 →bre f2) = (|=brebool t f1 −→ |=brebool t f2)
|=brebool t (f1 ↔bre f2) = (|=brebool t f1 = |=brebool t f2)

We now define the evaluation function for ILET regular expressions. Though evaluation of ILET
regular expressions is principally possible for all intervals (e.g. for modulo-intervals of the form {n | n ≥
n0 ∧ n mod m = r}), we consider for reasons of simplicity only continuous intervals of the form
[n1 . . . n2) = {n1, n1 + 1, . . . , n2 − 1}. Thus, passing lower and upper bounds of a time interval suffices
for matching a regular expression to this interval. t2− t1 indicates the length of the regular expression: the
expression begins at time point t1 and ends exactly before time point t2.

consts
ilet-reg-exp-match :: Time ⇒ Time ⇒ ilet-reg-exp ⇒ bool
((|=bre - - -) [80, 80, 80] 80)

2The abbreviation BRE stands for Boolean Regular Expression, the identifier BREAtom is required merely for technical syntac-
tical reasons in Isabelle/HOL.

7

primrec
|=bre t1 t2 (BREBool b) = (|=brebool t1 b ∧ t2 = Suc t1)
|=bre t1 t2 ε = (t2 = t1)
|=bre t1 t2 (a ∨ b) = (|=bre t1 t2 a ∨ |=bre t1 t2 b)
|=bre t1 t2 (b ′∗ ′ [≥ n]bre) = ((2 t {t1..<t2}. |=brebool t b) ∧ t1 + n ≤ t2)
|=bre t1 t2 (a ′; ′

bre b) = (3 t {t1..t2}. (|=bre t1 t a ∧ |=bre t t2 b))
|=bre t1 t2 (a ′: ′

bre b) = (3 t {t1..<t2}. (|=bre t1 (Suc t) a ∧ |=bre t t2 b))

For example, / a∗ ; b ∗ / matches "aaabbb.." with t1 = 0, t2 = 6 as follows:
ilet_reg_exp_match 0 6 /a*;b*/ returns true with t = 3, because
ilet_reg_exp_match 0 3 /a*/ matches "aaa", as s[0]=s[1]=s[2]=a and
ilet_reg_exp_match 3 6 /b*/ matches "bbb", as s[3]=s[4]=s[5]=b.
The regular expressions are, similar to derived operators like until, directly translatable to basic ILET

operators and hence represent convenience constructs. Here, for example, a simple protocol pattern for data
transfer, once as regular expression / start ; data ∗ [≥ 3];finish / and once using basic ILET operators.

lemma ilet-RegExp1-start-data-finish :
(|=bre t t

′

(BREBool (BREAtom start)) ′; ′
bre

((BREAtom data) ′∗ ′ [≥ 3]bre)
′; ′

bre
(BREBool (BREAtom finish))) =

(3 t1 {t..t ′}.
start t ∧ t1 = t + 1 ∧
(3 t2 {t1..t ′}.

(2 t3 {t1..<t2}. data t3) ∧
t1 + 3 ≤ t2 ∧ finish t2 ∧ t ′ = t2 + 1))

2.2.3 Sequence operators and expressions matching empty words

The sequence overlap operator : requires additional considerations for expressions able to match the empty
word ε with regard to well-formed ILET and SALT formulas, as explained later in this section and in
Section 4.

Results for sequence operators with the empty word ε as left operand.
lemma bre-reg-exp-overlap-epsilon:
¬ (|=bre t1 t2 (ε ′: ′

bre b))
lemma bre-reg-exp-subsequent-epsilon:

(|=bre t1 t2 (ε ′; ′
bre b)) = (|=bre t1 t2 b)

Empty word ε matches any interval of length 0.
definition ilet-reg-exp-matches-epsilon :: ilet-reg-exp ⇒ bool where
ilet-reg-exp-matches-epsilon r = |=bre 0 0 r

lemma ilet-reg-exp-matches-epsilon-any-time: |=bre t t r = ilet-reg-exp-matches-epsilon r

All expressions matching ε.
lemma ilet-reg-exp-matches-epsilon-conv:

((r = ε) ∨
(∃ b. r = (b ′∗ ′ [≥ 0]bre)) ∨
(∃ a b. (r = (a ∨ b) ∧

(ilet-reg-exp-matches-epsilon a ∨ ilet-reg-exp-matches-epsilon b))) ∨
(∃ a b. (r = (a ′; ′

bre b) ∧
ilet-reg-exp-matches-epsilon a ∧ ilet-reg-exp-matches-epsilon b))) =

(ilet-reg-exp-matches-epsilon r)

Function determining regular expressions where there is at least one sequence whose last element
matches ε.

fun
ilet-reg-exp-seq-last-matches-epsilon :: ilet-reg-exp ⇒ bool

where

8

ilet-reg-exp-seq-last-matches-epsilon (a ′; ′
bre b) =

ilet-reg-exp-seq-last-matches-epsilon b
| ilet-reg-exp-seq-last-matches-epsilon (a ′: ′

bre b) =
ilet-reg-exp-seq-last-matches-epsilon b

| ilet-reg-exp-seq-last-matches-epsilon (a ∨ b) =
(ilet-reg-exp-seq-last-matches-epsilon a ∨ ilet-reg-exp-seq-last-matches-epsilon b)

| ilet-reg-exp-seq-last-matches-epsilon r = ilet-reg-exp-matches-epsilon r
lemma
ilet-reg-exp-seq-last-matches-epsilon--bool:
¬ ilet-reg-exp-seq-last-matches-epsilon (BREBool b) and

ilet-reg-exp-seq-last-matches-epsilon--epsilon:
ilet-reg-exp-seq-last-matches-epsilon (ε) and

ilet-reg-exp-seq-last-matches-epsilon--star:
(ilet-reg-exp-seq-last-matches-epsilon (b ′∗ ′ [≥ n]bre)) = (n = 0)

Analogue function determining regular expressions where there is at least one sequence whose first
element matches ε.

fun
ilet-reg-exp-seq-first-matches-epsilon :: ilet-reg-exp ⇒ bool

where
ilet-reg-exp-seq-first-matches-epsilon (a ′; ′

bre b) =
ilet-reg-exp-seq-first-matches-epsilon a

| ilet-reg-exp-seq-first-matches-epsilon (a ′: ′
bre b) =

ilet-reg-exp-seq-first-matches-epsilon a
| ilet-reg-exp-seq-first-matches-epsilon (a ∨ b) =

(ilet-reg-exp-seq-first-matches-epsilon a ∨ ilet-reg-exp-seq-first-matches-epsilon b)
| ilet-reg-exp-seq-first-matches-epsilon r = ilet-reg-exp-matches-epsilon r
lemma
ilet-reg-exp-seq-first-matches-epsilon--bool:
¬ ilet-reg-exp-seq-first-matches-epsilon (BREBool b) and

ilet-reg-exp-seq-first-matches-epsilon--epsilon:
ilet-reg-exp-seq-first-matches-epsilon (ε) and

ilet-reg-exp-seq-first-matches-epsilon--star:
(ilet-reg-exp-seq-first-matches-epsilon (b ′∗ ′ [≥ n]bre)) = (n = 0)

Function determining regular expressions, in which there is at least one sequence overlap operator :,
for which at least one operand matches ε.

fun
ilet-reg-exp-overlap-with-epsilon :: ilet-reg-exp ⇒ bool

where
ilet-reg-exp-overlap-with-epsilon (a ′: ′

bre b) =
(ilet-reg-exp-seq-last-matches-epsilon a ∨ ilet-reg-exp-seq-first-matches-epsilon b ∨
ilet-reg-exp-overlap-with-epsilon a ∨ ilet-reg-exp-overlap-with-epsilon b)

| ilet-reg-exp-overlap-with-epsilon (a ′; ′
bre b) =

(ilet-reg-exp-overlap-with-epsilon a ∨ ilet-reg-exp-overlap-with-epsilon b)
| ilet-reg-exp-overlap-with-epsilon (a ∨ b) =

(ilet-reg-exp-overlap-with-epsilon a ∨ ilet-reg-exp-overlap-with-epsilon b)
| ilet-reg-exp-overlap-with-epsilon r = False

Some examples of ILET regular expressions with and without overlaps with empty words:
lemma
let
a1 = BREBool a1; a2 = BREBool a2; a3 = BREBool a3; a4 = BREBool a4;
a5 = BREBool a5; a6 = BREBool a6; a7 = BREBool a7
in
(ilet-reg-exp-overlap-with-epsilon ((a1 ′; ′

bre a2)
′; ′

bre (a3 ′: ′
bre (a4 ′; ′

bre a5)
′; ′

bre
(a6 ′: ′

bre a7))) = False) ∧
(ilet-reg-exp-overlap-with-epsilon ((a1 ′; ′

bre a2) ∨ (a3 ′: ′
bre (a4 ′; ′

bre a5)
′; ′

bre
(a6 ′: ′

bre a7))) = False) ∧
(ilet-reg-exp-overlap-with-epsilon ((a1 ′; ′

bre a2) ∨ (ε ′: ′
bre (a4 ′; ′

bre a5)
′; ′

bre

9

(a6 ′: ′
bre a7))) = True) ∧

(ilet-reg-exp-overlap-with-epsilon ((a1 ′: ′
bre ε) ∨ (a3 ′: ′

bre (a4 ′; ′
bre a5)

′; ′
bre

(a6 ′: ′
bre a7))) = True) ∧

(ilet-reg-exp-overlap-with-epsilon ((a1 ′; ′
bre a2) ∨ (a3 ′: ′

bre ((b ′∗ ′ [≥ 1]bre)
′; ′

bre a5)
′; ′

bre (a6 ′: ′
bre a7))) = False) ∧

(ilet-reg-exp-overlap-with-epsilon ((a1 ′; ′
bre a2) ∨ (a3 ′: ′

bre ((b ′∗ ′ [≥ 0]bre)
′; ′

bre a5)
′; ′

bre (a6 ′: ′
bre a7))) = True)

Definition of well-formedness condition w.r.t. proper overlaps: an ILET regular expression is consid-
ered well-formed w.r.t. to overlap operator if for every overlap operator both operands cannot match the
empty word/interval.

definition ilet-reg-exp-proper-overlap :: ilet-reg-exp ⇒ bool where
ilet-reg-exp-proper-overlap r ≡ ¬ (ilet-reg-exp-overlap-with-epsilon r)

The sequence and overlap operators are associative.
lemma ILETRegExp-subsequent-assoc:

(|=bre t1 t2 ((r1 ′; ′
bre r2)

′; ′
bre r3)) =

(|=bre t1 t2 (r1 ′; ′
bre r2

′; ′
bre r3))

lemma ILETRegExp-overlap-assoc:
(|=bre t1 t2 ((r1 ′: ′

bre r2)
′: ′

bre r3)) =
(|=bre t1 t2 (r1 ′: ′

bre r2
′: ′

bre r3))

The sequence and overlap operators are associative with each other only if the middle operand cannot
match the empty word.

lemma ILETRegExp-subsequent-overlap-assoc:
¬ ilet-reg-exp-matches-epsilon r2 =⇒
(|=bre t1 t2 ((r1 ′; ′

bre r2)
′: ′

bre r3)) =
(|=bre t1 t2 (r1 ′; ′

bre r2
′: ′

bre r3))
lemma ILETRegExp-overlap-subsequent-assoc:
¬ ilet-reg-exp-matches-epsilon r2 =⇒
(|=bre t1 t2 ((r1 ′: ′

bre r2)
′; ′

bre r3)) =
(|=bre t1 t2 (r1 ′: ′

bre r2
′; ′

bre r3))

It follows as corollaries that sequence and overlap operator are associative with each other on regular
expressions with proper overlap operators.

corollary ILETRegExp-subsequent-overlap-assoc-proper-overlap:
ilet-reg-exp-proper-overlap (r1 ′; ′

bre r2
′: ′

bre r3) =⇒
(|=bre t1 t2 ((r1 ′; ′

bre r2)
′: ′

bre r3)) =
(|=bre t1 t2 (r1 ′; ′

bre r2
′: ′

bre r3))
corollary ILETRegExp-overlap-subsequent-assoc-proper-overlap:
ilet-reg-exp-proper-overlap (r1 ′: ′

bre r2
′; ′

bre r3) =⇒
(|=bre t1 t2 ((r1 ′: ′

bre r2)
′; ′

bre r3)) =
(|=bre t1 t2 (r1 ′: ′

bre r2
′; ′

bre r3))

If a regular expression matching the empty word neighbours an overlap operator (improper overlap)
then different parenthesis of the sequence can result in different formula meaning:

lemma
ILETRegExp-subsequent-overlap-epsilon-left:

(|=bre t1 t2 ((r1 ′; ′
bre ε) ′: ′

bre r3)) = (|=bre t1 t2 (r1 ′: ′
bre r3)) and

ILETRegExp-subsequent-overlap-epsilon-right:
(|=bre t1 t2 (r1 ′; ′

bre ε ′: ′
bre r3)) = False

Consequently sequence and overlap operator can in general be non-associative with each other:
lemma NOT-ILETRegExp-subsequent-overlap-assoc:
¬ (∀ r1 r2 r3 t1 t2.
(|=bre t1 t2 ((r1 ′; ′

bre r2)
′: ′

bre r3)) =
(|=bre t1 t2 (r1 ′; ′

bre r2
′: ′

bre r3)))
lemma NOT-ILETRegExp-overlap-subsequent-assoc:
¬ (∀ r1 r2 r3 t1 t2.
(|=bre t1 t2 ((r1 ′: ′

bre r2)
′; ′

bre r3)) =
(|=bre t1 t2 (r1 ′: ′

bre r2
′; ′

bre r3)))

10

3 LTL

3.1 Syntax
Syntax of deep embedding of LTL.

Data type for LTL formulas:
datatype ′a ltl-formula =
LTLAtom ′a ⇒ bool (LTLAtom - [60] 60)
| LTLNot ′a ltl-formula (¬ltl - [40] 40)
| LTLAnd ′a ltl-formula ′a ltl-formula ((- ∧ltl -) [35, 36] 35)
| LTLOr ′a ltl-formula ′a ltl-formula ((- ∨ltl -) [30, 31] 30)
| LTLImp ′a ltl-formula ′a ltl-formula ((- →ltl -) [26, 25] 25)
| LTLEquiv ′a ltl-formula ′a ltl-formula ((- ↔ltl -) [26, 25] 25)
| LTLNext ′a ltl-formula ((©ltl -) [50] 50)
| LTLAlways ′a ltl-formula ((2ltl -) [50] 50)
| LTLEventually ′a ltl-formula ((3ltl -) [50] 50)
| LTLUntil ′a ltl-formula ′a ltl-formula ((- Ultl -) [50, 51] 50)
| LTLUntilWeak ′a ltl-formula ′a ltl-formula ((- Wltl -) [50, 51] 50)
| LTLRelease ′a ltl-formula ′a ltl-formula ((- Rltl -) [50, 51] 50)

3.2 Semantics
Validity function for LTL formulas – definition through translation to (shallow embedding of) ILET:

consts
ltl-valid :: (Time ⇒ ′a) ⇒ Time ⇒ ′a ltl-formula ⇒ bool

((- |=ltl - -) [80,80] 80)
primrec
s |=ltl t (LTLAtom a) = a (s t)
s |=ltl t (¬ltl f) = (¬(s |=ltl t f))
s |=ltl t (f1 ∧ltl f2) = ((s |=ltl t f1) ∧ (s |=ltl t f2))
s |=ltl t (f1 ∨ltl f2) = ((s |=ltl t f1) ∨ (s |=ltl t f2))
s |=ltl t (f1 →ltl f2) = ((s |=ltl t f1) −→ (s |=ltl t f2))
s |=ltl t (f1 ↔ltl f2) = ((s |=ltl t f1) = (s |=ltl t f2))
s |=ltl t (©ltl f) = (©S t1 t {0..}. s |=ltl t1 f)
s |=ltl t (2ltl f) = (2 t1 {t..}. (s |=ltl t1 f))
s |=ltl t (3ltl f) = (3 t1 {t..}. (s |=ltl t1 f))
s |=ltl t (f1 Ultl f2) = ((s |=ltl t1 f1. t1 U t2 {t..}. s |=ltl t2 f2))
s |=ltl t (f1 Wltl f2) = ((s |=ltl t1 f1. t1 W t2 {t..}. s |=ltl t2 f2))
s |=ltl t (f1 Rltl f2) = ((s |=ltl t1 f1. t1 R t2 {t..}. s |=ltl t2 f2))

Convenience shortcuts for Boolean constants in LTL formulas:
consts
LTLTrue :: ′a ltl-formula
LTLFalse :: ′a ltl-formula

defs
LTLTrue-def [simp] : LTLTrue ≡ LTLAtom (λx. True)
LTLFalse-def [simp] : LTLFalse ≡ LTLAtom (λx. False)

lemma
LTLTrue-conv: (s |=ltl t LTLTrue) = True and
LTLFalse-conv: (s |=ltl t LTLFalse) = False

LTL is often defined on basis of Boolean operators not, and and temporal operators until, next. Further
Boolean operators or, implies, equiv and temporal operators eventually, always, weak until, release can
be then defined as abbreviations. The commonly used abbreviations and the explicit semantics definition
through translation to ILET are equivalent:

lemma
ltl-disj-equiv: (s |=ltl t (f1 ∨ltl f2)) = (s |=ltl t ¬ltl ((¬ltl f1) ∧ltl ¬ltl f2)) and

11

ltl-imp-equiv: (s |=ltl t (f1 →ltl f2)) = (s |=ltl t ((¬ltl f1) ∨ltl f2)) and
ltl-equiv-equiv: (s |=ltl t (f1 ↔ltl f2)) = (s |=ltl t ((f1 →ltl f2) ∧ltl (f2 →ltl f1)))

lemma
ltl-eventually-equiv: (s |=ltl t (3ltl f)) = (s |=ltl t (LTLTrue Ultl f)) and
ltl-always-equiv: (s |=ltl t (2ltl f)) = (s |=ltl t (¬ltl 3ltl (¬ltl f)))

lemma ltl-untilweak-equiv: (s |=ltl t (f1 Wltl f2)) = (s |=ltl t ((f1 Ultl f2) ∨ltl 2ltl f1))

lemma ltl-release-equiv: (s |=ltl t (f1 Rltl f2)) = (s |=ltl t (f2 Wltl (f2 ∧ltl f1)))

4 Core SALT

We consider following core SALT language constructs:
• Boolean operators not, and, or, implies, equals.

• Common temporal operators next, always, eventually.

• Extended until operator capable of encoding LTL operators until, until weak, release.

• from operator.

• Restricted regular expressions
– Boolean operators on propositions.
– Disjunction on regular expressions.
– Repetition operator ∗[≥n] with n ∈ N for propositional expressions.
– Operators ; and : expressing successive and overlapping sequences, respectively.

Few core SALT constructs are not treated here and are considered part of future work:
• Scope operators using the SALT-- stop operators (e.g., upto).

• Exception operators accepton, rejecton.
As the SALT-- translation step [Str06, Section 6.2] is only needed for translation of the omitted operators,
we do not have to consider it and can translate core SALT directly to LTL.

4.1 Syntax
Syntax of deep embedding of core SALT.

Data types for parameters of some core SALT operators.
datatype SALT-req-opt-weak =
req (req)
| opt (opt)
| weak (weak)
datatype SALT-req-opt =
req2 (req)
| opt2 (opt)
datatype SALT-excl-incl =
excl (excl)
| incl (incl)

Data types for core SALT regular expressions:
datatype ′a core-salt-reg-exp-bool =
CoreSREAtom ′a ⇒ bool (CoreSREAtom - [115] 115)
| CoreSRENot ′a core-salt-reg-exp-bool (not - [40] 40)
| CoreSREAnd ′a core-salt-reg-exp-bool ′a core-salt-reg-exp-bool

((- and -) [36, 35] 35)
| CoreSREOr ′a core-salt-reg-exp-bool ′a core-salt-reg-exp-bool

((- or -) [31, 30] 30)
| CoreSREImp ′a core-salt-reg-exp-bool ′a core-salt-reg-exp-bool

((- implies -) [26, 25] 25)

12

| CoreSREEquiv ′a core-salt-reg-exp-bool ′a core-salt-reg-exp-bool
((- equals -) [26, 25] 25)

datatype
′a core-salt-reg-exp =
CoreSREBool ′a core-salt-reg-exp-bool (CoreSREBool - [115] 115)
| CoreSREEmpty (ε)
| CoreSRERegExpOr ′a core-salt-reg-exp ′a core-salt-reg-exp

((- or -) [30, 31] 30)
| CoreSRESeqSubsequent ′a core-salt-reg-exp ′a core-salt-reg-exp

((- ′′; ′′ -) [111, 110] 110)
| CoreSRESeqOverlap ′a core-salt-reg-exp ′a core-salt-reg-exp

((- ′′: ′′ -) [111, 110] 110)
| CoreSRERegOp-StarGe ′a core-salt-reg-exp-bool nat

((- ′′∗ ′′ [≥ -]coresre) [110, 110] 111)

Data type for core SALT formulas:
datatype

′a core-salt-formula =
CoreSALTAtom ′a ⇒ bool (CoreSALTAtom - [115] 115)
| CoreSALTNot ′a core-salt-formula (not- [40] 40)
| CoreSALTAnd ′a core-salt-formula ′a core-salt-formula

((- and -) [36, 35] 35)
| CoreSALTOr ′a core-salt-formula ′a core-salt-formula

((- or -) [31, 30] 30)
| CoreSALTImp ′a core-salt-formula ′a core-salt-formula

((- implies -) [26, 25] 25)
| CoreSALTEquiv ′a core-salt-formula ′a core-salt-formula

((- equals -) [26, 25] 25)
| CoreSALTNext ′a core-salt-formula ((next -) [50] 50)
| CoreSALTAlways ′a core-salt-formula ((always -) [50] 50)
| CoreSALTEventually ′a core-salt-formula ((eventually -) [50] 50)
| CoreSALTUntilExt ′a core-salt-formula SALT-excl-incl SALT-req-opt-weak

′a core-salt-formula ((- until - - -) [50, 50, 50, 51] 50)
| CoreSALTFrom ′a core-salt-formula SALT-excl-incl SALT-req-opt

′a ⇒ bool ((- from - - -) [50, 50, 50, 51] 50)
| CoreSALTRegExp ′a core-salt-reg-exp

((′′| ′′ - ′′| ′′coresre) [50] 50)
| CoreSALTRegExpSeqSaltFinish ′a core-salt-reg-exp ′a core-salt-formula

((′′| ′′ - ′′; ′′
end -

′′| ′′coresre) [51,50] 50)

4.2 Translation to LTL
Translation of core SALT to LTL according to [Str06, Section 6].

4.2.1 Translation of regular expressions to LTL

Translating Boolean regular expressions to LTL.
consts
core-salt-reg-exp-bool-to-ltl :: ′a core-salt-reg-exp-bool ⇒ ′a ltl-formula

primrec
core-salt-reg-exp-bool-to-ltl (CoreSREAtom a) = LTLAtom a
core-salt-reg-exp-bool-to-ltl (not f) =
(¬ltl core-salt-reg-exp-bool-to-ltl f)
core-salt-reg-exp-bool-to-ltl (f1 and f2) =
(core-salt-reg-exp-bool-to-ltl f1 ∧ltl core-salt-reg-exp-bool-to-ltl f2)
core-salt-reg-exp-bool-to-ltl (f1 or f2) =
(core-salt-reg-exp-bool-to-ltl f1 ∨ltl core-salt-reg-exp-bool-to-ltl f2)
core-salt-reg-exp-bool-to-ltl (f1 implies f2) =

13

(core-salt-reg-exp-bool-to-ltl f1 →ltl core-salt-reg-exp-bool-to-ltl f2)
core-salt-reg-exp-bool-to-ltl (f1 equals f2) =
(core-salt-reg-exp-bool-to-ltl f1 ↔ltl core-salt-reg-exp-bool-to-ltl f2)

Function for constructing an LTL formula consisting of n subsequent next operators applied to a pa-
rameter LTL formula f. The resulting formula states that f holds n steps after current time.

consts
nextn-ltl :: nat ⇒ ′a ltl-formula ⇒ ′a ltl-formula
((©ltl

[-] -) [50,50] 50)
primrec

(©ltl
[0] f) = f

(©ltl
[Suc n] f) = (©ltl (©ltl

[n] f))

Function expressing a bounded always operator in LTL. It constructs an LTL formula stating that f
holds for n steps (in an interval [t . . . t + n) when evaluated at time t).

consts
alwaysn-ltl :: nat ⇒ ′a ltl-formula ⇒ ′a ltl-formula

((2ltl
[-] -) [50,50] 50)

primrec
(2ltl

[0] f) = LTLTrue

(2ltl
[Suc n] f) = (f ∧ltl ©ltl (2ltl

[n] f))

Properties of nextn-ltl and alwaysn-ltl.

lemma nextn-ltl-conv:
∧
t. (s |=ltl t (©ltl

[n] f)) = (s |=ltl (t + n) f)

lemma alwaysn-ltl-conv:
∧
t. (s |=ltl t (2ltl

[n] f)) = (2 t ′ {t..<t + n}. (s |=ltl t
′ f))

Translating sequence operators to LTL (mutually recursive function definitions):
fun
sre-subsequent-to-ltl :: ′a core-salt-reg-exp ⇒ ′a ltl-formula ⇒ ′a ltl-formula and
sre-overlap-to-ltl :: ′a core-salt-reg-exp ⇒ ′a ltl-formula ⇒ ′a ltl-formula

where
(sre-subsequent-to-ltl (CoreSREBool b) f) =

((core-salt-reg-exp-bool-to-ltl b) ∧ltl (©ltl f))
| (sre-subsequent-to-ltl ε f) = f
| (sre-subsequent-to-ltl (a or b) f) =

((sre-subsequent-to-ltl a f) ∨ltl (sre-subsequent-to-ltl b f))
| sre-subsequent-to-ltl-simp-subseq:

(sre-subsequent-to-ltl (a ′; ′ b) f) =
(sre-subsequent-to-ltl a (sre-subsequent-to-ltl b f))

| sre-overlap-subsequent-to-ltl-simp-subseq:
(sre-subsequent-to-ltl (a ′: ′ b) f) =

(sre-overlap-to-ltl a (sre-subsequent-to-ltl b f))
| (sre-subsequent-to-ltl (b ′∗ ′ [≥ n]coresre) f) =

((core-salt-reg-exp-bool-to-ltl b) Ultl

((2ltl
[n] (core-salt-reg-exp-bool-to-ltl b)) ∧ltl (©ltl

[n] f)))

| (sre-overlap-to-ltl (CoreSREBool b) f) = ((core-salt-reg-exp-bool-to-ltl b) ∧ltl f)
| (sre-overlap-to-ltl ε f) = f
| (sre-overlap-to-ltl (a or b) f) =

((sre-overlap-to-ltl a f) ∨ltl (sre-overlap-to-ltl b f))
| sre-subsequent-overlap-to-ltl-simp-subseq:

(sre-overlap-to-ltl (a ′; ′ b) f) =
(sre-subsequent-to-ltl a (sre-overlap-to-ltl b f))

| sre-overlap-to-ltl-simp-subseq:
(sre-overlap-to-ltl (a ′: ′ b) f) =

(sre-overlap-to-ltl a (sre-overlap-to-ltl b f))
| (sre-overlap-to-ltl (b ′∗ ′ [≥ n]coresre) f) =

(if n = 0 then

14

(f ∨ltl

((core-salt-reg-exp-bool-to-ltl b) Ultl ((core-salt-reg-exp-bool-to-ltl b) ∧ltl f)))
else

((core-salt-reg-exp-bool-to-ltl b) Ultl

((2ltl
[n] (core-salt-reg-exp-bool-to-ltl b)) ∧ltl (©ltl

[n − 1] f))))

Translating all core SALT regular operators:
fun
sre-core-to-ltl :: ′a core-salt-reg-exp ⇒ ′a ltl-formula

where
(sre-core-to-ltl (CoreSREBool b)) = (core-salt-reg-exp-bool-to-ltl b)

| (sre-core-to-ltl ε) = (LTLTrue)
| (sre-core-to-ltl (a or b)) = ((sre-core-to-ltl a) ∨ltl (sre-core-to-ltl b))
| sre-core-to-ltl-simp-subseq:

(sre-core-to-ltl (a ′; ′ b)) = (sre-subsequent-to-ltl a (sre-core-to-ltl b))
| sre-core-to-ltl-simp-overlap:

(sre-core-to-ltl (a ′: ′ b)) = (sre-overlap-to-ltl a (sre-core-to-ltl b))

| (sre-core-to-ltl (b ′∗ ′ [≥ n]coresre)) = (2ltl
[n] (core-salt-reg-exp-bool-to-ltl b))

Core SALT sequence operators are associative, not only w.r.t. to the semantical equivalence of the
LTL formulas resulting from the translation but even syntactically, i.e., the resulting LTL formulas are
syntactically equal.

lemma
sre-core-to-ltl-subsequent-assoc:
sre-core-to-ltl ((a ′; ′ b) ′; ′ c) = sre-core-to-ltl (a ′; ′ b ′; ′ c) and

sre-core-to-ltl-overlap-assoc:
sre-core-to-ltl ((a ′: ′ b) ′: ′ c) = sre-core-to-ltl (a ′: ′ b ′: ′ c) and

sre-core-to-ltl-subsequent-overlap-assoc:
sre-core-to-ltl ((a ′; ′ b) ′: ′ c) = sre-core-to-ltl (a ′; ′ b ′: ′ c) and

sre-core-to-ltl-overlap-subsequent-assoc:
sre-core-to-ltl ((a ′: ′ b) ′; ′ c) = sre-core-to-ltl (a ′: ′ b ′; ′ c)

Contrary to ILET, core SALT sequence operators are associative without well-formedness precondi-
tions. The reason is that due to translation definition all sequences are considered right-associative inde-
pendently of the actual parenthesis. Consider the translation of the sequences (a; ε) : c and a; (ε : c), which
are both translated according to the right-associative interpretation a; ε : c = a; c where the empty word ε
is ”consumed” by c (which corresponds to the LTL formula a ∧ © c if a and c are Boolean expressions).

lemma
sre-core-subsequent-overlap-epsilon-left:
sre-core-to-ltl ((a ′; ′ ε) ′: ′ c) = sre-core-to-ltl (a ′; ′ c) and

sre-core-subsequent-overlap-epsilon-right:
sre-core-to-ltl (a ′; ′ ε ′: ′ c) = sre-core-to-ltl (a ′; ′ c)

Obviously we cannot provide a sound semantics for all formulas if the translation syntactically forces
the sequence operators to be right associative and at the same time the semantics of the expressions (a; ε) :
c = a : c and a; (ε : c) = a; c are different (the interpretation ε : c = c corresponds to the description in
[Str06, p. 42]; in ILET the semantics of ε : c is False, cf. lemma ILETRegExp-subsequent-overlap-epsilon-
right in Section 2.2.3).

Hence, for proving the correctness of the translation of core SALT to LTL we will have to restrict the
set of well-formed core SALT regular expressions by the condition that an expression matching the empty
word ε may not neighbour the overlap operator : (cf. Section 4.4).

4.2.2 Translation of until and from operators to LTL

Translating the extended until operator to LTL.
consts
ltl-untilext :: SALT-excl-incl ⇒ SALT-req-opt-weak ⇒ ′a ltl-formula ⇒

′a ltl-formula ⇒ ′a ltl-formula

15

ltl-untilext-exclincl :: SALT-excl-incl ⇒ ′a ltl-formula ⇒
′a ltl-formula ⇒ ′a ltl-formula

primrec
ltl-untilext-exclincl excl f1 f2 = f2
ltl-untilext-exclincl incl f1 f2 = (f1 ∧ltl f2)

primrec
ltl-untilext exclincl req f1 f2 =

(f1 Ultl (ltl-untilext-exclincl exclincl f1 f2))
ltl-untilext exclincl opt f1 f2 =

((3ltl f2) →ltl (f1 Ultl (ltl-untilext-exclincl exclincl f1 f2)))
ltl-untilext exclincl weak f1 f2 =

(f1 Wltl (ltl-untilext-exclincl exclincl f1 f2))

The translation function for the extended until operator returns exactly the LTL formulas given in the
SALT language reference [Str06, p. 40].

lemma
ltl-untilext-excl-req: ltl-untilext excl req f1 f2 = (f1 Ultl f2) and
ltl-untilext-excl-opt: ltl-untilext excl opt f1 f2 = (3ltl f2 →ltl (f1 Ultl f2)) and
ltl-untilext-excl-weak : ltl-untilext excl weak f1 f2 = (f1 Wltl f2) and
ltl-untilext-incl-req: ltl-untilext incl req f1 f2 = (f1 Ultl (f1 ∧ltl f2)) and
ltl-untilext-incl-opt: ltl-untilext incl opt f1 f2 =

(3ltl f2 →ltl (f1 Ultl (f1 ∧ltl f2))) and
ltl-untilext-incl-weak : ltl-untilext incl weak f1 f2 = (f1 Wltl (f1 ∧ltl f2))

Translating the from operator to LTL.
consts
ltl-from-exclincl :: SALT-excl-incl ⇒ ′a ltl-formula ⇒ ′a ltl-formula

primrec
ltl-from-exclincl incl f = f
ltl-from-exclincl excl f = (©ltl f)

constdefs
ltl-from :: SALT-excl-incl ⇒ SALT-req-opt ⇒ ′a ltl-formula ⇒

(′a ⇒ bool) ⇒ ′a ltl-formula
ltl-from exclincl reqopt f a ≡
(case reqopt of req ⇒ LTLUntil | opt ⇒ LTLUntilWeak)

(¬ltl LTLAtom a)
(LTLAtom a ∧ltl (ltl-from-exclincl exclincl f))

The translation function for the from operator returns exactly the LTL formulas given in the SALT
language reference [Str06, p. 42].

lemma
ltl-from-excl-req: ltl-from excl req f a =

((¬ltl LTLAtom a) Ultl (LTLAtom a ∧ltl ©ltl f)) and
ltl-from-excl-opt: ltl-from excl opt f a =

((¬ltl LTLAtom a) Wltl (LTLAtom a ∧ltl ©ltl f)) and
ltl-from-incl-req: ltl-from incl req f a =

((¬ltl LTLAtom a) Ultl (LTLAtom a ∧ltl f)) and
ltl-from-incl-opt: ltl-from incl opt f a =

((¬ltl LTLAtom a) Wltl (LTLAtom a ∧ltl f))

4.2.3 Translation of core SALT formulas to LTL

Main function for translation of core SALT to LTL.
consts
core-salt-to-ltl :: ′a core-salt-formula ⇒ ′a ltl-formula

primrec
core-salt-to-ltl (CoreSALTAtom a) = LTLAtom a
core-salt-to-ltl (not f) = (¬ltl core-salt-to-ltl f)
core-salt-to-ltl (f1 and f2) = (core-salt-to-ltl f1 ∧ltl core-salt-to-ltl f2)

16

core-salt-to-ltl (f1 or f2) = (core-salt-to-ltl f1 ∨ltl core-salt-to-ltl f2)
core-salt-to-ltl (f1 implies f2) = (core-salt-to-ltl f1 →ltl core-salt-to-ltl f2)
core-salt-to-ltl (f1 equals f2) = (core-salt-to-ltl f1 ↔ltl core-salt-to-ltl f2)
core-salt-to-ltl (next f) = (©ltl core-salt-to-ltl f)
core-salt-to-ltl (always f) = (2ltl core-salt-to-ltl f)
core-salt-to-ltl (eventually f) = (3ltl core-salt-to-ltl f)
core-salt-to-ltl (f1 until exclincl reqoptweak f2) =

(ltl-untilext exclincl reqoptweak (core-salt-to-ltl f1) (core-salt-to-ltl f2))
core-salt-to-ltl (f from exclincl reqopt a) =

(ltl-from exclincl reqopt (core-salt-to-ltl f) a)
core-salt-to-ltl (′| ′ r ′| ′coresre) = (sre-core-to-ltl r)
core-salt-to-ltl (′| ′ r ′; ′

end f
′| ′coresre) =

(sre-subsequent-to-ltl r (core-salt-to-ltl f))
core-salt-to-ltl (′| ′ r ′: ′

end f
′| ′coresre) =

(sre-overlap-to-ltl r (core-salt-to-ltl f))

Below we define auxiliary functions for showing the equivalence of the translation definition used here
and the translation definition in the SALT language reference [Str06, p. 42] for the regular operators star ∗,
sequence ;, and overlap ’:’3.

Function for constructing a sequence of n + 1 repetitions of a regular expression.
consts
subsequentn-coresre :: nat ⇒ ′a core-salt-reg-exp ⇒ ′a core-salt-reg-exp

primrec
subsequentn-coresre 0 r = r
subsequentn-coresre (Suc n) r = (r ′; ′ subsequentn-coresre n r)

Function for constructing a SALT formula, which is a regular expression containing n repetitions of a
Boolean expression (empty word for n = 0).

constdefs
subsequentn-core-salt :: nat ⇒ ′a core-salt-reg-exp-bool ⇒ ′a core-salt-formula
subsequentn-core-salt n b ≡ ′| ′ (case n of
0 ⇒ ε | Suc n ′ ⇒ subsequentn-coresre n ′ (CoreSREBool b)) ′| ′coresre

Function for constructing a SALT formula, which is a regular expression containing n repetitions of a
Boolean expression, followed by a further core SALT formula.

constdefs
subsequentn-tail-core-salt :: nat ⇒ ′a core-salt-reg-exp-bool ⇒

′a core-salt-formula ⇒ ′a core-salt-formula
subsequentn-tail-core-salt n b f ≡ (case n of
0 ⇒ f | Suc n ′ ⇒ ′| ′ subsequentn-coresre n ′ (CoreSREBool b) ′; ′

end f
′| ′coresre)

Function for constructing a SALT formula, which is a regular expression containing n repetitions of a
Boolean expression, followed by an overlapping core SALT formula.

constdefs
subsequentn-tail-overlap-core-salt :: nat ⇒ ′a core-salt-reg-exp-bool ⇒

′a core-salt-formula ⇒ ′a core-salt-formula
subsequentn-tail-overlap-core-salt n b f ≡ (case n of
0 ⇒ f | Suc n ′ ⇒ ′| ′ subsequentn-coresre n ′ (CoreSREBool b) ′: ′

end f
′| ′coresre)

Some examples of generating regular expressions representing n subsequent repetitions of a given
regular expression r or a Boolean regular expression b, possibly followed by a core SALT formula f.

lemma subsequentn-coresre-3:
subsequentn-coresre 3 r = r ′; ′ r ′; ′ r ′; ′ r

lemma subsequentn-core-salt-0:
subsequentn-core-salt 0 b = (′| ′ ε ′| ′coresre)

lemma subsequentn-core-salt-3: let r = CoreSREBool b in
subsequentn-core-salt 3 b = (′| ′ r ′; ′ r ′; ′ r ′| ′coresre)

lemma subsequentn-tail-core-salt-0:
3The operator : is written in apostrophes solely to distinguish it from punctuation marks.

17

subsequentn-tail-core-salt 0 b f = f
lemma subsequentn-tail-core-salt-3: let r = CoreSREBool b in
subsequentn-tail-core-salt 3 b f = (′| ′ r ′; ′ r ′; ′ r ′; ′

end f
′| ′coresre)

For translating the star operator ∗[≥ n] to LTL we use the function alwaysn-ltl (syntax 2ltl
[n]) (cf.

sre-core-to-ltl). Here the equivalence of this definition and the definition in the SALT language reference
[Str06, p. 42] is shown.

lemma core-salt-StarGe-equiv-alwaysn-ltl:
∧
t.

s |=ltl t (core-salt-to-ltl (′| ′ b ′∗ ′ [≥ n]coresre
′| ′coresre)) =

s |=ltl t (core-salt-to-ltl (subsequentn-core-salt n b))

For translating the star operator ∗[≥ n] with the sequence operator ; to LTL we use the functions
alwaysn-ltl and nextn-ltl (syntax©ltl

[-]) (cf. sre-subsequent-to-ltl). Here the equivalence of this definition
and the definition in the SALT language reference [Str06, p. 42] is shown.

lemma core-salt-StarGe-Subsequent-equiv-alwaysn-ltl:
∧
t.

s |=ltl t (core-salt-to-ltl (′| ′ b ′∗ ′ [≥ n]coresre
′; ′

end f
′| ′coresre)) =

s |=ltl t (core-salt-reg-exp-bool-to-ltl b) Ultl
(core-salt-to-ltl (subsequentn-tail-core-salt n b f))

Finally, the analogue equivalence of the translation definition of the star operator ∗[≥ n] with the
overlap operator : to LTL and the definition in the SALT language reference [Str06, p. 42] is shown.

lemma core-salt-StarGe-Overlap-equiv-alwaysn-ltl:
∧
t.

0 < n =⇒
s |=ltl t (core-salt-to-ltl (′| ′ b ′∗ ′ [≥ n]coresre

′: ′
end f

′| ′coresre)) =
s |=ltl t (core-salt-reg-exp-bool-to-ltl b) Ultl

(core-salt-to-ltl (subsequentn-tail-overlap-core-salt n b f))

4.3 Semantics
Definition of core SALT semantics by translation of core SALT formulas to ILET. A formula is first trans-
lated to an ILET formula, which can contain ILET regular expressions if the core SALT formula contains
regular expressions. In the final step the ILET regular expressions are translated to ILET – the resulting
formula gives the formal semantics of the core SALT formula.

4.3.1 Translation of regular expressions to ILET

Translating Boolean regular expressions to ILET.
consts
core-salt-reg-exp-bool-to-ilet ::
(Time ⇒ ′a) ⇒ ′a core-salt-reg-exp-bool ⇒ ilet-reg-exp-bool

primrec
core-salt-reg-exp-bool-to-ilet s (CoreSREAtom a) = (BREAtom (λx. a (s x)))
core-salt-reg-exp-bool-to-ilet s (not f) =

(¬bre core-salt-reg-exp-bool-to-ilet s f)
core-salt-reg-exp-bool-to-ilet s (f1 and f2) =

(core-salt-reg-exp-bool-to-ilet s f1 ∧bre core-salt-reg-exp-bool-to-ilet s f2)
core-salt-reg-exp-bool-to-ilet s (f1 or f2) =

(core-salt-reg-exp-bool-to-ilet s f1 ∨bre core-salt-reg-exp-bool-to-ilet s f2)
core-salt-reg-exp-bool-to-ilet s (f1 implies f2) =

(core-salt-reg-exp-bool-to-ilet s f1 →bre core-salt-reg-exp-bool-to-ilet s f2)
core-salt-reg-exp-bool-to-ilet s (f1 equals f2) =

(core-salt-reg-exp-bool-to-ilet s f1 ↔bre core-salt-reg-exp-bool-to-ilet s f2)

Translating regular expressions to ILET.
consts
sre-core-to-ilet :: (Time ⇒ ′a) ⇒ ′a core-salt-reg-exp ⇒ ilet-reg-exp

primrec
(sre-core-to-ilet s (CoreSREBool b)) = BREBool (core-salt-reg-exp-bool-to-ilet s b)
(sre-core-to-ilet s ε) = ε

18

(sre-core-to-ilet s (a or b)) = (sre-core-to-ilet s a ∨ sre-core-to-ilet s b)
(sre-core-to-ilet s (a ′; ′ b)) = (sre-core-to-ilet s a ′; ′

bre sre-core-to-ilet s b)
(sre-core-to-ilet s (a ′: ′ b)) = (sre-core-to-ilet s a ′: ′

bre sre-core-to-ilet s b)
(sre-core-to-ilet s (b ′∗ ′ [≥ n]coresre)) =

((core-salt-reg-exp-bool-to-ilet s b) ′∗ ′ [≥ n]bre)

4.3.2 Translation of until and from operators to ILET

Translating the extended until operator to ILET.
consts
salt-exclincl-to-cut :: SALT-excl-incl ⇒ (iT ⇒ Time ⇒ iT)
salt-reqoptweak-to-ilet ::
SALT-req-opt-weak ⇒ (Time ⇒ bool) ⇒ (Time ⇒ bool) ⇒ (Time ⇒ bool)

primrec
salt-exclincl-to-cut excl = (op ↓<)
salt-exclincl-to-cut incl = (op ↓≤)

primrec
salt-reqoptweak-to-ilet req f1 f2 = (λt. False)
salt-reqoptweak-to-ilet opt f1 f2 = (λt. 2 t2 {t..}. ¬ f2 t2)
salt-reqoptweak-to-ilet weak f1 f2 = (λt. 2 t1 {t..}. f1 t1)

constdefs
salt-untilext-to-ilet ::
Time ⇒ SALT-excl-incl ⇒ SALT-req-opt-weak ⇒
(Time ⇒ bool) ⇒ (Time ⇒ bool) ⇒
bool

salt-untilext-to-ilet t exclincl reqoptweak f1 f2 ≡ (
(3 t2 {t..}. (f2 t2 ∧ (2 t1 ((salt-exclincl-to-cut exclincl) {t..} t2). f1 t1))) ∨
(salt-reqoptweak-to-ilet reqoptweak f1 f2) t)

The excl/incl parameter for the extended until operator specifies, whether the time point, at which
f2 becomes true, is excluded from the interval, in which f1 must hold. This is done by selecting the
corresponding interval cut operator, excluding (↓≤) or including (↓<) the time point, where the interval is
cut.

lemma
salt-exclincl-to-cut--excl: (salt-exclincl-to-cut excl I t) = (I ↓< t) and
salt-exclincl-to-cut--incl: (salt-exclincl-to-cut incl I t) = (I ↓≤ t)

Translating the from operator to ILET. Here the excl/incl parameter specifies, whether f must become
true at the time point, where a is valid, or at the next time point. The req/opt parameter specifies, whether
the formula is also fulfilled, if a never becomes true (parameter value opt).

constdefs
salt-from-to-ilet ::
Time ⇒ SALT-excl-incl ⇒ SALT-req-opt ⇒
(Time ⇒ bool) ⇒ (Time ⇒ bool) ⇒
bool

salt-from-to-ilet t exclincl reqopt f a ≡
(3 t2 {t..}. (
a t2 ∧ (2 t1 ({t..} ↓< t2). ¬ a t1) ∧
(f (case exclincl of excl ⇒ Suc t2 | incl ⇒ t2)))) ∨

(case reqopt of req ⇒ False | opt ⇒ (2 t1 {t..}. ¬ a t1))

4.3.3 Translation of core SALT formulas to ILET

The semantics of a core SALT formula is given by its translation to ILET.
consts
core-salt-valid :: (Time ⇒ ′a) ⇒ Time ⇒ ′a core-salt-formula ⇒ bool

((- |=coresalt - -) [80,80] 80)
primrec

19

s |=coresalt t (CoreSALTAtom a) = (a (s t))
s |=coresalt t (not f) = (¬ s |=coresalt t f)
s |=coresalt t (f1 and f2) = (s |=coresalt t f1 ∧ s |=coresalt t f2)
s |=coresalt t (f1 or f2) = (s |=coresalt t f1 ∨ s |=coresalt t f2)
s |=coresalt t (f1 implies f2) = (s |=coresalt t f1 −→ s |=coresalt t f2)
s |=coresalt t (f1 equals f2) = (s |=coresalt t f1 ←→ s |=coresalt t f2)
s |=coresalt t (next f) = (©S t1 t {0..}. s |=coresalt t1 f)
s |=coresalt t (always f) = (2 t1 {t..}. s |=coresalt t1 f)
s |=coresalt t (eventually f) = (3 t1 {t..}. s |=coresalt t1 f)
s |=coresalt t (f1 until exclincl reqoptweak f2) =

(salt-untilext-to-ilet t exclincl reqoptweak (λt. s |=coresalt t f1) (λt. s |=coresalt t f2))
s |=coresalt t (f from exclincl reqopt a) =

(salt-from-to-ilet t exclincl reqopt (λt. s |=coresalt t f) (λt. a (s t)))
s |=coresalt t (′| ′ r ′| ′coresre) = (3 t2 {t..}. (|=bre t t2 (sre-core-to-ilet s r)))
s |=coresalt t (′| ′ r ′; ′

end f
′| ′coresre) =

(3 t2 {t..}. (|=bre t t2 (sre-core-to-ilet s r)) ∧ (s |=coresalt t2 f))
s |=coresalt t (′| ′ r ′: ′

end f
′| ′coresre) =

(3 t2 {t..}. (|=bre t (Suc t2) (sre-core-to-ilet s r)) ∧ (s |=coresalt t2 f))

4.4 Sequence operators and expressions matching empty words
Definition of well-formedness condition w.r.t. proper overlaps: a core SALT regular expression is consid-
ered well-formed w.r.t. the overlap operator if for every overlap operator both operands cannot match the
empty word/interval.

Core SALT expressions matching the empty word, i.e., an interval of length 0.
primrec
core-salt-reg-exp-matches-epsilon :: ′a core-salt-reg-exp ⇒ bool

where
core-salt-reg-exp-matches-epsilon (CoreSREBool b) = False
| core-salt-reg-exp-matches-epsilon ε = True
| core-salt-reg-exp-matches-epsilon (a or b) =

(core-salt-reg-exp-matches-epsilon a ∨ core-salt-reg-exp-matches-epsilon b)
| core-salt-reg-exp-matches-epsilon (a ′; ′ b) =

(core-salt-reg-exp-matches-epsilon a ∧ core-salt-reg-exp-matches-epsilon b)
| core-salt-reg-exp-matches-epsilon (a ′: ′ b) =

(core-salt-reg-exp-matches-epsilon a ∧ core-salt-reg-exp-matches-epsilon b)
| core-salt-reg-exp-matches-epsilon (b ′∗ ′ [≥ n]coresre) = (n = 0)

Function indicating whether the first expression in a sequence matches the empty word.
fun
core-salt-reg-exp-seq-first-matches-epsilon :: ′a core-salt-reg-exp ⇒ bool

where
core-salt-reg-exp-seq-first-matches-epsilon (a ′; ′ b) =
core-salt-reg-exp-seq-first-matches-epsilon a

| core-salt-reg-exp-seq-first-matches-epsilon (a ′: ′ b) =
core-salt-reg-exp-seq-first-matches-epsilon a

| core-salt-reg-exp-seq-first-matches-epsilon (a or b) =
(core-salt-reg-exp-seq-first-matches-epsilon a ∨
core-salt-reg-exp-seq-first-matches-epsilon b)

| core-salt-reg-exp-seq-first-matches-epsilon r = core-salt-reg-exp-matches-epsilon r

Analogue function indicating whether the last expression in a sequence matches the empty word.
fun
core-salt-reg-exp-seq-last-matches-epsilon :: ′a core-salt-reg-exp ⇒ bool

where
core-salt-reg-exp-seq-last-matches-epsilon (a ′; ′ b) =
core-salt-reg-exp-seq-last-matches-epsilon b

| core-salt-reg-exp-seq-last-matches-epsilon (a ′: ′ b) =
core-salt-reg-exp-seq-last-matches-epsilon b

20

| core-salt-reg-exp-seq-last-matches-epsilon (a or b) =
(core-salt-reg-exp-seq-last-matches-epsilon a ∨
core-salt-reg-exp-seq-last-matches-epsilon b)

| core-salt-reg-exp-seq-last-matches-epsilon r = core-salt-reg-exp-matches-epsilon r

Function determining whether the core SALT regular expression contains a sequence where an expres-
sion matching the empty word neighbours the overlap operator.

fun
core-salt-reg-exp-overlap-with-epsilon :: ′a core-salt-reg-exp ⇒ bool

where
core-salt-reg-exp-overlap-with-epsilon (a ′: ′ b) =

(core-salt-reg-exp-seq-last-matches-epsilon a ∨
core-salt-reg-exp-seq-first-matches-epsilon b ∨
core-salt-reg-exp-overlap-with-epsilon a ∨ core-salt-reg-exp-overlap-with-epsilon b)

| core-salt-reg-exp-overlap-with-epsilon (a ′; ′ b) =
(core-salt-reg-exp-overlap-with-epsilon a ∨ core-salt-reg-exp-overlap-with-epsilon b)

| core-salt-reg-exp-overlap-with-epsilon (a or b) =
(core-salt-reg-exp-overlap-with-epsilon a ∨ core-salt-reg-exp-overlap-with-epsilon b)

| core-salt-reg-exp-overlap-with-epsilon r = False

Some examples of core SALT regular expressions with and without overlaps with empty words.
lemma
let
a1 = CoreSREBool a1; a2 = CoreSREBool a2; a3 = CoreSREBool a3; a4 = CoreSREBool a4;
a5 = CoreSREBool a5; a6 = CoreSREBool a6; a7 = CoreSREBool a7
in
(core-salt-reg-exp-overlap-with-epsilon ((a1 ′; ′ a2) ′; ′ (a3 ′: ′ (a4 ′; ′ a5) ′; ′

(a6 ′: ′ a7))) = False) ∧
(core-salt-reg-exp-overlap-with-epsilon ((a1 ′; ′ a2) or (a3 ′: ′ (a4 ′; ′ a5) ′; ′

(a6 ′: ′ a7))) = False) ∧
(core-salt-reg-exp-overlap-with-epsilon ((a1 ′; ′ a2) or (ε ′: ′ (a4 ′; ′ a5) ′; ′

(a6 ′: ′ a7))) = True) ∧
(core-salt-reg-exp-overlap-with-epsilon ((a1 ′: ′ ε) or (a3 ′: ′ (a4 ′; ′ a5) ′; ′

(a6 ′: ′ a7))) = True) ∧
(core-salt-reg-exp-overlap-with-epsilon ((a1 ′; ′ a2) or (a3 ′: ′ ((b ′∗ ′ [≥ 1]coresre)

′; ′ a5) ′; ′

(a6 ′: ′ a7))) = False) ∧
(core-salt-reg-exp-overlap-with-epsilon ((a1 ′; ′ a2) or (a3 ′: ′ ((b ′∗ ′ [≥ 0]coresre)

′; ′ a5) ′; ′

(a6 ′: ′ a7))) = True)

A core SALT regular expression is well-formed if no regular expression matching the empty word
neighbours the overlap operator.

definition core-salt-reg-exp-proper-overlap :: ′a core-salt-reg-exp ⇒ bool where
core-salt-reg-exp-proper-overlap r ≡ ¬ (core-salt-reg-exp-overlap-with-epsilon r)

Remarkably, a core SALT regular expression is well-formed iff its translation to ILET is well-formed.
lemma core-salt-reg-exp-to-ilet--proper-overlap-eq:

(ilet-reg-exp-proper-overlap (sre-core-to-ilet s r)) =
(core-salt-reg-exp-proper-overlap r)

A core SALT formula is well-formed if all regular expressions in it are well-formed w.r.t. overlaps with
expressions matching empty words.

consts
core-salt-proper-overlap :: ′a core-salt-formula ⇒ bool

primrec
core-salt-proper-overlap (CoreSALTAtom a) = True
core-salt-proper-overlap (not f) = (core-salt-proper-overlap f)
core-salt-proper-overlap (f1 and f2) =

(core-salt-proper-overlap f1 ∧ core-salt-proper-overlap f2)
core-salt-proper-overlap (f1 or f2) =

(core-salt-proper-overlap f1 ∧ core-salt-proper-overlap f2)
core-salt-proper-overlap (f1 implies f2) =

21

(core-salt-proper-overlap f1 ∧ core-salt-proper-overlap f2)
core-salt-proper-overlap (f1 equals f2) =

(core-salt-proper-overlap f1 ∧ core-salt-proper-overlap f2)
core-salt-proper-overlap (next f) = (core-salt-proper-overlap f)
core-salt-proper-overlap (always f) = (core-salt-proper-overlap f)
core-salt-proper-overlap (eventually f) = (core-salt-proper-overlap f)
core-salt-proper-overlap (f1 until exclincl reqoptweak f2) =

(core-salt-proper-overlap f1 ∧ core-salt-proper-overlap f2)
core-salt-proper-overlap (f from exclincl reqopt a) = (core-salt-proper-overlap f)
core-salt-proper-overlap (′| ′ r ′| ′coresre) = (core-salt-reg-exp-proper-overlap r)
core-salt-proper-overlap (′| ′ r ′; ′

end f
′| ′coresre) =

(core-salt-reg-exp-proper-overlap r ∧ core-salt-proper-overlap f)
core-salt-proper-overlap (′| ′ r ′: ′

end f
′| ′coresre) =

(core-salt-reg-exp-proper-overlap r ∧ core-salt-proper-overlap f ∧
¬ core-salt-reg-exp-seq-last-matches-epsilon r)

The well-formedness precondition core-salt-proper-overlap f will be employed in the main translation
validation theorem core-salt-to-ltl-equiv-core-salt-valid in Sec. 4.5.2, because this theorem will consider
core SALT formulas with proper overlaps in regular expressions and hence well-defined semantics. It will
not state anything about core SALT formulas with improper overlaps, e.g., / a; b ∗ [≥ 0] : c / because for
them no well-defined semantics exist. Consider the example of the two formulas / (a; ε) :c / and /a; ε :c /.
They are mapped to two different ILET regular expressions and thus assigned two different meanings:
/ (a; ε) : c / = / a : c /ilet, because the empty word ε is ”consumed” by a, while / a; ε : c / = / a; False /
= False, because the empty word in the sub-expression ε : c cannot match any interval of length > 0,
as required by the sub-formula |=bre t (Suc t) ε in the definition of ilet-reg-exp-match. At the same time
the translation to LTL yields the right associative interpretation / a; ε : c / = a ∧ © c for both formulas
therefore mapping two different core SALT formulas with different meanings to the same LTL formula.
Thus, a proper semantics definition for such cases is not possible, unless we use a semantics definition that
cannot distinguish such formulas, e.g., by forcing all regular expressions to be right associative and hence
ignoring parentheses in sequences, which would be a purely syntactic solution, reasonable for a pragmatic
compiler but not suitable for formal semantics definition.

4.5 Formal validation of core SALT translation to LTL
The translation of core SALT to LTL is validated by proving that the semantics of an LTL formula obtained
by translating a core SALT formula is equivalent to the semantics of the core SALT formula directly given
by its ILET translation.

4.5.1 Selected auxiliary translation validation lemmas

Translation validation for the regular repetition operator ∗:
lemma core-salt-to-ltl-equiv-core-salt-valid--RegExp-StarGe:

(s |=ltl t (sre-core-to-ltl (b ′∗ ′ [≥ n]coresre))) =
(3 t2 {t..}. |=bre t t2 (sre-core-to-ilet s (b ′∗ ′ [≥ n]coresre)))

Translation validation for the sequence operator ; and the sequence overlap operator ’:’:
lemma
core-salt-to-ltl-equiv-core-salt-valid--RegExp-Subsequent:

∧
t.

core-salt-reg-exp-proper-overlap r =⇒
(s |=ltl t (sre-subsequent-to-ltl r f)) =
(3 t2 {t..}. ((|=bre t t2 (sre-core-to-ilet s r)) ∧ (s |=ltl t2 f))) and
core-salt-to-ltl-equiv-core-salt-valid--RegExp-Overlap:

∧
t.

[[core-salt-reg-exp-proper-overlap r; ¬ core-salt-reg-exp-seq-last-matches-epsilon r]] =⇒
(s |=ltl t (sre-overlap-to-ltl r f)) =
(3 t2 {t..}. ((|=bre t (Suc t2) (sre-core-to-ilet s r)) ∧ (s |=ltl t2 f)))

Translation validation for regular expressions:
lemma core-salt-to-ltl-equiv-core-salt-valid--RegExp:

∧
t.

22

core-salt-reg-exp-proper-overlap sre =⇒
(s |=ltl t (sre-core-to-ltl sre)) = (3 t2 {t..}. |=bre t t2 (sre-core-to-ilet s sre))

Translation validation for regular expressions ending with a core SALT formula:
lemma core-salt-to-ltl-equiv-core-salt-valid--RegExp-Subsequent-SeqSaltFinish :

∧
f t.

[[core-salt-reg-exp-proper-overlap r;∧
t. (s |=ltl t (core-salt-to-ltl f)) = s |=coresalt t f]] =⇒

(s |=ltl t (sre-subsequent-to-ltl r (core-salt-to-ltl f))) =
(3 t2 {t..}. |=bre t t2 (sre-core-to-ilet s r) ∧ s |=coresalt t2 f)

lemma core-salt-to-ltl-equiv-core-salt-valid--RegExp-Overlap-SeqSaltFinish :
∧
f t.

[[core-salt-reg-exp-proper-overlap r; ¬ core-salt-reg-exp-seq-last-matches-epsilon r;∧
t. (s |=ltl t (core-salt-to-ltl f)) = s |=coresalt t f]] =⇒

(s |=ltl t (sre-overlap-to-ltl r (core-salt-to-ltl f))) =
(3 t2 {t..}. |=bre t (Suc t2) (sre-core-to-ilet s r) ∧ s |=coresalt t2 f)

Translation validation for the extended until operator:
lemma core-salt-to-ltl-equiv-core-salt-valid--UntilExt:

[[
∧
t. (s |=ltl t (core-salt-to-ltl f1)) = s |=coresalt t f1;∧
t. (s |=ltl t (core-salt-to-ltl f2)) = s |=coresalt t f2]] =⇒

(s |=ltl t (ltl-untilext exclincl reqoptweak
(core-salt-to-ltl f1) (core-salt-to-ltl f2))) =

(salt-untilext-to-ilet t exclincl reqoptweak
(λt. s |=coresalt t f1) (λt. s |=coresalt t f2))

Translation validation for the from operator:
lemma core-salt-to-ltl-equiv-core-salt-valid--From:

[[
∧
t. (s |=ltl t (core-salt-to-ltl f)) = s |=coresalt t f]] =⇒

(s |=ltl t (ltl-from exclincl reqopt (core-salt-to-ltl f) a)) =
(salt-from-to-ilet t exclincl reqopt (λt. s |=coresalt t f) (λt. a (s t)))

4.5.2 Main translation validation theorem

Core SALT translation to LTL yields the same semantics as the core SALT semantics given by direct trans-
lation to ILET:

theorem core-salt-to-ltl-equiv-core-salt-valid :
∧
t.

core-salt-proper-overlap f =⇒
(s |=ltl t (core-salt-to-ltl f)) = (s |=coresalt t f)

The precondition core-salt-proper-overlap f indicates that we consider core SALT formulas with proper
overlaps in regular expressions and hence well-defined semantics.4

5 Additional results for core SALT

5.1 LTL operators until, weak until, release in core SALT

Lemmas about expressing LTL operators U , W , R using the extended until operator in core SALT.
lemma core-salt-until-excl-req-ltl-until-equiv:

[[core-salt-proper-overlap f1; core-salt-proper-overlap f2]] =⇒
(s |=coresalt t (f1 until excl req f2)) =
(s |=ltl t (core-salt-to-ltl f1) Ultl (core-salt-to-ltl f2))

lemma core-salt-until-excl-weak-ltl-until-weak-equiv:
[[core-salt-proper-overlap f1; core-salt-proper-overlap f2]] =⇒
(s |=coresalt t (f1 until excl weak f2)) =
(s |=ltl t (core-salt-to-ltl f1) Wltl (core-salt-to-ltl f2))

lemma core-salt-until-incl-weak-ltl-release-equiv:
[[core-salt-proper-overlap f1; core-salt-proper-overlap f2]] =⇒

4The theorem does not state anything about core SALT formulas with improper overlaps, e.g., / a; b ∗ [≥ 0] :c /, because for them
no well-defined semantics exist.

23

(s |=coresalt t (f1 until incl weak f2)) =
(s |=ltl t (core-salt-to-ltl f2) Rltl (core-salt-to-ltl f1))

5.2 Expressive equivalence of core SALT and LTL
The expressiveness of core SALT (for well-formed formulas) and LTL is equivalent.

Translation function from LTL to core SALT:
consts
ltl-to-core-salt :: ′a ltl-formula ⇒ ′a core-salt-formula

primrec
ltl-to-core-salt (LTLAtom a) = CoreSALTAtom a
ltl-to-core-salt (¬ltl f) = (not (ltl-to-core-salt f))
ltl-to-core-salt (f1 ∧ltl f2) = ((ltl-to-core-salt f1) and (ltl-to-core-salt f2))
ltl-to-core-salt (f1 ∨ltl f2) = ((ltl-to-core-salt f1) or (ltl-to-core-salt f2))
ltl-to-core-salt (f1 →ltl f2) = ((ltl-to-core-salt f1) implies (ltl-to-core-salt f2))
ltl-to-core-salt (f1 ↔ltl f2) = ((ltl-to-core-salt f1) equals (ltl-to-core-salt f2))
ltl-to-core-salt (©ltl f) = (next ltl-to-core-salt f)
ltl-to-core-salt (2ltl f) = (always (ltl-to-core-salt f))
ltl-to-core-salt (3ltl f) = (eventually (ltl-to-core-salt f))
ltl-to-core-salt (f1 Ultl f2) = (

(ltl-to-core-salt f1) until excl req (ltl-to-core-salt f2))
ltl-to-core-salt (f1 Wltl f2) = (

(ltl-to-core-salt f1) until excl weak (ltl-to-core-salt f2))
ltl-to-core-salt (f1 Rltl f2) = (

(ltl-to-core-salt f2) until incl weak (ltl-to-core-salt f1))

Translation functions from core SALT to LTL and vice versa are inverse:
lemma ltl-to-core-salt-to-ltl-equiv:

∧
t.

(s |=ltl t core-salt-to-ltl (ltl-to-core-salt f)) = (s |=ltl t f)
lemma core-salt-to-ltl-to-core-salt-equiv:
core-salt-proper-overlap f =⇒
(s |=coresalt t ltl-to-core-salt (core-salt-to-ltl f)) = (s |=coresalt t f)

Each core SALT property can be expressed in LTL:
lemma core-salt-subset-ltl:
∀ (f :: ′a core-salt-formula). core-salt-proper-overlap f −→
(∃ (f ′:: ′a ltl-formula). (s |=coresalt t f) = (s |=ltl t f

′))

Each LTL property can be expressed in core SALT:
lemma ltl-subset-core-salt:
∀ (f :: ′a ltl-formula). ∃ (f ′:: ′a core-salt-formula). (s |=ltl t f) = (s |=coresalt t f

′)

Core SALT and LTL have equivalent expressiveness, i.e., the sets of properties on system runs s for a
given time point t expressible in core SALT (considering well-formed formulas) and in LTL are equal:

theorem core-salt-ltl-equiv:
{p. ∃ (f :: ′a core-salt-formula). core-salt-proper-overlap f ∧ p s t = (s |=coresalt t f)} =
{p. ∃ (f :: ′a ltl-formula). p s t = (s |=ltl t f)}

References
[Acc04] Accelera. Property Specification Language Reference Manual, Version 1.1, Jun 2004.

[BBDE+01] Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fisman, Anna Gringauze, and Yoav
Rodeh. The Temporal Logic Sugar. In Computer Aided Verification, 13th International
Conference, CAV 2001, pages 363–367, 2001.

[BLS06] Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT – Structured Assertion Language
for Temporal Logic. In Zhiming Liu and Jifeng He, editors, Formal Methods and Software

24

Engineering, 8th International Conference on Formal Engineering Methods (ICFEM 2006),
Proceedings, volume 4260 of Lecture Notes in Computer Science, pages 757–775. Springer,
2006.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in Property Specifi-
cations for Finite-State Verification. In ICSE 1999, pages 411–420. IEEE Computer Society,
1999.

[Gor03] Michael J. C. Gordon. Validating the PSL/Sugar Semantics Using Automated Reasoning.
Formal Aspects of Computing, 15(4):406–421, 2003.

[NPW02] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 46–57. IEEE Computer Society,
1977.

[SAL] SALT Compiler. http://salt.in.tum.de/.

[Str06] Jonathan Streit. SALT – Language Reference and Compiler Manual, Apr 2006.

[Tra09] David Trachtenherz. Eigenschaftsorientierte Beschreibung der logischen Architektur einge-
betteter Systeme (Property-Oriented Description of Logical Architecture of Embedded Sys-
tems). PhD thesis, Institut für Informatik, Technische Universität München, 2009.

[Tra11] David Trachtenherz. Interval Temporal Logic on Natural Numbers. In Gerwin Klein,
Tobias Nipkow, and Lawrence Paulson, editors, The Archive of Formal Proofs. http:
//afp.sourceforge.net/entries/AutoFocus-Stream.shtml, February 2011.

25

http://salt.in.tum.de/
http://afp.sourceforge.net/entries/AutoFocus-Stream.shtml
http://afp.sourceforge.net/entries/AutoFocus-Stream.shtml

	Introduction and motivation
	ILET
	Shallow embedding
	Regular expressions (deep embedding)
	Syntax
	Semantics
	Sequence operators and expressions matching empty words

	LTL
	Syntax
	Semantics

	Core Salt
	Syntax
	Translation to LTL
	Translation of regular expressions to LTL
	Translation of until and from operators to LTL
	Translation of core Salt formulas to LTL

	Semantics
	Translation of regular expressions to ILET
	Translation of until and from operators to ILET
	Translation of core Salt formulas to ILET

	Sequence operators and expressions matching empty words
	Formal validation of core Salt translation to LTL
	Selected auxiliary translation validation lemmas
	Main translation validation theorem

	Additional results for core Salt
	LTL operators until, weak until, release in core Salt
	Expressive equivalence of core Salt and LTL

