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Abstract

Distributed file systems nowadays work well in many ways. They provide efficient
solutions, for example, to distribute data among a global team. But most systems do not
address the complex subject of secure user and group management. The systems that do,
usually offer only a very limited subset of access permissions that is incompatible to the
permissions usually used in Unix-like systems.
In this report, we propose a new system for user and group management, which

cryptographically enforces access permissions in fully decentralized file systems. Our
proposal is twofold: an integrity verification algorithm checks the validity of the current
file system state; a cryptographic data protection scheme, added on top of the integrity
verification, preserves the privacy of the file system content.

Except for signatures, our system uses symmetric cryptography only. It thus incurs
only a reasonable cryptographic cost in the system.
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1 Introduction

Files are important – for software systems as well as for people. Files are written,
read, and edited both, locally by individual users and globally by large teams within
multi-national organizations. The way to publish, share, and access the files varies from
organization to organization. Companies typically have network drives to share the files
within a local office. Big companies can afford the bandwidth and administration effort to
use network drives globally, too. Small companies typically use communication systems
such as e-mail or instant messaging to collaboratively edit their files. Or they use version
control systems and web-based systems to enable the team members to access their files
from everywhere.
Typically, network file systems rely on centralized components and administration.

This results in high cost for bandwidth, highly reliable components, and skilled personnel.
The goal of our work is to create an easy-to-use, fully decentralized distributed file
system that provides transparent file access to its users. We base our work on structured
peer-to-peer techniques, because – when they are deployed correctly – P2P systems
are extremely scalable and robust. In this technical report, we address a yet unsolved
problem, namely how to realize Unix-like access permissions in P2P file systems.

1.1 Problem statement

A Distributed File System (DFS), faces a multitude of attack scenarios, which we have
to guard against. It is not sufficient to cryptographically secure the client connections
between peers in the network, because there are no trusted entities in a peer-to-peer
system. Everything that is stored on another peer has to be encrypted and signed in a
way that ensures that the data cannot be read by unauthorized clients and cannot be
tampered with.
Things get even more complicated, when we consider that usually several users want

to interact. They want to be able to share certain files within the same file system. That
means that we cannot use traditional cryptographic means because they are not geared
to multiple users. We also have to think about group access where group membership
may change over time.

In this technical report, we describe a new file system structure. With this structure we
can implement nearly the full spectrum of access rights that Unix users are accustomed to
in a fully decentralized manner. Our system is based on a “plain” P2P file system that is
unaware of users and groups. On top of such a plain file system, we employ cryptographic
means to realize users and groups. We also discuss how to add ACL support on top of
our approach.
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1.2 Access permissions

A distributed file system should be as transparent for its users as possible. Thus, we want
to support access permissions that are modeled closely to the POSIX.1 [40] permissions
which are used in Linux as well as many other systems.

In more detail, we want to be able to have users and groups with separate access rights.
A group consists of an arbitrary number of users. A file or directory is owned by exactly
one user and exactly one group. Each user can be a member of an arbitrary number of
groups.

The users and groups of our file system do not need to match the users and groups of
the underlying Unix system.
A file has read and write access flags, that can be set be separately for the user, the

group, and all others who can access the system. We assume that everyone who may
write to a file also has read permissions to the file in question.

Most systems support additional access rights on top of this simple system. In Chapter
9, we discuss other access permissions often found in Unix-like systems and how they
could be implemented using our approach. We also sketch a way to implement ACLs on
top of our proposed access permission system.

1.3 Design criteria

Our goal is to create a fully decentralized distributed file system (DFS) that efficiently
implements Unix-like access permissions. The following criteria guided our design:
Trust in own machine: We assume that the user can trust his/her own machine.

Scenarios where an attacker reads the cryptographic material from the machine memory
are not part of our threat scenario.

Untrusted storage: We assume that all other nodes in the network are untrusted. Thus,
the access rules have to be enforced by cryptography, not by node-side policies. A client
must only be able to decrypt data for which it has the appropriate access rights. Access
rights enforcement must not depend on a central authority or on other nodes.
Data integrity: We want to be able to prevent or at least detect attacks on our file

system, e.g. illegitimate modifications of the data by third parties. Rollback attacks on
the data in our file system should be prevented. That means it should be impossible to
replace a current version of a file with an old version of a file, if the client already had
knowledge of the current file version.
Data confidentiality: Users must not be able to decrypt data that they do not have

adequate permissions for.
User revocation: We want to be able to efficiently revoke users from the system and

remove users from groups without the need for out-of-band communication.
No on-line third parties: Our scheme shall work without requiring any third parties to

be online and without requiring specific other nodes to be online.
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1.4 Contribution

In this technical report, we further detail our work on cryptographically enforced access
rights for fully decentralized file systems, which was first presented in [6]. There we have
proposed a method to organize the directory structure of a fully decentralized distributed
file system. This new structure allows us to secure the integrity and confidentiality
of the data contained in the file system. A client can verify the validity of the file
system structure and data on the fly while accessing it. Unix-like access permissions are
cryptographically enforced in the directory structure. A malicious node is not able to
read or write files for which it does not have the necessary access rights. Even when a
malicious user controls (some of) the nodes, attacks are limited to forking and withholding
new information. The approach presented here does not depend on any trusted nodes or
otherwise centralized components.
In contrast to other works our approach solely relies on symmetric cryptographic

primitives to enforce the access rights and should thus be very efficient. Asymmetric
cryptography is only used for the signature algorithms.
While all the basic ideas were already presented in [6], this technical report gives

much more details about the actual way the access rights can be implemented in a real
system. It details special cases that are not obvious on a first glance, presents the way
user-management works in more detail and describes the implementation details of the
file system operations.

This technical report is organized as follows: In Chapter 2 we give an introduction
to the technical background of our work. Chapter 3 discusses the related work on this
subject. It discusses the underlying network structures as well as the cryptographic
algorithms we use. In Chapter 4 we briefly describe our idea and introduce the technical
background on which we base our work. Chapter 5 outlines our approach for validating
the data integrity in a distributed file system. Chapter 6 describes the handling of file
access rights. Chapter 7 shows how the different file system operations are implemented
in practice. Chapter 8 estimates the overhead that our proposal imposes. Chapter 9
explains how to extend our approach to more sophisticated access control mechanisms.
Finally, Chapter 10 gives the conclusions and an outlook to future work.



2 Technical background

The cryptographic approach presented in this technical report can be implemented on
top of any kind of block based distributed storage system. In our research group we have
developed such a system, namely a fully decentralized file system, the Igor File System
(IgorFs) [47, 5].

In the remainder of this report we assume that our cryptographic approach is imple-
mented on the top of IgorFs. It is thus important to know a few technical facts about
the Igor file system.

2.1 Design Goals

The origin of IgorFs can be found in the area of bioinformatics. Meanwhile it’s also
applied in high energy physics.

In bioinformatics, there are many large databases containing information about genes,
proteins, molecules, etc. These databases can reach sizes of several terrabytes with
millions of files. The databases change daily - however only a very small amount of data
changes at once. One example for such a database is the worldwide protein data bank
[81].

Research applications e.g. analysis software and simulations need access to the current
version of the databases. However, they typically only access very small parts of the
databases.

Usually, sites set up a local mirror to allow the software and researchers to access the
current data. However, this is very wasteful because the mirror has to contain the whole
huge research database and has to sync itself regularly to the master copy.
The best solution would be a file system that only contains the data needed for a

specific analysis or simulation. To this end, it only needs to download the deltas for that
specific data, when a new version of the database is available.
The result of our research into these problems was IgorFs, a shared distributed file

system with a single writer for each dedicated file system tree. The only information
needed to access an IgorFs file system is the identification and the cryptographic key
of the file system root block. In IgorFs, a local node only downloads the information
from the network, which is requested by the applications accessing the file system. All
downloaded information is automatically cached. When a new version of a file system
tree is generated, only the changed parts of files that are accessed are downloaded from
the network.
IgorFs also features an automatic notification system for new version - clients are

aware of newly inserted data very quickly after it has been made available to the network.
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The file system also encrypts all transmitted data. It offers an interface to an external
user-management system e.g. to handle subscriptions. Hence it is possible to give paid
access to institutions and to revoke the access later.
The design criteria of IgorFs make it suitable for a large field of applications. For

example in the area of high-energy physics the CERN is currently optimizing the dis-
tribution of their research software to the associated computing centers. Just like the
biology databases, their software packages are huge and include many libraries, of which
only a small number is used depending on the exact simulation parameters. The software
repository changes up to a few times per week and it is important that new versions are
quickly available at the computing centers after they have been published.

At the moment each computing center has it’s own software repository that is updated
separately from each other. Because only a single server per computing center is hosting all
the software, there are performance bottlenecks when many simulations start at the same
time. IgorFs also suits this scenario and could significantly decrease the administrative
overhead and increase the performance at the same time.
Our research group is collaborating with the CERN in this field.

2.2 Igor

IgorFs is based on a structured P2P overlay network [51] called Igor, which provides
a key based routing service [21] similar to Chord [74], Kademlia [52], Pastry [69], and
others.
Unlike a distributed hash table (DHT) [78], which offers a publish/subscribe service

only, Igor is a service oriented overlay network. It routes messages based on a destination
key and a service identifier [22].
Applications that want to take part first connect to an Igor node. Usually the Igor

node and the application reside on the same physical machine. The application submits
its service identifier to the Igor node. After that the Igor node will receive messages
that are sent to this service identifier. Nodes that do not run a service will not receive
messages for that specific service.

Igor exports a very simple API which is similar to the well-known Berkeley socket API
[75, sec. 6.1.3]. An Igor socket has to be bound first, after that messages can be sent and
received. At the end of the session the socket is unbound and closed.
Igor uses Proximity Route Selection (PRS) and Proximity Neighbor Selection (PNS)

[35, 43, 27] to exploit the proximity of nodes in the underlying Internet topology. Thereby,
services can easily benefit from local nodes running the same service.

2.3 IgorFs

IgorFs is a fully decentralized distributed file system. The different IgorFs nodes use the
Igor overlay network to communicate with each other. All nodes are coequal. There are
no nodes with special properties or special trust in each other. Most importantly there
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are no centralized nodes because they would introduce a single point of failure and a
performance bottleneck.
In IgorFs, a File System is identified by a unique file system root block. Every node

can create a new file system by generating a new root block. To access an existing file
system, a node needs to be able to access its root block, i.e. it needs the block identifier
and cryptographic key. This will be explained in detail in Section 2.3.2.
Every node can create its own IgorFs file system. It can also open other IgorFs file

systems if it has the corresponding key material.
IgorFs is implemented as a process network [41]. Independent modules communicate

solely via messages.
The most important modules of IgorFs are:

• The Application Interface module (i.e. the FuseInterface or NfsInterface) receives
operating system calls, converts them into IgorFs calls and sends them to the File
and Folder Module.

• The File and Folder Module handles all file and directory operations. All file system
requests are handled here. The data needed to satisfy the operations is read or
written with the BlockTransfer Module.

• The BlockTransfer Module sends and retrieves data chunks via the BlockCache.

• The BlockCache Module handles requests for data chunks. If a chunk is found in
the cache it is returned, otherwise it is fetched via the BlockFetcher.

• The BlockFetcher Module transfers modules from remote nodes to the local node
when they are requested.

• The PointerCache Module is a DHT-like system, which stores the information
about which blocks are stored on which nodes.

• The IgorInterface Module is responsible for the communication with the Igor
daemons. All inbound and outbound messages pass through this module.

The functionality of these different modules will be described in more detail in the
following sections.
Figure 2.1 shows the modules and which modules communicate with each other. In

the figure, cornered blocks are IgorFs modules; round blocks are external components.

2.3.1 Application interface

There are two different ways to attach IgorFs to the operating system. The preferred
option is to mount IgorFs into the Unix directory tree, just like any other kind of file
system. In Unix, the kernel is responsible for handling the file system calls made by
applications. Calls are handled by the part of the kernel responsible for the respective file
system. However, implementing file systems in the operating system kernel is a complex
task.
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Figure 2.1: Module communication in IgorFs [adapted from 47]
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Figure 2.2: FUSE sample request [adapted from 77]

With Fuse (Filesystem in Userspace) [30], it is possible to implement file systems
completely in the userspace. Fuse works by using a kernel module that re-routes requests
from the kernel’s VFS layer to a userspace program. Figure 2.2 shows this approach in
more detail. With this approach, IgorFs looks just like any any other local file system to
the user.
The second way to attach IgorFs to the operating system is via NFSv3. IgorFs can

re-export the current IgorFs file system via NFS. A client can then mount the IgorFs
file system via its local NFS client software. This approach is more cross platform
compatible, but has a lower performance and misses some advanced features such as
extended attributes.

2.3.2 File storage

All files that are stored in IgorFs are first cut into variably sized chunks. The points at
which a file is split into different chunks is determined using a rolling checksum algorithm
[see 48, sec. 3.2]. As a result, modifications to parts of a file affect only a few chunks in
the vicinity of the modified parts.

Each data block B in IgorFs is identified by a 256 bit wide identifier I which is assumed
to be globally unique. Each block is encrypted with its own 256 bit key k. Both, the Id
I and the key k are obtained by hashing the block with a cryptographic hash function H .
k = H(B) is obtained by hashing the the original data. I = H(EH(B)(B)) is obtained by
hashing the encrypted data block. E denotes the encryption function. Thus, independent
IgorFs instances map the same clear text block to the same cipher text block. Blocks
with identical content have the same identifier I. Thus, if two nodes insert two files into
IgorFs that have shared areas, these shared areas will be mapped to the same encrypted
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data blocks. This is similar to the implementation of Content Hash Keys in Freenet [18].
In order to be able to read a block, an IgorFs instance needs to have the block’s (Id,

key)-tuple.

2.3.3 Directories

Directories are handled similarly to files. A directory consists of a list of file names, file
properties and the (Id, key) tuples for the file chunks. This list is serialized into a data
block, which is stored in IgorFs just like an ordinary file.
Thus, when a node can read a directory it can recursively determine all the (Id, key)

tuples for all files and subdirectories stored in the directory. When a node can read the
root-directory it can recursively read the contents of the whole file system.

Multiple, separated file systems can share the network and the attached storage capacity.
They just use different root-blocks.

2.3.4 Block transfer and caching

In IgorFs, data chunks are not stored directly in the DHT. Instead, IgorFs uses an
indirect approach. When a new chunk C is inserted, it is stored on the local node only.
The information from which node the block can be retrieved is then inserted into the
PointerCache (see Section 2.3).
When a node requests a chunk, it first asks its local pointer cache for the location of

the data block. The local pointer cache either knows the location or sends a request to
the remote pointer cache that is responsible for the Id area of the request.
After the pointer cache returns the data location, the block fetcher module retrieves

the actual data and stores it into the local block cache.

2.3.5 File system updates

Whenever a file changes, all directories on the path from the file to the root also change.
The reason for this is that whenever a file changes, it also gets a new content hash and
hence a new (Id, key)-tuple. This new tuple has to be stored in the directory, which in
turn also gets a new (Id, key)-tuple. The changes propagate up in the file system tree
until they arrive at the root-directory.
Hence, when a node wants to see the current version of a specific file system, it

only needs to know the current (Id, key)-tuple of the root-directory. IgorFs uses a
publish/subscribe system to share that key among the peers.



3 Related work

In this Chapter we discuss the related work in the area of distributed file systems. We
also briefly discuss the related work in the area of cryptography, which is of interest when
considering distributed file systems.

3.1 Distributed file systems

Many distributed file systems have some kind of integrated user management. Unfor-
tunately, many of these systems use assumptions that no longer hold true for fully
decentralized distributed file systems. Systems like NFSv3 [16], NFSv4 [72], AFS [38] or
NASD [31] either use host-based authentication or third-party authentication like Ker-
beros [59] to provide security. These systems require the storage server to be trustworthy
and furthermore require a central entity for authentication.

In contrast, most fully decentralized file systems do not have any kind of user manage-
ment. Many of them allow anyone to read the data in the file system; typically only a
limited group of people is able to modify the data. This is especially true for many of
the early systems. For example, CFS [20] uses a file system layout that is inspired by the
directory service proposed by Fu et al. [28], where only one person can write to the file
system, and everyone who has read access can read all data in the system. Nevertheless,
the file system layout used in CFS has got certain similarities to our approach.

There are also systems like e.g. Total Recall [11], which have another focus: They aim
at data availability and do not offer any kind of user management, because it is out of
their respective scope.

In the following sections, we briefly discuss the most prominent distributed file systems
that include some kind of user management. For each system, we also describe the
differences to our approach.

3.1.1 Ivy

The Ivy file system [57] is a multi-user read/write peer-to-peer file system without
centralized or dedicated components. Ivy is a log-based file system, where each log
contains a change set for the file system. Each entry is signed by a user. The logs are
stored in the DHash [19] distributed hash table.
A participant finds data by consulting all log entries and performs modifications by

appending them to its own log. It is possible to exclude a malicious user’s changes from
the file system by not accepting their log entries; however this can lead to inconsistencies
in the file system that have to be resolved manually.
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Other than that, there is no user or group management; each user may read or write
every file in the file system. Thus Ivy only has a very basic kind of user-management in
comparison to our much broader approach.

3.1.2 OceanStore

OceanStore [46, 12, 66] is a global persistent data store. It has been designed to scale to
billions of users. OceanStore assumes that any server in the infrastructure may either
crash, leak information or become compromised.

OceanStore supports access control via file-based ACLs. Writes are only committed if
a quorum of servers accepts the write operation. Revocation requires data re-encryption.
Unlike our system, OceanStore partially relies on trusted servers for writes and for
consistency management.
Unfortunately,the description of how access control lists are handled in OceanStore

is very vague. Groups are apparently handled, however there is no detailed description
of how group cryptography works in OceanStore. It is also assumed that a certain set
of nodes is mostly available and reliable. This assumption does not hold in a pure P2P
setting.

3.1.3 SiRiUS

SiRiUS [32] is a secure file system that has been designed to be layered over an insecure
network and P2P file system. SiRiUS assumes untrusted storage and implements read
write cryptographic access control for file level sharing. Access control information is
stored together with the file data on the servers. The file is split into a data and a meta
data part.
Unlike our system, SiRiUS heavily depends on asymmetric cryptography. Each user

maintains a key for asymmetric encryption and a signature key. Each file has a unique
symmetric encryption key and a unique signature key. Possession of the encryption key
gives read access to the file, possession of both keys read-write access.
Freshness of the file system is guaranteed using a hash-tree. Because of this, each

change has to propagate to the root-directory.
In contrast to our system, SiRiUS does not provide support for groups of users. Instead,

access to a specific file can be given to a set of users manually. SiRiUS does not try
to provide a unified file system to a set of users, instead each user owns a separate file
system. These systems can be combined with union-mounts, but this approach requires
searching the file system of every user that has access to a specific file for the most recent
version. SiRiUS is prone to certain kinds of rollback attacks. The freshness guarantees
in SiRiUS only apply to the meta data. Hence, data files can be reverted to a previous
revision because the previous revision also has a valid signature. It is, however, impossible
to revert permission changes on files. Only the file content can be reverted to a previous
revision. A method to prevent such rollback attacks is presented in the paper – however
it has scalability problems. It has a complexity of O(n) with n being the number of users
that can write to the file.
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Another problem of SiRiUS is user revocation. When a reader leaves the group all files
in the group have to be re-encrypted.

3.1.4 Plutus

Plutus [42] introduces a key rotation scheme, which enables users to share files for reading
or writing in a cryptographically secure way. Files with the same access rights are grouped
in file groups. Keys for a file group are rotated forward by the file group owner using the
RSA decrypt operation with a private key. Keys can be rotated backward by users using
the RSA encrypt operation and the public key. Every user who possesses the current file
group key can determine all the previous file group keys. Hence, the scheme does not
require re-encryption of data upon user revocation, but only the owner can generate new
versions of this key.

Unlike our approach, however, Plutus can neither handle groups, nor offer protection
against rollback attacks. It also depends on asymmetric cryptography.

3.1.5 Celeste and Pacisso

Celeste [9, 17] is a highly-available, ad hoc, distributed, peer-to-peer data store. Celeste
itself does not support file level security, however [45] [see also 44] describes a security
model named PACISSO, which is layered on top of Celeste.

Unlike our approach, PACISSO needs active online nodes participating in it’s protocol
to function. An object owner designates a number of gatekeepers, which are responsible for
granting read or write access to her data. If enough of these gatekeepers are compromised,
they can deny legitimate read accesses or allow unauthorized partys to change the objects
under their control (i.e. they can change, but not read any stored data of the object
owner).

PACISSO uses a secure version identifier to determine the most current version of an
object. This is similar to the way the most recent file system revision is determined in
IgorFs.

3.1.6 Other systems

The Pastis file system [15] uses certificates on a per-file basis, which does not scale very
well. Also, Pastis does not provide read-protection of any kind [15, p. 1178].

The Distributed Reliable File System [64, 65] is a distributed, decentralized read-write
p2p file system. It is based on the TomP2P DHT [76], which uses a Kademlia [52] based
routing protocol. It features support for multiple writers, however it does not support
any kind of read- or write-protection.

Secure Network Attached Disks (SNAD) [56] requires server support to enforce security.
It furthermore depends on timestamps to prevent replay attacks. Timestamps are
impractical in P2P settings because clocks are often not synchronized.
The Secure Untrusted Data Repository (SUNDR) [49] also require server support

to enforce security. Furthermore, SUNDR only addresses data integrity but not data
confidentiality.
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The Keso File System [7] uses public key cryptography to secure directories. It partially
relies on other nodes to be online to verify the validity of newly inserted information.
The node that is responsible for the Id at which the new version of a directory is saved
has to verify that the changes to the directory are valid. If this node is malicious, parts
of directories can be tampered without anyone else noticing, unless they retrieve the
whole change history for a specific directory.

Freenet [18] is a P2P network that permits the anonymous publication, replication and
retrieval of data. Access control is not a part of the system design.
The Farsite distributed file system [3] uses an encryption process that enables other

users to verify the validity of the directory entries without decrypting the data block.
This approach is also mentioned in [23]. Unfortunately, this approach also depends on a
central entity. This so-called directory group consists of several clients in the file system
that are trusted to a certain extent. A directory group decides if a write request is
legitimate and may be committed to storage.
Cepheus [29] uses a key server for group key distribution. It also relies heavily on

asymmetric cryptography. Furthermore, the design is not a pure P2P design but depends
on storage servers.

Another notable approach is Wuala [80]. It uses cryptrees [34] to securely encrypt files
and directories and manage the access to these items. But the cryptree approach has
some distinct disadvantages because it assumes that a person that can read a directory
can read any subdirectories of this directory, too. The same problem also applies to write
operations.

3.2 Cryptographic algorithms

IgorFs uses both, symmetric and asymmetric cryptography. Asymmetric cryptography is
typically only used to sign data. This section will give a short overview over the different
cryptographic algorithms that are used in IgorFs. Due to the modular architecture of
IgorFs all cryptographic algorithms in IgorFs can easily be replaced by other algorithms
when they are e.g. found to be insecure.

For information about alternative cryptographic algorithms, that are not used in this
paper but could alternatively be used to implement some of the still missing security
features please see Section 9.3.

3.2.1 Hashing Algorithms

IgorFs uses the SHA-1 [24] and SHA-256 [62] algorithms to generate content hashes. At
the time of writing, these are among the most widely used hashing algorithms. They are
generally accepted to be secure.

3.2.2 Symmetric encryption

We use AES [37, 61] with 128 bit keys as the symmetric encryption algorithm. At the time
of writing, AES is the standard symmetric cipher used in nearly all current applications,
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for example to secure HTTP connections.

3.2.3 Signatures

We use Elliptic Curve Cryptography (ECC) signatures, because they provide approx-
imately the same security as traditional signature algorithms such as RSA [68, 67] or
ElGamal [26] while requiring significantly shorter keys.

E.g. to achieve the same level of security as 1024-bit RSA, ECC requires a key size of
only about 171-189 bits [79, p. 4]. Furthermore the complexity of the operations is much
lower than for traditional algorithms [25, p. 340].

In IgorFs, we chose to use the Curve P-348 [60, p. 32], with a key length of 348 bits. It
was specified by the NIST for use by US government entities. We use the Elliptic Curve
Digital Signature Algorithm (ECDSA) [2] to generate our signatures.

To sign our data, we always first hash the contents with SHA-1. The resulting hash is
then signed with ECDSA.

SHA-256 is not used for the content-hashes for speed reasons - it is significantly slower
than SHA-1. SHA-256 is used for the generation of keys for the subset difference algorithm
discussed below.

3.2.4 Subset difference revocation

IgorFs requires the encryption of messages for a variable group of participants at several
places. New versions of the root-block are for example encrypted in a way that enables
only current subscribers to the file system to decrypt it. It should be easy to add and
revoke members of existing groups.

To achieve this goal we use the Subset-Difference (SD) revocation scheme1, which has
been proposed by Naor et al. in 2001 [58]. This scheme allows a publisher to send an
encrypted message that every authorized receiver can decrypt but none of the revoked
receivers can.

The basic scheme proposed by Naor et al. has the following properties: The receivers
are stateless, i.e. they do not have to save any information. The scheme requires the
receivers to store 1

2 log
2N keys. The message length is at most 2r keys, with r being

the number of revoked users. It should be much shorter for most cases. The algorithm
guarantees complete security, even if all revoked users collude their keys [50]. The
computing requirements are O(1) for the receiver and O(r) for the sender.

There are several papers handling extensions to this scheme to make it more efficient for
different kinds of operations. Halevy and Shamir [36] e.g. describe a scheme that allows
the definition of a subset of users by a nested combination of inclusion and exclusion
conditions. The number of messages (or the message length) is proportional to the
complexity of the description rather than the size of the subset.

See [4] for a more in-depth explanation of the encryption scheme and it’s use in IgorFs.

1The algorithm is also e.g. used in BluRay Discs. The encryption system used there is called AACS
(Advanced Access Content System) [1].
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In our scenario, multiple, cryptographically separated file systems can share the network
and the attached storage capacity. Each file system is controlled by a so-called file system
superuser. The superuser creates the file system, generates the keys for new users and
groups, adds users to groups, removes users from groups, and removes users from the file
system. This is very similar to the certificate authority (CA) in public key infrastructure
schemes. The superuser typically is the system administrator of an institution.
The superuser is not a centralized component in our file system because it does not

have to be online and it is not bound to a specific physical machine. The superuser
simply is the only person who has the keys that are needed to perform some special
operations, which are restricted to the root user in traditional Unix systems.

Anyone can start his or her own file system by generating a new set of superuser keys.
All such separately created file systems are separated beyond the scope of the access
rights described in this paper: neither the superuser nor any user can access the content
of another file system. Nevertheless, the encrypted data may share the same underlying
storage, so that (partly) identical files can be stored efficiently.

According to our design goals, this is not a security problem. It is rather a consequence
of the encryption used by the underlying peer-to-peer storage, which was already briefly
discussed in Section 2.3. In our system, the same data will always yield the same
encrypted data block. This means, that if you know the unencrypted data, you can prove
that a specific node is saving an (encrypted) copy of the data. If this is of concern, a
different underlying block encryption algorithm must be used. In our system, it remains
however open, whether the node just caches a copy, or if it actually read its content.

Our architecture consists of two tightly connected parts: The data integrity protection
and the data confidentiality protection. Because of their complex interactions, we will
explain them first briefly in the two following sections of this chapter and then again in
more detail in Chapters 5 and 6.

4.1 Data integrity

Our first goal is data integrity: We want to be able to detect illegitimate modifications of
data when accessing the file system.
It is well known [53] that in a fully decentralized system manipulations of files or

directories cannot be entirely prevented. To implement this, it would be necessary to
check each change of the file system for validity at the moment the change happens.
This is impossible without a trusted central authority that can give us the latest state of
the file system. Instead, each client has to check the files for inconsistencies on its own.
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A rollback can only be noticed when, e.g., a client that has already seen more recent
changes to the file system notices that they have been reverted. In file systems with
a large number of concurrent users, it is a sound assumption that such manipulations
will be detected very quickly; in file systems that are only accessed very rarely such
manipulations could go unnoticed for a long time.
Our system prevents rollback attacks in the sense that it is able to guarantee that a

client that has the knowledge of a current file will never accept an older revision of the
file and show it to the user. It also prevents malicious nodes from only showing selective
new files to a client. If a node sees a current file change of another user, it can also verify
the current state of the other files owned by this user.
In order establish this system, we change the directory structure in a way that is

transparent to the user. For the user, everything looks like a traditional Unix directory
structure (cf. Figure 5.1). We call this structure that is exposed to the user the external
directory structure.
Internally, the file system uses a completely different structure to save the directory

hierarchy. We call it the internal directory structure. This internal structure is mapped
to the external directory structure on the fly, i.e. when a user accesses the file system.
It is never directly exposed to the outside. The internal directory structure contains
more information than the external directory structure. This information is needed to
implement the security features.
The internal structure is enhanced as follows (cf. Figure 5.2): each user is assigned a

user-root directory. It contains all the files belonging to that user. It does not contain
files of other users. The user-root directory of each user contains a version number, which
we can use to check each file in the directory for validity.

The different user-directories are glued together with redirects. That means that, if a
user directory seems to contain a file belonging to another user, it contains in fact only
an invisible link pointing to the real file location within the other user’s invisible internal
directory.
This integrity protection scheme will be explained in more detail in Chapter 5.

4.2 Data confidentiality

As a second step the data integrity architecture introduced in the previous section is
extended with a new method for keeping the data in our file system confidential
To this end, we add a dedicated group-root directory for each group in the system.

Each group-root directory is split into a private and a public section (cf. Figure 5.2).
The public section can be read by anyone, the private section is encrypted and can only
be read by group members.
The (Id, Key)-tuples for each file in our file system are encrypted using symmetric

cryptography, unless the files are world-readable.
For each file, there are two different encrypted pointers. The first pointer resides in

the home directory of the user (see previous section). If the file is world-readable, this
pointer is not encrypted; otherwise the pointer is encrypted with the user’s private key,
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Name Type Use Generation

Ku symmetric user encryption key by superuser on user generation
Su asymmetric user signature key by superuser on user generation
Kg symmetric group encryption key by superuser on group membership change
Sg asymmetric group signature key by superuser on group membership change
Du symmetric user key by superuser on user generation
Kd symmetric directory forward key by user or group on directory write
Id, key symmetric data chunk key by client upon write

Table 4.1: Keys used in the file system

so that only the user in question can decrypt the file.
A second copy of the pointer is placed in the group directory; in the public section if it

is world-readable or in the private section if it is only group-readable.
If a file is modified by the file owner, the pointers in the home directory as well as in

the group directory are updated. If another group member updates the file, only the
entry in the group directory is updated.

Thus, if a node wants to access a file, it has to check both entries and choose the one
that has been updated most recently.
Using this structure, we can map most of the Unix permissions to our file system. A

detailed analysis of this approach will follow in Chapter 6.

4.3 Client keys

The cryptographic keys used in our file system are shown in Table 4.1. The cryptographic
algorithms used with these keys were discussed in Section 3.2.

Each user has a symmetric user encryption key Ku and an asymmetric user signature
key Su. Both keys are generated by the superuser when the user is first added to the file
system. Ku is used to encrypt the user’s private data. This key may never be divulged to
another node. Su is used by the user to sign the user’s changes to the directory structure.
The private portion of this key may never be divulged to another node.

Each group in our file system has a symmetric group key Kg. This key is generated
by the superuser when the group is first created. It is regenerated by the superuser
upon each change in group membership. This is done to prevent new users from using
the cryptographic material to read old data that has already been deleted from the file
system. It also prevents old users that have been revoked from the system to read new
material written to the file system.
The group signature key Sg is handled accordingly.
Each user has a set of subset difference keys Du, which is generated by the superuser

when the user is first added to the file system. The subset difference algorithm was
discussed in Section 3.2.4.
Kg and Sg are encrypted using the subset difference algorithm. The encrypted keys are

stored in the file system. The exact storage locations are shown in Section 5.2. Current
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members of g can use Du to decrypt Kg and Sg. Thus, every group member can retrieve
the current group key directly from the file system.

Each directory has a forward directory key Kd which is a simple symmetric key that is
regenerated on each directory write operation. The exact function of this key will be
discussed in Section 6.2.
The (Id, key)-tuples for data chunks were discussed in Section 2.3.2.



5 Data integrity

This chapter gives an in-depth explanation or our new internal directory structure which
we have briefly introduced in Section 4.1

This structure protects the file system against several types of attacks. Most promi-
nently the file system has to be aware of any unauthorized manipulations of files or
directories. If it detects a manipulation, it simply aborts with a read error and output
an error message.
Alternatively, we could have chosen to revert to an earlier revision of the file system,

where the manipulation is not present. This has the advantage of being fully transparent
to the user. However, the user won’t notice she is working with an outdated file system
revision. Even worse, if the user makes changes to the file system, the other clients might
not accept the new revision due to the still present inconsistencies. Hence we did not
choose this alternative.

5.1 Splitting the directory-tree

As described in Section 5, in our file system, the internal directory representation of the
file system differs from the externally visible structure. To the outside, the directory
structure still looks like the normal Unix directory structure shown in Figure 5.1, but
internally our file system uses shadow-directories that contain the actual files. Redirects
make them visible in their respective directories.
Each user is assigned an individual user-root directory ru, which contains only the

user’s own files. Every group gets assigned an individual group-root directory rg, which
contains all files belonging to the group. Each file and directory in the file system has a
version number v, which is incremented upon each change.

Because each file has an owner and a group, files are can be present two times in the
directory structure. This does not impose a significant storage overhead because only the
pointers to the data are stored in the directory structure, the actual data still is present
only once on the node.

In order to map the normal Unix directory structure to the new internal structure, we

    

Figure 5.1: Normal Unix directory structure
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use redirects. A redirect R is an internal file system construct similar in functionality to
a soft link or symbolic link in Unix. Formally, R is an n-tuple, pointing to one or more
other objects in the file system, i.e. files, directories or symbolic links. A redirect may
not point to another redirect. When encountering a redirect, the file system internally
resolves it and returns the referenced data. The redirect is thus invisible to the user of the
file system. The resolution of redirects depends on the type of object that is referenced.

Redirects are used in two cases in our file system. For directories, a redirect is typically
a 3-tuple1, pointing to the directory locations in the user-root and in the public and
private parts of group-root. When encountering such a redirect, the file system reads the
referenced directories, merges their entries, and eliminates duplicates by removing the
items with the lower version numbers.
For other objects like files or symbolic links, R is typically a 2-tuple, pointing to the

object locations in the user- and group-root. The system returns the item with the higher
version number in this case.

5.2 Example directory structure

Figure 5.2 shows this new directory structure for our example directory layout. The
internal root directory contains a .users directory, which in turn contains all the user-
root directories. It also contains a .groups directory, which contains all the group-root
directories. Finally, it contains a .keys directory, which contains the encrypted access
keys for group access, which were introduced in Section 4.3.
When a node accesses the file system, it first accesses the visible root-directory. It is

contained within the user-root of the superuser and is named “/ ”. This directory has
a redirect pointing to the real home-directory, so that it seems to have a subdirectory
named home. In reality, home is not a subdirectory of this directory, but a subdirectory
of the user-root of the superuser. (The group links have been omitted for this directory.)
The home-directory then contains the entry susan, which once again is just a redirect
to a directory inside the user-root of the user. The home-directory in turn contains the
Documents directory. For this directory all three redirects are shown. One points to the
user-root. The other two point to the public and private directories within the group-root.
According to their permissions, files are placed in either one of these directories in addition
to the user-root.
When a user accesses the Documents directory within the home directory of the user

Susan, she will follow the three parts of the redirect and retrieve the Documents directory
in the user-root of Susan, in the public part of the group-root and if she is a member of
the group also the Documents directory in the private part of the group-root.

Assume a file named paper.pdf that is stored within the Documents directory. Because
of its access permissions, the file pointers are stored once in the user-root and once in
the public group directory. When a user wants to access the file, she has to check, which
version of the file is more recent. To this end, the version numbers of both files are

1See Section 6.6 for all possibilities.
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Figure 5.2: Internal directory structure

compared and the more recent pointers are returned. Note we use version numbers not
timestamps. Hence we do not require any clock synchronization.

5.3 Securing the user-directories

The state of each user directory is secured with a Merkle-tree [54, 55].
We already established that each user has an own root directory ru with a version

number v(ru). We use a hash tree to secure the directory contents of all subdirectories of
ru.

Depending on the access permissions of a file, different bits of information may not be

Type Name Owner Group Permissions Version Location Forward Key

Redirect Documents susan staff rwr-r- 12 targets B2A8342...
File Secret susan staff rw---- 5 E(Id, Key)
File Calendar susan staff rwr-r- 6 (Id, Key)
File Share susan staff rwrwrw 95 (Id, Key)
File Feedback susan staff rwrw-- 40 E(Id, Key)

Table 5.1: Example directory entries for /.users/susan/susan/
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Attribute Hashed Description

Name Always The object name
Type Always The object type
Device Always The object device number (if device)
Mode Always The object mode
Owner Always The object owner
Group Always The object group
Size Partially The current object size
Access time No The last object access time
Creation time Always The object creation time
Modification time Partially Time of the last modification
Content pointers Partially Pointers to the object contents
Forward Key No Directory Forward key (cf. Section 6.2)

Table 5.2: All file attributes and their protection

modified by another user. For example a user without write-access to a directory may
not change the name of a file. All attributes that may not been changed are combined
into a hash-value (see Table 5.2).

The resulting value is saved in the parent directory, which is hashed again. This process
is repeated in turn until we arrive at the user’s user-root directory. In this directory, the
hash-value is also computed and then signed with the user’s signature key Su.
When a directory entry changes, the hashes have to be recomputed along the path

from the directory to the root (i.e. in all the parent directories of the changed directory).
Assume e.g. that Susan changes the file paper.pdf (shown in Figure 5.2). Because of this
change, the entry in the directory Documents changes and thus the hash-value of the
documents directory also changes. These changes propagate up the directory tree. Since
the hash-value of the user-root of Susan also changes, she has to sign it again.

The validity of each directory entry can now easily be verified by checking the signature
of the user-root and the hash-values of the subdirectories.
Figure 5.2 shows the hashes above the directory names. The directories with signed

hashes are drawn with a shaded background.

5.4 Calculating the hashes

Table 5.1 shows a few example directory entries of the home-directory of Susan. All
values printed in bold are secured by the hash-tree, all other values are not part of the
hash-tree.
For files that can only be written by Susan herself (Secret and Calendar) all the

information about the file is included in the directory hash. Any manipulations of the
meta data of these files will invalidate the hash.
For files that are writable by everyone (Share), the version and the location pointer

are not protected by the directory hash. Every user may change the file contents by
adjusting the content pointer and increment the file version number.
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For files that are writable by the group (Feedback), all the information is protected.
The group members can change the file contents in the group-root, but they cannot
change the content in the user-root.
For redirects (Documents), all information about the redirect is protected with the

exception of the version number and the forward key, which will be discussed in Section 6.2.
The group-roots are secured in exactly the same way as the user-roots. They are signed

with the group signature key Sg instead of the individual user signature key Su.
The tables in Section 6.6 show a detailed list of all possible file access rights combinations

and which protection is used in which case.

5.5 Rollback attacks

A rollback attack is an attack in which current data in the file system is replaced with
data that has previously been written to the system, without anyone noticing.

As we have already said, every object in our file system has a version number v attached.
Thus, all user-roots and group-roots also have a version v. All clients track the version
numbers of all user- and group directories that they access. If a client notices that the
version v(r) of a directory has been decremented since the last access, the directory
was illegitimately modified by a replay attack. In this case the user can be notified, for
example by sending messages to the system log server.
This approach fully prevents rollback attacks for user-root directories. A client will

never accept a version version with a decremented value of v, all files within a user-root
are protected with a content-hash and both the hash and v are signed by the owner.
In group-root directories, rollback attacks are still possible by other group-members:

Assume the head version of the group directory is vcurrent. If a node with group access
is presented an old version vold, it does not notice the manipulation, unless that node
has already read a version v� with v� > vold. If an adversary takes an old version and
modifies the group directory sufficiently often, namely until it has produced a version
vnew with vnew > vcurrent, all other nodes in the file system would accept that version.
I.e. the adversary has successfully performed a rollback attack and removed a change of
another node from the version history.

5.6 Fork consistency

Rollback attacks in distributed systems have already been discussed extensively in the
literature [53]. The maximum level of consistency that can be achieved in a system like
ours is called Fork Consistency or also Fork Linearizability: “Fork consistency is the
strongest notion of integrity possible without on-line trusted parties.” [49, p. 124].

Fork consistency means that a malicious server can fork a file system at a specific point
of time and not show modifications made by other nodes. A node that only receives
information from the malicious server cannot tell that it obtained an outdated instance
of the file system. It is impossible to prevent this kind of attack without an online third
party. The node could consult this third party and ask for the most recent file system
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revision. However, the server may never show any other update to the target client and
it may also never show any of the target client’s modifications to the network. In such a
case, the target client and the other clients cannot detect the maliciousness of the server.

Fork consistency can be added to our file system structure just as it was done in [49]:
All user-roots and all group-roots are extended with a version vector that contains the
versions of all users and groups. Upon each write, a user increments her user-root version
and updates the version vector. Upon writing to a group, the group-root version and
version vector are also updated. Thereby, an attacker can only fork the file system. The
attacker cannot create inconsistencies.

To avoid the overhead of the version vectors, we recommend to implement this extension
only if it is actually needed.



6 Enforcing permissions cryptographically

In this section, we describe how the file system enforces the actual file permissions. I. e.
we explain how users may change the integrity protected meta-information according to
their access rights.
In Chapter 5, we already covered that the locations at which an object is stored

depends on the access rights of the object. In the first section of this Chapter, we describe
how access permissions are enforced for files and symbolic links. The second section
describes the access protection for directories.

6.1 Enforcing permissions for files

As discussed previously, each file stored in the file system can either be readable by the
owner, by the owner and the group, or by everyone who may access the file system. The
location of the file in our directory structure depends on its access rights.

We already established that all files that belong to a user u are located somewhere in
her user-root-directory ru. Each user has an encryption key Ku and an signature key
Su (see Table 4.1). Likewise, as we already discussed in Section 4.2, each group has a
group-root, just like the user-roots for the user directories. The .groups directory is split
into two subdirectories, named public and private.
All entries in the public directory are stored unencrypted. The pointer to the private

directory is encrypted with the symmetric group key Kg (see Table 4.1). Kg is encrypted
using the subset difference scheme presented in Section 3.2.4 and stored in the .keys
directory. All current group members can decrypt it. The same holds true for the group
signature key Sg.

The decision graph in Figure 6.1 shows where a file that belongs to the user Susan and
to the group staff is located, depending on its access rights. It also shows if the pointers
are stored encrypted or in plain text.

For files that are only readable by the owner, only a single pointer encrypted with Ku

is placed in the user-root. The owner can decrypt the pointer using Ku and read the file
contents. An example for this is the file diary.txt in Figure 6.2.

For files, that are readable by the owner, a second pointer is placed in the private part
of the group-root. The owner can still decrypt the pointer using Ku via her user-root.
Group members can access the private part of the group-root using Kg and thus also
access the file pointer. An example for this is the file meeting.txt in Figure 6.2.

In case this file is also writable by group-members, group members cannot change the
pointers in the user-root. They can only change the pointers in the group-root. All users
accessing the file have to search the user-root and the group-root for the most recent file
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Figure 6.1: Decision graph for file and symlink locations

version. An example for this is meeting.txt in Figure 6.3 where the second set of pointers
no longer points to the same data as the pointers in the user-root.

For files that are world-readable, the file-pointer in the user-root is stored unencrypted.
If the file is also group-writable, a second pointer is stored in the public part of the group
root. An example for this is contact.txt in Figure 6.3. If the file is world-writable, this
second pointer is not necessary because everyone may change the contents directly in
the user-root. In this case, the content-pointers are not protected by the hash-tree (see
Section 5.4).

6.2 Forward keys

In Unix systems, a file or directory may only be read, if the user has access to all
directories along the path up to and including the object in question. The file system
structure presented here allows a user in certain conditions to access files he/she should
not be able to access.

Figure 6.4 illustrates the problem with an example: There, the home-directory contains
a directory named susan, which is private to Susan. It contains a directory named
Documents, which happens to be public. In a normal Unix system, we would not be able
to access this directory because we cannot access the parent directory. In the system
described so far, we could circumvent the encryption and access the Documents directory
directly.
To prevent such an access via the hidden directory structure, we add a directory key

Kd to each directory in the structure. This key is used to encrypt the directory contents.
It is stored in the visible parent directory. Because each directory (except for the root
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Figure 6.2: Example directory structure

   

  

 








Figure 6.3: Example directory structure
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Figure 6.4: Evading access restrictions without forward keys

directory) has got exactly one parent directory, there is exactly one key for each directory.
In our example, the directory susan is encrypted with the directory key of the home
directory Kd(home), and with the user-key. Documents is encrypted with the Kd(susan)
key.

Thus, a user now can only access the Documents directory if she can access the susan
directory that contains Kd(susan). Kd is changed on each write operation to a directory
to prevent users who may no longer access a directory from gaining unauthorized access.

6.3 Enforcing permissions for directories

Using the forward keys established in the previous section we can enforce permissions for
directories.
For a directory, which is only readable by it’s owner, the directory forward-key is

encrypted with Ku. Hence, only the owner can read the directory contents.
For a directory that is readably by the owner and the group, a second redirect is placed

in the private-part of the group-root. The owner can read the directory by following the
redirect in her user-root and decrypting the forward-key. Group members can read the
directory by following the redirect in the group-root.
For a world-readable directory, the directory forward-key remains unencrypted.

6.4 Files stored in foreign directories

If a group-member that is not the owner of the current directory creates a new file in a
group-writable directory, the group-member cannot add the file to the user-root of the
directory owner. In this case, the file has to be stored in a different manner: If the file
is only readable by the writer herself, she creates a redirect to the actual file location,
which resides within the user-root of the writer. The redirect is created in the public
part of the group-root. The file pointers in the user-root of the writer are encrypted with
Ku. Figure 6.5 depicts an example for this case.
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Figure 6.5: Private file in a foreign directory

   

  

 


 








Figure 6.6: Group-readable file in a foreign directory

   

  

 


 








Figure 6.7: Group-readable file in a foreign directory, which is no longer writable
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If the file is readable by the writer and the group, the writer stores the file pointers
in the private part of the group-root in addition to her user-root. If the file is also
group-writable, the pointers are only stored in the group-root and no copy is kept in the
user-root. If the file is only group-readable, but not group-writable, a second entry is
created in the writer’s user-root, which is encrypted with Ku. The entry in the writer’s
user-root also contains a hash of the entry in the group-directory. The validity and
freshness of the group-directory entry can then be verified by checking the entry against
this hash. Otherwise, each group-member could mount a rollback attack against the file.
In every case, the writer creates a redirect in the public-part of the group-root to let
non-group-members see that there is a file in the directory, which they cannot read. Note
that if the directory is group-writable, each group-member still can simply delete the file
from the directory by removing it from the group-root. This is normal Unix behavior.
Figure 6.6 depicts an example for this case.

If the file is readable by everyone and not writable by anyone but the writer, she creates
a redirect to the real file location in her user-root in the public part of the group-root.
The file pointers in the user-root are not encrypted.

If the file is readable by everyone and writable by the group members, the user stores
the file pointers in the public-part of the group-root. All group members can change the
content pointers without invalidating the hash.
If the file is readable by everyone and writable by everyone, the user stores the file-

pointers in the public part of the group-root. The file pointers are not included in the
directory hash and everyone may change them.
When the directory owner (or the file system superuser) later decide to remove the

group-writable flag from a directory, files may no longer be added or removed from the
directory. When the group-writable flag is removed, the file system creates a redirect
for every object that does not belong to the directory owner in the directory owner’s
user-root. This redirect assures that these files can no longer be removed from the
directory without invalidating the directory tree.

6.5 World-writable directories

In world-writable directories, everyone may create files. Existing files may be deleted or
moved to another directory even if the user does not own them and may not access their
contents.

For directories, the situation is different. Like for files, everyone may create and move
directories. In classical Unix systems, everyone may remove empty directories, even if
the writer has no access to the directory contents. Non-empty directories may not be
deleted. However, a user still may move the directory to a place in the filesystem which
only he/she can access. In practice, this is very much equal to the directory being deleted
because the directory entry is gone and cannot be found by other users.
In our file system, directory entries are only redirects to the real directory locations.

For world-writable directories, we simply do not protect these redirects. Subdirectories
of a world-writable directory can thus be “deleted” by removing the redirect. In our
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opinion, this is no different than the situation in current Unix systems where everyone
may move data to a hidden, inaccessible location.

6.6 Pointer locations

In the preceding sections, we have explained the way in which our scheme enforces file
permissions. Tables 6.1 and 6.2 show all possible combinations of user access rights
and where which pointers are stored. Table 6.1 shows where which type of pointer is
created in all the different possible permission combinations when a directory is not
world-writable. Table 6.2 shows the same for a world-writable directory.

As discussed in the previous sections, the locations where pointers are created depend
on the following properties and conditions:

• the object owner and the object group.

• the object permissions

• the object type (file or directory)

• the owner and the group of the parent directory

In the tables we use the following abbreviations:

• PD means: parent directory

• GR means: group-root

• R means: file is readable

• W means: file is writable

• P means: file pointer

• E(P) means: encrypted file pointer

• +H means: pointers of entry are protected by hash-tree

Because of the complexity of the file permissions we need to provide, a few additional
notes (see corresponding Table 6.1):

1. If the directory containing the file/redirect has another group, these pointers are
stored in the group-root of the file/redirect group.

2. The pointers are stored in the user-root of the file owner, not in the user-root of
the directory owner. They are looked up via the redirect in the public part of the
group-root, which is visible to everyone accessing the directory.

3. To prevent a rollback attack launched by a group-member, the encrypted pointers
in the user-root also contain the hash of the pointers saved in the private part of
the group-root. The freshness of the pointers can be validated by checking the
user-root entry.
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Type PD has PD Access by Pointers in

same owner writeable Group All User-root Public GR Private GR

File owned by parent directory owner
File Yes Yes - - E(P)+H - -
File Yes Yes R - E(P)+H - P+H1

File Yes Yes W - E(P)+H - P+H1

File Yes Yes R R P+H - -
File Yes Yes W R P+H P+H1 -
File Yes Yes W W P - -

Directory owned by parent directory owner
Dir Yes Yes - - E(R)+H - -
Dir Yes Yes R|W - E(R)+H - R+H1

Dir Yes Yes R|W R|W R+H - -

File not owned by parent directory owner, write via group
File No Yes - - E(P)+H2 R+H4 -
File No Yes R - E(P)+H2 R+H4 P+H1,3

File No Yes W - - R+H4 P+H5

File No Yes R R P+H3 P+H5 -
File No Yes W R - P+H5 -
File No Yes W W - P -

Directory not owned by parent directory owner, write via group
Dir No Yes - - E(R)+H2 R+H4 -
Dir No Yes R|W - E(R)+H2 R+H4 R+H3

Dir No Yes R|W R|W R+H2 R+H4 -

File not owned by parent directory owner. Parent-directory is not writable6

File No No - - E(P)+H7 - -
File No No R - E(P)+H7 - P+H1

File No No W - R8 - P+H1

File No No R R P+H7 - -
File No No W R R8 P+H1 -
File No No W W P7 - -

Directory not owned by parent directory owner. Parent-directory is not writable6

Dir No No - - E(R)+H7 - -
Dir No No R|W - E(R)+H7 - R+H1,3

Dir No No R|W R|W R+H7 - -

Table 6.1: Pointer locations for non world-writable directories. See Section 6.6 for an
explanation of the abbreviations
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Type Access by Pointers in

Group All Directory User-root Public group-root Private group-root

F - - R E(P)+H - -
F R|W - R E(P)+H - E(P)+H
F R R R P+H - -
F W R R P+H P+H -
F W W R P - -
Dir - - R E(R)+H - -
Dir R|W - R E(R)+H - E(R)+H
Dir R R R - - -
Dir W R R - - -
Dir W W R - - -

Table 6.2: Pointer locations for world-writable directories. See Section 6.6 for an expla-
nation of the abbreviations

4. If the directory containing the file/redirect has another group, these pointers are
stored in the group-root of the parent directory owner.

5. If the group of the file differs from the group of the parent directory, the group-root
of the parent directory group still contains a redirect pointing to the entry in the
entry in the group-root of the file group.

6. This situation can occur if a directory was group-writable or writable by everyone
and later the permissions were changed by the directory owner or the file system
superuser. When the mode is changed the file system automatically creates the
redirects in the user-root of the directory owner.

7. The encrypted pointers are stored in the user-root of the file owner. In addition,
the user-root of the directory owner contains a redirect to the user-root of the
file-owner. This redirect is created by the directory owner when she changes the
mode of the directory to no longer allow arbitrary file creation. The redirect can
also be created by the superuser.

8. In this case, the redirect is only located in the user-root of the directory owner.
The actual pointers are only stored in the private group root because each group
member may change the file as she wishes, anyway. File deletion is prevented by
the redirect entry.

In Table 6.2, the real directory always contains a redirect only. For files, this redirect
always points to either only the user-root or the user- and group-roots where the (perhaps
encrypted) copy of the file can be found. For directories, this redirect either points
to the user-root or the user- and group-roots where the (encrypted) redirect to the
actual directory can be found. If the access is not restricted, the redirect points to the
destination directory.
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Due to the complexity of implementing the said approach directly in the IgorFs source
tree, we have implemented the first proof of concept version of our file system as a Perl
application. This approach has the advantage of allowing us to quickly try out changes
in the functionality. Additionally, we do not have to deal with things like thread safety
because unlike IgorFs, the Perl application is single-threaded. We also ignore concurrency
issues like the concurrent access of different clients, etc. which do not have any association
with the cryptographic problems but only make the implementation more difficult.

Figure 7.1 shows how our proposed cryptographic extensions can be added to a system
like IgorFs.

The different modules of IgorFs were already briefly discussed in Section 2.3. In IgorFs,
the file system calls which have been received from FUSE or NFSv3 are sent to the
internal messaging system. Without our new additions, these calls are directly forwarded
to the File and Folder Module. The File and Folder Module either answers the requests
directly or sends them on to the Directory Handler. The Directory Handler is the part of
the system that can return the block identifiers of a file system object when it is given a
pathname.
When using our new cryptographic scheme, translations have to happen at several

layers of the file system. File system calls are not sent directly to the File and Folder
Module; instead they are passed through a translation layer that converts the requests
from our external directory layout to requests in the internal directory layout. The
directory handler is complemented with a cryptographic extension that can decrypt
directory entries to which the node has access. It also verifies the validity of the directory
structure. The required keys are stored in the key store.

7.1 The key store

The according data structure is called the key store. It is used by the directory handler
for its operations. In Section 4.3 we already mentioned that the group keys are directly
stored in the file system. Actually, besides the group keys we also store several more of
the file system keys directly in the file system.

There are three different types of keys stored in the file system: root-keys, group-keys,
and user-keys. Root-keys are only used by the file system superuser. Group-keys are
used by group-members and user-keys are used for user-operations. In practice, these
keys are stored in three different locations in our file system (compare Figure 5.2): In
the internal directory layout root-keys are stored at /.keys/rootkeys, group-keys are
stored at /.keys/groupkeys and user-keys are stored at /.keys/keys. These directories
are not present in the external directory structure and thus invisible to the user.
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Figure 7.1: IgorFs with and without cryptographic extension

In Section 4.3 we already established, which keys are needed in our file system setup:
Each user possesses three keys Ku, Su and Du. These keys need to be given to the user

via a secure out-of-band communication method. Additionally, Ku and Su are stored
in the /.keys/rootkeys directory encrypted with the private key of the file system
superuser. This allows the file system superuser to read, change, and sign all files of the
user. It also enables the superuser to give additional copies of the keys to the user if
they have been lost accidentally. Since the superuser can regenerate Du without any
additional information, Du does not have to be stored in the file system [see 4]. The
public part of Su is also stored unencrypted in the /.keys/keys folder to allow every file
system user to verify user signatures.
Each group is associated with two keys: Kg and Sg. These keys are encrypted with

the subset-difference encryption scheme and then stored in the /.keys/groupkeys folder.
Additionally, the public part of Sg is stored unencrypted in the /.keys/groupkeys folder
to allow every file system user to verify group signatures.

7.2 User management operations

This section describes how the user-management operations are executed with our added
security structure.
There are six important operations that the file system superuser has to do:

1. Add new users to the file system (and generate their keys)

2. Evict users from the file system (and revoke their keys)

3. Add new groups to the file system (and generate their keys)

4. Remove groups from the file system



7 Implementation 41

5. Add users to groups

6. Remove users from groups

7.2.1 Adding and evicting users

The superuser adds a new user to the file system by generating her subset-difference key
Du, a private key Ku, and a signature key pair Su. All these keys have to be given to
the user in a secure manner using an out-of-band channel. The file system superuser
then generates the directory /.users/[uid] and gives ownership of this folder to the
new user.
The superuser evicts users from the file system by removing them from all groups

where they are a member. To do this, a new group-key is generated for each group.
The key is encrypted in a way that no longer allows the evicted member to decrypt it
using the subset difference algorithm. The new group-key is then used to encrypt the
pointer to the private part of the group-root. Furthermore a new version of the root
folder is created. The (Id, key)-tuple for the root is also encrypted in a way that does no
longer allow the evicted user to read it with Du using the subset difference algorithm.
All members of the file system are then made aware of the new file system version.

The directory /.users/[uid] may however not be removed from the file system if it
still contains files or directories because otherwise the file system could end up in an
invalid state. An example for this is a directory containing directories of other users.
Removing the user-root would render all subdirectories of all directories belonging to the
user inaccessible. The superuser may however delete all files belonging to the user and
all empty directories belonging to the user. The ownership of the remaining non-empty
directories has to be changed – this moves them to another user-root. After that the
user-root may be removed from the file system to free up space and unclutter the file
system tree.

7.2.2 Adding and removing groups

The superuser adds a new group to the file system by generating Kg and Sg. These keys
are then encrypted using the subset difference scheme and saved in the /.keys directory.
The directories /.groups/[gid]/private and /.groups/[gid]/public are created

and given the appropriate permissions.

7.2.3 Adding and removing group members

When a user is added to a group, the file system superuser first regenerates Kg and Sg.
The pointer to /.groups/[gid]/private is then encrypted with the new Kg. Kg and
Sg are encrypted with the subset difference scheme in a way that allows the new user to
decrypt them. The new encrypted keys are then stored within the /.keys directory.
User removal works exactly the same way, but the new versions of Kg and Sg are

encrypted in a way that no longer allows the removed user to decrypt them.
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7.3 File system operations

This section describes how the different file system operations are executed with our
cryptographic extension. We explain the translation layer of Figure 7.1.

7.3.1 getattr

Arguments: filename.
The call returns the file attributes (size, owner, group, etc).

This call is passed through nearly unchanged by the translation layer. The translation
layer only looks up the most recent version of filename and exchanges the location in the
call.

7.3.2 readlink

Arguments: filename
The call returns the contents of a symbolic link.

This works just like getattr. The translation layer adjusts the path of filename and
passes the call through to the file and folder module.

7.3.3 getdir

Arguments: directory name
The call returns the contents of a directory.

In our new scheme, each directory is present three times in the directory structure.
The translation layer executes a getdir for each of the three directories and merges the
contents of all three calls. The merged list is returned.

7.3.4 mknod

Arguments: filename, numeric modes, numeric device
The call returns an errno.

This call creates a new file in the file system. Files can be present at one or two
locations in the directory structure, depending on the permission bits. The translation
layer examines the numeric mode and determines the locations at which the file has to
be created. The translation layer then forwards one or two mknod calls to the file and
folder module.

7.3.5 mkdir

Arguments: directory name, numeric modes
The call returns an errno.

This call creates a new directory in the file system. Directories are created three times
in our new directory structure. Hence the translation layer sends three mkdir calls to the
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file and folder module, one for the user-root, one for the public part of the group-root
and one for the private part of the group-root.

7.3.6 unlink

Arguments: filename
The call returns an errno.

This call removes filename. The translation layer translates this to one or two unlink
calls for the file and folder module.
If a directory is group-writable, and the file which shall be deleted belongs to the

directory owner, it cannot be actually removed from the directory without invalidating
the directory hash. In this case, the file is merely marked as deleted in the group-part of
the directory structure. The next time the owner reads the group directory, the system
removes the file from the directory hash.

Please note that this may introduce some unwanted backwards-confidentiality problems
when new members are added to a group because they can read files that are apparently
already deleted.

7.3.7 rmdir

Arguments: pathname
The call returns an errno.

This call removes the directory at pathname. The translation layer translates this to
three rmdir operations, one for the user-root, one for the public part of the group-root,
and one for the private-part of the group-root.

7.3.8 symlink

Arguments: filename, symlink name.
Returns an errno.

Works just like mknod.

7.3.9 rename

Arguments: old filename, new filename
Returns an errno.

This renames an object from old filename to new filename. Note that both, the old
and the new file names are full path names. The rename call can not only change the
name of the file, but also move it to an arbitrary new location within the file system.
The target of this call can either be a directory, a file or a symlink. For files and

symbolic links, this call converts the rename operations to one or two rename operations
depending on the number of redirects that are currently present in the file system.
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For directories, this call converts the rename operations to one or two rename operations
for the redirect that is pointing to the real directory locations. Note that only the redirect
is moved to a new location, the actual hidden directory entries are not moved.

7.3.10 link

Arguments: filename, hardlink target
Returns an errno.

IgorFs does not support hard links because of it’s directory structure. As a result, we
do not support hard links too. Otherwise, the implementation would be the same as for
a symlink operation.

7.3.11 chmod

Arguments: pathname, numeric modes
Returns an errno.

This call changes the permissions of a given object in the file system. It can only be
called by the owner of a file or by the file system superuser.
When this call is executed, the locations of the pointers in the file system have to

be changed to match the new permissions according to tables 6.1 and 6.2. Please note
that this is a very complex operation. Consider e.g. a directory that has not been
world-writable and is now made world-writable. In this case, all files stored directly in
the directory have to be moved to the respective owners’ directories After that, redirects
to the new storage locations have to be created.

7.3.12 chown

Arguments: pathname, user id, group id
Returns an errno.

This call changes the user and/or the group of a given object. The owner of a file can
call it to change the group of the file to another group to which she belongs. The file
system superuser can call it to change the owner and the group of the file arbitrarily.
Together with chmod, this is one of the most complex operations the file system has

to handle because to change the ownership of a file or directory, the file or directory has
to be moved to a different user- or group-root.
When chown is called, the file or directory is moved to its new location according to

tables 6.1 and 6.2.
Special care has to be taken for directories. The contents of the directory still belong

to the original owners, because a chown call only changes the ownership of the directory,
not of the directory contents. Thus the files and directories in the directory have to be
moved back to the user-roots of their respective owners. Redirects have to be created in
the directory whose ownership was changed to make them accessible – this is also done
according to tables 6.1 and 6.2.
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7.3.13 truncate

Arguments: filename, offset
Returns an errno.

This call truncates the named file at the given offset.
The translation layer looks up all locations at which the file pointers are stored in

the hidden directory structure. The truncate call is then executed for all the pointer
locations to which the current user has write permissions.
For example if a file is group-writable it is present one time in the user-root of the

owner and one time in the group-root of the group (see tables 6.1 and 6.2). If the file
is truncated by the owner, the pointers at both locations will be updated. If the file is
truncated by a group-member other than the owner, only the pointers in the group-root
will be updated.

The most current version can be determined using the version number of the file.

7.3.14 read

Arguments: filename, size, offset
Returns data or an errno.

This call attempts to read size bytes from filename starting at offset.
The translation layer looks up all locations at which the file pointers are stored in the

hidden directory structure. The read call is then executed for the more recent pointers.

7.3.15 write

Arguments: filename, buffer, offset
Returns an errno.

This call tries to (over)write a portion of filename.
The translation layer looks up all locations at which the file pointers are stored in the

hidden directory structure and executes the call just like for truncate.



8 Communication overhead and
cryptographic cost analysis

In this chapter, we briefly describe the communication overhead and cryptographic cost
that our proposal adds to a plain distributed file system.

8.1 Theoretical analysis

As mentioned in Chapter 1, our work was inspired by the goal to equip an existing P2P
file system with user and group access permissions. Thus, our design is such that it can
be implemented on top of a plain P2P file system. Each file system operation, both, in
the plain and in the enhanced file system causes one or more operations in the underlying
P2P network. In this section, we discuss the number of these operations as well as the
associated cryptographic cost. We especially discuss the particular case of IgorFs, the
P2P file system that has been developed in our group. Other P2P file systems would
lead to very similar results.

In the plain scenario, upon each file lookup, the file system has to fetch all the directory
blocks, starting from the root block down to the directory in question. The number of
operations in the P2P network thus depends on the length of the path we are trying to
access. For a file in a subdirectory at depth n, we need exactly n directory lookups.
In our enhanced file system, the communication cost depends on who owns the

directories and files. Assume first a directory structure where all directories and files
belong to the superuser. Here, we need n+ 3 directory lookups because there are three
hidden directories (root, .users, superuser), which we must read before we can read the
first visible directory.
The internal links do not account to the communication cost, as long as all the

directories of a user are stored in the user’s hidden directory. (E.g. ’/’ and ’home’ are
both stored in the superuser’s hidden directory.) This is the d = 1 case that we have
used for the examples in this paper. If a user owns a large number of directories, we
need to introduce one or more indirections, i.e. further hidden directories below the users’
directories that contain the visible directories (see Figure 8.1 for d = 2). When taking
this into account, we need at most 3 + nd lookups when all files belong to the superuser.

In a file system with multiple users, the communication cost will be larger because when
we encounter a directory that belongs to another user, we have to resolve an indirection.
Let u be the number of users (including the superuser) that own directories in the path
to our file. Then the communication cost is at most 2 + u+ nd directory lookups: we
have to read the root and .users directory, the user-root of each affected user and the n
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Figure 8.1: Internal directory structure with d = 2

directories we traverse at depth d in the different user-roots.
When considering the presence of groups, the communication costs are even larger;

when looking up a file, we have to check if the version in the group or in the user-root
is more current. That means we have one additional lookup into the group-root of the
affected group with a cost of 3 + d lookups (one lookup for .groups, one for the group,
one for the public or private group directory and d for the specific subdirectory) incurring
a total cost of 5 + u+ (n+ 1)d. In practice, many of the affected entries can be cached,
so that these numbers should be considered as worst-case analysis.

In addition to the communication cost, our proposal also incurs an additional crypto-
graphic cost. We assume that in the plain scenario all directories and files are already
cryptographically protected. The file system that we use as basis for our work, for
example, encrypts all directories and files with a symmetric key that is stored in the
directory pointing to that file.
Besides this basic cryptographic cost, there is an additional cost:

• Encryption and decryption of the directories with the user or group key.

• Creation and validation of the signed hash trees for the user and group directories.

Nevertheless, the absolute overhead of this cost is small: Hashing is a relatively cheap
operation. The underlying file system already hashes all its file system blocks twice (plain
text and cipher text). Our proposal adds a third hash operation.

Moreover, our proposal only uses symmetric cryptography. The underlying file system
already encrypts all blocks with AES. If a file is not world-readable, our proposal adds
two further AES encryptions per file, and one further AES encryption per directory.

Only the signature verification of the hash tree adds a more substantial cryptographic
cost. However, this verification is a rare operation: We only have to verify one signature
per user-root directory that we traverse, and we can cache the result for subsequent
operations.
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Encryption Layer Redirection Layer Run Time [s]

Off Off 1 1.557
Off Off 2 1.379
On Off 1 1.790
On Off 2 1.431
On On 1 2.303
On On 2 1.854

Table 8.1: Encryption layer time measurements

8.2 Practical measurement

In this section, we present a practical measurement of the cost using our proof-of-concept
implementation. Please note that the implementation was not optimized for speed in
any way - the overhead of the cryptographic implementation probably can be reduced
considerably.
For many operations, enabling the cryptographic access permissions has no effect on

the speed of the operations. For example for write operations it is very difficult to
establish the exact amount of overhead - all signature and encryption operation are not
executed while the writes occur. Instead, they are deferred to a later time, i.e. until after
the insertion of the data is complete.
Thus, we chose a scenario for our benchmark that is typical for real-world systems

and where we can observe a speed difference. When opening a directory and accessing
the files in the directory, our scheme has to verify the directory contents by hashing the
entries, and it has to decrypt the pointers for the files if they are not world-readable.
These operations have to be executed immediately because otherwise the user cannot
read his/her files.
To simulate this scenario, we copied a typical Unix directory structure consisting

mostly of small files into the file system. The structure consisted of 1980 files in 290
directories with a total size of just over 25 megabytes.
The test of the file system speed consisted of the following steps:

• copy data into the file system

• restart file system to clear all caches

• read data from the file system and measure time

• read data from the file system a second time and measure time

Table 8.1 shows the execution times for both, the first and the second read. The first
measurement shows the time the file system takes in a ”cold state”, where all decryption
and integrity verification operations have to be performed. The second measurement
shows the time the file system takes when the decrypted keys and the directory integrity
have already been cached.
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When only using encryption and no redirection layer, the numbers for this case should
be equivalent to the case when we are using no encryption at all. The overhead in our
implementation is due to the higher complexity of the code that has to be executed. As
already mentioned, this is an area where our prototype could be optimized.

When using encryption and the redirection layer, the overhead is also due to the higher
number of lookups.

Table 8.1 shows our results for a measurement on a system with a 2.3 GHz CPU. As
we can see, the use of our new scheme incurs a worst-case overhead of about 50% when
reading data for the first time. But with caching, this overhead is already much lower at
< 35 %. In our opinion this is not a bad result for a proof-of-concept system and shows
the feasibility of our approach.



9 Further extensions

In this Chapter, we will discuss possible extensions to the approach outlined in this report.
These extensions are not necessary for the basic functionality, but provide additional
features that could be important in some use-cases.

9.1 Differences to POSIX

Our approach, as we have presented it here, implements parts of the POSIX.1 access
permission features. There are, however, a few differences, which we describe in this
section.

1. In our current approach, we have assumed, that a person, that may write to a file
can also read it. This does not have to be true; in Unix there can be files that
a user can only write, but not read. Our current approach does not deal with
this scenario. If necessary it could be implemented as follows: In addition to the
symmetric key each user and group needs a set of asymmetric keys. The public
keys are published in the file system. If a user wants to write to a file, to which she
has only write access, she uses the public key of the user or the group to encrypt
the new file pointers. After that, she will not be able to read the file contents via
the file system because she is not able to decrypt the pointers herself. The group
or owner of the file however will be able to decrypt the pointers with their private
keys.

The asymmetric cryptography that is needed for this feature introduces a high cost
and complexity. It is thus advisable to only implement this feature if it is really
needed. Moreover, the mechanism also introduces some backward confidentiality
problems when it is used with groups: The symmetric key of the groups can
be changed each time a user is added to or removed from the group because it
encrypts only a single directory pointer (the pointer to the private group directory).
However, files encrypted with the public key of the group could potentially be
spread throughout the whole group directory tree. Changing the asymmetric key
upon each group change could thus take very long (each file would have to be
found and re-encrypted). But if the key is not changed, each new member of the
group can access every file that was encrypted with public key cryptography. This
includes files that have been deleted before the user was added to the group.

2. In addition to the read and write permissions for files and directories presented
in this report, Unix also provides the execute flag. A person that only has a
separate execute flag on a file may run the program but may not read the binary
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program data. A person that only has the execute flag on a directory may access
the directory and any subdirectories and files in the directory she has access to.
The person may however not list the directory contents. She has to know the exact
name of the object she wants to access.

We did not try to implement these features. For files, this is due to the simple
necessity that in a distributed setting a node must be able to read an executable
file before being able to execute it.

For directories, it is possible to implement the execute-flag. One possible solution
is to encrypt the file names stored in the directory with their filename. When
trying to read a file, a client has to try to decrypt all directory entries - if it can
decrypt an entry it has chosen a valid file name. It would be possible for a client to
brute-force all file names in a directory by trying all possible file names - however
this is also possible on a non-distributed Unix system.

We did not examine this approach in a greater detail because it was of no importance
for our use-case.

3. A third shortcoming of our approach is that a user has to be in the group the file
belongs to. This is a sound assumption because in Unix a user may only change the
group of a file she owns to a group of which she is a member. Only the superuser
can override this restriction.

This problem can once again been circumvented by using public key cryptography;
a file could be encrypted with a group-public key in addition to the key of the
file owner. This approach introduces the same backwards confidentiality problems
mentioned above.

4. POSIX defines some special file permissions: to be more exact the set-user-Id-on-
execution bit (setuid), the set-group-Id-on-execution bit (setgid), and the sticky bit.
The setuid and setgid bits are easy to implement; they can be secured with the
hash-trees just like the rest of the data in the file system. The problem is the user-
and group- mapping from Ids on the global network file system to Ids on the local
system. We feel that the question of Id mapping is out of scope for this technical
report and leave it as an open question.

Today, the sticky bit is only important when set on directories. A directory with a
sticky bit set becomes append-only, or to be more exact a directory in which the
deletion of files is only allowed by the superuser, the owner of the directory or the
owner of the file. It is not sufficient to have write access to the directory to remove
a file from it. Implementing the sticky bit is not an easy task; we again leave it as
an open question.

5. In a traditional POSIX file system, if a directory owned by A contains a directory
owned by B and A has no write-access to B, A may delete the subdirectory of B,
if it is empty. This even holds true, if A may not read or access the directory in
question. We disregarded this special case altogether in our approach. We consider
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it of very low importance. Furthermore, we chose not to implement this special
case because of the privacy problems that it could cause. We do not want the user
A to be able to notice that a directory of B is empty, when she does not have read
access to it.

9.2 ACL support

The approach presented in this report does not support access control lists.
We will now present a method to implement ACL support on top of our proposed

design. The ACL support presented here is based on the ACLs used in Linux, which are
based on a POSIX draft [39].
The drawback of this way to support ACLs is an increased amount of cryptographic

and lookup operations. On each change of a file or directory, the affected pointers have
to be encrypted for each user and group that has read-permission. This means that the
encryption time rises linearly with the number of ACL entries. The same applies to the
lookup overhead; we have to look up the directories of every user and every group that
has write-access to the data. The approach also introduces backwards-confidentiality
problems. Hence, we recommend using it only when needed.

ACLs allow users to set more fine-grained access permissions on their files and directories.
In more detail, it allows the file owner to give any other user or group read, write or
execute permissions.

To support ACLs with our system we have to modify our encryption system to allow
for these possibilities. Each file or directory has its own symmetric key, which encrypts
its pointers. This symmetric key has to be made available to all users and groups with
read-permissions by encrypting it with the user’s or group’s public key. For groups this
means that all files with ACL entries are saved in the public group directory.
A second problem that arises with groups is that the asymmetric key pair has to

change with each user revocation. We propose using the key rotation scheme introduced
in Plutus [42] for this purpose. Using this scheme, the file system superuser generates a
new symmetric encryption key ki for the group. Current group members can derive all
previous key values ki−j from the new key; revoked members, however, cannot deduce
the value. The group key is saved in the file system using the approach presented in
Section 4.3.

For each group revision a new asymmetric key pair has to be created. The private key
is encrypted with ki and stored together with the unencrypted public key in a readily
accessible location on the file system. Thus, all group members with a valid current key
can determine all previous symmetric and asymmetric keys.

This approach has the same backwards confidentiality problems that we have previously
discussed in Section 9.1. For example, new group members will be able to read the
content of files that were deleted before they joined the group.

When a user other than the owner or a group changes the file, the new version is saved
in the user’s own user- or group-root. When reading a file, the user- and group-roots
of all users and groups that may write to the file have to be searched for most recent
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version. This constitutes a significant overhead. Hence, we recommend to use ACLs only
when needed.

9.3 Identity and attribute based encryption

Identity and attribute based encryption are two new cryptographic schemes which in the
future could be used in the ACL scheme we proposed in the previous section instead of
the asymmetric key pairs.
Especially attribute based encryption is still very new and there is ongoing work in

the cryptographic community to make it usable. To our knowledge at the moment there
are no feasibly working implementation of the schemes that would allow them to be used
in our distributed file system - there are still problematic points like key revocation.

In future works it should be evaluated if new developments have made these schemes
superior to the traditionally used cryptographic primitives..

Identity based encryption (IBE) encryption is a public key encryption system in which
the public key can be an arbitrary identifier. The idea for IBE was first proposed by
Shamir in 1984 [71], however the first fully functional implementation was not available
until 2001 [14].

The original of motivation of Shamir was to devise a cryptosystem where email addresses
can be used as the public key.
In an IBE system there is a central instance in possession of a master-key. This

master-key is used to derive the publicly available system parameters. The master-key is
also used to generate the private keys for all users active in the system.
To encrypt a message, a sender must know the public key of the receiver (i.e. his or

her email address) and the publicly available system parameters. The receiver can then
use the private key to decrypt this message.
Attribute based encryption (ABE) extends IBE to work with attributes. Each par-

ticipant has a set of attributes (like e.g. “student”, “math”, and “computer sciences”).
Rules are given to an object, e.g. ( (“student” and “math”) or (“professor”)). Only
participants whose attributes satisfy the object’s rules will be able to decrypt it.
ABE was introduced first by Sahai and Waters [70]. Goyal [33] proposed the first

key-policy ABE that allows any monotone access structure. Later, ABE schemes were
extended to work with non-monotone access structures [63].

Definition 1 (from [10, 33]) Let the following be a set of parties: {P1, . . . , Pn}. A
collection A ⊆ 2{P1,...,Pn} is monotone iff ∀B,C: if B ∈ A and B ⊆ C then C ∈ A.
An access structure (resp., monotone access structure) is a collection (resp., monotone
collection) A of non-empty sub-sets of {P1, . . . , Pn}, i.e., A ⊆ 2{P1,...,Pn}\{∅}. The sets
in A are called the authorized sets, and the sets not in A are called the unauthorized sets.

In principle, ABE and IBE schemes could be used to implement ACLs in distributed
systems. To allow some arbitrary user to access a file, we would just have to encrypt the
current file keys with the user-Id. Unix groups could be seen as attributes: each user has
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a set of group-attributes that they can read. The current file keys are then encrypted
with the group-Id.

However, there are some serious problems when trying to use this approach with
groups: key revocation in IBE and ABE schemes is a difficult subject; proposals for
usable schemes have only been made very recently. Boldyreva et al. [13] proposed a
revocation scheme with a non-prohibitive cost for IBE in 2008, which also can be adapted
to ABEs. This scheme was further extended for ABE usage by Attrapadung et al. in
2009 [8].

These recent findings could make the usage of IBE and ABE viable for distributed file
systems. However, to the best of our knowledge, there are no implementations available
yet, that support the revocation schemes. But revocation is absolutely essential for usage
in file systems; otherwise it would e.g. be impossible to revoke old group members for a
group.
IBE and also ABE both rely on asymmetric cryptographic primitives and thus are

slower than the respective symmetric operations used in our approach. IBE and ABE
also only solve the cryptographic problems associated with user- and group-management.
Our technical report also discusses how to guarantee the validity of the data in the file
system how to protect the data e.g. against rollback attacks.



10 Conclusion and Outlook

In this report, we have proposed a new file system structure to implement user and group
permissions in peer-to-peer file systems. To the best of our knowledge, our proposal is
the first that provides cryptographically enforced Unix-like access permissions in a fully
decentralized manner. Our design is based on a hidden file system structure, which adds
the required meta-information to a plain peer-to-peer file system.
Our proposed technique consists of two tightly coupled mechanisms: an integrity

verification algorithm checks the validity of the file system state upon access and a
cryptographic data protection scheme preserves the privacy of the file system’s content.
With their help, we can handle user and group access, as well as most of the POSIX
specialties, e.g. file system subtrees with mixed ownership. We discussed where and why
our proposal deviates from the POSIX standard. We also described the communication
overhead and the cryptographic overhead that our system adds to a plain peer-to-peer
file system. We further examined how ACL support can be added on top of our scheme.

The open-source implementation of our proposal which was used for the performance
tests in Section 8.2 is available for download at the web site of our research group [73].
Appendix A shows how the implementation can be installed and used.

We expect that many interesting questions arise from the practical use of our system.
It would e.g. be interesting to analyze the overhead that our system incurs in a real-world
setting. Such an analysis could indicate further optimizations to our design.



A CryptFs usage

This appendix shows how to use our proof-of-concept file system implementation.

A.1 System requirements

The minimal version of Perl required for the system is Perl 5.10.0. The file system also
requires a correctly configured Fuse installation.
The following CPAN Perl modules are required in addition to the Perl core modules:

• Moose

• MooseX::Runnable

• MooseX::Singleton

• MooseX::Getopt

• MooseX::Log::Log4perl

• Digest::SHA1

• Perl6::Slurp

• Crypt::CBC

• Crypt::OpenSSL::DSA

• Data::UUId

The module Crypt::Subset::Subscribe also has to be installed; this module was also
developed by our working group and is not available on CPAN.

A.2 Options

The file system is started by running the Perl script named runner.pl. When started
without options, the script will show a overview over the possible command line options:

usage: runner.pl [-?] [long options...]

-? --usage --help Prints this usage information.

--mountpoint Mountpoint for the file system

--basedir Storage directory for file system data chunks
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--debug Turn on fuse debugging. Default: 0

--uid User-id of this user inside of the file system.

Default: 10001

--gids Group-ids of this user inside of the file system.

Default: 10000 109 10000 10001 10004

--encryption Use encryption? Default: 0

--redirect Use redirect layer? Default: 0

--userkey Path to user key file

--rootkey Path to file system subset difference root key

The -? and other help options are self-explanatory, the other options are explained in
more detail below.

• mountpoint
This option sets the mountpoint, where the file system will be attached.

• basedir
This option sets the storage directory for the file system data chunks. All data and
meta-data of the file system will be stored in this directory. Note that this storage
directory can also be placed into a distributed storage system, e.g. on a IgorFs
volume to extend it with a permission system.

• debug
This option enables fuse debugging. With fuse debugging enabled, each file system
operation that is received from fuse will be output to the console.

• uid
This option sets the user id of the current user inside of the file system. Please
note, that the user-id in the file system does not have to be equal to the current
effective user id. For example a non-root-user may be the superuser of a file system
she created herself. In this case she will use the uid option to set her file system
user id to 0.

• gid
This option sets the group Ids of the current users. It essentially works the same as
the uid option.

• encryption
When this option is set the file system encryption algorithm is activated. Without
the option the file system will not use encryption or signatures or integrity hashing.
This can be used to measure the overhead introduced by the encryption layer.

• redirect
When this option is set the file system redirect layer is activated. This option
requires the encryption option to be activated. When encryption is turned on
without this option, the hidden underlying directory structure will be exposed and
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can be analyzed. This also can be used to measure the overhead introduced by the
redirect layer.

• userkey
The path to the current user key file. This key file is needed to access non-world-
readable files in file systems with encryption enabled. When a new file system is
created this option must not to be set.

• rootkey
The path to the file system subset difference root key. This key file is required to
enable the file system superuser to generate e.g. new groups. When a new file
system is created this option must not be set. When the current user id is different
from 0 i.e. for users that are not the superuser, this option must not be set.

A.3 Creating a new encrypted file system

This section will show the necessary steps to set up a basic encrypted file system.
The first step is to start the file system with encryption enabled, but without activating

the new directory scheme:

$ perl runner.pl --basedir /export/store --mountpoint /export/mnt \

--encryption 1 --redirect 0 --uid 0 --gids 0

after that we can access the file system:

$ cd /export/mnt/

$ ls -l

drwxr-xr-x 1 root root 0 Feb 11 11:16 groupkeys

drwxr-xr-x 1 root root 0 Feb 11 11:16 groups

drwxr-xr-x 1 root root 0 Feb 11 11:16 keys

dr-xr-xr-x 1 root root 0 Feb 11 11:16 proc

drwx------ 1 root root 0 Feb 11 11:16 rootkeys

drwxr-xr-x 1 root root 0 Feb 11 11:16 users

We see that we have all the directories that we presented in our paper (groups, users,

keys) plus a few additional ones that are used for easier management of our file system,
but that are not strictly necessary (groupkeys, rootkeys, proc). groupkeys contains
the group cryptographic keys. They are stored separately from the user cryptographic
keys in keys to make it easier to distinguish between them. rootkeys is a directory only
accessible by the file system superuser, which contains all keys in an unencrypted form
to allow the superuser to access all files and directories. The proc directory contains
special files which allow us to manage the file system.
We will now add a new user and group to the file system using the proc files:
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$ cd proc

$ ls -l

-rwxrwxrwx 1 root root 30 Feb 11 11:16 addUserToGroup

-rwxrwxrwx 1 root root 30 Feb 11 11:16 createGroupById

-rwxrwxrwx 1 root root 30 Feb 11 11:16 createUserById

The special file addUserToGroup can be used to add existing users to existing groups.
createGroupById can be used to create new groups and createUserById can be used to
create new users.

We can create a new group with gid 1 and a new user with uid 1 and add the user to
the group by executing the following commands:

$ echo 1 > createUserById

$ echo 1 > createGroupById

$ echo "1 to 1" > addUserToGroup

Now the keys directory will contain all the respective keys:

$ cd ../keys

$ ls -l

-rw------- 1 root root 15985 Feb 11 11:16 0

-rw------- 1 root root 15999 Feb 11 11:17 1

-rw------- 1 root root 991 Feb 11 11:16 group-0

-rw------- 1 root root 1068 Feb 11 11:19 group-1

-rw------- 1 root root 694 Feb 11 11:16 sdtree

We now have to copy the respective key files to a location outside of the file system to
be able to access it later after we have unmounted it. The file 0 contains the private file
system key of the superuser. The file 1 contains the private file system key of the user
that we have just generated. The file sdtree contains the secret subset difference main
key of the file system superuser.
Thus, we copy all the needed files to safety outside of our file system. After that we

can stop the file system.

$ cp 0 1 sdtree ../..

$ cd ../..

$ fusermount -u mnt

Now we can start the file system and use the directory layer. To start it for the
superuser we use the user Id 0 and

$ perl runner.pl --basedir /export/store --mountpoint /export/mnt \

--encryption 1 --redirect 0 --uid 0 --gids 0 --rootkey /export/sdtree \

--userkey /export/ba/0

to start it for the user with the user Id 1 we use

$ perl runner.pl --basedir /export/store --mountpoint /export/mnt \

--encryption 1 --redirect 0 --uid 1 --gids 1 ---userkey /export/1
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