
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Netzarchitekturen und Netzdienste

Decentralized Data Storage and Processing
in the Context of the LHC Experiments at CERN

Jakob Johannes Blomer

Vollständiger Abdruck der von der Fakultät für Informatik

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Uwe Baumgarten

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Georg Carle

2. Univ.-Prof. Dr. Dieter A. Kranzlmüller,
Ludwig-Maximilians-Universität München

3. TUM Junior Fellow Dr. Thomas Fuhrmann

Die Dissertation wurde am 19.12.2011 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik

am 01.06.2012 angenommen.

Acknowledgment

This work would not have been possible without the countless discussions
with my supervisors Predrag Buncic and Thomas Fuhrmann and many others.
In particular, I would like to thank my collegues Artem Harutyunyan, Axel
Naumann, and Carlos Aguado Sánchez for so many fruitful ideas and suggestions.
Many thanks to Benedikt Hegner and John Harvey for carefully reviewing the
manuscript and for all their helpful comments. I want to thank the people who
are close to me, supported me, and who always lent an ear to me. During my
stay at Cern, I enjoyed the company of wonderful friends.

Abstract

The computing facilities used to process data for the experiments at the
Large Hadron Collider (LHC) at CERN are scattered around the world. The
embarrassingly parallel workload allows for use of various computing resources,
such as computer centers comprising the Worldwide LHC Computing Grid,
commercial and institutional cloud resources, as well as individual home PCs
in “volunteer clouds”. Unlike data, the experiment software and its operating
system dependencies cannot be easily split into small chunks. Deployment of
experiment software on distributed grid sites is challenging since it consists of
millions of small files and changes frequently.

This thesis develops a systematic approach to distribute a homogeneous
runtime environment to a heterogeneous and geographically distributed com-
puting infrastructure. A uniform bootstrap environment is provided by a
minimal virtual machine tailored to LHC applications. Based on a study of
the characteristics of LHC experiment software, the thesis argues for the use of
content-addressable storage and decentralized caching in order to distribute
the experiment software. In order to utilize the technology at the required
scale, new methods of pre-processing data into content-addressable storage
are developed. A co-operative, decentralized memory cache is designed that
is optimized for the high peer churn expected in future virtualized computing
clusters. This is achieved using a combination of consistent hashing with global
knowledge about the worker nodes’ state.

The methods have been implemented in the form of a file system for software
and Conditions Data delivery. The file system has been widely adopted by
the LHC community and the benefits of the presented methods have been
demonstrated in practice.

Pre-Publications

Parts of the thesis have been pre-published:
∙ CernVM-FS: Delivering Scientific Software to Globally Distributed Com-

puting Resources
J. Blomer, P. Buncic, and T. Fuhrmann
To appear in Proc. of the 1st Workshop on Network-Aware Data Management held
in conjunction with the IEEE/ACM International Conference for High Performance
Computing, Networking, Storage and Analysis (SC’11), Seattle, 2011

∙ A practical approach to virtualiztion in HEP
P. Buncic, C. Aguado Sánchez, J. Blomer, A. Harutyunyan, and M. Mudrinic
The European Physical Journal Plus, 126(1), 2011

∙ Distributing LHC Application Software and Conditions Databases using
the CernVM File System
J. Blomer, C. Aguado Sánchez, P. Buncic, and A. Harutyunyan
To appear in Proc. of the 18th Int. Conf. on Computing in High Energy Physics
(CHEP’10), Taipei, 2010.

∙ Studying ROOT I/O Performance with PROOF-Lite
C. Aguado Sánchez, J. Blomer, P. Buncic, I. Charalampidis, G. Ganis, M. Nabozny,
and F. Rademakers
To appear in Proc. of the 18th Int. Conf. on Computing in High Energy Physics
(CHEP’10), Taipei, 2010.

∙ A Fully Decentralized File System Cache for the CernVM-FS
J. Blomer and T. Fuhrmann
Proc. of the 10th Int. Conf. on Computer and Communications Networks (ICCCN’10),
Zürich, 2010

∙ LHC Cloud Computing with CernVM
B. Segal, P. Buncic, D. Garcia Quintas, C. Aguado Sánchez, J. Blomer, P. Mato,
A. Harutyunyan, J. Rantala, D. J. Weir, and Y. Yao
Proceedings of Science, ACAT(004), 2010

∙ CernVM: A Virtual Appliance for LHC Applications.
P. Buncic, C. Aguado-Sánchez, J. Blomer, L. Franco, A. Harutyunyan, P. Mato, and
Y. Yao
Journal of Physics: Conference Series, 219, 2010

vii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Contribution of the Thesis . 4
1.3 Structure of the Thesis . 5

2 Terms and Definitions 7
2.1 The Large Hadron Collider . 7

2.1.1 Particle Accelerator . 8
2.1.2 LHC Experiments . 9

2.2 Computing Model . 11
2.2.1 The High Energy Physics Event 12
2.2.2 Online Computing . 13
2.2.3 Offline Computing . 15
2.2.4 Types of Input Files . 16

2.3 Distributed Computing Services 17
2.3.1 Grid Computing . 18
2.3.2 The Worldwide LHC Computing Grid 19
2.3.3 Distributed and Decentralized Computing 21

3 Worker Node Virtualization 23
3.1 Motivation . 23
3.2 Cloud Computing . 24

3.2.1 Virtualization . 25
3.2.2 Types of Cloud . 26

3.3 Prospects . 26
3.3.1 Optimized Resource Utilization 26
3.3.2 Portable Analysis and Development Environment 27
3.3.3 Volunteer Clouds . 27
3.3.4 Long-Term Data Preservation 28

3.4 Challenges . 28
3.4.1 Performance . 28
3.4.2 Unmanaged Resources 33

ix

3.4.3 Image Distribution . 34
3.4.4 Image Proliferation . 34

3.5 Volatility . 35
3.6 Software Distribution . 35

4 Software Characteristics 37
4.1 Building Blocks . 40
4.2 Generic Properties of Software Files 41
4.3 Related Quantitative File System Studies 42
4.4 Cumulative Size Distribution . 43
4.5 Compression Rate and Speed 44
4.6 Access Pattern . 50
4.7 Borderline to Event Data and Conditions Data 51
4.8 Software Distribution in WLCG 53
4.9 Design Criteria . 55

5 Software Distribution 59
5.1 Caching and Replication . 59
5.2 Content-Addressable Storage . 60

5.2.1 Block Level and File Level CAS 61
5.2.2 Key Space . 62
5.2.3 File Catalogs . 63

5.3 Pre-Fetching . 65
5.4 CAS Transformation . 66

5.4.1 Incremental Synchronization 68
5.5 Confidentiality . 72

5.5.1 Model . 73
5.5.2 Confidential CAS . 73

6 Decentralized Memory Cache 75
6.1 Requirements . 76
6.2 Distributed Hash Tables . 77

6.2.1 Key Space . 77
6.2.2 Consistent Hashing . 77

6.3 Self-Organizing DHT Algorithm 78
6.3.1 Load Balancing . 81
6.3.2 Simulation . 81

6.4 State Dissemination . 88
6.4.1 Slot state dissemination 89
6.4.2 Distributed Watchdogs 91

x

7 Performance Measurement and Comparison 95
7.1 Design and Implementation of the CernVM-FS 95

7.1.1 Caching . 95
7.1.2 File Catalogs . 97
7.1.3 Data Access . 97
7.1.4 Data Distribution . 98

7.2 Evaluation of the Decentralized Memory Cache 99
7.3 Software Distribution Comparison 101

7.3.1 Turn-Around Time . 103
7.3.2 Network Load . 106
7.3.3 Runtime Penalty . 107
7.3.4 Summary . 108

8 Conclusion 111

xi

1 Introduction

Distributed computing in high energy physics benefits from its embarrassingly
parallel workload. Data collected at particle colliders such as the Large Hadron
Collider (LHC) [EB08] naturally consist of billions of small chunks of the order
of only few megabytes or less. These chunks are packaged into files of the order
102 MB to 104 MB in size that can be analyzed independently of each other.
In order to perform simulation and data analysis on these data sets, the LHC
experiments have built grid infrastructures, which combine a large number of
world-wide distributed computers into one virtual supercomputer [FKT01,B+05].
The currently used infrastructure processes tens of petabytes each year using of
the order of 105 processing cores, most of them in computer centers in Europe,
North America, and Asia.

In order to successfully perform computing jobs on the LHC Grid infras-
tructure, each computing job requires access to specific data sets and to a
specific version of the analysis software. The analysis software, in turn, requires
certain libraries and services of the grid middleware and the operating system.
In other words, each computing job has explicit and implicit dependencies
to data sets and to a runtime environment. The problem of bringing the job
and its dependencies physically together on a single computer is referred to as
co-location (Figure 1.1). Currently, the dependencies are distributed beforehand
in an opportunistic way. The information about the physical location of such
distributed data sets and software environments is stored in central monitoring
systems and used by the central job scheduler to select suitable physical worker
nodes.

The key to achieving decentralized data processing is to break these depen-
dencies, i. e. to decouple computing jobs from the location of data sets and
the runtime environment. Distribution of large data sets, in such a way that
physically distributed clients have fast access to data, has been studied in the
context of various distributed and decentralized file systems [KBC+00,DKK+01,
GGL03,DEFH05,Kut08]. Common techniques used in such file systems are
replication, caching, and peer-to-peer transport. As data sets in high energy
physics turn out to have unforeseeable popularity, caching is particularly useful
in comparison to structured replication. Furano reviews the research on the
application of such file systems to data sets in high energy physics [Fur11].

1

1 Introduction

Distribution of the
Runtime Environment

Jo
b

D
is

tr
ib

ut
io

n
Data Distribution

Figure 1.1: The 3 axes of co-location for LHC computing jobs. Towards decentralized
computing, the distribution of computing jobs has to be independent from
the distribution of data and the runtime environment. Here, we address
the problem of distributing the runtime environment, thereby reducing
the problem by one dimension.

Here, we will focus on the decoupling of the runtime environment from the
distribution of jobs.

1.1 Motivation

The computing job description might be as simple as a couple of lines of code
for invoking the analysis software with a set of parameters. The runtime
environment required to successfully run such jobs, however, consists of the
simulation and data analysis software, the grid middleware and — derived from
these — a certain version of the operating system and its libraries. Hardware
virtualization is a well-established technique used to break these dependencies;
software together with the operating system and library dependencies is en-
capsulated in a virtual machine [SN05, Section 1.4]. Instead of the relatively
static network of physical computing nodes, hardware virtualization facilitates
volatility of computing resources. Computing jobs can be moved among phys-
ical computing nodes and they can be deployed on unmanaged computing
resources such as provided by cloud infrastructures. This volatility brings
benefits known from server consolidation, such as pausing virtual machines to
temporarily free resources or moving virtual machines to less busy physical
resources. Moreover, hardware virtualization provides a key building block for

2

1.1 Motivation

the long-term preservation of experiment data and the ability to re-analyze
them.

Unfortunately, due to its complexity, the problem of deployment and distribu-
tion of LHC experiment software is rather amplified by hardware virtualization.
The LHC experiment software frameworks are jointly developed by thousands of
physicists. They comprise of the order of 107 lines of code in 105 small files per
release, typically organized in thousands of shared libraries that are searched
and loaded at runtime. New physics understanding is extracted through the
process of data analysis, which is in turn incorporated into the data processing
applications. This workflow results in weekly or daily release cycles. New
releases do not render previous ones obsolete, since published releases have to
remain accessible for the sake of testing the reproducibility of physics results.
Expanded to the expected life time of the LHC of at least 15 to 20 years, the
overall number of files of the runtime environment sums up to the order of
tens of terabytes and 109 files and directories. Moving and deploying such
an environment in the form of a virtual machine hard disk image negates the
potential benefits of hardware virtualization.

Instead of providing the runtime environment in relatively large images with a
half-life of a few days, it is desirable to create a minimal bootstrap image and to
store the rest of the runtime environment in the network [AFM05]. Approaches
to solve the distribution of the software using general purpose distributed file
systems, such as AFS, Coda, or Lustre, fail to scale in terms of number of files
and number computing nodes and due to the volatility of resources. Distributed
file systems for large-scale data sets are optimized for a ratio of data size to meta-
data size that is many orders of magnitude larger than observed for software.
Thus their performance is even worse than general purpose distributed file
systems. In the context of grid computing, special purpose distribution systems
for analysis software emerged [LHP+04,CGL+10]. However, such systems do
not address the problem at the scale of LHC experiment software and neither
do they address the volatility of virtualized resources.

Beck et al. propose the use of content-addressable storage as a key building
block for globally scalable network storage [BMP02]. Meta-data can be stored
in content-addressable files as well, having large directory trees partitioned
into sub trees that are securely linked together using Merkle hashes [Mer06].
Based on a study of the characteristics of LHC experiment software, this thesis
will introduce a new method to efficiently interface content-addressable storage
with standard file systems. Furthermore, this thesis presents a new approach to
co-operative caching tailored to the volatility of virtualized computing nodes.

3

1 Introduction

1.2 Contribution of the Thesis

This thesis comprises the following results and new methods:

1. The thesis presents the first systematic study of the characteristics of LHC
experiment software from the point of view of a file system. The study
includes measurement results describing the cumulative size distribution,
compression characteristics, growth rate, redundancy, and the access
patterns. The results are compared to previous file system studies of
typical UNIX and Windows workstation file systems. LHC data processing
applications form a discrete, highly redundant, and meta-data intensive
workload with an inhomogeneous access pattern (spike accesses) and
strong demands for UNIX file system semantics. Based on the results,
design criteria are defined for the efficient distribution of LHC experiment
software.

2. In order to maintain a large number of files on file systems based on content-
addressable storage, several engineering problems have been solved. The
thesis proposes user-assisted cutting of the directory tree, which results
in a better trade-off of meta-data file sizes and number of meta-data
files as compared to currently used fixed partioning schemes. For a
write pattern that publishes a set of changes to a file system as a new
snapshot, the thesis proposes an incremental transformation of files into
content-addressable storage. In contrast to existing approaches, the
proposed transformation is based on a file system change set and thus
avoids traversing the entire file system tree. The thesis proposes a new
naming scheme for content-addressable storage that supports closed user
groups through file encryption, whilst providing cachability and immediate
revocation of read access.

3. The thesis proposes a new decentralized algorithm for co-operative caching
on the cluster scale. In contrast to existing approaches using consistent
hashing [KLL+97,GLS+04, ZH04] or “hint-based” peer selection [SH96,
FCAB00], the thesis proposes an opportunistic dissemination of cache
responsibilities in the complete cache space. The algorithm is designed as
being inherently resilient to volatile computing resources since peer churn
does not automatically result in rebalancing of cache contents. Instead,
rebalancing of cache contents is the result of the computing nodes’ sole
decision to decrease their load by dropping cache content. Cache state
and presence dissemination is performed by two customized low latency
gossip protocols.

4

1.3 Structure of the Thesis

The algorithms and methods described in this thesis have been implemented
and evaluated against real workload.

1.3 Structure of the Thesis

The thesis is structured as follows. Chapter 2 discusses the workflows and the
terms and definitions of LHC computing tasks. We introduce the concept of
grid computing and review centralized parts in the current computing model.

Chapter 3 discusses hardware virtualization as a key enabling technology for
cloud computing. We review particular obstacles one has to overcome in order
to harvest cloud computing resources and computing resources of volunteers for
LHC computing. We report on performance studies of typical LHC workloads
in virtualized environments.

Chapter 4 discusses various features of LHC experiment software. We analyze
the static and dynamic characteristics of the LHC experiment software. We
compare the characteristics of the software to related file system studies. We
conclude by establishing design criteria for efficient software distribution.

Chapter 5 discusses the maintenance of file systems based on content-
addressable storage. We identify several problems of existing technologies
that prevent such file systems from being used at the scale of LHC experiment
software. We discuss more efficient approaches to these problems.

Chapter 6 presents the design of a fully decentralized file system cache. We
develop two low latency state dissemination protocols for the distribution of
cache states and presence states of the worker nodes. We evaluate the algorithm
using simulation based on file system traces.

Chapter 7 reviews implementation details of the proposed methods. We
evaluate an implementation of the decentralized memory cache developed
in Chapter 6. We define performance metrics for software distribution and
compare the proposed methods with existing technologies.

Chapter 8 concludes the thesis and summarizes its results.

5

2 Terms and Definitions

This chapter provides an overview of computing in high energy physics with
respect to the LHC experiments. The characteristics of computing are derived
from its application as a critical part of the experiment designs and the data
analysis. Section 2.1 briefly introduces the setup of the LHC experiments,
their organizational structure, and the scale of the produced data. Sections 2.2
and 2.3 define commonly used terms and definitions in LHC computing and
review the overall computing workflows as well as the distributed computing
infrastructure.

2.1 The Large Hadron Collider

The Large Hadron Collider (LHC) and its attached particle detectors are large
scientific machines used to study fundamental constituents of nature. The
LHC collides particles in order to study their emerging products, the so-called
secondary particles, that are registered by detectors. The large size of the LHC
is due to the very high energy it has to give to particles before colliding them.
With higher collision energies, more secondary particles are produced that must
be detected and smaller structures can be probed.

When particles with very high energies collide, the temperature and density
during the collision is comparable to the environment that existed during the
very early state of the universe as described by the Big Bang theory. The LHC
is designed to create an environment that corresponds to a temperature of
1019 K, which is comparable to 10−25 seconds after the Big Bang.

The LHC allows the predictions of the so-called Standard Model to be probed
at very high energies. The Standard Model is a physics model that describes the
fundamental particles and their interaction via the strong force, the weak force,
and the electromagnetic force [Per00]. Its predictions match the results obtained
by existing experiments very accurately. Still, the Standard Model does not
combine all four fundamental forces (the three aforementioned plus gravity)
into a single theory. Also, the Higgs particle, which is a necessary building
block of the Standard Model in order to explain the origin of mass [Hig64], has
not yet been discovered. At the macroscopic scale several phenomena remain

7

2 Terms and Definitions

2008 JINST 3 S08001

Figure 2.1: Schematic layout of the LHC (Beam 1- clockwise, Beam 2 — anticlockwise).

systems. The insertion at Point 4 contains two RF systems: one independent system for each LHC
beam. The straight section at Point 6 contains the beam dump insertion, where the two beams are
vertically extracted from the machine using a combination of horizontally deflecting fast-pulsed
(’kicker’) magnets and vertically-deflecting double steel septum magnets. Each beam features an
independent abort system. The LHC lattice has evolved over several versions. A summary of the
different LHC lattice versions up to version 6.4 is given in ref. [20].

The arcs of LHC lattice version 6.4 are made of 23 regular arc cells. The arc cells are 106.9 m
long and are made out of two 53.45 m long half cells, each of which contains one 5.355 m long
cold mass (6.63 m long cryostat), a short straight section (SSS) assembly, and three 14.3 m long
dipole magnets. The LHC arc cell has been optimized for a maximum integrated dipole field along
the arc with a minimum number of magnet interconnections and with the smallest possible beam
envelopes. Figure 2.2 shows a schematic layout of one LHC half-cell.

– 8 –

Figure 2.1: Left hand side: the perimeter of the Large Hadron Collider (LHC) and the
transfer lines to the SPS pre-accelerator embedded in a map of the area
(source: L. Guiraud, CERN public picture collection). Right hand side: a
schematic image of the LHC as presented by Evans and Bryant [EB08].

unexplained, such as the nature of the so-called dark matter and dark energy,
or the asymmetry between matter and antimatter. Beyond the Standard
Model, the LHC experiments will probe, for instance, the supersymmetry
theory [Per00].

2.1.1 Particle Accelerator

The LHC is a synchrotron, i. e. a circular particle accelerator, operated by
the European Laboratory for Particle Research (CERN1) [EB08]. The LHC
is reusing the ring tunnel of the former LEP accelerator. The tunnel has a
circumference of 26.7 km (Figure 2.1). It is beneath the franco-swiss border
near Geneva, at a depth underground ranging from 45 m (East) to 170 m (West).
The planning started in 1984 and the LHC construction was approved in 1994.

The LHC accelerates two beams of either protons2 or lead ions that counter-
rotate in beam pipes next to each other through the ring. Each beam consists
of up to 2808 bunches, packets of particles that are depending on their position

1The acronym CERN is derived from the laboratory’s provisional name “Conseil Européen pour la
Recherche Nucléaire”

2Protons belong to a class of particles called “hadrons”. In contrast to “leptons” such as electrons,
hadrons are heavy particles. A proton, for instance, has 2000 times the mass of an electron.

8

2.1 The Large Hadron Collider

in the ring from a couple of centimeters to the order of micrometers in size.
Each bunch consists of up to 1011 protons or up to 7 ·107 lead ions. The particle
beams are accelerated, bent, and focused by strong magnetic fields. Starting
with bunches injected from pre-accelerators, the LHC takes some 20 minutes to
accelerate the beams to their final energy of up to 7 TeV (1.12 µJ) per proton.
As the velocity 𝑣 of a particle comes close to the speed of light 𝑐, its kinetic
energy results in a substantial increase of its mass according to the formula
𝑚(𝑣) = 𝑚0/

√︀
1− (𝑣/𝑐)2, with 𝑚0 being the rest mass of the particle. At 7 TeV,

a single proton is as heavy as a fly.
The LHC is at the moment the world’s largest and most powerful particle

accelerator. The LHC is designed to produce particle collisions with more
than an order of magnitude higher energy than the previously most powerful
particle accelerator, the Tevatron near Chicago [Edw85]. The operation of
the LHC consumes about the same amount of power as the state of Geneva
(≈120 MW). In comparison, the second largest energy consumer at CERN
is the computing center with 5 MW. As CERN contributes around 20 % of
the overall LHC computing power (cf. Section 2.3.2), we estimate the overall
energy consumption for LHC computing to be ≈25 MW. That is a conservative
estimation as it neglects the economy of scale of large computing centers.

At four interaction points around the LHC tunnel, the particle beams are
brought into collision. The collision rate is up to 40 MHz, i. e. bunches cross each
other every 25 nanoseconds. On average, some 20 particles from both crossing
bunches collide at full design performance. Hence, beams might circulate up
to 10 hours before new beams have to be injected. The collision energy is the
sum of the respective beam energies. For protons, the collision energy is up
to 14 TeV. For lead ions, the collision energy is up to 5.5 TeV per nucleon, i. e.
a total collision energy of 1.15 PeV. During a collision, the particles’ kinetic
energy can be transformed into matter, according to the formula 𝐸 = 𝑚𝑐2. In
this process, a collision might create a variety of different secondary particles,
with creation likelihoods depending on the particle. Such created particles
might also decay into other particles. It is the purpose of the LHC experiments
to capture, reconstruct, and analyze these collision products.

2.1.2 LHC Experiments

The LHC experiments are located at the four interaction points. Though
strongly linked with CERN and the LHC, the experiments are not solely
operated by CERN. The teams that build and operate the experiments are
independent international collaborations, comprising hundreds of research
institutes and thousands of physicists from all over the world.

9

2 Terms and Definitions

Figure 2.2: Left hand side: The profile of the CMS detector before final assembly
(own photography). Right hand side: a schematic profile of the CMS
detector (source: CMS public web site).

Each LHC experiment collaboration operates a particle detector. The particle
detectors are installed in underground caverns at, or close to, the interaction
points. They are intended to identify the secondary particles created in a
particle collision and to measure their energy, direction of flight, charge, and
momentum. They do so by combining signals from layered sub detectors. Such
a sub detector might, for instance, expose particles to a magnetic field and
measure their bending behavior in order to determine the particle momentum
(Figure 2.2). Overall, a particle detector comprises up to a hundred million
sensors. Extracting physics information from these sensor signals is called
reconstruction.

Most particle detectors at the LHC are large constructions: the ATLAS
detector, for instance, has a total weight of 7000 t and is half as big as the
Notre Dame cathedral. The size of the detectors is required by the high energy
of the secondary particles and the desired accuracy of the measurements; the
larger the detector the stronger is the measurable influence of the detector
parts (magnets, matter, etc.) on the secondary particles. In spite of their size,
the detectors are delicate machines. The geometry of the construction as well
as environment conditions such as temperature or gas pressure are subject to
constant monitoring and calibration. The position of the sub detectors, for
instance, requires calibration at the scale of micrometers. Still, the detectors
are not entirely accurate. There is inevitably limited detector efficiency, blind
spots, de-functional detector parts, and so on. A (considerable) part of the
data analysis consists of efficiency corrections, i. e. estimating the real physics
processes from the detector output.

There are seven experiments at the LHC sharing the four interaction points.

10

2.2 Computing Model

Detector Collaboration

Experiment Dimensions [m] Sensors Scientists Labs Countries

ATLAS 46× 25× 25 100 M 3000 173 38
CMS 21× 15× 15 100 M 3000 180 38
ALICE 26× 16× 16 18 M 1000 105 30
LHCb 21× 10× 13 1 M 770 55 15
TOTEM 440× 5× 5 230 K 65 9 7
LHCf 2 · 0.3× 0.1× 0.1 < 10K 21 10 4
MoEDAL

√
25×

√
25× 0.02 passive 25 9 7

Table 2.1: Key figures of the LHC experiments. The experiment collaborations are
distributed world-wide over many small groups and institutes.

Table 2.1 shows some of their key figures. The ATLAS [The08b] detector and
the Compact Muon Solenoid (CMS) [The08c] are general purpose detectors.
Having two detectors allows for cross-verification of discoveries. A Large Ion
Collider Experiment (ALICE) [The08a] is a detector specialized to analyze
lead-lead collisions. An important focus of ALICE’s research is on the so-
called quark-gluon plasma, a very hot and very dense state of matter that is
assumed to have existed shortly after the Big Bang. The Large Hadron Collider
beauty experiment (LHCb) [The08d] is a detector specialized to analyze the
asymmetry between matter and antimatter. The aforementioned experiments
are considered the four large LHC experiments.

The total elastic and diffractive cross section measurement (TOTEM) [The08f]
experiment is a detector specialized for high-precision measurements of the in-
depth structure of the proton. The Large Hadron Collider forward experiment
(LHCf) [The08e] consists of two detectors specialized to compare particles pro-
duced in an controlled environment to particles from cosmic rays. The Monopole
and Exotics Detector At the LHC (MoEDAL) [The09b] is a detector specialized
to search for magnetic monopoles and large supersymmetric particles3. In the
rest of the thesis, we will focus on the four large LHC experiments.

2.2 Computing Model

The following sections describe the terms and definitions used in computing for
LHC experiments. The central entity in LHC computing is the event. The event

3At the time of writing, the MoEDAL experiment is approved but not yet in operation.

11

2 Terms and Definitions

contains information about the secondary particles that have been created as a
result of colliding primary particles from crossing beams.

The complexity of the LHC data analysis grows at least quadratically with
time. The entire data set is reprocessed several times per year, in order to
take into account improvements in the understanding of the detector perfor-
mance (the so-called calibration and alignment of the detector) and to include
improvements in the reconstruction and physics analysis algorithms.

2.2.1 The High Energy Physics Event

From the detector point of view, a particle collision results in a set of sensor
signals. Signals typically result from responses of the detector elements (such
as a silicon sensor) to the ionization produced by a particle traversing the
sensitive element of the detector. The sensor signals corresponding to a single
crossing of the two beams are digitized and recorded as a raw event. The size
of a raw event is of the order of 103 kB to 104 kB. The reconstruction step
that follows extracts the physics information from the set of digitized signals.
In a first step, the fuzzy signals have to be transformed into global time and
space coordinates, taking the detector geometry and alignment into account.
Afterwards, information of many sub detectors is combined to reconstruct the
trajectories of the secondary particles and to determine their properties, such
as charge and momentum. The output of the reconstruction step is called
event summary data (ESD). It has a size of the order of 102 kB, an order of
magnitude smaller than the raw event. The structure of the physics objects can
be represented as a tree, with the event as root node and the properties of the
physics objects as leaf nodes. The ESDs might be further refined by stripping
unnecessary information not required by an analysis. Such a stripped ESD is
called analysis object data (AOD). There might be various AODs for a single
ESD, each of them tailored to a particular type of data analysis. Figure 2.3
shows a visualization of a single simulated and reconstructed event in the CMS
detector.

The analysis of events uses descriptive statistics on a large number of events
to study certain physics objectives. The total size of the collected data set
typically requires several 109 events. However, a single analysis from an
individual scientist might involve only 107 events. Events can be analyzed
independently from each other. LHC analysis tasks benefit from event level
parallelism, they operate on an embarrassingly parallel workload. Hence, LHC
analysis computing is not classical high performance computing but in fact it
is high throughput computing [LRTB97]. The crucial performance figure is the

12

2.2 Computing Model

Figure 2.3: CMS event display of a simulated and reconstructed event. LHC applica-
tions iterate over a large number of such events. Whilst the secondary
particles and their trajectories through the detector change with every
event, the description of the detector stays constant. (Source: I. Osborne,
public picture collection of the CMS collaboration)

number of processed events per second. Figure 2.4 visualizes the processing
steps of events.

2.2.2 Online Computing

Online computing deals with the tasks that have to be performed in real time
while the detector is capturing events. At full design performance, the LHC
produces up to 600 million particle collisions per second (2808 bunches × 11245
turns per second × 20 collisions per crossing particle bunches). Assuming
a raw event size of 1 MB this would result in a required data taking rate of
570 TB/s. The LHC experiments filter the raw events and discard the majority
of “uninteresting” events according to simple criteria such as the energy of the
secondary particles. This is done in real time by parallel, multi-level trigger
farms. The trigger farms can reduce the number of events per second from
40 MHz to 100 Hz. The trigger farms are partly implemented using customized
hardware. The triggers are tunable in order to reflect certain physics objectives.

The data acquisition stores the filtered raw event data to tapes at CERN.
The data taking rate depends on the experiment, whether protons or lead ions
collide, and on the capabilities of the storage system. At the end of 2010, the

13

2 Terms and Definitions

Figure 2.4: The processing steps of an event as presented by Harvey et al. [HMR09].
Simulation and reconstruction are steered by collaboration bodies but
might be performed in the distributed computing environment of the
Worldwide LHC Computing Grid. The reconstruction process is subject
to re-processings that use up-to-date descriptions of the latest detector
performance. Analysis is performed de-centrally by individual physicists
and research groups.

14

2.2 Computing Model

four large LHC experiments combined recorded on average 2.5 GB/s with peaks
at 7 GB/s [Bir10].

2.2.3 Offline Computing

Offline computing comprises the computing tasks not directly connected to the
detector operation. The tasks of offline computing include the development of
the software for reconstruction, analysis, simulation, and the management of
the distributed computing. The reconstruction tasks and simulation tasks are
organized by the respective collaboration bodies. The data analysis is driven by
individual scientists and research groups. As such, analysis tasks are performed
decentrally.

Reconstruction

Event reconstruction produces ESDs from raw events. It has to interpret
the digitized detector signals and identify the secondary particles and their
tracks, i. e. their trajectory through the detector. Furthermore, reconstruction
determines the point of collision as well as several properties of the particles,
such as charge and momentum. The reconstruction is not entirely accurate,
its result is an approximation together with estimators for the statistical
uncertainty.

Reconstruction is performed in several passes with a feed-back loop (Fig-
ure 2.4). With the output of a reconstruction pass, the detector experts tune
the parameters of the reconstruction algorithms for better accuracy. For AT-
LAS, for instance, 10 % of data are immediately reconstructed, then further
adjustments are done before all of the raw data are reconstructed. Usually,
reconstructed data are available within 48 hours of the data having been taken.
The feedback loop might involve changes and corrections to the reconstruction
software and requires a fast distribution of the software to worker nodes.

A second feed-back loop involves data analysis, which provides better un-
derstanding of the detector. In turn, the improved knowledge of the detector
helps to improve the reconstruction algorithms.

Event Simulation

Event simulation is an indispensable tool when dealing with machines as complex
as the LHC or one of its detectors. During the design phase, simulations measure
the detector’s effectiveness and performance. Here, they are also used to produce
large data samples that are used to prepare the (distributed) computing tools

15

2 Terms and Definitions

before real data taking starts. During data taking and analysis, simulations
of physics processes and the comparison with the detector output provide a
means to determine the detector corrections that need to be applied to account
for inefficiencies in the detector performance. Vice versa, the physics models
used in the simulation toolkits are constantly improved by validating them
using new data in new energy ranges and by incorporating newly discovered
phenomena.

LHC computing uses discrete event simulators and Monte-Carlo algorithms
that reflect the probability of the simulated physics processes. So-called event
generators simulate the creation of secondary particles produced by a particle
collision. The transport simulators simulate the particles traveling through
the detector and their interactions with the detector materials. Obviously,
transport simulators require an accurate geometric and physical description
of the detectors, that includes details of cabling and support structures. As
opposed to reconstruction and analysis, simulation is a CPU-bound task.

Analysis

During data analysis, a sample of “interesting” events is processed using meth-
ods of descriptive statistics. The signature that classifies an event as being
interesting depends on the particular physics objectives of the analysis. For
example, this might involve selecting all those events in which at least one
muon has been identified. Data analyses might comprise multiple pipelined
phases, in which event data output from one phase is temporarily stored and
used as input for another phase. The final output of the data analysis is most
often a histogram.

2.2.4 Types of Input Files

Except for event generation, the computing workflows operate on large amounts
of input data. We classify the different types of input files that are required to
execute LHC computing jobs.

Event Data The event data consists of collections of events. There are usually
packaged in files of the size of 102 MB to 104 MB. The size of the event data
files is of the order of 103 TB per year and experiment.

Conditions Data In order to extract the physics processes from event data,
it has to be accompanied by the so-called conditions data. Conditions data
contain the detector and environment conditions at the time of data taking,

16

2.3 Distributed Computing Services

such as detector position calibration, environment temperature, gas pressure,
and so on. Conditions data might be enriched after reconstruction, for instance
by data quality information. The size of the conditions data files is of the order
of 103 GB per year.

Static Data Static data includes the description of the detector geometry and
magnetic field together with quasi-constant information about physics processes,
such as physics constants, probability distribution tables, and particle property
databases such as decay probabilities. Static data are usually delivered together
with software. The size of the static data files is of the order of 103 MB.

Software The software required to perform analysis includes the experiment
specific analysis framework, common data analysis and simulation tools for
HEP, and the user’s analysis code. The external tools and libraries used by
these frameworks are often shipped with the core software. Furthermore, the
software comprises grid middleware and experiment specific tools for distributed
computing and data access. Because of the feedback loops with physics results
and because of the distributed development of the data analysis algorithms, the
software is subject to perpetual changes that are reflected by daily or weekly
release cycles. The size of the software files is of the order of 102 GB to 103 GB
per year.

2.3 Distributed Computing Services

The computing infrastructure limits the rate at which LHC events can be
analyzed. As mentioned before, LHC data processing benefits from the event
level parallelism of the workload. Instead of elaborating parallel algorithms,
sequential algorithms can be applied to a large number of events in parallel on a
distributed computing infrastructure. In the past, the computing infrastructure
changed two times fundamentally, from dedicated mainframes to PC clusters
in the 1990’s [BBC+91] and from clusters to the grid infrastructure starting
from 2000. Currently, it is on the threshold to change again in order to benefit
from unmanaged computing resources offered by various cloud infrastructures.

The shift to cluster computing was driven by a better price/performance
ratio. The change to grid computing was caused by the fact that at the time
of designing the computing services for the LHC experiments no single data
center was powerful enough to process the data produced by the LHC. However,
the members of the LHC experiment collaboration have their own smaller
and larger computing premises. The LHC Grid is used to combine all these

17

2 Terms and Definitions

resources into a uniform computing service. Ideally, the LHC Grid enables
scientists to run analysis jobs on the globally distributed infrastructure the
same way they do on their local cluster; the grid takes care of finding the
physical location of the required data, finding free resources, running the job,
and writing the output to a location accessible to the scientist.

2.3.1 Grid Computing

“The Grid” has been proposed by Foster et al. as a means to share resources
“among dynamic collections of individuals, institutions, and resources—what
we refer to as virtual organizations” [FKT01]. Foster later refined the definition
of the Grid as a “system that coordinates resources that are not subject to cen-
tralized control using standard, open, general-purpose protocols and interfaces
to deliver nontrivial qualities of service” [Fos02]. This system effectively is a
middleware layer that is supposed to shield applications from the heterogeneity
and complexity of the underlying distributed resources. As such, the grid has
been inspired by the idea of “utility computing”, i. e. “computing” should by
subject to the same standardization and ubiquitousness as for instance has
happened to electrical power by power grids. The use of the grid was not meant
to be bound to scientific collaborations, although LHC data processing was one
of the grid drivers specifically mentioned by Foster.

Based on the definition of grid protocols and the overall system archi-
tecture, two major grid middleware implementations have been developed,
Globus [FK97] and gLite [LHP+04]. The services provided by gLite are shown
in Figure 2.5.

Access Services Provide the interface (API) to the grid users.

Security Services Used to grant or deny resource access to the users of a virtual
organization (VO). Furthermore, the site proxy allows for controlling
network traffic related to grid resources.

Information and Monitoring Services Used to supervise the status of re-
sources and jobs and can in turn be used by other services to make
decisions (such as: “which resources are free for the next job?”).

Job Management Services Used for job scheduling, matching a task queue
with the available resources and the user’s quota.

Data Services Services for file level access to data and writable output storage.
Files are addressed using logical file names in a universal namespace and

18

2.3 Distributed Computing Services

Figure 2.5: Web services provided by gLite as presented by Laure et al. [LHP+04]

can be replicated to multiple physical locations. The translation from
logical to physical file names is done by file catalogs.

Obviously, the computing jobs do not only require data (provided by the
data services), but also the experiment software. In gLite, the package manager
is used to deliver software to the worker nodes. The gLite package manger
steers standard package managers such as RPM in order to install software
on the worker node or on a shared software area. Essentially, it tackles the
problem of software installation using the existing grid services in the form of
an installation job having a software release package as “data file”.

2.3.2 The Worldwide LHC Computing Grid

The Worldwide LHC Computing Grid (WLCG) is the principal distributed
computing infrastructure used for LHC data processing [B+05]. It is the largest
grid infrastructure, comprising some 250 000 cores globally distributed over
more than 140 registered computing sites and many more small institutional
computing resources of individual research groups. The site size varies from
just a couple of cores to many thousands of cores. By the end of 2010, WLCG
executed some 1 million jobs per day [Bir10].

WLCG uses a fair share of resources provided by various regional, national,
and international grid initiatives, most notably the infrastructures of the
Open Science Grid (OSG)4 in North America and of the European Enabling
Grids for E-SciencE (EGEE)5. The share of resources given by WLCG to

4http://www.opensciencegrid.org
5http://www.eu-egee.org

19

http://www.opensciencegrid.org
http://www.eu-egee.org

2 Terms and Definitions

the experiments is determined by memoranda of understanding signed by the
participating computing centers, turning WLCG itself into an international
collaboration (Figure 2.6).

In contrast to the somewhat computing-centric original grid architecture,
one of the biggest challenges for LHC data processing is the data management
of up to 15 PB new event data per year. As opposed to the loosely coupled
Grid, WLCG defines a tightly coupled alliance of powerful computing centers
collectively taking care of data management. Among these data centers, each
data set is replicated three times resulting in a total volume of up to 45 PB per
year. Based on the assumption that the standard Internet network links are too
slow and fragile to cope with the event data, the LHC Optical Private Network
(LHCOPN) [BMM05] was built. The LHCOPN connects CERN with 11 globally
distributed computing centers via 10 Gbit/s links dedicated to event data
transfer. The LHCOPN is embedded into the MONARC architecture [MON00]
that defines a hierarchically layered structure of the WLCG computing centers.
The computing centers are classified as Tier 0 to Tier 3, depending on their
size and quality of service:

Tier 0 The CERN computing center. It stores the master copy of all data and
provides some 15 % to 20 % of the overall computing capacity.

Tier 1 There are 11 Tier 1 centers, located in Europe, North America, and
Taiwan. The Tier 0 and the Tier 1’s form the LHCOPN. Tier 1’s provide
enough storage to contribute a significant fraction of long-term storage
for event data. Furthermore, they provide fast network links, significant
computing capacity and round-the-clock support. Tier 0 and the Tier 1’s
provide around half of the overall computing capacity.

Tier 2 There are some 120 Tier 2 centers in WLCG. Usually, they provide full
grid services and a data cache and channel their data traffic through the
nearest Tier 1. They do not provide archival storage for the event data.
They do not guarantee 27/7 operations support.

Tier 3 Tier 3 centers are usually small computing facilities private to individual
research institutes. They are used for analysis tasks. They can be
as lightweight as a couple of cores in two low-end servers. They do
not necessarily provide grid services nor are they necessarily part of
WLCG monitoring. Nevertheless, they require access to data and analysis
software.

Due to a lack of generally accepted grid standards, WLCG defines a set
of standard services itself. Moreover, experiments developed their own, inde-

20

2.3 Distributed Computing Services

Figure 2.6: The location of the WLCG computing centers (source: http://
gstat-prod.cern.ch/gstat/geo/openlayers).

pendent distributed computing frameworks [SAB+03,TBB+08,Mae08]. These
independent frameworks have been included into the grid infrastructure by so
called pilot jobs. Pilot jobs are essentially placeholder grid jobs that, when
arriving on a worker node, inspect the environment and connect to the experi-
ment’s task queue. Thereby experiments implement their own pull-based job
scheduling in contrast to the grid push model that is agnostic to the specific
experiment job constraints.

2.3.3 Distributed and Decentralized Computing

While the infrastructure for LHC data processing is distributed, it is not
necessarily fully decentralized. We will review centralized parts in computing
for WLCG.

The grid installation jobs used for software deployment enforce a globally
consistent set of shared software areas. In the following chapters, we will study
means to decentralize software deployment.

Following the hierarchical Tier model, event data are staged to predefined
locations according to a central planning process. The computing is data driven
with the data spread around the LHC Grid first and computing jobs moved
to the data later. As the scale of the distributed analysis grows, deterministic
access patterns are replaced by unpredictable and random access patterns.
From today’s perspective, the need for a hierarchical data transfer path is
fading away due to the rapidly increasing transfer rates of the normal Internet

21

http://gstat-prod.cern.ch/gstat/geo/openlayers
http://gstat-prod.cern.ch/gstat/geo/openlayers

2 Terms and Definitions

links. However, because of the WLCG’s geographic distribution (Figure 2.6),
random site-to-site traffic has a high bandwidth-delay product, i. e. network
connections having a high throughput and high latency at the same time. Due to
organizational policies, many sites are behind firewalls and/or NAT layers that
prevent incoming traffic and restrict outgoing traffic to use standard protocols.
Each WLCG site allows high speed point-to-point connections between their
worker nodes.

The operation of the LHC Grid depends on middleware services, which
are provided by the sites. The operation of the middleware services has to
be centrally coordinated and limits the execution of computing jobs to the
managed resources provided by WLCG. The virtualization of worker nodes
is required in order to harness opportunistic cloud resources and in order to
simplify the grid site operation.

22

3 Worker Node Virtualization

In this chapter, we will discuss the prospects and challenges of running worker
nodes in virtual machines. In contrast to the complex grid middleware interface,
the interface used to control virtual machines is rather simple. Four commands
are sufficient: start, terminate, list virtual machine images, and list running
virtual machines. Virtual machines allow for separation of resource provision and
service provision. They provide additional flexibility such as suspend-resume or
migration of virtual worker nodes from a physical machine to another, possibly
remote machine. Thus, virtual machines are often an unmanaged and volatile
resource.

3.1 Motivation

In the current model of WLCG computing, the provision of the resources
and the provision of the services for distributed computing are coupled. The
site administrators and the experiment computing teams need to work closely
together. Some motivating examples:
∙ The worker node needs to run the experiment software. The experiment

software releases are installed on a shared software area on the grid sites.
To that end, the site administrators maintain dedicated accounts for the
experiment’s software manager.

∙ The experiment’s software stack requires a specific operating system. As
a result, worker nodes are often dedicated to a specific experiment. For
optimal resource utilization, however, grid worker nodes should support a
variety of different experiments and virtual organizations.

∙ In order to run jobs, worker nodes require access to various grid services
(monitoring, task queue, etc.). As the large experiments developed cus-
tomized distributed computing services, these experiment specific services
have to be available, too. Such services are installed and maintained by
the WLCG site administrators.

∙ The sites need to install and maintain the experiment’s toolkits for the
access to event data and conditions data and the output storage.

23

3 Worker Node Virtualization

∙ For small collaborations, it is challenging to use the grid infrastructure.
Not only do they need to port their applications to grid middleware, they
also need to convince site administrators to provide their specific services
and requirements.

Worker node virtualization offers an opportunity to decouple infrastructure,
operating system and experiment software life cycles as well as the responsibili-
ties for maintaining these components. Virtualization allows for the different
parts to evolve independently. The site operators have the responsibility to run
virtual machines with minimal local contextualization, the experiment collab-
orators maintain the necessary libraries and tools, and the end user receives
a uniform and portable environment for developing and running experiment
analysis software on both single desktops and laptops as well as batch nodes in
computer centers and computing clouds. Provided a basic interface to deploy
and terminate virtual machines, experiments can extend their regular resources
by opportunistic resources such as offered by commercial cloud providers.

3.2 Cloud Computing

Whilst originally part of the grid movement, the industry quickly diverged from
the scientific community and propagated cloud computing as the preferred
flavor of utility computing. The definition of the term “cloud computing” has
been somewhat murky [VRMCL08] and only recently converged into a NIST
standard [HLST11]. The NIST standard describes the defining properties of
cloud computing by its resource utilization [SKH10]:

∙ Resources are used in an on-demand self-service way

∙ Resources are pooled by a cloud provider and shared amongst the cloud
provider’s users

∙ Resources are accessible by a broad collection of devices

∙ Resources are subject to rapid elasticity from the point of view of the
users

∙ Resource utilization is measured, usually in order to allow for a pay-per-use
model

In contrast to the grid, cloud computing is not necessarily about sharing
of heterogenous, distributed resources but about the provision of virtualized
resources. Internally, a cloud provider may or may not distribute its resources.

24

3.2 Cloud Computing

3.2.1 Virtualization

Virtualization is the key enabling technology behind cloud computing. Virtual-
ization has been exploited on many different levels, such as multi-programming,
virtual memory, the Java virtual machine, virtual function calls, or hardware
virtualization. A virtualization layer provides a virtual view on the underlying
resource that is tailored to the problem at hand. The virtualization layer trans-
lates between the virtual view and the “real” resource. This additional layer of
indirection inevitably comes with a performance drawback, which might, or
might not, be negligible.

Smith and Nair point out that virtualization is a concept very close to
abstraction [SN05, p. 4]. They argue that virtualization does not necessarily
hide the “implementation details”. For instance, the virtual hardware provided
by a virtual machine may or may not be more complex than the underlying
physical hardware; in some cases, it can even be a pass-through, i. e. the
virtualization layer provides the very same underlying physical hardware to its
virtual machines. Similarly, the virtualized resource may be larger than the
physical resource, in which case the virtualization layer over-commits.

In a broader view, however, virtualization does reduce complexity. A virtual-
ization layer provides uniform access to resources. Considering the example
above, let 𝑛 the number of operating systems and 𝑚 the number of hardware
platforms. Without virtualization, there are 𝑛 ·𝑚 combinations of operating
systems and hardware platforms. Using virtualization, all operating systems
have to run on the uniform virtualization layer whereas the virtualization layer
has to run on all hardware platforms. Thus the complexity is reduced to 𝑛+𝑚
combinations.

Hardware Virtualization

Hardware virtualization is defined as a virtualization layer working on the
instruction set architecture (ISA) level. This kind of virtualization layer is also
called Virtual Machine Monitor (VMM) or hypervisor. The virtual machine
monitor provides the instruction set of a virtual CPU, including instructions to
access memory and I/O instructions. In addition, the VMM provides virtual
I/O devices, such as network interfaces, hard disks, or timers. The VMM
provides an interface for an operating system to run on. Such a system running
on a VMM is called a guest or virtual machine. The system on which the VMM
runs is called a host. Often, the virtual hard disk of the virtual machine is
stored on the host in the form of a single large file, the hard disk image.

25

3 Worker Node Virtualization

3.2.2 Types of Cloud

Not all cloud resources are usable in the context of LHC computing. Depending
on the provided interface, we distinguish three common types of cloud:

Software as a Service (SaaS) The resources to run a specific application are
hosted at the cloud provider. The cloud providers usually provide a web
interface to the users. This idea was previously known as Application
Service Providing (ASP). An example of SaaS is Google Docs.

Platform as a Service (PaaS) Instead of providing a specific application,
with PaaS the cloud provider offers a middleware to its resources. PaaS
users can develop their own applications against such a middleware. An
example of PaaS is Microsoft Azure.

Infrastructure as a Service (IaaS) The resource interface of IaaS is basically
a simple API to deploy, start, and stop the user’s virtual machines. An
example of IaaS is Amazon EC2.

Since the HEP community has developed very specific software required for
LHC data processing, IaaS is the only type of cloud of further interest. From
the view point of control and access, we distinguish between, on the one hand,
private and community clouds, i. e. the resources are under the premises and
for use of a single organization or a collaboration, and, on the other hand,
public clouds, i. e. the resources are available for a fee to the general public
(Figure 3.1). Furthermore, there is an emerging type of cloud called a volunteer
cloud ; here, a potentially large number of volunteers is willing to spend spare
cycles of their home PCs for supporting scientific projects. The predominant
infrastructure for volunteer computing is BOINC [And04].

3.3 Prospects

In the context of LHC computing, virtual machines offer notable benefits
beyond simplified resource access. The following use cases can be envisaged:

3.3.1 Optimized Resource Utilization

For experiment collaborations, moving from one major version of the operating
system to the next is a major and lengthy process. As a consequence, moving
a part of the batch capacity to a new OS flavor often leads to wasted capacity
as users are never fully ready to move to the new platform. By virtualizing the

26

3.3 Prospects

Private CloudPublic Cloud (e. g. Amazon EC2)

Standardized API Standardized API

In
te

ra
ct

iv
e

Se
rv

ic
es

G
ri

d
Se

rv
ic

es

B
ui

ld
an

d
T
es

t
Se

rv
ic

es

W
or

ke
r

N
od

es

· · ·

Figure 3.1: Various services required for LHC computing deployed as virtual machines
in an IaaS data center. These services can be migrated to public clouds
under peak load. This is an idealized picture; in practice, such a fully
virtualized computing center is not yet present in WLCG.

batch environment one can dynamically provision standard batch nodes of a
given OS flavor according to demand [CGM+10]. With such an approach, a
more efficient utilization of computing resources can be achieved by dynamically
consolidating idle virtual worker nodes on a single physical machine and by
powering-off unused physical machines.

3.3.2 Portable Analysis and Development Environment

Given the variety of the operating systems that physicists run on their laptops
and desktops (Windows, Mac OS X, Linux) and the fact that most computing
capacity provided by the grid tends to be locked to a single version of the Linux
operating system for considerable time, it quickly becomes impractical and
often impossible to install, develop and debug locally the experiment software
before eventually submitting jobs to the grid. This is evidently a use case
where virtualization technology is beneficial. A Virtual Machine that runs the
Linux operating system compatible with one available on the grid provides a
build and test environment independent of underlying hardware or software
platform.

3.3.3 Volunteer Clouds

Providing LHC applications in the framework of volunteer computing projects
allows for an almost free extension of the existing computing resources. Fur-

27

3 Worker Node Virtualization

thermore, volunteer computing projects have a public relations component
attached to it and some outreach is gained for the scientific project. Volunteers
run a variety of operating systems, including Windows, Mac OS X, and various
flavors of Linux. By encapsulating the applications into virtual machines, the
majority of desktop computers can be harnessed without the need to port
millions of lines of code. A “VM Wrapper” that allows a BOINC job to be a
virtual machine has been presented by Segal et al. [SBQ+10].

3.3.4 Long-Term Data Preservation

After the decommissioning of a detector, its collected data needs to be pre-
served [The09a]. Experiment data is typically unique (not superseded by other
experiments) and can be used as a future cross-check for discoveries of other
experiments. Novel analysis techniques and theoretic models can be probed
against such data. However, the data alone has no meaning without any means
to reprocess them. That requires the knowledge of how to do it as well as the
entire software infrastructure to be available. Virtual machines offer an easy
way of preserving such a software infrastructure including the operating system.

3.4 Challenges

In contrast to plain server consolidation, LHC data processing has some specific
constraints and requirements that limit the straight-forward use of virtual
machines. Instead of packaging a standard physical worker node as a virtual
machine, many of the following problems can be avoided or mitigated by a
carefully constructed virtual machine (Figure 3.2).

3.4.1 Performance

The additional virtualization layer will inevitably result in some performance
loss. The problem is amplified by the internals of the x86 architecture and its
64 bit extension, the x84_64 architecture. Their instruction set architecture
(in its original form) does not support the virtualization requirements defined
by Popek and Goldberg [PG74,RI00].

A modern ISA has a CPU with at least two modes of operation. A privileged
set of instructions is used by an operating system kernel, for instance for inter-
rupt handling and virtual memory management. An unprivileged instruction
set is used by the user’s applications. Such a separation of modes is required in
order to shield applications against each other and to shield system resources
against abuse of applications. Popek and Goldberg define near-physical speed

28

3.4 Challenges

C
on

fig
.

H
T

T
P

(S
)

X
M

L
-R

P
C

Minimal
Linux OS

Software FS

Linux Kernel

Contextualization

XMPP
HTTP (Amazon EC2)

Fuse

ssh

Hierarchy of
HTTP Caches

250MB
Bootstrap Image

1GB
Software Cache

10GB
Single Release

(all releases available)

Figure 3.2: The CernVM appliance comprises three major components: 1. A minimal
operating system derived from the experiment software dependencies.
2. A specially crafted software file system that downloads software from a
remote web server on demand and caches data and meta-data. 3. Various
contextualization and configuration interfaces to facilitate deployment in
managed and unmanaged infrastructures.

29

3 Worker Node Virtualization

as an essential property of a VMM in order to provide a virtualized application
the illusion of running on physical hardware. That implies that the majority of
instructions executed by the VM must not be emulated but executed directly
by the physical CPU.

Popek and Goldberg annotate the instructions of the ISA as privileged,
sensitive, or conventional. The latter are instructions that behave the same in
either of the modes of operation of the CPU, such as addition of two integers.
Privileged instructions are only executed in the privileged CPU mode, otherwise
they raise a trap (e. g. the HLT instruction). Sensitive instructions behave
differently depending on the mode of operation of the CPU. However, they not
necessarily raise a trap when executed unprivileged; instead, they could for
instance be ignored. An efficient VMM according to Goldberg and Popek passes
the non-privileged instructions through; privileged instructions are emulated to
make sure the state of the VM and the state of the host remain synchronized
(“trap and emulate” virtualization). It is therefore necessary that the sensitive
instructions are a subset of the privileged instructions. The x86 architecture,
however, has 17 sensitive instructions which are not privileged [RI00]. For these
“difficult” architectures, various VMM technologies have been developed, all of
them with different performance characteristics. These are described in the
following:

Binary Translation Binary translation combines emulation with just-in-time
compiler technologies. It treats the stream of VM CPU instructions as source
code and compiles it into an equivalent instruction stream for the host. Compi-
lation takes place in blocks, whereas a block is defined as a maximum list of
instructions without any contain control flow instructions (jumps) [Bru04, p. 30].
Compiled blocks stay in a code cache. For privileged and sensitive instructions,
the VMM compiles a modified code path taking the host and the guest CPU
state into account.

As the guest instructions are compiled rather than interpreted, Popek and
Goldberg’s efficiency requirement is effectively achieved. Moreover, the just-
in-time compiler can even optimize the binary source code, such as avoid-
ing unnecessary privileged instructions, or (pointer) arithmetic optimizations
on common code paths [AA06]. Thus binary translation outperformed the
early “proper” trap-and-emulate virtualization technology by hardware-assisted
VMMs [AA06]. By so-called “guest additions”, VMMs provide para-virtualized
drivers for popular guest operating systems.

Examples of VMMs using binary translation are VirtualBox1 as well as
1http://www.virtualbox.org

30

http://www.virtualbox.org

3.4 Challenges

many commercial VMware products. Recent versions of these products choose
dynamically between binary translation and hardware-assisted virtualization.

Para- and Pre-Virtualization Para-virtualization was introduced with the Xen
hypervisor by Barham et al. [BDF+03]. It is a different approach to virtualiza-
tion that requires the guest kernel to co-operate. Para-virtualization exploits
the fact that the x86 architecture has not only two but four modes of operation,
the rings 0–3. Out of those four rings, recent operating system use only ring 0
and ring 3. A para-virtualized operating system is modified in a way that it is
able to run in ring 1. The guest system is called DomU, whilst the host system
in ring 0 is called Dom0. As the DomU runs in ring 1, it is still shielded against
its applications. As privileged instructions executed from ring 1 still trap, the
Dom0 is shielded against its guests.

In contrast to binary translation, there is no overhead of the just-in-time
compiler. The DomU operating system has direct (read) access to the physical
CPU and the memory management unit (MMU). Hence it is able to perform
informed decisions resulting in better performance. System calls can be for-
warded to a guest kernel without the indirection via Dom0. I/O devices are not
fully emulated, but rather multiplexed to the guests, using shared memory as
efficient data transport. Barham et al. argue the effort of porting of the guest
operating system is worthwhile due to the performance gain. They showed that
the porting effort is rather low; para-virtualized kernels of Linux, Windows,
and NetBSD can be created with less than 1.5 % of the source code modified.

LeVasseur et al. suggest a special compiler to do the porting of the guest
operating system [LUC+05]. This is called pre-virtualization. In this approach,
porting the guest becomes almost automatic and reduces the associated cost to
a large extent. Depending on the quality of the compiler, pre-virtualization
provides highly optimized versions of the modified code spots. Pre-virtualized
Linux guests have been implemented for the x86 and Itanium architectures
running on the Xen hypervisor and the L4Ka micro kernel.

Hardware-Assisted Virtualization The two major x86 CPU vendors developed
ISA extensions in order to make the x86 architecture compliant to Popek
and Goldberg’s virtualization requirements (AMD-V [Adv05] and Intel VT-
x [UNR+05]). Using these extensions, a conventional trap-and-emulate VMM
can be build that runs unprivileged instructions natively, whilst emulating
privileged instructions. Although developed independently, both extensions are
very similar in concept. The virtualization extensions introduce another mode

31

3 Worker Node Virtualization

of operation, a “VMM mode” beyond the conventional four privilege levels.
Much like kernel traps, there are newly introduced VMM traps.

VMM traps are expensive operations. Also, the processor state as well as the
virtual memory page tables have to be duplicated within the VMM for every
guest. However, the hardware assisted performance improved. The effort for a
VMM trap reduced from 1400 cycles in the Prescott processor to some 200 cycles
on the Nehalem processor [AA06]. VMM traps due to page faults, another
major source of performance penalties, have been addressed by AMD Rapid
Virtualization Indexing [Adv08] and Intel Extended Page Tables [NSL+06].
These extensions arrange for the VM to manage its virtual memory without
requiring to trap into the VMM.

With conventional hardware-assisted VMMs, I/O operations are still emu-
lated. In practice, it is common to combine hardware-assisted virtualization
with para-virtualized guest drivers. Usually, timers, network, and disk I/O are
para-virtualized. Alternatively, the AMD-Vi [Adv09] and Intel VT-d [Int11]
ISA extensions enable the memory and the interrupts of an I/O device to
be directly channeled to a specific VM (directed I/O). Of course, that way
I/O devices cannot be multiplexing to multiple VMs. With more VMs using
directed I/O, more hardware devices have to be provisioned by the host.

The KVM kernel modules add a hardware-assisted VMM to Linux [KKL+07].
In this way, a virtual machine runs just as another host process. The KVM
VMM benefits for most of its tasks from the elaborated operating system
algorithms already implemented in Linux, such as for scheduling and memory
management.

Container Virtualization Container virtualization is in fact not hardware virtu-
alization. Instead, the system call interface is virtualized for groups of processes.
These groups of processes get the illusion of working exclusively on the kernel.
This is a lightweight virtualization which comes with very little performance
overhead, usually only a few percent. Still, container virtualization provides
isolation and flexibility features comparable to full hardware virtualization. Of
course, it requires the “guest applications”, i. e. the programs in the container,
to be compatible with the host architecture and kernel. The Linux interface to
the user mode has been very stable; container virtualization puts very little
constraints on LHC experiment software.

There are a variety of Linux container virtualization products that come with
a modified host kernel, such as OpenVZ2 or VServer3. With Linux containers

2http://www.openvz.org
3http://linux-vserver.org

32

http://www.openvz.org
http://linux-vserver.org

3.4 Challenges

(LXC), there is also mainstream kernel support for container virtualization using
in-kernel namespaces for isolation [Men07]. A very simple, yet not complete,
container virtualization can be achieved by a “chroot jail”. Together with virtual
network devices, a chroot jail virtualizes the most common I/O subsystems
disk and network.

Benchmarks and Mitigations

Our measurements with several hypervisors have shown that the performance
penalty for a typical HEP application can vary between 5 % and 15 %, depending
on the type of workload (CPU or I/O intensive), on the chosen hypervisor and
on the CPU capabilities available to support the latest instructions aimed at
improving virtualization performance [ASBB+11]. An optimal VMM technology
has not yet been crystallized. Whereas binary translation, for instance, was
significantly faster than hardware-assisted virtualization, with recent CPUs
they have converged to a similar overhead.

There are some mitigations to the performance drawbacks. By providing
virtual machine images for many hypervisors, the user can at least choose the
hypervisor with the least performance overhead for a given physical machine.
Secondly, not every workload is I/O intensive. Simulation is a CPU intensive
task and faces almost no performance drawback from virtualization. Finally,
performance-wise, the critical number is the overall number of processed events
per second. The benefits of virtualization such as better resource utilization
and less maintenance can outweigh small performance penalties.

3.4.2 Unmanaged Resources

Cloud resources should be considered unmanaged, i. e. without any guaranteed
quality of service or computing environment. This is certainly the case for
volunteer clouds. To a lesser extent, it is also the case for institutional clouds, as
virtual machines might be migrated to another cloud infrastructure. Essentially,
virtual machines have to be able to process data without relying on any
supporting grid service. In particular, access to the experiment’s job queue and
data access must be handled from within the virtual machine.

The connection to the experiment’s job queue has been tackled by Co-
Pilot [Har10]. The Co-Pilot framework provides an adapter to connect virtual
machines to task queues of multiple experiments. It exploits the fact that by
using pilot jobs experiments anyway decoupled their job queues from standard
grid queues.

33

3 Worker Node Virtualization

Data access is not necessarily provided by local storage services. Instead,
flexible remote data access means have to be available to the virtual machine.
Several LHC experiments calculated the cost of moving event data required
for data processing in and out of the scope of Amazon EC2. They concluded
that data movement within WLCG is at least an order of magnitude cheaper.
Nevertheless, the private cloud model can bring benefits to existing grid resource
providers.

3.4.3 Image Distribution

Virtual machine images have to be distributed to physical hosts. A VM image
is of the order of 102 MB to 104 MB. Distribution of such an image to worker
nodes produces a considerable amount of traffic on a computing cluster. There
are specific cluster file systems optimized for hosting virtual machine images
such as VMware VMFS or OCFS2. Copy-on-write image files further simplify
the VM image management, as a single read-only “golden image” can be used by
all worker nodes with a small write cache local to the worker nodes. Typically
only a very small fraction of the image file is changed at runtime. The sheepdog4

distributed block device implements a decentralized data store for VM images.
Wartel et al. presented a VM image distribution system for clusters based on
BitTorrent [WCM+10]. Their system stages a 10 GB image in 20 minutes to
some 500 hypervisors. The image distribution problem is best mitigated by
small images.

3.4.4 Image Proliferation

Providing the base system for virtualized worker nodes is very different from yet
another Linux distribution. Instead of providing a general purpose set of basic
tools, it is rather a vehicle to run experiment software. As such, it is defined
by the experiment software; it’s core packages are precisely the dependencies
of the experiment software. Naturally, this results in a slim operating system
imposing minimal maintenance. While the maintenance issue appears as a
side effect at first sight, it is not just a matter of convenience but in fact it
is a necessity. Dealing with a proliferation of various slightly different base
systems leads to the very same level of complexity one tries to avoid using
virtualization.

Few, well-defined images are important from the view point of trust and
security, too. Creating a trusted image may be a lengthy process as it requires
several parties to audit and sign the image before it may be deployed on the

4http://www.osrg.net/sheepdog

34

http://www.osrg.net/sheepdog

3.5 Volatility

grid [Cas10]. The process also requires the integrity of such an image to be
guaranteed when it gets transferred across the network to different sites.

As the proximity of virtual worker nodes is unforeseeable upfront, it requires
well-defined hooks for site operators allowing them to seamlessly adjust worker
nodes to their environment. Failing to do so leaves site operators no other
choice but to introduce their own modified images. Definition and use of that
mechanism is called contextualization.

3.5 Volatility

In contrast to the static worker nodes of WLCG, cloud resources are volatile.
The underlying hardware virtualization layer facilitates instant and massive
addition and removal of worker nodes. The IaaS provider treats VMs as
independent black boxes. Hence, LHC data processing in the cloud naturally
has to avoid central points of decision making such as installation jobs and
hierarchical data placement. Moreover, the services provided to virtualized
worker nodes have to operate in a stateless manner. Chapter 5 presents methods
to support a stateless software distribution service.

As far as interaction amongst VMs is concerned, the VMs require a means
for zero-configuration node and service discovery and role negotiation. In
the context of LHC data processing, the PROOF on Demand system, for
instance, provides means to deploy an ad-hoc, zero-configuration data analysis
cluster [MM10]. Chapter 6 presents a distributed cache algorithm for volatile
computing environments.

3.6 Software Distribution

The distribution of experiment software to virtualized worker nodes is challeng-
ing. While grid sites provide software to worker nodes by a software service,
such a service cannot be assumed by virtualized worker nodes in arbitrary envi-
ronments. Packaging experiment software together with virtual machine images
is unfeasible. Such large images represent a challenge to efficiently distribute to
thousands of worker nodes. Volunteers are likely to be reluctant to download
several gigabytes per week in order to contribute their CPU hours. Even if
image distribution is solved from a technical viewpoint, the short half-life of the
images represents a problem from the organizational viewpoint, as the images
have to be endorsed. In the following chapters, we will study how to efficiently
deliver software onto virtualized worker nodes.

35

4 Software Characteristics

The development process and the software organization of LHC experiment
software differ from conventional software projects that are developed according
to strict software engineering practices. Harvey et al. point out that “the
development strategy for LHC experiment software follows an architecture-
centric approach as a way of creating a resilient software framework that can
withstand changes in requirements and technology over the expected lifetime of
the experiment” [HMR09]. The framework is written by the experiment software
team and includes core components, such as the description of detector geometry,
magnetic field, and the event data structure as well as sophisticated algorithms
used to provide the correct identification and measurement of all particles. These
algorithms are typically written by physicists that are specialized in pattern
recognition and analysis techniques but who are not necessarily proficient in
writing software. Over time, the experiment applications become more and
more enriched by new physics analysis algorithms that are using the framework.
These analysis algorithms are often projects of one or only a few physicists. As
several hundred physicists can typically get involved in software development
activities, the total software base can rapidly become very large and complex.

On a typical day, there can be more than hundred developers that contribute
to the code base of an experiment. In order to ensure both the possibility
for part-time developers to quickly contribute new algorithms as well as a
functioning software stack, experiments make heavy use of automation tools
that support the software development process, such as versioning systems and
tag collectors, dependency management systems, nightly build and test services,
release validation tests and so on. The organization of the software becomes
rather granular and reflects the independent software artifacts contributed by
many physicists. Figure 4.1 shows that 10 % to 20 % of file system entries are
directories or symbolic links.

Whereas software development is highly distributed, the release process is
not. New releases are centrally published by the experiment’s software group
at CERN. Individual algorithms are not necessarily managed as part of the
centrally maintained experiment software, but can be shipped with analysis
jobs in the form of macros. These macros are compiled and linked “on the fly”
against the framework. Therefore, the software sources have to be available not

37

4 Software Characteristics

only on a developer’s machine, but also on a production worker node. Figure 4.1
shows that 10 % to 25 % of file system entries are C/C++ source files.

LHC experiment software makes heavy use of so-called LCG Externals. LCG
Externals is a collection of software that is required by the experiment software,
but not part of it. It comprises, among others, compilers, libraries (such as
Boost), interpreters (such as Perl or Python), and a variety of Monte Carlo
event generators (such as Pythia). The Monte Carlo event generators are
accompanied by a significant amount of static data, e. g. function tables of
numerical or measured functions, such as logarithm tables or parton distribution
functions [Sop97]. Figure 4.1 shows that 50 % to 60 % of the volume of the
LCG Externals are data files.

LHC experiment software uses C++ to a large extent. All C++ libraries
that are dynamically linked at runtime have to be compiled by the very same
compiler. This is due to a lack of standardization for name mangling when
compiling high-level language features such as overloaded functions into C-
compliant symbol names understood by the system’s linker. Hence, a change of
the compiler requires the full software stack to be re-published. Often, several
versions of a release are published that differ only in the compiler version used
to create the software.

LHC experiment analysis software is accompanied by grid middleware. Grid
middleware is used to access experiment data files, to connect to the job queues
and for authentication and authorization. In order to have a well-defined set of
tools, the middleware is part of the experiment’s software stack1; a specially
“grid enabled” operating system such as XtreemOS [CJM+08] is not required.

Although some LHC experiment software components are portable and cross-
platform, the common platform in WLCG is Linux. LHC experiment software
is compiled and tested on Scientific Linux2, which is a Red Hat Enterprise
Linux clone.

The LHC and its experiments have an expected lifetime of at least 15–20
years. Therefore, it is risky to rely on a specific product from a commercial
enterprise that might disappear from the market or change its support policy.
LHC experiment software is free and open source software3. Hence from the
license point of view, there are no restrictions for software distribution other
than to grant access to the source code [Ope].

1Some grid sites, however, dynamically replace the supplied grid middleware by their local middle-
ware installation.

2http://www.scientificlinux.org
3The particle simulation toolkit Fluka [FSFR05] makes an exception. Distribution of Fluka is

cumbersome due to license restrictions. It is usually not used in grid jobs.

38

http://www.scientificlinux.org

0

20

40

60

80

100

At
he

na
17

.0
.1

CM
SS

W
4.
2.
4

LC
G

Ex
te
rn
al
s
R60

At
he

na
17

.0
.1

CM
SS

W
4.
2.
4

LC
G

Ex
te
rn
al
s
R60

0

20

40

60

80

100

F
ile

Sy
st

em
E

nt
ri

es
[%

]

V
ol

um
e

[%
]

Directories
Symlinks

Scripts
C/C++ Sources

Java Sources
Fortran Sources

ROOT/Data Files
Documentation

Binaries
XML

Archives
Build Scripts

Figure 4.1: Contents of experiment analysis software releases. Classification is based
on the file ending and the “execution bit” of the file mode. The gap to
100 % consists of unclassified files.

39

4 Software Characteristics

New releases do not render previous ones obsolete as analysis tasks are bound
to specific software versions to preserve reproducibility. Reproducibility must
be preserved at least for a couple of years, the typical creation time of a PhD
thesis. In the light of long-term data preservation, experiment software should
be available (and runnable) even tens of years after the decommissioning of
an experiment. In this way, new discoveries can be cross-checked against data
from previous experiments that originally did not search for a specific particle
signature.

4.1 Building Blocks

This section provides a brief overview of some of the most important building
blocks of LHC experiment analysis software.

ROOT ROOT [BR97,NB+09] is an object oriented large-scale data analysis
framework written in C++. Not only does ROOT use C++ as its programming
language, but C++ is also exposed to users as interpreted scripting and
command and control language. Thus it facilitates rapid analysis algorithm
prototyping while the very same code, in compiled form, can be used for high
performance analysis of large data sets in production environments.

The C++ interpreter in ROOT is also the foundation for ROOT’s C++
reflection system. The reflection system is required for the self-descriptive data
storage of C++ objects. Collections of objects stored in so called ROOT trees
are optimized for data analysis by column-wise storage. ROOT trees form the
database for LHC event data and conditions data.

Furthermore, ROOT contains a variety of libraries. Amongst others, it
contains a numerical engine, random number generators, descriptive statistic
tools, a workload distribution system for clusters (PROOF), and tools for data
visualization.

Event Generators There is a variety of event generators for simulation of
the primary interactions, such as ALPGEN, HERWIG, JIMMY, Pythia, and
others, many of them written in Fortran [KRZ08]. Besides the libraries and
executables, these tools contain large tables describing measured probability
functions of certain physics processes. The event generation provides input
data for transport through the particle detectors, for simulation of the detector
response, and for generation of the simulated raw event data.

40

4.2 Generic Properties of Software Files

Geant3 and Geant4 Geant3 [BBM+87] and Geant4 [AAA+03] are transport
simulation toolkits. Geant3 is written in Fortran and among the LHC experi-
ments only used by ALICE. Geant4 is written in C++ and used by ATLAS,
CMS, and LHCb. Geant4 includes support for large geometry descriptions and
a variety of physics models tailored to all sorts of particles and energy ranges.

GAUDI and Athena GAUDI is the data analysis framework of the LHCb
experiment [BBB+01]. Athena — an enhanced version of GAUDI — is the
data analysis framework of the ATLAS experiment [ATL05]. Athena is mostly
written in C++. Despite using compiled languages for the core and compute
intensive components, large parts of the analysis software run in Python, which
is the framework’s scripting language. Athena uses the POOL persistency
framework [D0̈3] to access the experiment data. The POOL framework uses
an RDBMS as meta-data storage for the plain ROOT data files. Additionally,
Athena uses POOL to pre-produce plain ROOT 𝑛-tuples for further analysis.

AliRoot and CMSSW AliRoot is the data analysis framework of the ALICE
experiment [BBC+03]. CMSSW is the data analysis framework of the CMS
experiment [HLPW06]. These frameworks are closely coupled to ROOT. They
follow a software bus architecture, where a core process iterates over event
data. This core process can be configured to call plugins that implement the
algorithms working on the data. Plug-ins are provided as shared libraries that
are dynamically loaded.

Distributed Computing Frameworks The distributed computing frameworks
comprise the generic grid toolkits Globus [FK97] and/or gLite [LHP+04]. The
experiment specific grid toolkits are AliEn [SAB+03] for the ALICE experiment,
PanDA [Mae08] for the ATLAS experiment, DIRAC [TBB+08] for the LHCb
experiment, and CRAB [SLB+08] for the CMS experiment. Among others,
they provide APIs for user authentication, accessing event data, and for the
experiment’s job queue.

4.2 Generic Properties of Software Files

Most of the following characteristics apply not only to LHC experiment software
but to software in general. The requirement to be able to reproduce experiment
results puts additional constraints on LHC experiment software.

41

4 Software Characteristics

1. Software is (almost) immutable. It is accessed in a write-once read-
many (WORM) pattern. Immutability of a software release is induced
by reproducibility. However, depending on the experiment policy, it is
possible to sporadically replace (patch) files.

2. Software is versioned. A unique version string should identify an entire
software stack. Ideally, such a version string identifies as well the underly-
ing operating system version or a specific virtual machine image. Once
published, a software release should remain accessible.

3. Software is read-only. This applies to executables. Configuration data
might be subject to customization and localization. However, configura-
tion data can be placed outside the software tree, such as the /etc directory
on Unix platforms. We consider the publishing of new releases not as
traditional “writing”. Experiments release their software by a small group
of release managers on a well-defined release environment. In contrast to
“writing”, publishing is an atomic step making a set of new and immutable
files accessible.

4. Software has a simple access-rights model. This follows from the fact that
it is read-only. Only the release managers are allowed to publish new and
updated data. Usually, software is readable by anyone. In some cases,
e. g. in case of license restrictions, software access has to be restricted to
a closed user group.

5. Most software is not relocatable. This is usually due to the software
installation tools that hard-code full paths. Once installed, the software
always has to run from the very same directories.

6. Files are usually read as a whole. This holds for executables mapped into
memory, source files read by a compiler, and configuration data. Static
data is sometimes read in chunks.

4.3 Related Quantitative File System Studies

The quantitative characteristics of file system content have been studied before.
Such studies help to optimize sizes for internal file system data structures such
as blocks of buffers. For network file systems, the design is further influenced
by the expected number of requests and the overhead of transferred bytes.
Previous studies have some sort of averaged, typical file systems as data set.
In our case, we are solely looking at LHC experiment software.

42

4.4 Cumulative Size Distribution

Tanenbaum et al. study the static file size distribution of university UNIX
workstations [THB06]. Results are compared to the size distribution of a web
server and to a similar study from 1984. The mean file size has doubled from
1984 to 2005, but nevertheless most files are still small (< 4 KiB). Evans and
Kuenning study irregularities in the file size distribution [EK02]. They observe
that file size distributions are subject to random spikes, making it hard to find
a good fit function. We observe the very same phenomenon in LHC experiment
software. Hence, we focus on the cumulative size distribution, i. e. the number
of files smaller than a certain size. Leung et al. study network file system
workloads in enterprise environments on Windows workstations using the CIFS
protocol [LPGM08]. They follow up on a series of trace-driven network file
system analyses, as well as a series of previous studies of Windows workstation
contents. We will see that their observations almost entirely contradict ours.
They observe client-dependent access frequency, a write-oriented workload
involving large files that are rarely re-opened. Meyer and Bolosky study the
file systems on Microsoft desktop computers [MB11]. They observe a trend
to large files (megabytes to gigabytes) with a non-linear access pattern. The
content is mainly dominated by software binaries, whereas LHC experiment
software comprises a significant number of source files and static data.

LHC experiment software can be considered as a discrete file system workload.
Besides size distribution, we will focus on compression characteristics, growth
rate, redundant files, and the access pattern.

4.4 Cumulative Size Distribution

The software stack for an LHC experiment comprises several gigabytes and
tens of millions of lines of code. ROOT and Geant4 alone contribute some
5 MLOC. As updates and new releases are published weekly or more frequently,
the number of files is expected to grow to the order of 100 million files over 5
years. This is comparable, to within an order of magnitude, to the number of
files of ALICE event data.

The size of the software stack is partly explainable by the size of the ex-
periment collaborations. Collaboration members are software users but also
software developers. For example, the amount of effort that was required for
the development of the CMS experiment software, has been estimated to be
≈1000 man years [Law10].

The vast majority of files of LHC experiment software are small files, as
shown in Table 4.1. In Figure 4.2 we see 50 % of all regular files are smaller
than 4 KiB, and 80 % of all regular files are smaller than 16 KiB. Such small

43

4 Software Characteristics

files are stored in a single block or a few blocks on common local file systems.
When compressed, they can be transferred in 1 or 2 Ethernet network packets
(assuming a 1500 B maximum transfer unit). The LHCb software is similar
to the web server content studied by Tanenbaum et al. [THB06]. Presumably
this is due to the significant number of Python scripts used by LHCb. ATLAS,
CMS, and ALICE, on the other hand are more dominated by compiled binaries
and are close to the file system content of a UNIX workstation. However, larger
files such as multi-media files dominate the tail of the cumulative distribution
in the case of UNIX workstations.

All Releases Current Release

Experiment No. Releases No. Files Size [GB] No. Files Size [GB]

ATLAS 36 8 418 000 438 329 000 51
CMS 24 1 554 000 53 300 000 29

Table 4.1: Size of LHC experiment software for the 32 bit Scientific Linux 5 platform
from June 2010 to June 2011. “All releases” includes the major software
releases, as opposed to patch releases. “Current Release” referrs to the
latest stable release of June 2011, including externals and grid middleware.

Between releases, as well as inside a release, there are a lot of duplicate files
(see Figure 4.3). Over 40 releases of ATLAS software, for instance, show some
8 million path names referencing only 1.6 million distinct files. Duplicates
occur, for instance, when the same sub-packages are copied from one release to
another.

In the first couple of months of LHC data-taking we saw weekly releases of
experiment software with a monthly data growth rate of about 106 files (105
unique files) and 10 GB to 50 GB per experiment (Figure 4.4).

4.5 Compression Rate and Speed

In this section, we analyze compression rates and speed for LHC experiment
software. We compare commonly used lossless block compression libraries,
which implement variants of the Ziv Lempel algorithm, Burrows-Wheeler
transformation and Huffman coding. All libraries have been compiled with
gcc 4.1.2 with full optimization. The compression and decompression speed
measurements have been performed on a Xeon X7460 2.66 GHz having all data
on a ram disk. On a normal hard disk, the compression and decompression

44

4.5 Compression Rate and Speed

24

26

28

210

212

214

216

218

0 10 20 30 40 50 60 70 80 90 100

F
ile

Si
ze

[B
]

Percentile

ATLAS
LHCb

ALICE
CMS

UNIX
Web Server

Figure 4.2: Cumulative size distribution of several LHC experiment software areas
compared to the observations by Tanenbaum et al. [THB06]. “UNIX”
refers to their UNIX workstation distribution and “Web Server” to the
web server content they compared their results to.

45

4 Software Characteristics

1

5

10

20

30

All ATLAS CMS LHCb All ATLAS CMS LHCb

100
200

400

800

N
um

be
r

of
O

b
je

ct
s
·1
0
6

V
ol

um
e

[G
B

]

FS Objects Regular Unique

Figure 4.3: Size of ATLAS and CMS experiment software releases published during
January 2010 to April 2011 in terms number of file system objects and
volume. The number of unique files is a factor of 6 smaller than the
overall number of files. By comparison with the right-hand side (volume),
it turns out that the smaller files tend to be duplicated. This can be
explained by the fact that larger files are usually binaries, not source files.
Binaries change if any related source files change.

46

4.5 Compression Rate and Speed

50

100

200

300

400

Jul 10 Aug Sep Oct Nov Dec Jan 11 Feb Mar

2

4

6

8

10

12

19

Δ
F
S

E
nt

ri
es

·1
0
3

Δ
V
ol

um
e

[G
B

]

File System Entries

Deleted (FS Entries)

Volume

Deleted (Volume)

Figure 4.4: Monthly data growth rates of LHCb experiment software.

47

4 Software Characteristics

speed is also related to the compression rate, as smaller files can be read and
written faster. The following libraries are used:

zlib 1.2.5 The zlib library implements the widely used DEFLATE algorithm,
a combination of LZ77 and Huffman coding. The algorithm is subject of
the RFC 1951.

snappy 1.0.3 The snappy algorithm is optimized for compression and decom-
pression speed. It uses LZ77 without Huffman coding.

bzip2 1.0.3 The bzip2 utility is widely used on UNIX systems and optimized
for good compression rates at the expense of low compression and decom-
pression speed. It performs a Burrows-Wheeler transformation followed
by Huffman coding.

lzo 2.02 LZO is supposed to be a real-time compression library and hence
optimized for speed. It features very little memory consumption on
compression and decompression. It uses variants of the LZ77 algorithm.

liblzf 3.6 LZF is optimized for speed and portability. It uses a variant of the
LZ77 algorithm.

xz 4.999.9beta The xz utility is optimized for good compression rates at
the expense of very low compression speed but competitive decompres-
sion speed. It implements the LZMA2 algorithm that uses a dictionary
approach similar to LZ77

We benchmark an ATLAS software release and compare it to a set of files that
represent the union of ATLAS software files used during 3 days by the CERN
Tier 1 grid nodes. Table 4.2 shows the results. In general, a good compression
algorithm for software yields a high compression rate, a fast decompression
speed (as long as decompression is CPU bound), and a small increase of
the compression rate for small files if software is distributed file-by-file. The
compression speed does not matter that much because software has a WORM
access pattern. The compression rate is better for the grid node set without
changing the relative order of the compression libraries. In fact, the difference
between the best rate and the worst rate gets larger. This can be explained
by the non-compressible parts in the software release that are not accessed by
jobs, for instance the compressed source packages. The order of compression
and decompression speed, however, does change. This can be a hint on how
big the impact of non-compressible data is to the compression algorithm.

48

4.5 Compression Rate and Speed

A
th

en
a

17
.3

.0
C

E
R

N
G

ri
d

N
od

e

Li
br

ar
y

÷
𝑡 c

om
pr

.
÷
𝑡 d

ec
om

pr
.

R
at

e
[%

]
Sc

al
e

Fa
ct

or
÷
𝑡 c

om
pr

.
÷
𝑡 d

ec
om

pr
.

R
at

e
[%

]
Sc

al
e

Fa
ct

or

zl
ib

(d
ef

au
lt

)
89

.9
7.

6
33

.9
1.

14
96

.2
8.

2
28

.4
1.

03
zl

ib
(b

es
t

sp
ee

d)
36

.3
8.

3
37

.1
1.

12
34

.6
9.

0
31

.8
1.

02
zl

ib
(b

es
t

ra
te

)
26

4.
9

7.
5

33
.6

1.
15

27
0.

6
8.

1
28

.2
1.

03
bz

ip
2

34
6.

6
64

.1
30

.1
1.

19
39

5.
6

58
.5

25
.2

1.
04

sn
ap

py
9.

2
3.

6
47

.8
1.

08
9.

8
2.

9
43

.8
1.

02
lz

o
(d

ef
au

lt
)

14
.7

4.
4

44
.0

1.
10

15
.8

5.
6

39
.4

1.
02

lz
o

(b
es

t
ra

te
)

42
8.

5
4.

1
37

.4
1.

13
40

3.
8

5.
8

31
.9

1.
03

lz
f

10
.7

4.
1

46
.5

1.
09

11
.3

3.
8

42
.9

1.
02

xz
(d

ef
au

lt
)

11
22

.7
28

.1
22

.5
1.

37
90

1.
3

27
.9

17
.4

1.
13

xz
(b

es
t

ra
te

)
17

64
.1

25
.8

20
.4

1.
47

11
61

.2
24

.6
15

.1
1.

20

T
ab

le
4.

2:
C

om
pa

ri
so

n
of

co
m

pr
es

si
on

al
go

ri
th

m
s

fo
r

LH
C

ex
pe

ri
m

en
t

so
ft

w
ar

e.
“A

th
en

a
17

.3
.0

”
re

fe
rs

to
th

e
A
T

LA
S

A
th

en
a

so
ft

w
ar

e
re

le
as

e;
“C

E
R

N
G

ri
d

N
od

e”
re

fe
rs

to
un

io
n

of
th

e
A
T

LA
S

so
ft

w
ar

e
fil

es
re

qu
ir

ed
by

C
E

R
N

gr
id

w
or

ke
r

no
de

s
in

th
re

e
da

ys
.

T
he

ra
te

re
pr

es
en

ts
th

e
co

m
pr

es
se

d
si

ze
co

m
pa

re
d

to
th

e
un

co
m

pr
es

se
d

si
ze

(s
m

al
le

r
is

be
tt

er
).

T
he

ti
m

e
co

lu
m

ns
fo

r
co

m
pr

es
si

on
an

d
de

co
m

pr
es

si
on

ar
e

sp
ec

ifi
ed

as
fa

ct
or

s
co

m
pa

re
d

to
a

m
em

or
y

co
py

.
H

en
ce

,c
om

pr
es

si
on

an
d

de
co

m
pr

es
si

on
fa

ct
or

s
ha

ve
th

e
sa

m
e

sc
al

e.
T

he
“S

ca
le

Fa
ct

or
”

sp
ec

ifi
es

th
e

co
m

pr
es

si
on

ra
te

re
gr

es
si

on
w

he
n

co
m

pr
es

si
ng

ea
ch

fil
e

in
di

vi
du

al
ly

in
st

ea
d

of
th

e
ta

rb
al

lo
f

fil
es

as
a

w
ho

le
.

It
sp

ec
ifi

es
,h

ow
w

el
lt

he
al

go
ri

th
m

sc
al

es
to

sm
al

lfi
le

s,
as

w
e

ha
ve

in
L
H

C
ex

pe
ri

m
en

t
so

ft
w

ar
e.

49

4 Software Characteristics

stat() open() read()

Benchmark all uniq Hits [%] all uniq all uniq Hits [%]

Linux Kernel Compilation 438.8 4.2 98 426.9 2.4 426.2 2.4 99
ATLAS Examples Compilation 4 987.7 43.5 91 111.1 2.3 119.5 2.3 96
LHCb Setup Environment 75.6 11.0 81 5.8 1.2 12.3 1.2 41
ALICE simrec 1 607.7 1.5 98 2.0 0.4 0.4 0.4 0

Table 4.3: Overall number of system calls (in thousands), distinct path names (in
thousands), and Linux file system buffer hit rates for several typical jobs.

4.6 Access Pattern

Unlike data, software requires a variety of features from the hosting file system.
The hosting file system has to support symbolic links and hard links4. It has
to support the mmap() system call to load executables into memory. It has to
support POSIX file locking, which is a known issue of NFS shared software
areas. At the scale of LHC experiment software, the file system has to support
many concurrent open file descriptors. Athena, for instance, loads some 800
shared libraries on startup, which is close to the Scientific Linux 5 default limit
of 1024. Moreover, as these libraries are opened by the system’s linker almost
concurrently and since jobs usually start at the same time, the access pattern
results in large peak loads for shared software areas.

A single analysis job typically does not require all the experiment software
but only a small fraction of the files of a particular release. However, those
few path names are subject to a lot of system calls, in particular stat() calls
(Table 4.3). Moreover we see lookups for non-existing files at about the same
order of magnitude as successful lookups. Lookups for non-existing files occur,
for instance, when the linker searches for libraries in a list of search paths.
Hence for efficient execution, the hosting file system should provide a negative
meta-data cache (caching “file not found” responses) in addition to a positive
meta-data cache. Running analysis jobs on the worker nodes in a cluster might
easily overload a shared software area [L+11]. This occurs even on parallel file
systems, such as pNFS and Lustre, because the bottleneck is on meta-data
operations.

Files in LHC experiment software are located in deep directory structures,
as shown in Figure 4.5. Meyer and Bolosky observe that the majority of files is
located in not more than five directory levels [MB11], whereas LHC experiment

4In LHC experiment software, however, hard links do only occur within the same directory, such
as the cc binary to the gcc binary for the GCC compiler.

50

4.7 Borderline to Event Data and Conditions Data

0

10

20

30

40

50

0 5 10 15 20

Fr
ac

ti
on

of
F
ile

s
[%

]

Directory Depth

Athena 17.0.1
CMSSW 4.2.4

LCG Externals R60

Figure 4.5: Fraction of files on located at a certain directory level. Counting starts
with the highest directory under the responsibility of the collaboration,
i. e. there are no artificial leading levels such as /usr/local.

software has the majority of files located in deeper than 5 levels of directories.
This is caused by the fine grained directory structure within each release as
well as the organization of different versions, platforms, and software parts.
For instance, the release version, the architecture (32 bit or 64 bit), and the
type of release (nightly build, production release) each account for another
directory level. According to Conway’s law, the long trail for ATLAS might
reflect an organization of the collaboration with many subgroups. Naturally,
deep directory structures cause the number of meta-data operations (such as
stat() or ls()) to increase.

If distributed pre-installed, software directories have to be mounted at the
same location on all worker nodes that was used to install it. In effect, this way
of distribution requires a global namespace, such as AFS [MSC+86] is using.

4.7 Borderline to Event Data and Conditions Data

Many software characteristics also apply to experiment data and conditions
data. Experiment data and conditions data are fully immutable, versioned,
read-only, and with a simple access-rights model. Each particular job requires
only a small fraction of all available data.

51

4 Software Characteristics

100B

1KB

10 KB

100 KB

1 MB

10 MB

100 MB

1GB

0 10 20 30 40 50 60 70 80 90 100

F
ile

Si
ze

Percentile

ATLAS Conditions Database
ATLAS Software

Figure 4.6: Size distribution of ATLAS conditions data compared to ATLAS software.
The file sizes grow more rapidly. While 50 % of all files are smaller than
1 MB, almost 20 % of the files are larger than 100 MB.

In contrast to software, data is relocatable and often only certain blocks are
required, for instance only a subset of 𝑛-tuples available in a ROOT file. Path
names do not necessarily provide enough information to find a certain data set.
Additional information about the data sets and their associated physical files
is stored in relational databases in order to perform the filtering and searching.
As Figure 4.6 shows, the size distribution of conditions data is much different
from software with file sizes reaching the gigabyte range.

The amount of redundancy is low because every data set contains information
of another measurement. However, this holds true only for raw data. Post-
processing steps such as reconstruction and physics annotations produce new
data from the raw data in an algorithmically precise way. In that sense, storing
the reconstructed data can be seen as an optimization. The space cost is
considered to be cheaper than the re-processing cost. In fact, the original
version of the Virtual Data Toolkit [Roy09] produced all intermediate steps
from raw data to analysis histograms only on demand.

52

4.8 Software Distribution in WLCG

4.8 Software Distribution in WLCG

Although there is a variety of distributed file systems for the cluster scale,
there are only few POSIX compliant file systems for geographically distributed
resources that could possibly be used to distribute software. Such file systems
interface to peer-to-peer networks [KBC+00,MMGC02,Kut08]. Because of the
organizational boundaries of WLCG sites, however, a peer-to-peer network on
the worker node level is currently unfeasible. Furthermore, the underlying peer-
to-peer networks have to be optimized for small latency, i. e. they have to serve
thousands of requests for chunks per node and second. Unlike data distribution
systems such as the Hadoop, the problem at hand requires efficient meta-data
handling. Annapureddy et al. presented a file system for the distribution of a
runtime environment based on the Coral content distribution network [AFM05].
Unfortunately, the source code was not released, neither was it available upon
request. Furthermore, the scale of their benchmarks is one to two orders of
magnitude smaller than required for LHC experiment software.

Hence, the currently used systems for software distribution in WLCG are
mostly based on package managers and cluster file systems. In the following,
we summarize the state of the art.

Andrew File System The Andrew File System (AFS) [MSC+86] is a distributed
read-write file system optimized for home directories on globally distributed
workstations. AFS provides a global name space (/afs) that is partitioned into
cells and volumes. ATLAS, CMS, and LHCb host the authoritative copies of
their experiment software on public volumes (cell /afs/cern.ch). Using AFS,
software need only be installed once in order to be used by all clients. AFS
clients cache opened files in a local, persistent cache. The meta-data reside
in a local memory cache. Coda extends AFS with support for disconnected
operations [Bra98], which implies a persistent meta-data cache. Coda is not
considered as a production grade system by its developers.

AFS has a client/server ratio of about 200:1. This is mostly due to the fact
that an AFS server has to keep the connection states of all its clients. AFS
uses the Rx protocol on top of UDP, which provides similar services to TCP.
In order to ensure cache consistency, AFS uses callbacks from the server to the
clients. This causes connection failures for clients connecting from behind a
NAT layer. Virtual machines are often behind a NAT layer provided by their
hypervisor.

53

4 Software Characteristics

Grid Installation Jobs So-called grid installation jobs are special grid jobs used
for software installation. They are supported by the gLite and AliEn package
managers. Grid installation jobs pre-install software releases on the worker
nodes. Hence, grid installation jobs for a certain release have to be executed
successfully on all sites before jobs can be scheduled that use the release. As
not every user is supposed to install software, grid site administrators maintain
special accounts for the experiment’s software managers. Software managers,
in turn, have to manually supervise the successful installation of new releases
on all sites.

In order to not download the software packages onto all worker nodes, grid
sites use so-called shared software areas. A shared software area is essentially
some space dedicated to experiment software on a cluster file system such
as Lustre or NFS, which is mounted by the worker nodes. Thus software is
installed only once per grid site. However, shared software areas introduce a
central point of failure and a high chance to overload the servers by meta-data
operations.

ALICE Software Installation System The ALICE software installation system
can be considered as improved grid installation jobs. Software releases are still
distributed as packages. On the grid sites, these packages are distributed using
BitTorrent [Coh03] among the site’s worker nodes. Even though there is a
BitTorrent component in the system, the overall service is centralized with an
authoritative tracker at CERN. There are the following differences as compared
to normal grid installation jobs:

∙ Software is installed locally on each worker node. Hence, there is no
shared software area that can overload.

∙ The distribution of packages inside a grid site is done via BitTorrent.
Hence, the repository servers do not overload even though all worker
nodes fetch packages.

∙ Software packages are installed on demand. Hence, there is no need to
supervise pre-installation of software releases.

∙ ALICE software is relocatable. Hence, it does not require any fixed worker
node configuration, but the installation system finds some scratch space
in most cases.

∙ ALICE uses stripped software packages tailored to grid nodes, which
comprise only some 300 MB. It is unclear if such a stripped version can
be created for other experiments.

54

4.9 Design Criteria

While BitTorrent prevents the repository server from overloading, still all files
of a software release have to be transferred to all worker nodes. That not only
results in increased network traffic, extracting and installing the packages is
also time consuming and the probability of failures increases.

GROW-FS Given the problems with grid installation jobs, the CDF exper-
iment used the special purpose file system GROW-FS for software installa-
tion [CGL+10]. GROW-FS pioneered the idea of a shared software area for
installation in combination with persistent data and meta-data caches on
worker nodes. Hence, the meta-data operations are performed decentrally on
the worker nodes. As shared area for installation, GROW-FS uses a web server.
The directory tree is pre-processed before distribution in order to create a file
catalog containing meta-data and MD5 checksums of regular files.

GROW-FS is designed for local, trusted networks. GROW-FS uses a single
file catalog for the entire directory tree, which is not digitally signed. Changes
to the software area require complete reconstruction of the file catalog as well
as cache invalidation and remounting on the worker nodes. On worker nodes,
the entire file catalog is loaded into memory when the file system is mounted.

4.9 Design Criteria

In this section we summarize the desirable design criteria for a software dis-
tribution system. The criteria are based on the LHC experiment software
characteristics and the experience gained using various software distribution
methods in WLCG. The software distribution system has to scale to the order
of 105 worker nodes and it has to work equally well from individual worker
nodes to large grid sites. The most important design space dimensions for
scalability and maintenance overhead are shown in Figure 4.7.

One-Time Installation Software should be centrally installed by the experi-
ment’s software release manager. As we assume non-relocatable software,
we require a network file system mounted on all worker nodes that provides
a global namespace.

Scalable Distribution A single point of installation must not become a single
point of failure for distribution. Hence, data has to be replicated and
cached along distribution to the worker nodes. Only data and meta-data
actually required should be transferred. In a network of 105 worker nodes,
failures are inevitable. The worker nodes need to automatically recover

55

4 Software Characteristics

Global Site Local

Installation

D
e-

D
up

lic
at

ed
F
ile

/B
lo

ck
F
ile

/B
lo

ck
P
ac

ka
ge

D
is

tr
ib

ut
io

n

ALICE SW
Installation

Grid Installation
Jobs

AFS GROW-FS

Optimum

Persistent
Local Cache

Data +
Meta-Data

Data

None

Figure 4.7: Classification of software distribution methods in a 3-dimensional design
space.

56

4.9 Design Criteria

from failures and they need to automatically fail-over to replicated data
resources.

Decentral Execution The large number of meta-data operations can only be
handled in a decentralized manner by the worker nodes. Worker nodes
require a positive and negative meta-data cache in addition to a data
cache.

Redundancy Elimination LHC experiment software is subject to a lot of
redundancy. By file de-duplication and compression, the overall number
of files and the volume can be deflated by factors of 5–10.

Location Transparency In order to support volatile computing nodes, soft-
ware access should be location transparent. This means, the physical
moving of worker nodes to different network addresses has to be supported.

Integrity and Authenticity Ensuring software integrity and authenticity is
crucial. However, many data access systems do not ensure data integrity
(e. g. cluster file systems, WebDAV). While corruption to data files may
crash a worker node or in the worst case result in false physics results,
the potential damage of unverified software is much higher. WLCG is an
attractive victim for attackers because of the large computing power and
the good network connection of grid sites. Unverified software can, for
instance, be exploited to run distributed denial of service attacks or to
factorize large integers.

Technical Restrictions The file system running on the worker nodes has to
support symbolic links, hard links, and the mmap() system call. In order
to allow for local customization of configuration files, the file system
additionally has to support variable links that are evaluated at runtime.
The file system has to work properly behind a NAT layer and firewalls.
Thus, it must only use standard network protocols and the connection
has to be initiated by the worker node.

57

5 Software Distribution

As pointed out, a file system for LHC experiment software distribution should
support data caching and positive and negative meta-data caching. Caching and
replication are the standard techniques used to reach scalability and resilience
in distributed file systems [TvS07, Section 12.6]. This chapter reviews the
problems that have to been solved when caching and replicating software files.
The use of content-addressable storage is proposed as the principal format for
distributing and caching data and meta-data. We address several engineering
issues in order to tailor the use of content-addressable storage to the problem
at hand.

5.1 Caching and Replication

When fetching files from nodes other than the master source (i. e. from cache
nodes or replication nodes), one has to address the following issues:

Replacement Once a cache is filled, new items have to replace existing items.
The algorithm that selects which files are to be replaced is determined by
the replacement strategy. The predominant strategy is to replace the least
recently used (LRU) item. Panagiotou and Souza show that LRU comes
close to the optimum in practice [PS06]. Furthermore, all operations on
the LRU data structure (insert, delete, access) can be implemented with
complexity 𝒪(1) using a hash map and a linked list.

Expiry and Consistency Unlike event data and conditions data, software files
and static data are not truly immutable but might be subject to patches.
This means, the same path name might refer to different versions of a file.
Software files are, however, not independent from each other. When, for
instance, the dependent libraries A and B are patched, a cache node might
still deliver the original library A, while B has expired and a patched
version is reloaded from the master source.

Corruption and Poisoning Both, cache corruption and cache poisoning result
in erroneous files being on the worker node. Cache corruption is an
unintended phenomenon caused by faulty hardware or software bugs. In

59

5 Software Distribution

fact, corruption can even occur when fetching files from the master source
due to undetected transport errors. Such errors usually result in a crash
of the software on the worker nodes. Cache “poisoning”, in contrast, is
a malicious replacement of files in a cache node. Exchanging software
files can be used to execute programs different from the intended physics
analysis on the worker nodes. Cache poisoning is a problem that arises
due to insecure infrastructures.

5.2 Content-Addressable Storage

In order to solve the problems of consistency, corruption, and poisoning alto-
gether, without spoiling scalability, the use of cryptographically signed content-
addressable storage (CAS) has been proposed [DKK+01,BMP02]. With content
addressable storage (CAS), files carry a file name that depends on their content
rather than on their location in a directory tree or on a storage device. The
content address is retrieved from a cryptographic hash (or at least a collision-
free hash [BSNP95]) of the content. Content addressable storage has many
advantages, in particular for LHC software repositories. They include the
following:

∙ Data integrity is trivial to verify by re-hashing files.

∙ Maintaining cache consistency is trivial as files are immutable and never
expire. Hence, caching becomes protocol-independent and a caching
service can be stateless.

∙ Identical files in different locations are mapped to the same content
addressable file. Hence, CAS provides content de-duplication.

∙ As file changes result in new file names, CAS facilitates the construction
of versioning file systems.

∙ The hash key used as file name can be re-used for distributed hash tables
and key-value stores.

Content-addressable storage has been used in various contexts: Quinlan and
Dorward used CAS for de-duplication on archive storage [QD02]. Tolia et al.
pioneered the idea of opportunistic CAS in distributed file systems [TKS+03].
They use CAS as an alternative channel for fetching files. Content-addressable
storage is naturally used to store data in distributed hash tables. A number
of peer-to-peer file systems have been developed on top of distributed hash

60

5.2 Content-Addressable Storage

FS Interface
read/write CAS

FS Interface
read-only

Transformation
(Untrusted) Transport

Cache Nodes & Replication Nodes

Signed CAS

Software Publisher / Master Source Worker Node

Figure 5.1: End-to-end software distribution using content-addressable storage. Both,
the publisher’s and the worker nodes use a file system interface. On the
publisher’s end, software updates are staged. On the worker nodes, the
file system is read-only (but not immutable). For transport, caching, and
replication content-addressable files are used.

tables [RD01,DKK+01,MMGC02]. The git versioning system1 internally uses
content-addressable storage in order to replicate entire repositories including
version histories; it does not have a concept of caching and on-demand delivery.
The camlistore system2 uses an HTTP interface to content-addressable storage
to store and synchronize personal data.

The concept of content-addressable storage is flexible and allows for context-
specific adaptations. In the context of software distribution, CAS should be
used “behind the scenes” (distribution, caching, replication, etc.) whilst both
the worker nodes and the publisher’s end require a regular file system interface
in order to execute applications and to stage software updates (Figure 5.1).
Towards such a design, we address the granularity of CAS (block level or file
level), the encoding of the directory structure, the efficient staging of software
updates, and data confidentiality.

5.2.1 Block Level and File Level CAS

Content-addressable storage can be applied to entire files or to sub-blocks of
files. With respect to de-duplication, we have seen in Section 4.4 that file
level de-duplication reaches a deflate factor of 5–6 for the number of software
files and static data files. Furthermore, most files are read as a whole and are

1http://git-scm.com
2http://camlistore.org

61

http://git-scm.com
http://camlistore.org

5 Software Distribution

smaller than a single network packet. In that case, block level CAS would
increase the number of requests without improving performance.

For completeness, we will briefly discuss CAS for conditions data and event
data. Such data contains recorded measurements and as such there is very low
probability of having redundant data at all. From conditions data and event
data files, often only certain blocks are read. An optimal block size depends
on the individual data analysis job and its request pattern. Since we might
want to cache and distribute data in memory, a single verifiable entity should
anyway not be larger than a couple of megabytes.

For large files, one might also argue that in case of verification failures
entire files have to be re-transmitted as opposed to just one failed block. That
depends on the error probability which is influenced by many factors, such as
transmission errors, wrong blocks read from a hard disk and so on. Let us
assume a setting in favor of small block sizes with a high error probability of one
error per 100 GB (𝑝error := 1/(100 · 230)), a large file size of 10 GB (𝑍 := 10 · 230)
and a small request size of 10 B (𝑟 := 10). We are searching the optimal block
size 𝑥 that minimizes the average file transfer size. We have to transfer 𝑍/𝑥
blocks. The probability for a successful block transfer is (1− 𝑝error)

𝑥 and the
average number of block transfers is given by 1/(1− 𝑝error)

𝑥. Hence we have an
average transfer size of the file of

𝑍

𝑥
(𝑟 + 𝑥)

1

(1− 𝑝)𝑥
.

Minimizing the formula results in an optimum of 𝑥 of around 1 MB. However,
even with a block size of 100 MB the average transfer size increases by less than
10 MB. So, clearly the block size is determined by the requirement to cache
data in memory.

5.2.2 Key Space

The content hash function ℎ : {0, 1}* ↦→ {0, 1}𝑛 has to be chosen with respect
to the expected overall number of hashes. Assuming an order of 105 files per
release, a release rate of once per week, an expected lifetime of LHC experiments
of 15–20 years, and a safety margin of one order of magnitude, we have an upper
bound of 1010 files. Using cryptographic hashes, the hash keys are uniformly
distributed in the key space. The probability of a hash collision with 𝑚 files
in an 𝑛-bit key space 𝑝(𝑚, 2𝑛) is given by the birthday paradox [Fel68]; it is
approximately

𝑝(𝑚, 2𝑛) ≈ 1− 1

𝑒𝑚2/2𝑛+1

62

5.2 Content-Addressable Storage

and for a given threshold collision probability p, the minimum number of bits is

𝑛 ≈ log2

(︃
𝑚2

ln 1
1−𝑝

)︃
− 1.

For a desired collision probability of less than 10−20, which is much less than the
unrecoverable error rate of typical hard disks, we need 132 bits. While common
cryptographic hashes such as SHA-256 or RIPEMD-160 are well beyond that
limit, the estimation can be useful in two cases:

∙ To choose the size of the hash space of cryptographic hash algorithms
with variable output sizes such as Skein3.

∙ A cache layer might tolerate occasional collisions at the benefit of reduced
key sizes (cf. Chapter 6). Uniformly distributed keys with a reduced size
can be constructed from any subset of bits of a cryptographic hash, e. g. a
prefix. Here, we have obviously a cache-dependent value of 𝑚 and 𝑝. For
example, for 10 000 files and a desired collision probability of less than
3 % 44 bits suffice.

Cryptographic hashes might get broken, which has happened for MD5 for
instance. In such a case, all files must be re-hashed using another algorithm in
order to restore resilience against cache poisoning.

5.2.3 File Catalogs

A file system interface on top of content-addressable storage requires means
to translate the directory location into CAS. That is done by file catalogs,
special “translation files” that map the directory location to the hash key of
a file (Tolia et al. refer to it as recipes [TKS+03]). Some file systems have a
separate “translation unit” per file [TKS+03], some systems bundle translation
entries per directory [Kut08], and some systems use one translation file per file
system [CGL+10]. A single translation file per file system does not scale to
large file systems. Fine-grained translation files, on the other hand, will result
in many meta-data requests.

User-Assisted Partitioning

Here, we propose a user-assisted partitioning of meta-data based on the directory
tree. Usually, we have strong meta-data locality based on directory subtrees,

3http://www.skein-hash.info

63

http://www.skein-hash.info

5 Software Distribution

such as project directories, home directories, or software release directories. A
software publisher has the following helpful knowledge about the directory tree:
∙ The parts of the directory tree that are used together. This is usually

given by the software release root directories. Jobs require files only of a
particular software release.

∙ The parts of the directory tree that are updated together. Here, it is
important to know about volatile directories such as patch releases and
certificate stores. The frequent updates of such directories should not
affect other parts of the directory tree.

As the corresponding subtree roots are easy to spot for the publisher, he
assists in marking a subtree’s meta-data to be stored in a separate translation
file (a nested catalog). Such “subtree markers” can be maintained by creating
or removing magic files. The approach is similar to volumes in AFS but more
flexible and lightweight, as only meta-data are affected by the cutting.

Nested file catalogs can be considered as a meta-data pre-cache. Consider,
for instance, the ALICE simulation and reconstruction use case from Table 4.3
on page 50, which accesses 1500 distinct paths. We assume the data publisher
created subtrees as shown in Figure 5.2. In that scenario only four catalogs have
to be available in order to execute all meta-data operations. With a directory
based cutting some 60 translation files are required. One might argue that the
subtrees of the nested catalogs comprise some 18 300 entries in total, so we
load ten times more meta-data than required. The volume of the meta-data,
however, is very low, even for the small software files at some 0.25 % to 0.5 %
of the overall volume. Hence we optimize for fewer number of files and requests.
We note that any optimization for meta-data partitioning can be spoiled by
recursive listings, for instance by the find utility.

File Catalog Layout Optimization

In order to support a file system interface, the catalog has to provide the
operations path ↦→ CAS Key and inode ↦→ CAS Key. The path query can be
supported by traversing the directory tree, which is time consuming. A direct
lookup using the path as key, on the other hand, requires full paths to be
stored for all entries. For LHC experiment software, the average path length is
between 100 and 180 characters. Here, we propose to store a secure hash of
the full path. In this way, the 100 B–180 B are compressed to some 16 B–20 B
depending on the hash function. The cryptographic requirements of this hash
function are relaxed to uniform distribution of keys, as the publisher needs to
be trusted anyway.

64

5.3 Pre-Fetching

∙

i586x86_64

AliRoot

v4-21-16-AN

ROOT

v5-27-06d

Geant3

v1-11-21

Figure 5.2: First levels of the ALICE software directory tree (simplified). Red nodes
(italic font) indicate a user-assisted nested file catalog. Similarly to systems
that store the translation file per directory, nested catalogs can be created
recursively with the content hash of a sub file catalog stored in the parent
catalog (hash tree). The content hash of the root file catalog fulfills two
purposes: it carries a cryptographic signature in order to ensure data
authenticity of the file system and it can be used to populate updates,
either by using an expiry time stamp or by a publish-subscribe system.

Replication

Besides caching, we note that the file catalogs allow for a more efficient in-
cremental replication than the standard rsync tool. Given that the updated
file catalogs are replicated first, the difference set between master storage and
replica storage can be constructed locally on the replica storage. Since CAS
files are immutable, the difference set simply consists of all hash keys listed in
the file catalogs that are not yet on replica storage.

5.3 Pre-Fetching

Pre-fetching is a widely used mechanism to reduce latency when opening and
reading files [GA94,KL96,Cha01,SBM05,RP05]. For the workload of many
small files the main task of pre-fetching is file access prediction (as opposed
to read ahead, for instance, that is used for read requests on a single large file
or streamed content). The prediction tries to determine files that are to be
accessed soon, given the history of previously accessed files. Such a prediction
is then used to request multiple files at once or to pre-build file packages.

65

5 Software Distribution

For LHC experiment software, we can assume large cache sizes of the order
of gigabytes on the worker nodes. This assumption is based on the amount of
storage that is currently devoted to software files per worker node. Thus we
can afford long-term predictions. Usually, file accesses occur in spikes of the
order of up to thousands per second. As a consequence, the prediction needs
to be determined beforehand and stored as meta-data. For more accuracy, the
predicted information should be stored per path. For less storage consumption,
the prediction information should be stored per content-addressable chunk, i. e.
after de-duplication. As identical binaries are likely to access identical dependent
files regardless of the path used to access them, we propose predictions per
content-addressable chunk.

In order to predict upcoming file accesses, a number of mechanisms have been
proposed, such as informed prefetching, speculative execution, or based on the
analysis of previous accesses. In addition to these mechanisms, software files
allow a simple yet effective semantic approach. Shared libraries and executables
intrinsically store the dependent shared objects that are dynamically linked but
statically loaded. Under Linux, for instance, such dependent shared objects
can be extracted by the ldd tool. These dependent libraries are accessed when
the executable is loaded, which is the vast majority of cases for an open request
on executables. For LHC experiment software, there are on average between 10
and 50 dependent shared libraries per binary. This approach differs from the
proposal of file cules [IDG06], which are distinct sets of files that are always
accessed together; shared libraries, in contrast, are by definition in multiple
such sets.

In addition to statically loaded shared libraries, many LHC frameworks use
shared objects as dynamically loaded plug-ins. Figure 5.3 shows the monthly
hot set of accessed plug-ins for ROOT. According to these figures, a long-term
prediction of required shared libraries covers approximately half of the available
plug-ins with very high accuracy. Hence, instead of pre-fetching we propose to
preload a software file system cache based on statistics about library usage.

5.4 CAS Transformation

Transforming directory trees into content-addressable storage, i. e. calculating
the content hashes, is a costly process. Some systems perform the transformation
in the backend of a specially crafted file system [QD02]. This approach has
been used for archival storage and might be suitable for streams of event data
and conditions data as well, where continuous streams of immutable files are
written. Other systems, such as git, perform the transformation at certain

66

5.4 CAS Transformation

0

0.2

0.4

0.6

0.8

1

M
in

u
it

P
h
y
si

cs
R

o
oF

it
C

or
e

R
o
oF

it
F
oa

m
H

is
tP

ai
n
te

r
M

in
u
it

2
X

M
L
P
ar

se
r

M
at

h
M

or
e

R
in

t
m

u
lt

is
et

D
ic

t
m

ap
2D

ic
t

T
re

eP
la

ye
r

se
tD

ic
t

m
u
lt

im
ap

D
ic

t
m

ap
D

ic
t

li
st

D
ic

t
ve

ct
or

D
ic

t
m

u
lt

im
ap

2D
ic

t
M

at
ri

x
C

in
te

x
R

IO
H

is
t

G
ra

f3
d

G
ra

f
G

p
ad

C
or

e
T
re

e
T

h
re

ad
R

efl
ex

N
et

P
y
R

O
O

T
M

at
h
C

or
e

C
in

t
R

efl
ex

D
ic

t
E
G

X
M

L
IO

T
M

V
A

M
L
P

P
os

ts
cr

ip
t

P
ro

of
P
ro

of
P
la

ye
r

G
u
i

G
en

V
ec

to
r

S
es

si
on

V
ie

w
er

H
tm

l
G

X
11

T
T

F
G

X
11

T
ab

le
G

L
E
W

R
G

L
G

eo
m

P
ai

n
te

r
G

eo
m

G
ed

F
T

G
L

E
ve

co
m

p
le

x
D

ic
t

N
or

m
al

iz
ed

Fr
ac

ti
on

of
M

ac
hi

ne
s

Batch Machines Interactive Machines

Figure 5.3: Monthly cache hot set for ROOT libraries over 1650 CERN Tier 1 worker
nodes. “Batch” refers to the ROOT version of ATLAS Athena 17.0.0.
“Interactive” refers to the ROOT version of the LCG externals that is
mostly used for interactive data analysis. The numbers are normalized
by the highest number of cache entries. There are 65 additional libraries
available in ROOT, which have not been accessed at all.

67

5 Software Distribution

Experiment Writing System Calls [×103] Modified Entries [×103] Ratio [%]

ATLAS 6113 1829 29
CMS 4790 1391 29
LHCb 781 226 28

Table 5.1: Number of writing system calls compared to the number of modified files
and directories during updates of LHC software directory trees. Statistics
have been gathered during August 2011

checkpoints (git commit). Not only can the processing be parallelized, such
systems also avoid to process files that are transient between checkpoints. Such
transient files occur during the software installation process on the master
storage, which comprises the following steps:

1. A new software release or patch release is added to the software directory
tree. Typical transient files are temporary files produced during compil-
ing the software or files that are renamed to their final location by an
installation script.

2. The new software is locally tested by verification programs. At that
point, the publisher has still the option to make further changes in case
of verification failures.

3. The modified directory tree is published.

Table 5.1 shows the number of writing system calls for steps 1 and 2 compared
to the number of actually modified files and directories. Existing checkpoint
based systems, however, traverse the entire directory tree to determine changed
files, which limits the scalability.

5.4.1 Incremental Synchronization

We will discuss two new approaches to perform incremental CAS transformation
at the master storage. “Incremental” implies that only modified parts of the
directory tree should be analyzed and processed, as opposed to a full reprocessing
or a universal lookup for modified parts.

File System Change Log

Incremental transformation can be done providing a file system change log
exists. Such a change log would track the changes made to the directory tree.

68

5.4 CAS Transformation

Compared to immediate transformation, a modified file or directory would
just be added to a candidate queue. The entries of the candidate queue map
operations from the set {add,modify, delete, rename} to a pair of paths (the
second member of the pair is empty for all operations but rename). Before
processing, the change log has to be transformed into a change set, i. e. into
three sets of paths 𝑃𝑎, 𝑃𝑚, 𝑃𝑑 containing added, modified, and deleted paths,
respectively, and a function 𝑅 : path→ path describing renamed paths. This
can be done by Algorithm 1; its actual task is to keep the change set consistent,
e. g. an added and subsequently removed file leaves no trace in the change set.
For 𝑛 entries in the change log out of which 𝑛𝑟 entries are (directory) rename
operations, the complexity of the algorithm is in 𝒪(𝑛+ 𝑛𝑛𝑟). The worst case
of 𝒪(𝑛2) is reached only if the change log contains Θ(𝑛) rename operations
after Θ(𝑛) non-rename operations. Algorithm 1 is an online algorithm, i. e. it
can process a change log stream. For final processing of the change set, 𝑅 has
to be applied before processing the path sets.

We will now discuss the following potential mechanisms to construct a file
system change log.

Log-structured file system. A log-structured file system, such as the one
developed for Sprite [RO91], does not organize the data in trees or inode
lists. Instead, a stream of changes is stored. In order to harness the
meta-data change log from the raw stream, one would need to parse the
file system’s internal format. If the written directory structure is not
immutable, the file system has to perform a log cleanup at certain points
in order to deflate the ever-growing stream to the actual volume of the
data. Such cleanups might discard update information required for the
transformation.

Intercepting system calls. User space interception of system calls, such as
done by Parrot [TL05], operates on the wrong level, as changes to the
software tree might be caused by operating system kernel tasks. In case
of file system operations performed by a kernel task, the system call
interception facility will not be notified.

A Fuse module. The “file system in user space” (Fuse) facility facilitates
customized file systems by providing a minimal file system in kernel space
that redirects all operations to a user space module [HS]. In contrast
to intercepting system calls, the redirection here is performed by the
kernel’s file system layer. Channeling the file system calls through the
user space inevitably comes with a performance penalty. For the workload
of installing software, we see an overhead of approximately a factor of 2.

69

5 Software Distribution

Algorithm 1: Construct a file system change set from a file system change log.
Input: Queue 𝑞 with entries 𝑒 : {add,modify, delete, rename} ↦→ [path, path]
Output: Path sets 𝑃𝑎, 𝑃𝑚, 𝑃𝑑, function 𝑅 : path→ path
𝑃𝑎 ← ∅; 𝑃𝑚 ← ∅; 𝑃𝑑 ← ∅;
Empty queue of functions 𝑅𝑞 : path→ path;
while 𝑞 is not empty do

𝑒 ← 𝑞.pop();
switch 𝑒.operation do

case add
if 𝑃𝑑 ∩ {𝑒.path[1]} = ∅ then

𝑃𝑎 ← 𝑃𝑎 ∪ {𝑒.path[1]};
else

𝑃𝑚 ← 𝑃𝑚 ∪ {𝑒.path[1]};
𝑃𝑑 ← 𝑃𝑑 ∖ 𝑒.path[1];

case modify
if 𝑃𝑎 ∩ {𝑒.path[1]} = ∅ then

𝑃𝑚 ← 𝑃𝑚 ∪ {𝑒.path[1]};

case delete
if 𝑃𝑎 ∩ {𝑒.path[1]} = ∅ then

𝑃𝑑 ← 𝑃𝑑 ∪ {𝑒.path[1]};
𝑃𝑚 ← 𝑃𝑚 ∖ 𝑒.path[1];

else
𝑃𝑎 ← 𝑃𝑎 ∖ 𝑒.path[1];

case rename
𝑃𝑎 ← 𝑃𝑎 ∖ 𝑒.path[2];
𝑃𝑚 ← 𝑃𝑚 ∖ 𝑒.path[2];
𝑃𝑑 ← 𝑃𝑑 ∖ 𝑒.path[2];
�̂�← 𝑝 ↦→{︃
𝑒.path[2]"/"𝑝t ∃𝑝t ∈ path ∪ {⊥} : 𝑒.path[1]"/"𝑝t = 𝑝"/"
id(𝑝) else

forall the 𝑃 ∈ {𝑃𝑎, 𝑃𝑚, 𝑃𝑑} do
forall the 𝑝 ∈ 𝑃 do

𝑃 ← (𝑃 ∖ 𝑝) ∪ {�̂�(𝑝)};

𝑅𝑞.push(�̂�);

𝑅← id;
while 𝑅𝑞 is not empty do

𝑅← �̂� ∘𝑅𝑞.pop();

return 𝑃𝑎, 𝑃𝑚, 𝑃𝑑, 𝑅;
70

5.4 CAS Transformation

Kernel notifications. Kernel notification facilities, such as inotify [Lov05]
and SystemTAP [EPC+05], can capture writing file system operations
and expose them to user space. Such facilities work on events, i. e.
monitored operations are tracked in a kernel space event buffer that
is periodically flushed to the user space. Under heavy load, we observed
that the event buffers overflow and events get lost.

Intercepting kernel file system calls. By intercepting not on the system call
level but on the level of the file system layer in kernel, one avoids the
loss of operations issued by kernel daemons. On recent UNIX flavors,
the file system layer is object oriented and is called Virtual File System
Switch (VFS). The virtual interface facilitates such interception, as it
is not required to intercept individual file systems, but intercepting the
abstract VFS suffices. A general purpose framework to do so was presented
by Hrbata [Hrb05]. Figure 5.4 shows an approach to record file system
changes based on that framework. For the workload at hand, we measure
a performance penalty of less than 5 % caused by the creation of the
change log.
A similar system can be achieved based on stackable file systems in kernel
space, such as Tracefs [AWZ04]. This approach is comparable to the Fuse
module, but without the need to pass operations through the user space.
In contrast to intercepting VFS calls, the kernel data structures, such as
inodes and dentries, have to be duplicated for the stacked file system.

Overlay File System

Overlay file systems combine several directories into one virtual file system that
provides the view of merging these directories. These underlying directories
are often called branches. Branches are ordered; in the case of operations on
paths that exist in multiple branches, the branch selection is well-defined. By
stacking a read-write branch on top of a read-only branch, overlay file systems
can provide the illusion of a read-write file system for a read-only file system.
All changes are in fact written to the read-write branch.

Preserving POSIX semantics of overlay file systems is non-trivial; the first
fully functional implementation has been presented by Wright et al. [WDG+04].
By now, overlay file systems are well established for “Live CD” builders, which
use a ram disk overlay on top of the read-only system partition in order to
provide the illusion of a fully read-writable system.

In the same way, overlay file systems can be used to gather changes on the
software directory tree. In this case, the read-only file system interface for the

71

5 Software Distribution

process 1 · · · process 𝑛

user space

kernel space

VFS
inode cache
dentry cache

nfsd

redirfs

· · ·Ext3 NFS

/dev/chardevice

filter 1

change log filter

filter 𝑚

...

...

call
buffer

syscall syscall

transformation (offline)

Figure 5.4: Tracking file system changes with redirfs. Changes to the software direc-
tory tree are exposed to a character device. During transformation into
CAS or when the log buffer is full, writing VFS calls are blocked.

content-addressable storage is used in conjunction with a writable scratch area
for changes. This option has the following advantages:

∙ CAS is the only storage format, i. e. we benefit from de-duplication on
the master storage as well.

∙ The scratch area storing the changes is in fact already a change set.

However, this option also has the following disadvantages:

∙ The internal naming conventions of the overlay file system have to be
recognized and parsed in order to process the change set.

∙ The rename operation on directories translates into a recursive remove
and create, because internally the overlay file system crosses file system
boundaries.

5.5 Confidentiality

Although at the moment virtually all distributed LHC experiment software is
open source software, there might be use cases in the future for which software
distribution is restricted by a license. Data confidentiality is also desirable for
keeping event data, and thereby the derived physics results, confidential before
publication.

72

5.5 Confidentiality

5.5.1 Model

As security model, we assume a well-defined closed user group that is exclusively
allowed to read from a file system. New members might join the group
and existing members might leave the group, as is the case in a scientific
collaboration. We fully trust the master storage and the worker nodes, i. e.
protection is required only for the transport and the intermediate caches.

Encryption is widely used as a means to ensure data confidentiality in
distributed file systems [KBC+00,RD01,Kut08]. Data are encrypted with a
symmetric cipher. The key used for the cipher is encrypted with the public
keys of the users of the closed user group. In the following, we will present an
encryption scheme that fulfills the following objectives:

1. All files should carry an intrinsic name, i. e. as with content-addressable
storage, files are immutable and file integrity should be verifiable by worker
nodes using the file name.

2. Encryption should be optional in the sense that the master storage can
turn it on and off, without the need to re-process all files.

5.5.2 Confidential CAS

We will first discuss two straight-forward schemes for encryption. We assume a
file 𝑓 , a symmetric cipher 𝑒, a secret key 𝑘, and a cryptographic hash function ℎ.
Option 1 is to set the file name to ℎ(𝑒(𝑘, 𝑓)), i. e. we have content-addressable
storage of encrypted files. Here, changing the encryption key involves full
re-encryption of all files in order to retrieve the new content hashes. Option
2 inverses the order of hashing and encryption, i. e. we do not change the file
name but encrypt files in a separate step. Obviously, changing keys does not
modify the file name and the file is not immutable.

Instead, we propose to essentially keep the unencrypted file name but change
it in a way that reflects the encryption key used. With “·” being string
concatenation, we propose the file name

ℎ(𝑓) · ℎ(𝑘)

describing a file name with content hash ℎ(𝑓) that has been encrypted using
a key with the key hash ℎ(𝑘). As ℎ is a cryptographic hash, we will not
reveal information about the content of the file nor about the secret key 𝑘.
Furthermore, changing the key results in a new file name. We assume that
changing keys is a rare operation required only when the membership of the

73

5 Software Distribution

closed user group changes. Hence, during normal operation, we do not sacrifice
cacheability of files. The master storage can be built in a way that encrypts a
request for ℎ(𝑓) · ℎ(𝑘) on the fly (and does not deliver a request for ℎ(𝑓), of
course). Thus, we fulfill the objective of immediately turning encryption on
and off.

Obviously, the worker nodes have to know the key 𝑘 beforehand in order to
request files. We can use ℎ(𝑘) as a key identifier that is published in conjunction
with the root hash of the file system. The master storage will deliver a request
for ℎ(𝑘) with the symmetric key encrypted by all public keys of the participants
of the closed user group. Changing the closed group membership breaks down
to publishing a new key identifier and encrypting the corresponding key with
the public keys of the new members. Disregarding transient files on cache
nodes, we thereby have immediate revocation of group membership.

74

6 Decentralized Memory Cache

We have seen that a local persistent data and meta-data cache decouples
software execution from central servers. In a straight-forward form, each worker
node contributes some scratch space of its hard disk for caching as well as the
site providing a site-local cache. In this chapter, we will discuss how to replace
the site-local cache server and the local disk caches altogether. Based on a
distributed key value store, we will create a distributed and decentralized file
system cache among the 𝑛 worker nodes of the site. The decentralized cache
automatically feeds itself from the master source. When the first worker node
has fetched a file, it can share it among all other worker nodes in the cluster.

If data are stored in the memory of the worker nodes, we extend the caching
to diskless server farms, as well as virtualized environments, where disk I/O has
larger virtualization costs than network I/O [MA10]. Besides this, we reduce
the overall space required to cache a volume of size 𝑠 in a cluster of 𝑛 worker
nodes from (𝑛+ 1)𝑠 to 𝑐𝑠, where the parameter 𝑐 specifies the ability of the
cache to share information (ideally 𝑐 = 1). In order to do so, we have to make
sure that all data are present in small chunks of not more than a few megabytes.
To this end, we can assume chunking of larger files and fine-grained file catalogs
down to the directory level (i. e. we sacrifice the meta-data pre-cache discussed
in Section 5.2.3 to some extent).

Co-operative caching on the cluster scale has been studied before in cluster
file systems. Some systems, for example SPRITE, use centralized file servers
to maintain a consistent global view of the distributed cache [NWO88]. We
refrain from such an approach because it is not fully decentralized and thus
has all the scalability and reliability issues of centralized systems; SPRITE
only reduces the load at the central server. Other systems, for example xFS,
replicate the cache state globally [ADN+96]. Unlike our approach, xFS uses an
additional indirection layer, the so-called manager map, which is distributed via
network broadcasts. Such an approach is impractical in large, highly volatile
environments because of its very high number of update messages. There
are also approaches based on the dissemination of “hints” about each others
cache content, either with individual hints per file [SH96], or using a cache
summary that is only exchanged periodically [FCAB00]. Our approach, in

75

6 Decentralized Memory Cache

contrast, is opportunistic in the sense that it rapidly disseminates areas of
cache responsibility of the complete file space.

6.1 Requirements

The feasibility of the approach relies on the efficiency of the distributed file
system cache.

1. The distributed cache has to be decentralized, i. e. without any distinct
service that needs to be provisioned.

2. The distributed cache has to spread both the number of requests and the
size of the cached chunks equally among the worker nodes.

3. The distributed cache has to ensure proper sharing of files, i. e. once
staged, files have to be indeed reused by other worker nodes.

4. As we assume volatile worker nodes, the distributed cache should not
immediately re-balance its contents when worker nodes join or depart.

The distributed cache may assume that all worker nodes have an equal, very
low communication latency, as is the case in local (sub-)networks. Nevertheless,
the algorithm should work in open environments (e. g. Amazon EC2), i. e. there
should be protection against spoofing. Likewise, the cache has to deal with
corrupted data, i. e. any kind of failure of other worker nodes must not affect
the principal functionality, but rather trigger the fetch of a chunk from the
master source. As a result, we do not need timeliness and synchronization in
the mutual updates.

When looking for chunks in a distributed cache, there are five kinds of penalty
that a worker node potentially encounters:

1. If the chunk happens to be in the worker node’s local memory cache, there
is no penalty at all.

2. If the worker node asks another worker node that is able to serve the
chunk from its memory cache, there is a latency in time of one round trip
(RTT).

3. If the worker node has to ask 𝑚 > 1 worker nodes before getting a positive
response, and if these worker nodes forward the request, we have a latency
of (𝑚 + 1)RTT/2. If the asked worker nodes instead reply with a hint
whom to ask next, we have 𝑚 · RTT latency. This is similar to the case
of recursive and non-recursive DNS queries.

76

6.2 Distributed Hash Tables

4. If the worker node gets a negative response, it has to fetch the chunk via
the outside channel. This case can occur in combination with case 2 and
case 3.

5. If a worker node silently disappears, its peer worker nodes can run into
a network timeout. This case can occur in combination with case 2 and
case 3.

The distributed cache should serve requests as in cases 1 and 2 with high
probability.

6.2 Distributed Hash Tables

The distributed cache exposes a simple 2 function interface: get(key) →
{data,⊥} and store(key, data). A system providing such an interface is
known as a key-value store. In order to distribute the data over multiple
machines, the key-value store uses internally a distributed hash table.

6.2.1 Key Space

Naturally, distributed hash tables use keys provided by content-addressable
storage. However, a file system request consists of a path and a byte range,
which first has to be translated into the corresponding CAS key. Hence, we
have an alternative option of using the path and byte range as key. In order
to avoid collisions, we have to mangle a repository ID and a file revision into
the path. This option has the advantage that we can look up the CAS key
while retrieving the file (we need the CAS key anyway in order to verify data
integrity). The drawback is that we do not benefit from de-duplication, i. e. we
store identical files multiple times. This spoils the cache efficiency. We waste
storage and are unable to serve a request when we cache a file under a different
file name or repository path. In the following, we choose to optimize for high
hit rate and low memory consumption and assume the keys are derived from
the chunk’s content address.

6.2.2 Consistent Hashing

Current distributed hash table (DHT) implementations use consistent hash-
ing [KLL+97] in order to partition keys (and data) over multiple nodes. Consis-
tent hashing distributes data keys and node keys in the same key space. Each
node’s responsibility is bounded by the node IDs of its neighbors. While simple

77

6 Decentralized Memory Cache

and effective, the following problems arise when using consistent hashing in
volatile environments.

It is unlikely that data keys are distributed equally over the nodes, especially
when we consider hot spots in the requests; instead there is a high probability
that a node is responsible for 𝒪(log 𝑛/𝑛) of the address space. There are a
number of approaches that try to make all the nodes responsible for 1/𝑛 of the
address space [GLS+04,BCM03,BKM05], for instance by assigning each node
a couple of virtual servers.

Assuming full information is available about which are the participating
nodes, uniform address space partition is trivial. However, a simple uniform
distribution does not take into account that worker nodes may have different
capabilities in terms of spare memory space and maximum request load. This
might also change dynamically, i. e. instances that happen to be temporarily
idle are able to take more requests than instances that have to process local
file requests themselves.

Further studies take heterogeneous nodes and non-uniformly distributed data
keys into account [GLS+04,ZH04]. Godfrey et al. introduce a certain number
of directories and let the nodes report their load to them [GLS+04]. These
directories then solve the load-balancing problem centrally. Another common
approach for load-balancing is replication, in particular for keys with a high
request rate.

When using consistent hashing, each join of a new node and each failure
or leave of an existing node produces implicit or explicit load, since the areas
of responsibility change. This effect is even increased with virtual servers.
Högqvist et al. argue not to use consistent hashing, but instead distribute the
keys based on global knowledge about each node’s load [HHK+08].

Commonly used key-value stores usually aim at high availability, more
complex requests, and persistent storage rather than being designed as a pure
cache layer. Many of them, such as Dynamo [DHJ+07] and Cassandra [LM09],
use consistent hashing. BigTable [CDG+06] relies on the Google File System.
Scalaris [SSR08] uses a manually tuned distribution of keys to nodes, where
the keys are distributed in lexicographical order around the DHT ring.

6.3 Self-Organizing DHT Algorithm

We are seeking for a DHT where a worker node chooses its key space respon-
sibility itself, according to how much load it is able to withstand. Instead of
solving the load-balancing problem centrally, we want the worker nodes to
organize themselves. Furthermore, in cases where a large number of worker

78

6.3 Self-Organizing DHT Algorithm

nodes joins or leaves simultaneously, we want the responsibilities to be rather
stable. In order to do so, we discuss a combination of consistent hashing with
global knowledge about the worker nodes’ load.

We assume a set of worker nodes that require certain content-addressable
data chunks over time. Since we assume an outside channel from which we are
able to retrieve chunks, new chunks are stored in the cache layer as a side effect
of a cache miss. In order to exchange requests and data, the worker nodes
send messages to each other (the internal interface of the DHT). The request
message requests a certain chunk from another worker node; it is answered
by a deliver message that has the chunk as payload. Figure 6.2 shows the
implementation of the get() function and the request message handling. Note
that in case of a cache miss, the asked worker node is responsible for retrieving
the chunk via the outside channel.

Each worker node maintains its own memory cache for data chunks, using a
least recently used replacement strategy. The worker nodes may choose the
size of their caches independently of each other. Furthermore, each worker
node maintains 𝑘 slots, where for instance 𝑘 = 8 or 𝑘 = 16. A slot declares
an area of responsibility within the key space. This is done by a prefix of
arbitrary length, e. g. a slot 𝑟 with prefix 0x123 is responsible for chunks with
keys starting with 0x123. Other worker nodes will ask the worker node of slot
𝑟 for data chunks with keys starting with 0x123 (providing there is no slot
having a longer matching prefix for the chunk at hand). If there are multiple
such worker nodes, they may ask any.

A slot can also be interpreted as a node in the complete key space tree (Fig-
ure 6.1). In this representation, a slot is responsible for data chunks with keys
in the subtree that are rooted at the slot’s node. In addition to its own slots,
each worker node keeps the information about the other node’s current slots.

In an ideal configuration with 𝑛 uniform worker nodes, the sum of requests
for each worker node’s slots is the total number of requests divided by 𝑛. The
system seeks to come close to an ideal configuration. To do so, each worker
node may perform two basic operations on its slots:

Merge Two slots are merged in order to create a free slot. A worker node
always merges the two slots that have the smallest key space distance.
The prefix of the resulting slot is decreased to the common prefix of the
original slots.

Split The slot’s prefix length is increased by one bit, i. e. the worker node
drops the right, or the left, subtree of the slot’s key space. A worker node
decides which subtree to drop according to the resulting coverage of the

79

6 Decentralized Memory Cache

000 001 010 011 100 101 110 111

00 01 10 11

0 1split

merge

Slots of node 𝐴

Slots of node 𝐵

Figure 6.1: Example of a slot distribution over the key space 23. There are 2 worker
nodes — 𝐴 and 𝐵 — having 3 slots each.

key space tree. It looks for the largest subtree that is covered by another
slot and drops that one.

New data chunks having a key that matches none of the slot prefixes occupy
a new slot with the chunk’s key as prefix. A worker node merges two slots
when all its slots are already occupied.

Even though the slots with the smallest key distance are merged, a merge
might produce rather big areas of responsibility. Consider, for example, the
first merge of a worker node with 𝑘 slots: two slots having complete keys as
prefixes are merged. If the keys are equally distributed, the resulting slot moves
up from a leaf in the hash tree to a node at level log2(𝑘).

In order to restore the balance of the system, a worker node seeks to split
such an oversized slot. We use the number of cache misses as an indicator
for an oversized slot. Simulation experiments suggest that a small constant
parameter turns out to give good results; we currently choose to split after 3
cache misses.

Even without cache misses, a slot might turn out to be overloaded in the
sense that it has to serve more requests than other slots. This happens, for
instance, for all the available slots at the moment when new nodes join. Let
𝑟(𝑠) be the number of requests for slot 𝑠. Since a split drops half of the key
space in responsibility, we split 𝑠 when

𝑟(𝑠) > 2

∑︀
all slots 𝑖 𝑟(𝑠𝑖)

𝑛𝑘

80

6.3 Self-Organizing DHT Algorithm

Conversely, a similar approach could avoid underloaded slots by decreasing
their prefixes. But according to simulations, such an approach decreases the
quality of the algorithm. It produces a lot more churn in the slot responsibilities,
without changing the overall hit-rate significantly.

6.3.1 Load Balancing

There is no particular load balancing mechanism included in our algorithm.
Instead, load balancing is a natural side effect of the algorithm. We reduce
the general load balancing problem to an adequate distribution of the keys.
Each worker node can then control its load by choosing the size of its memory
cache freely and independently from all other worker nodes. Splitting and
merging keeps the requests per slot equally distributed. Adjusting the slot size
according to the number of cache misses controls the worker node’s load.

6.3.2 Simulation

In this section we evaluate the performance of the distributed cache given
ideal information dissemination. The simulation does not take into account
the latency amongst the worker nodes, nor the computation overhead. This is
negligible because the computation is marginal and we assume high-throughput,
low-latency communication between worker nodes. However, we do take into
account the communication via the outside channel on a cache miss by a latency
of 10 ms. We simulate up to 256 worker nodes representing a single local subnet.
We will later see that in order to keep the number of state dissemination
messages at a reasonable level, sites with more than 128 worker nodes should
be partitioned. Such large sites can simply be split into multiple independent
multicast groups, for instance based on the physical racks. This also reflects
the assumption of low-latency, point-to-point traffic.

We inspect the traces of compiling the example collection of the ATLAS
experiment software. The traces reflect 110 000 requests of 1100 distinct files,
i. e. on average each file is opened 100 times. The requests are not equally
distributed in time, but there are certain hot spots having the majority of
requests. The traces reflect a running time of typically a couple of hours.

For the synthetically generated benchmark we chose the same ratio of re-
quests and distinct files, but the requests are equally distributed over time.
Furthermore, all the requests choose their files randomly and independently, i. e.
in the synthetic trace there is no locality in the sequence of requests. Hence,
this can be considered a worst case scenario for a cache layer. Since typically

81

6 Decentralized Memory Cache

Algorithm 2: get()
Input: Key 𝑘
Output: Data chunk
if there is a matching slot then

𝑠 ← slot with a longest common prefix with 𝑘;
𝑤 ← worker node of slot 𝑠;
return 𝑤.request(𝑘, 𝑠);

else
𝑐 ← retrieve chunk from outside channel;
Store 𝑐 in worker node’s cache;
if worker node has a free slot then

𝑠 ← free slot;

else
merge two of worker node’s slots;
𝑠 ← resulting free slot;

prefix(𝑠) ← 𝑘;
return 𝑐;

Algorithm 3: request
Input: Key 𝑘, slot 𝑠
Output: Data chunk
if worker node has 𝑘 in its cache then

𝑐 ← corresponding data chunk
else

𝑐 ← retrieve chunk from outside channel;
Store 𝑐 in worker node’s cache;
if number of cache misses > 3 then

split(𝑠);

if number of requests for 𝑠 > 2 times slot request average then
split(𝑠);

sender.deliver(𝑐)

Figure 6.2: Implementation of get() and request

82

6.3 Self-Organizing DHT Algorithm

the worker nodes in a cluster compile and execute the very same software
during an analysis run, all the worker nodes are fed with the same traces. This
holds for both the ATLAS traces and the synthetic traces.

Synchronization

When LHC computing jobs are executed on a cluster, the job scheduler usually
starts worker nodes in a synchronized manner. Later the worker nodes tend to
automatically stay synchronized because the first node to access a file must
wait for the off-site source, and meanwhile, the slower nodes can catch up. In
an implementation, high synchronization results in a large number of cache
misses caused by the inevitable latency of the state dissemination. In order
to handle such high synchronization, upon a cache miss an implementation
should determine a worker node that is responsible for staging the file based
on the file hash. This worker node acts as a proxy for the original worker node;
it is able to collapse concurrent requests into a single outgoing request. This
does not turn our DHT algorithm into traditional consistent hashing; it is used
only to determine a proxy peer for staging. For the simulation of the ATLAS
traces, we synchronize the worker nodes up to a random jitter in the range of
0 ms to 100 ms.

Efficiency

We define efficiency as the number of cache hits divided by the number of
requests. Figures 6.3 and 6.4 show results from runs that assess the efficiency
of our algorithm. The combined cache size is half of the size of the requested
file set. We compare to two theoretical models, a large common LRU cache
for all participating worker nodes (idealistic case) and small independent LRU
caches for every worker node (naive case). The combined cache size of all
cache models is the same. The efficiency gap of our algorithm compared to the
idealistic case is below 10 % for the ATLAS traces. For the synthetic traces, the
efficiency of our algorithm tends to the idealistic case with increasing number
of slots. Naturally, with constant combined cache size and increasing number
of worker nodes the efficiency of the naive case drops.

Redundancy

Figure 6.5 reflects the amount of redundancy in the cache layer. We measure
the false cache miss rate, i. e. the percentage of cache misses that result from
asking a wrong worker node, while there would have been another worker node

83

6 Decentralized Memory Cache

0

20

40

60

80

100

2 4 8 16 32 64 128 256

E
ffi

ci
en

cy
[%

]

Number of Worker Nodes

Ideal: One Big LRU
Our Algorithm, 8 Slots

Naive: Many Small LRUs

Figure 6.3: Efficiency comparison of requests for the ATLAS compile traces.

0

10

20

30

40

50

2 4 8 16 32 64 128 256

E
ffi

ci
en

cy
[%

]

Number of Worker Nodes

Ideal: One Big LRU
Our Algorithm, 8 Slots

Naive: Many Small LRUs

Our Algorithm, 2 Slots
Our Algorithm, 4 Slots

Our Algorithm, 16 Slots

Figure 6.4: Efficiency comparison for synthetic traces and several slot configurations.

84

6.3 Self-Organizing DHT Algorithm

0

10

20

30

40

50

60

70

2 4 8 16 32 64 128 256

Fa
ls

e
C

ac
he

M
is

se
s

R
at

e
[%

]

Number of Worker Nodes

ATLAS Compile Traces Synthetic Traces

Figure 6.5: Fraction of false cache misses (i. e. a chunk is not found in the cache even
though it is available) amongst all cache misses. The difference between
ATLAS traces and the synthetic traces shows the impact of high worker
node synchronization.

that contained the data. Imagine, in Figure 6.1 on page 80, worker node 𝐴
with slots on 10 and 11 and worker node 𝐵 with a slot on 1. 𝐴 has data to
the key 111 in its cache, whilst 𝐵 has not. 𝐴 merges its two slots, afterwards
𝐵 splits to 11. From that point on, 𝐵 is asked for the key 111 and produces
false cache misses. Although Figure 6.5 suggests potential for improvement,
note that at least for the ATLAS traces the overall number of cache misses is
already less than 10 % of the number of requests. Furthermore, the comparison
to the synthetic traces shows the impact of high worker node synchronization.
This impact can be mitigated by the proposed implementation that collapses
concurrent requests for the same file.

Load balancing

In this section, we examine the distribution of load onto the worker nodes.
Since the requested chunks are small and often fit into one Ethernet frame, we
measure load in terms of number of requests only.

Figure 6.6 shows the load distribution for 32 (64) homogeneous worker nodes
with 4 (8) slots. For the ATLAS traces, half of the worker nodes show a
deviation of around 10 % from the mean in most cases, with the minimum and

85

6 Decentralized Memory Cache

-50

-40

-30

-20

-10

0

10

20

30

40

A
T

L
A

S
32

,4

Sy
nt

he
ti

c
32

,4

A
T

L
A

S
64

,4

Sy
nt

he
ti

c
64

,4

A
T

L
A

S
32

,8

Sy
nt

he
ti

c
32

,8

A
T

L
A

S
64

,8

Sy
nt

he
ti

c
64

,8

D
ev

ia
ti

on
of

M
ea

n
[%

]

Figure 6.6: Distribution of requests for several configurations for homogeneous worker
nodes as deviation from the average number of requests. The boxes show
the 25 and 75 percentiles resp., while the bars show overall minimum and
maximum.

maximum being as far as 40 % from the mean. Note that worker nodes still
have the option to decrease their load by decreasing the number of slots.

Figure 6.7 shows the load distribution for 32 (64) heterogeneous worker nodes
with 4 (8) slots. The worker nodes are divided into “strong nodes” and “weak
nodes”. Weak nodes have half the number of slots and half the size for their
LRU cache as compared to strong nodes. We see that a worker node is able to
reduce its load by decreasing these parameters. However, the figure does not
suggest a sharp relationship between the amount of resources and the number
of requests. So, in practice each worker node has to adjust its parameters
dynamically. The efficiency of the cache was not significantly reduced by the
simulated setting.

Figure 6.8 illustrates how the proposed algorithm behaves in case the number
of available worker nodes changes suddenly. To this end, we let half of the
worker nodes disappear in the middle of the simulation run for the “node loss”
scenario. For the “node arrival” scenario, the number of already active worker
nodes is doubled in the middle of the simulation run. As we see, all scenarios
have about 90 % efficiency. Moreover, we see that losing worker nodes has a
bigger impact on the efficiency than the sudden arrival of new worker nodes.

86

6.3 Self-Organizing DHT Algorithm

-60

-40

-20

0

20

40

60

A
T

L
A

S
32

,4

Sy
nt

he
ti

c
32

,4

A
T

L
A

S
64

,4

Sy
nt

he
ti

c
64

,4

A
T

L
A

S
32

,8

Sy
nt

he
ti

c
32

,8

A
T

L
A

S
64

,8

Sy
nt

he
ti

c
64

,8

D
ev

ia
ti

on
of

M
ea

n
[%

]

Strong Nodes Weak Nodes

Figure 6.7: Distribution of requests for several configurations for heterogeneous worker
nodes as deviation from the average number of requests. The configura-
tions on the x-axis refer to the strong nodes. The boxes show the 25 and
75 percentiles resp., while the bars show overall minimum and maximum.
Strong nodes have 2/3 of the resources. So each strong node should take
1/6 more load than the average.

87

6 Decentralized Memory Cache

84

86

88

90

92

94

96

98

4 8 16 32 64 128

E
ffi

ci
en

cy
[%

]

Number of Worker Nodes

Stable, 4 Slots
Stable, 16 Slots

Loss, 4 Slots

Loss, 16 Slots
Arrival, 4 Slots

Arrival, 16 Slots

Figure 6.8: Efficiency in case of large and sudden changes in the number of available
worker nodes. The configurations refer to the total number of worker
nodes during a simulation run, i. e. before the loss of nodes and after the
arrival of nodes.

6.4 State Dissemination

The system requires all worker nodes to share information about their respective
cache content. The more timely that information, the better the cache efficiency.
Link-layer multicast is an option, but the huge number of messages can drown
the network, even though the messages themselves are tiny (4 bytes per cache
slot). Also, many switches cannot handle multicast efficiently so that we often
experience a high latency and packet loss rate for multicast traffic in clusters.

We distinguish two types of state information with different dissemination
requirements:

∙ Slot information that describes the worker nodes’ cache content by its
slot prefixes and their number of requests, and

∙ Presence information that indicates which worker nodes are available.

The slot state of a worker node can change with every open() call. File
system traces show that a typical analysis workflow issues about 100 calls
per second. Hence, in a 1000 node cluster these calls result in 105 messages
per second. We develop a gossip-based broadcast algorithm to handle this

88

6.4 State Dissemination

avalanche of messages (see Section 6.4.1). It exploits the following properties
of the slot state information:

∙ Inconsistencies in the slot information are tolerable.

∙ The per slot information is much smaller than the network’s packet size.

∙ New slot state overwrites older state.

Maintaining the presence information requires our system to continuously
monitor the worker nodes. The presence information itself can safely be
exchanged via multicast, because changes in the set of available worker nodes
are rare events, even in a large cluster. Even the simultaneous loss of a large
number of worker nodes would not cause problems besides a brief, transient
overload, which is tolerable in comparison to the loss of computing resources.
This means that each time a new worker node arrives in the cluster, or when a
worker node is about to leave the cluster, or when a worker node has been found
“dead”, the (detecting) worker node sends an according multicast notification
message.

To avoid additional network traffic, we can piggy-back this protocol onto the
slot information dissemination protocol (see Section 6.4.2). Nevertheless, the
presence information dissemination can be used independently and in other
contexts as well.

6.4.1 Slot state dissemination

The distributed memory cache needs to quickly spread the information about
the slot state. Gossip protocols are a well established mechanism to do so
[HHL88, BHO+99, EGHK03, EGKM04]. They also can combine messages
from several nodes and thereby keep the number of messages low. But pure
gossip protocols are inherently slow [Bir07], which contradicts our low-latency
requirement. Therefore, we design a new gossip protocol, which exploits the
fact that we have full presence information. Thus, we can disseminate the slot
information according to a directed graph overlay (dissemination graph). Here,
every worker node acts as source for a new slot state and as aggregator for the
other worker nodes’ slot state.

The dissemination graph needs to be a strongly connected graph, so the
information sent by any worker node will reach all of the other worker nodes.
To improve the robustness of the dissemination graph, we can even demand the
dissemination graph to be 𝑘-connected with a large 𝑘, i. e. up to 𝑘 − 1 nodes
may fail without disrupting the flow of information. The dissemination graph

89

6 Decentralized Memory Cache

𝑤4 𝑤5 𝑤6

𝑤2 𝑤3

𝑤1

𝑤5 𝑤6

𝑤3 𝑤4

𝑤1

Figure 6.9: Left hand side: A 6 node LDI graph with fan-out 2. If worker node 𝑤2

fails in the middle of state dissemination, worker nodes 𝑤4 and 𝑤5 become
unreachable from worker nodes 𝑤1, 𝑤3, and 𝑤6. Right hand side: As soon
as worker node 𝑤2 is detected as dead, the worker nodes re-organize the
dissemination graph to an LDI graph with 5 nodes.

should have a small diameter, so that information quickly reaches all other
nodes. At the same time, the number of messages each node needs to send (the
fan-out) should be small1. Both requirements contradict each other. Given
that we have a reliable presence information and can thus quickly reorganize
the dissemination graph when a node fails, we chose to optimize for a small
fan-out.

We use a so-called low diameter interconnection (LDI) graph [Mel07], which is
constructed by connecting worker node 𝑟 to the worker nodes {𝑓𝑟+𝑘 mod 𝑛 | 0 ≤
𝑘 < 𝑓}. For 𝑛 = 2𝑚 this yields a DeBruijn graph. The diameter of the LDI
graph is logarithmic in the number of worker nodes. Figure 6.9 shows the 𝑓 = 2
and 𝑛 = 6 case.

When a worker node fails, the LDI graph changes (almost) entirely. We
consider this an advantage because this property facilitates dead node detection
(cf. Section 6.4.2). If, in another setting, more stability is required, the LDI
could be constructed with virtual nodes. We do not use broadcast graphs such
as hypercubes and tori [AGHK96,KK09] because of their additional overhead.
In the following we consider a plain LDI with a fan-out of 2.

1A full mesh would correspond to link-layer broadcast. For 𝑛 worker nodes the graph is (𝑛− 1)-
connected and each worker node has fan-out 𝑛− 1, but the nodes cannot aggregate the messages.

90

6.4 State Dissemination

Unlike Melhem [Mel07], we disseminate slot information along all outgoing
edges. Each worker node receives slot information from (up to) two worker
nodes and enters it into its own global cache view. Then, it forwards (a part
of) the combined information to its (up to) two downstream worker nodes.
Each piece of the slot information is tagged with a version number, which is
created by the worker node that holds the respective cache entry. The worker
nodes keep track of the versions that they most recently forwarded to their
downstream worker nodes. So they know which worker node needs which
information.

In general, a worker node cannot immediately forward all the new slot
information to both its downstream nodes because the snowball effect would
double the message size in each step. Therefore, each worker node randomly
picks some information and keeps the remainder for its next message. It
preferably forwards different information to its two downstream worker nodes
because this improves the overall freshness of the cache entries across the
system. Eventually, some of the queued information is outdated by newly
arriving information and can thus be discarded.

Compared to naive broadcast, we have two advantages: we combine many
small messages into one large message that exploits the network’s maximum
transfer unit (MTU), and we automatically adapt to the overall system load
because we aggregate more subsequent updates when many worker nodes
quickly turn around their caches. We see a particularly large impact of the
latter optimization, since when a worker node loads a new application it accesses
many files within a short period of time. Aggregating the resulting updates
differently along the different dissemination paths helps to balance the load.
At the expense of more messages, a flow-control mechanism can be added to
the dissemination, such as proposed by van Renesse et al. [vRDGT08].

6.4.2 Distributed Watchdogs

Presence information is exchanged via multicast. When a new worker node
arrives in the cluster or when a worker node is about to leave the cluster it
sends a corresponding notification message.

In a cloud system, worker nodes may leave ungracefully, for example, when
their virtual machine happens to be suspended. Such worker nodes could cause
large delays because other worker nodes might run into network timeouts when
they try to retrieve files from a dead cache. In order to quickly detect dead
worker nodes we build a watchdog algorithm, which exploits the fact that
worker nodes regularly receive messages as part of the slot state dissemination
protocol. If such a message fails to appear, the respective worker node can

91

6 Decentralized Memory Cache

be announced dead (via multicast), and the worker nodes can re-organize the
cache.

The watchdog algorithm works as follows: If a worker node has no slot
information to disseminate and has been idle for 𝑇𝑚𝑎𝑥, it must send an empty
message. 𝑇𝑚𝑎𝑥 determines the heartbeat of an idle cache. If a worker node did
not receive a message within the time interval 𝑇𝑚𝑎𝑥 + 𝑇𝑔𝑟𝑎𝑐𝑒, it can conclude
that its upstream worker node is dead and send an according announcement.
The grace period 𝑇𝑔𝑟𝑎𝑐𝑒 allows for message delays. If the worker node was
erroneously announced dead, it immediately responds with another multicast
message. Otherwise, i. e. after another grace period 𝑇𝑔𝑟𝑎𝑐𝑒, all worker nodes
adapt their worker node table, which also implicitly creates a new LDI graph. A
lost “I am alive” announcement could lead to an inconsistent graph; but a worker
node that receives messages from a wrong upstream worker node can detect
this inconsistency and trigger a retransmission of the missing announcement.

Watchdog Recovery Performance

We now study how quickly the worker nodes reflect a sudden loss of a potentially
large number of arbitrary worker nodes. We measure the recovery speed in
the number of heartbeats. To simplify the analysis, we assume a randomized
setting in which the heartbeat messages are independent Bernoulli experiments.
Furthermore, we generalize the analysis to a fan-out of 𝑘 per worker node, i. e.
each worker node randomly pings 𝑘 other worker nodes. For piggy-backing the
presence information dissemination on the slot state dissemination, we have
𝑘 = 2.

Let 𝑛 be the number of worker nodes, i. e. at the beginning each worker
node has 𝑛 entries in its table. At a certain point of time 𝑟𝑛 worker nodes fail,
0 < 𝑟 < 1. Now we have (1− 𝑟)𝑛 living worker nodes, each of them still having
𝑛 records in their worker node table. Within the next couple of heartbeats,
living worker nodes that happen to have a failed worker node as upstream
worker node will announce its loss. Thereby, the number of undetected failed
worker nodes decreases strictly monotonically. We give an estimation for the
waiting time until all failed nodes are detected. To do so, we use an analysis
similar to the coupon collector’s problem [Fel68]. Our setting differs from the
coupon collector’s problem in the fact that there is not a single entity probing
the peers, but all the living worker nodes probe concurrently. With more failing
worker nodes, the number of probing worker nodes gets smaller. But the chance
for each individual living worker node to randomly probe and detect a failed
node increases.

92

6.4 State Dissemination

We calculate the expected total number of probes E(𝑃), where a probe
corresponds to a received or missed dissemination message. Knowing that a
heartbeat consists of 𝑘(1− 𝑟)𝑛 probes, the expected number of heartbeats 𝐻 is

E(𝐻) =
1

𝑘(1− 𝑟)𝑛
E(𝑃).

We calculate the probability for detecting the 𝑖th failed worker node 𝑑𝑖,
provided that 𝑖− 1 failed worker nodes are already detected:

𝑑𝑖 =
𝑟𝑛− 𝑖+ 1

𝑛− 𝑖+ 1
.

The expected number of probes for a success 𝑤𝑖 (the waiting time) has a
geometric distribution, so E(𝑤𝑖) = 1/𝑑𝑖. Hence we have

E(𝐻) =
1

𝑘(1− 𝑟)𝑛
(E(𝑤1) + · · ·+ E(𝑤𝑟𝑛))

=
1

𝑘(1− 𝑟)𝑛

𝑟𝑛−1∑︁
𝑖=0

𝑛− 𝑖

𝑟𝑛− 𝑖

≤ 1

𝑘(1− 𝑟)
𝐻𝑟𝑛 ≈

ln(𝑟𝑛)

𝑘(1− 𝑟)

The same method estimates the variance using 𝜎2(𝑤𝑖) = (1− 𝑑𝑖)/𝑑
2
𝑖 :

𝜎2(𝐻) =
1

(𝑘(1− 𝑟)𝑛)2
(︀
𝜎2(𝑤1) + · · ·+ 𝜎2(𝑤𝑟𝑛)

)︀
=

1

(𝑘(1− 𝑟)𝑛)2

𝑟𝑛−1∑︁
𝑖=0

(1− 𝑟)𝑛(𝑛− 𝑖)

(𝑟𝑛− 𝑖)2

≤ 1

𝑘2(1− 𝑟)

𝑟𝑛−1∑︁
𝑖=0

1

(𝑟𝑛− 𝑖)2

≤ 1

𝑘2(1− 𝑟)

𝜋2

6

Overall we expect a very fast decrease of undetected failed worker nodes.

Figure 6.10 shows a simulation with 4096 worker nodes using the slot state
dissemination graph (LDI graph with fan-out 2). The magenta line relates to
the approximate closed formula for the waiting time. The closed formula for

93

6 Decentralized Memory Cache

1

2

4

8

16

32

64

0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
H

ea
rt

be
at

s

Fraction of Failing Worker Nodes [%]

1

2

4

8

16

32

64

0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
H

ea
rt

be
at

s

Fraction of Failing Worker Nodes [%]

ln(𝑟𝑛)/(𝑘(1− 𝑟))
E(𝐻) and 2𝜎(𝐻)

Simulation

Figure 6.10: Dead worker node detection performance in number of heartbeats re-
quired to detect all failed worker nodes for 4096 nodes. For each failure
rate, the failing worker nodes are chosen at random. Each simulation
step is repeated 104 times.

the waiting time deviates from the exact formula with larger fractions of failing
worker nodes and becomes an upper bound. The red line shows the recovery
speed according to the theoretical model, here the exact value for the expected
waiting time with error bars at 2𝜎. For lower fractions of failing worker nodes,
the simulation is better than the theoretical model because the LDI graph
ensures that each worker node is indeed probed by another worker node, as
opposed to a truly random relationship. For a large fraction of failing worker
nodes, the truly randomized probing is better because it ensures that there
are no loops, i. e. every node is indeed probing two other nodes. Overall, even
with 80 % of 4096 worker nodes failing at once, 4–5 heartbeats are sufficient to
detect all dead nodes.

94

7 Performance Measurement and
Comparison

I have implemented the methods described in my thesis as the CernVM File
System (CernVM-FS). CernVM-FS is being used for delivery of software and con-
ditions data by various LHC and other HEP collaborations on their distributed
computing infrastructures. I have collected statistics from its deployment on
more than 200 clusters representing approximately 40 000 worker nodes. At the
time of writing, the hosted data comprises some 45 million files and directories
together adding up to a some 3 TB.

7.1 Design and Implementation of the CernVM-FS

CernVM-FS is implemented as a File System in User Space (FUSE) [HS] module.
Data and meta-data are accessed through the HTTP protocol [FGM+99] and
are locally cached. Figure 7.1 shows how CernVM-FS interlocks with Fuse and a
web server in order to deliver files. For transformation into content-addressable
storage, dedicated installation machines at CERN are used. The transformation
is implemented based on a file system change log created by a redirfs file system
filter (cf. Section 5.4.1). The implementation uses multiple threads to calculate
hashes and to compress files in parallel. File data and meta-data are stored
DEFLATE compressed.

7.1.1 Caching

Two alternative facilities for local caching have been implemented. The first
facility implements the distributed cache algorithm in conjunction with the
dissemination protocol as presented in Chapter 6. It uses memcached [Fit04]
as memory cache on each worker node. It is used for the evaluation of the
decentralized memory cache (Section 7.2). The second facility uses LRU
managed scratch space on a local hard disk. The vast majority of currently used
LHC worker nodes have several gigabytes of unused scratch space. Furthermore,
site-local web caches are already installed within WLCG for other purposes.
Hence, this facility was preferred by the LHC computing community.

95

7 Performance Measurement and Comparison

open(/ChangeLog)

glibc

VFS
inode cache
dentry cache

Buffer cache ext3

NFS

...

Fuse

libfuse

CernVM-FS

user space

kernel space
syscall /dev/fuse

SHA1

file descr.fd HTTP GET

inflate+verify

Figure 7.1: Process of opening a file. CernVM-FS resolves the name by means of an
SQLite catalog, which is prepended by a memory cache. Downloaded files
are verified against the cryptographic hash of the corresponding entry in
the file catalog. The read() and the stat() system calls can be entirely
served from the in-kernel file system buffers.

96

7.1 Design and Implementation of the CernVM-FS

Special care has to be taken regarding the file system buffers of the operating
system. When the contents of the file system change, the file system buffers
of the operating system have to reflect the changes consistently. This means
that either all files are served as of the old state or all files are served in the
new state, but a mixing of both has to be prevented. CernVM-FS ensures such
behavior by “draining out” the file system buffers. Before a new file system
state is applied, buffering is temporarily disabled until all buffers have expired.

7.1.2 File Catalogs

The file meta-data are stored as SQlite databases [H+]. SQlite provides an
embedded database engine. Meta-data requests can be easily expressed as SQL
statements, as opposed to the use of hand-crafted formats. Furthermore, SQlite
provides the means to restrict the memory usage simply by restricting the size
of its page cache. This is in contrast to the GROW-FS implementation, for
instance, that loads the entire meta-data into memory beforehand. Each SQlite
database is stored as a single file. Like data, the file catalogs can be stored as
content-addressable files.

Each database represents a distinct part of the directory subtree. The
directory tree partitioning is done as described in Section 5.2.3, using magic
files to indicate subtree roots. The partitioning can be changed at anytime by
deleting or creating such magic files. Given this flexibility, release managers
were quickly able to create a reasonable partitioning, and file catalogs very
rarely exceed 50 MB.

The databases have a single table that represents the directory structure
(Table 7.1). The layout of the tables is done as described in Section 5.2.3. As
the distributed files are publicly readable, the ownership information can be
neglected.

A file catalog contains a time to live (TTL) that advises the file system to
check for a new version of the catalog when expired. Checking for a new catalog
version takes place with the first file system operation on a CernVM-FS volume
after the TTL has expired.

7.1.3 Data Access

In order to access non-cached data, CernVM-FS requires only outgoing HTTP
connectivity to a web server and/or a web proxy server. The data access is
stateless, which facilitates the migration of a worker node to a different network
address. If available, however, CernVM-FS benefits from the HTTP/1.1 keep-

97

7 Performance Measurement and Comparison

Field Type

Path MD5 (Key) 128 bit Integer
Parent Path MD5 128 bit Integer
inode 64 bit Integer
SHA1 Content Hash 160 bit Integer
Size 64 bit Integer
Mode 32 bit Integer
Last Modified Timestamp
Flags 8 bit Integer
Name String
Symlink String

Flags Meaning

1 Directory
2 Transition point to a nested catalog
33 Root directory of a nested catalog
3 Regular file
4 Symbolic link

Table 7.1: Metadata information stored per directory entry. SQlite stores integers in
a space-efficient manner by cropping leading zero bytes. On average, some
180 B per entry is stored. In comparison, the file headers of tar archives
contain full paths and comprise 512 B each. The DEFLATE compression
rate is around 65 %.

alive mode which keeps the TCP connection open. Parallel file requests are
collapsed in order to prevent multiple downloads of the same file.

One might argue that the header overhead of the HTTP protocol represents
a major performance drawback. Figure 7.2 shows that for the workload at
hand there would be little impact of a smaller header. Assuming a maximum
payload per IP packet of 1422 B, the majority of requested files is delivered in
1–2 IP packets. The fraction of files represented by the the intersection with
the blue bars show the potential of transferring files in one packet instead of
two, and in two packets instead of three, respectively, for an idealized empty
header. This affects less than 10 % of all requested files.

7.1.4 Data Distribution

The WLCG distribution network consists of four public mirror web servers
(Stratum 1) that are dedicated to CernVM-FS, as well as shared web caches at
the sites. The network is shown in Figure 7.3. It is comparable to the Akamai
architecture. The CERN Stratum 1 has currently 40–50 WLCG sites with a
total number of 20 000–25 000 worker nodes connected to it. We see that about
one out of 90 000 requests becomes corrupted in the web cache hierarchy, for
instance by broken local site caches. These corrupted files are transparently
refetched from Stratum 1 using the HTTP “no-cache” pragma.

98

7.2 Evaluation of the Decentralized Memory Cache

24

26

28

210

212

214

216

218

0 10 20 30 40 50 60 70 80 90 100

F
ile

Si
ze

[B
]

Percentile

Accessed Files (compressed)

Figure 7.2: Cumulative size distribution of requested files. Files are DEFLATE com-
pressed. The sample consists of operation traces over 1 month comprising
14 million requests. The blue bars show the range from 1092 B to 1422 B
and from 2514 B to 2844 B, respectively. The height of the bars corre-
spond to the observed average HTTP header size of 330 B.

The closest Stratum 1 server is determined by the file system through round
trip time measurement. Fault-tolerance is obtained by horizontal scaling of
the web caches in conjunction with fail-over logic built into the file system.
Although not implemented, the number of Stratum 1 servers could be scaled
by using peer-to-peer transport for the replication of files.

7.2 Evaluation of the Decentralized Memory Cache

In this section we evaluate the decentralized memory cache algorithm in con-
junction with the state dissemination protocols, as described in Chapter 6.
Timely state dissemination results in more accurate decisions of the cache
algorithm; changes to a worker node’s slot state result in state changes that
have to be disseminated. Hence, the algorithm and the state dissemination
protocols have to be evaluated in conjunction.

For evaluation, we use three benchmarks that are typical for LHC experiment
software:

1. Software compilation is a typical first step in many WLCG jobs. We
compile a Scientific Linux 5 kernel, which accesses 36 MB in 2400 files.

99

7 Performance Measurement and Comparison

Stratum 0
read/write

Switzerland

United
Kingdom

U.S. East
Cost

Taiwan

St
ra

tu

m
1

Pu
bl
ic

Mirr
ors

Stratum 2
Private
Replicas
(Tier 1)

Proxy
Hierarchy

Figure 7.3: HTTP content delivery network: Replica servers are arranged in rings
(Stratum 0 – Stratum 2). One protected r/w instance feeds several reliable,
public, and globally distributed mirror servers. A distributed hierarchy
of web caches fetches content from the closest public mirror server. The
public mirror server can in turn be a master for private mirror servers,
which might be demanded by large computing centers.

100

7.3 Software Distribution Comparison

Often, files are opened multiple times, e. g. header files. On average each
file is opened 200 times.

2. Setting up the runtime environment for an LHCb analysis job, i. e. selecting
software package versions and resolving the library dependencies. (10 MB
in 780 files, each file opened 12 times on average.)

3. An ALICE analysis job that compiles the job-specific physics code, links it
against the ALICE experiment software framework, and runs the analysis.
(90 MB in 350 files, each file opened twice on average.) This benchmark
has a relatively low number of files. With 128 worker nodes not all of the
8 available worker node slots are used, even if each slot contains only a
single file.

Benchmarks have been performed using 4–128 workers, which represents the
maximum amount of resources CERN was able to spare for this evaluation.

Figure 7.4 shows how many times on average each file is requested from the
master source. We see that from the Stratum 1 point of view, a cluster of 4–128
worker nodes behaves like 1–3 unclustered worker nodes. Also, we see that
128 nodes suffice to cache all the files that the workers request. If we further
increase the number of worker nodes, the cache efficiency will not improve any
more.

Figure 7.5 compares the cache maintenance traffic to a naive broadcast
implementation. We assume that a naive broadcast will broadcast changes as
soon as the slot information on a worker node changes. The system stabilizes
at around 25–50 slot changes per worker node independently of the number
of worker nodes. As all state changes have to be disseminated to all worker
nodes, the number of messages is 𝒪(𝑛2). Large local networks can simply be
split into multiple independent multicast groups, for instance based on the
physical racks. This also reflects the assumption of low-latency point-to-point
traffic. By combining messages in larger packets, we gain up to a factor of 4.
The in-queue optimizations result in another 10 % – 20 % gain. Overall, the
message dissemination traffic is below 5 % of the file transfer traffic.

7.3 Software Distribution Comparison

In the following benchmarks we use the ATLAS experiment software version
17.3.1, which comprises 9 GB, 240 000 files and 31 000 directories. Including
the common dependencies of all releases, the software files comprise 21 GB,
370 000 files, and 41 000 directories. Additionally, we look at the distribution
of a patch release that comprises 85 MB and 1400 files.

101

7 Performance Measurement and Comparison

1

1.5

2

2.5

3

4 8 16 32 64 128
0

20

40

60

80

100
A
vg

.n
um

be
r

of
ca

ch
ed

fil
e

co
pi

es

H
it

R
at

e
[%

]

Number of Worker Nodes

Ideal Hit Rate

Kernel Copies
Kernel Hit Rate

LHCb Copies
LHCb Hit Rate

ALICE Copies
ALICE Hit Rate

Figure 7.4: Redundancy factors of the distributed memory cache. The redundancy
factor specifies how many times a file is requested from a Stratum 1 server.
The redundancy factor in conjunction with the number of worker nodes
specifies the cache hit rate. For 𝑛 worker nodes the ideal cache hit rate is
(𝑛− 1)/𝑛.

0

10

20

30

40

50

60

4 8 16 32 64 128

N
um

be
r

of
M

es
sa

ge
s

/
𝑛
2

Number of Worker Nodes

Kernel
Kernel (Broadcast)

LHCb
LHCb (Broadcast)

ALICE
ALICE (Broadcast)

Figure 7.5: Number of messages divided by 𝑛2 with 𝑛 worker nodes. Our customized
message dissemination requires several factors less network packets than
a naive broadcast.

102

7.3 Software Distribution Comparison

As typical workload for a software hosting file system, we use the bootstrap
of the ATLAS event viewer because the event viewer depends on many different
parts of the experiment software. This is a good example for the runtime
behavior of the experiment software frameworks from a file system point of
view. Overall, the benchmark comprises 4.6 million stat() calls and 4900
open() calls; it accesses 305 MB in 1480 files.

All benchmark nodes run Scientific Linux 5.7. They have two Xeon E5345
with 4 cores each at 2.3 GHz and 8 GB RAM. The hard disks perform a measured
streaming rate of 61 MB/s for reading and 68 MB/s for writing. All nodes are
connected to the same switch with Gigabit Ethernet. The measured round-trip
latency between two nodes is 100 µs to 200 µs, the measured TCP throughput
is 112 MB/s.

7.3.1 Turn-Around Time

We define the turn-around time as the period of a new software release being
built and tagged until it is available on all worker nodes. This period comprises
the time it takes to publish a release and the time it takes to distribute a
release, i. e.

𝑡turn-around = 𝑡publish + 𝑡distribute

A fast turn-around time speeds up the feed-back loop of verifying physics results
after software modifications. It is important to have new releases available
on all worker nodes. It also simplifies the job scheduler, as in this case jobs
may safely land on any node of the distributed infrastructure. This does not
necessarily mean that all newly published data have to be transferred to all
worker nodes; data just have to be accessible in principle. Furthermore, we
assume that the common dependencies of all software releases, such as system
libraries and compilers, have already been installed. Figure 7.6 shows the
necessary steps to make new releases available for several software distribution
systems.

Shared Software Area

Using a shared software area on grid sites, 𝑡turn-around is the time to create a
release tarball, distribute this tarball to all grid sites, and untar it to the shared
software area (cf. Figure 7.6). The gzip compressed tarball of the release is
2.9 GB in size, the gzip compressed tarball of the patch release is 17 MB in size.
Because the tarball contains many small files, the read and write throughput
to the hard disks differs substantially as compared to streamed content. The
throughput for the creation of the tarball was measured as 10 MB/s. The

103

7 Performance Measurement and Comparison

Shared Software Area

GROW-FS

AFS (using AFS replication in a hypothetical deployment)

ALICE Installation Framework

CernVM-FS

N
ew

re
le

as
e

ta
gg

ed

N
ew

re
le

as
e

av
ai

la
bl

e

Create tarball Distribute tarball Extract tarball

Create
tarball

Distribute
tarball

Extract
tarball

Create
file catalog Remount

Release Volume

Create tarball Seed tarball

Create content-
addressable storage

Replicate
repository Catalog expires

ALICE Duration [min]

Step Full Release Patch

Create Taball 16 16
Seed Tarball < 1 < 1

Sum < 17 < 17

CernVM-FS Duration [min]

Step Full Release Patch

Create CAS 38 < 1
Replication 4 < 1
Catalog Expiry 15 15

Sum 57 < 16

Figure 7.6: Steps required to make new software releases available to worker nodes
for several software distribution methods. For the ALICE installation
framework and for CernVM-FS, the duration of the required steps in the
case of publishing the full release and the patch release is shown. Similar
calculations can be done for the remaining software distribution methods;
in practice, however, these methods have a turn-around time of the order
of days.

104

7.3 Software Distribution Comparison

throughput for the extraction of the tarball was measured as 13 MB/s. For
distribution, we assume optimistic values of 5 min delay for the grid scheduler
to start the job on the sites and 100 Mbit/s throughput to all grid sites.

Overall, we have a minimum turn-around of 32 min = 15 min (create tarball)
+ 5 min (grid scheduler) + 4 min (distribute tarball) + 11 min (extract tarball)
for the full software release and slightly more than 5 min for the patch release.
In practice, the LHC experiments estimate a couple of hours to distribute a
software release to the majority of grid sites. Due to installation failures on
the remaining grid sites, however, the turn-around time is much higher. For
ATLAS, failures occur typically at 10 % to 20 % of all grid sites. For CMS,
failures occur typically at 3 % to 4 % of all grid sites. Failure reasons are, for
instance, errors caused by the grid job scheduler, temporary network glitches
on a grid site, or hard disk errors at the site. According to the experiments,
virtually every time a software release is distributed manual failure recovery is
required. Thus the real turn-around time can typically take a few days.

GROW-FS

The GROW-FS system is designed for local trusted clusters and has not been
deployed on wide-area networks. Here, we will assume a setting comparable
to shared software areas with GROW-FS installed on the grid sites instead
of a cluster file system. In addition to the shared software areas, however,
GROW-FS needs to create the file catalog of the new software release. The
throughput for creating the GROW-FS catalog is 14 MB/s. So overall, we have
a minimum turn-around of 42 min for the ATLAS software release.

In practice, however, this approach will be prone to the same failures as the
normal grid installation jobs. In addition, GROW-FS lacks a possibility to
change the contents of a mounted file system. Worker nodes have to drain out
running jobs and remount in order to apply software updates. Thus the real
turn-around time would be of the order of days.

AFS

AFS volumes can be replicated in order to scale the number of clients and
sites. The mechanism of AFS read-only replicas would allow a central point
for staging software updates and automatic wide-area distribution. In practice,
however, the replica servers need to be constantly connected to the master
replica. Manual recovery is required in the case a replica server is disconnected
during the propagation of updates. Therefore, AFS replication cannot be

105

7 Performance Measurement and Comparison

effectively used for software distribution in WLCG. Instead, AFS is used at
some sites as a cluster file system in conjunction with grid installation jobs.

ALICE Installation Framework

To make new releases available to the ALICE Installation Framework, a com-
pressed tarball of the release is created and added to the initial BitTorrent
seeder (cf. Figure 7.6). The throughput of the seeding is I/O bound, i. e. it
equals the read/write throughput of the hard disk. Overall, the turn-around
for the ATLAS software release is slightly more than 15 min. The ALICE
installation framework does not have a concept of patch releases; a patch
release results in a new full release with the patches applied.

CernVM-FS

To make new releases available in CernVM-FS, the new files have to be trans-
formed into content-addressable storage (cf. Figure 7.6). The measured through-
put of the transformation and compression is 4 MB/s. The resulting compressed
files are replicated to the Stratum 1 servers. We have measured at least 10 MB/s
as replication throughput. Finally, the worker nodes have to pick up the new
root hash. The root hash expiry period is set to 15 min. Overall, the turn-
around for the full release is 57 min. For the patch release, the turn-over is
slightly more than 15 min.

7.3.2 Network Load

In this section, we measure the incoming network traffic of a worker node and
the number of outgoing requests of a worker node when the ATLAS jobs starts.
These numbers represent the load caused by the worker node. We distinguish
between intra-site load and the load from sites to central services at CERN.

For the intra-site load, we measure the incoming network traffic devoted to
software on the worker nodes. Figure 7.7 shows the results for “cold caches”.
The results for NFS and AFS are representative for the shared software area,
as these file systems cover more than 80 % of grid sites that are using shared
software areas. The BitTorrent distribution used by the ALICE distribution
framework requests chunks of 256 kB. As worker nodes are usually synchronized
and require the same software release when a job is executed, these requests are
not issued to a distinct worker node or service but they are equally distributed
among the site’s worker nodes. AFS, GROW-FS, and CernVM-FS provide
persistent caching and do not cause any network traffic in case of warm caches.

106

7.3 Software Distribution Comparison

100

1000

10000

NFS GROW-FS AFS ALICE CVMFS
1000

10000

100000

In
co

m
in

g
T
ra

ffi
c

[M
B

]

N
um

be
r

of
R

eq
ue

st
s

Rx
Requests

Figure 7.7: Incoming traffic and number of requests for running the ATLAS event
viewer. NFS and AFS benefit from accessing only blocks of files. CernVM-
FS benefits from compression and HTTP keep-alive connections. ALICE
installation framework requests are usually distributed among the site’s
worker nodes.

For the ALICE installation framework and CernVM-FS, the load from the
sites to CERN is difficult to predict because it is partially absorbed by site-local
traffic and caches. The ALICE central seeder distributes on average some
30 MB/s. The CERN Stratum 1 distributes on average around 1 MB/s in 10
requests per second. While the number of worker nodes and sites connected
to either of the services is comparable within a factor of two, the ALICE
software repository is more than ten times smaller than the repositories served
by CernVM-FS. It is safe to say that the load on central services is by factors
lower for CernVM-FS than for the ALICE installation framework.

This is a result of the use of content-addressable storage. Independent jobs
that use different experiment software frameworks still request identical files,
e. g. the same version of ROOT. In this way, the CERN Tier 1 grid site observes,
for a 10 GB local worker node cache, average hit rates of more than 99 % across
all releases. The average worker node fetches only 2 kB/s from the network.

7.3.3 Runtime Penalty

In this section, we measure the extra time penalty Δ𝑡 resulting from application
binaries, search paths, and include paths residing on a network file system. The
ALICE installation framework runs the software from local storage. However,

107

7 Performance Measurement and Comparison

the framework has to install the software prior to running a job. So the extra
time is given by the throughput of extracting the software tarball. Assuming
warm caches, the extra time for GROW-FS, AFS, and CernVM-FS is only few
seconds.

AFS and CernVM-FS provide secure remote access. In order to see the
impact of wide area networks, we shape the outgoing network traffic using
Linux’s tc1. Thus, we artificially include latency and bandwidth restrictions.
In case of cold caches, the results in Figure 7.8 show the impact of network
latency and limited network bandwidth. Without having particularly tuned
TCP parameters, we see the strong TCP throughput decrease caused by the
high bandwidth-delay product. The rather linear growth of extra time can
by explained by the fact that we request a sequence of many small files. In
general, we see CernVM-FS performing consistently better than AFS in wide
area networks. Significant performance losses due to low throughput are not
seen until throughput rates are 15 Mbit/s to 18 Mbit/s.

7.3.4 Summary

With CernVM-FS, the delay from tagging a software release until it is usable
in the distributed computing infrastructure is reduced from typically several
days to less than an hour. For patch releases, the delay is reduced to a couple
of minutes. Theoretically, the delay could be reduced even further by the
ALICE installation framework or by AFS. However, the AFS replication only
works for large computing centers that can guarantee a non-interrupted AFS
service. In the case of the ALICE installation framework, the reduced delay is
at the expense of a large overhead due to network load; it does not scale to the
complexity of other LHC experiment software frameworks.

The network load for both intra-site traffic and central services is reduced by
several factors with CernVM-FS. CernVM-FS allows effective wide-area access
to software, which facilitates the use of opportunistic and volatile resources.
The overhead of running software from CernVM-FS compared to having it
locally installed is negligible. Due to the local caching, the time to execute
jobs does not increase with more worker nodes on a site. While the ALICE
installation framework has no penalty at all once a computing job starts, there
is a considerable overhead before a job can start, which is independent of the
job itself.

The comparison shows that the ideas presented in this thesis are applicable
to a large-scale production system. Furthermore, volatile and opportunistic

1See http://lartc.org

108

http://lartc.org

7.3 Software Distribution Comparison

0

2

4

6

8

10

12

LAN 25 50 100 150
0

100

200

300

400

500

600

Δ
𝑡

[m
in

]

T
hr

ou
gh

pu
t

[M
bi

t/
s]

Round Trip Time [ms]

Extra Running Time by Latency

AFS

CernVM-FS

Throughput

0

2

4

6

8

10

12

0 5 10 15 20 25

Δ
𝑡

[m
in

]

iPerf-measured Throughput [Mbit/s]

WAN Extra Running Time (RTT 100ms)

AFS

CernVM-FS

Figure 7.8: Time penalty as a function of latency and bandwidth comparing AFS and
CernVM-FS to local storage for running the ROOT benchmark stressHepix.
With standard window sizes of 16 KiB the TCP throughput is directly
affected by latency. A round trip time of 100 ms corresponds to observed
parameters between a worker node running on Amazon EC2 (U.S. East
Coast) accessing services located at CERN.

109

7 Performance Measurement and Comparison

resources are enabled to efficiently access software remotely. Compared to the
state of the art, there are significant improvements for the use case of large
collaborations needing to deploy their software on a world-wide distributed
computing infrastructure.

110

8 Conclusion

During the development and the first exploitation phase of the Worldwide
LHC Computing Grid, research was mainly focused on the distributed data
management at the petabyte scale. Efficient access to the experiment data,
however, is pointless without the ability to analyze and interpret these data.
This data processing ability is provided by the runtime environment, involving
the use of complex and frequently changing applications with many dependencies
down to the operating system level.

So far, it was unknown how to provide a homogeneous runtime environment
in a highly distributed and heterogeneous computing infrastructure. In order to
survive, experiments developed ad-hoc solutions for software distribution based
on standard technologies such as packet managers and cluster file systems.
In practice, these solutions turned out to be error-prone, maintenance was
man-power intensive, and reproducibility of data analyses in the long term was
severely impacted. Certain grid sites had to artificially restrict the number of
concurrent computing jobs in order to not overload their software distribution
service. At the scale of LHC experiment software, existing software distribution
methods complicated the use of opportunistic and volatile resources provided
by cloud infrastructures.

The thesis studied a systematic approach to the problem at hand by providing
a global and uniform file system access to the experiment software. LHC
experiment software was analyzed from a file system point of view. The
analysis revealed substantial differences compared to the average workload of
distributed file systems. The biggest problem for general-purpose distributed
file systems is the uncommon file size distribution with only few kilobytes
per file on average. In conjunction with access patterns dominated by lookup
requests, the main workload is on meta-data operations.

To improve the situation, the thesis proposed the use of content-addressable
storage as a means to store, distribute, and cache file data and meta-data. The
thesis contributed new ideas on how to efficiently interface large directory trees
with content-addressable storage, which has been a necessary pre-condition for
the feasibility of the approach. In return, content-addressable storage allows
for stateless storage and cache services. In this way, the caching strategy of the

111

8 Conclusion

file system can be easily adapted to the respective computing environment at
hand.

In order to optimize file system caching on the cluster scale, the thesis
presented a fully decentralized and distributed file system memory cache. In
contrast to existing distributed caches, the design and analysis of the presented
algorithm takes into account the volatility of resources in virtualized computing
centers.

The presented methods have passed the reality check [L+11] and are being
adopted by several LHC experiment collaborations and other high energy
physics experiments. They lay the foundation for decentralized data processing
in the future context of cloud and volunteer computing [CAA+11,H+11].

112

Bibliography

[AA06] K. Adams and O. Agesen. A Comparison of Software and Hard-
ware Techniques for x86 Virtualization. ACM SIGPLAN Notices,
41(11) pp. 2–13, 2006. On pages 30 and 32.

[AAA+03] S. Agostinelli, J. Allison, K. Amako, et al. Geant4 - A Simulation
Toolkit. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment A, 506(3) pp. 250–303, 2003. On page 41.

[ADN+96] T. E. Anderson, M. D. Dahlin, J. M. Neefe, et al. Serverless
Network File Systems. ACM Transactions on Computer Systems,
14(1) pp. 41–79, 1996. On page 75.

[Adv05] Advanced Micro Devices. AMD64 Virtualization Codenamed
“Pacifica” Technology: Secure Virtual Machine Architecture Refer-
ence Manual, 2005. On page 31.

[Adv08] Advanced Micro Devices. AMD-V Nested Paging, 2008. On
page 32.

[Adv09] Advanced Micro Devices. AMD I/O Virtualization Technology
(IOMMU) Specification, 2009. On page 32.

[AFM05] S. Annapureddy, M. J. Freedman, and D. Mazières. Shark: Scal-
ing File Servers via Cooperative Caching. In Proc. of the 2nd
Symposium on Networked Systems Design and Implementation
(NSDI’05), pp. 129–142, 2005. On pages 3 and 53.

[AGHK96] R. Ahlswede, L. Gargano, H. Haroutunian, et al. Fault-Tolerant
Minimum Broadcast Networks. Networks, 27(4) pp. 293–308, 1996.
On page 90.

[And04] D. P. Anderson. BOINC: A System for Public-Resource Computing
and Storage. In Proc. 5th IEEE/ACM Int. Workshop on Grid
Computing, pp. 4–10, 2004. On page 26.

113

[ASBB+11] C. Aguado-Sanchez, J. Blomer, P. Buncic, et al. Studying ROOT
I/O performance with PROOF-Lite. In Proc. of the 18th int.
conf. on Computing in High Energy Physics (CHEP’10), 2011.
To appear. On page 33.

[ATL05] ATLAS Computing Group. ATLAS Computing: Technical Design
Report. Tech. Rep. CERN-LHCC-2005-022, CERN, 2005. On
page 41.

[AWZ04] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A File System
to Trace Them All. In Proc. of the 3rd USENIX Conference on
File and Storage Technologies (FAST’04), pp. 129–143, 2004. On
page 71.

[B+05] I. Bird et al. LHC Computing Grid: Technical Design Report.
Tech. Rep. LCG-TDR-001, CERN, 2005. On pages 1 and 19.

[BBB+01] G. Barrand, I. Belyaev, P. Binko, et al. GAUDI: A software
architecture and framework for building HEP data processing
applications. Computer Physics Communications, 140 pp. 45–55,
2001. On page 41.

[BBC+91] J. P. Baud, J. J. Bunn, F. Cane, et al. SHIFT: the scalable
heterogeneous integrated facility for HEP computing. In K. Bos
and B. van Eijk (eds.), Proc. of the Workshop on detector and
event simulation in high energy physics, pp. 41–56, 1991. On
page 17.

[BBC+03] R. Brun, P. Buncic, F. Carminati, et al. Computing in ALICE.
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment,
502 pp. 339–346, 2003. On page 41.

[BBM+87] R. Brun, F. Bruyant, M. Maire, et al. GEANT3. Tech. Rep.
DD/EE/84-1, CERN, 1987. On page 41.

[BCM03] J. Byers, J. Considine, and M. Mitzenmacher. Simple Load Bal-
ancing for Distributed Hash Tables. In Peer-to-Peer Systems II.
Springer, 2003. On page 78.

[BDF+03] P. Barham, B. Dragovic, K. Fraser, et al. Xen and the art of
virtualization. Operating Systems Review, 37(5) pp. 164–177,
2003. On page 31.

114

[BHO+99] K. P. Birman, M. Hayden, O. Ozkasap, et al. Bimodal Multicast.
ACM Transactions on Computer Systems, 17(2) pp. 41–88, 1999.
On page 89.

[Bir07] K. Birman. The Promise, and Limitations, of Gossip Protocols.
ACM SIGOPS Operating Systems Review, 41(5) pp. 8–13, 2007.
On page 89.

[Bir10] I. Bird. WLCG: Progress and Challenges, 2010. Plenary talk at
the 18th Int. Conf. on Computing in High Energy Physics. On
pages 15 and 19.

[BKM05] M. Bienkowski, M. Korzeniowski, and F. Meyer auf der Heide.
Dynamic Load Balancing in Distributed Hash Tables. In Peer-to-
Peer Systems IV. Springer, 2005. On page 78.

[BMM05] E.-J. Bos, E. Martelli, and P. Moroni. LHC Tier-0 to Tier-1
High-Level Network Architecture. Tech. rep., CERN, 2005. On
page 20.

[BMP02] M. Beck, T. Moore, and J. S. Plank. An End-to-End Approach to
Globally Scalable Network Storage. ACM SIGCOMM Computer
Communication Review, 32(4) pp. 339–346, 2002. On pages 3
and 60.

[BR97] R. Brun and F. Rademakers. ROOT - An Object Oriented Data
Analysis Framework. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment A, 389 pp. 81–86, 1997. On page 40.

[Bra98] P. J. Braam. The Coda Distributed File System. Linux Journal,
50 pp. 46–51, 1998. On page 53.

[Bru04] D. L. Bruening. Efficient, Transparent, and Comprehensive Run-
time Code Manipulation. Ph.D. thesis, Massachusetts Institute of
Technology, 2004. On page 30.

[BSNP95] S. Bakhtiari, R. Safavi-Naini, and J. Pieprzyk. Cryptographic
Hash Functions: A Survey. Tech. rep., University of Wollongong,
1995. On page 60.

[CAA+11] A. Charbonneau, A. Agarwal, M. Anderson, et al. Data Intensive
High Energy Physics Analysis in a Distributed Cloud. In Proc. of

115

the Int. Conf. on High Performance Computing and Simulation
(HPCS’11), 2011. On page 112.

[Cas10] T. Cass. Trusted Virtual Machine Images: A Step Towards Cloud
Computing for HEP?, 2010. Talk at the 18th Int. Conf. on
Computing in High Energy Physics (CHEP’10). On page 35.

[CDG+06] F. Chang, J. Dean, S. Ghemawat, et al. Bigtable: A Distributed
Storage System for Structured Data. In Proc. of the 7th Conf. on
USENIX Symposium on Operating Systems Design and Imple-
mentation, pp. 205–218, 2006. On page 78.

[CGL+10] G. Compostella, S. P. Griso, D. Lucchesi, et al. CDF software dis-
tribution on the Grid using Parrot. Journal of Physics: Conference
Series, 219, 2010. On pages 3, 55, and 63.

[CGM+10] T. Cass, S. Goasguen, B. Moreira, et al. CERN’s Virtual Batch
Farm. In Proc. of the 2nd Cloud Computing International Con-
ference, pp. 21–32, 2010. On page 27.

[Cha01] F. W. Chang. Using speculative execution to automatically hide
I/O latency. Ph.D. thesis, Carnegie Mellon University, 2001. On
page 65.

[CJM+08] M. Coppola, Y. Jégou, B. Matthews, et al. Virtual Organiza-
tion Support within a Grid-Wide Operating System. Internet
Computing, 12(2) pp. 20–28, 2008. On page 38.

[Coh03] B. Cohen. Incentives Build Robustness in BitTorrent. In 1st
Workshop on Economics of Peer-to-Peer Systems, 2003. On
page 54.

[D0̈3] D. Düllmann. The LCG POOL Project: General Overview and
Project Structure, 2003. arXiv:physics/0306129. On page 41.

[DEFH05] A. Dorigo, P. Elmer, F. Furano, et al. XROOTD - A highly
scalable architecture for data access. WSEAS Transactions on
Computers, 4(4) pp. 348–353, 2005. On page 1.

[DHJ+07] G. DeCandia, D. Hastorun, M. Jampani, et al. Dynamo: Ama-
zon’s Highly Available Key-value Store. ACM SIGOPS Operating
Systems Review, 41(6) pp. 205–220, 2007. On page 78.

116

arXiv:physics/0306129

[DKK+01] F. Dabek, M. F. Kaashoek, D. Karger, et al. Wide-area cooperative
storage with CFS. ACM SIGOPS Operating Systems Review,
35(5) pp. 202–215, 2001. On pages 1, 60, and 61.

[EB08] L. Evans and P. Bryant. LHC Machine. Journal of Instrumenta-
tion, 3, 2008. On pages 1 and 8.

[Edw85] H. T. Edwards. The Tevatron Energy Doubler: A Superconducting
Accelerator. Annual Review of Nuclear and Particle Science, 35
pp. 605–660, 1985. On page 9.

[EGHK03] P. T. Eugster, R. Guerraoui, S. B. Handurukande, et al.
Lightweight Probabilistic Broadcast. ACM Transactions on Com-
puter Systems, 21(4) pp. 341–374, 2003. On page 89.

[EGKM04] P. Eugster, R. Guerraoui, A.-M. Kermarrec, et al. Epidemic
Information Dissemination in Distributed Systems. Computer,
37(5) pp. 60–67, 2004. On page 89.

[EK02] K. M. Evans and G. H. Kuenning. A Study of Irregularities in File-
Size Distributions. In Int. Symposium on Performance Evaluation
of Computer and Telecommunication Systems (SPECTS’02), 2002.
On page 43.

[EPC+05] F. C. Eigler, V. Prasad, W. Cohen, et al. Architecture of System-
TAP: a Linux trace/probe tool. Tech. rep., http://sourceware.
org/systemtap, 2005. On page 71.

[FCAB00] L. Fan, P. Cao, J. Almeida, et al. Summary Cache: A Scalable
Wide-Area Web Cache Sharing Protocol. IEEE/ACM Transactions
on Networking, 8(3) pp. 281–293, 2000. On pages 4 and 75.

[Fel68] W. Feller. An Introduction to Probability Theory and Its Applica-
tions, vol. 1. Wiley, 1968. On pages 62 and 92.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, et al. Hypertext Transfer Pro-
tocol – HTTP/1.1. RFC 2616, Internet Engineering Task Force,
1999. URL http://www.rfc-editor.org/rfc/rfc2616.txt.
On page 95.

[Fit04] B. Fitzpatrick. Distributed Caching with Memcached. Linux
Journal, 2004(124), 2004. On page 95.

117

http://sourceware.org/systemtap
http://sourceware.org/systemtap
http://www.rfc-editor.org/rfc/rfc2616.txt

[FK97] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastruc-
ture Toolkit. Int. Journal of Supercomputer Applications, 11(2)
pp. 115–128, 1997. On pages 18 and 41.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid.
Int. Journal of High Performance Applications, 15(3), 2001. On
pages 1 and 18.

[Fos02] I. Foster. What is the Grid? A Thee Point Checklist. GRID today,
1(6) pp. 22–25, 2002. On page 18.

[FSFR05] A. Ferrari, P. R. Sala, A. Fassò, et al. FLUKA: A Multi-Particle
Transport Code. Tech. Rep. SLAC-R-773, Stanford Linear Accel-
erator Center (SLAC), 2005. On page 38.

[Fur11] F. Furano. Data management in HEP: An approach. The Euro-
pean Physical Journal Plus, 126(1), 2011. On page 1.

[GA94] J. Griffioen and R. Appleton. Reducing File System Latency using
a Predictive Approach. In Proc. of the USENIX Summer Technical
Conference, 1994. On page 65.

[GGL03] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. ACM SIGOPS Operating Systems Review, 37(5) pp.
29–43, 2003. On page 1.

[GLS+04] B. Godfrey, K. Lakshminarayanan, S. Surana, et al. Load Balanc-
ing in Dynamic Structured P2P Systems. IEEE INFOCOM, 4 pp.
2253–2262, 2004. On pages 4 and 78.

[H+] R. Hipp et al. SQLite. http://www.sqlite.org. On page 97.

[H+11] A. Harutyunyan et al. CernVM CoPilot: a Framework for Or-
chestrating Virtual Machines Running Applications of LHC Ex-
periments on the Cloud. In Proc. of the 18th Int. Conference on
Computing in High Energy Physics (CHEP’10), 2011. To appear.
On page 112.

[Har10] A. Harutyunyan. Development of Resource Sharing System Com-
ponents for AliEn Grid Infrastructure. Ph.D. thesis, State Engi-
neering University of Armenia, 2010. On page 33.

[HHK+08] M. Högqvist, S. Haridi, N. Kruber, et al. Using Global Information
for Load Balancing in DHTs. In Proceedings of the 2nd IEEE Int.

118

http://www.sqlite.org

Conf. on Self-Adaptive and Self-Organizing Systems Workshops
(SASOW’08), pp. 236–241, 2008. On page 78.

[HHL88] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman. A
survey of gossiping and broadcasting in communication networks.
Networks, 18(4) pp. 319–349, 1988. On page 89.

[Hig64] P. W. Higgs. Broken Symmetries and the Masses of Gauge Bosons.
Physical Review Letters, 13(16) pp. 508–509, 1964. On page 7.

[HLPW06] A. Heavey, K. Lassila-Perini, and J. Williams. The CMS Offline
Workbook. Tech. rep., CERN, 2006. On page 41.

[HLST11] M. Hogan, F. Liu, A. Sokol, et al. NIST Cloud Computing
Standards Roadmap. Tech. Rep. NIST CCSRWG – 092, NIST,
2011. On page 24.

[HMR09] J. Harvey, P. Mato, and L. Robertson. The Large Hadron Collider:
a Marvel of Technology, chap. 5.6 (LHC Data Analysis and the
Grid). EPFL Press, 2009. On pages 14 and 37.

[Hrb05] F. Hrbata. Callback Framework for VFS layer. Master’s thesis,
Brno University of Technology, 2005. On page 71.

[HS] C. Henk and M. Szeredi. Filesystem in Userspace (FUSE). http:
//fuse.sourceforge.net. URL http://fuse.sourceforge.
net/. On pages 69 and 95.

[IDG06] A. Iamnitchi, S. Doraimani, and G. Garzoglio. Filecules in High-
Energy Physics: Characteristics and Impact on Resource Man-
agement. In Proc. of the 15th IEEE Int. Symposium on High
Performance Distributed Computing, pp. 69–80, 2006. On page 66.

[Int11] Intel. Intel Virtualization Technology for Directed I/O, 2011. On
page 32.

[KBC+00] J. Kubiatowicz, D. Bindel, Y. Chen, et al. OceanStore: An
Architecture for Global-Scale Persistent Storage. ACM SIGPLAN
Notices, 35(11) pp. 190–201, 2000. On pages 1, 53, and 73.

[KK09] R. Královič and R. Královič. Rapid Almost-Complete Broadcasting
in Faulty Networks. Theoretical Computer Science, 410(14) pp.
1377–1387, 2009. On page 90.

119

http://fuse.sourceforge.net
http://fuse.sourceforge.net
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/

[KKL+07] A. Kivity, Y. Kamay, D. Laor, et al. kvm: the Linux Virtual
Machine Monitor. In Proc. of the 2007 Linux Symposium, pp.
225–230, 2007. On page 32.

[KL96] T. M. Kroeger and D. D. E. Long. Predicting Future File-System
Actions From Prior Events. In Proc. of the USENIX Annual
Technical Conference, pp. 319–328, 1996. On page 65.

[KLL+97] D. Karger, E. Lehman, T. Leighton, et al. Consistent Hashing
and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In Proc. of the 29th Annual
ACM Symposium on Theory of Computing, pp. 654 – 663, 1997.
On pages 4 and 77.

[KRZ08] M. Kirsanov, A. Ribon, and O. Zenin. Development, validation
and maintenance of Monte Carlo event generators and generator
services in the LHC era. PoS, ACAT, 2008. On page 40.

[Kut08] K. Kutzner. The Decentralized File System Igor-FS as an Applica-
tion for Overlay-Networks. Ph.D. thesis, University of Karlsruhe,
2008. On pages 1, 53, 63, and 73.

[L+11] E. Lanciotti et al. An alternative model to distribute VO specific
software to WLCG sites: a prototype at PIC based on CernVM
file system. In Proc. of the 18th Int. Conference on Computing in
High Energy Physics (CHEP’10), 2011. To appear. On pages 50
and 112.

[Law10] D. Lawrence. GlueX Offline Software: Preparing for Big Data
Volumes on a Small Manpower Budget, 2010. Talk at the 18th
Int. Conf. on Computing in High Energy Physics (CHEP’10). On
page 43.

[LHP+04] E. Laure, F. Hemmer, F. Prelz, et al. Middleware for the next
generation Grid infrastructure. Tech. Rep. EGEE-PUB-2004-002,
EGEE, 2004. On pages 3, 18, 19, and 41.

[LM09] A. Lakshman and P. Malik. Cassandra: Structured Storage System
on a P2P Network. In Proceedings of the 21th Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures (SSPA’09),
2009. On page 78.

[Lov05] R. Love. Kernel korner: intro to inotify. Linux Journal, 2005(139)
p. 8, 2005. On page 71.

120

[LPGM08] A. W. Leung, S. Pasupathy, G. Goodson, et al. Measurement and
Analysis of Large-Scale Network File System Workloads. In Proc.
of the USENIX Annual Technical Conference, pp. 213–226, 2008.
On page 43.

[LRTB97] M. Livny, R. Raman, T. Tannenbaum, et al. Mechanisms for High
Throughput Computing. SPEEDUP, 11(1), 1997. On page 12.

[LUC+05] J. LeVasseur, V. Uhlig, M. Chapman, et al. Pre-Virtualization:
Slashing the Cost of Virtualization. Tech. Rep. 2005-30, University
of Karlsruhe, 2005. On page 31.

[MA10] R. McDougall and J. Anderson. Virtualization Performance:
Perspectives and Challenges Ahead. ACM SIGOPS Operating
Systems Review, 44(4) pp. 40–56, 2010. On page 75.

[Mae08] T. Maeno. PanDA: Distributed Production and Distributed Anal-
ysis System for ATLAS. Journal of Physics: Conference Series,
119(6), 2008. On pages 21 and 41.

[MB11] D. T. Meyer and W. J. Bolosky. A Study of Practical Deduplica-
tion. In Proc. of the 9th USENIX conference on File and Storage
Technologies (FAST’11), 2011. On pages 43 and 50.

[Mel07] R. Melhem. Low Diameter Interconnections for Routing in High-
Performance Parallel Systems. IEEE Transactions on Computers,
56(4) pp. 502–510, 2007. On pages 90 and 91.

[Men07] P. B. Menage. Adding Generic Process Containers to the Linux
Kernel. In Proc. of the Ottawa Linux Symposium, pp. 45–57, 2007.
On page 33.

[Mer06] R. C. Merkle. A Digital Signature Based on a Conventional En-
cryption Function, vol. 293 of Lecture Notes in Computer Science,
pp. 369–378. Springer, 2006. On page 3.

[MM10] P. Malzacher and A. Manafov. PROOF on Demand. Journal of
Physics: Conference Series, 219, 2010. On page 35.

[MMGC02] A. Muthitacharoen, R. Morris, T. M. Gil, et al. Ivy: A Read/Write
Peer-to-Peer File System. ACM SIGOPS Operating Systems
Review, 36(SI) pp. 31–44, 2002. On pages 53 and 61.

121

[MON00] MONARC Members. MONARC: Models of Networked Analysis
at Regional Centers for LHC Experiments. Tech. Rep. CERN-
LCB-2000-001, CERN, 2000. On page 20.

[MSC+86] J. H. Morris, M. Satyanarayanan, M. H. Conner, et al. Andrew:
A distributed personal computing environment. Communications
of the ACM, 29(3) pp. 184–201, 1986. On pages 51 and 53.

[NB+09] A. Naumann, R. Brun, et al. ROOT - A C++ framework for
petabyte data storage, statistical analysis and visualization. Com-
puter Physics Communications, 180(12) pp. 2499–2512, 2009. On
page 40.

[NSL+06] G. Neiger, A. L. Santoni, F. H. Leung, et al. Intel Virtualization
Technology: Hardware Support for Efficient Processor Virtualiza-
tion. Intel Technology Journal, 10(03), 2006. On page 32.

[NWO88] M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching in
the Sprite Network File System. ACM Transactions on Computer
Systems, 6(1) pp. 134–154, 1988. On page 75.

[Ope] Open Source Initiative. The Open Source Definition. http://
opensource.org/docs/osd. On page 38.

[Per00] D. H. Perkins. Introduction to High Energy Physics. Cambridge
University Press, 4th ed., 2000. On pages 7 and 8.

[PG74] G. J. Popek and R. P. Goldberg. Formal Requirements for Virtu-
alizable Third Generation Architectures. Communications of the
ACM, 17(7) pp. 412–421, 1974. On page 28.

[PS06] K. Panagiotou and A. Souza. On Adequate Performance Measures
for Paging. Annual ACM Symposium on Theory Of Computing,
38 pp. 487–496, 2006.

[QD02] S. Quinlan and S. Dorward. Venti: a new approach to archival
storage. In Proc. of the 1st USENIX Conf. on File and Storage
Technologies (FAST’02), pp. 89–102, 2002. On pages 60 and 66.

[RD01] A. Rowstron and P. Druschel. Storage management and caching in
PAST, a large-scale, persistent peer-to-peer storage utility. ACM
SIGOPS Operating Systems Review, 35(5) pp. 188–201, 2001.
On pages 61 and 73.

122

http://opensource.org/docs/osd
http://opensource.org/docs/osd

[RI00] J. S. Robin and C. E. Irvine. Analysis of the Intel Pentium’s
ability to support a secure virtual machine monitor. In Proc. of
the 9th Int. Conf. on USENIX Security Symposium (SSYM’00),
vol. 9, pp. 129–143, 2000. On pages 28 and 30.

[RO91] M. Rosenblum and J. K. Osterhout. The Design and Implemen-
tation of a Log-Structured File System. ACM SIGOPS Operating
Systems Review, 25(5), 1991. On page 69.

[Roy09] A. Roy. Building and testing a production quality grid software
distribution for the Open Science Grid. Journal of Physics: Con-
ference Series, 180(1), 2009. On page 52.

[RP05] N. Ravichandran and J.-F. Paris. Making Early Predictions of
File Accesses. In Proc. of the 4th Int. Information and Telecom-
munication Technologies Symposium, pp. 122–129, 2005. On
page 65.

[SAB+03] P. Saiz, L. Aphecetche, P. Buncic, et al. AliEn - ALICE environ-
ment on the GRID. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, 502(2-3) pp. 437–440, 2003. On pages 21
and 41.

[SBM05] A. Sharma, A. Bestavros, and I. Matta. dPAM: A Distributed
Prefetching Protocol for Scalable Asynchronous Multicast in P2P
Systems. IEEE INFOCOM, 2 pp. 1139–1150, 2005. On page 65.

[SBQ+10] B. Segal, P. Buncic, D. G. Quintas, et al. LHC Cloud Computing
with CernVM. PoS, ACAT(004), 2010. On page 28.

[SH96] P. Sarkar and J. Hartman. Efficient Cooperative Caching Using
Hints. ACM SIGOPS Operating Systems Review, 30(SI) pp.
35–46, 1996. On pages 4 and 75.

[SKH10] I. Sriram and A. Khajeh-Hosseini. Research Agenda in Cloud
Technologies, 2010. arXiv:1001.3259. On page 24.

[SLB+08] D. Spiga, S. Lacaprara, W. Bacchi, et al. CRAB: the CMS
distributed analysis tool development and design. Nuclear Physics
B: Proceedings Supplements, 177–178 pp. 267–268, 2008. On
page 41.

123

arXiv:1001.3259

[SN05] J. E. Smith and R. Nair. Virtual Machines. Morgan Kaufmann,
2005. On pages 2 and 25.

[Sop97] D. E. Soper. Parton Distribution Functions. Nuclear Physics B:
Proceedings Supplements, 53(1-3) pp. 69–80, 1997. On page 38.

[SSR08] T. Schütt, F. Schintke, and A. Reinefeld. Scalaris: Reliable
Transactional P2P Key/Value Store. Proc. of the 7th ACM
SIGPLAN Workshop on ERLANG (ERLANG’08), pp. 41–48,
2008. On page 78.

[TBB+08] A. Tsaregorodtsev, M. Bargiotti, N. Brook, et al. DIRAC: A
Community Grid Solution. Journal of Physics: Conference Series,
119(6), 2008. On pages 21 and 41.

[THB06] A. S. Tanenbaum, J. N. Herder, and H. Bos. File Size Distribution
on UNIX Systems—Then and Now. ACM SIGOPS Operating
Systems Review, 40(1), 2006. On pages 43, 44, and 45.

[The08a] The ALICE Collaboration. The ALICE experiment at the CERN
LHC. Journal of Instrumentation, 3, 2008. On page 11.

[The08b] The ATLAS Collaboration. The ATLAS experiment at the CERN
LHC. Journal of Instrumentation, 3, 2008. On page 11.

[The08c] The CMS Collaboration. The CMS experiment at the CERN LHC.
Journal of Instrumentation, 3, 2008. On page 11.

[The08d] The LHCb Collaboration. The LHCb experiment at the CERN
LHC. Journal of Instrumentation, 3, 2008. On page 11.

[The08e] The LHCf Collaboration. The LHCf experiment at the CERN
LHC. Journal of Instrumentation, 3, 2008. On page 11.

[The08f] The TOTEM Collaboration. The TOTEM experiment at the
CERN LHC. Journal of Instrumentation, 3, 2008. On page 11.

[The09a] The ICHFA DPHEP International Study Group. Data Preser-
vation in High-Energy Physics, 2009. arXiv:0912.0255v1. On
page 28.

[The09b] The MoEDAL Collaboration. Technical Design Report of the
MoEDAL Experiment. Tech. Rep. CERN-LHCC-2009-006, CERN,
2009. On page 11.

124

arXiv:0912.0255v1

[TKS+03] N. Tolia, M. Kozuch, M. Satyanarayanan, et al. Opportunistic
Use of Content Addressable Storage for Distributed File Systems.
In Proc. of the USENIX Annual Technical Conference, 2003. On
pages 60 and 63.

[TL05] D. Thain and M. Livny. Parrot: An Application Environment for
Data-Intensive Computing. Scalable Computing: Practice and
Experience, 6(3) p. 9, 2005. On page 69.

[TvS07] A. S. Tanenbaum and M. van Steen. Distributed Systems: Princi-
ples and Paradigms. Prentice-Hall, 2007. On page 59.

[UNR+05] R. Uhlig, G. Neiger, D. Rodgers, et al. Intel Virtualization Tech-
nology. Computer, 38(5) pp. 48–56, 2005. On page 31.

[vRDGT08] R. van Renesse, D. Dumitriu, V. Gough, et al. Efficient Reconcili-
ation and Flow Control for Anti-Entropy Protocols. In Proc. of the
2nd Workshop on Large-Scale Distributed Systems and Middleware
(LADIS’08), 2008. On page 91.

[VRMCL08] L. M. Vaquero, L. Rodero-Merino, J. Caceres, et al. A Break
in the Clouds: Towards a Cloud Definition. ACM SIGCOMM
Computer Communication Review, 39(1), 2008. On page 24.

[WCM+10] R. Wartel, T. Cass, B. Moreira, et al. Image Distribution Mecha-
nisms in Large Scale Cloud Providers. In Proc. of the 2nd IEEE
Int. Conf. on Cloud Computing Technology and Science (Cloud-
Com’10), pp. 112–117, 2010. On page 34.

[WDG+04] C. P. Wright, J. Dave, P. Gupta, et al. Versatility and Unix
Semantics in a Fan-Out Unification File System. Tech. Rep.
FSL-04-01b, Stony Brook University, 2004. On page 71.

[ZH04] Y. Zhu and Y. Hu. Towards Efficient Load Balancing in Struc-
tured P2P Systems. In Proc. 18th Int. Parallel and Distributed
Processing Symposium, 2004. On pages 4 and 78.

125

	Introduction
	Motivation
	Contribution of the Thesis
	Structure of the Thesis

	Terms and Definitions
	The Large Hadron Collider
	Particle Accelerator
	LHC Experiments

	Computing Model
	The High Energy Physics Event
	Online Computing
	Offline Computing
	Types of Input Files

	Distributed Computing Services
	Grid Computing
	The Worldwide LHC Computing Grid
	Distributed and Decentralized Computing

	Worker Node Virtualization
	Motivation
	Cloud Computing
	Virtualization
	Types of Cloud

	Prospects
	Optimized Resource Utilization
	Portable Analysis and Development Environment
	Volunteer Clouds
	Long-Term Data Preservation

	Challenges
	Performance
	Unmanaged Resources
	Image Distribution
	Image Proliferation

	Volatility
	Software Distribution

	Software Characteristics
	Building Blocks
	Generic Properties of Software Files
	Related Quantitative File System Studies
	Cumulative Size Distribution
	Compression Rate and Speed
	Access Pattern
	Borderline to Event Data and Conditions Data
	Software Distribution in WLCG
	Design Criteria

	Software Distribution
	Caching and Replication
	Content-Addressable Storage
	Block Level and File Level CAS
	Key Space
	File Catalogs

	Pre-Fetching
	CAS Transformation
	Incremental Synchronization

	Confidentiality
	Model
	Confidential CAS

	Decentralized Memory Cache
	Requirements
	Distributed Hash Tables
	Key Space
	Consistent Hashing

	Self-Organizing DHT Algorithm
	Load Balancing
	Simulation

	State Dissemination
	Slot state dissemination
	Distributed Watchdogs

	Performance Measurement and Comparison
	Design and Implementation of the CernVM-FS
	Caching
	File Catalogs
	Data Access
	Data Distribution

	Evaluation of the Decentralized Memory Cache
	Software Distribution Comparison
	Turn-Around Time
	Network Load
	Runtime Penalty
	Summary

	Conclusion

