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Zusammenfassung

In dieser Arbeit werden verschiedene stochastische Modelle im Hinblick auf ihr ex-

tremales Verhalten untersucht. Der Begriff extremales Verhalten meint hier insbesondere

die reguläre Variation. Das Konzept der regulären Variation ist weit verbreitet und kann

sowohl auf eindimensionale, als auch mehrdimensionale und funktionale Zufallsvariablen

angewandt werden.

Zunächst werden die maximalen Zuwächse von zufälligen Irrfahrten analysiert. Es

wird gezeigt, dass die Verteilungsfunktion dieser maximalen Zuwächse gegen eine Fréchet

Verteilung konvergiert, wenn die Sprünge der zugehörigen Irrfahrt regulär variierend sind.

Dieses Resultat wird sowohl für Irrfahren mit linear abhängigen Sprüngen bewiesen, als

auch für Irrfahren mit allgemein abhängigen Sprüngen, wenn zusätzliche Mischungsbedin-

gungen erfüllt sind.

Weiterhin wird auch die allgemeine Klasse der mehrdimensionalen Mixed Moving Aver-

age (MMA) Prozesse behandelt. Diese Klasse beinhaltet viele interessante Prozesse, wie

zum Beispiel CARMA Prozesse, Ornstein-Uhlenbeck (OU) Prozesse und Überlagerungen

von Ornstein-Uhlenbeck (supOU) Prozessen. Es wird gezeigt, dass die endlich dimension-

alen Verteilungen solcher MMA Prozesse regulär variierend sind, wenn die treibende Lévy

Basis regulär variierend ist und die Kernfunktion eine Integrierbarkeitsbedingung erfüllt.

Es wird außerdem bewiesen, dass ein MMA Prozess sogar regulär variierend in einem

funktionalen Sinn ist, wenn die Kernfunktion einige zusätzliche Bedingungen erfüllt.

Als Spezialfälle von MMA Prozessen werden auch die multivariaten supOU Prozesse

beleuchtet und im Hinblick auf ihr extremales Verhalten untersucht. Die Bedingungen für

die reguläre Variation, die für MMA Prozesse hergeleitet wurden, werden in diesem Spezial-

fall verifiziert und somit können geeignetere Bedingungen angegeben werden. Außer-

dem analysieren wir das extremale Verhalten des stochastischen Volatilitätsmodells vom

Typ supOU, bei dem die Volatilität durch einen positiv semidefiniten supOU Prozess

beschrieben wird.
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Abstract

In this thesis, several different stochastic models are analyzed with respect to their tail

behavior. Here, tail behavior is understood in terms of regular variation. The concept of

regular variation is well known and can be applied to univariate, multivariate and functional

settings.

The first model to be analyzed is the maximum increment of a random walk. It is

shown that the distribution of the maximum increment converges to a Fréchet distribution

if the jump times of the random walk are regularly varying. The result is proved for

random walks with linearly dependent increments and for general dependent increments if

additional mixing conditions hold.

Furthermore, we consider the general class of multivariate mixed moving average (MMA)

processes. This class includes many interesting processes such as CARMA processes,

Ornstein-Uhlenbeck (OU) processes and superpositions of Ornstein-Uhlenbeck (supOU)

processes. It is shown that the finite-dimensional distributions of an MMA processes are

regularly varying if the driving Lévy basis is regularly varying and the kernel function sat-

isfies an integrability condition. Moreover if the kernel function satisfies some additional

conditions, it can be proved that the MMA process is also regularly varying in a functional

sense.

As a special case of MMA processes, multivariate supOU processes are also analyzed

in detail with respect to their tail behavior. The regular variation conditions derived for

MMA processes are verified and more suitable conditions are given for supOU processes.

Furthermore, the tail behavior of the supOU type stochastic volatility model, where the

volatility is modeled by a positive semi-definite supOU process, is also considered.
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2.3.2 Regular Variation of Lévy Processes . . . . . . . . . . . . . . . . . . 38

3 The Maximum Increment of a Random Walk 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Preliminaries and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Regular Variation of Random Elements and Stationary Sequences . 44

3.2.2 Linear Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Random Walks with Independent Jump Sizes . . . . . . . . . . . . . . . . 48

3.4 Random Walks with Linearly Dependent Jump Sizes . . . . . . . . . . . . 51

3.4.1 The Jump Size is a Finite Moving Average . . . . . . . . . . . . . . 51

3.4.2 The Jump Sizes Constitute a Linear Process . . . . . . . . . . . . . 53

3.4.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Random Walks with General Dependent Jump Sizes . . . . . . . . . . . . . 60

3.5.1 General Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.2 The Increment Process is a Process with Multiplicative Noise . . . . 63

XIII



Contents

4 Finite Dimensional Regular Variation of Mixed Moving Average Processes 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2 Multivariate Regular Variation . . . . . . . . . . . . . . . . . . . . 72
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Chapter 1

Introduction

In recent decades, there has been an increasing demand for heavy tailed models, espe-

cially in applications such as insurance, finance, meteorology and others. This led to the

development of extreme value theory and related fields. However, the notion of an “ex-

treme value” is not very precise. Intuitively, an extreme value of a time series is a value

which is relatively high compared to the others. Then, a heavy tailed random time series

is one where extreme values occur with a relatively high probability. Before making this

idea mathematically precise, let us consider several examples showing the importance of

extreme value models.

In meteorology, statistical methods are used to measure and model weather impacts

such as rainfall, air pressure, wind, temperature etc. The results are used to get a better

understanding of the interrelations between the different factors affecting the weather and,

as a consequence, to be able to make better forecasts. Although this is already a very

important field of research itself, the real threat is posed by extreme weather events.

Events of that kind can be, for example, huge storms, heavy rainfalls or long dry spells

and they cause great damages to the affected area and its inhabitants. Thus, a thorough

understanding of such extreme events is indispensable and can lead to prevention programs,

early warning systems and evacuation plans that help minimizing the damage.

Closely related are insurance companies where customers are insured against weather

damages and other events. In particular, reinsurance companies work with so-called excess-

of-loss contracts, where they agree to cover all losses of the primary insurer excessing a

certain threshold. Hence, the reinsurance companies are mostly interested in the extreme

values of the loss distribution and not in characteristics like means or standard deviations

describing the center of the distribution. The need of appropriate models is apparent, see

also Embrechts et al. (1997).

As a final example we have a look at data networks, where an increasing demand for
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Figure 1.0.1: Simulation of one path of a Brownian motion Bt

heavy tailed models has occurred in recent years. In such networks, data packets of variable

size arrive at the nodes of the network at different times. The transmission duration of

a data packet at a certain node depends mainly on the packet size as well as on the

transmission rate of the node. If too many packets of a certain size arrive in a small

time interval, it can cause the network to collapse. Thus, in order to avoid collapses, the

capacity of a network has to be adjusted according to the expected maximal data traffic.

Since empirical measurements show that characteristics such as file sizes, transmission

durations etc. are often heavy tailed (cf. Maulik et al. (2002) and Resnick and Rootzén

(2000)), the application of appropriate extreme value models is well motivated. For details

see also Resnick (2007), Section 8.

Next we show the importance of extreme value modeling in the example of several well-

known time series models. Figure 1.0.1 shows a Brownian motion (Bt). A Brownian

motion is a stochastic process where the increments Bt − Bs are independent and follow

a normal (Gaussian) distribution. Since all moments of the normal distribution are finite,

the movements of the Brownian motion can be considered as light tailed, i.e. no extreme

movements occur with a high probability. The Brownian motion and Gaussian distributions

are well understood and data modeling with related distributions is relatively easy. In

contrast, the increments of an α-stable Lévy motion (Lt) are heavy tailed for values α < 2.

Figure 1.0.2 shows such a Lévy motion which is α-stable with α = 1.5. Comparing it

to the Brownian motion, we see that the Lévy motion has some additional and relatively

2
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Figure 1.0.2: Simulation of one path of an α-stable Lévy motion Lt with

α = 1.5

large jumps. Although these jumps are relatively rare, they cannot be neglected in the

study of these processes. This gets even more obvious for α = 1, which is shown in Figure

1.0.3. In that case, the movement of the process Lt is more or less only determined by

one extremely large jump at approximately t = 52. This means that extreme values can

massively influence a time series, even if they are rare events. Consequently, there is a

need for heavy tailed models in places where Gaussian and other light tailed distributions

seem to be an inappropriate choice. On the other hand, the major problem of extreme

value statistics is also obvious: in general, as extremes are rare events, there are only very

few data points that can be used for the statistical analysis.

The most basic extremal characteristic of a distribution is the maximum. For a sequence

of random variables (Xi), i ∈ N, the sample maximum is given by

Mn = max {X1, . . . , Xn} , n ∈ N.

The properties of Mn have been thoroughly studied and are well understood. In partic-

ular, if (Xi) is a sequence of independent and identically distributed random variables, it

follows from the classical result of the Fisher-Tippett theorem (cf. Embrechts et al. (1997),

Theorem 3.2.3) that the limit distribution of the properly normalized and centered sample

maxima Mn can only be one of the following three distributions: a Fréchet distribution

Φα, a Weibull distribution Ψα or a Gumbel distribution Λ. These are considered as the

3



Chapter 1 Introduction

0

50

100

150

t = 0 20 40 60 80 100

Lt

Figure 1.0.3: Simulation of one path of an α-stable Lévy motion Lt with

α = 1

standard extreme value distributions. In the study of the domains of attraction, one is

interested in the following question: which conditions on the distribution function F of

X1 are necessary and sufficient for the maxima Mn to converge to a Fréchet, Weibull or

Gumbel distribution? The answer for the Fréchet and Gumbel distribution can be given

in terms of regularly varying functions, i.e. functions f : R+ → R+ satisfying

lim
t→∞

f(tx)

f(t)
= x−α

for some index α > 0. Then F belongs to the maximum domain of attraction of the Fréchet

distribution Φα if and only if the function P (X > x) = 1− F (x) is regularly varying with

index α (c.f. Embrechts et al. (1997), Theorem 3.3.7). Furthermore, F belongs to the

maximum domain of attraction of the Weibull distribution Ψα if and only if the function

P (X > xF − 1/x) = 1 − F (xF − 1/x) is regularly varying with index α, where xF is the

finite right endpoint (c.f. Embrechts et al. (1997), Theorem 3.3.12). This is the beginning

of the long success story of regular variation in extreme value theory.

One of the big advantages of regular variation is the fact that it can be implemented

in basically any proper space. It can be defined for real-valued random variables, random

vectors, stochastic processes and even for random elements of a general Banach space (cf.

Hult and Lindskog (2006b)). Following the above discussion on maxima, a univariate

random variable is regularly varying if the tail of the distribution function is a regularly

4



varying function. For more general spaces, regular variation is set up as convergence to

limit measures. A random variable X with values in E is regularly varying if

nP
(
a−1
n X ∈ ·

) pro−−→ µ(·),

where the limit measure µ is a nonzero Radon measure with no mass at infinity and (an)

is an increasing sequence of positive real numbers. Here,
pro−−→ is understood as convergence

in a proper topology depending on the concrete state space E, e.g. vague convergence in

finite-dimensional spaces. It turns out that the limit measure µ is homogeneous, i.e. in

every direction, the distribution of extreme values behaves like a regularly varying function.

On the other hand, µ contains the relevant information about the structure (or directions)

of the extremes in space. Therefore, the theory of regular variation is an appropriate tool

for the description of extreme values. The concept is well known and applied in many

areas of probability theory and statistics. For further details we refer to Resnick (2007)

and Hult and Lindskog (2006b).

The Maximum Increment of a Random Walk

In this thesis, the concept of regular variation is applied to several different time series

models. One of the most basic models in discrete time is the random walk. For a sequence

of increments (Xn), the corresponding random walk (Sn) is given by

S0 = 0 and Sn = X1 + · · ·+Xn for n ≥ 1.

Hence, the movement of the random walk at time n is described by the random variable

Xn. A survey on the general limit theory and (functional) central limit theorems of random

walks can be found in Embrechts et al. (1997), Section 2. Random walks play an important

role in the modeling of insurance claims, where the ruin probabilities

P
(

sup
n∈N

(Sn − c n) > u
)

are considered for c > 0 and u → ∞. See Mikosch and Samorodnitsky (2000a), Mikosch

and Konstantinides (2005) and Mikosch and Samorodnitsky (2000b) for the study of these

probabilities in several different settings. In this thesis we focus on one extremal charac-

teristic of the random walk: the maximum increment given by

M̃n = max
1≤l≤n

(f(l))−1 max
0≤k≤n−l

|Sk+l − Sk|,

where n ∈ N and f is a proper normalizing function. Quantities of that kind appear as test

statistics for the detection of epidemic change points in a time series. See also Csörgö and

5
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Horváth (1997) for a general survey on change point analysis and Račkauskas and Suquet

(2004) and Račkauskas and Suquet (2006) for the related limit theory.

Mikosch and Račkauskas (2010) have shown that M̃n converges to a Fréchet limit distri-

bution Φα if the jumps (Xi) of the random walk are independent, identically distributed

and regularly varying with index α. However, independence is not always an appropriate

assumption in real-life applications. Thus, it is always helpful to have similar results for

the case of dependent increments. In this thesis we prove limit theorems for the maximum

increment of a random walk in several cases of stationary, but dependent jumps which are

regularly varying.

First, we study the case of linear dependent jumps, where the increment sequence (Xi)

constitutes a finite moving average, i.e.

Xt = X
(q)
t =

q∑
i=1

ψiZt−i, (1.0.1)

where (ψi)i∈N is a real-valued sequence of coefficients and (Zi)i∈Z is an iid noise sequence.

We assume that Z1 is again regularly varying with index α and consequently the same

holds true for (Xi). In that case, we can show that M̃n converges to a transformed Fréchet

distribution Φ
mαq
α (x). Here, mq is a characteristic based on the moving average coefficients

(ψi), i.e. the linear structure appears in the limit distribution.

The same result holds for linear processes or moving averages of infinite order. A linear

process (Xt) is given by (1.0.1) with q = ∞. Assuming almost sure convergence of the

linear process, the limit distribution of M̃n is shown to be Φ
mα∞
α (x), where m∞ is again a

constant depending on the linear structure of the process described by the coefficients (ψi).

Furthermore, convergence to a (transformed) Fréchet distribution is also proved for a

general dependent setting. In this setting, we use the theory of Davis and Hsing (1995),

who provided results for the point process convergence of dependent regularly varying

sequences that satisfy certain mixing conditions. The general result is then also applied

to two examples of heavy tailed time series with multiplicative noise: GARCH processes

and stochastic volatility models. In both cases, the conditions of the general setting are

verified and thus convergence to a (transformed) Fréchet limit distribution holds.

Multivariate Mixed Moving Average Processes

Another important class of processes being studied in this thesis are multivariate mixed

moving average (MMA) processes. They have been first introduced by Surgailis et al.

6



(1993) and can be given in the integral representation

Xt =

∫
Md

∫
R

f(A, t− s)Λ(dA, ds),

where f : Md × R 7→ Mn,d is a general measurable kernel function and Λ is an Rd-valued

Lévy basis. Here, Md denotes the set of all d× d matrices and Mn,d is the set of all n× d
matrices. Thus, (Xt) is Rn-valued. The class of MMA processes is a rich class including

many continuous-time processes used in various areas of application. Examples include

Ornstein-Uhlenbeck (OU) processes, superpositions of Ornstein-Uhlenbeck (supOU) pro-

cesses (cf. Barndorff-Nielsen (2001)), CARMA processes, fractionally integrated CARMA

processes (cf. Brockwell (2004) and Marquardt (2007)) and increments of fractional Lévy

processes (cf. Marquardt (2006) and Bender et al. (2011)).

The tail behavior of real-valued MMA processes has already been studied by Fasen

(2005) and Jacobsen et al. (2009). We extend their results to the multivariate setting.

Given the condition that the driving Lévy basis (or driving Lévy process or driving Lévy

measure resp.) is regularly varying with some index α, we show that the finite-dimensional

distributions of the MMA process are regularly varying with the same index α. Sufficient

conditions therefore are, besides existence, an integrability condition f ∈ Lα on the kernel

function and a non-degeneracy condition. We also derive necessary conditions on the kernel

function f , which are very close to the sufficient ones. In fact, in the univariate case both

conditions coincide and thus we get necessary and sufficient conditions.

Furthermore, we apply the definition of functional regular variation to MMA processes.

Hult and Lindskog (2005) have introduced this notion for processes with càdlàg sample

paths and showed that regular variation of the finite-dimensional distributions implies

functional regular variation if several relative compactness criteria are satisfied. We verify

these conditions for MMA processes under some additional integrability and continuity

assumptions on the kernel function f . This shows that MMA processes are also regularly

varying in the space of càdlàg functions.

As an example we also study the tail behavior of multivariate supOU processes. The

introduction of these processes is motivated by the problem that the well-known OU pro-

cesses do not account for long memory effects. To overcome this problem, Barndorff-Nielsen

(2001) defined univariate supOU processes as the superposition of infinitely many OU pro-

cesses. This concept has been extended to the multivariate setup by Barndorff-Nielsen and

7
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Stelzer (2011a). Multivariate supOU processes can be given in their integral representation

Xt =

∫
M−d

t∫
−∞

eA(t−s)Λ(dA, ds),

where Λ is again an Rd-valued Lévy basis and M−
d is the set of all d × d matrices with

eigenvalues having strictly negative real part. It is clear from this representation that

supOU processes are MMA processes with kernel function f(A, s) = eAs 1[0,∞)(s). Hence,

the regular variation results derived for MMA processes can be applied.

In particular, we verify the MMA conditions for both, finite-dimensional and functional

regular variation, in the special case of supOU processes. This leads to some more acces-

sible sufficient conditions on the supOU kernel function which needs to decay in a proper

way. Additionally, we also study the sufficient conditions for regular variation of supOU

processes.

One of the main areas of application of OU and supOU processes are stochastic volatility

models. In these models, the variance (or volatility) process is modeled by an OU or supOU

process. Then, the logarithmic stock price process (Xt) is given by

dXt = atdt+ Σ
1/2
t dWt + Ψ(dLt)

X0 = 0,

where a is predictable process, W is the standard Brownian motion, L is the Lévy process

associated with Λ and Ψ is a linear operator. Of course, one can also consider more basic

versions of the model. Models of that type have been introduced by Barndorff-Nielsen and

Shephard (2001) in the univariate OU case and have been extended to the multivariate

OU setting by Pigorsch and Stelzer (2009).

In this thesis, we study in detail the tail behavior of the multivariate supOU type

stochastic volatility model introduced by Barndorff-Nielsen and Stelzer (2011b), where

the volatility process (Σt) is modeled by a positive semi-definite supOU process. Based on

the preceding results on multivariate MMA and supOU processes, we show that positive-

semidefinite supOU processes are regularly varying with index α under similar conditions.

As a consequence, it can then be proved that the volatility part Σ
1/2
t dWt of the logarithmic

stock prices process is regularly varying with index 2α. As regular variation of the drift

term atdt and the leverage term Ψ(dLt) is in general easy to obtain for the common choices

of these terms, this result yields a good intuition for the understanding of the tail behavior

of the stock price process (Xt).

8



General Outline

The thesis is subdivided into four main chapters.

In Chapter 2 we introduce the relevant theory that is used repeatedly in the later parts

of the thesis. Section 2.1 is a survey on regular variation of functions, real-valued random

variables, multivariate random vectors and stochastic processes. In Section 2.2 we imple-

ment point processes as well as the related weak convergence theory and discuss their use

in extreme value theory. Then, in Section 2.3, we review the theory of Lévy processes and

infinitely divisible distributions and analyze their tail behavior.

In Chapter 3 which is based on the paper Mikosch and Moser (2012) we examine the

limit behavior of the maximum increment of a random walk with regularly varying jumps.

After the introduction of some important preliminaries in Section 3.2, we distinguish three

different settings of the dependence structure of the random walk increments: the indepen-

dent setting is reviewed in Section 3.3, the linear dependent setting is analyzed in Section

3.4 and the general dependent setting is dealt with in Section 3.5.

In Chapter 4 which is based on the paper Moser and Stelzer (2011) we study finite-

dimensional regular variation of multivariate MMA processes. The essential preliminaries

and the related integration theory for MMA processes are introduced in Section 4.2. In

Section 4.3 we analyze necessary as well as sufficient conditions for regular variation of

MMA processes. The conditions are then verified in the special case of multivariate supOU

processes in Section 4.4. Finally, in Section 4.5, we apply the results to the multivariate

supOU type stochastic volatility model.

In Chapter 5 we prove functional regular variation of multivariate MMA processes. After

the statement of some useful preliminaries in Section 5.2, we first analyze the sample path

behavior of MMA processes in Section 5.3. In Section 5.4 we introduce the notion of

regular variation for processes with càdlàg sample paths and show that MMA processes

are regularly varying in that sense. The results are then applied to supOU processes in

Section 5.5. Finally, we discuss the benefit of functional regular variation of MMA processes

in view of point process convergence and their extremal behavior in Section 5.6.

General Notation

Given the real numbers R we use the notation R+ for the positive real numbers and R−

for the negative real numbers, both without 0. N are the natural numbers, Z the integers

and Q the rational numbers. The respective sets including 0 are denoted by R+
0 , R−0 and

N0. The integer part bac rounds a real number a ∈ R to the next lowest z ∈ Z. Sd is the

9



Chapter 1 Introduction

unit sphere on Rd. By Br(x) := {y ∈ Rd : ‖y− x‖ ≤ r} we denote the closed ball of radius

r centered at x. The σ-algebra of Borel sets on a space E is given by B(E) and Bb(E) is

the respective restriction to bounded Borel sets. For a set A ∈ B(E), ∂A is the boundary

of A and A is its closure. 1 is the standard indicator function.

D is the space of càdlàg (right-continuous with left limits) functions x : [0, 1]→ Rd and

SD = {x ∈ D : supt∈[0,1] ‖xt‖ = 1} is the unit sphere in D.

For matrices, Mn,d is the set of all n× d matrices and Md the set of all d× d matrices.

M−
d is the set of all d × d matrices with eigenvalues having strictly negative real part. Id

is the d× d identity matrix, Sd denotes the symmetric d× d matrices and S+
d the positive

semidefinite d × d matrices. We write AT for the transposed of a matrix A and ‖A‖ for

an arbitrary matrix norm. Since all norms on finite-dimensional spaces are equivalent, the

type of norm is not important for the results, but if we make no further specifications, we

use the operator norm induced by the Euclidean norm.

If random variables, vectors, processes, measures etc. are considered, they are given as

measurable mappings with respect to a complete probability space (Ω,F , P ). Furthermore,

λ denotes the univariate Lebesgue measure and EX is the expectation of the random

variable X.

10



Chapter 2

Regular Variation, Point Processes and

Lévy Processes

This thesis touches a wide range of topics in probability theory and statistics. Just to

name a few, throughout this thesis we make use of extreme value theory, regular variation,

vague topology, weak topology, ŵ-topology, point processes, random measures, Poisson

processes, Lévy processes, Lévy bases, random walks, linear processes, stochastic volatility

models, GARCH-, MMA-, supOU- and CARMA processes and many more.

Although the general theory of most of these topics is well known and can be found in

the standard literature, it seems appropriate to introduce the relevant notation and main

results in view of a clear representation of this thesis. Wherever possible, we incorporate

such notations, definitions and results into the sections of this thesis where they are used.

However, there are three subjects which appear repeatedly throughout this thesis: regular

variation, point processes and Lévy processes. Hence, it might be beneficial for the reader

to have a more general introduction to these topics.

The three topics correspond to the three sections of this chapter. In each, we first

introduce the necessary notation and give the relevant definitions. Moreover, we also state

the main results that help in the understanding of the theory and also those that we use

in the later parts of this thesis. Most of them are well known and thus we only refer to

the relevant literature for proofs. Some results are also proved directly, since the proofs

are not to be found in the literature.

The chapter is organized as follows. In Section 2.1 we introduce the concept of regular

variation starting with regularly varying functions. Then, step by step, we extend it to real-

valued random variables, then to multivariate random variables and, finally, to stochastic

processes with càdlàg sample paths. In Section 2.2 we give a survey on the theory of

(weak convergence of) point processes and its relevance to extreme value theory. Finally,

11



Chapter 2 Regular Variation, Point Processes and Lévy Processes

the definition, the main properties and the tail behavior of Lévy processes and infinitely

divisible distributions are given and analyzed in Section 2.3.

2.1 Regular Variation

The relevance of the concept of regular variation for the characterization of the tail behavior

of random variables, vectors, processes etc. has already been discussed in the introduction

in Chapter 1. Regular variation can be defined on many different spaces, e.g. for random

variables with values in R, Rd or in a functional space. Even regular variation of random

variables with values in a general Banach space can be defined.

The origin of regular variation can be found in the theory of regularly varying real-valued

functions, which is introduced in Section 2.1.1. This method is then extended to random

variables. In Section 2.1.2 we analyze regular variation of real-valued random variables,

where regular variation of the random variable is understood as regular variation of the tail

of the distribution function. In Section 2.1.3 multivariate regular variation is formulated in

terms of vague convergence of measures. Furthermore, we state some alternative definitions

and several important results characterizing multivariate regular variation. In Section 2.1.4

we review the work of Hult and Lindskog (2005), who extended regular variation to the

space of stochastic processes with càdlàg sample paths.

2.1.1 Regularly Varying Functions

In the field of extreme value theory, the use of regularly varying functions if essential in

many areas. Regularly varying functions are functions acting like a power law in the limit.

The theory has its origin in the work of Karamata (1930) and it has been brought to

probability theory by Feller (1966). For a detailed survey on the topic, see also Bingham

et al. (1987).

Definition 2.1.1 (Regular Variation of Functions). Let f : R+ → R+ be a Lebesgue

measurable function. Then f is regularly varying with index α ∈ R if

lim
t→∞

f(tx)

f(t)
= x−α

for every x > 0. We write f ∈ RVα and α is called the index of regular variation or tail

index . A Lebesgue measurable function l : R+ → R+ is slowly varying if l ∈ RV0.

The above definition describes regular (and slow) variation at ∞. Similarly, regular

variation can also be defined at any point a ∈ R. If nothing else is specified, we always

12



2.1 Regular Variation

consider regular variation at ∞ throughout this thesis. We start with a few easy results

that characterize regular varying functions.

Lemma 2.1.2. Let f : R+ → R+ be a Lebesgue measurable function.

(i) If there exists a function h such that for all x > 0,

lim
t→∞

f(tx)

f(t)
= h(x),

then h(x) = x−α for some index α ∈ R and f ∈ RVα.

(ii) f ∈ RVα if and only if there exists l ∈ RV0 such that

f(x) = x−αl(x).

(iii) If f ∈ RVα, then

lim
x→∞

log(f(x))

log(x)
= α

and consequently

lim
x→∞

f(x) =

{
0 if α > 0,

∞ if α < 0.

Proof. For (i) see Proposition 2.3(i) in Resnick (2007). (ii) is a direct consequence of

l(x) := f(x)/x−α ∈ RV0 for every f ∈ RVα. The proof of (iii) is based on Karamata’s

representation and can be found in Resnick (2007), Proposition 2.6(i).

2

Example 2.1.3. Examples of slowly varying functions are constant functions, logarithms

and iterated logarithms and all functions asymptotic to any of these. By Lemma 2.1.2(ii),

functions of the class RVα can be given as a product of the power law x−α and a slowly

varying function, e.g.

f(x) = x−α,

f(x) = c x−α, c ∈ R\{0},
f(x) = x−α ln(1 + x),

f(x) = x−α ln(ln(e+ x)) and

f(x) = (x+ ln(1 + x))−α.

One of the most essential results for regular variation is Karamata’s theorem. It links

regular variation of functions to regular variation of integrals.

13



Chapter 2 Regular Variation, Point Processes and Lévy Processes

Theorem 2.1.4 (Karamata’s Theorem). Let f be locally integrable. Then the follow-

ing statements hold:

(i) Let f ∈ RVα and α ≤ 1. Then

x∫
0

f(t) dt ∈ RVα−1 and lim
x→∞

xf(x)
x∫
0

f(t) dt

= 1− α.

(ii) Let f ∈ RVα and α > 1. Then

∞∫
x

f(t) dt ∈ RVα−1 and lim
x→∞

xf(x)
∞∫
x

f(t) dt

= α− 1.

(iii) f ∈ RV1−α for α > 0 if

lim
x→∞

xf(x)
x∫
0

f(t) dt

= α.

(iv) f ∈ RV1+α for α > 0 if

∞∫
x

f(t) dt <∞ and lim
x→∞

xf(x)
∞∫
x

f(t) dt

= α.

Proof. See for example Resnick (2007), Theorem 2.1.

2

Karamata’s theorem and the related Karamata representation are very powerful tools for

the analysis of regularly varying functions. Many results can be derived from these two. As

a final example, we present the Potter bounds giving concrete bounds for regularly varying

functions.

Lemma 2.1.5 (Potter Bounds). Let f ∈ RVα for α ∈ R and let ε > 0. Then there

exists t0 such that for x ≥ 1 and t ≥ t0,

(1− ε)x−α−ε < f(tx)

f(t)
< (1 + ε)x−α+ε.

Proof. See Resnick (2007), Proposition 2.6 (ii).

2
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2.1 Regular Variation

2.1.2 Real-Valued Random Variables

The notion of regular variation for real-valued random variables is closely linked to regular

variation of functions. It is motivated by the classical problem of extreme value theory,

the distributional convergence of maxima (cf. Chapter 3 in Embrechts et al. (1997)). For a

short introduction to the problem, assume that (Xi)i∈N is an iid sequence of non-degenerate

random variables with common distribution function F and denote by

Mn := max{X1, . . . , Xn}

the sample maxima of (Xi). Now one is interested in the question, whether there are

sequences of norming constants cn > 0 and dn ∈ R and a (non-degenerate) limiting distri-

bution function H such that, as n→∞,

c−1
n (Mn − dn)

d−→ H. (2.1.1)

If the limit exists, then by the classical result, the Fisher-Tippett Theorem, H can only be

of one of the following three types of distribution functions:

Fréchet distribution: Φα(x) =

{
0 if x ≤ 0,

exp(−x−α) if x > 0
and α > 0.

Weibull distribution: Ψα(x) =

{
exp(−(−x)−α) if x ≤ 0,

1 if x > 0
and α > 0.

Gumbel distribution: Λ(x) = exp(−e−x) for all x ∈ R.

Therefore, the Fréchet-, Weibull- and Gumbel distribution are referred to as the standard

extreme value distributions . In particular, we say that X (or its distribution function F )

belongs to the maximum domain of attraction of the standard extreme value distribution

H, written X ∈ MDA(H) (or F ∈ MDA(H)), if (2.1.1) is satisfied for H and constants

cn > 0 and dn ∈ R. In order to describe the maximum domains of attraction of the three

standard extreme value distributions, we need the concept of regularly varying functions

introduced in Section 2.1.1. By F (x) := 1 − F (x) = P (X > x) we denote the tail of the

distribution F and by

xF := sup{x ∈ R : F (x) < 1}

we denote the right endpoint of F . We start with the result for the Fréchet distribution.
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Chapter 2 Regular Variation, Point Processes and Lévy Processes

Theorem 2.1.6 (Embrechts et al. (1997), Theorem 3.3.7). Let α > 0. Then F ∈
MDA(Φα) if and only if F (x) ∈ RVα.

Examples of the class MDA(Φα) are Pareto distributions, Cauchy distributions, Burr

distributions and α-stable distributions with α < 2. A similar result can be obtained for

the Weibull distribution.

Theorem 2.1.7 (Embrechts et al. (1997), Theorem 3.3.12). Let α > 0. Then F ∈
MDA(Ψα) if and only if xF <∞ and F (xF − 1/x) ∈ RVα.

Examples of the class MDA(Ψα) are uniform and Beta distributions. Although the

conditions for F ∈ MDA(Λ) (including e.g. normal and lognormal distributions) cannot

be described by regular variation (instead they can be derived using von Mises functions,

see Section 3.3.3 in Embrechts et al. (1997)), we now see the importance of the concept of

regular variation for real-valued random variables.

Definition 2.1.8 (Regular Variation of Random Variables in R). A real-valued

random variable X with distribution function F is regularly varying with index α > 0 if

there exists p, q ∈ [0, 1] with p+ q = 1 such that

lim
t→∞

P (X > tx)

P (|X| > t)
= p x−α and lim

t→∞

P (X < −tx)

P (|X| > t)
= q x−α, x > 0. (2.1.2)

Condition (2.1.2) is referred to as the tail balance condition and α is the tail index . Note

that if X is regularly varying with index α > 0, then

P (|X| > x) ∈ RVα.

The tail coefficients p and q are the univariate equivalent to the so-called spectral measure

that we use in the following section in order to introduce the more involved concept of

regular variation in Rd.

2.1.3 Multivariate Random Variables

The extension of regular variation to the multivariate setting is not straightforward, since

it is not clear, what an extreme value is in a multivariate space. However, Definition

2.1.8 already gives us a good idea if we interpret the coefficients p and q as a probability

measure on the univariate unit sphere S1 = {−1, 1}. Thus univariate regular variation can

be given in terms of vague convergence of measures and this concept can be extended to

the multivariate case.
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2.1 Regular Variation

A measure µ on B(Rd) is called a Radon or locally finite measure if µ(B) < ∞ for all

bounded Borel sets B ∈ Bb(Rd). A sequence of Radon measures (µn) converges vaguely to

the Radon measure µ if ∫
Rd

f(x)µn(dx)→
∫
Rd

f(x)µ(dx)

for all continuous functions f with bounded support. We write µn
v−→ µ. Convergence in

the vague topology is closely linked to weak convergence of measures, which implies vague

convergence. On the other hand, if the measures (µn) and µ have uniformly bounded total

mass, then the notions of vague and weak convergence coincide (cf. Kallenberg (1983),

15.7.6).

Let K denote the compact subsets of Rd, G the open subsets of Rd and let

Bµ :=
{
B ∈ Bb(Rd) : µ(∂B) = 0

}
.

Then we can state the following characterization of vague convergence of measures.

Theorem 2.1.9 (Resnick (2007), Theorem 3.2). Let µ and (µn) be positive Radon

measures on B(Rd). Then the following statements are equivalent:

(i) µn
v−→ µ.

(ii) µn(B)→ µ(B) for all B ∈ Bµ that are relatively compact.

(iii) For all K ∈ K we have

lim sup
n→∞

µn(K) ≤ µ(K)

and for all G ∈ G that are relatively compact we have

lim inf
n→∞

µn(G) ≥ µ(G).

In terms of regular variation and extreme value theory, one is usually interested in the

“big” values of a random variable. This leads to a focus on sets of the form

Vr := {x ∈ Rd : ‖x‖ > r}, r > 0,

which are bounded away from the origin. However, the sets Vr are in general not relatively

compact in the vague topology if we define it on Rd. To overcome this problem, we

consider regular variation on the space Rd\{0} = Rd ∪ {−∞,∞}\{0}, which assures that

the sets B ⊆ Vr can be referred to as the relatively compact sets in the vague topology.
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Chapter 2 Regular Variation, Point Processes and Lévy Processes

This procedure of excluding the origin from the original space is called the one-point

uncompactification (c.f. Resnick (2007), Section 6.1.3).

We mention that vague convergence can similarly be defined on any other complete, sep-

arable metric space E which is locally compact. For further reading on vague convergence

we refer to Kallenberg (1983). Very good introductions to vague convergence in view of

regular variation can also be found in Resnick (1987), Resnick (2007), Lindskog (2004) and

Basrak (2000).

Now we can state multivariate regular variation in terms of vague convergence of mea-

sures, where several different but equivalent definitions exist. We start with one that is

widely used and can be easily extended to other spaces than Rd.

Definition 2.1.10 (Multivariate Regular Variation). A random vector X ∈ Rd is

regularly varying if there exists a sequence (an)n∈N, 0 < an ↗ ∞, and a nonzero Radon

measure µ on B(Rd\{0}) such that µ(Rd\Rd) = 0 and, as n→∞,

nP (a−1
n X ∈ ·) v−→ µ(·)

on B(Rd\{0}). Similarly, we call a Radon measure ν regularly varying if (an) and µ exist

as above such that, as n→∞,

n ν(a−1
n ·)

v−→ µ(·).

From Theorem 1.14 in Lindskog (2004) we know that the limit measure µ is homogeneous,

i.e. there exists α > 0 such that

µ(uB) = u−αµ(B)

for every u > 0 and B ∈ B(Rd\{0}). Thus we say that X (or ν resp.) is regularly varying

with (tail) index α and we write X ∈ RV (α, (an), µ) (or ν ∈ RV (α, (an), µ) resp.). The

sequence (an) can always be chosen as

an = inf{x ≥ 0 : P (‖X‖ ≤ x) ≥ 1− n−1} , n ≥ 1 ,

and is regularly varying with index 1/α, i.e. for every x > 0 the convergence

lim
n→∞

abnxc
an

= x1/α

holds (cf. Lindskog (2004), Remark 1.13). In analogy to the univariate case we also have

P (‖X‖ ≥ x) ∈ RVα.
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2.1 Regular Variation

If d = 1 and there exists p ∈ [0, 1] such that

lim
x→∞

P (X > x)

P (|X| > x)
= p,

then regular variation as given in Definition 2.1.10 coincides with univariate regular vari-

ation of Definition 2.1.8. Next we give a very illustrative characterization of multivariate

regular variation.

Theorem 2.1.11 (Lindskog (2004), Theorem 1.15). The random vector X ∈ Rd is

regularly varying with index α > 0 if and only if there exists a probability measure σ on

B(Sd) such that, as t→∞,

P (‖X‖ > tu,X/‖X‖ ∈ ·)
P (‖X‖ > t)

v−→ u−α σ(·)

for every u > 0.

The probability measure σ in the previous theorem is called the spectral measure (of reg-

ular variation) of X. This characterization shows nicely, how multivariate regular variation

is established. If we decompose the regularly varying vector X into its polar coordinates

(‖X‖, X/‖X‖), we see that the radial part and the spherical part behave asymptotically

independent. The radial part ‖X‖ can be described as a regularly varying random vari-

able on the positive real numbers, whereas the spherical part X/‖X‖ is described by the

probability measure σ.

The following theorem states two more characterizations of multivariate regular variation

which can often be found in the literature.

Theorem 2.1.12. Let X be an Rd-valued random variable. Then the following statements

are equivalent.

(i) X ∈ RV (α, (an), µ).

(ii) There exists a Radon measure µ on Rd\{0} with µ(Rd\Rd) = 0 and a relatively

compact set E ⊂ Rd\{0} such that tE ∈ Bµ, t ∈ T , for a dense set T ⊂ (0,∞) and,

as t→∞,

µt(·) :=
P (X ∈ t·)
P (X ∈ tE)

v−→ µ(·).

(iii) There exists an α > 0, a slowly varying function l and a nonzero Radon measure µ

defined on B(Rd\{0}) with µ(Rd\Rd) = 0 such that, as u→∞,

uαL(u)P (u−1X ∈ ·) v−→ µ(·)

on B(Rd\{0}).
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Chapter 2 Regular Variation, Point Processes and Lévy Processes

Proof. (i) ⇔ (ii)

Theorem 2.1.11 in combination with Basrak (2000), Theorem 2.1.8.

(ii) ⇒ (iii)

Let X be regularly varying in the sense of (ii). According to Basrak (2000), p. 27, if the

condition in (ii) holds for one E ∈ Bµ, it also holds for all E ∈ Bµ. Choose

E := {x : ‖x‖ ≥ 1}.

Then by definition, there exists some Radon measure µ with µ(Rd\Rd) = 0 such that, as

t→∞,
P (X ∈ t·)
P (X ∈ tE)

v−→ µ(·).

From Basrak (2000), p. 27, we know that tE ∈ Bµ for all t > 0. Furthermore, we define

f(x) := P (‖X‖ ≥ x).

We have

f(tx)

f(x)
=

P (‖X‖ ≥ tx)

P (‖X‖ ≥ xE)

P (‖X‖ ≥ xE)

P (‖X‖ ≥ x)

x→∞−−−→ µ(t {‖X‖ ≥ 1})
µ({‖X‖ ≥ 1})

= t−α,

since µ(tB) = t−αµ(B). It follows that f(x) is regularly varying as a function of x and

thus

P (X ∈ tE) = P (‖X‖ ≥ t) = t−αl(t)

for some slowly varying function l. It is easy to show that

l̃(t) :=
1

l(t)

is again slowly varying. Putting things together, we obtain

uα l̃(u)P (u−1X ∈ ·) =
P (u−1X ∈ ·)
u−αl(u)

=
P (X ∈ u·)
P (X ∈ uE)

v−→ µ(·).

(iii) ⇒ (ii)

Let α be positive, l be a slowly varying function and µ a nonzero Radon measure defined

on B(Rd\{0}) with µ(Rd\Rd) = 0 and, as u→∞,

uαl(u)P (u−1X ∈ ·) v−→ µ(·)

on B(Rd\{0}). As µ is nonzero and locally finite, there exists a constant r > 0 such that,

for E := {x : ‖x‖ > r}, we have 0 < µ(E) <∞ and µ(∂E) = 0. It follows

P (X ∈ u·)
P (X ∈ uE)

=
u−αl(u)P (u−1X ∈ ·)
u−αl(u)P (u−1X ∈ E)

v−→ µ(·)
µ(E)

=: µ̃(·).

Obviously, µ̃ is again a Radon measure with µ̃(Rd\Rd) = 0.

2
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2.1 Regular Variation

Note that both limiting measures µ of (ii) and (iii) in the theorem above are again

homogeneous with index α, where the index of regular variation coincides with the index

specified in (i). Furthermore, we can see from the proofs that the sequence (an), the slowly

varying function l and the set E can be chosen such that the limiting measures µ coincide

in all three cases. Since the characterization of Theorem 2.1.12(iii) is very convenient in

some proofs of this thesis, we write X ∈ RV (α, l, µ) if we want to emphasize the usage of

this definition.

A direct consequence of multivariate regular variation can be obtained by observing

that for a multivariate regularly varying random variable X, the norm ‖X‖ is univariate

regularly varying and thus P (‖X‖ > x) is a regularly varying function.

Lemma 2.1.13. Let X ∈ Rd be a random vector such that X ∈ RV (α, (an), µ). Then for

δ > 0

E ‖X‖δ
{
<∞ if δ < α,

=∞ if δ > α.

No general statement can be given in the case δ = α.

If (an) is a sequence corresponding to a random vector X ∈ RV (α, (an), µ), i.e. (an) is

regularly varying with index 1/α, then we have an interesting result for random variables

with an existing δ moment, where δ > α.

Lemma 2.1.14. Let (an) be a sequence that is regularly varying with index 1/α. If Y ∈ Rd

is a random vector such that E ‖Y ‖δ <∞ for some δ > α, then

lim
n→∞

nP (a−1
n Y ∈ B) = 0

for every relatively compact B ∈ B(Rd\{0}).

Proof. The result follows directly from the proof of Lemma 1.32 in Lindskog (2004).

2

Next we consider sums of independent random vectors which are regularly varying. In

the following theorem, the definition of regular variation is weakened in the sense that

degenerate limit measures are also allowed.

Theorem 2.1.15 (Lindskog (2004), Theorem 1.28). Let X1, X2 ∈ Rd be two inde-

pendent random vectors such that there exists a positive sequence (an), an ↗ ∞, and two

Radon measures µ1 and µ2 on B(Rd\{0}) with µ1(Rd\Rd) = µ2(Rd\Rd) = 0 such that, as

n→∞,

nP (a−1
n X1 ∈ ·)

v−→ µ1(·) and nP (a−1
n X2 ∈ ·)

v−→ µ2(·)
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Chapter 2 Regular Variation, Point Processes and Lévy Processes

on B(Rd\{0}). Then

nP (a−1
n (X1 +X2) ∈ ·) v−→ µ1(·) + µ2(·).

Combining Theorem 2.1.15 and Lemma 2.1.14 we obtain an immediate corollary.

Corollary 2.1.16. Let X1, X2 ∈ Rd be two independent random vectors such that X1 ∈
RV (α, (an), µ) and E ‖X2‖δ <∞ for some δ > α. Then

nP (a−1
n (X1 +X2) ∈ ·) v−→ µ(·),

i.e. (X1 +X2) ∈ RV (α, (an), µ).

Note that the previous theorem also holds in case of dependent random variables.

Since one is often interested in sums of random vectors which are regularly varying with

a different index of regular variation, we can also obtain an easy corollary for that special

case.

Corollary 2.1.17. Let X1, X2 ∈ Rd be two independent random vectors such that X1 ∈
RV (α1, (an), µ1) and X2 ∈ RV (α2, (bn), µ2), where α1 < α2. Then

nP (a−1
n (X1 +X2) ∈ ·) v−→ µ1(·)

and hence (X1 +X2) ∈ RV (α1, (an), µ1).

Proof. Set δ := (α1 + α2)/2. Then δ ∈ (α1, α2) and thus by Lemma 2.1.13 E ‖X2‖δ < ∞.

The result follows by Corollary 2.1.16.

2

In addition to sums of random variables, products can also be considered. The following

Theorem is the multivariate version of Breiman’s Lemma.

Theorem 2.1.18 (Basrak et al. (2002), Proposition A.1). Let X ∈ Rd be a random

vector such that X ∈ RV (α, (an), µ) and let A be a random q × d matrix independent of

X. If E ‖A‖δ ∈ (0,∞) for one δ > α, then, as n→∞,

nP (a−1
n AX ∈ ·) v−→ E

(
µ ◦ A−1(·)

)
on B(Rd\{0}).

The results of Corollary 2.1.17 and Theorem 2.1.18 can be interpreted as follows. In

sums (and products resp.) of independent random variables, the tail behavior is always

dominated by the summand (and factor resp.) with the lowest index of regular variation.

On the other hand, the summands (factors) with lighter tails do not contribute to the tail

behavior of the sum (product).
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2.1 Regular Variation

2.1.4 Processes with Càdlàg Sample Paths

We follow Hult and Lindskog (2005) to introduce the notion of regular variation on D.

Let D be the space of càdlàg (right-continuous with left limits) functions x : [0, 1] → Rd

equipped with the J1 metric (equivalent to the d0 metric of Billingsley (1968)) such that D is

a complete and separable metric space. Using the supremum norm ‖x‖∞ = supt∈[0,1] ‖xt‖
we can then introduce the unit sphere SD = {x ∈ D : ‖x‖∞ = 1}, equipped with the

relativized topology of D. Next, we equip (0,∞] with the metric ρ(x, y) = |1/x − 1/y|
which makes it a complete separable metric space. Then also the space D0 = (0,∞]× SD,

equipped with the metric max{ρ(x∗, y∗), d0(x̃, ỹ)}, is a complete separable metric space.

If we use the polar coordinate transformation T : D\{0} → D0, x 7→ (‖x‖∞, x/‖x‖∞),

we see that the spaces D\{0} and (0,∞) × SD are homeomorphic. Thus, the Borel sets

B(D0) of interest can be viewed as the infinite dimensional extension of the one-point un-

compactification that is used to introduce finite dimensional regular variation (cf. Bingham

et al. (1987), Embrechts et al. (1997) and Resnick (1987)).

Regular Variation on D can then be introduced in terms of the so-called ŵ-convergence

of boundedly finite measures on D0. A measure µ on a complete separable metric space E

is said to be boundedly finite if µ(B) < ∞ for every bounded set B ∈ B(E). Let (µn)n∈N

be a sequence of boundedly finite measures on E. Then (µn) converges to µ in the ŵ-

topology if µn(B) → µ(B) for all bounded Borel sets B ∈ B(E) with µ(∂B) = 0. We

write µn
ŵ−→ µ. Note that for locally compact spaces E the boundedly finite measures are

called Radon measures and the notions of ŵ-convergence and vague convergence coincide.

See Daley and Vere-Jones (1988) and Kallenberg (1983) for details on ŵ-convergence and

vague convergence.

We are now able to formulate regular variation for stochastic processes with sample

paths in D.

Definition 2.1.19 (Functional Regular Variation). A stochastic process (Xt) with

sample paths in D is said to be regularly varying if there exists a positive sequence (an),

n ∈ N, with an ↗∞ and a nonzero boundedly finite measure µ on B(D0) with µ(D0\D) = 0

such that, as n→∞,

nP (a−1
n X ∈ ·) ŵ−→ µ(·) on B(D0).

As in the finite dimensional case, direct calculation shows that the measure µ is homo-

geneous, i.e. there exists a positive index α > 0 such that µ(uB) = u−αµ(B) for all u > 0

and for every B ∈ B(D0). Thus, it makes sense to say that the process (Xt) is regularly

varying with (tail) index α. For short, we write X ∈ RVD0
(α, (an), µ).
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Chapter 2 Regular Variation, Point Processes and Lévy Processes

Several alternative definitions of regular variation exist. For example, a process (Xt) in

D is regularly varying if and only if there exists an index α > 0 and a probability measure

σ on B(SD) such that for every positive x > 0, as u→∞,

P (‖X‖∞ > ux,X/‖X‖∞ ∈ ·)
P (‖X‖∞ > u)

ŵ−→ x−ασ(·) on B(SD). (2.1.3)

In this definition, the probability measure σ is called the spectral measure of X. See

Theorem 4 in Hult and Lindskog (2005) for the equivalence between (2.1.3) and Definition

2.1.19.

Now we recall several useful results from Hult and Lindskog (2005) related to regular

variation on D. Since it is often of interest, how the regular variation property is preserved

under mappings, we look at two different continuous mapping theorems. Therefore, for

any function h from a metric space E to a metric space E ′ we introduce the set disc(h)

which consists of all discontinuities of h.

Theorem 2.1.20 (Hult and Lindskog (2005), Theorem 6). Let (Xt) be a stochastic

process with sample paths in D and let E ′ be a complete separable metric space. Assume that

X ∈ RVD0
(α, (an), µ) and h : D → E ′ is a measurable mapping such that µ(disc(h)) = 0

and h−1(B) is bounded in D0 for every bounded B ∈ B(E ′). Then, as n→∞,

nP (h(a−1
n X) ∈ ·) ŵ−→ µ ◦ h−1(·) on B(E ′).

There is a different version of the previous theorem for the special case of positively

homogeneous mappings of order γ > 0, i.e. mappings h : D→ D with h(λx) = λγh(x) for

all λ ≥ 0 and x ∈ D.

Theorem 2.1.21 (Hult and Lindskog (2005), Theorem 8). Let (Xt) be a stochastic

process with sample paths in D and let X ∈ RVD0
(α, (an), µ). Furthermore, suppose that

h : D → D is a measurable mapping which is positively homogeneous of order γ > 0 such

that µ(disc(h) ∩ D0) = 0 and h−1(B) is bounded in D0 for every bounded B ∈ B(D0) ∩ D.

Then, as n→∞,

nP (a−γn h(X) ∈ ·) ŵ−→ µ ◦ h−1(· ∩ D) on B(D0).

The next theorem states some necessary and sufficient conditions for regular variation

on D. In the theorem, we use the notation

w(x, T0) := sup
t1,t2∈T0

‖xt1 − xt2‖ and

w′′(x, δ) := sup
t1≤t≤t2; t2−t1≤δ

min {‖xt − xt1‖, ‖xt2 − xt‖}

for x ∈ D, T0 ⊆ [0, 1] and δ ∈ [0, 1].
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2.1 Regular Variation

Theorem 2.1.22 (Hult and Lindskog (2005), Theorem 10). Let (Xt) be a stochas-

tic process with sample paths in D. Then the following statements are equivalent.

(i) X ∈ RVD0
(α, (an), µ).

(ii) There exists a set T ⊆ [0, 1] containing 0, 1 and all but at most countably many points

of [0, 1], a positive sequence an ↗ ∞ and a collection {µt1,...,tk : ti ∈ T, k ∈ N} of

Radon measures on B(Rdk\{0}) with µt1,...,tk(R
dk\Rdk) = 0 and µt is nonzero for some

t ∈ T such that

nP (a−1
n (Xt1 , . . . , Xtk) ∈ ·)

v−→ µt1,...,tk(·) on B(Rdk\{0}) (2.1.4)

holds for all t1, . . . , tk ∈ T . Furthermore, for every ε, η > 0, there exist δ ∈ (0, 1) and

n0 ∈ N such that, for n ≥ n0,

nP (a−1
n w(X, [0, δ)) ≥ ε) ≤ η, (2.1.5)

nP (a−1
n w(X, [1− δ, 1)) ≥ ε) ≤ η, (2.1.6)

nP (a−1
n w′′(X, δ) ≥ ε) ≤ η. (2.1.7)

Remark 2.1.23. The theorem links regular variation of the process (Xt)t∈[0,1] with sample

paths in D to regular variation of the finite dimensional distributions (Xt1 , . . . , Xtk) of the

the process. Key to that connection are the relative compactness criteria (2.1.5), (2.1.6)

and (2.1.7) which restrict the oscillation of the process (Xt) in small areas. See Hult and

Lindskog (2005), Example 11, for a process satisfying conditions (2.1.5) and (2.1.6), but

not (2.1.7).

Some more accessible sufficient conditions for regular variation in D can be given in case

of a strong Markov process with sample paths in D. In that case we denote by Ps,t(x,B)

the transition functions and define

αr(u) := sup
{
Ps,t(x,Br(x)c) : x ∈ Rd, s, t ∈ [0, 1] and t− s ∈ [0, u]

}
.

Theorem 2.1.24 (Hult and Lindskog (2005), Theorem 13). Let (Xt), t ∈ [0, 1], be

a strong Markov process with sample paths in D that satisfies limr→∞ αr(1) = 0. Assume

that Xt is regularly varying for every fixed t ∈ [0, 1], i.e. there exists a set T ⊆ [0, 1]

with 0, 1 ∈ T containing all but at most countably many points of [0, 1], a positive sequence

an ↗∞ and a collection {µt : t ∈ T} of Radon measures on B(Rd\{0}) with µt(R
d\Rd) = 0

and µ1 is nonzero such that, as n→∞,

nP (a−1
n (Xt) ∈ ·)

v−→ µt(·) on B(Rd\{0})
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Chapter 2 Regular Variation, Point Processes and Lévy Processes

holds for all t ∈ T . If, additionally, for every ε > 0 and η > 0 there exists δ > 0 such that

δ ∈ T , 1− δ ∈ T as well as

µδ(Bε(0)c)− µ0(Bε(0)c) ≤ η and µ1(Bε(0)c)− µ1−δ(Bε(0)c) ≤ η,

then (Xt) ∈ RVD0
(α, (an), µ), where µ is uniquely determined by {µt : t ∈ T}.

A similar theory can also be established for stochastic processes with continuous sample

paths. See e.g. de Haan and Lin (2001) for details and limit results.

2.2 Weak Convergence of Point Processes

Point processes (or random point measures resp.) play an important role in probability

theory and statistics. They are especially useful in extreme value theory, as they are closely

related to regular variation. Hence, in a regularly varying setting, point processes are a

very helpful tool in proofs. Furthermore, point processes of maxima, exceedances etc. play

an important role in the analysis of the structure of the extremes. Interesting aspects of

that area can be, for example, extremal clustering, long memory effects etc.

In Section 2.2.1 we introduce the general theory of point processes. We define point

processes and introduce the notion of weak convergence of point processes. Furthermore,

we also have a closer look at the special case of the Poisson process. Then, in Section

2.2.2, we state the classic result that links regular variation to point process convergence.

Moreover, we introduce several other (point) processes of interest, e.g. the point process of

exceedances, the point process of record times and extremal processes. Finally, we state a

result for a functional setting.

2.2.1 General Theory

In this section we shortly introduce point processes and the relevant theory of weak con-

vergence. For more detailed and very good introductions to the topic, see also Daley and

Vere-Jones (1988) and Daley and Vere-Jones (2008). Since point processes are a special

case of random measures, see also Kallenberg (1983) for more general reading on random

measures. Introductions to point processes with extreme value theory in view can also

be found in Resnick (2007) and Embrechts et al. (1997). The statistical aspect of point

processes is examined in Illian et al. (2008).

Let E be a locally compact space and E the corresponding σ-algebra. A measure m :

E → N0 ∪ {∞} is called counting measure. A counting measure m is a point measure if
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2.2 Weak Convergence of Point Processes

m is Radon, i.e. m(K) < ∞ for every compact set K ∈ E . A point measure m is called

simple if m({x}) ∈ {0, 1} for all x ∈ E. Defining the Dirac measure εx by

εx(A) =

{
1 if x ∈ A,
0 if x /∈ A,

for any x ∈ E and A ∈ E , every point measure m can be written in the form

m(A) =
∑
i∈N

εxi(A),

where xi ∈ E, i ∈ N, are called the atoms of m. Illustrative, m(A) denotes the number of

points in the set A. Denote by Mp(E) the set of all point measures on E and byMp(E) the

corresponding σ-algebra. Now a point process can be defined as a random point measure.

Definition 2.2.1 (Point Process). A measurable mapping

N : (Ω,F , P )→ [Mp(E),Mp(E)]

is called point process (or random point measure).

A point process N is called simple if N is a simple point measure with probability 1.

Likewise to point measures, point processes can be written in the form

N(A) =
∑
i∈N

εXi(A),

where A ∈ E and (Xi)i∈N are random elements of E. Very useful for the characterization

of point processes are Laplace functionals.

Definition 2.2.2 (Laplace Functional). Let N be a point process. Then the Laplace

functional of N is given by

ΨN(f) = E
(

exp

(
−
∫
E

f dN

))
=

∫
Mp(E)

exp

(
−
∫
E

f(x) m(dx)

)
PN(dm),

where f : E → [0,∞) is a measurable function.

Note that the definition of the Laplace functional can be easily extended to a more general

space of random measures. The importance of the Laplace functional can be derived from

the following fact.
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Chapter 2 Regular Variation, Point Processes and Lévy Processes

Lemma 2.2.3. The Laplace functional ΨN determines the distribution of N uniquely.

The limit theory for point processes is described by the concept of weak convergence.

Weak convergence is in general defined as convergence of the infinite-dimensional distri-

butions, but by Daley and Vere-Jones (1988), Theorem 9.1.IV, it is sufficient to consider

only the finite-dimensional distributions.

Definition 2.2.4 (Weak Convergence). A sequence of point processes (Nn)n∈N on the

space [E, E ] converges weakly to a point process N (on the same space) in Mp(E) if

P (Nn(A1) = k1, . . . , Nn(Am) = km)→ P (N(A1) = k1, . . . , N(Am) = km)

for all m, k1, . . . , km ∈ N and A1, . . . , Am ∈ E such that P (N(∂Ai) = 0) = 1 for i =

1, . . . ,m. In that case we write Nn
d−→ N .

There exists an important characterization of this convergence concept which is very

useful in many proofs: weak convergence of point processes is equivalent to convergence of

the corresponding Laplace functionals. Therefore denote by C+
K(E) the space of continuous

functions f : E → [0,∞) with compact support.

Theorem 2.2.5 (Daley and Vere-Jones (1988), Theorem 9.1.VII(ii)). Let N and

(Nn)n∈N be point processes on [E, E ]. Then Nn
d−→ N if and only if

ΨNn(f)→ ΨN(f)

for all f ∈ C+
K(E).

Another important tool for the work with point processes are continuous mapping ar-

guments. They ensure that weak convergence is preserved under continuous mappings.

Therefore, consider a second locally compact space E2 with corresponding σ-algebra E2

and let T : E → E2 be a continuous function. For a point measure m =
∑

i∈N εxi define

the transformed measure T (m) by

T (m) = m ◦ T−1 =
∑
i∈N

εT (xi).

Theorem 2.2.6 (Resnick (2007), Proposition 5.5). Let N and (Nn)n∈N be point pro-

cesses on [E, E ]. Suppose that T : E → E2 is a continuous function such that the preimages

of compact sets are again compact. If Nn
d−→ N in Mp(E), then

T (Nn)
d−→ T (N)

in Mp(E2).

28
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Finally, we introduce as an example one of the most important point processes: the

Poisson random measure. It has two properties: the number of points in a fixed set A

follows a Poisson distribution and the numbers of points in disjoint sets are independent.

Definition 2.2.7 (Poisson Random Measure). Let µ be a Radon measure on E . A

point process N is called Poisson random measure or Poisson process with mean measure

µ (write PRM(µ)) if the following two conditions are satisfied:

(i) For any A ∈ E and k ∈ N

P (N(A) = k) =

{
e−µ(A) µ(A)k

k!
if µ(A) <∞,

0 if µ(A) =∞.

(ii) For any m ∈ N and for any collection of disjoint sets A1, . . . , Am ∈ E the random

variables N(A1), . . . , N(Am) are independent.

The Laplace functional which determines the distribution of the Poisson random measure

completely can be given explicitly.

Theorem 2.2.8 (Resnick (2007), Theorem 5.1). A point process N is a PRM(µ) if

and only if the Laplace functional is of the form

ΨN(f) = exp

(
−
∫
E

(
1− e−f(x)

)
µ(dx)

)
for measurable functions f : E → [0,∞).

A result similar to Theorem 2.2.6 does also hold for Poisson random measures: contin-

uous transformations of Poisson random measures are again Poisson random measures.

Theorem 2.2.9 (Resnick (2007), Proposition 5.2). Let T : E → E2 be a function

such that the preimages of compact sets are again compact. If N is a PRM(µ) on E, then

T (N) is a PRM(T (µ)) on E2.

Poisson random measures are very important for extreme value theory. They appear as

a weak limit of point processes with points that are independent and regularly varying.

The complete theory is introduced in the following section.
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2.2.2 Point Processes and Extreme Value Theory

The relevance of point processes for extreme value theory is part of basically any monograph

on the topic. In this section we introduce the basic idea and show the main results. For

details we refer to Resnick (1987), Resnick (2007), Embrechts et al. (1997), de Haan and

Ferreira (2006) and Leadbetter et al. (1983).

We start with the main theorem that links regular variation to point process convergence.

As we have defined multivariate regular variation on the space Rd in Section 2.1.3, we state

the result for the case E = Rd and E = B(Rd).

Theorem 2.2.10 (Resnick (2007), Theorem 5.3). Let (Xi)i∈N be a collection of iid

random variables with values in Rd. Then X1 ∈ RV (α, (an), µ) if and only if

n∑
i=1

εa−1
n Xi

d−→ N,

where N is a PRM(µ).

This basic result can now be used in combination with the continuous mapping theorem

to obtain numerous other results. As an example we present a result for point processes

of vectors (Xk, Xk−1, . . . , Xk−d+1), where the single entries are given by an iid sequence of

real-valued random variables. Results of that kind are used for example in the analysis

of the extremal behavior of discrete time moving averages and linear processes. See also

Section 3.2.2 and Section 3.4.3.

Theorem 2.2.11 (Davis and Resnick (1985), Theorem 2.2). Let (Xi)i∈Z be a se-

quence of iid real-valued random variables which are regularly varying with index α, i.e.

the tail balance condition of Definition 2.1.8 is satisfied. Let (an) be the positive sequence

satisfying nP (a−1
n |X1| > x)→ x−α for all x > 0. For fixed d ∈ N define the point processes

Nn :=
∞∑
k=1

εa−1
n (Xk,Xk−1,...,Xk−d+1)

in Mp(R
d\{0}). Then

Nn
d−→ N :=

∞∑
k=1

d∑
i=1

εJk ei ,

where (Jk) are the points of a PRM(µ) on Rd\{0} with mean measure

µ(dx) = α|x|α−1
(
p1(0,∞](x) + q 1[−∞,0)(x)

)
dx

and ei is the ith unit vector in Rd.
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Another interesting characteristic is the point process of exceedances, see also Embrechts

et al. (1997), Section 5.3. It is given by

Nn(·) =
n∑
i=1

εi/n(·) 1{Xi>un}, (2.2.1)

where n ∈ N, (Xi)i∈N is a sequence of real-valued random variables and (un) is a sequence

of real thresholds. From the following observation, we see the importance of such processes

for extreme value theory. Let Xk:n be the kth biggest value (order statistic) of the sample

X1, . . . , Xn and denote by Mn = X1:n the sample maximum. Then direct calculation shows

(cf. Embrechts et al. (1997), Remark 5.1.3)

{Nn((0, 1]) < k} = {Xk:n ≤ un}

and in particular

{Nn((0, 1]) = 0} = {Mn ≤ un}.

The results for weak convergence of point processes of exceedances to Poisson random

measures are also well known.

Theorem 2.2.12 (Embrechts et al. (1997), Theorem 5.3.2). Suppose (Xi)i∈N is a

sequence of iid real-valued random variables with common distribution function F and (un)

is s sequence of real thresholds. Assume that the condition

nF (un) = E

(
n∑
i=1

1{Xi>un}

)
→ τ

holds for some τ ∈ (0,∞). Then the point process of exceedances given by (2.2.1) satisfies

Nn
d−→ N,

where N is a PRM(τλ(·)) on (0, 1].

The conditions of the theorem can be relaxed in several ways. First, in the definition

of Nn, the number of summands n can be replaced by a random Number N ′(n) and the

times i by Ti. Then the point process of exceedances is given by

Nn(·) =

N ′(n)∑
i=1

εTi/n(·) 1{Xi>un},

where Tn = Y1 + · · · + Yn are the points of a renewal counting process, (Yi)i∈N is an iid

sequence of positive random variables independent of (Xi) and N ′(n) = #{i ∈ N : Ti ≤ n}.
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Then by Embrechts et al. (1997), Theorem 5.3.4, the result of Theorem 2.2.12 still holds.

Furthermore, the result of Theorem 2.2.12 still holds if the iid sequence (Xi) is replaced by

a strictly stationary sequence (X̃t) (cf. Embrechts et al. (1997), Theorem 5.3.6). Results for

limit probabilities and distributions of upper order statistics as well as weak convergence of

the number of exceedances can be obtained likewise (cf. Embrechts et al. (1997), Theorem

5.3.8, Theorem 5.3.9 and Corollary 5.3.10).

Next, we analyze the convergence of sample maxima to extremal processes. Recall that

Mn = max(X1, . . . , Xn) denotes the sample maximum of an iid real-valued sequence (Xi).

If N given by

N =
∑
i∈N

ε(ti,ji)

is PRM(λ× µ) for the univariate Lebesgue measure λ and a Radon measure µ, define the

corresponding extremal process by

Yµ(t) = max
k∈N: tk≤t

jk. (2.2.2)

Weak convergence of Yµ is equivalent to regular variation.

Theorem 2.2.13 (Resnick (2007), Proposition 7.2). Let (Xi)i∈N be an iid sequence

of real-valued nonnegative random variables. Then X1 ∈ RV (α, (an), µ) if and only if

Yn(·) := a−1
n Mbn ·c

d−→ Yµ(·)

on the space of càdlàg functions y : [0,∞)→ [0,∞).

Note that the theorem also holds for random variables in Rd if maxima are taken com-

ponentwise.

Extremal processes can also be defined for general (not regularly varying) random vari-

ables. For an iid real-valued sequence (Xi) of random variables with common distribution

function F the finite-dimensional distributions of the maxima Mn are given by

P (Mt1 ≤ x1, . . . ,Mtm ≤ xm) = F t1
(

m
max
i=1

xi

)
F t2−t1

(
m

max
i=2

xi

)
· · ·F tm−tm−1 (xm) , (2.2.3)

where m, t1, . . . , tm ∈ R such that t1 < t2 < . . . < tm and x1, . . . , xm ∈ R (cf. Embrechts

et al. (1997), Section 5.4.2).

Definition 2.2.14 (F-Extremal Process). The process Y = (Y (t))t∈R+ which is

uniquely determined by the finite-dimensional distributions (2.2.3) is called F -extremal

process .
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F -extremal processes are the natural extension of the discrete-time sequences of sample

maxima (Mn) to a continuous-time setting. By Resnick (1987), Proposition 4.7, F -extremal

processes are stochastically continuous, càdlàg, nondecreasing (almost surely) and they are

Markov jump processes. Furthermore, it follows from Embrechts et al. (1997), Proposition

5.4.4, that F -extremal processes have a point process representation, i.e. any F -extremal

process (Y (t)) can be given in the form

Y (t) = Yµ(t),

where Yµ is the extremal process specified by (2.2.2) and µ is given by µ((a, b]) = ln(F (b))−
ln(F (a)) for a < b. The jump times of an F -extremal process constitute another Poisson

random measure.

Theorem 2.2.15 (Embrechts et al. (1997), Theorem 5.4.7). Let Y = (Y (t)) be an

F -extremal process and let (τi), i ∈ N, be the jump times of Y . If F is continuous, then

the point process N∞ of jump times given by

N∞ =
∑
i∈N

ετi

is a PRM(µ) on R+ with

µ((a, b]) = ln(b)− ln(a).

F -extremal processes are closely related to records and record times. Intuitively, for a

sequence (Xi) of random variables, Xn is a record if Xn > Mn−1. Denote by (Li) the record

times , i.e. the times where the records occur given by the recursion

L1 = 1 and Ln = min{k > Ln−1 : Xk > XLn−1} for n > 1.

The sequence of records is then given by (XLi)i∈N and these are the points of a Poisson

random measure.

Theorem 2.2.16 (Embrechts et al. (1997), Theorem 5.4.1). Let F be a distribution

function with left and right endpoint given by

xlF = inf{x ∈ R : F (x) > 0} and xrF = sup{x ∈ R : F (x) < 1}

and let (Xi)i∈N be an iid sequence with common distribution function F . Then the records

(XLi) are the points of a PRM(µ) with mean measure µ given by

µ((a, b]) = ln
(
F (a)

)
− ln

(
F (b)

)
for a, b ∈ R such that xlF < a ≤ b < xrF .
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From the definition of F -extremal processes one would intuitively hope that the record

times (Li) and the jump times (τi) of the corresponding F -extremal process (Y (t)) behave

similarly, as (Mn)
d
= (Y (n)) for n ∈ N. The relation holds in the limit as shown in the

following theorem.

Theorem 2.2.17 (Embrechts et al. (1997), Theorem 5.4.9). Let (Li) be the record

times of an iid sequence (Xi) and let (τi) be the jump times of the corresponding F -extremal

process (Y (t)). Then

Nn(·) :=
∑
i∈N

εLi/n(·) d−→ N∞(·) =
∑
i∈N

ετi(·)

on Mp(R+).

There exist many other results related to records and extremal processes. For example,

limits results for the frequency and growth of records can be derived accordingly. For

further details and many interesting applications we refer to Embrechts et al. (1997),

Chapter 5, and Resnick (1987), Chapter 4.

To conclude this section, we present a result for the point process convergence of stochas-

tic processes with càdlàg sample paths. Therefore, recall the definitions of D and D0 from

Section 2.1.4 and let Mp(D0) denote the space of all point measures on D0 equipped with

the ŵ-topology.

The following theorem is the extension of the classical result of Theorem 2.2.10 to the

space D, i.e. to a state space which is not locally compact. Similar results have also been

proved by de Haan and Lin (2001), Theorem 2.4, in the case of real-valued processes which

are regularly varying with index 1 and by Davis and Mikosch (2008) for D-valued random

fields.

Theorem 2.2.18. Let (Xi)i∈N be an iid sequence of stochastic processes with values in D.

Then X1 ∈ RVD0
(α, (an), µ) if and only if

Nn =
n∑
i=1

εa−1
n Xi

d−→ N

in Mp(D0), where N is a PRM(µ).

Proof. The proof can be obtained by changing from vague-topology to the ŵ-topology in

the proof of Proposition 3.21 in Resnick (1987). This change of topology does not affect

the proof which is based on the Laplace functionals of the point processes involved (cf.

Davis and Mikosch (2008), Proof of Lemma 2.2).

2
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2.3 Lévy Processes and Infinite Divisibility

2.3 Lévy Processes and Infinite Divisibility

Lévy processes are a very general class of stochastic processes which have stationary and

independent increments. They cover a wide range of commonly used examples such as

the Brownian Motion (or Gaussian processes), Poisson and compound Poisson processes.

Lévy processes are the natural extension of random walks with independent increments to

a continuous time setting and they are closely linked to infinite divisibility.

In Section 2.3.1 we introduce the general theory of Lévy processes and infinite divisibil-

ity. We give definitions and the results that link the two. Furthermore, we also analyze

the corresponding characteristic functions and introduce the Lévy-Itô decomposition. In

Section 2.3.2 we analyze the tail behavior of Lévy processes in terms of regular variation

which is closely linked to the driving Lévy measure. A functional result is also given.

2.3.1 General Theory

We follow the relevant literature to give a short introduction to Lévy processes and infinitely

divisible distributions. For details and very good monographs on the topic we refer to Sato

(2002), Applebaum (2004) and Kyprianou (2006).

Definition 2.3.1 (Lévy Process). A stochastic process (Lt), t ∈ R+, with values in Rd

is called a Lévy process if it satisfies the following conditions:

(1) (Lt) has independent increments, i.e. for every n ∈ N and for every increasing se-

quence 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn the increments Lt0 , Lt1 − Lt0 , ..., Ltn − Ltn−1 are

independent.

(2) the increments of (Lt) are stationary, i.e. the distribution of Lt+s−Lt does not depend

on the choice of t.

(3) L0 = 0 almost surely.

(4) (Lt) is stochastically continuous, i.e. for every ε > 0 and t ≥ 0

lim
t→s

P (‖Lt − Ls‖ > ε) = 0.

(5) (Lt) has càdlàg sample paths almost surely.

Note that two-sided Lévy processes (Lt), t ∈ R, can be defined similarly. There are

several other processes closely related to the conditions above. An additive process is a

process where all of the conditions of a Lévy process except (2) are satisfied. If condition

(5) is not required, we speak of a Lévy process (additive process) in law .
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Theorem 2.3.2 (Sato (2002), Theorem 11.5). Let (Lt) be a Lévy (resp. additive) pro-

cess in law. Then there exists a modification of (Lt) which is a Lévy (resp. additive) process.

The theorem shows, why condition (5) in the definition of Lévy processes does not play

an important role in the theory of such processes. This is also the reason, why one often

finds definitions of Lévy processes without this condition in the literature.

Closely related to Lévy processes are infinitely divisible distributions.

Definition 2.3.3 (Infinite Divisibility). A random vector X ∈ Rd is said to be in-

finitely divisible if for each n ∈ N there exist iid random vectors Y
(n)

1 , . . . , Y
(n)
n such that

X
d
= Y

(n)
1 + · · ·+ Y (n)

n .

Infinite divisibility can also be defined in terms of probability measures. For any proba-

bility measure µ denote by

µn := µ ∗ · · · ∗ µ︸ ︷︷ ︸
n-times

the n-fold convolution of µ. Then a probability measure µ is said to be infinitely divisible

if for any n ∈ N there is a probability measure µn such that µ = µnn. The measure µn is

the so-called n-th root of µ. By Applebaum (2004), Proposition 1.2.6, both definitions of

infinite divisibility coincide if µ is the law of X.

The concrete form of the characteristic function of an infinitely divisible random variable

(distribution) is also known. It is called the Lévy-Khintchine representation or Lévy-

Khintchine formula an can be found for example in Sato (2002), Theorem 8.1.

Theorem 2.3.4 (Lévy-Khintchine Formula). Let the random variable X ∈ Rd be in-

finitely divisible. Then the characteristic function of X is given by

E
(
eiu

TX
)

= eϕ(u)

for all u ∈ Rd and the characteristic exponent ϕ has the form

ϕ(u) = iuTγ − 1

2
uTΣu+

∫
Rd

(
eiu

T x − 1− iuTx1[−1,1](‖x‖)
)
ν(dx), (2.3.1)

where γ ∈ Rd, Σ is a nonnegative-definite d × d matrix and the measure ν : Rd → R
satisfies

ν({0}) = 0 and

∫
Rd

(‖x‖2 ∧ 1) ν(dx) <∞.

Conversely, for any γ, Σ and ν as above there exists an infinitely divisible distribution with

characteristic function eϕ(u).
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2.3 Lévy Processes and Infinite Divisibility

The matrix Σ in the above theorem is called the Gaussian covariance matrix and ν is the

Lévy measure. As the choice of γ, Σ and ν is unique for every infinitely divisible random

variable X (cf. Sato (2002), Theorem 8.1(ii)), we call (γ,Σ, ν) the characteristic triplet (or

generating triplet) of X.

We have already mentioned that there is a close link between infinite divisibility and

Lévy processes.

Theorem 2.3.5. The following statements hold.

(i) If (Lt) is a Lévy process, then Lt is infinitely divisible for each t ≥ 0 and

E
(
eiu

TLt
)

= etϕ(u),

where ϕ is the characteristic exponent of L1 given by (2.3.1).

(ii) For every infinitely divisible distribution µ on Rd there is a Lévy process (Lt) such

that PL1 = µ. Furthermore, the choice of the Lévy process is unique apart from

modifications.

Proof. See Applebaum (2004), Proposition 1.3.1 and Theorem 1.3.3, and Sato (2002),

Corollary 11.6.

2

The theorem shows that Lévy processes and infinitely divisible distributions can be

considered as equivalent. If (Lt) is a Lévy process and (γ,Σ, ν) is the characteristic triplet

of L1, then we observe that (tγ, tΣ, tν) is the characteristic triplet of Lt for all t ≥ 0.

Hence, the Lévy process is uniquely determined by (γ,Σ, ν) and we say that (γ,Σ, ν) is

the characteristic triplet of (Lt).

Next we recall an interesting result describing the jump structure of Lévy processes, the

Lévy-Itô decomposition. The main statement is that any Lévy process can be decomposed

into a deterministic drift, a continuous Brownian motion and a jump part. The jump part

is given by the big jumps described by a Poisson random measure with mean measure

ν × λ, where λ is the univariate Lebesgue measure, and the small jumps are represented

by the corresponding compensated Poisson measure. Details and proofs of the Lévy-Itô

decomposition can be found in Sato (2002), Chapter 4, Applebaum (2004), Section 2.4,

and Kallenberg (2002), Chapter 15.

Theorem 2.3.6 (Lévy-Itô Decomposition). Let (Lt) be a Lévy process with charac-

teristic triplet (γ,Σ, ν). Then there exists a drift b ∈ Rd, a Brownian motion (Bt) with
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Chapter 2 Regular Variation, Point Processes and Lévy Processes

covariance matrix Σ and a Poisson random measure N independent of (Bt) and with mean

measure ν × λ such that for each t ≥ 0

Lt = b t+Bt +

t∫
0

∫
‖x‖≤1

x (N(dx, ds)− ds ν(dx)) +

t∫
0

∫
‖x‖>1

x N(dx, ds). (2.3.2)

The theorem shows that the sample paths of a Lévy process are described by a Brownian

motion and the jumps of a (compensated) Poisson process. Note that by definition (or

Theorem 2.3.2 resp.) Lévy processes have càdlàg sample paths. The following theorem

gives necessary and sufficient conditions for the sample paths of a Lévy process to be of

finite variation.

Theorem 2.3.7 (Sato (2002), Theorem 21.9). A Lévy process (Lt) is of finite varia-

tion if and only if Σ = 0 and ∫
‖x‖≤1

‖x‖ ν(dx) <∞.

As the Brownian motion has paths of infinite variation on any compact interval, the

condition Σ = 0 is obvious. The additional condition
∫
‖x‖≤1

‖x‖ ν(dx) < ∞ ensures that

the integral for the small jumps with ‖x‖ ≤ 1 in (2.3.2) exists without a compensator and

thus the small jumps are of bounded variation.

2.3.2 Regular Variation of Lévy Processes

In this section we analyze the tail behavior of Lévy processes. Therefore, we give conditions

for multivariate and functional regular variation of Lévy processes. We start with necessary

and sufficient conditions for Lévy processes to have finite moments.

Theorem 2.3.8 (Sato (2002), Corollary 25.8). Suppose (Lt) is a Lévy process with

characteristic triplet (γ,Σ, ν) and let δ > 0. Then E (‖Lt‖δ) <∞ for all t > 0 if and only

if ∫
‖x‖≥1

‖x‖δ ν(dx) <∞.

Combining Theorem 2.3.8 with the Lévy-Itô decomposition of Theorem 2.3.6 we obtain

an immediate consequence.

Corollary 2.3.9. If (Lt) is a Lévy process with bounded jumps, then E (‖Lt‖δ) < ∞ for

all δ > 0.
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2.3 Lévy Processes and Infinite Divisibility

It is well known that also all moments of the Brownian motion are finite. Consequently,

in view of the Lévy-Itô decomposition and Corollary 2.1.16 we see that the heavy tails of

a Lévy process can only be caused by the big jumps of it. The big jumps are described

by the Poisson random measure N which has an intensity driven by the Lévy measure ν.

Hence, the extreme values of the Lévy process must come from the extreme values of ν.

Theorem 2.3.10 (Hult and Lindskog (2006a), Proposition 3.1). Let X ∈ Rd be an

infinitely divisible random variable with characteristic triplet (γ,Σ, ν). Then we have X ∈
RV (α, (an), µ) if and only if ν ∈ RV (α, (an), µ). In particular, a Lévy process (Lt) with

characteristic triplet (γ,Σ, ν) satisfies Lt ∈ RV (α, (an), tµ) for all t > 0 if and only if

ν ∈ RV (α, (an), µ).

Combining this theorem with the results of Lemma 2.1.13 and Theorem 2.3.8, we obtain

the following.

Corollary 2.3.11. Let (Lt) be a Lévy process and suppose that (Lt) (or ν resp.) is regu-

larly varying with index α > 0. Then

E ‖Lt‖δ <∞ and

∫
‖x‖≥1

‖x‖δν(dx) <∞

for all δ < α and t ≥ 0.

Functional regular variation as introduced in Section 2.1.4 follows similarly. If the un-

derlying Lévy measure of the Lévy processes (Lt) is regularly varying, then (Lt), restricted

to t ∈ [0, 1], is also regularly varying in a functional sense.

Theorem 2.3.12. Let (Lt)t∈[0,1] be a Lévy process and assume that L1 has Lévy measure

ν ∈ RV (α, (an), µ1). Then (Lt) ∈ RVD0
(α, (an), µ), where µ is uniquely determined by the

measures {µt = tµ1, t ∈ [0, 1]}.

Proof. By definition (or Theorem 2.3.2 resp.) (Lt) has sample paths in D. Furthermore,

(Lt) is also a strong Markov process (cf. Sato (2002), Theorem 10.5 and Corollary 40.11).

Moreover, Theorem 2.3.10 yields Lt ∈ RV (α, (an), tµ). Then the result follows by Theorem

2.1.24. See also Hult and Lindskog (2005), Example 17.

2

Note that a similar result for the bigger class of additive processes does not hold in

general (cf. Hult and Lindskog (2005), Example 12).
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Chapter 3

The Limit Distribution of the Maximum

Increment of a Random Walk with

Dependent Regularly Varying Jump

Sizes1

In this chapter, we investigate the maximum increment of a random walk with heavy-tailed

jump size distribution. Here heavy-tailedness is understood as regular variation of the

finite-dimensional distributions. The jump sizes constitute a strictly stationary sequence.

Using a continuous mapping argument acting on the point processes of the normalized jump

sizes, we prove that the maximum increment of the random walk converges in distribution

to a Fréchet distributed random variable. Several different settings of the dependence

structure between jumps sizes are considered.

3.1 Introduction

For several decades, the interplay between heavy tails and serial dependence in a strictly

stationary sequence (Xt) of random variables with common distribution F has attracted a

lot of attention. One of the main goals of this research is to investigate the distributional

behavior of suitable functions acting on (Xt) and to compare it with the corresponding

behavior of an iid sequence with the same marginal distribution F . In a dependent sequence

(Xt), high/low level exceedances typically appear in clusters and significantly determine

the distributional behavior of functions of (Xt).

1The content of this chapter is based on Mikosch and Moser (2012).
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Early on, the asymptotic behavior of the maximum functional Mn = maxi=1,...,nXi, n ≥
1, was studied for various classes of heavy-tailed stationary sequences. Not surprisingly,

linear processes (such as ARMA) with heavy-tailed innovations were the first objects of

interest: they constitute a major class of stationary processes in time series analysis. The

extremes of such processes were studied first by Rootzén (1978) in the case of infinite

variance stable innovations and later by Davis and Resnick (1985) for general innovation

processes with regularly varying tails. Another class of a heavy-tailed stationary processes

constitute solutions to stochastic recurrence equations. Pioneering work by Kesten (1973)

and Goldie (1991) showed that the marginal distributions of such a process have power law

tails. The extreme value theory of such processes was studied in detail in de Haan et al.

(1989). We mention that the class of GARCH processes can be embedded in a natural

way in some stochastic recurrence equation and therefore, under general conditions, these

processes have power law tails and the asymptotic behavior of their extremes can be treated

by similar methods. See for example de Haan et al. (1989) , Mikosch and Stărică (2000),

Basrak et al. (1999) and Basrak et al. (2002) in the ARCH(1), GARCH(1, 1) and general

GARCH cases. Motivated by applications in time series analysis, Davis and Resnick (1986)

studied the asymptotic behavior of the sample autocovariance and sample autocorrelation

functions of linear processes with innovations with regularly varying tails and infinite 4th

moment. The sample autocovariance and sample autocorrelation functions of GARCH

and heavy-tailed bilinear processes were studied in the papers Davis and Resnick (1996),

Basrak et al. (1999), Davis and Mikosch (1998), Mikosch and Stărică (2000) and Basrak

et al. (2002).

Due to very distinct extremal clustering behavior, the results for GARCH, heavy-tailed

linear and iid processes differ significantly. The extremal clustering behavior of these

sequences is well described by the point processes of the scaled points Xt. The results

for the extremes and the sample autocovariances of a heavy-tailed sequence are then a

consequence of a continuous mapping argument acting on the weakly converging sequence

of these point processes. Under weak dependence conditions on the heavy-tailed stationary

process (Xt), the seminal paper Davis and Hsing (1995) developed a general theory for the

weak convergence of these point processes.

Different distributional behavior of functions acting on heavy-tailed stationary sequences

can also be observed on the magnitude of the ruin probabilities P (supn≥1(Sn − c n) > u)

as u→∞, for a constant c > 0 and assuming that the random walk Sn = X1 + · · ·+Xn,

n ≥ 1, is driftless. These probabilities were studied for linear processes with regularly vary-

ing innovations, solutions to stochastic recurrence equations and infinite variance stable

processes. See for example Mikosch and Samorodnitsky (2000a), Mikosch and Konstan-
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tinides (2005) and Mikosch and Samorodnitsky (2000b). In this context, the study of large

deviation probabilities P (Sn > xn) → 0 for suitable choices of xn → ∞ is crucial for

the understanding of the very different ruin probabilities of distinct heavy-tailed processes

(Xt).

Distinct distributional behavior of functions acting on stationary sequencees (Xt) sheds

light on the dependence structure of these sequences. In a sense, these results yield qualita-

tive and quantitative indicators which measure certain aspects of the dependence structure,

far beyond covariances and correlations. This aspect is particularly important in the case

of heavy-tailed sequences, where covariances and correlations are less meaningful.

As a final example of a functional acting on a heavy-tailed sequence (Xt) we mention the

maximum increment of a random walk (Sn). For an iid sequence with regularly varying

tails, Mikosch and Račkauskas (2010) studied the asymptotic behavior of the quantities

max
1≤l≤n

(f(l))−1 max
0≤k≤n−l

|Sk+l − Sk| , n ≥ 1 , (3.1.1)

for suitable choices of non-decreasing sequences (f(l)). They gave conditions under which

the distributions of (3.1.1) converge weakly to a Fréchet distribution, i.e. one of the ex-

treme value distributions. The purpose of this chapter is to investigate (3.1.1) and related

functionals for dependent stationary sequences (Xt). As in the case of maxima, sample au-

tocovariances, ruin and large deviation probabilities, a natural candidate of a heavy-tailed

stationary sequence (Xt) is given by a linear process

Xt =
∞∑
j=0

ψj Zt−j , t ∈ Z , (3.1.2)

for an iid regularly varying sequence (Zt), i.e. a generic element Z of this sequence2 satisfies

the tail balance condition

P (Z > x) = p̃ x−α L(x) and P (Z ≤ −x) = q̃ x−α L(x) , x→∞ , (3.1.3)

where L is a slowly varying function, α > 0 is the index of regular variation and p̃, q̃ ≥ 0,

p̃ + q̃ = 1. We refer to Z as a regularly varying random variable. It is well known (see

e.g. Embrechts et al. (1997)) that, under conditions on (ψj) ensuring the a.s. convergence

of the infinite series in (3.1.2), the relations P (X > x) ∼ c+P (Z > x) and P (X ≤ −x) ∼
c−P (Z ≤ −x) as x → ∞ hold for constants c− and c+ depending on α and (ψj); see also

Lemma 3.2.2 below. Using a truncation of the infinite series in (3.1.2) and the techniques

2Here and in what follows, we denote by X a generic element of any strictly strictly stationary sequence

(Xt).
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from Mikosch and Račkauskas (2010), in Section 3.4 we derive a Fréchet limit distribution

for the maximum increment functional (3.1.1). For the derivation of this result we make

heavy use of the linear structure of (Xt). For linear processes, this approach is similar to the

investigation of maxima, sample autocovariances, ruin and large deviation probabilities.

On the other hand, Davis and Hsing (1995) provided some extreme value theory for very

general strictly stationary sequences with regularly varying finite-dimensional distributions.

This theory is less suited for linear processes but it is applicable to sequences which satisfy

certain mixing conditions. In Section 3.5 we exploit this theory together with a continuous

mapping argument to derive an asymptotic theory for the functional (3.1.1) for general

strictly stationary regularly varying sequences. The limit of (3.1.1) will again be a Fréchet

distribution. We apply these results to two standard financial time series models: the

GARCH and heavy-tailed stochastic volatility models.

The chapter is organized as follows. In Section 3.2.1 we introduce notions such as regular

variation of a random vector and a regularly varying sequence. In Section 3.2.2 we give

some background on linear processes, including conditions for their existence as well as

some results on their limiting behavior in case of a regularly varying noise sequence. In

Section 3.3 we recall the results from Mikosch and Račkauskas (2010). They describe

the distributional limit behavior of the maximum increment and of related quantities of a

random walk with iid regularly varying jump sizes. This result serves as a benchmark in

the case of dependent jump sizes. In Section 3.4 we treat the maximum increment of a

random walk with jump sizes given by a linear process with regularly varying innovations.

In Section 3.5 we consider the maximum increment of a random walk for a general strictly

stationary sequence, but we assume certain mixing conditions.

3.2 Preliminaries and Notation

3.2.1 Regular Variation of Random Elements and Stationary

Sequences

In this chapter, we describe the heavy distributional tails of a sequence of random variables

by the notion of regular variation. For a real-valued random variable Z, this notion was

made precise in (3.1.3). However, we will also need regular variation of random vectors: An

Rd-valued random vector Z is said to be regularly varying with index α > 0 if there exist a

non-null Radon measure µ on the Borel σ-field B0 of Rd

0 = Rd\{0}, where R = R∪{∞,−∞}
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and a non-decreasing sequence (an) of positive numbers such that

nP (a−1
n Z ∈ ·) v−→ µ(·), (3.2.1)

where
v−→ denotes vague convergence. A detailed introduction to vague convergence and

regular variation has been given in Section 2.1. See also Kallenberg (1983) and Resnick

(1987) for details on vague convergence and Resnick (1987), Hult and Lindskog (2005) and

Basrak and Segers (2009) for more reading on regular variation. The sequence (an) can

always be chosen as

an = inf{x ≥ 0 : P (|Z| ≤ x) ≥ 1− n−1} , n ≥ 1 ,

and the measure µ necessarily satisfies the relation µ(t·) = t−αµ(·) for any t > 0.

The defining property (3.2.1) can be equivalently expressed in spherical coordinates:

P (|Z| > xu, Z/|Z| ∈ ·)
P (|Z| > x)

w−→ u−αP (Θ ∈ ·), u > 0 , x→∞, (3.2.2)

where the random vector Θ assumes values in the unit sphere Sd−1 = {x ∈ B : ‖x‖ = 1} of

Rd. The distribution of Θ is called the spectral measure of Z. For d = 1, (3.2.2) coincides

with (3.1.3).

The strictly stationary sequence (Xt) of real-valued random variables is said to be regu-

larly varying with index α > 0 if for every d ≥ 1 the vector Zd = (X1, . . . , Xd) is regularly

varying with index α and limiting measure µd, where for all d ≥ 1 the sequence (an) is

chosen such that nP (|X| > an) → 1. A simple example of a regularly varying sequence

with index α > 0 is an iid sequence (Xt), where X is regularly varying with index α. The

limiting measures µd are then concentrated on the axes. More complicated examples of

regularly varying sequences (Xt) will be considered in the following sections.

3.2.2 Linear Processes

In this section, we introduce linear processes and state some useful results regarding their

existence and limit behavior.

Definition 3.2.1 (Linear Process). Let (ψj) be a sequence of real numbers and let (Zt)

be a noise sequence of iid real-valued random variables. If the process (Xt) given by

Xt =
∞∑
j=0

ψj Zt−j

exists for all t ∈ Z, it is called a linear process (or Moving Average of infinite order).
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In this chapter we will especially consider the case where the generic element Z of the

iid noise sequence (Zt) is regularly varying with index α > 0. If Xt is a genuine infinite

series one needs to verify whether the series (3.1.2) converges a.s., and this condition has

to be reconciled with the regular variation of Z. In the following lemma we give sufficient

conditions for the a.s. convergence and regular variation of Xt, see e.g. Embrechts et al.

(1997), Section A3.3. Similar conditions have also been given by Cline (1983), but they can

be weakened by condition (3.2.3) below, which is taken from Mikosch and Samorodnitsky

(2000a). This condition is close to those dictated by the 3-series theorem.

Lemma 3.2.2. Let (Zt) be an iid sequence of regularly varying random variables with

index α > 0 satisfying the tail balance condition (3.1.3) and, if α > 1, EZ = 0. Moreover,

assume

∞∑
i=0

|ψi|p <∞, (3.2.3)

where p = 2 for α > 2 and p = α − δ for some δ > 0 for α ≤ 2. Then the series (3.1.2)

converges a.s., Xt is regularly varying with index α > 0 and the following relation holds

lim
x→∞

P (X > x)

P (|Z| > x)
=
∞∑
i=1

(
p̃ (ψj)

α
+ + q̃ (ψj)

α
−

)
.

We mention that the linear process (Xt) with regularly varying innovation sequence is

then also regularly varying (see e.g. Hult and Samorodnitsky (2008), where this is proved

for multivariate linear processes with random coefficients). However, this property will not

be crucial in the sequel.

The limit theory for linear processes with a regularly varying noise sequence has been

developed by Davis and Resnick (1985). It is based on a point process result adapted to

the special setting of regularly varying linear processes. Therefore, denote by Mp(E) the

space of all point measures on the space E and let ϑ be the measure on (0,∞) × R\{0}
given by

ϑ(dt, dx) = dt× (α p̃ x−α−11(0,∞)(x) dx+ α q̃ (−x)−α−11(−∞,0)(x) dx),

where p̃ and q̃ are given by the tail balance condition (3.1.3). For details on point processes,

we refer to Section 2.2.

Theorem 3.2.3 (Davis and Resnick (1985), Theorem 2.4). Let (Xt), t ∈ Z, be a

linear process that exists with respect to Lemma 3.2.2 and let the noise sequence (Zt) be
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regularly varying, i.e. the tail balance condition (3.1.3) is satisfied and there exists a positive

sequence (an) such that (3.2.1) holds. Additionally, assume that (3.2.3) holds for p = 1

and that {(tk, jk)}, k ∈ Z, are the points of a PRM(ϑ) on (0,∞)× R\{0}.

(i) In Mp((0,∞)× R\{0}) it holds, as n→∞,

∞∑
k=1

ε(k/n, Xk/an)
d−→
∞∑
i=0

∞∑
k=1

ε(tk, jkψi).

(ii) In Mp((0,∞)× Rl+1\{(0, 0, . . . , 0)}) we have, as n→∞,

∞∑
k=1

ε(k/n, (Xk,Xk−1,...,Xk−l)/an)
d−→
∞∑
i=0

∞∑
k=1

ε(tk, jk(ψi,ψi−1,...,ψi−l))

for any l ∈ N.

The theorem can now be used to derive several properties of the linear process. In par-

ticular, the joint limit distribution function of the sample maxima Mn = max{X1, . . . , Xn}
and the sample minima Wn = min{X1, . . . , Xn} can be given. Set

ψ+ = max
j≥0
{ψj ∨ 0} and ψ− = max

j≥0
{−ψj ∨ 0}.

Theorem 3.2.4 (Davis and Resnick (1985), Theorem 3.2). Again, let (Xt), t ∈ Z,

be a linear process that exists with respect to Lemma 3.2.2 and let the noise sequence (Zt)

be regularly varying, i.e. the tail balance condition (3.1.3) is satisfied and there exists a

positive sequence (an) such that (3.2.1) holds. Then for all x, y ∈ R, as n→∞,

P
(
a−1
n Mn ≤ x, a−1

n Wn ≤ y
)
→ Gp̃(x,∞)Gq̃(∞, x)−Gp̃(x,−y)Gq̃(−y, x),

where

G(x, y) =

{
exp(−ψα+ x−α) ∧ exp(−ψα− y−α) if x > 0 and y > 0,

0 otherwise.

Theorem 3.2.4 directly leads to a result for a limit distribution of Mn.

Corollary 3.2.5. Under the setting of Theorem 3.2.4, we have

P
(
a−1
n Mn ≤ x

)
→ Φα

(
x

ψα+ p̃+ ψα− q̃

)
,

where Φα(x) = exp{−x−α}, x > 0, denotes the Fréchet distribution function .
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Proof. The result follows from the observation

P
(
a−1
n Mn ≤ x

)
= P

(
a−1
n Mn ≤ x, a−1

n Wn ≤ ∞
)
.

2

Similarly, maxima of absolute values can be considered. Therefore, define the absolute

sample maxima by M̃n = max{|X1|, . . . , |Xn|} and set ψ = maxj≥0 |ψj|.

Corollary 3.2.6. Suppose that the conditions of Theorem 3.2.4 hold. Then

P
(
a−1
n M̃n ≤ x

)
→ Φα

(
x

ψ

)
= Φψα

α (x),

where Φ again denotes the Fréchet distribution function.

Proof. We observe that ψ = ψ+ ∨ ψ− and calculate

P
(
a−1
n M̃n ≤ x

)
= P

(
a−1
n Mn ≤ x, a−1

n Wn ≥ −x
)

= P
(
a−1
n Mn ≤ x

)
− P

(
a−1
n Mn ≤ x, a−1

n Wn < −x
)

= Gp̃(x, x)Gq̃(x, x)

=
(
e−p̃ ψ

α
+ x
−α ∧ e−p̃ ψα− x−α

)(
e−q̃ ψ

α
+ x
−α ∧ e−q̃ ψα− x−α

)
= e−p̃ (ψα+∨ψα−)x−α e−q̃ (ψα+∨ψα−)x−α

= e−ψ
α x−α .

2

Several other limit results can be obtained as consequences of Theorem 3.2.3, e.g. conver-

gence to extremal processes, convergence of the point process of exceedances to compound

Poisson processes etc. For details we refer to Davis and Resnick (1985), Section 3. Limit

results for covariance and correlation functions of linear processes with regularly varying

noise can also be found in Davis and Resnick (1986).

3.3 Random Walks with Independent Jump Sizes

In Mikosch and Račkauskas (2010) the limit distribution of the maximum increment of a

random walk with iid regularly varying Banach-valued jump sizes was studied. We recall

some of the results as a benchmark for the case of dependent jump sizes, but we restrict

ourselves to real-valued random variables Xt.

For an iid sequence (Xt) of random variables we define the corresponding random walk

S0 = 0 and Sn = X1 + · · ·+Xn for n ≥ 1,

and (Xn) denotes the corresponding sequence of the sample means.
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Definition 3.3.1 (Maximum Increment). The maximum increment of the random

walk (Sn) is given by the quantity

M̃ (γ)
n := max

1≤l≤n
(f(l))−1 max

0≤k≤n−l
|Sk+l − Sk| , n ≥ 1 , (3.3.1)

and by the corresponding centered version

T̃ (γ)
n := max

1≤l≤n
(f(l(1− l/n)))−1 max

0≤k≤n−l
|Sk+l − Sk − lXn| , n ≥ 1, (3.3.2)

we denote the centered maximum increment of (Sn).

The functions f are chosen from the class Fγ, γ ≥ 0, given by

Fγ :=
{
f : f is a non-decreasing function on [0,∞), f(1) = 1, f(l) ≥ lγ for l ≥ 1 and

for any increasing sequence (dn) of positive numbers such that d2
n/n→ 0,

the following relation holds lim
n→∞

inf
1≤l≤dn

f(l(1− l/n))/f(l) = 1
}
.

The class Fγ, γ > 0, contains the functions f(x) = xγ
′
for γ′ ≥ γ, and f(x) = xγ logβ(1+x)

for β > 0.

The main result of Mikosch and Račkauskas (2010) in the case of real-valued random

variables is the following.

Theorem 3.3.2 (Mikosch and Račkauskas (2010), Theorem 2.2). Let (Xt) be a

sequence of iid random variables which are regularly varying with index α > 0. In addition,

assume EX = 0 if E |X| < ∞. Then, for f ∈ Fγ, γ > max(0, 0.5 − α−1), with the

normalizing sequence (an) chosen such that nP (|X| > an)→ 1,

lim
x→∞

P (a−1
n M̃ (γ)

n ≤ x) = Φα(x) , x > 0 ,

lim
x→∞

P (a−1
n T̃ (γ)

n ≤ x) = Φα(x) , x > 0 ,

where Φα(x) = exp{−x−α}, x > 0, denotes the Fréchet distribution function.

Remark 3.3.3. It is known from classical extreme value theory (e.g. Section 2.1.2 or

Embrechts et al. (1997), Chapter 3) that regular variation of |X| is necessary and suf-

ficient for the convergence in distribution of the sequence of normalized partial maxima

(a−1
n maxi=1,...,n |Xi|) towards a Φα-distributed random variable. Hence, for l ≥ 2 the nor-

malized random walk increments a−1
n (f(l))−1 max0≤k≤n−l |Sk+l − Sk| do not contribute to

the limits of a−1
n M̃

(γ)
n in Theorem 3.3.2.
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Remark 3.3.4. The results in Mikosch and Račkauskas (2010) are sharp in the following

sense. If f(l) = lγ for some γ < 0.5 − α−1 and some α > 2, then an application of the

invariance principle in Hölder space yields

n−0.5+γM̃ (γ)
n

d→ sup
s,t∈[0,1],s 6=t

|W (t)−W (s)|
|t− s|γ

,

where W is a Brownian motion on [0, 1]; see Račkauskas and Suquet (2006).

One of the original motivating ideas for considering limit theory for statistics of the type

M̃
(γ)
n or T̃

(γ)
n was to use these statistics for detecting epidemic changes in a sample. We

refer to the monograph Csörgö and Horváth (1997) as a general reference to change point

problems and the recent papers Račkauskas and Suquet (2004) and Račkauskas and Suquet

(2006) for advanced limit theory in the context of epidemic changes.

Besides M̃
(γ)
n and T̃

(γ)
n , several one-sided characteristics have also been discussed in

Mikosch and Račkauskas (2010). Define

M (γ)
n := max

1≤l≤n
(f(l))−1 max

0≤k≤n−l
(Sk+l − Sk) and

r(γ)
n := min

1≤l≤n
(f(l))−1 min

0≤k≤n−l
(Sk+l − Sk).

Theorem 3.3.5 (Mikosch and Račkauskas (2010), Theorem 2.10). Let (Xt) be a

sequence of iid real-valued random variables with common distribution function F which

is regularly varying with index α > 0 in the sense of (3.1.3) and assume EX = 0 if

E |X| < ∞. Then, for bn = p̃ 1/αan, where (an) is chosen such that nP (|X| > an) → 1,

f ∈ Fγ and γ > max(0, 0.5− α−1)

lim
n→∞

P
(
b−1
n r(γ)

n ≤ −x, b−1
n M (γ)

n ≤ y
)

= Φα(y)
(
1− Φp̃/q̃

α (x)
)
,

where x, y > 0.

One can also consider the centered characteristic

T̂ (γ)
n := max

1≤l≤n
(l(1− l/n))−γ max

0≤k≤n−l
(Sk+l − Sk − lXn)

which is the one-sided version of T̃
(γ)
n .

Theorem 3.3.6 (Mikosch and Račkauskas (2010), Theorem 2.12). Let (Xt) be a

sequence of iid real-valued random variables with common distribution function F which

is regularly varying with index α > 0 in the sense of (3.1.3) and assume EX = 0 if
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E |X| < ∞. Then, for bn = p̃ 1/αan, where (an) is chosen such that nP (|X| > an) → 1,

γ > max(0, 0.5− α−1) and x > 0

lim
n→∞

P
(
b−1
n T̂ (γ)

n ≤ x
)

= Φα(x).

A symmetric version with similar structure than M̃
(γ)
n can be given by

M̂ (γ)
n := max

1≤l≤n
(f(l)))−1 max

l+1≤k≤n−l
(Sk+l − Sk−l − 2Sk).

As the random variables Sk+l − Sk−l − 2Sk are symmetric, the condition EX = 0 can be

dropped.

Theorem 3.3.7 (Mikosch and Račkauskas (2010), Theorem 2.13). Let (Xt) be a

sequence of iid real-valued random variables with common distribution function F which is

regularly varying with index α > 0 in the sense of (3.1.3). Then, for (an) chosen such that

nP (|X| > an)→ 1, f ∈ Fγ and γ > max(0, 0.5− α−1)

lim
n→∞

P
(
a−1
n M̂ (γ)

n ≤ x
)

= Φ2
α(x),

where x > 0.

3.4 Random Walks with Linearly Dependent Jump Sizes

3.4.1 The Jump Size is a Finite Moving Average

In this section, we derive the limit distribution of the quantities M̃
(γ)
n and T̃

(γ)
n defined in

(3.3.1) and (3.3.2), respectively, for a moving average of finite order q, i.e.

Xt = X
(q)
t =

q∑
i=1

ψiZt−i , t ∈ Z , (3.4.1)

for an iid sequence (Zt). The following result is the analog of Theorem 3.3.2 for moving

averages.

Theorem 3.4.1. Let (Xt) be a moving average process of order q > 1 with an iid noise

sequence (Zt) of regularly varying random variables with index α > 0. If E |Z| < ∞ we

also assume EZ = 0. Then, for f ∈ Fγ, γ > max(0, 0.5 − 1/α), the following relations

hold:

lim
n→∞

P (a−1
n M̃ (γ)

n ≤ x) = Φ
mαq
α (x), x > 0, (3.4.2)
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lim
n→∞

P (a−1
n T̃ (γ)

n ≤ x) = Φ
mαq
α (x), x > 0, (3.4.3)

where Φα again denotes the Fréchet distribution, (an) is chosen such that nP (|Z| > an)→
1 and

mq := max
1≤l≤q

max
1≤k≤q−l+1

|ψk,k+l−1|
f(l)

with ψi,j :=

j∑
k=i

ψk, for 1 ≤ i ≤ j ≤ q.

The proofs of this and the other results of this section will be given in Section 3.4.3.

Remark 3.4.2. For γ ≥ 1, we have l/f(l) ≤ 1, l ≥ 1, and then direct calculation shows

that
Sk+l − Sk
f(l)

=
Xk+1 + · · ·+Xk+l

f(l)
≤ lmax1≤i≤lXk+i

f(l)
≤ max

1≤i≤l
Xk+i

for all 1 ≤ l ≤ n, 0 ≤ k ≤ n − l and thus M̃
(γ)
n = maxt=1,...,n |Xt|. Hence, it follows from

Davis and Resnick (1985) that lim
n→∞

P (a−1
n M̃

(γ)
n ≤ x) = Φ

ψαq
α (x) , where ψq = maxq≥i≥1 |ψi|.

This is in agreement with (3.4.2), since, for γ ≥ 1,

max
1≤k≤q

|ψk| = max
1≤k≤q

(f(1))−1|ψk| ≤ mq ≤ max
1≤l≤q

(l/f(l)) max
1≤k≤q

|ψk| = max
1≤k≤q

|ψk| .

A corresponding remark applies to (3.4.3).

Similar to Section 3.3, it is also possible to derive results for quantities based on the

one-sided increments of a random walk, for example,

M (γ)
n := max

1≤l≤n
(f(l))−1 max

0≤k≤n−l
(Sk+l − Sk) ,

r(γ)
n := min

1≤l≤n
(f(l))−1 min

0≤k≤n−l
(Sk+l − Sk) ,

T (γ)
n := max

1≤l≤n
f(l(1− l/n))−1 max

1≤k≤n−l
(Sk+l − Sk − lXn) .

Theorem 3.4.3. Assume the conditions of Theorem 3.4.1. Choose (bn) such that nP (Z >

bn)→ 1, where we also assume that p̃ > 0. Then, for f ∈ Fγ, γ > max(0, 0.5− 1/α) and

x, y > 0, the following limit relations hold

lim
n→∞

P
(
b−1
n r(γ)

n ≤ −x , b−1
n M (γ)

n ≤ y
)

= Φ(m+
q )α

α (y)
(
1− Φ(q̃/p̃)(m−q )α

α (x)
)
,

lim
n→∞

P (b−1
n T (γ)

n ≤ x) = Φ(m+
q )α

α (x) ,

where

m+
q = max

1≤l≤q
max

1≤k≤q−l+1

(ψk,k+l−1)+

f(l)
,

m−q = max
1≤l≤q

max
1≤k≤q−l+1

(ψk,k+l−1)−
f(l)

.
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3.4.2 The Jump Sizes Constitute a Linear Process

In this section we analyze the limit distribution of the maximum increment of a random

walk whose jump sizes constitute an infinite order moving average, i.e. q = ∞ in (3.4.1).

Then the limit distributions of M̃
(γ)
n and T̃

(γ)
n are not straightforward consequences of

Theorem 3.4.1 by simply letting q →∞.

Throughout we assume that the infinite series Xt in (3.4.1) is finite a.s.; Lemma 3.2.2

provides sufficient conditions. In what follows, we assume additional conditions on the

coefficients (ψj):

∞∑
j=3

|ψj|`(j) <∞, (3.4.4)

where

`(j) =

{
(j log log j)1/2 if var(Z) <∞
j1/p for some p < α if α < 2 or α = 2 and var(Z) =∞.

In view of Lemma 3.2.2, (3.4.4) implies the a.s. convergence of the series Xt for α > 1 if in

addition EZ = 0.

Theorem 3.4.4. Let (Xn) be a linear process (3.1.2) with iid regularly varying noise se-

quence (Zt) with index α > 0. If E |Z| < ∞ we also assume EZ = 0. Furthermore,

assume (3.4.4), and if α ≤ 1 also
∑∞

j=0 |ψj|α−δ < ∞ for some δ < α. Then for f ∈ Fγ,

γ > max(0, 0.5− 1/α) we have

lim
n→∞

P (a−1
n M̃ (γ)

n ≤ x) = Φmα∞
α (x), x > 0, (3.4.5)

lim
n→∞

P (a−1
n T̃ (γ)

n ≤ x) = Φmα∞
α (x), x > 0 , (3.4.6)

where

m∞ := lim
q→∞

mq = max
l≥1

max
k≥1

|ψk,k+l−1|
f(l)

.

Remark 3.4.5. From the proofs of Theorems 3.4.1, 3.4.3 and 3.4.4 it is straightforward

that Theorem 3.4.3 extends to the infinite order moving average case as well provided

the conditions of Theorem 3.4.4 for (ψj) are satisfied and the constants m+
q and m−q are

replaced by

m+
∞ = lim

q→∞
m+
q = max

l≥1
max
k≥1

(ψk,k+l−1)+

f(l)
and m−∞ = lim

q→∞
m−q = max

l≥1
max
k≥1

(ψk,k+l−1)−
f(l)

,

respectively.
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Remark 3.4.6. In the case γ ≥ 1, a remark corresponding to Remark 3.4.2 can be given.

Again we have l/f(l) ≤ 1, l ≥ 1, and thus M̃
(γ)
n = maxt=1,...,n |Xt|. Now it follows from

Corollary 3.2.6 that lim
n→∞

P (a−1
n M̃

(γ)
n ≤ x) = Φψα

α (x) , where ψ = maxi≥1 |ψi|. On the other

hand,

ψ = max
k≥1

(f(1))−1|ψk| ≤ m∞ ≤ max
l≥1

(l/f(l)) max
k≥1
|ψk| = max

k≥1
|ψk| = ψ

and hence, the result of (3.4.5) coincides with the classical results of Davis and Resnick

(1985).

We mention in passing that Juodis et al. (2009) and Račkauskas and Suquet (2010)

proved functional central limit theorems in Hölder space for partial sum processes of linear

processes. Results of this type yield limits for M̃
(γ)
n and T̃

(γ)
n when α > 2 and γ < 0.5−α−1.

The mentioned results show that the statements of Theorem 3.4.4 are sharp in the sense

that different limit distributions appear when the normalizing functions f(l) increase too

slowly.

3.4.3 Proofs

Proof of Theorem 3.4.1

The proof uses arguments similar to the ones in the proof of Theorem 2.2 in Mikosch

and Račkauskas (2010). Lemma 3.4.7 in this section replaces Lemma 2.4 in Mikosch and

Račkauskas (2010).

Lemma 3.4.7. Assume the conditions of Theorem 3.4.1 hold for (Zt) and (Xt). Then the

following statements hold.

(1) For any f ∈ Fγ, γ ≥ 0 and h ≥ 1,

lim
n→∞

P
(
a−1
n max

1≤l≤h
(f(l))−1 max

0≤k≤n−l
|Sk+l − Sk| ≤ x

)
= Φ

mαq,h
α (x),

where

mq,h := max
1≤l≤h∧q

max
1≤k≤q−l+1

|ψk,k+l−1|
f(l)

.

(2) For any δ > 0 and f ∈ Fγ, γ > max{0, 0.5− α−1},

lim
h→∞

lim sup
n→∞

P

(
max
h≤l≤n

(f(l))−1 max
0≤k≤n−l

|Sk+l − Sk| > δan

)
= 0.
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Remark 3.4.8. Notice that for h ≥ q, mq,h = mq as defined in Theorem 3.4.1.

Proof. (1) The proof uses arguments from the proof of Lemma 2.4(1) in Mikosch and

Račkauskas (2010) and a continuous mapping argument for point processes, going back to

Davis and Resnick (1985). Write Mp(E) for the set of point measures on a Borel state

space E of some Euclidean space, and equip Mp(E) with the vague topology. Introduce

the point processes

Ñ (h)
n :=

n∑
t=1

εa−1
n (Zt−q ,Zt−q+1,...,Zt+h−2) and N (h)

n :=
n∑
t=1

εa−1
n (Xt,Xt+Xt+1,...,Xt+···+Xt+h−1) ,

on Mp(R
q+h−1

0 ) and Mp(R
h

0), respectively. It follows from Theorem 2.2.11 that

Ñ (h)
n

d−→ Ñ (h) :=

q+h−1∑
k=1

∞∑
i=1

εJiek , n→∞ ,

where (Ji) are the points of a Poisson random measure on R0 with intensity

α|x|α−1[p̃1(0,∞](x) + q̃ 1[−∞,0)(x)]dx

and ek is the kth unit vector in Rq+h−1. According to the proof of Theorem 2.4 in Davis

and Resnick (1985), the continuous function

(Zt−q, Zt−q+1, . . . , Zt+h−2) 7→

(
t∑

k=t

q∑
i=1

ψiZk−i,
t+1∑
k=t

q∑
i=1

ψiZk−i, . . . ,
t+h−1∑
k=t

q∑
i=1

ψiZk−i

)
= (Xt, Xt +Xt+1, . . . , Xt + · · ·+Xt+h−1),

induces a continuous mapping on the limit relation Ñ
(h)
n

d→ Ñ (h), resulting in the following

convergence in Mp(R
h

0)

N (h)
n

d→ N (h) =

q∑
k=2−h

∞∑
i=1

εJi(ψ1∨k,q∧k, ψ1∨k,q∧(k+1), ... , ψ1∨k,q∧(k+h−1)) , (3.4.7)

where we set ψi,j = 0 if j < 1. As in Mikosch and Račkauskas (2010) we write for l ≥ 1,

M̃nl = max
0≤k≤n

|Sk+l − Sk| and introduce the sets

Bf (y) :=
{

(x1, . . . , xh) ∈ Rh
0 : |xi| ≤ yf(i) for i = 1, . . . , h

}
, y > 0 .

Write J = supi≥1 |Ji|. It follows from (3.4.7) and the monotonicity of f that

P (a−1
n max

1≤l≤h
(f(l))−1M̃nl ≤ y) =
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= P (a−1
n M̃n1 ≤ yf(1), . . . , a−1

n M̃nh ≤ yf(h))

= P (N (h)
n ((Bf (y))c) = 0)

→ P (N (h)((Bf (y))c) = 0)

= P
(
J max

1≤k≤q
|ψ1∨k,q∧k| ≤ yf(1), J max

0≤k≤q
|ψ1∨k,q∧(k+1)| ≤ yf(2), . . . ,

J max
2−h≤k≤q

|ψ1∨k,q∧(k+h−1)| ≤ yf(h)
)

= P (J ≤ y/mq,h)

= Φα(y/mq,h).

This concludes the proof of the first statement.

(2) Let (S̃n)n≥0 denote the random walk generated by the iid sequence (Zt). Observe that

for 1 ≤ l ≤ n and some constant c > 0 depending on (ψj), using the stationarity of the iid

sequence (Zt),

max
h≤l≤n

max
k≤n−l

|Sk+l − Sk| ≤ c max
h≤l≤n

max
k≤n−l

max
1≤i≤q

∣∣∣ k+l∑
j=k+1

Zj−i

∣∣∣
d
= c max

h≤l≤n
max
k≤n−l

max
1≤i≤q

|S̃k+q−i+l − S̃k+q−i|

≤ c max
h≤l≤n

max
0≤k≤n+q−l

|S̃k+l − S̃k| .

An application of Lemma 2.4(2) in Mikosch and Račkauskas (2010) yields that for every

δ > 0,

lim
h→∞

lim sup
n→∞

P
(

max
h≤l≤n

max
0≤k≤n−l

|Sk−l − Sk| > δan

)
≤

≤ lim
h→∞

lim sup
n→∞

P
(

max
h≤l≤n+q

max
0≤k≤n+q−l

|S̃k+l − S̃k| > anδ
)

= 0.

This concludes the proof of the lemma.

2

Relation (3.4.2) is now a straightforward consequence of Lemma 3.4.7.

For the proof of (3.4.3), we can use the following lemma which is an application of the

Remarks 2.5 and 2.6 of Mikosch and Račkauskas (2010) to the setting of finite moving

averages. It shows the connection between the limit distributions of M̃
(γ)
n and T̃

(γ)
n that we

need for the proof of (3.4.3).
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Lemma 3.4.9. Let (Xn) be the Moving Average process of order q <∞ and let

ζ(γ)
n := max

1≤l≤n
f(l)−1 max

0≤k≤n−l
|Sk+l − Sk − lXn|.

(1) If γ ≥ 1, we obtain

M̃ (γ)
n = max

1≤k≤n
|Xk| and ζ(γ)

n = max
1≤k≤n

|Xk −Xn|

and thus the relations (3.4.2) and (3.4.3) are trivially satisfied.

(2) If the assumptions of Theorem 3.4.1 hold, then the sequences a−1
n M̃

(γ)
n and a−1

n ζ
(γ)
n

have the same limit distribution.

Proof. (1) Using the assumption γ ≥ 1 and the property f(l) ≥ lγ we conclude

max
1≤k≤n

|Xk −Xn| ≤ max
1≤l≤n

f(l)−1 max
0≤k≤n−l

|Sk+l − Sk − lXn|

= ζ(γ)
n

≤ max
1≤l≤n

f(l)−1 max
0≤k≤n−l

k+l∑
i=k+1

|Xi −Xn|

≤ max
1≤l≤n

f(l)−1l max
1≤k≤n

|Xk −Xn|

≤ max
1≤k≤n

|Xk −Xn|

and likewise for M̃
(γ)
n , see also Remark 3.4.2. Then (3.4.2) follows by classical extreme

value theory for Moving Averages, see Resnick (1987), Chapter 4.5, and Davis and Resnick

(1985), and (3.4.3) follows in view of the proof of Lemma 3.4.9 (2).

(2) We make use of the relation

∣∣∣Xn

∣∣∣ =
∣∣∣ q∑
i=1

ψi
1

n

n∑
j=1

Zj−i

∣∣∣ ≤ ( q∑
i=1

|ψi|

)
max
1≤i≤q

∣∣∣ 1
n

n∑
j=1

Zj−i

∣∣∣.
Since 1/n

∑n
j=1 Zj−i has the same distribution as Zn for all i = 1, . . . , q, we can follow

the argumentation of Mikosch and Račkauskas (2010), Remark 2.6, which shows that

a−1
n |Zn|

P−→ 0 in the case γ ≥ 1 and a−1
n max1≤l≤n l1−γ|Zn|

P−→ 0 for γ ∈ (0, 1).

2

This concludes the proof of (3.4.3), since the same arguments as in the iid case apply,

using that (Xt) is a finite moving average process.
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Proof of Theorem 3.4.3

The proof is similar to the one of Theorem 3.4.1. We focus on the proof of the joint limit

of b−1
n (r

(γ)
n ,M

(γ)
n ).

Lemma 3.1 in Mikosch and Račkauskas (2010) is still valid if we substitute an by bn. The

only difference is that we get a slightly different limiting Poisson random measure with

mean measure µ given by µ(dx) = α|x|−α[1(0,∞)(x) + (q̃/p̃)1[−∞,0)(x)]dx. Now we follow

the proof of Lemma 3.4.7, replace (an) by (bn) everywhere and use the same notation.

Write

Bf (x, y) :=
{

(z1, . . . , zh) ∈ Rh : −xf(i) ≤ zi ≤ yf(i) for i = 1, . . . , h
}
, x, y > 0 .

We obtain

P (N (h)
n ((Bf (x, y))c) = 0) =

= P
(
b−1
n max

1≤l≤h
(f(l))−1 max

0≤k≤n−l
(Sk+l − Sk) ≤ y, b−1

n min
1≤l≤h

(f(l))−1 min
0≤k≤n−l

(Sk+l − Sk) ≥ −x
)

→ P (N (h)((Bf (x, y))c) = 0)

= e−µ
(

(−∞,−x/m−q,h)∪(y/m+
q,h,∞)

)
= Φq̃/p̃

α (x/m−q,h) Φα(y/m+
q,h) ,

where

m+
q,h = max

1≤l≤h∧q
max

1≤k≤q−l+1

(ψk,k+l−1)+

f(l)

and

m−q,h = max
1≤l≤h∧q

max
1≤k≤q−l+1

(ψk,k+l−1)−
f(l)

.

Therefore for x, y > 0,

P
(
b−1
n max

1≤l≤h
(f(l))−1 max

0≤k≤n−l
(Sk+l − Sk) ≤ y, b−1

n min
1≤l≤h

(f(l))−1 min
0≤k≤n−l

(Sk+l − Sk) ≤ −x
)

= P
(
b−1
n max

1≤l≤h
(f(l))−1 max

0≤k≤n−l
(Sk+l − Sk) ≤ y

)
−

P
(
b−1
n max

1≤l≤h
(f(l))−1 max

0≤k≤n−l
(Sk+l − Sk) ≤ y, b−1

n min
1≤l≤h

(f(l))−1 min
0≤k≤n−l

(Sk+l − Sk) > −x
)

→
(
1− Φq̃/p̃

α (x/m−q,h)
)
Φα(y/m+

q,h).

Finally, in view of Lemma 3.4.7(2), and observing that m+
q,h = m+

q and m−q,h = m−q for

large h, we derived the limit distribution of the sequence (b−1
n (r

(γ)
n ,M

(γ)
n )).
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3.4 Random Walks with Linearly Dependent Jump Sizes

Proof of Theorem 3.4.4

For q > 1 write

Xt =

q∑
j=1

ψjZt−j +
∞∑

j=q+1

ψjZt−j.

In the analysis of the quantities M̃
(γ)
n and T̃

(γ)
n , the first term on the right-hand side can

now be controlled by Theorem 3.4.1 when q →∞ and the second term is handled by the

following lemma.

Lemma 3.4.10. Under the assumptions of Theorem 3.4.4, for any δ > 0 and f ∈ Fγ,

γ > max{0, 0.5− α−1},

lim
q→∞

lim sup
n→∞

P
(

max
1≤l≤n

(f(l))−1 max
1≤k≤n

∣∣∣∣ k+l∑
t=k+1

∞∑
j=q+1

ψjZt−j

∣∣∣∣ > δ
)

= 0.

Proof. We have

max
1≤l≤n

(f(l))−1 max
1≤k≤n

∣∣∣∣ k+l∑
t=k+1

∞∑
j=q+1

ψjZt−j

∣∣∣∣
≤ max

1≤l≤n
(f(l))−1 max

1≤k≤n

( n∑
j=q+1

|ψj|
∣∣∣ k+l∑
t=k+1

Zt−j

∣∣∣+
∞∑

j=n+1

|ψj|
∣∣∣ k+l∑
t=k+1

Zt−j

∣∣∣). (3.4.8)

The first maximum expression on the right-hand side of (3.4.8) is bounded by

R(q)
n =

∞∑
j=q+1

|ψj| max
1≤l≤n

(f(l))−1 max
−n≤k≤n

∣∣∣ k+l∑
t=k+1

Zt

∣∣∣ .
In view of the results in Mikosch and Račkauskas (2010) for the maximum increment of

the iid sequence (Zt) and since
∑

j>q |ψj| → 0 as q →∞ we have

lim
q→∞

lim sup
n→∞

P (R(q)
n > δ) = 0 , δ > 0 .

Next we bound the second maximum term on the right-hand side of (3.4.8). For α ≥ 2

and if var(Z) <∞ we can bound this term by

max
1≤l≤n

(f(l))−1 max
1≤k≤n

∞∑
j=n+1

|ψj|
∣∣∣ k+l∑
t=k+1

Zt−j

∣∣∣ ≤
≤ max

1≤l≤n
(f(l))−1 max

1≤k≤n

∞∑
j=n+1

|ψj|
(∣∣∣ 0∑

t=k+1−j

Zt

∣∣∣+
∣∣∣ 1∑
t=k+l−j

Zt

∣∣∣)
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≤ c

∞∑
j=n+1

|ψj|
√
j log log j sup

r≥3

1√
r log log r

(∣∣∣ 0∑
t=−r

Zt

∣∣∣+
∣∣∣ r∑
t=1

Zt

∣∣∣)
= Qn .

By virtue of the law of the iterated logarithm the right-hand supremum is bounded a.s.

Therefore and since (3.4.4) holds, limn→∞ P (Qn > δ) = 0 for δ > 0. This proves the lemma

for α ≥ 2 and var(Z) <∞.

In the cases α < 2 or α = 2, var(Z) = ∞, the argument with the law of the iterated

logarithm is replaced by a Marcinkiewicz-Zygmund strong law of large numbers (see e.g.

Theorem 6.9 in Petrov (1995)) with normalization n1/p for some p < α.

2

The proof of Theorem 3.4.4 now follows by some elementary calculations. Indeed, since

∣∣∣ max
1≤l≤n

(f(l))−1 max
1≤k≤n−l

|Sk+l − Sk| − max
1≤l≤n

(f(l))−1 max
1≤k≤n−l

∣∣∣∣ k+l∑
t=k+1

q∑
j=1

ψjZt−j

∣∣∣∣∣∣∣ ≤
≤ max

1≤l≤n
(f(l))−1 max

1≤k≤n−l

∣∣∣∣ k+l∑
t=k+1

∞∑
j=q+1

ψjZt−j

∣∣∣∣ ,
we can combine Lemma 3.4.10 and Theorem 3.4.1, by first letting n→∞ and then q →∞,

to obtain

lim
n→∞

P (a−1
n M̃ (γ)

n ≤ x) = lim
q→∞

Φα(x/mq) = Φα(x/m∞) .

This concludes the proof of the theorem.

3.5 Random Walks with General Dependent Jump Sizes

In this section we study the maximum increment of a random walk with jump sizes which

constitute a general strictly stationary regularly varying sequence (Xt) with index α > 0. In

contrast to the results in Section 3.4 we do not assume any particular dependence structure

of (Xt). As a compensation, we will need some mixing and anti-clustering conditions. These

conditions are in general hard to verify for a regularly varying linear process with iid noise.

In particular, for such a sequence mixing conditions are in general difficult to check and

sometimes not true.

60



3.5 Random Walks with General Dependent Jump Sizes

3.5.1 General Theory

In what follows, we write M for the collection of Radon counting measures on Rd \ {0},
M̃ is the subset of those measures µ inM for which µ({x : |x| > 1}) = 0 and µ({x : |x| =
1}) > 0. Moreover, B(M̃) is the Borel σ-field of M̃. We recall a result from Davis and

Mikosch (1998), Theorem 2.8, which is a multivariate version of Theorem 2.7 in Davis and

Hsing (1995).

Theorem 3.5.1. Assume that the sequence (Xt) of Rd-valued random variables is reg-

ularly varying with index α > 0 and satisfies the mixing condition A(bn) of Davis and

Hsing (1995), where (bn) is chosen such that nP (|X1| > bn) → 1, and the anti-clustering

condition

lim
h→∞

lim sup
n→∞

P
(
∨h≤|t|≤rn |Xt| > δbn

∣∣∣|X0| > δbn

)
= 0 , δ > 0 , (3.5.1)

holds for a certain sequence rn →∞ such that rn = o(n); see Remark 3.5.2. Then

Nn =
n∑
t=1

εb−1
n Xt

d→ N =
∞∑
i=1

∞∑
j=1

εPiQij ,

where (Pi) are the points of a Poisson process on (0,∞) with intensity measure given by

ν(x,∞) = θ|X|x
−α for x > 0, θ|X| ∈ [0, 1] is the extremal index of the sequence (|Xt|) and∑∞

j=1 εQij , i ≥ 1, constitute an iid sequence of point processes with common distribution Q

on (M̃,B(M̃)), and these point processes are independent of (Pi). The distribution Q is

given in Theorem 2.8 in Davis and Mikosch (1998).

Remark 3.5.2. Condition A(bn) is a rather general mixing condition which is suited for

the purposes of extreme value theory for dependent sequences. This condition follows for

example from strong mixing of (Xt) with geometric rate. The definition of A(bn) involves

the block length rn → ∞ such that rn = o(n). Under strong mixing with geometric rate,

one can choose rn = nγ for any γ ∈ (0, 1). The block length rn also appears in the anti-

clustering condition (3.5.1).

The extremal index of a strictly stationary real-valued sequence is a measure of the ex-

tremal clustering in the sequence; see Leadbetter et al. (1983) and Embrechts et al. (1997),

Section 8.1.

Next we apply Theorem 3.5.1 to the lagged vector sequence X
(h)
t = (Xt, . . . , Xt+h−1),

t ∈ Z, of a real-valued strictly stationary sequence (Xt) for increasing h ≥ 1. Instead of the

normalization (bn) which would depend on the dimension h we choose a sequence (an) such
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Chapter 3 The Maximum Increment of a Random Walk

that nP (|X1| > an) → 1. By regular variation, we have bn/an → ch for certain constants

ch > 0.

Corollary 3.5.3. Assume that (Xt) is regularly varying with index α > 0, satisfies the

mixing condition A(an) of Davis and Hsing (1995), where the sequence (an) is chosen such

that nP (|X1| > an)→ 1, the anti-clustering condition (3.5.1) (with (bn) replaced by (an))

and the extremal index θ|X| is positive. Then

N (h)
n =

n∑
t=1

ε
a−1
n X

(h)
t

d→ N (h) =
∞∑
i=1

∞∑
j=1

ε
P

(h)
i Q

(h)
ij
,

where the limiting quantities were explained in Theorem 3.5.1. The Poisson points (P
(h)
i )

now have an intensity measure given by νh(x,∞) = (θ|X(h)|/ch)x
−α, x > 0.

Now we are ready to formulate a general result.

Theorem 3.5.4. Assume that (Xt) is regularly varying with index α > 0, satisfies the mix-

ing condition A(an) of Davis and Hsing (1995), where (an) is chosen such that nP (|X1| >
an)→ 1, the anti-clustering condition (3.5.1) and θ|X| > 0. If the condition

lim
h→∞

lim sup
n→∞

P ( max
h≤l≤n

(f(l))−1 max
0≤k≤n−l

|Sk+l − Sk| > δan) = 0 , δ > 0 , (3.5.2)

holds for f ∈ Fγ, some γ > 0, then

lim
n→∞

P (a−1
n M̃ (γ)

n ≤ x) = lim
h→∞

P

(
sup
i≥1

P
(h)
i V

(h)
i ≤ x

)
, x > 0 , (3.5.3)

where the iid sequence (V
(h)
i ) is defined in (3.5.5) and independent of the Poisson points

(P
(h)
i ) from Corollary 3.5.3. Moreover, the limit (3.5.3) can be written in the form Φξ

α(x),

x > 0, for some constant ξ > 0.

Proof. A continuous mapping argument (the map acting on the points X
(h)
t is continuous

and maps zero into zero) yields that for any non-decreasing sequence of positive numbers

(f(l)) and h ≥ 1,

n∑
t=1

ε
a−1
n

(
Xt/f(1),(Xt+Xt+1)/f(2),...,,(Xt+···+Xt+h−1)/f(h)

)
d→
∞∑
i=1

∞∑
j=1

ε
P

(h)
i

(
Q

(h,1)
ij /f(1),(Q

(h,1)
ij +Q

(h,2)
ij )/f(2),...,(Q

(h,1)
ij +···+Q(h,h)

ij )/f(h)

) .
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Here Q
(h,k)
ij denotes the kth component of the vector Q

(h)
ij . Hence we may conclude that

for every f ∈ Fγ, γ ≥ 0, and h ≥ 1,

lim
n→∞

P (a−1
n max

1≤l≤h
(f(l))−1 max

1≤k≤n
|Sk+l − Sk| ≤ x) =

= P (sup
i≥1

P
(h)
i max

1≤l≤h
(f(l))−1 sup

j≥1
|Q(h,1)

ij + · · ·+Q
(h,l)
ij | ≤ x) , x > 0 . (3.5.4)

The random variables

V
(h)
i = max

1≤l≤h
(f(l))−1 sup

j≥1
|Q(h,1)

ij + · · ·+Q
(h,l)
ij |, i = 1, 2, . . . , (3.5.5)

constitute an iid sequence independent of the Poisson points (P
(h)
i ). It is well known (see

e.g. de Haan and Ferreira (2006), Corollary 9.4.5) that Yh = supi≥1 P
(h)
i V

(h)
i has a Fréchet

distribution Φξh
α with shape parameter α > 0 and scale factor ξh = E [(V (h))α]θ|X(h)|/ch.

In view of (3.5.4) we have for every h ≥ 1,

Ynh = a−1
n max

1≤l≤h
(f(l))−1 max

1≤k≤n
|Sk+l − Sk|

d→ Yh = sup
i≥1

P
(h)
i V

(h)
i

and the limit has a Fréchet distribution Φξh
α . By virtue of (3.5.2) and Theorem 2 in Dehling

et al. (2009) we conclude that Yh
d→ Y for a random variable Y and a−1

n M̃
(γ)
n

d→ Y . Since

limh→∞Φξh
α exists, the limit ξ = limh→∞ ξh exists as well and Φξ

α is the distribution of Y .

Moreover, ξ is positive since a−1
n maxt=1,...,n |Xt| ≤ a−1

n M
(γ)
n and the sequence on the left-

hand side has the limiting distribution Φ
θ|X|
α with θ|X| positive by assumption; see Davis

and Hsing (1995).

2

3.5.2 The Increment Process is a Process with Multiplicative Noise

In this section we assume that the strictly stationary real-valued process (Xt) has the form

Xt = σt Zt , t ∈ Z , (3.5.6)

where (Zt) is an iid sequence and (σt) is a strictly stationary sequence of non-negative

random variables such that σt and Zt are independent for every t. We mention two popular

specifications of the volatility process (σt).

3.5.2.1 The GARCH Process

The perhaps best known process of type (3.5.6) is a GARCH process introduced in Boller-

slev (1986).
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Definition 3.5.5 (GARCH Process). Let αi, βj ∈ [0,∞) and p, q ∈ N such that αpβq 6=
0. Then the process (Xt) given by (3.5.6) with a volatility process (σt) satisfying the

recursion

σ2
t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j , t ∈ Z . (3.5.7)

is called a GARCH(p,q) process.

In Basrak et al. (2002) one finds general conditions for the existence of a strictly stationary

version of the process Xt = σtZt, i.e. one has to ensure that the recursion (3.5.7) has a

strictly stationary causal solution. These conditions require that α0 > 0, E log+ |Z1| <∞
and negativity of the Lyapunov exponent of a certain matrix whose entries depend on

the Z2
t ’s and the parameters αi and βj. See Basrak et al. (2002), Theorem 3.1(A), for

details and for some simple sufficient conditions for the Lyapunov exponent to be negative.

In the same result a sufficient condition for regular variation of (Xt) is given: Z1 has a

positive density on R and there exists 0 < h0 ≤ ∞ such that E |Z1|h < ∞ for h < h0

and E |Z1|h0 =∞. (If h0 =∞ the latter relation has the interpretation that E |Z1|h →∞
as h → ∞.) It follows from Theorem 3.1(B) in Basrak et al. (2002) that the sequence

((X2
t , σ

2
t )) is regularly varying with some index α/2 > 0. In Basrak et al. (2002) the result

was proved under the additional condition that α/2 is not an even integer. Following the

recent approach in Boman and Lindskog (2009), this additional condition can be dropped.

Then one may follow the proof of Corollary 3.5 in Basrak et al. (2002) to see that, under the

conditions above, ((Xt, σt))t∈Z is a regularly varying sequence with index α. We mention

that in the GARCH(1, 1) case with EZ1 = 0 and EZ2
1 = 1, α is the unique positive solution

to the equation E (α1Z
2
1 + β1)α/2 = 1. The regular variation of the GARCH process is a

consequence of Kesten (1973) on the tail of solutions to stochastic recurrence equations; see

also Goldie (1991). Finally, Corollary 3.5 in Basrak et al. (2002) also gives strong mixing

of ((Xt, σt))t∈Z with geometric rate provided Zt is symmetric and has a density on R. The

latter condition is satisfied in most applications where Zt is assumed standard normal or

t-distributed with variance 1. It was mentioned in Remark 3.5.2 that regular variation and

strong mixing with geometric rate for the sequence (Xt) imply the mixing condition A(an).

Moreover, the anti-clustering condition (3.5.1) is also satisfied as proved for Theorem 2.10

in Basrak et al. (2002). We summarize as follows.

Theorem 3.5.6. Let (Xt) be a strictly stationary GARCH(p, q) process with an iid sym-

metric noise sequence (Zt) such that EZ2
1 = 1. Further assume that Z1 has a positive

density on R and there exists h0 ≤ ∞ such that E |Z1|h <∞ for h < h0 and E |Z1|h0 =∞.
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Then (Xt) is regularly varying with some index α > 0 and the statement of Theorem 3.5.4

holds for γ > max(0, 0.5− α−1).

Proof. In view of the discussion preceding the theorem, all conditions of Theorem 3.5.4

but (3.5.2) have been verified. Thus we focus on the latter condition. We also notice that

the condition f ∈ Fγ for some γ > max(0, 0.5 − α−1) has not been used so far. It will

be crucial in the sequel. For notational simplicity we restrict ourselves to the functions

f(l) = lγ.

We introduce the truncated random variables X ′t = σt1{σt≤hγan}Zt (we suppress the

dependence on n and h in the notation) and the corresponding partial sums

S ′k =
k∑
t=1

X ′t , k ≥ 1 , S ′0 = 0 .

Then for any δ > 0,

P ( max
h≤l≤n

l−γ max
0≤k≤n−l

|Sk+l − Sk| > δan) ≤

≤ P (max
k≤n

σk > hγan) + P ( max
h≤l≤n

l−γ max
0≤k≤n−l

|S ′k+l − S ′k| > δan)

≤ P (max
k≤n

σk > hγan) + 2

log2(n/h)∑
j=1

2jTj , (3.5.8)

where log2 denotes logarithm with base 2 and

Tj = P ( max
1≤k≤2n2−j

|S ′k| > δ(n2−j)γan) . (3.5.9)

In the last step we used Lemma 3.3 in Mikosch and Račkauskas (2010). There the proof

was given for an iid sequence (Xt) but the proof remains the same for a strictly stationary

sequence.

It is well known that a−1
n maxk≤n σk converges in distribution to a Fréchet Φθσ

α distributed

random variable, where θσ > 0 is the extremal index of the sequence (σt). This fact follows

e.g. from the point process convergence results in Basrak et al. (2002). Hence

lim
h→∞

lim
n→∞

P (a−1
n max

k≤n
σk > hγ) = 0 . (3.5.10)

Since Zt is assumed symmetric an application of Lévy’s maximal inequality (e.g. Petrov

(1995), Theorem 2.2) conditional on (σt|Zt|) yields

Tj ≤ 2P (|S ′2N | > δNγan) , where N = [n2−j]. (3.5.11)
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Assume α < 2. Then by Markov’s inequality and Karamata’s theorem (see Bingham et al.

(1987)),

Tj ≤ cN1−2γa−2
n E [Z2

1σ
2
11{σ1≤hγan}]

∼ c h2γN1−2γP (σ1 > hγan)

≤ chγ(2−α)n−1N1−2γ.

Hence

log2(n/h)∑
j=1

2jTj ≤ c n−2γhγ(2−α)

log2(n/h)∑
j=1

22γj ≤ c h−γα . (3.5.12)

In sum, we conclude from (3.5.8)–(3.5.12) that (3.5.2) holds for every δ > 0, f(l) = lγ and

γ > 0. Now assume α ≥ 2. It follows from the assumptions that E |Z1|p < ∞ for some

p > α. Then Markov’s and Burkholder’s inequalities and Karamata’s theorem yield

P (|S ′2N | > δNγan) ≤ c (Nγan)−pE |S ′2N |p

≤ c (Nγan)−pNp/2Eσp11{σ1≤hγan}
∼ cNp(0.5−γ)hγpP (σ1 > hγan)

∼ cNp(0.5−γ)hγ(p−α)n−1 . (3.5.13)

Since γ > 0.5− α−1,

log2(n/h)∑
j=1

2jTj ≤ chγ(p−α)n−1+p(0.5−γ)

log2(n/h)∑
j=1

2j(1−p(0.5−γ)) ≤ c h−αγ−1+0.5p

Now choose p > α so close to α that −αγ − 1 + 0.5p < 0. Then (3.5.2) follows.

2

3.5.2.2 The stochastic volatility model

Another model of the type (3.5.6) has attracted some attention in the financial time series

literature: the stochastic volatility model.

Definition 3.5.7 (Stochastic Volatility Model). Let (σt) be a strictly stationary se-

quence independent of the iid sequence (Zt). Then the process (Xt) given by (3.5.6) is

called a stochastic volatility process .

Remark 3.5.8. There is a number of different stochastic volatility models in the literature.

They differ in particular by the chosen volatility process σt. See also Section 4.5 for a

multivariate stochastic volatility model where the volatility process Σt is modeled by a

positive semi-definite supOU process.
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If Z is regularly varying with index α > 0 and Eσp < ∞ for some p > α then (Xt)

is regularly varying with index α. In this case, the limiting measures of the regularly

varying sequence, i.e. the measures appearing as vague limits of nP (a−1
n (X1, . . . , Xh) ∈ ·),

are concentrated on the axes; see Davis and Mikosch (2001). For this reason, the stochastic

volatility model (Xt) has very much the same extremal behavior as an iid sequence with

the marginal distribution as X1. In particular, the extremal index of (Xt) is one and the

following point process convergence result holds: if the tail balance condition (3.1.3) holds

and (log σt) is a linear Gaussian process, then

n∑
t=1

εa−1
n (Xt,...,Xt+h−1)

d→
h∑
k=1

∞∑
i=1

εJiek , (3.5.14)

where ek is the kth unit vector in Rh, (Ji) are the points of a Poisson process on R0 with

intensity α |x|−α−1[p̃1(0,∞)(x) + q̃ 1(−∞,0)(x)] dx and (an) is chosen such that nP (|X1| >
an)→ 1. In the case of an iid regularly varying sequence (Xt) with tail balance condition

(3.1.3) (with Z replaced by X) relation (3.5.14) holds as well.

Now we are ready to formulate the following analog of Theorem 3.5.6.

Theorem 3.5.9. Let (Xt) be a stochastic volatility process. Assume that Z1 is symmetric

and has a regularly varying distribution with index α and (log σt) is a Gaussian linear

process. Then for f ∈ Fγ, γ > max(0, 0.5− α−1),

lim
n→∞

P (a−1
n max

1≤l≤n
(f(l))−1 max

1≤k≤n
|Sk+l − Sk| ≤ x) = Φα(x) , x > 0 .

Proof. The point process convergence (3.5.14) was the starting point in Mikosch and

Račkauskas (2010) for proving that for any f ∈ Fγ and γ > 0,

lim
n→∞

P (a−1
n max

1≤l≤h
(f(l))−1 max

1≤k≤n
|Sk+l − Sk| ≤ x) = Φα(x) , x > 0 .

The same arguments apply in the stochastic volatility case, i.e. the relation above remains

valid. Now consider the truncated random variables X ′t = σtZt1{|Zt|≤hγan} and denote their

partial sums by S ′k, k ≥ 0. Then the following analog of (3.5.8) holds:

P ( max
h≤l≤n

l−γ max
0≤k≤n−l

|Sk+l − Sk| > δan) ≤

≤ P (max
k≤n
|Zk| > hγan) + P ( max

h≤l≤n
l−γ max

0≤k≤n−l
|S ′k+l − S ′k| > δan)

≤ P (max
k≤n
|Zk| > hγan) + 2

log2(n/h)∑
j=1

2jTj ,
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where Tj is defined in (3.5.9). Since a−1
n maxk=1,...,n |Zt| converges in distribution to a

Fréchet distributed random variable,

lim
h→∞

lim sup
n→∞

P (max
k≤n
|Zk| ≥ hγan) = 0 .

Now assume that Z1 is also symmetric. Then, by Lévy’s maximal inequality conditional on

(σt), relation (3.5.11) follows. We consider the case α < 2 first. An application of Markov’s

inequality and the conditional independence of the Xt’s yield

Tj ≤ cN1−2γa−2
n E [σ2

1Z
2
11{|Z1|≤hγan}]

∼ c h2γN1−2γP (|Z1| > hγan)

≤ chγ(2−α)n−1N1−2γ,

Now one can follow the lines of the proof of Theorem 3.5.6. Next we consider the case

α ≥ 2. Then for p > α the Markov and Marzinkiewicz-Zygmund inequalities conditional

on (σt) and the Minkowski inequality yield

E [P (|S ′2N | > δNγan | (σt))] ≤ c a−pn N−p(γ−0.5)E |Z1|p1{|Z1|≤hγan}E
(
N−1

2N∑
t=1

σ2
t

)p/2
≤ c a−pn N−p(γ−0.5)E |Z1|p1{|Z1|≤hγan}Eσ

p
1 .

Now we may follow the lines of the proof of Theorem 3.5.6 for α ≥ 2.

2
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Chapter 4

Finite Dimensional Regular Variation of

Multivariate Lévy-Driven Mixed Moving

Average Processes and SupOU

Stochastic Volatility Models1

The class of multivariate Lévy-driven mixed moving average (MMA) processes of the type

Xt =
∫ ∫

f(A, t − s)Λ(dA, ds) covers a wide range of well-known and extensively used

processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck

(supOU) processes, (fractionally integrated) CARMA processes and increments of frac-

tional Lévy processes. In this chapter, we introduce multivariate MMA processes and give

conditions for their existence and finite dimensional regular variation of the stationary dis-

tributions. Furthermore, we study the tail behavior of multivariate supOU processes and

of a stochastic volatility model where a positive semidefinite supOU process models the

stochastic volatility.

4.1 Introduction

In many areas of application Lévy-driven processes are used for modeling time series. One

elementary example of the processes used is the Lévy-driven Ornstein-Uhlenbeck (OU)

type process

Xt =

t∫
−∞

e−a(t−s)dLs,

1The content of this chapter is based on Moser and Stelzer (2011).
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Chapter 4 Finite Dimensional Regular Variation of Mixed Moving Average Processes

where L is a Lévy process (see Section 2.3 and Sato (2002) for detailed introductions).

These processes are used, for instance, to model the variance (i.e., the volatility in the ter-

minology of mathematical finance) in the OU type stochastic volatility model of Barndorff-

Nielsen and Shephard (2001) which has been extended to the multivariate setting by Pig-

orsch and Stelzer (2009). Even though this model has many nice properties (e.g. stochastic

volatility with jumps and clustering, heavy tails etc.) it does not account for the long

memory effects that can often be found in real data. This problem can be bypassed by the

superposition of OU type processes which leads to supOU processes of the type

Xt =

∫
R

t∫
−∞

ea(t−s)Λ(da, ds),

where Λ is a so-called Lévy basis. These processes have been introduced by Barndorff-

Nielsen (2001), extended to a multivariate setting by Barndorff-Nielsen and Stelzer (2011a)

and they are used in the multivariate supOU type stochastic volatility model of Barndorff-

Nielsen and Stelzer (2011b). Bayesian estimation of univariate supOU stochastic volatility

models is e.g. carried out in Griffin and Steel (2010).

The aim of this chapter is to analyze the tail behavior of the multivariate mixed moving

average (MMA) processes

Xt =

∫
M−d

∫
R

f(A, t− s)Λ(dA, ds)

that allow for a general kernel function f : M−
d ×R 7→Mn,d (Λ is an Rd-valued Lévy basis

in this setting). They reach back to Surgailis et al. (1993) and they cover both, OU and

supOU processes, as well as CARMA processes, fractionally integrated CARMA processes

(cf. Brockwell (2004), Marquardt (2007)) and increments of fractional Lévy processes (cf.

Marquardt (2006), Bender et al. (2011) and references therein). The tail behavior of

univariate MMA processes has already been studied by Fasen (2005) and Jacobsen et al.

(2009) and we extend the results to a multivariate setting and analyze also the special case

of supOU processes and the related stochastic volatility model given by

dXt = atdt+ Σ
1/2
t dWt + Ψ(dLt)

X0 = 0,

where a is an Rd-valued predictable process, W is the standard d-dimensional Brownian

motion, L is the Lévy process associated with Λ, Ψ : Sd 7→ Rd is a linear operator and
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the stochastic volatility process (Σt)t∈R is a matrix-valued positive semidefinite supOU

process. The multivariate extension is non-trivial, since the definition of regular variation is

considerably more involved in the multivariate setting and we have to take the peculiarities

created by the use of matrices into account.

In finance understanding the tail behavior is of great importance for risk assessment and

risk management. Moreover, the results of this chapter allow one to understand how

one can model the so-called “correlation breakdown” effect (viz. in times of extreme crisis

basically all correlations get close to one) which is regarded by econometrics to be typically

present in observed financial data.

The chapter is structured as follows. We start by giving some general notation in Section

4.2.1. In Section 4.2.2 we will give a short excursion to multivariate regular variation that

we need when we analyze the tail behavior of the processes given. An introduction to

Lévy bases and conditions for the existence of integrals with respect to Lévy bases will

be given in Section 4.2.3. Based on these preliminaries, we can then define and analyze

multivariate mixed moving average processes in Section 4.3. We give sufficient conditions

for the mixed moving average processes to be regularly varying given that the driving Lévy

basis is regularly varying. Furthermore, we examine the restrictiveness of the conditions by

establishing closely related necessary conditions. In Section 4.4 we apply these results to

multivariate supOU processes and give some more accessible conditions for this special case.

Moreover, we consider a stochastic volatility model that is based on positive semidefinite

supOU processes and analyze its tail behavior in Section 4.5, which is very important for

risk assessment. Finally, we discuss the model’s relevance to finance in Section 4.5.2.

4.2 Preliminaries

4.2.1 Notation

Given the real numbers R we use the notation R+ for the positive real numbers and R− for

the negative real numbers, both without 0. N is the set of positive integers. The Borel sets

are denoted by B, where Bb are the bounded Borel sets and Bµ := {B ∈ B : µ(∂B) = 0}
describes all Borel sets with no µ-mass at the boundary ∂B. The closure of a set B is given

by B. S is the unit sphere, λ is the Lebesgue measure on R and N(0, Id) is the standard

normal distribution in Rd.

For matrices, Mn,d is the set of all n× d matrices and Md the set of all d× d matrices.

M−
d is the set of all d × d matrices with eigenvalues having strictly negative real part. Id

is the d× d identity matrix, Sd denotes the symmetric d× d matrices and S+
d the positive
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Chapter 4 Finite Dimensional Regular Variation of Mixed Moving Average Processes

semidefinite d × d matrices. We write AT for the transposed of a matrix A and ‖A‖ for

its matrix norm. Since all norms are equivalent, the type of norm is not important for the

results, but if we make no further specifications, we use the operator norm induced by the

Euclidean norm. j(A) := min‖x‖=1 ‖Ax‖ is the modulus of injectivity of A. vec(A) is the

well-known operation that creates a vector by stacking the columns of an n × n matrix

A below each other to obtain an Rn2
-valued vector and ⊗ is the tensor product of two

matrices.

Vague convergence is denoted by
v−→. It is defined on the one-point uncompactification

Rd\{0}, which assures that the sets B ⊆ Vr := {x : ‖x‖ > r}, r > 0, that are bounded

away from the origin can be referred to as the relatively compact sets in the vague topology.

In this topology, the compact sets shall be denoted by K and the open sets by G.

4.2.2 Multivariate Regular Variation

For the analysis of the tail behavior of multivariate stochastic processes, we use the well

established concept of regular variation. However, there is not only one single definition of

multivariate regular variation, but many different equivalent ones (cf. Section 2.1.3). For

detailed and very good introductions into the different approaches to multivariate regular

variation, we refer the reader also to Resnick (2007) and Lindskog (2004). Throughout

this chapter, we use the following well-known definition of multivariate regular variation

(cf. Resnick (1986) and Hult and Lindskog (2006a)).

Definition 4.2.1 (Multivariate Regular Variation). A random vector X with values

in Rd is called regularly varying with index α > 0 if there exists a slowly varying function

l : R 7→ R and a nonzero Radon measure µ defined on B(Rd\{0}) with µ(Rd\Rd) = 0 such

that, as u→∞,

uαl(u)P (u−1X ∈ ·) v−→ µ(·)

on B(Rd\{0}). We write X ∈ RV (α, l, µ).

Similarly, we call a Radon measure ν regularly varying if α, l and µ exist as above with

uαl(u)ν(u·) v−→ µ(·)

for u→∞ and we write ν ∈ RV (α, l, µ).

A stochastic process (Xt)t∈R ∈ Rd is called regularly varying with index α if all its finite

dimensional distributions are regularly varying with index α.

Remark 4.2.2. Note that in this chapter we consider regular variation of processes only

in terms of (multivariate) regular variation of their finite dimensional distributions. This
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is not to be confused with the infinite dimensional regular variation theory of Section 2.1.4

that we will analyze with respect to MMA processes in Chapter 5. Both concepts are

linked by the necessary and sufficient conditions of Theorem 2.1.22.

The measure µ is homogeneous, i.e. it necessarily satisfies the condition

µ(tB) = t−αµ(B)

for all B ∈ B(Rd\{0}) and t > 0. We make use of this property throughout this chapter.

In this chapter, we will deal with infinitely divisible random variables and processes. For

those, the following very useful connection between regular variation of the random variable

and its Lévy measure exists.

Theorem 4.2.3 (Hult and Lindskog (2006a), Proposition 3.1). Let X ∈ Rd be an

infinitely divisible random vector with Lévy measure ν. Then X ∈ RV (α, l, µ) if and only

if ν ∈ RV (α, l, µ).

Furthermore, we will also need regular variation of matrix-valued random variables and

processes. If we take into account the well-known vec operation that creates a vector

by stacking the columns of a matrix below each other, we can simply apply the above

definition. This allows us to use all known results for the Rd-valued case also in the

matrix-valued case.

4.2.3 Lévy Bases and Integration

In this section we recall Rd-valued Lévy bases which are generalizations of Lévy processes,

and the related integration theory. For a general introduction to Lévy processes and in-

finitely divisible distributions see Sato (2002). Lévy bases are also called infinitely divisible

independently scattered random measures (i.d.i.s.r.m.) in the literature. For more details

on Lévy bases see Rajput and Rosiński (1989) and Pedersen (2003).

Definition 4.2.4 (Lévy Basis). An Rd-valued random measure Λ = (Λ(B)) with B ∈
Bb(M−

d × R) is called a Lévy basis if:

• the distribution of Λ(B) is infinitely divisible for all B ∈ Bb(M−
d × R).

• for any n ∈ N the random variables Λ(B1), . . . ,Λ(Bn) are independent for pairwise

disjoint sets B1, . . . , Bn ∈ Bb(M−
d × R).
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• for any pairwise disjoint sets (Bi)i∈N ∈ Bb(M−
d ×R) with

⋃
n∈NBn ∈ Bb(M−

d ×R) we

have Λ(
⋃
n∈NBn) =

∑
n∈N Λ(Bn) almost surely.

In this thesis we consider only time-homogeneous and factorisable Lévy bases, i.e. Lévy

bases with characteristic function

E
(
eiu

TΛ(B)
)

= eϕ(u)Π(B) (4.2.1)

for all u ∈ Rd and B ∈ Bb(M−
d × R), where Π = λ × π is the product of a probability

measure π on M−
d (R) and the Lebesgue measure λ on R and

ϕ(u) = iuTγ − 1

2
uTΣu+

∫
Rd

(
eiu

T x − 1− iuTx1[−1,1](‖x‖)
)
ν(dx)

is the cumulant transform of an infinitely divisible distribution with characteristic triplet

(γ,Σ, ν). By L we denote the underlying Lévy process associated with (γ,Σ, ν) and given

by Lt = Λ(M−
d × (0, t]) and L−t = Λ(M−

d × [−t, 0)) for t ∈ R+. The quadruple (γ,Σ, ν, π)

determines the distribution of the Lévy basis completely and therefore it is called the

generating quadruple. A definition of Sd-valued Lévy bases follows along the same lines.

Remark 4.2.5. Considering only time homogeneous and factorisable Lévy bases is mo-

tivated by possible applications where models with too many parameters are of no real

help, and the so far developed theory of special cases, particularly the supOU process,

where this assumption is also made. However, it should be noted that this assumption

is not overly restrictive, because stationarity of a Lévy-driven MMA requires obviously in

general a time-homogeneous Lévy basis, i.e. the Lebesgue measure has to be used on the

time axis. In this work it appears very natural only to consider stationary cases. Hence,

the only possible generalization would be to allow the infinitely divisible distribution to

depend on A ∈ M−
d . We could have ϕ(A, u) instead of ϕ(u). Then we would also have

a characteristic triplet (γ(A),Σ(A), ν(A, dx)) with ν being a “Lévy kernel” and all the

results would have immediate extensions to this case noting that as far as regular variation

is concerned one would have to demand that Λ(B) has to be regularly varying for all sets

B with same index α and slowly varying function l (or “degenerately α-regularly varying”,

i.e. uαl(u)P (u−1Λ(B ∈ ·)) → 0) and the measure of regular variation would have to be

given via a nontrivial kernel µν(A, ·). Like the univariate literature (see Fasen (2005), Fasen

(2009) and Fasen and Klüppelberg (2007)) we refrain from stating the results on this level

of generality, since it would not add real insight, but lead to overly technical statements

not relevant for applications.
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The main focus of this chapter, the mixed moving average processes, are defined by

integrating over a function f with respect to a Lévy basis. Regarding the existence of

these integrals we recall the following multivariate extension of Theorem 2.7 in Rajput and

Rosiński (1989).

Theorem 4.2.6. Let Λ be an Rd-valued Lévy basis with characteristic function of the form

(4.2.1) and let f : M−
d × R 7→ Mn,d be a measurable function. Then f is Λ-integrable as a

limit in probability in the sense of Rajput and Rosiński (1989) if and only if∫
M−d

∫
R

∥∥∥∥f(A, s)γ +

∫
Rd

f(A, s)x
(
1[0,1] (‖f(A, s)x‖)− 1[0,1] (‖x‖)

)
ν(dx)

∥∥∥∥dsπ(dA) <∞, (4.2.2)

∫
M−d

∫
R

‖f(A, s)Σ f(A, s)T ‖dsπ(dA) <∞ and (4.2.3)

∫
M−d

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖2

)
ν(dx)dsπ(dA) <∞. (4.2.4)

If f is Λ-integrable, the distribution of X0 =
∫
M−d

∫
R+ f(A, s)Λ(dA, ds) is infinitely divisible

with characteristic triplet (γint,Σint, νint) given by

γint =

∫
M−d

∫
R

f(A, s)γ +

∫
Rd

f(A, s)x
(
1[0,1] (‖f(A, s)x‖)− 1[0,1] (‖x‖)

)
ν(dx)

 dsπ(dA),

Σint =

∫
M−d

∫
R

f(A, s)Σ f(A, s)Tdsπ(dA) and

νint(B) =

∫
M−d

∫
R

∫
Rd

1B(f(A, s)x)ν(dx)dsπ(dA) for all Borel sets B ⊆ Rd.

We give now some more accessible sufficient conditions for the special case of a regular

varying driving Lévy measure ν. Therefore, we define the set

Lδ(λ× π) :=

f : M−
d × R 7→Mn,d measurable,

∫
M−d

∫
R

‖f(A, s)‖δdsπ(dA) <∞

 .

The following theorem is a multivariate analogue of Proposition 3.1 in Fasen (2005), which

is non-trivial due to the peculiarities arising from the used matrices.

Theorem 4.2.7. Let Λ be a Lévy basis with values in Rd and characteristic quadruple

(γ,Σ, ν, π), let ν be regularly varying with index α and let f : M−
d × R 7→ Mn,d. Then f
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is Λ-integrable in the sense of Rajput and Rosiński (1989) and X0 is well defined and in-

finitely divisible with the characteristic triplet given in Theorem 4.2.6 if one of the following

conditions hold:

(i) L1 is α-stable with α ∈ (0, 2)\{1} and f ∈ Lα ∩ L1.

(ii) f is bounded and f ∈ Lδ for some δ < α, δ ≤ 1.

(iii) f is bounded, EL1 = 0, α > 1 and f ∈ Lδ for some δ < α, δ ≤ 2.

Proof. We will prove the result by validating the conditions (4.2.2), (4.2.3) and (4.2.4)

given in Theorem 4.2.6 in each of the three settings.

(i). From Theorem 14.3 of Sato (2002) we know that in the α-stable case Σ = 0, which

makes condition (4.2.3) trivial. Furthermore, there is a finite measure θ on the unit sphere

S such that

ν(B) =

∫
S

∞∫
0

1B(rξ)

r1+α
drθ(dξ) for B ∈ Bd.

For condition (4.2.2), this yields∫
M−d

∫
R

∥∥∥∥f(A, s)γ +

∫
Rd

f(A, s)x
(
1[0,1] (‖f(A, s)x‖)− 1[0,1] (‖x‖)

)
ν(dx)

∥∥∥∥dsπ(dA)

=

∫
M−d

∫
R

∥∥∥∥f(A, s)γ +

∫
S

∞∫
0

f(A, s)ξ
(
1[0,1] (‖f(A, s)rξ‖)− 1[0,1] (‖rξ‖)

) dr
rα
θ(dξ))

∥∥∥∥dsπ(dA)

=

∫
M−d

∫
R

∥∥∥∥f(A, s)γ + f(A, s)

∫
S

ξ

‖f(A,s)ξ‖−1∫
1

r−αdrθ(dξ))

∥∥∥∥dsπ(dA)

=

∫
M−d

∫
R

∥∥∥∥f(A, s)γ + f(A, s)

∫
S

ξ
1

1− α
(
‖f(A, s)ξ‖α−1 − 1

)
θ(dξ))

∥∥∥∥dsπ(dA)

=

∫
M−d

∫
R

∥∥∥∥f(A, s)γ +
f(A, s)

1− α

∫
S

ξ‖f(A, s)ξ‖α−1θ(dξ))− f(A, s)

1− α

∫
S

ξθ(dξ))

∥∥∥∥dsπ(dA)

≤
∫
M−d

∫
R

(
‖f(A, s)‖ γ +

‖f(A, s)‖α

1− α
θ(S) +

‖f(A, s)‖
1− α

θ(S)

)
dsπ(dA)

<∞,
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where we used f ∈ Lα ∩ L1. For condition (4.2.4) we get∫
M−d

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖2

)
ν(dx)dsπ(dA) =

=

∫
M−d

∫
R

∫
Rd

1{‖f(A,s)x‖≥1}ν(dx)dsπ(dA)+ (4.2.5)

+

∫
M−d

∫
R

∫
Rd

‖f(A, s)x‖21{‖f(A,s)x‖≤1}ν(dx)dsπ(dA).

The first term on the right hand side can be bounded by∫
M−d

∫
R

∫
Rd

1{‖f(A,s)x‖≥1}ν(dx)dsπ(dA) =

=

∫
M−d

∫
R

∫
S

∞∫
0

1{‖f(A,s)rξ‖≥1}
1

r1+α
drθ(dξ)dsπ(dA)

=

∫
M−d

∫
R

∫
S

∞∫
‖f(A,s)ξ‖−1

r−1−αdrθ(dξ)dsπ(dA)

=
1

α

∫
M−d

∫
R

∫
S

‖f(A, s)ξ‖αθ(dξ)dsπ(dA)

≤ θ(S)

α

∫
M−d

∫
R

‖f(A, s)‖αdsπ(dA)

<∞

and for the second term on the right hand side we get∫
M−d

∫
R

∫
Rd

‖f(A, s)x‖21{‖f(A,s)x‖≤1}ν(dx)dsπ(dA) =

=

∫
M−d

∫
R

∫
S

∞∫
0

‖f(A, s)rξ‖21{‖f(A,s)rξ‖≤1}
1

r1+α
drθ(dξ)dsπ(dA)

=

∫
M−d

∫
R

∫
S

‖f(A,s)ξ‖−1∫
0

‖f(A, s)ξ‖2r1−αdrθ(dξ)dsπ(dA)
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=
1

2− α

∫
M−d

∫
R

∫
S

‖f(A, s)ξ‖αθ(dξ)dsπ(dA)

≤ θ(S)

2− α

∫
M−d

∫
R

‖f(A, s)‖αdsπ(dA)

<∞.

(ii) and (iii). Condition (4.2.3) can be bounded by∫
M−d

∫
R

‖f(A, s)Σ f(A, s)T‖dsπ(dA) ≤ ‖Σ‖
∫
M−d

∫
R

‖f(A, s)‖2dsπ(dA) <∞,

which follows from the boundedness of f together with f ∈ Lδ for some δ ≤ 2. For

condition (4.2.4) we use (4.2.5) again. For the first term on the right hand side of (4.2.5)

we use the inequality

‖f(A, s)‖ ‖x‖ ≥ ‖f(A, s)x‖ ≥ 1

which implies

‖x‖ ≥ 1

‖f(A, s)‖
.

This yields∫
M−d

∫
R

∫
Rd

1{‖f(A,s)x‖≥1}ν(dx)dsπ(dA) ≤
∫
M−d

∫
R

∫
Rd

1{‖x‖≥ 1
‖f(A,s)‖}ν(dx)dsπ(dA)

=

∫
M−d

∫
R

ν

({
‖x‖ ≥ 1

‖f(A, s)‖

})
dsπ(dA).

Now we can apply the Potter bounds (Lemma 2.1.5), giving the existence of some t0 such

that for all t ≥ t0 a regular varying function (in this case ν) can be bounded. Therefore,

we distinguish the cases 1/‖f(A, s)‖ > t0 and 1/‖f(A, s)‖ < t0. For the first case we set

C̃ := sup{‖f(A, s)‖ : ‖f(A, s)‖ < 1/t0} ≤ 1/t0. Then we can apply the Potter bounds for

t = 1/C̃ ≥ t0 to get∫
M−d

∫
R

1{1/‖f(A,s)‖>t0} ν

({
‖x‖ ≥ 1

‖f(A, s)‖

})
dsπ(dA) ≤

≤ (1 + α− δ)
∫
M−d

∫
R

1{1/‖f(A,s)‖>t0} ν

({
‖x‖ ≥ 1

C̃

})(
‖f(A, s)‖

C̃

)δ
dsπ(dA)
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<∞.

In the other case we set C := sup ‖f(A, s)‖ <∞ and obtain∫
M−d

∫
R

1{1/‖f(A,s)‖≤t0} ν

({
‖x‖ ≥ 1

‖f(A, s)‖

})
dsπ(dA) ≤

≤
∫
M−d

∫
R

1{1/‖f(A,s)‖≤t0} ν

({
‖x‖ ≥ 1

C

})
dsπ(dA)

= ν

({
‖x‖ ≥ 1

C

})
π × λ

({
(A, s) : ‖f(A, s)‖ ≥ 1

t0

})
<∞,

since f ∈ Lδ. The second term on the right hand side of (4.2.5) can be bounded by∫
M−d

∫
R

∫
Rd

‖f(A, s)x‖21{‖f(A,s)x‖≤1}ν(dx)dsπ(dA) =

=

∫
M−d

∫
R

∫
‖x‖<1

‖f(A, s)x‖21{‖f(A,s)x‖≤1}ν(dx)

+

∫
‖x‖≥1

‖f(A, s)x‖21{‖f(A,s)x‖≤1}ν(dx)dsπ(dA)

≤
∫
M−d

∫
R

∫
‖x‖<1

‖f(A, s)‖2‖x‖2ν(dx) +

∫
‖x‖≥1

‖f(A, s)x‖δν(dx)dsπ(dA)

+

∫
M−d

∫
R

‖f(A, s)‖δdsπ(dA)

∫
‖x‖≥1

‖x‖δν(dx)

<∞,

where we used the fact that for bounded functions f the assumption f ∈ Lδ, δ < 2, implies

f ∈ L2. Moreover, note that
∫
‖x‖≥1

‖x‖δν(dx) < ∞ by Sato (2002), Corollary 25.8, since

0 < δ < α and hence the underlying Lévy process has a finite δth moment (cf. Corollary

2.3.11). Condition (4.2.2) in Theorem 4.2.6 can be reformulated as∫
M−d

∫
R

∥∥∥∥f(A, s)γ +

∫
Rd

f(A, s)x
(
1[0,1] (‖f(A, s)x‖)− 1[0,1] (‖x‖)

)
ν(dx)

∥∥∥∥dsπ(dA) =

=

∫
M−d

∫
R

∥∥∥∥f(A, s)γ +

∫
‖x‖>1

f(A, s)x1{‖f(A,s)x‖≤1}ν(dx)
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−
∫

‖x‖≤1

f(A, s)x1{‖f(A,s)x‖>1}ν(dx)

∥∥∥∥dsπ(dA) =: T.

In case (ii) we use ‖f(A, s)‖ ≤ C and thus T can be bounded by

T ≤
∫
M−d

∫
R

‖f(A, s)‖δ
(
C1−δ|γ|+

∫
‖x‖>1

‖x‖δν(dx) + C1−δ
∫

‖x‖∈( 1
C
,1]

‖x‖δν(dx)

)
dsπ(dA).

In case (iii), we know γ = −
∫
‖x‖>1

xν(dx). Since α > 1 and δ < α, we can arbitrarily

choose a ξ ∈ (δ, α) with ξ > 1. This yields

T =

∫
M−d

∫
R

∥∥∥∥− ∫
‖x‖>1

f(A, s)xν(dx) +

∫
‖x‖>1

f(A, s)x1{‖f(A,s)x‖≤1}ν(dx)

−
∫

‖x‖≤1

f(A, s)x1{‖f(A,s)x‖>1}ν(dx)

∥∥∥∥dsπ(dA)

=

∫
M−d

∫
R

∥∥∥∥− ∫
‖x‖>1

f(A, s)x1{‖f(A,s)x‖>1}ν(dx)

−
∫

‖x‖≤1

f(A, s)x1{‖f(A,s)x‖>1}ν(dx)

∥∥∥∥dsπ(dA)

≤
∫
M−d

∫
R

∫
Rd

‖f(A, s)x‖ξ1{‖x‖> 1
C
}ν(dx)dsπ(dA)

≤ Cξ−δ
∫
M−d

∫
R

‖f(A, s)‖δdsπ(dA)

∫
‖x‖> 1

C

‖x‖ξν(dx)

<∞.
2

4.3 Mixed Moving Average Processes

Mixed moving average (short MMA) processes have been first introduced by Surgailis et al.

(1993) in the univariate stable case. As we have already mentioned in the previous sections,

they are integrals over a given kernel function with respect to a Lévy basis.

Definition 4.3.1 (Mixed Moving Average Process). Let Λ be an Rd-valued Lévy ba-

sis on M−
d ×R and let f : M−

d ×R 7→Mn,d be a measurable function (kernel function). If
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the process

Xt :=

∫
M−d

∫
R

f(A, t− s)Λ(dA, ds)

exists in the sense of Theorem 4.2.6 for all t ∈ R, it is called an n-dimensional mixed

moving average process (short MMA process).

Note that we could also define “generalized MMA” processes by integrating over a slightly

more general function g : M−
d × R× R 7→Mn,d, which gives us

Xt =

∫
M−d

∫
R

g(A, t, s)Λ(dA, ds).

However, the extension of all upcoming results is trivial, so we stated the results for the

notationally easier case of Definition 4.3.1. Moreover, an MMA process is obviously always

stationary and this needs not to be true for generalized MMA processes. Note also that

M−
d can obviously be replaced by Md or basically any other Borel set. Again we state

everything for M−
d , because this eases notation and is the canonical choice in the supOU

case.

Existence of the MMA processes follows directly from Theorem 4.2.6 and Theorem 4.2.7.

Especially Theorem 4.2.7 turns out to be very useful in this setting, since it is based

on similar conditions compared to the key conditions of the following theorem: regular

variation of the driving Lévy measure ν and f ∈ Lα(λ× π).

The theorem is the multivariate analog of (3.1) in Proposition 3.2 of Fasen (2005), where

the same conditions, simplified to the univariate set-up, are used. A similar result also

exists for the special case of a univariate filtered Lévy process, where the kernel function

f is continuous and of compact support, see Hult and Lindskog (2005), Theorem 22.

Theorem 4.3.2. Let Λ be an Rd-valued Lévy basis on M−
d ×R with generating quadruple

(γ,Σ, ν, π) and let ν ∈ RV (α, l, µν). If X0 =
∫
M−d

∫
R f(A, s)Λ(dA, ds) exists (in the sense

of Theorem 4.2.6), f ∈ Lα(λ× π) and µν(f
−1(A, s)(Rn\{0})) = 0 does not hold for π × λ

almost-every (A, s), then X0 ∈ RV (α, l, µX) with

µX(B) :=

∫
M−d

∫
R

∫
Rd

1B (f(A, s)x)µν(dx)dsπ(dA).

Proof. From Theorem 4.2.6 we know that the distribution of X is infinitely divisible.

Following Theorem 4.2.3 it is sufficient to prove that its Lévy measure νX is regularly
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varying. The concrete representation

νX =

∫
M−d

∫
R

∫
Rd

1B(f(A, s)x)ν(dx)dsπ(dA)

is also known from Theorem 4.2.6. Regular variation of ν then yields the existence of a

constant α > 0, a slowly varying function l and a Radon measure µν on B(Rd\{0}) with

µν(R
d\Rd) = 0 such that, as u→∞,

uαl(u)ν(u ·) v−→ µν(·).

Using Theorem 2.1.9 and Fatou’s Lemma, we have that for all compact sets B ∈ K

lim sup
u→∞

uαl(u)

∫
M−d

∫
R

∫
Rd

1uB (f(A, s)x) ν(dx)dsπ(dA) ≤

≤
∫
M−d

∫
R

lim sup
u→∞

uαl(u)

∫
Rd

1uB (f(A, s)x) ν(dx)dsπ(dA)

≤
∫
M−d

∫
R

∫
Rd

1B (f(A, s)x)µν(dx)dsπ(dA)

and conversely for all open sets B ∈ G that are relatively compact

lim inf
u→∞

uαl(u)

∫
M−d

∫
R

∫
Rd

1uB (f(A, s)x) ν(dx)dsπ(dA) ≥

≥
∫
M−d

∫
R

lim inf
u→∞

uαl(u)

∫
Rd

1uB (f(A, s)x) ν(dx)dsπ(dA)

≥
∫
M−d

∫
R

∫
Rd

1B (f(A, s)x)µν(dx)dsπ(dA).

Note here that for any set B ∈ K (resp. G) also the preimage f(A, s)−1(B) ∈ K (resp. G) for

all A, s, since f(A, s) is for fixed A, s a linear mapping. This yields the vague convergence

uαl(u)νX(u ·) = uαl(u)

∫
M−d

∫
R

∫
Rd

1u · (f(A, s)x) ν(dx)dsπ(dA)

v−→
∫
M−d

∫
R

∫
Rd

1(·) (f(A, s)x)µν(dx)dsπ(dA) = µX(·).
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It remains to prove that µX is again a Radon measure with µX(Rn\Rn) = 0. The second

property follows directly from the observation

1(Rn\Rn)(f(A, s)x) ≤ 1(Rn\Rn)(x).

For the local finiteness of µX , take some compact B ∈ B(Rd\{0}), i.e. there exists some

finite r > 0 such that B ⊆ Vr := {x : ‖x‖ > r}. For all x with f(A, s)x ∈ B ⊆ Vr we have

r < ‖f(A, s)x‖ ≤ ‖f(A, s)‖ ‖x‖. By using f ∈ Lα(λ× π) and the local finiteness of µν , we

get

µX(B) =

∫
M−d

∫
R

∫
Rd

1B (f(A, s)x)µν(dx)dsπ(dA)

≤
∫
M−d

∫
R

∫
Rd

1(r,∞) (‖f(A, s)‖ ‖x‖)µν(dx)dsπ(dA)

=

∫
M−d

∫
R

µν(
{
x : ‖x‖ ≥ ‖f(A, s)‖−1r

}
)1R\{0}(‖f(A, s)‖) dsπ(dA)

= µν(Vr)

∫
M−d

∫
R

‖f(A, s)‖αdsπ(dA)

<∞.
2

The theorem shows that the tail behavior of the driving Lévy measure determines the

tail behavior of the MMA process. Since the Lévy measure is related only to the jumps

of the underlying Lévy process, we see that the regular variation of the MMA process is

caused by the jumps of the underlying Lévy process. Furthermore, we intuitively have that

the extremes of the MMA process are caused by a single extremely big jump in the Lévy

basis.

Remark 4.3.3. Another important consequence of the theorem is that we know the con-

crete measure µX of regular variation. This is useful to describe the location or mass of

the extremes in Rn. It is similar to the spectral measure in an analogue definition of reg-

ular variation, see Theorem 2.1.11. See also Example 4.4.4 for some calculations of these

measures in the Ornstein-Uhlenbeck case.

As mentioned before, Theorem 4.3.2 uses two crucial conditions. The first one is the

regular variation of the driving Lévy measure, meaning that the tail behavior of the input
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determines the tail behavior of the resulting MMA process. The second condition f ∈
Lα(λ × π) is a restriction on the function f . We will now analyze its restrictiveness by

looking at necessary conditions. Therefore, we define the set

Jα(λ× π) :=

{
f : M−

d × R 7→Mn,d measurable,

∫
M−d

∫
R

j(f(A, s))αdsπ(dA) <∞

}
,

where j(A) is the modulus of injectivity of A.

The following theorem extends even the univariate work by Fasen (2005) and Hult and

Lindskog (2005), where necessary conditions are not considered. Note that the focus is

on necessary conditions on f whereas Jacobsen et al. (2009) considered whether regular

variation of a moving average implies regular variation of the driving Lévy process in the

univariate case.

Theorem 4.3.4. Let Λ be an Rd-valued Lévy basis on M−
d × R with generating quadru-

ple (γ,Σ, ν, π) and let ν ∈ RV (α, l, µν). If X0 =
∫
M−d

∫
R f(A, s)Λ(dA, ds) exists and

µν(f
−1(A, s)(Rn\{0})) = 0 does not hold for π×λ almost-every (A, s), then f ∈ Jα(λ×π)

is a necessary condition for X0 ∈ RV (α, l, µX) with

µX(B) :=

∫
M−d

∫
R

∫
Rd

1B (f(A, s)x)µν(dx)dsπ(dA).

Proof. We use a simple contradiction. Suppose f 6∈ Jα(λ× π), i.e.∫
M−d

∫
R

j(f(A, s))αdsπ(dA) =∞.

Since µν is nonzero there is a positive number r > 0 such that µν(Vr) > 0. Then we use

the relation

j(f(A, s)) ≤ ‖f(A, s)x‖
‖x‖

for all x ∈ Rd and get

µX(Vr) =

∫
M−d

∫
R

∫
Rd

1Vr (f(A, s)x)µν(dx)dsπ(dA)

≥
∫
M−d

∫
R

∫
Rd

1(r,∞) (j(f(A, s)) ‖x‖)µν(dx)dsπ(dA)
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=

∫
M−d

∫
R

µν(
{
x : ‖x‖ ≥ j(f(A, s))−1r

}
)1R\{0}(j(f(A, s)) dsπ(dA)

= µν(Vr)

∫
M−d

∫
R

j(f(A, s))αdsπ(dA)

=∞

and this is a contradiction to µX being a Radon measure.

2

Now we have necessary conditions as well as sufficient conditions and both lie close

together. Since j(f(A, s)) ≤ ‖f(A, s)‖ we immediately have Lα(λ × π) ⊆ Jα(λ × π). In

the univariate case we even have Lα(λ × π) = Jα(λ × π) and thus we get necessary and

sufficient conditions.

Having proved the regular variation of the random vector, we can now easily get the regular

variation of the process Xt.

Corollary 4.3.5. Given the conditions of Theorem 4.3.2, the MMA process (Xt)t∈R is also

regularly varying with index α as a process.

Proof. We have to show that the results also hold for the finite dimensional distributions

of Xt. For m ∈ N and t = (t1, . . . , tm) ∈ Rm we have

 Xt1
...

Xtm

 =


∫
M−d

∫
R
f(A, t1 − s)Λ(dA, ds)

...∫
M−d

∫
R
f(A, tm − s)Λ(dA, ds)

 =

∫
M−d

∫
R

 f(A, t1 − s)
...

f(A, tm − s)

Λ(dA, ds)

=

∫
M−d

∫
R

g(A, t, s) Λ(dA, ds)

with the function g : M−
d × Rm × R 7→Mnm,d defined by

g(A, t, s) :=

 f(A, t1 − s)
...

f(A, tm − s)

 .

Next we show that f ∈ Lβ(λ × π) implies g ∈ Lβ(λ × π) for all β > 0. Therefore, we

choose the matrix norm

‖A‖ := max
i,j
{|aij|}.
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We get ∫
M−d

∫
R

‖g(A, t, s)‖β ds π(dA) =

=

∫
M−d

∫
R

∥∥∥∥∥∥∥
 f(A, t1 − s)

...

f(A, tm − s)


∥∥∥∥∥∥∥
β

ds π(dA)

=

∫
M−d

∫
R

max {‖f(A, t1 − s)‖, . . . , ‖f(A, tm − s)‖}β ds π(dA)

≤
∫
M−d

∫
R

‖f(A, t1 − s)‖β + . . .+ ‖f(A, tm − s)‖β ds π(dA)

<∞,

since f ∈ Lβ(λ × π). If the existence of Xt is ensured by Theorem 4.2.7 (ii) or (iii), this

implies that for the existence and regular variation of (XT
t1
, . . . , XT

tm)T a simple application

of Theorem 4.3.2 and Theorem 4.2.7 conclude. However, in general we note that assuming

existence of Xt in the sense of Theorem 4.2.6 implies that each of the m individual integrals

of (XT
t1
, . . . , XT

tm)T exists as a limit of approximating sums in probability. From these

individual approximating sums one easily constructs a sequence of approximating sums for∫
M−d

∫
R

∥∥∥(f(A, t1 − s)T , . . . , f(A, tm − s)T
)T∥∥∥β Λ(dA, ds) converging in probability. Hence,

the necessary and sufficient existence conditions of Theorem 4.2.6 are satisfied and Theorem

4.3.2 shows the regular variation of (XT
t1
, . . . , XT

tm)T .

2

A very important class of heavy tailed distributions are α-stable distributions with α ∈
(0, 2). See Samorodnitsky and Taqqu (1994) for a detailed introduction. In Theorem 4.2.7

we have already given a criterion for the existence of MMA processes with stable driving

Lévy process. Similar to Theorem 4.3.2, there is also a well-known link between stability

of the driving Lévy measure and stability of the MMA process.

Lemma 4.3.6. If the driving Lévy process of an MMA process Xt is α-stable and its Lévy

measure is non-degenerate, then Xt is also α-stable.

Proof. From Theorem 14.3 in Sato (2002) we have the result that α-stability of an infinitely

divisible distribution is equivalent to

Σ = 0 and ν(·) = b−α ν(b−1 ·) for all b > 0.
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Using the assumption together with Theorem 4.2.6, we immediately have ΣXt = 0 and

νXt(·) = b−α νXt(b
−1 ·).

2

Now we apply this result to multivariate continuous-time autoregressive moving average

(MCARMA) processes.

Example 4.3.7 (MCARMA Processes). Univariate Lévy-driven CARMA processes

have been introduced by Brockwell (2001) and they have been extended to multivari-

ate CARMA (MCARMA) processes by Marquardt and Stelzer (2007). A d-dimensional

MCARMA(p,q) process, p > q, driven by a two-sided square integrable Lévy process

(Lt)t∈R with E (L1) = 0 and E (L1L
T
1 ) = ΣL can be formally interpreted as the stationary

solution to the p-th order d-dimensional differential equation

P (D)Yt = Q(D)DLt,

where D denotes the differentiation operator with respect to t. The autoregressive and

moving average polynomials are given by

P (z) = Idz
p + A1z

p−1 + . . .+ Ap and Q(z) = B0z
q +B1z

q−1 + . . .+Bq

with A1, . . . , Ap, B0, . . . , Bq ∈ Md such that Bq 6= 0 and {z ∈ C : det(P (z)) = 0} ⊂
R\{0}+ iR. The MCARMA process Yt can be represented as a moving average process

Yt =

∫
R

f(t− s)dLs

with kernel function f : R 7→Md given by

f(t) =
1

2π

∫
R

eiutP (iu)−1Q(iu)du.

Obviously, MCARMA processes are MMA processes and thus we can apply Lemma 4.3.6

to obtain an α-stable MCARMA process by using an α-stable driving Lévy process. Fur-

thermore, by Proposition 3.32 of Marquardt and Stelzer (2007) we know that in the case

p > q+ 1 MCARMA processes have continuous sample paths and these are p− q− 1 times

differentiable. This shows that in the case α ∈ (0, 2) and p > q+ 1 we can get heavy tailed

MCARMA processes, where the heavy tails come from the jumps of the underlying Lévy

process, but the paths of the observed process are continuous and may even be differen-

tiable.
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Figure 4.3.1: Simulations of one path of the driving Lévy process Lt and

the CARMA(3,1) process Yt in the α-stable case with α = 2

To illustrate this, we simulated several univariate CARMA(3,1) processes. They are given

by the autoregressive and moving average polynomials

p(z) = z3 + 4.5z2 + 6.5z + 3 and q(z) = z.

The CARMA(3,1) process can then given in its state space representation (see Marquardt

and Stelzer (2007), Theorem 3.12)

G(t) =

t∫
−∞

eA(t−u) β dLu,
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Figure 4.3.2: Simulations of one path of the driving Lévy process Lt, the

CARMA(3,1) process Yt and its derivative in the α-stable

case with α = 1.5
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Figure 4.3.3: Simulations of one path of the driving Lévy process Lt, the

CARMA(3,1) process Yt and its derivative in the α-stable

case with α = 1
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where

A =

 0 1 0

0 0 1

−3 −6.5 −4.5

 and β =

 0

1

−4.5

 .

This representation has the advantage that it applies also in the multivariate setting and

it directly includes the derivatives of the CARMA process, as long as they exist. In that

case, we have Yt = G1(t) and d
dt
Yt = G2(t). Due to the foregoing results G is regularly

varying with index α (resp. α-stable) if L is so.

For the driving Lévy process Lt we used a symmetric α-stable Lévy motion without

skewness and with α-values of 2 (Brownian Motion), 1.5 and 1 (both heavy-tailed). Fur-

thermore, we plotted the simulated values after a burn-in period of 1000 to ensure sta-

tionarity. In all three cases, one can see nicely, how the tail behavior of the driving Lévy

process determines the tail behavior of the continuous CARMA(3,1) process.

In Figure 4.3.1 we see the case α = 2 where the integrator is a light tailed Brownian

Motion and the resulting CARMA process is also light tailed. In the cases α = 1.5 (see

Figure 4.3.2) and α = 1 (see Figure 4.3.3) the driving process is heavy tailed and, as α is

decreasing, the process is more and more determined by only a few very large jumps. The

respective CARMA process is also heavy tailed and oscillates around the mean except for

some large, but continuous shocks. For these two cases we also plotted the first derivatives

of the paths of the CARMA process, which are not continuous anymore, but jointly α-stable

together with the process itself.

4.4 Application to SupOU Processes

One example of MMA processes are superpositions of Ornstein-Uhlenbeck processes, or

supOU processes for short. They are especially useful in modeling the stochastic volatility

in continuous time models or long range dependent time series. For an introduction to uni-

variate supOU processes see Barndorff-Nielsen (2001) and for the extension to multivariate

supOU processes we refer to Barndorff-Nielsen and Stelzer (2011a).

Definition 4.4.1 (Rd-Valued SupOU Process). Let Λ be an Rd-valued Lévy basis on

M−
d × R. If the process

Xt :=

∫
M−d

t∫
−∞

eA(t−s)Λ(dA, ds)

exists for all t ∈ R, it is called Rd-valued supOU process .

91



Chapter 4 Finite Dimensional Regular Variation of Mixed Moving Average Processes

We easily see that supOU processes are MMA processes with special kernel function

f(A, s) = eAs 1[0,∞)(s).

Consequently, existence of supOU processes is covered by Theorem 4.2.6. But if we take

the special properties of supOU processes into account, some more accessible sufficient

conditions for the existence can be given.

Theorem 4.4.2 (Barndorff-Nielsen and Stelzer (2011a), Theorem 3.1). Let Xt

be an Rd-valued supOU process as defined in Definition 4.4.1. If∫
‖x‖>1

ln(‖x‖)ν(dx) <∞

and there exist measurable functions ρ : M−
d 7→ R+\{0} and κ : M−

d 7→ [1,∞) such that

∥∥eAs∥∥ ≤ κ(A)e−ρ(A)s ∀s ∈ R+ π-almost surely and

∫
M−d

κ(A)2

ρ(A)
π(dA) <∞,

then the supOU process Xt =
∫
M−d

∫ t
−∞ e

A(t−s)Λ(dA, ds) is well defined for all t ∈ R and

stationary. Furthermore, the stationary distribution of Xt is infinitely divisible with char-

acteristic triplet (γX ,ΣX , νX) given by Theorem 4.2.6.

Now we want to go one step further and analyze the tail behavior, but regular variation

of the supOU processes follows directly from Theorem 4.3.2.

Corollary 4.4.3. Let Λ ∈ Rd be a Lévy basis on M−
d × R with generating quadruple

(γ,Σ, ν, π) and let ν ∈ RV (α, l, µν). If the conditions of Theorem 4.4.2 hold and addition-

ally ∫
M−d

κ(A)α

ρ(A)
π(dA) <∞,

then X0 =
∫
M−d

∫
R+ e

AsΛ(dA, ds) ∈ RV (α, l, µX) with Radon measure

µX(·) :=

∫
M−d

∫
R+

∫
Rd

1(·)
(
eAsx

)
µν(dx)dsπ(dA).

Proof. Using the given conditions, we have∫
M−d

∫
R+

∥∥eAs∥∥α dsπ(dA) ≤
∫
M−d

∫
R+

κ(A)αe−αρ(A)sdsπ(dA)
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= α−1

∫
M−d

κ(A)α

ρ(A)
π(dA)

<∞

and thus eAs ∈ Lα(λ × π). It is left to show that µν(f
−1(A, s)Rn) = 0 does not hold for

π × λ almost-every (A, s), but since

µν
(
e−As Rd

)
= µν

(
Rd
)

for any (A, s), this follows simply from µν being a nonzero measure.

2

For illustration, let us now calculate the measures µX of regular variation in some special

cases.

Example 4.4.4 (Measure of Regular Variation of OU Processes). SupOU pro-

cesses with probability measure π being a one-point measure (i.e. π(A) = 1 for some

A ∈ M−
d ) are called Ornstein-Uhlenbeck (OU) processes. They can be defined as stochas-

tic integrals of the form
t∫

−∞

eA(t−s) dLs,

where (Lt) is a Lévy process with values in Rd and A ∈ M−
d is the parameter matrix.

Applying Corollary 4.4.3, their measure of regular variation can be given by

µX(B) :=

∫
R+

µν
(
e−AsB

)
ds.

We consider several examples in the case d = 2. Let us first assume that the mass

of the measure µν is concentrated on a straight line, i.e. on the points of the form h =

(a(1, b)T )a∈R\{0} for b ∈ R, see Figure 4.4.1 for an example with b = 0.5.

1. If A = c Id, c ∈ R−, is a multiple of the identity matrix, then

µX(B) =

∫
R+

µν
(
e−csB

)
ds =

∫
R+

ecαsµν (B) ds = −µν(B)

c α
.

Consequently, µX has its mass in the same directions as µν and thus its mass is also

concentrated on h.
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Figure 4.4.1: Mass of the measures µν and µX in case 1.

2. If A = diag(a1, a2) is a diagonal matrix, then the mass of µX is concentrated on the

cones between the straight line h and one of the two axes, see Figure 4.4.2. The mass

is drawn to the horizontal axis if a2 > a1 and to the vertical axis if a1 > a2 (i.e. to

the axis associated with the slower exponential decay rate). Intuitively this happens

as follows. An extreme jump (x1, x2)T occurred at some time u in the past and had

direction s. This causes an extreme value (ed1(t−u)x1, e
d2(t−u)x2)T at a later time t.

Since one of the components decays slower, this extreme event is now in a direction

closer to the direction with the slowest exponential decay.

3. If A is real diagonalizable, i.e. A = UDU−1 with D = diag(d1, d2), then the mass is

drawn to the eigenspace e that belongs to the biggest eigenvalue max(d1, d2). This

means that the mass is concentrated on the cone between e and h, see Figure 4.4.3.

This follows immediately by a change of the basis from the last case.

However, if the support of µν is the whole space Rd, then the support of µX is also Rd,

regardless of the choice of A in any of the three cases above.

Like in the general MMA case, we shall again have a closer look at the essential condition∫
M−d

κ(A)α

ρ(A)
π(dA) <∞.
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Figure 4.4.2: Mass of the measure µX in

case 2.
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Figure 4.4.3: Mass of the measure µX in

case 3.

Using the modulus of injectivity, we can derive necessary conditions similar to the previous

chapter, see also Barndorff-Nielsen and Stelzer (2011a), Proposition 3.3, where comparable

necessary conditions are given for the existence of supOU processes.

Corollary 4.4.5. Let Λ ∈ Rd be a Lévy basis on M−
d × R with generating quadruple

(γ,Σ, ν, π), let ν ∈ RV (α, l, µν) and let X0 =
∫
M−d

∫
R+ e

AsΛ(dA, ds) exist following Theorem

4.4.2. Furthermore, assume there exist measurable functions τ : M−
d 7→ R+\{0} and

ϑ : M−
d 7→ [1,∞) such that

j
(
eAs
)
≥ ϑ(A)e−τ(A)s ∀s ∈ R+ π-almost surely.

Then ∫
M−d

ϑ(A)α

τ(A)
π(dA) <∞

is a necessary condition for X0 ∈ RV (α, l, µX) with

µX(·) :=

∫
M−d

∫
R+

∫
Rd

1(·)
(
eAsx

)
µν(dx)dsπ(dA).
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Proof. Suppose ∫
M−d

ϑ(A)α

τ(A)
π(dA) =∞.

Then ∫
M−d

∫
R+

j
(
eAs
)α
dsπ(dA) ≥

∫
M−d

∫
R+

ϑ(A)αe−ατ(A)sdsπ(dA)

= α−1

∫
M−d

ϑ(A)α

τ(A)
π(dA)

=∞.

Consequently eAs /∈ Jα(λ× π) and Theorem 4.3.4 yields the result.

2

Finally, as a consequence of Theorem 4.3.5, we also have regular variation of the finite

dimensional distributions of the process.

Corollary 4.4.6. Given the conditions of Corollary 4.4.3, the supOU process (Xt)t∈R is

also regularly varying with index α as a process.

4.5 Stochastic Volatility Model

4.5.1 The Model

In this section we review and analyze the supOU type stochastic volatility model introduced

in Barndorff-Nielsen and Stelzer (2011b). We consider a d-dimensional logarithmic stock

price process (Xt)t∈R given by an equation of the form

dXt = Σ
1/2
t dWt (4.5.1)

X0 = 0,

where W is a d-dimensional Brownian motion and Σ1/2 denotes the unique positive semidef-

inite square root. The stochastic volatility process (Σt)t∈R is given by an S+
d -valued supOU

process that is independent of the Brownian Motion W .

Definition 4.5.1 (Positive Semi-Definite SupOU Process). Let Λ be a Lévy basis

on M−
d × R with values in Sd. If the process

Σt :=

∫
M−d

t∫
−∞

eA(t−s)Λ(dA, ds)eA
T (t−s)
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exists for all t ∈ R, it is called a positive semi-definite (or S+
d -valued) supOU process .

The process (Xt)t∈R+ being given by equation (4.5.1) with volatility process (Σt)t∈R given

by a positive semi-definite supOU process is called multivariate supOU type stochastic

volatility model or SVsupOU .

The introduced model is of course only the most basic version of a SVsupOU. We can

easily enhance the model by adding a stochastic or deterministic drift a and a leverage

term Ψ, see Barndorff-Nielsen and Stelzer (2011b) for details. The model is then given by

the equation

dXt = atdt+ Σ
1/2
t− dWt + Ψ(dLt)

X0 = 0,

where a is an Rd-valued predictable process, W is the d-dimensional Brownian motion, L

is the Lévy process associated with Λ and Ψ : Sd 7→ Rd is a linear operator. The stochastic

volatility process (Σt)t∈R is again a matrix-valued supOU process.

However, the drift term and the leverage term are usually dominating the tail behavior

if they are non-vanishing. The leverage term is determined by the behavior of the Lévy

process L and as we always assume the driving Lévy measure to be regularly varying with

index α, the leverage term is also regularly varying with index α. A popular choice for the

drift term is

at = µ+ βΣt

with β : Sd 7→ Rd being a linear operator and in this case at is regularly varying with index

α, as we will show below. This means that if such a drift or leverage term exists, they

dominate the Brownian term which will turn out to be regularly varying with index 2α.

For this reason, we will only consider the simple model in this chapter.

Let us start with analyzing the volatility process. Existence of the positive semi-definite

supOU processes is given similarly to the existence of Rd-valued supOU processes.

Theorem 4.5.2 (Barndorff-Nielsen and Stelzer (2011a), Theorem. 4.1). Let Λ

be an Sd-valued Lévy basis with generating quadruple (γ, 0, ν, π) and with γ0 := γ −∫
‖x‖≤1

xν(dx) ∈ S+
d , ν(Sd\S+

d ) = 0,∫
‖x‖>1

ln (‖x‖) ν(dx) <∞ and

∫
‖x‖≤1

‖x‖ν(dx) <∞.
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Furthermore, assume the existence of measurable functions ρ : M−
d 7→ R+ and κ : M−

d 7→
[1,∞) such that

∥∥eAs∥∥ ≤ κ(A)e−ρ(A)s ∀s ∈ R+ π-almost surely and

∫
M−d

κ(A)2

ρ(A)
π(dA) <∞.

Then the positive-semidefinite supOU process

Σt =

∫
M−d

t∫
−∞

eA(t−s)Λ(dA, ds)eA
T (t−s)

is well-defined for all t ∈ R, has values in S+
d for all t ∈ R and its distribution is stationary

and infinitely divisible. Moreover, the vector representation has the form

vec (Σt) =

∫
M−d

t∫
−∞

e(A⊗Id+Id⊗A)(t−s)vec(Λ)(dA, ds)

and the distribution of Σt is infinitely divisible with characteristic function

exp (itr(uΣt)) = exp

itr (uγΣ) +

∫
Sd

(
eitr(ux) − 1

)
νΣ(dx)


for u ∈ Sd with

γΣ =

∫
M−d

∞∫
0

eAs γ0 e
AT s dsπ(dA) and

νΣ(B) =

∫
M−d

∞∫
0

∫
S+d

1B

(
eAsxeA

T s
)
ν(dx)dsπ(dA)

for all Borel sets B ⊆ Sd.

Note that in the above theorem vec(Λ) is defined by vec(Λ)(A) := vec((Λ(A)) and it is

a Lévy basis in Rd2 .

Based on this theorem, we can now analyze the tail behavior of the volatility process.

Therefore, we have to define regular variation in a matrix-valued setting, which is just a

translation of Rd-valued regular variation. A random matrix X ∈Md is said to be regularly
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varying with index α > 0 if there exists a slowly varying function l : R 7→ R and a nonzero

Radon measure µ defined on B(Md\{0}) with µ(Md\Md) = 0 such that, as u→∞,

uαl(u)P (u−1X ∈ ·) v−→ µ(·)

on B(Md\{0}) and we write X ∈ RV (α, l, µ). Of course, for a random matrix X ∈ Md

there exists the straightforward connection that X ∈ RV (α, l, µ) if and only if vec(X) ∈
RV (α, l, µv), where µv(vec(A)) = µ(A). Given this relationship, we can then analyze the

tail behavior of the volatility process, where regular variation can be derived using the

results of the previous sections.

Corollary 4.5.3. Let Λ ∈ Sd be a Lévy basis on M−
d × R with generating quadruple

(γ, 0, ν, π) and let ν ∈ RV (α, l, µν). If the conditions of Theorem 4.5.2 hold and addi-

tionally ∫
M−d

κ(A)2α

ρ(A)
π(dA) <∞,

then Σ0 =
∫
M−d

∫
R+ e

AsΛ(dA, ds)eA
T s ∈ RV (α, l, µΣ) with Radon measure

µΣ(·) :=

∫
M−d

∫
R+

∫
Rd

1(·)

(
eAsxeA

T s
)
µν(dx)dsπ(dA).

Furthermore, the supOU process (Σt)t∈R is also regularly varying with index α as a process.

Proof. From Theorem 4.5.2 we have

vec (Σt) =

∫
M−d

t∫
−∞

e(A⊗Id+Id⊗A)(t−s)vec(Λ)(dA, ds)

and thus the vectorized volatility process vec(Σt) is an MMA process with kernel function

f(A, s) = e(A⊗Id+Id⊗A)s1[0,∞)(s). In order to apply Theorem 4.3.2, it is left to show that

f ∈ Lα(λ × π). For that purpose, we make use of the relations e(A⊗Id+Id⊗A)s = eAs ⊗ eAs

and ‖eAs ⊗ eAs‖ = ‖eAs‖2 (see Horn and Johnson (1991), Chapter 4.2, Problem 28, and

Chapter 6.2, Problem 14) and obtain∫
M−d

∫
R+

‖e(A⊗Id+Id⊗A)s‖αdsπ(dA) ≤
∫
M−d

∫
R+

‖eAs‖2αdsπ(dA)

≤
∫
M−d

∫
R+

κ(A)2αe−2αρ(A)sdsπ(dA)
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=
1

2α

∫
M−d

κ(A)2α

ρ(A)
π(dA)

<∞.
2

Now we want to go one step further and analyze the tail behavior of the logarithmic

stock price process. Therefore, we use the independence between W and Λ yielding the

equality
t∫

0

Σ1/2
s dWs

d
=

 t∫
0

Σsds

1/2

W1. (4.5.2)

We immediately see that it is necessary to analyze the integrated volatility

Σ+
t :=

t∫
0

Σsds

in order to obtain regular variation of the stock price process. We start with its existence.

Theorem 4.5.4 (Barndorff-Nielsen and Stelzer (2011a), Theorem 4.3). Let Σ

be a positive semi-definite supOU process as given in Definition 4.5.1 that exists according

to Theorem 4.5.2. Then Σt(ω) is measurable as a function of t ∈ R and ω ∈ Ω. If also∫
M−d

κ(A)2π(dA) <∞,

then the paths of Σ are uniformly bounded in t and the integrated process Σ+
t exists for all

t ∈ R+ and the equation

Σ+
t =

∫
M−d

t∫
−∞

g−1
A

(
eA(t−s)Λ(dA, ds)eA

T (t−s)
)

+

∫
M−d

0∫
−∞

g−1
A

(
e−AsΛ(dA, ds)e−A

T s
)

−
∫
M−d

t∫
0

g−1
A (Λ(dA, ds))

holds with the function gA : Sd → Sd, X 7→ AX +XAT .

Another important and closely related characteristic of a time series are observed log

returns over given time periods of length ∆ ∈ R+ (representing for example observation
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intervals, trading periods etc.) given by

Zn := Xn∆ −X(n−1)∆ =

n∆∫
(n−1)∆

Σ1/2
s dWs

d
=

 n∆∫
(n−1)∆

Σsds


1/2

W1. (4.5.3)

Existence of the related integrated volatilities

Σ+
n :=

n∆∫
(n−1)∆

Σsds

is given by the previous theorem and conditions for regular variation of Σ+
n and of the

integrated volatility Σ+
t can be derived simultaneously.

Corollary 4.5.5. Let Λ ∈ Sd be a Lévy basis on M−
d × R with generating quadruple

(γ, 0, ν, π) and let ν ∈ RV (α, l, µν). If the conditions of Theorem 4.5.4 hold and addi-

tionally ∫
M−d

κ(A)2α

ρ(A)α+1
π(dA) <∞,

then Σ+
n ∈ RV (α, l, µΣ+

n
) with Radon measure

µΣ+
n

(B) :=

∫
M−d

∫
R

∫
Rd

1B

 n∆∫
u∨(n−1)∆

eA(s−u)xeA
T (s−u)1(−∞,n∆](u)ds

µν(dx)duπ(dA)

and Σ+
t ∈ RV (α, l, µΣ+

t
) with

µΣ+
t

(B) :=

∫
M−d

∫
R

∫
Rd

1B

 t∫
u∨0

eA(s−u)xeA
T (s−u)1(−∞,t](u)ds

µν(dx)duπ(dA).

Furthermore, the process (Σ+
t )t∈R+ is also regularly varying with index α as a process.

Proof. Again, we use the vector representation of the process and get from the proof of

Theorem 3.12 in Barndorff-Nielsen and Stelzer (2011a)

vec
(
Σ+
n

)
=

n∆∫
(n−1)∆

∫
M−d

s∫
−∞

e(A⊗Id+Id⊗A)(s−u)vec(Λ)(dA, du)ds
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=

∫
R

∫
M−d

g(A, t, u)vec(Λ)(dA, du)

with

g(A, t, u) :=

n∆∫
u∨(n−1)∆

e(A⊗Id+Id⊗A)(s−u)1(−∞,n∆](u)ds.

As before, it is left to show that g(A, t, u) ∈ Lα(λ × π) in order to apply Theorem 4.3.2.

Therefore, we estimate

‖g(A, t, u)‖ ≤ 1(−∞,n∆](u)

n∆∫
u∨(n−1)∆

∥∥e(A⊗Id+Id⊗A)(s−u)
∥∥ ds

≤ 1(−∞,n∆](u)

n∆∫
u∨(n−1)∆

∥∥eA(s−u)
∥∥2
ds

≤ 1(−∞,n∆](u)

n∆∫
u∨(n−1)∆

κ(A)2e−2ρ(A)(s−u)ds

=
κ(A)2

−2ρ(A)

(
e−2ρ(A)(n∆−u)1(−∞,n∆](u)− 1((n−1)∆,n∆)(u)

− e−2ρ(A)((n−1)∆−u)1(−∞,(n−1)∆](u)
)
.

For the first term of the sum we get∫
M−d

n∆∫
−∞

∣∣∣∣κ(A)2e−2ρ(A)(n∆−u)

−2ρ(A)

∣∣∣∣α du π(dA) =

∫
M−d

n∆∫
−∞

κ(A)2αe−2αρ(A)(n∆−u)

2αρ(A)α
du π(dA)

=
1

2α+1α

∫
M−d

κ(A)2α

ρ(A)α+1
π(dA)

<∞.

The second summand is in Lα(λ×π), since the function has bounded support, and for the

last term in the sum we simply substitute n by (n− 1) in the first term. The result for Σ+
t

follows directly setting ∆ = t and n = 1.

2

Note that this result also gives us regular variation with index α of a possible drift term

at = µ+ βΣt.
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4.5 Stochastic Volatility Model

The next step is to derive the tail behavior of the square root (Σ+)1/2 of the integrated

volatility process.

Lemma 4.5.6. Let Σ be a random variable with values in S+
d and let Σ1/2 be its square

root. Then Σ ∈ RV (α, l, µΣ) if and only if Σ1/2 ∈ RV (2α, l1/2, µ
1/2
Σ ) with l1/2(x) := l(x2)

and µ
1/2
Σ (B) := µ(B2).

Proof. Note that the square root of a matrix in S+
d is a bijective mapping and is thus well

defined. Since both functions, the square as well as the square root, map compacts to

compacts, we can apply Proposition 3.18 of Resnick (1987).

2

Now we can consider the log-returns and the logarithmic stock price process regarding

their tail behavior.

Theorem 4.5.7. Let (Xt)t∈R be the stock price process given by equation (4.5.1), let Zn

be the log-returns given by (4.5.3) and let Σ+
n be the increments of a positive semi-definite

supOU process (Σt)t∈R+. Furthermore, let the conditions of Corollary 4.5.5 hold. Then

Zn ∈ RV (2α, l1/2, µZ) with Radon measure

µZ(B) := E
(
µ

1/2

Σ+
n

(
W−1

1 (B)
))

and Xt ∈ RV (2α, l1/2, µX) with

µX(B) := E
(
µ

1/2

Σ+
t

(
W−1

1 (B)
))
,

where W1 : M−
d 7→ Rd is considered to be a random linear mapping with W1(x) := x ·W1

d
=

xN(0, Id). Furthermore, (Xt)t∈R is also regular varying with index 2α as a process.

Proof. Since W and Λ are independent, we have

Zn
d
=

( n∆∫
(n−1)∆

Σsds

)1/2

W∆ and

t∫
0

Σ1/2
s dWs

d
=

( t∫
0

Σsds

)1/2

Wt.

From Corollary 4.5.5 we know that

Σ+
n ∈ RV (α, l, µΣ+

n
) and Σ+

t ∈ RV (α, l, µΣ+
t

)

and, together with Lemma 4.5.6, this yields

(Σ+
n )1/2 ∈ RV (2α, l1/2, µ

1/2

Σ+
n

) and (Σ+
t )1/2 ∈ RV (2α, l1/2, µ

1/2

Σ+
t

).

Finally, we use the fact that the Brownian Motion has finite moments to apply the multi-

variate version of Breiman’s Lemma (see Theorem 2.1.18), which yields the result.

2

103



Chapter 4 Finite Dimensional Regular Variation of Mixed Moving Average Processes

4.5.2 Relevance and Applications in Finance

Let us conclude with some final remarks. First, we easily see that the model allows for

heavy tails, in the volatility as well as in logarithmic stock prices and log-returns. This is a

useful fact, since observed market data often shows heavy tails. Furthermore, we see that

there is a direct connection between the indexes of regular variation of the driving Lévy

measure on the one hand and the volatility, log-prices and log-returns on the other hand.

We can also calculate the concrete measure µ of regular variation in order to describe the

spatial structure of the extremes.

Second, we note that all the results given above hold also in the case of an Ornstein-

Uhlenbeck type stochastic volatility model where the volatility is modeled by an S+
d -valued

OU process. This is obvious, since OU processes are special cases of supOU processes with

π being a Dirac measure.

In a financial context, the results can now be used for a statistical analysis of observed

data. We can use one of the well established estimators (see Embrechts et al. (1997) or

Resnick (2007)) to estimate the index of regular variation of the given data (logarithmic

stock prices or log-returns). The result can then be compared with the estimated index

of regular variation of the integrated volatility. If they do not match by the factor of 2,

this is a hint for the existence of a leverage or drift term of the form specified in this

chapter. Yet, there is still some future work to be done to analyze and estimate the (index

of regular variation of the) integrated volatility, since it cannot be observed directly. If we

make additional assumptions on the different terms (leverage, drift) to exist or not, we can

calculate the index of regular variation of the log-prices or log-returns from the index of

the volatility and vice versa.

It would also be very interesting to generalize the stochastic volatility model by substituting

the Brownian motion Wt by a more general Lévy process L̃t. However, as there is then no

analogue of (4.5.2) available, it will be much more difficult to get results for this case and

different methods will be needed.

Modelling the Correlation Breakdown

Applied research in financial mathematics and econometrics has often noted that one typ-

ically encounters what has been dubbed “correlation breakdown” in times of severe crisis.

This notion means that when extreme negative events potentially affecting the whole (or

large parts of the) economy occur, basically all traded stocks are loosing tremendously in

value simultaneously and the correlations between them are seemingly more or less one.
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4.5 Stochastic Volatility Model

Moreover, after such an event the variances are typically extremely high. Models employed

in financial institutions (for risk management) clearly need to include this feature in order

to be realistic and provide accurate predictions.

The results of this chapter on the (sup)OU stochastic volatility model allow us to under-

stand how to incorporate such effects into the model. Clearly, the most extreme movements

in crisis can typically not come from the Brownian term but have to come from jumps.

Hence, Ψ needs to be chosen non-zero and such that when all variances have a jump up-

wards all prices have jumps downwards. Assume now that the positive semidefinite Lévy

basis is regularly varying with index α and the measure µν is concentrated on the rank

one matrices with all diagonal elements being non-zero and all correlations being 1. The

extremes of Σ are now caused by a single big jump which will be such that it is (almost)

a rank one matrix with all diagonal elements being non-zero. After the occurrence of the

jump the process Σ will be almost equal to the value of this jump and hence all correla-

tions will be very close to one for quite some time afterwards. Moreover, by the choice of

parameters the prices will simultaneously have a huge jump downward. Clearly, this would

model the “correlation breakdown”. The results actually show that Σ would be regularly

varying with index α and µΣ would be concentrated on the rank one matrices with all

diagonal elements being non-zero as this class of matrices is preserved by the mappings

X 7→ eAsXeA
T s for all A ∈Md(R) and s ∈ R+. Likewise the log prices would be regularly

varying with index α (unless we had a drift with heavier tails which seems not reasonable)

and the measure of regular variation for the log prices follows easily, because what matters

is only the linear transformation Ψ of the driving positive semidefinite Lévy basis. Note

that the measure of regular variation of the log prices will in general still have a completely

non-degenerate support (in the positive d-dimensional cone).

In practice the above explained model can only form an important building block of a

realistic and suitable model, since not all extreme events affect the whole economy, some

only affect individual sectors of industry or companies. However, also for such extensions

(which basically demand regular variation of Λ with appropriate µΛ) the results of this

chapter provide the necessary insight into the resulting tail behavior.
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Chapter 5

Functional Regular Variation of

Lévy-Driven Multivariate Mixed Moving

Average Processes

In Chapter 4 we have introduced multivariate mixed moving average (MMA) processes and

given conditions for regular variation of their finite-dimensional distributions if the driving

Lévy basis is regularly varying. In this chapter, we extend the results to functional regular

variation in the space D of càdlàg functions. We give sufficient conditions for an MMA

process (Xt) to have càdlàg sample paths. Furthermore, we prove that (Xt) is regularly

varying in D if the finite-dimensional distributions are regularly varying and the kernel

function f satisfies certain conditions. The conditions are also validated in the special case

of supOU processes.

5.1 Introduction

In many applications of stochastic processes, the center of the distributions involved and

related quantities (e.g. sample means, variances etc.) can be modeled quite well. In

view of the central limit theorem, Gaussian distributions play an important role in that

field. However, this needs not to be true for the tail of the distribution which is of great

importance in many areas of application. Possible examples are severe crisis in stock

markets or extreme weather events which can cause huge losses to the financial industry,

insurance companies and also to private people. Therefore, it is of great importance to

model the distribution tail and related quantities (e.g. quantiles, exceedances, maxima etc.)

correctly.

A very well established concept to model extreme values is regular variation. It has
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Chapter 5 Functional Regular Variation of Mixed Moving Average Processes

its origin in classical extreme value theory, where limit distributions for sample maxima

are derived. The maximum domains of attraction of two of the three possible standard

extreme value distributions (Fréchet and Weibull) can be described by regular variation of

functions, meaning functions behaving like a power law in the limit, see also Embrechts

et al. (1997) and Resnick (2007).

Moreover, regular variation can intuitively be extended to a multivariate setup. It is

then formulated in terms of vague convergence of measures given by

nP (a−1
n X ∈ ·) v−→ µ(·), (5.1.1)

where X is a multivariate random vector, (an) an increasing sequence and µ is a Radon

measure. Since µ is homogeneous, multivariate regular variation of X can be interpreted

as convergence of the radial part ‖X‖ to a univariate regularly varying random variable

Y and of the spherical part X/‖X‖ to a random variable Z on the unit sphere, which

is independent of Y and can be described by the measure µ. Detailed introductions to

multivariate regular variation can be found in Resnick (2007) and Hult and Lindskog

(2006b).

Finally, Hult and Lindskog (2005) extended the definition (5.1.1) to the space of mul-

tivariate stochastic processes with sample paths in the space D of càdlàg functions, i.e.

right-continuous functions with limits from the left. The formulation of regular variation

in such generality has the advantage that, in addition to functionals based on the values

of a stochastic process at fixed time points, one can also analyze functionals acting on

the complete sample paths of the process. This is a very powerful tool for the analy-

sis of extremal properties of a process, especially in combination with methods for weak

convergence of point processes which are closely related to regular variation (see Section

5.6).

In this chapter we apply the concept of regular variation on D to multivariate mixed

moving average (MMA) processes with càdlàg sample paths. MMA processes have been

first introduced by Surgailis et al. (1993) in the univariate stable case and are given as

integrals of the form

Xt =

∫
M−d

∫
R

f(A, t− s)Λ(dA, ds),

where Λ is a multivariate Lévy basis. The class of (multivariate) MMA processes covers

a wide range of processes which are well known and extensively used in applications. Ex-

amples include Ornstein-Uhlenbeck processes (cf. Barndorff-Nielsen and Shephard (2001)

and Pigorsch and Stelzer (2009)), superpositions of Ornstein-Uhlenbeck (supOU) processes
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(cf. Barndorff-Nielsen (2001) and Barndorff-Nielsen and Stelzer (2011a)), (fractionally in-

tegrated) CARMA processes (cf. Brockwell (2004), Marquardt (2007)) and increments

of fractional Lévy processes (cf. Marquardt (2006), Bender et al. (2011) and references

therein).

Regular variation of the finite-dimensional distributions of MMA processes has already

been proved in Section 4.3, given that the underlying Lévy basis is regularly varying and

the kernel function satisfies the integrability condition f ∈ Lα. In this chapter we give

additional integrability and continuity conditions on the kernel function f such that the

MMA process is functionally regularly varying on D. Furthermore, we also analyze the

special case of multivariate supOU processes given by

Xt =

∫
M−d

t∫
−∞

eA(t−s)Λ(dA, ds)

and give some more accessible sufficient conditions for supOU processes to be functionally

regularly varying.

The chapter is organized as follows. In Section 5.2.2 we introduce the notion of multi-

variate regular variation and related properties. In Section 5.2.3 we recall the definition

of MMA processes and the related integration theory. Furthermore, we review the condi-

tions for existence of MMA processes and for regular variation of their finite dimensional

distributions. The sample path behavior of MMA processes is discussed in Section 5.3.

We give an overview over the relevant literature and derive sufficient conditions for MMA

processes to have càdlàg sample paths in the case where the driving Lévy process is of finite

variation. In Section 5.4 we introduce the notion of functional regular variation and prove

that MMA processes are regularly varying on D, given certain conditions. In Section 5.5

we verify these conditions in the special case of supOU processes. Finally, in Section 5.6 we

show the connection between functional regular variation and point process convergence

and discuss the relevance of the results to the extremal analysis of MMA processes.

5.2 Preliminaries

5.2.1 Notation

Let R be the real numbers, R+ the positive and R− the negative real numbers, both

without 0. N is the set of positive integers and Q are the rational numbers. The Borel

sets are denoted by B and Bb are the bounded Borel sets. λ is the Lebesgue measure on
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R and Br(x) := {y ∈ Rd : ‖y − x‖ ≤ r} is the closed ball of radius r centered at x.

D is the space of càdlàg (right-continuous with left limits) functions x : [0, 1] → Rd and

SD = {x ∈ D : supt∈[0,1] ‖xt‖ = 1} is the unit sphere in D.

For matrices, Mn,d is the set of all n× d matrices and Md the set of all d× d matrices.

M−
d is the set of all d× d matrices with all eigenvalues having strictly negative real part.

Id is the d× d identity matrix. We write AT for the transposed of a matrix A and ‖A‖ for

the matrix norm induced by the Euclidean norm.

If random variables, vectors, processes, measures etc. are considered, they are given as

measurable mappings with respect to a complete probability space (Ω,F , P ).

Vague convergence is defined in terms of convergence of Radon measures and it is denoted

by
v−→. It is defined on the one-point uncompactification Rd\{0}, which assures that the

sets bounded away from the origin can be referred to as the relatively compact sets in

the vague topology. Similarly, ŵ-convergence is given by the convergence of boundedly

finite measures and is defined on D0 = (0,∞]× SD, which can be viewed as the one-point

uncompactification in D.

5.2.2 Multivariate Regular Variation

The tail behavior of multivariate random variables is often described by the property of

regular variation. This concept is derived from the notion of regularly varying functions,

i.e. functions behaving like a power law in the limit, and has an intuitive extension to

the space of real-valued and multivariate random variables. Regular variation on Rd is

expressed in terms of vague convergence of measures and several different, but equivalent,

definitions exist. For a detailed introduction we refer to Section 2.1. Very good overviews

on regular variation can also be found in Bingham et al. (1987), Resnick (1987), Resnick

(2007) and Lindskog (2004).

Definition 5.2.1 (Multivariate Regular Variation). A random vector X ∈ Rd is reg-

ularly varying if there exists a sequence (an)n∈N, 0 < an ↗ ∞, and a nonzero Radon

measure µ on B(Rd\{0}) such that µ(Rd\Rd) = 0 and, as n→∞,

nP (a−1
n X ∈ ·) v−→ µ(·)

on B(Rd\{0}). Similarly, we call a Radon measure ν regularly varying if (an) and µ exist

as above such that, as n→∞,

n ν(a−1
n ·)

v−→ µ(·).
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The limiting measure µ of the definition is homogeneous, i.e. it necessarily satisfies the

condition

µ(tB) = t−αµ(B)

for allB ∈ B(Rd\{0}) and t > 0. Hence, we writeX ∈ RV (α, (an), µ) or ν ∈ RV (α, (an), µ)

respectively. In the special case of an infinitely divisible random vector X ∈ Rd with Lévy

measure ν we know that X ∈ RV (α, (an), µ) if and only if ν ∈ RV (α, (an), µ) (see Theorem

2.3.10). This result is very useful throughout this chapter, since MMA processes are

infinitely divisible, just as the driving Lévy bases are. Detailed introductions to infinitely

divisible distributions and Lévy processes can be found in Sato (2002) and Section 2.3.

5.2.3 Multivariate Mixed Moving Average Processes

In this section we shortly recall the definition and main properties of multivariate mixed

moving average processes (short MMA processes) which have already been introduced and

analyzed in Section 4.

A multivariate (Rn-valued) MMA process (Xt) can be defined as an integral over a

measurable kernel function f : M−
d × R 7→ Mn,d with respect to an Rd-valued Lévy basis

Λ on M−
d × R, i.e.

Xt :=

∫
M−d

∫
R

f(A, t− s)Λ(dA, ds).

An Rd-valued Lévy basis Λ = (Λ(B)) with B ∈ Bb(M−
d ×R) is a random measure which is

• infinitely divisible, i.e. the distribution of Λ(B) is infinitely divisible for all B ∈ Bb(M−
d ×

R),

• independently scattered, i.e. for any n ∈ N the random variables Λ(B1), . . . ,Λ(Bn) are

independent for pairwise disjoint sets B1, . . . , Bn ∈ Bb(M−
d × R) and

• σ-additive, i.e. for any pairwise disjoint sets (Bi)i∈N ∈ Bb(M−
d × R) with

⋃
n∈NBn ∈

Bb(M−
d × R) we have Λ(

⋃
n∈NBn) =

∑
n∈N Λ(Bn) almost surely.

Thus, Lévy bases are also called infinitely divisible independently scattered random

measures (i.d.i.s.r.m.). Following Section 4.2.3 and Remark 4.2.5 we only consider time-

homogeneous and factorisable Lévy bases, i.e. Lévy bases with characteristic function

E
(
eiu

TΛ(B)
)

= eϕ(u)Π(B) (5.2.1)
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for all u ∈ Rd and B ∈ Bb(M−
d × R), where Π = λ × π is the product of a probability

measure π on M−
d (R) and the Lebesgue measure λ on R and

ϕ(u) = iuTγ − 1

2
uTΣu+

∫
Rd

(
eiu

T x − 1− iuTx1[−1,1](‖x‖)
)
ν(dx)

is the characteristic function of an infinitely divisible distribution with characteristic triplet

(γ,Σ, ν). The distribution of the Lévy basis is then completely determined by (γ,Σ, ν, π)

which is therefore called the generating quadruple. By L we denote the underlying Lévy

process which is given by Lt = Λ(M−
d × (0, t]) and L−t = Λ(M−

d × [−t, 0)) for t ∈ R+. For

more details on Lévy bases see Rajput and Rosiński (1989) and Pedersen (2003).

As in Section 4.3, we also mention that the set M−
d in the definition of MMA processes

can be replaced by Md or basically any other Borel set of matrices. The choice of M−
d is

motivated by the special case of supOU processes, where this is the canonical choice.

Necessary and sufficient conditions for the existence of MMA processes are given by the

multivariate extension of Theorem 2.7 in Rajput and Rosiński (1989).

Theorem 5.2.2. Let Λ be an Rd-valued Lévy basis with characteristic function of the form

(4.2.1) and let f : M−
d × R 7→ Mn,d be a measurable function. Then f is Λ-integrable as a

limit in probability in the sense of Rajput and Rosiński (1989) if and only if∫
M−d

∫
R

∥∥∥∥f(A, s)γ +

∫
Rd

f(A, s)x
(
1[0,1] (‖f(A, s)x‖)− 1[0,1] (‖x‖)

)
ν(dx)

∥∥∥∥dsπ(dA) <∞, (5.2.2)

∫
M−d

∫
R

‖f(A, s)Σ f(A, s)T ‖dsπ(dA) <∞ and (5.2.3)

∫
M−d

∫
R

∫
Rd

(
1 ∧ ‖f(A, s)x‖2

)
ν(dx)dsπ(dA) <∞. (5.2.4)

If f is Λ-integrable, the distribution of X0 =
∫
M−d

∫
R+ f(A, s)Λ(dA, ds) is infinitely divisible

with characteristic triplet (γint,Σint, νint) given by

γint =

∫
M−d

∫
R

f(A, s)γ +

∫
Rd

f(A, s)x
(
1[0,1] (‖f(A, s)x‖)− 1[0,1] (‖x‖)

)
ν(dx)

 dsπ(dA),

Σint =

∫
M−d

∫
R

f(A, s)Σ f(A, s)Tdsπ(dA) and

νint(B) =

∫
M−d

∫
R

∫
Rd

1B(f(A, s)x)ν(dx)dsπ(dA) for all Borel sets B ⊆ Rd.
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However, since the focus of this section is on regularly varying processes, we will also

use some more convenient conditions for this special setting. They have been derived in

Theorem 4.2.7 and are based on integrability conditions described by the set

Lδ(λ× π) :=

{
f : M−d × R 7→Mn,d measurable,

∫
M−d

∫
R

‖f(A, s)‖δdsπ(dA) <∞

}
.

Theorem 5.2.3. Let Λ be a Lévy basis with values in Rd and characteristic quadruple

(γ,Σ, ν, π). Furthermore, let ν be regularly varying with index α and let f : M−
d ×R 7→Mn,d

be a measurable function. Then f is Λ-integrable in the sense of Rajput and Rosiński

(1989) and Xt is well defined for all t ∈ R, stationary and infinitely divisible with known

characteristic triplet if one of the following conditions is satisfied:

(i) L1 is α-stable with α ∈ (0, 2)\{1} and f ∈ Lα ∩ L1.

(ii) f is bounded and f ∈ Lδ for some δ < α, δ ≤ 1.

(iii) f is bounded, EL1 = 0, α > 1 and f ∈ Lδ for some δ < α, δ ≤ 2.

Regular Variation of Xt for fixed t ∈ R as well as regular variation of the finite dimen-

sional distributions of the process (Xt) have been derived in Theorem 4.3.2 and Corollary

4.3.5 under similar conditions.

Theorem 5.2.4. Let Λ be an Rd-valued Lévy basis on M−
d ×R with generating quadruple

(γ,Σ, ν, π) and let ν ∈ RV (α, (an), µν). If X0 =
∫
M−d

∫
R f(A, s)Λ(dA, ds) exists (in the

sense of Theorem 5.2.2), f ∈ Lα(λ× π) and µν(f
−1(A, s)(Rn\{0})) = 0 does not hold for

π × λ almost-every (A, s), then X0 ∈ RV (α, (an), µX) with

µX(B) :=

∫
M−d

∫
R

∫
Rd

1B (f(A, s)x)µν(dx)dsπ(dA).

Furthermore, the finite dimensional distributions (Xt1 , . . . , Xtk), ti ∈ R and k ∈ N, are

also regularly varying with index α and a given limiting measure µt1,...,tk .

Comparable necessary conditions for regular variation do also exist, see Theorem 4.3.4

for details.

Next we introduce a result which allows to decompose a Lévy basis into a drift, a

Brownian part, a part with bounded jumps and a part with finite variation. This is the

extension of the Lévy-Itô decomposition of Theorem 2.3.6 to Lévy bases.
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Theorem 5.2.5 (Barndorff-Nielsen and Stelzer (2011a), Theorem 2.2). Let Λ be

a Lévy basis on M−
d × R with characteristic function of the form (5.2.1) and generating

quadruple (γ,Σ, ν, π). Then there exists a modification Λ̃ of Λ which is also a Lévy basis

with the same characteristic quadruple (γ,Σ, ν, π) such that there exists an Rd-valued Lévy

basis Λ̃G on M−
d × R with generating quadruple (0,Σ, 0, π) and an independent Poisson

random measure N on Rd ×M−
d × R with intensity measure ν × π × λ such that

Λ̃(B) = γ(π×λ)(B)+Λ̃G(B)+

∫
‖x‖≤1

∫
B

x(N(dx, dA, ds)−π(dA)dsν(dx))+

∫
‖x‖>1

∫
B

xN(dx, dA, ds)

for all B ∈ Bb(M−
d × R) and ω ∈ Ω. If, additionally,

∫
‖x‖≤1

‖x‖ν(dx) <∞, then

Λ̃(B) = γ0(π × λ)(B) + Λ̃G(B) +

∫
Rd

∫
B

xN(dx, dA, ds)

for all B ∈ Bb(M−
d × R), where

γ0 := γ −
∫
‖x‖≤1

xν(dx).

Moreover, the Lebesgue integral exists with respect to N for all ω ∈ Ω.

In the case of an underlying Lévy process with finite variation, Theorem 5.2.5 and

Theorem 5.2.2 can be combined to obtain integrability conditions for this special set-

ting. Note that by Theorem 2.3.7 finite variation of (Lt) is equivalent to Σ = 0 and∫
‖x‖≤1

‖x‖ ν(dx) <∞.

Proposition 5.2.6 (Barndorff-Nielsen and Stelzer (2011a), Prop. 2.4). Let Λ be

a Lévy basis on M−
d × R with characteristic function of the form (5.2.1) and generat-

ing quadruple (γ, 0, ν, π) such that
∫
‖x‖≤1

‖x‖ ν(dx) < ∞. Let γ0 and N be as defined in

Theorem 5.2.5. If f ∈ L1 and∫
M−d

∫
R

∫
Rd

(1 ∧ ‖f(A, s)x‖) ν(dx) ds π(dA) <∞,

then

X =

∫
M−d

∫
R

f(A, s)Λ(dA, ds) =

∫
M−d

∫
R

f(A, s) γ0 dsπ(dA) +

∫
Rd

∫
M−d

∫
R

f(A, s)xN(dx, dA, ds)
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and the integrals on the right hand side exist as Lebesgue integrals for every ω ∈ Ω. More-

over, the distribution of X is infinitely divisible with characteristic function

E
(
eiu

TX
)

= exp

iuTγint,0 +

∫
Rd

(
eiu

T x − 1
)
νint(dx)

 ,

where

γint,0 =

∫
M−d

∫
R

f(A, s) γ0 ds π(dA) and

νint(B) =

∫
M−d

∫
R

∫
Rd

1B(f(A, s)x) ν(dx) ds π(dA)

for all Borel sets B ⊆ Rd.

5.3 Sample Path Behavior

In Section 5.4 we review the concept of regular variation for càdlàg processes and apply it

to MMA processes. Therefore, we first have to discuss the sample path behavior of MMA

processes.

Many examples of results for MMA processes to have càdlàg sample paths exist in

the special case where the underlying Lévy process is of finite variation, i.e. Σ = 0 and∫
‖x‖≤1

‖x‖ ν(dx) <∞. In this case, the sample path behavior of the driving Lévy process

transfers to the sample paths of the MMA process. For example, define for any Lévy

process Lt the corresponding filtered Lévy process Xt by

Xt =

t∫
0

f(t, s) dLs (5.3.1)

for t ∈ [0, 1]. If Xt exists, Lt is of finite variation and the kernel function f is bounded and

continuous, then Xt has càdlàg sample paths (cf. Hult and Lindskog (2005), Lemma 28).

A more general result for supOU processes is given by Theorem 3.12 in Barndorff-Nielsen

and Stelzer (2011a). This result can be extended to the general case of MMA processes.

For that reason, we introduce the filtration (Ft)t∈R, where for t ∈ R the σ-algebra Ft is

generated by the sets {
Λ(B) : B ∈ B(M−

d × (−∞, t])
}
.

That way it is ensured that the paths Xt(ω), understood as a function of t ∈ R and ω ∈ Ω,

are adapted to the filtration (Ft)t∈R.
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Chapter 5 Functional Regular Variation of Mixed Moving Average Processes

Theorem 5.3.1. Let Λ be a Lévy basis on M−
d × R with characteristic function of the

form (5.2.1) and generating quadruple (γ, 0, ν, π) such that
∫
‖x‖≤1

‖x‖ ν(dx) <∞. Suppose

that the kernel function f(A, s) is continuous and differentiable in s for all s ∈ R\{0} and

f(A, 0−) = lims↗0 f(A, s) = C1 ∈ Mn,d as well as f(A, 0+) = lims↘0 f(A, s) = C2 ∈ Mn,d

for all A ∈M−
d . Set

f ′(A, s) :=

{
d
ds
f(A, s) if s 6= 0,

lims↘0
d
ds
f(A, s) if s = 0

and assume that for some δ > 0 and for every t1, t2 ∈ R such that t1 ≤ t2 and t2 −
t1 ≤ δ the function supt∈[t1,t2] ‖f ′(A, t − s)‖ satisfies the conditions of Proposition 5.2.6,

where (γ, 0, ν, π) is replaced by (‖γ‖, 0, νT , π) and the Lévy measure νT (·) = ν(T−1(·)) is

transformed by T (x) = ‖x‖. If the processes Xt =
∫
M−d

∫
R f(A, t− s)Λ(dA, ds) and

Zt :=

∫
M−d

∫
R
f ′(A, t− s)Λ(dA, ds)

exist (in the sense of Proposition 5.2.6), then

Xt = X0 +

t∫
0

Zu du+ (C1 − C2) Lt

and consequently Xt has sample paths in D which are of finite variation on compacts.

Proof. We follow the proof of Theorem 3.12 in Barndorff-Nielsen and Stelzer (2011a) and

begin by showing that Zt is locally uniformly bounded on compacts. Note that by Propo-

sition 5.2.6 the processes Xt and Zt can be given as integrals with respect to a Poisson

measure and π × λ. For δ > 0 and every t1, t2 ∈ R such that t1 ≤ t2 and t2 − t1 ≤ δ we

obtain

sup
t∈[t1,t2]

‖Zt‖ = sup
t∈[t1,t2]

∥∥∥∫
M−d

∫
R
f ′(A, t− s)Λ(dA, ds)

∥∥∥
≤
∫
M−d

∫
R

sup
t∈[t1,t2]

‖f ′(A, t− s)‖ΛT (dA, ds),

where T : Rd → R is given by T (x) = ‖x‖ and ΛT is the transformed Lévy basis with char-

acteristic triplet (‖γ‖, 0, νT , π). Existence of the right hand side is covered by Proposition

5.2.6. Thus Zt is locally uniformly bounded and it follows by Fubini that

t∫
0

Zudu =

t∫
0

∫
M−d

u∫
−∞

f ′(A, u− s)Λ(dA, ds) du+

t∫
0

∫
M−d

∞∫
u

f ′(A, u− s)Λ(dA, ds) du
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=

∫
M−d

t∫
−∞

t∫
0∨s

f ′(A, u− s) duΛ(dA, ds) +

∫
M−d

∞∫
0

t∧s∫
0

f ′(A, u− s) duΛ(dA, ds)

=

∫
M−d

t∫
−∞

f(A, u− s)
∣∣∣t
u=0∨s

Λ(dA, ds) +

∫
M−d

∞∫
0

f(A, u− s)
∣∣∣t∧s
u=0

Λ(dA, ds)

=

∫
M−d

t∫
−∞

f(A, t− s)Λ(dA, ds)−
∫
M−d

0∫
−∞

f(A, 0− s)Λ(dA, ds)

−
∫
M−d

t∫
0

f(A, 0+)Λ(dA, ds) +

∫
M−d

∞∫
t

f(A, t− s)Λ(dA, ds)

+

∫
M−d

t∫
0

f(A, 0−)Λ(dA, ds)−
∫
M−d

∞∫
0

f(A, 0− s)Λ(dA, ds)

= Xt −X0 + (C1 − C2) Lt.

2

Remark 5.3.2. The inclusion of kernel functions with a discontinuity at s = 0 is mo-

tivated by the class of causal MMA processes where the kernel function is of the form

f(A, s)1[0,∞)(s). For example, in the supOU case the kernel function is eAs 1[0,∞)(s) and

the limits at s = 0 can be given directly by C1 = 0 and C2 = Id yielding

Xt = X0 +

t∫
0

Zu du− Lt.

This coincides with the result of Theorem 3.12 in Barndorff-Nielsen and Stelzer (2011a),

where the existence conditions on Xt and Zt as well as the integrability condition on

supt∈[t1,t2] ‖f ′(A, t−s)‖ are expressed in terms of the special properties of supOU processes

with driving Lévy process of finite variation.

If C1−C2 = 0 in the above theorem, further properties of the sample paths of Xt follow

directly.

Corollary 5.3.3. Assume that the conditions of Theorem 5.3.1 hold. If additionally C1 =

C2, then the paths of Xt =
∫
M−d

∫
R f(A, t−s)Λ(dA, ds) are absolutely continuous and almost

surely differentiable.
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Chapter 5 Functional Regular Variation of Mixed Moving Average Processes

Remark 5.3.4. The condition C1 = C2 holds if and only if f(A, s) is continuous in s = 0

and f(A, 0) is constant for all A ∈M−
d . This is satisfied, for example, by two-sided supOU

processes which are MMA processes with kernel function

f(A, s) = eAs1[0,∞)(s) + e−As1(−∞,0)(s).

In that case C1 = C2 = Id. In the case of moving average processes, where π is a one-point

measure, the condition only requires that f is continuous in s = 0. Processes of this class

include, for example, two-sided CARMA and two-sided Ornstein-Uhlenbeck processes.

Similar results for the sample paths of MMA processes, where the driving Lévy process

is not of finite variation, are in general not so easy to obtain. Basse and Pedersen (2009),

Corollary 3.3, give necessary and sufficient conditions for filtered Lévy processes of the form

(5.3.1) to have càdlàg sample paths of bounded variation even if the driving Lévy process

itself has sample paths of unbounded variation. Furthermore, they also study two-sided

moving averages of the form

Xt =

t∫
−∞

(f1(t− s)− f2(−s)) dLt,

where f1, f2 : R → R are measurable kernel functions such that f1(s) = f2(s) = 0 for

all s ∈ (−∞, 0). They give necessary and sufficient conditions for such processes to have

càdlàg sample paths of finite variation. These conditions also allow the underlying Lévy

process to be of infinite variation. Moreover, they also consider the special case where the

driving Lévy process is symmetric α-stable with α ∈ (1, 2] (cf. Basse and Pedersen (2009),

Lemma 5.2, Proposition 5.3 and Proposition 5.5). Conditions for α-stable MMA processes,

α ∈ (0, 2), to have càdlàg sample paths are also given in Basse and Rosiński (2011), Section

4.

Additionally, there also exist some results for the stronger property of continuous sample

paths. See Marcus and Rosiński (2005), Cambanis et al. (1990) and Rosiński (1989) for

results on general MMA processes to have continuous sample paths. For the special case

of α-stable MMA processes, see also Rosiński et al. (1991) and Rosiński (1986).

5.4 Functional Regular Variation

Following Hult and Lindskog (2005), regular Variation on D is given in terms of the ŵ-

convergence of boundedly finite measures on D0. A measure µ on a complete separable
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5.4 Functional Regular Variation

metric space E is said to be boundedly finite if µ(B) <∞ for every bounded set B ∈ B(E).

Let (µn)n∈N be a sequence of boundedly finite measures on E. Then (µn) converges to µ

in the ŵ-topology if µn(B)→ µ(B) for all bounded Borel sets B ∈ B(E) with µ(∂B) = 0.

We write µn
ŵ−→ µ. A complete introduction of the used topology can be found in Section

2.1.4 or Hult and Lindskog (2005). See also Daley and Vere-Jones (1988) and Kallenberg

(1983) for details on ŵ-convergence and vague convergence.

Definition 5.4.1 (Regular Variation on D). A stochastic process (Xt), t ∈ [0, 1], with

sample paths in D is said to be regularly varying if there exists a positive sequence (an),

n ∈ N, with an ↗∞ and a nonzero boundedly finite measure µ on B(D0) with µ(D0\D) = 0

such that, as n→∞,

nP (a−1
n X ∈ ·) ŵ−→ µ(·) on B(D0).

As in the finite dimensional case, direct calculation shows that the measure µ is homo-

geneous, i.e. there exists a positive index α > 0 such that µ(uB) = u−αµ(B) for all u > 0

and for every B ∈ B(D0). Thus, we say that the process (Xt) is regularly varying with

index α and write X ∈ RVD0
(α, (an), µ).

Analogously to multivariate regular variation, several alternative definitions of regular

variation on D exist, we will just state one example here.

Theorem 5.4.2 (Hult and Lindskog (2005), Theorem 4). A process (Xt) with sam-

ple paths in D is regularly varying if and only if there exists an index α > 0 and a probability

measure σ on B(SD) such that for every positive x > 0, as u→∞,

P (‖X‖∞ > ux,X/‖X‖∞ ∈ ·)
P (‖X‖∞ > u)

ŵ−→ x−ασ(·) on B(SD),

where ‖X‖∞ = supt∈[0,1] ‖Xt‖.

The probability measure σ is called the spectral measure of X.

Example 5.4.3 (Lévy Process). Let (Lt) be a Lévy process. Then by definition (or

Theorem 2.3.2 resp.) (Lt) has sample paths in D. Furthermore, (Lt) is also a strong

Markov process (cf. Sato (2002), Theorem 10.5 and Corollary 40.11). Now the results of

Hult and Lindskog (2005), Section 3, can be applied. If Lt ∈ RV (α, (an), tµ), then it

follows by Theorem 13 of Hult and Lindskog (2005) that (Lt) ∈ RVD0
(α, (an), µ̃) for some

measure µ̃. For details we refer to Hult and Lindskog (2005), Example 17.

We will now recall some useful results from Hult and Lindskog (2005) related to regular

variation on D. Since it is often of interest, how the regular variation property is preserved
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Chapter 5 Functional Regular Variation of Mixed Moving Average Processes

under mappings, we look at a continuous mapping theorem. Therefore, for any function h

from a metric space E to a metric space E ′ we introduce the set disc(h) which consists of

all discontinuities of h.

Theorem 5.4.4 (Hult and Lindskog (2005), Theorem 6). Let (Xt) be a stochastic

process with sample paths in D and let E ′ be a complete separable metric space. Assume that

X ∈ RVD0
(α, (an), µ) and h : D → E ′ is a measurable mapping such that µ(disc(h)) = 0

and h−1(B) is bounded in D0 for every bounded B ∈ B(E ′). Then, as n→∞,

nP (h(a−1
n X) ∈ ·) ŵ−→ µ ◦ h−1(·) on B(E ′).

There also exists a different version of the previous theorem for the special case of

positively homogeneous mappings of order γ > 0, i.e. mappings h : D → D with h(λx) =

λγh(x) for all λ ≥ 0 and x ∈ D. See Theorem 2.1.21 for details.

The next theorem states some necessary and sufficient conditions for regular variation

on D. In the theorem, we use the notation

w(x, T0) := sup
t1,t2∈T0

‖xt1 − xt2‖ and

w′′(x, δ) := sup
t1≤t≤t2; t2−t1≤δ

min {‖xt − xt1‖, ‖xt2 − xt‖}

for x ∈ D, T0 ⊆ [0, 1] and δ ∈ [0, 1].

Theorem 5.4.5 (Hult and Lindskog (2005), Theorem 10). Let (Xt) be a stochastic

process with sample paths in D. Then the following statements are equivalent.

(i) X ∈ RVD0
(α, (an), µ).

(ii) There exists a set T ⊆ [0, 1] containing 0, 1 and all but at most countably many points

of [0, 1], a positive sequence an ↗ ∞ and a collection {µt1,...,tk : ti ∈ T, k ∈ N} of

Radon measures on B(Rdk\{0}) with µt1,...,tk(R
dk\Rdk) = 0 and µt is nonzero for some

t ∈ T such that

nP (a−1
n (Xt1 , . . . , Xtk) ∈ ·)

v−→ µt1,...,tk(·) on B(Rdk\{0}) (5.4.1)

holds for all t1, . . . , tk ∈ T . Furthermore, for every ε, η > 0, there exist δ ∈ (0, 1) and

n0 ∈ N such that, for all n ≥ n0,

nP (a−1
n w(X, [0, δ)) ≥ ε) ≤ η, (5.4.2)

nP (a−1
n w(X, [1− δ, 1)) ≥ ε) ≤ η, (5.4.3)

nP (a−1
n w′′(X, δ) ≥ ε) ≤ η. (5.4.4)
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Remark 5.4.6. The theorem links regular variation of the process (Xt)t∈[0,1] with sample

paths in D to regular variation of the finite dimensional distributions (Xt1 , . . . , Xtk) of the

the process. Key to that connection are the relative compactness criteria (5.4.2), (5.4.3)

and (5.4.4) which restrict the oscillation of the process (Xt) in small areas. See Hult and

Lindskog (2005), Example 11, for a process satisfying conditions (5.4.2) and (5.4.3), but

not (5.4.4).

Now we will extend the finite dimensional regular variation of MMA processes in the

sense of Theorem 5.2.4 to regular variation in D by applying Theorem 5.4.5. Therefore, we

need to restrict the MMA process (Xt) as defined in Section 5.2.3 to the time interval [0, 1].

Note that a restriction to any other compact time interval [a, b], a < b, would not change

any of the results. Furthermore, we assume that (Xt) has sample paths in the space D of

càdlàg functions. See Section 5.3 for possible conditions ensuring this. We start with the

main theorem for functional regular variation of MMA processes.

Theorem 5.4.7. Let Λ and Λ2 be Rd-valued Lévy bases on M−
d ×R with generating quadru-

ples (γ,Σ, ν, π) and (0, 0, ν|B1(0)c , π) respectively such that ν ∈ RV (α, (an), µν). Assume

that the kernel function f(A, s) is bounded, f ∈ Lα(λ × π), µν(f
−1(A, s)(Rn\{0})) = 0

does not hold for π × λ almost-every (A, s) and∫
M−d

∫
R

∫
‖x‖>1

(1 ∧ ‖f(A, s)x‖) ν(dx) ds π(dA) <∞. (5.4.5)

Moreover, suppose that the MMA process Xt =
∫
M−d

∫
R f(A, t − s)Λ(dA, ds) exists for t ∈

[0, 1] (in the sense of Theorem 5.2.2) and that the processes Xt and X
(2)
t =

∫
M−d

∫
R f(A, t−

s)Λ2(dA, ds) have càdlàg sample paths. If the function fδ given by

fδ(A, s) := sup
0≤t1≤t2≤1; t2−t1≤δ

‖f(A, t2 − s)− f(A, t1 − s)‖ 1(t1,t2]c (s) (5.4.6)

satisfies (5.4.5) and, as δ → 0,∫
M−d

∫
R

fδ(A, s)
α dsπ(dA)→ 0, (5.4.7)

then

(Xt)t∈[0,1] ∈ RVD0
(α, (an), µ),

where µ is uniquely determined by the measures µt1,...,tk in Theorem 5.2.4.
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The condition
∫
M−d

∫
R fδ(A, s)

α dsπ(dA) → 0 is closely linked to the behavior of the

function f in small areas. It restricts the amplitude of jumps and continuous oscillations

for arbitrarily small values of δ.

Lemma 5.4.8. Let π be a probability measure and f : M−
d × R 7→ Mn,d be a measurable

kernel function. Assume that the function fδ(A, s) given by (5.4.6) satisfies fδ ∈ Lα for

some δ > 0. Then

lim
δ→0

∫
M−d

∫
R

fδ(A, s)
α dsπ(dA) = 0

if and only if limδ→0 fδ(A, s)→ 0 for π × λ almost every (A, s).

Proof. Let fδ(A, s)→ 0 for π × λ almost every (A, s). Then∫
M−d

∫
R

fδ(A, s)
α dsπ(dA)→ 0

follows by dominated convergence and the assumption fδ ∈ Lα for some δ > 0. On the

other hand, suppose that the set

B̃ :=
{

(A, s) ∈ Bb(M−
d × R) : fδ(A, s)→ 0 as δ → 0

}
satisfies π × λ (B̃c) = C > 0. Then the monotonicity of fδ in δ implies limδ→0 fδ(A, s) > 0

for every (A, s) ∈ B̃c and thus

lim
δ→0

∫
M−d

∫
R

fδ(A, s)
α dsπ(dA) > 0.

2

Remark 5.4.9. From the definition of fδ we see that the condition limδ→0 fδ(A, s)→ 0

for π × λ almost every (A, s) is equivalent to the kernel function f(A, s) being continuous

in s for all s ∈ R\{0}. Now we also see the importance of the restriction 1(t1,t2]c (s) in the

definition of fδ because it allows for f(A, s) being discontinuous at s = 0. Without such

a restriction, condition (5.4.7) would be violated by many examples of the class of causal

MMA processes which have a kernel function of the type f(A, s)1[0,∞)(s). Causal MMA

processes with f(A, 0) 6= 0 include CARMA and supOU processes as well as many other

well-known examples of MMA processes.

We can also give sufficient conditions for a general function f : M−
d × R → Mn,d to

satisfy condition (5.4.5).
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Lemma 5.4.10. Let f : M−
d ×R→Mn,d be a measurable function. Then condition (5.4.5)

holds if one of the following two conditions are satisfied:

(i) f ∈ L1 and α > 1.

(ii) f ∈ Lα−ε for one ε ∈ (0, α) and α ≤ 1.

Proof. For (i) we calculate∫
M−d

∫
R

∫
‖x‖>1

(1 ∧ ‖f(A, s)x‖) ν(dx) ds π(dA) ≤

≤
∫
M−d

∫
R

∫
‖x‖>1

‖f(A, s)‖‖x‖ ν(dx) ds π(dA)

=

∫
M−d

∫
R

‖f(A, s)‖ ds π(dA)

∫
‖x‖>1

‖x‖ ν(dx)

<∞

by Sato (2002), Corollary 25.8, and similarly for (ii) we obtain∫
M−d

∫
R

∫
‖x‖>1

(1 ∧ ‖f(A, s)x‖) ν(dx) ds π(dA) ≤

≤
∫
M−d

∫
R

∫
‖x‖>1

(1 ∧ ‖f(A, s)x‖α−ε) ν(dx) ds π(dA)

≤
∫
M−d

∫
R

∫
‖x‖>1

‖f(A, s)‖α−ε‖x‖α−ε ν(dx) ds π(dA)

=

∫
M−d

∫
R

‖f(A, s)‖α−ε ds π(dA)

∫
‖x‖>1

‖x‖α−ε ν(dx)

<∞.
2

Remark 5.4.11. The conditions of Lemma 5.4.10 are only sufficient, not necessary, similar

to the ones of Theorem 5.2.3. Thus in general we will only demand the weaker condition

(5.4.5) which is also one of the existence conditions for MMA processes with driving Lévy

process of finite variation in Proposition 5.2.6. Furthermore, we see from Lemma 5.4.10(i)

that condition (5.4.5) in Proposition 5.2.6 can be dropped if α > 1.
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Proof of Theorem 5.4.7

Let (Xt) be an MMA process as given in Theorem 5.4.7, i.e. (Xt) exists for t ∈ [0, 1]

(in the sense of Theorem 5.2.2), the kernel function f is bounded by C ∈ R+ and the

regular variation conditions of Theorem 5.2.4 hold. Then there exists a positive sequence

an ↗∞ and a collection {µt1,...,tk : ti ∈ T, k ∈ N} of Radon measures on B(Rdk\{0}) with

µt1,...,tk(R
dk\Rdk) = 0 and µt is nonzero for some t ∈ T such that

nP (a−1
n (Xt1 , . . . , Xtk) ∈ ·)

v−→ µt1,...,tk(·) on B(Rdk\{0}).

Applying Theorem 5.4.5, it is left to show that the conditions (5.4.2), (5.4.3) and (5.4.4)

hold.

Using the Lévy-Itô decomposition we have two independent Lévy bases Λ1 and Λ2 such

that Λ = Λ1+Λ2, Λ1 has generating quadruple (γ,Σ, ν1, π) and Λ2 has generating quadruple

(0, 0, ν2, π), where ν1 = ν|B1(0) and ν2 = ν|B1(0)c . This yields

Xt = X
(1)
t +X

(2)
t , (5.4.8)

where

X
(1)
t =

∫
M−d

∫
R

f(A, t− s)Λ1(dA, ds) (5.4.9)

and

X
(2)
t =

∫
M−d

∫
R

f(A, t− s)Λ2(dA, ds). (5.4.10)

Note that the term X
(2)
t can be written in the form

X
(2)
t =

∫
‖x‖≥1

∫
M−d

∫
R

f(A, t− s)xN(dx, dA, ds),

where N is a Poisson random measure with mean measure ν × π × λ. Before we proceed,

we need to ensure the existence of X
(1)
t and X

(2)
t . Therefore, we give conditions for ω-wise

existence of X
(2)
t as a Lebesgue integral. Then the existence of X

(1)
t = Xt − X(2)

t follows

from the existence of Xt and X
(2)
t .

Proposition 5.4.12. Let X
(2)
t be the process given by (5.4.10), where Λ2 is a Lévy basis

with generating quadruple (0, 0, ν2, π). If∫
M−d

∫
R

∫
Rd

(1 ∧ ‖f(A, s)x‖) ν2(dx) ds π(dA) <∞,
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then X
(2)
t exists as a Lebesgue integral for all ω ∈ Ω.

Proof. By definition, X
(2)
t has no Gaussian component and

∫
‖x‖≤1

‖x‖ν2(dx) = 0 and thus

we have an underlying Lévy process of finite variation. Now the result follows as a special

case of Proposition 5.2.6, where the condition f ∈ L1 is obsolete due to the absence of a

drift.

2

Like for Xt, we also assumed that X
(2)
t has càdlàg sample paths. Then also X

(1)
t =

Xt − X(2)
t has càdlàg sample paths. Appropriate conditions for MMA processes to have

càdlàg sample paths have been given in Section 5.3.

Now we continue the proof of Theorem 5.4.7 by verifying the relative compactness con-

ditions (5.4.2), (5.4.3) and (5.4.4). For the first condition (5.4.2) we obtain

sup
t1,t2∈[0,δ)

‖Xt1 −Xt2‖ ≤ sup
t1,t2∈[0,δ)

‖X(1)
t1 −X

(1)
t2 ‖+ sup

t1,t2∈[0,δ)

‖X(2)
t1 −X

(2)
t2 ‖

and hence

nP
(
a−1
n sup

t1,t2∈[0,δ)

‖Xt1 −Xt2‖ ≥ ε
)
≤

≤ nP
(
a−1
n sup

t1,t2∈[0,δ)

‖X(1)
t1 −X

(1)
t2 ‖ ≥ ε/2

)
+ nP

(
a−1
n sup

t1,t2∈[0,δ)

‖X(2)
t1 −X

(2)
t2 ‖ ≥ ε/2

)
.

The analogue result for the second condition (5.4.3) can be obtained likewise. For the third

condition (5.4.4) we estimate

sup
t1≤t≤t2; t2−t1≤δ

min
{
‖Xt2 −Xt‖, ‖Xt −Xt1‖

}
≤

≤ sup
t1≤t2; t2−t1≤δ

‖X(1)
t1 −X

(1)
t2 ‖+ sup

t1≤t≤t2; t2−t1≤δ
min

{
‖X(2)

t2 −X
(2)
t ‖, ‖X

(2)
t −X

(2)
t1 ‖
}
,

and

nP
(
a−1
n sup

t1≤t≤t2; t2−t1≤δ
min

{
‖Xt2 −Xt‖, ‖Xt −Xt1‖

}
≥ ε
)
≤

≤ nP
(
a−1
n sup

t1≤t2; t2−t1≤δ
‖X(1)

t1 −X
(1)
t2 ‖ ≥ ε/2

)
+ nP

(
a−1
n sup

t1≤t≤t2; t2−t1≤δ
min

{
‖X(2)

t2 −X
(2)
t ‖, ‖X

(2)
t −X

(2)
t1 ‖
}
≥ ε/2

)
.

For every ε, η > 0 we have to show that there exists n0 ∈ N and δ > 0 such that for n ≥ n0

these quantities can be bounded by η. Regarding the quantities based on X
(1)
t we observe

nP
(
a−1
n sup

t1,t2∈[0,δ)

‖X(1)
t1 −X

(1)
t2 ‖ ≥ ε/2

)
≤ nP

(
a−1
n sup

t1≤t2; t2−t1≤δ
‖X(1)

t1 −X
(1)
t2 ‖ ≥ ε/2

)
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and for (5.4.3)

nP
(
a−1
n sup

t1,t2∈[1−δ,1)

‖X(1)
t1 −X

(1)
t2 ‖ ≥ ε/2

)
≤ nP

(
a−1
n sup

t1≤t2; t2−t1≤δ
‖X(1)

t1 −X
(1)
t2 ‖ ≥ ε/2

)
and thus it is sufficient to prove the bound only for the right hand side of the inequality.

Proposition 5.4.13. Let Λ1 be the Rd-valued Lévy basis on M−
d × R determined by the

generating quadruple (γ,Σ, ν1, π), where ν1 = ν|B1(0). Assume that the kernel function f is

bounded, that the MMA process X
(1)
t given by (5.4.9) exists for t ∈ [0, 1] and that X

(1)
t has

càdlàg sample paths. Moreover, suppose that ν ∈ RV (α, (an), µν). Then X
(1)
t satisfies

lim
n→∞

nP (a−1
n sup

t1≤t2; t2−t1≤δ
‖X(1)

t1 −X
(1)
t2 ‖ ≥ ε) = 0

for all δ ∈ (0, 1) and ε > 0.

Proof. We start by observing that X
(1)
t is càdlàg and thus also separable and hence we can

estimate

sup
t1≤t2; t2−t1≤δ

‖X(1)
t1 −X

(1)
t2 ‖ ≤ 2 sup

t∈[0,1]

‖X(1)
t ‖ = 2 sup

t∈[0,1]∩Q
‖X(1)

t ‖.

Due to the equivalence of norms, we can now choose the matrix norm

‖A‖ := max{|aij| : 1 ≤ i ≤ n and 1 ≤ j ≤ d}

for A ∈Mn,d and denote by X
(1)
t,i ∈ R, 1 ≤ i ≤ n, the i-th component of X

(1)
t , i.e.

X
(1)
t =

(
X

(1)
t,1 , X

(1)
t,2 , . . . , X

(1)
t,n

)T
.

Furthermore, define the (countable) set

T̃ := {(t, i) : t ∈ [0, 1] ∩Q and i ∈ {1, . . . , n}} .

Then we obtain

sup
t∈[0,1]∩Q

‖X(1)
t ‖ = sup

t∈[0,1]∩Q
max
1≤i≤n

‖X(1)
t,i ‖ = sup

s∈T̃
‖X(1)

s ‖,

where sups∈T̃ is a subadditive functional on RT̃ . Furthermore, by Theorem 4.2.6 the

processes X
(1)
t,i are infinitely divisible with specified characteristic triplet (γt,i,Σt,i, νt,i) and

Lévy measure

νt,i(B) =

∫
M−d

∫
R

∫
Rd

1B(fi(A, t− s)x)ν1(dx)dsπ(dA)
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for all B ∈ B(R), where fi denotes the i-th row of f . It follows that X(1) = {X(1)
s :

x ∈ T̃} is infinitely divisible with characteristic triplet (γ̃, Σ̃, ν̃), where γ̃, Σ̃ and ν̃ are

given as projective limits of the corresponding finite dimensional characteristics described

by (γt,i,Σt,i, νt,i) (cf. Maruyama (1970)). Moreover, the boundedness ‖f‖ ≤ C implies

‖fi‖ ≤ C and this, together with the definition of ν1 = ν|B1(0), yields that the support of

the Lévy measures νt,i and ν̃ can be bounded by C. Now we are able to apply Lemma 2.1

of Braverman and Samorodnitsky (1995) to obtain

E

(
exp

(
ε sup

s∈T̃
‖X(1)

s ‖

))
<∞

for all ε > 0. Finally, the finite exponential moments in combination with Lemma 2.1.14

yield

lim
n→∞

nP
(
a−1
n sup

t1≤t2; t2−t1≤δ
‖X(1)

t1 −X
(1)
t2 ‖ ≥ ε

)
≤ lim

n→∞
nP
(
a−1
n sup

s∈T̃
‖X(1)

s ‖ ≥ ε/2
)

= 0

for all ε > 0.

2

Next we check the process X
(2)
t with respect to the relative compactness conditions

(5.4.2), (5.4.3) and (5.4.4).

Proposition 5.4.14. Let Λ be an Rd-valued Lévy basis on M−
d ×R with generating quadru-

ple (γ,Σ, ν, π) and let ν ∈ RV (α, (an), µν). Assume that the kernel function f is bounded,

the MMA process X
(2)
t =

∫
M−d

∫
R f(A, t− s)Λ2(dA, ds) satisfies the existence conditions of

Proposition 5.4.12 and that the regular variation conditions of Theorem 5.2.4 hold. If the

function fδ given by (5.4.6) satisfies the existence condition of Proposition 5.4.12 and, as

δ → 0, ∫
M−d

∫
R

fδ(A, s)
α dsπ(dA)→ 0,

then X
(2)
t given by (5.4.10) satisfies the relative compactness conditions (5.4.2), (5.4.3) and

(5.4.4).

Proof. We define the difference function gt1,t2(A, s) := f(A, t1−s)−f(A, t2−s) and mention

that for every t1, t2 ∈ [0, 1] the random vector

X
(2)
t1 −X

(2)
t2 =

∫
‖x‖≥1

∫
M−d

∫
R

gt1,t2(A, s) x N(dx, dA, ds)
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is again MMA and by Theorem 5.2.3 and Theorem 5.2.4 it exists and is regularly varying

with index α.

Condition (5.4.2): We verify the condition by showing that, as δ → 0,

lim
n→∞

nP (a−1
n sup

t1,t2∈[0,δ)

‖X(2)
t1 −X

(2)
t2 ‖ ≥ ε)→ 0

for every ε > 0. We use the decomposition

X
(2)
t1 −X

(2)
t2 =

=

∫
‖x‖≥1

∫
M−d

∫
(t1,t2]

gt1,t2(A, s) x N(dx, dA, ds) +

∫
‖x‖≥1

∫
M−d

∫
(t1,t2]c

gt1,t2(A, s) x N(dx, dA, ds)

=: Z
(1)
t1,t2 + Z

(2)
t1,t2 (5.4.11)

which yields

nP
(
a−1
n sup

t1,t2∈[0,δ)

‖X(2)
t1 −X

(2)
t2 ‖ ≥ ε

)
≤

≤ nP
(
a−1
n sup

t1,t2∈[0,δ)

‖Z(1)
t1,t2‖ ≥ ε/2

)
+ nP

(
a−1
n sup

t1,t2∈[0,δ)

‖Z(2)
t1,t2‖ ≥ ε/2

)
. (5.4.12)

With ν2 = ν|B1(0)c and using the transformation T : Rd → R given by T (x) = ‖x‖ together

with the boundedness f(A, s) ≤ C for all (A, s) ∈M−
d × R we can now calculate

‖Z(1)
t1,t2‖ ≤

∫
‖x‖≥1

∫
M−d

∫
(t1,t2]

‖gt1,t2(A, s)‖ ‖x‖N(dx, dA, ds)

≤ 2 C ΛT
2 (M−

d × (t1, t2])

= 2 C (L
(2)
t2 − L

(2)
t1 ), (5.4.13)

where ΛT
2 is a Lévy basis with generating quadruple (0, 0, ν2

T , π) and the transformed Lévy

measure ν2
T is given by ν2

T (·) = ν2(T−1(·)). By (L
(2)
t ) we denote the underlying Lévy

process given by L
(2)
t = Λ2(M−

d × (0, t]) for t > 0. Using a continuous mapping argument

similar to Theorem 5.4.4 we see that ν ∈ RV (α, (an), µν) implies ν2
T ∈ RV (α, (an), µνT )

with µνT defined respectively. Thus by Theorem 4.2.3 L
(2)
1 ∈ RV (α, (an), µνT ) and then by

Example 5.4.3 also (L
(2)
t ) ∈ RVD0

(α, (an), µ̃) for some measure µ̃. Now another application

of Theorem 5.4.5 yields that condition (5.4.2) holds for the process (L
(2)
t ) and hence, as

δ → 0,

lim
n→∞

nP
(
a−1
n sup

t1,t2∈[0,δ)

‖Z(1)
t1,t2‖ ≥ ε/2

)
≤ lim

n→∞
nP
(
a−1
n sup

t1,t2∈[0,δ)

(L
(2)
t2 − L

(2)
t1 ) ≥ ε/(4C)

)
→ 0.
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Similarly, the supremum of the second term Z
(2)
t1,t2 can be bounded by

sup
t1,t2∈[0,δ)

‖Z(2)
t1,t2‖ ≤

∫
‖x‖≥1

∫
M−d

∫
R

sup
t1,t2∈[0,δ)

‖gt1,t2(A, s)‖1(t1,t2]c(s) ‖x‖N(dx, dA, ds)

≤
∫

‖x‖≥1

∫
M−d

∫
R

fδ(A, s) ‖x‖N(dx, dA, ds)

=

∫
M−d

∫
R

fδ(A, s)Λ
T
2 (dA, ds) =: Y.

Then assumption (5.4.7) implies fδ ∈ Lα for some δ > 0 sufficiently small and another

application of Theorem 5.2.4 yields Y ∈ RV (α, (an), µY ) with

µY (B) :=

∫
M−d

∫
R

∫
Rd

1B (fδ(A, s)‖x‖)µν(dx)dsπ(dA).

Finally, as n→∞, we obtain

nP
(
a−1
n sup

t1,t2∈[0,δ)

‖Z(2)
t1,t2‖ ≥ ε/2

)
≤ nP (a−1

n Y ≥ ε/2)

→
∫
M−d

∫
R

µν(x : fδ(A, s)‖x‖ ≥ ε/2) ds π(dA)

= µν(x : ‖x‖ ≥ ε/2)

∫
M−d

∫
R

fδ(A, s)
α ds π(dA)

and since µν is a Radon measure the result follows by the assumption.

Condition (5.4.3): The condition follows likewise to condition (5.4.2) (note also that the

MMA process (Xt) is stationary).

Condition (5.4.4): For the third condition we use (5.4.11) again and obtain

sup
t1≤t≤t2; t2−t1≤δ

min
{
‖X(2)

t −X
(2)
t2 ‖, ‖X

(2)
t1 −X

(2)
t ‖
}
≤

≤ sup
t1≤t≤t2; t2−t1≤δ

min
{
‖Z(1)

t,t2‖, ‖Z
(1)
t1,t‖

}
+ 2 sup

t1≤t2; t2−t1≤δ
‖Z(2)

t1,t2‖

and

nP
(
a−1
n sup

t1≤t≤t2; t2−t1≤δ
min

{
‖X(2)

t −X
(2)
t2 ‖, ‖X

(2)
t1 −X

(2)
t ‖
}
≥ ε
)
≤

≤ nP
(
a−1
n sup

t1≤t≤t2;t2−t1≤δ
min

{
‖Z(1)

t,t2‖, ‖Z
(1)
t1,t‖

}
≥ ε

2

)
+ nP

(
a−1
n sup

t1≤t2;t2−t1≤δ
‖Z(2)

t1,t2‖ ≥
ε

4

)
.
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Applying (5.4.13) this implies, as δ → 0,

lim
n→∞

nP
(
a−1
n sup

t1≤t≤t2; t2−t1≤δ
min

{
‖Z(1)

t,t2‖, ‖Z
(1)
t1,t‖

}
≥ ε/2

)
≤

≤ lim
n→∞

nP
(
a−1
n sup

t1≤t≤t2; t2−t1≤δ
min

{
‖L(2)

t2 − L
(2)
t ‖, ‖L

(2)
t − L

(2)
t1 ‖
}
≥ ε/(4 C)

)
→ 0,

since this is exactly condition (5.4.4) for the Lévy process L
(2)
t which is regularly varying

in D and thus by Theorem 5.4.5 satisfies (5.4.4). Furthermore,

sup
t1≤t2; t2−t1≤δ

‖Z(2)
t1,t2‖ ≤

∫
M−d

∫
R

fδ(A, s)Λ
T
2 (dA, ds) = Y

and consequently, as δ → 0,

lim
n→∞

nP
(
a−1
n sup

t1≤t2; t2−t1≤δ
‖Z(2)

t1,t2‖ ≥ ε/4
)
≤ nP

(
a−1
n Y ≥ ε/4

)
→ 0

as shown for condition (5.4.2).

2

This concludes the proof of Theorem 5.4.7.

5.5 Application to SupOU Processes

In Section 4.4 we have introduced superpositions of Ornstein-Uhlenbeck processes (supOU

processes) which have useful properties and a wide range of applications. A supOU process

(Xt) can be defined as an MMA process with kernel function

f(A, s) = eAs1[0,∞)(s).

We will shortly recall the main results of Section 4.4. Sufficient conditions for the existence

of supOU processes are given in the following theorem which takes the special properties

of supOU processes into account.

Theorem 5.5.1 (Barndorff-Nielsen and Stelzer (2011a), Theorem 3.1). Let Xt

be an Rd-valued supOU process as defined in Definition 4.4.1. If∫
‖x‖>1

ln(‖x‖)ν(dx) <∞

and there exist measurable functions ρ : M−
d 7→ R+\{0} and κ : M−

d 7→ [1,∞) such that∥∥eAs∥∥ ≤ κ(A)e−ρ(A)s ∀s ∈ R+ π-almost surely and

∫
M−d

κ(A)2

ρ(A)
π(dA) <∞,
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then the supOU process Xt =
∫
M−d

∫ t
−∞ e

A(t−s)Λ(dA, ds) is well defined for all t ∈ R and

stationary. Furthermore, the stationary distribution of Xt is infinitely divisible with char-

acteristic triplet (γX ,ΣX , νX) given by Theorem 4.2.6.

Conditions for regular variation of Xt and of the finite-dimensional distributions of (Xt)

were given in Corollary 4.4.3 and Corollary 4.4.6.

Corollary 5.5.2. Let Λ ∈ Rd be a Lévy basis on M−
d × R with generating quadruple

(γ,Σ, ν, π) and let ν ∈ RV (α, (an), µν). If the conditions of Theorem 5.5.1 hold and addi-

tionally ∫
M−d

κ(A)α

ρ(A)
π(dA) <∞,

then X0 =
∫
M−d

∫
R+ e

AsΛ(dA, ds) ∈ RV (α, (an), µX) with Radon measure

µX(·) :=

∫
M−d

∫
R+

∫
Rd

1(·)
(
eAsx

)
µν(dx)dsπ(dA).

Furthermore, the finite dimensional distributions (Xt1 , . . . , Xtk), ti ∈ R and k ∈ N, are

also regularly varying with index α and given limiting measure µt1,...,tk .

In order to apply Theorem 5.4.7 to obtain conditions for regular variation of supOU

processes in D, we state some useful sufficient conditions for the function fδ(A, s) =

supt1≤t2; t2−t1≤δ ‖f(A, t2 − s)− f(A, t1 − s)‖ 1(t1,t2]c (s) to be an element of Lα for α > 0.

Proposition 5.5.3. Let f(A, s) = eAs1[0,∞)(s) be the kernel function of a supOU process

satisfying the conditions of Theorem 5.5.1 and let fδ be given by (5.4.6). If for some α > 0∫
M−d

κ(A)α

ρ(A)
π(dA) <∞,

and ∫
M−d

κ(A)α π(dA) <∞,

then fδ ∈ Lα.

Proof. We start with the observation

fδ(A, s)
α = sup

t1≤t2; t2−t1≤δ

∥∥eA(t2−s) − eA(t1−s)
∥∥α 1(−∞,t1](s)
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≤ sup
t1≤t2; t2−t1≤δ

∥∥eA(t2−s) − eA(t1−s)
∥∥α 1(−∞,0](s)

+ sup
t1≤t2; t2−t1≤δ

∥∥eA(t2−s) − eA(t1−s)
∥∥α 1(0,t1](s). (5.5.1)

Now for the first summand we obtain∫
M−d

∫
R

sup
t1≤t2; t2−t1≤δ

∥∥eA(t2−s) − eA(t1−s)
∥∥α 1(−∞,0](s) ds π(dA) ≤

≤
∫
M−d

0∫
−∞

sup
t1≤t2; t2−t1≤δ

(∥∥eA(t2−s)
∥∥+

∥∥eA(t1−s)
∥∥)α ds π(dA)

≤
∫
M−d

0∫
−∞

sup
t1≤t2; t2−t1≤δ

κ(A)α
(
e−ρ(A)(t2−s) + e−ρ(A)(t1−s)

)α
ds π(dA)

≤ 2α
∫
M−d

0∫
−∞

κ(A)α esρ(A)α dsπ(dA)

=
2α

α

∫
M−d

κ(A)α

ρ(A)
π(dA)

<∞

and the second summand of (5.5.1) can be bounded by∫
M−d

∫
R

sup
t1≤t2; t2−t1≤δ

∥∥eA(t2−s) − eA(t1−s)
∥∥α 1(0,t1](s) ds π(dA) ≤

≤
∫
M−d

∫
R

sup
t1≤t2; t2−t1≤δ

(∥∥eA(t2−s)
∥∥+

∥∥eA(t1−s)
∥∥)α 1(0,t1](s) ds π(dA)

≤
∫
M−d

∫
R

sup
t1≤t2; t2−t1≤δ

κ(A)α
(
e−ρ(A)(t2−s) + e−ρ(A)(t1−s)

)α
1(0,t1](s) ds π(dA)

≤
∫
M−d

∫
R

κ(A)α 2α 1[0,1](s) dsπ(dA)

= 2α
∫
M−d

κ(A)α π(dA)

<∞.
2
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Remark 5.5.4. Requiring fδ ∈ Lα, the first condition∫
M−d

κ(A)α

ρ(A)
π(dA) <∞

is already needed for the regular variation condition f ∈ Lα of Corollary 5.5.2. The

additional condition
∫
M−d

κ(A)α π(dA) < ∞ is of importance if ρ(A) decays very fast. In

that case
κ(A)α

ρ(A)
� κ(A)α

for values of A ∈M−
d with high norm and therefore, the stronger integrability condition is

needed. If we consider the case of a bounded kernel function f , i.e. in the supOU case κ is

bounded, it follows directly that fδ is also bounded. Moreover, the condition∫
M−d

κ(A)α π(dA) <∞

is true for all α > 0 and for all probability measures π.

Now we can use Proposition 5.5.3 to obtain conditions for functional regular variation

of supOU processes with sample paths in D. Therefore, we restrict the time interval to

t ∈ [0, 1] and assume the supOU process to have càdlàg sample paths, see Section 5.3

and Barndorff-Nielsen and Stelzer (2011a), Theorem 3.12, for details on the sample path

behavior of supOU processes.

Theorem 5.5.5. Let Λ and Λ2 be Rd-valued Lévy bases on M−
d ×R with generating quadru-

ples (γ,Σ, ν, π) and (0, 0, ν|B1(0)c , π) respectively such that ν ∈ RV (α, (an), µν). Assume

that the supOU process (Xt) given by Xt =
∫
M−d

∫ t
−∞ e

A(t−s)Λ(dA, ds) exists for t ∈ [0, 1]

(in the sense of Theorem 5.5.1) and that the processes Xt and X
(2)
t =

∫
M−d

∫
R f(A, t −

s)Λ2(dA, ds) have càdlàg sample paths. Furthermore, suppose that κ is bounded and that∫
M−d

κ(A)α

ρ(A)
π(dA) <∞.

If f(A, s) = eAs1[0,∞)(s) and the function fδ given by (5.4.6) satisfy condition (5.4.5), then

(Xt)t∈[0,1] ∈ RVD0
(α, (an), µ),

where µ is uniquely determined by the measures µt1,...,tk in Corollary 5.5.2.

133



Chapter 5 Functional Regular Variation of Mixed Moving Average Processes

Proof. Applying Theorem 5.4.7, we start by observing that the supOU kernel function

f(A, s) = eAs1[0,∞)(s) ≤ κ(A)

is bounded if κ is. Next we show that, as δ → 0,∫
M−d

∫
R

fδ(A, s)
α dsπ(dA)→ 0.

The assumptions together with Proposition 5.5.3 and Remark 5.5.4 yield fδ ∈ Lα and thus

by Lemma 5.4.8 it is sufficient to show that limδ→0 fδ(A, s) → 0 for π × λ almost every

(A, s). When considering differences of matrix exponentials, we can use the inequality

∥∥eA(t2−s) − eA(t1−s)
∥∥ =

∥∥∥∥ ∞∑
k=0

Ak((t2 − s)k − (t1 − s)k)
k!

∥∥∥∥ ≤ ∞∑
k=0

‖A‖k((t2 − s)k − (t1 − s)k)
k!

= e‖A‖(t2−s) − e‖A‖(t1−s)

if t2 > t1. This yields

fδ(A, s) = sup
t1≤t2; t2−t1≤δ

∥∥eA(t2−s) − eA(t1−s)
∥∥ 1(−∞,t1](s)

≤ sup
x∈[0,1−δ]

sup
t2,t1∈[x,x+δ]; t1≤t2

(
e‖A‖(t2−s) − e‖A‖(t1−s)

)
1(−∞,t1](s)

≤ sup
x∈[0,1−δ]

(
e‖A‖(x+δ−s) − e‖A‖(x−s)

)
1(−∞,t1](s)

≤ sup
x∈[0,1−δ]

(
e‖A‖δ − 1

)
e‖A‖(x−s) 1(−∞,t1](s)

≤
(
e‖A‖δ − 1

)
e‖A‖(1−δ−s) 1(−∞,1−δ](s)

and by the continuity of the exponential this term converges to 0 as δ → 0 for every

(A, s) ∈ B(M−
d × R).

2

Conditions for f and fδ to satisfy the existence condition (5.4.5), i.e.∫
M−d

∫
R

∫
‖x‖>1

(1 ∧ ‖f(A, s)x‖) ν(dx) ds π(dA) <∞

can be obtained by combining Lemma 5.5.1 with Lemma 5.4.10.

Corollary 5.5.6. Let f(A, s) = eAs1[0,∞)(s) be the kernel function of a supOU process

satisfying the conditions of Theorem 5.5.1 and let fδ be given by (5.4.6). Then f and fδ

satisfy condition (5.4.5) if one of the following two conditions are satisfied:
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5.6 Point Process Convergence

(i) α > 1 as well as ∫
M−d

κ(A)

ρ(A)
π(dA) <∞ and

∫
M−d

κ(A) π(dA) <∞.

(ii) α ≤ 1 and there exists ε ∈ (0, α) such that∫
M−d

κ(A)α−ε

ρ(A)
π(dA) <∞ and

∫
M−d

κ(A)α−ε π(dA) <∞.

In correspondence with Remark 5.5.4 we mention that for all α > 0, ε ∈ (0, α) and for

all probability measures π the conditions∫
M−d

κ(A) π(dA) <∞ and

∫
M−d

κ(A)α−ε π(dA) <∞

are redundant if κ is bounded.

5.6 Point Process Convergence

In this section we discuss the use of the results of the previous two sections in combination

with point process results for stochastic processes with sample paths in D. Therefore, let

Mp(D0) denote the space of all point measures on D0 equipped with the ŵ-topology and

let εx be the Dirac measure at the point x. Furthermore, let Xi, i ∈ N, be a sequence of

iid copies of a regularly varying stochastic process X ∈ RVD0
(α, (an), µ) with values in D.

We start by stating the main result that links regular variation of X to weak convergence

of the point processes

Nn =
n∑
i=1

εa−1
n Xi

, n ∈ N.

The following theorem is the extension of the classical result of Proposition 3.21 in Resnick

(1987) to a state space which is not locally compact. Similar results have also been proved

by de Haan and Lin (2001), Theorem 2.4, in the case of real-valued processes which are

regularly varying with index 1 and by Davis and Mikosch (2008) for D-valued random

fields.

Theorem 5.6.1. Let (Xi)i∈N be an iid sequence of stochastic processes with values in D.

Then X1 ∈ RVD0
(α, (an), µ) if and only if Nn

d−→ N in Mp(D0), where N is a Poisson

random measure with mean measure µ (short PRM(µ)).
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Proof. See the proof of Theorem 2.2.18 in Section 2.2.2.

2

This result can now be combined with the results of Sections 5.4 and 5.5 to obtain func-

tional point process convergence for MMA and supOU processes. Point processes of that

kind include full information of the complete paths of the process X. In combination with

the continuous mapping theorem (cf. Daley and Vere-Jones (1988), Proposition A2.3.V)

this is an extremely powerful tool to analyze the extremal behavior of MMA and supOU

processes. Using such methods, one gets a better understanding of the structure of the

extreme values and their properties, e.g. the extremal clustering behavior or long memory

effects.

In contrast to finite-dimensional point process results, functional point process conver-

gence does not only allow to analyze, for example, the behavior of maxima at fixed time

points, but also of functionals acting on the paths of the process in compact time intervals.

Examples of such functionals are the subadditive functionals (e.g. suprema) studied by

Rosiński and Samorodnitsky (1993) for a subexponential, by Braverman and Samorodnit-

sky (1995) for an exponential, and by Braverman et al. (2002) for a univariate regularly

varying setting. Moreover, since point processes of suprema do not incorporate the direc-

tions of the extremes, it is also possible to include the directions into the analyzed point

processes. Finally, we mention that basically in any field of extreme value theory, point

process techniques are often very helpful to prove results.

For more reading on point processes we refer to Daley and Vere-Jones (1988) and Daley

and Vere-Jones (2008). See also Kallenberg (1983) for a more general reading on random

measures. Very good introductions to the use of point processes in extreme value the-

ory can be found in Embrechts et al. (1997), Resnick (1987), Resnick (2007), Leadbetter

et al. (1983) and de Haan and Ferreira (2006). For the exemplary use of functional point

processes, see de Haan and Lin (2001) and Davis and Mikosch (2008).
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functionals acting on Lévy processes. Ann. Appl. Probab., 12:69–100.
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A. Račkauskas and C. Suquet (2010). On limit theorems for Banach space valued linear

processes. Lith. Math. J., 50:71–87.
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Factorisable Lévy bases . . . . . . . . . . . . . . . 74
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