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Abstract—We study secret communication for broadcast chan-
nels with two legitimate receivers and one eavesdropper. The
transmitter sends two independent confidential messages to
the legitimate receivers which have to be kept secret from
the eavesdropper. Here, each legitimate receiver is interested
in one confidential message having the other one already as
side information available. This problem arises for example in
the broadcast phase in a bidirectional relay network, where a
relay node establishes a bidirectional communication between
two nodes while keeping the communication secure from an
eavesdropper outside the network. We provide achievable rate
regions and an outer bound on the secrecy capacity region.

I. INTRODUCTION

In wireless networks a transmitted signal is received by
intended users but can also be overheard by non-legitimate
receivers. Thus, operators of such networks are interested in
keeping the communication secret from eavesdroppers outside
the network. Since secrecy techniques on higher layers are
usually based on the assumption of insufficient computational
capabilities of non-legitimate receivers, the use of physical
layer secrecy techniques is becoming more and more attractive.

Physical layer secrecy was initiated by Wyner’s seminal
work [1], in which he introduced the wiretap channel which
characterizes the scenario with one transmitter, one receiver,
and one eavesdropper. Since then, there has been a growing
interest in physical layer secrecy, cf. for example [2, 3]. For
instance, the approach of Wyner was extended by Csiszár and
Körner to the broadcast channel with confidential messages
[4]. There are also other extensions to multi-user settings such
as the MAC with confidential messages [5], the interference
channel with confidential messages [6], the MIMO Gaussian
broadcast channel with common and confidential messages [7,
8], or the two-way wiretap channel [9].

In this work we consider the broadcast channel with two
legitimate receivers and one eavesdropper as shown in Fig-
ure 1. The transmitter sends two independent confidential
messages while keeping them secret from the non-legitimate
eavesdropper. The setup has its interesting twist in the fact that
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Fig. 1. Broadcast channel with legitimate receivers and one eavesdropper.
The two legitimate receivers have complementary side information.

each legitimate receiver is interested in merely one message
while having the other confidential message already as side
information available for decoding. The eavesdropper wants
to intercept the communication having no side information
about the confidential messages available.

The problem at hand is motivated by the concept of bidi-
rectional relaying in a three-node network, where a relay node
establishes a bidirectional communication between two other
nodes using a decode-and-forward protocol [10, 11]. In the
initial MAC phase both nodes transmit their messages to the
relay node which decodes them. Assuming that in the first
phase the eavesdropper was absent or not able to intercept in-
formation about the messages, the succeeding broadcast phase
corresponds to the above described broadcast channel with
receiver side information. In this context, it is also known as
the bidirectional broadcast wiretap channel (BBWC). Transmit
strategies for the BBWC are also studied in [12, 13]. Privacy
within the bidirectional relay network is studied in [14, 15].

II. BROADCAST CHANNEL WITH RECEIVER SIDE
INFORMATION

Let X be the input set and Y1, Y2, and Z be the output
sets of the legitimate receivers and the eavesdropper. Then
for input and output sequences xn ∈ Xn and yn1 ∈ Yn1 ,
yn2 ∈ Yn2 , zn ∈ Zn of length n, the discrete memoryless
broadcast channel is given by PYn1 Yn2 Zn|Xn(yn1 , y

n
2 , z

n|xn) :=∏n
k=1 PY1Y2Z|X(y1,k, y2,k, zk|xk). Since we do not allow any

cooperation between the receiving nodes, it is sufficient to con-
sider the marginal transition probabilities PYni |Xn(yni |xn) :=∏n
k=1 PYi|X(yi,k|xk), PZn|Xn(zn|xn) :=

∏n
k=1 PZ|X(zk|xk).

In this work we consider the standard model with a block
code of arbitrary but fixed length n. Let Mi := {1, ...,M (n)

i }
be the set of messages of node i, i = 1, 2, which is also known



at the transmitter. Further, we use M :=M1 ×M2.
Definition 1: An (n,M

(n)
1 ,M

(n)
2 )-code for the broadcast

channel with receiver side information consists of one encoder
at the transmitter

f :M1 ×M2 → Xn

and decoders at the legitimate receivers 1 and 2

g1 : Yn1 ×M1 →M2 ∪ {0}
g2 : Yn2 ×M2 →M1 ∪ {0}

where the element 0 in the definition of the decoders is
included for convenience only and plays the role of an erasure
symbol.

When the transmitter has sent the message m = (m1,m2),
and the legitimate receivers have received yn1 and yn2 , the
decoder at receiver 1 is in error if g1(yn1 ,m1) 6= m2. Accord-
ingly, the decoder at receiver 2 is in error if g2(yn2 ,m2) 6= m1.
We denote the average probability of error at receiver i by
µ
(n)
i , i = 1, 2.
The ignorance of the eavesdropper about the confiden-

tial messages m1 ∈ M1 and m2 ∈ M2 is measured
by the concept of equivocation. Here, the equivocation rate
1
nH(M1,M2|Zn) characterizes the secrecy level of the confi-
dential messages. The higher the equivocation rate is, the more
ignorant the eavesdropper about the confidential messages is.

Definition 2: A rate pair (R1, R2) ∈ R2
+ is said to be

achievable for the broadcast channel with receiver side infor-
mation if for any δ > 0 there is an n(δ) ∈ N and a sequence
of (n,M

(n)
1 ,M

(n)
2 )-codes such that for all n ≥ n(δ) we have

logM
(n)
2

n ≥ R1 − δ, logM
(n)
1

n ≥ R2 − δ, and further
1
nH(M1,M2|Zn) ≥ R1 +R2 − δ (1)

while µ(n)
1 , µ

(n)
2 → 0 as n→∞. The set of all achievable rate

pairs is the secrecy capacity region of the broadcast channel
with receiver side information.

Remark 1: Note that condition (1) on the joint equivocation
rate immediately implies for the single equivocation rates that

1
nH(M1|Zn) ≥ R2 − δ and 1

nH(M2|Zn) ≥ R1 − δ

are also satisfied, cf. [16, Lemma 15] for details.
In the following sections we present two achievable secrecy

rate regions and an outer bound on the secrecy capacity region
of the broadcast channel with receiver side information.

III. SECRET KEY APPROACH

To keep the confidential messages secret from the eaves-
dropper, we make explicitly use of the available side informa-
tion at the legitimate receivers in this approach.

Theorem 1: An achievable secrecy rate region for the
broadcast channel with receiver side information is given by
the set of all rate pairs (R1, R2) ∈ R2

+ that satisfy

Ri ≤ max
PX

min
{
I(X; Y1), I(X; Y2)

}
, i = 1, 2. (2)

Proof: Recall the broadcast situation considered here. The
relay wants to transmit messages m1 and m2 while at each

receiver one of them is already as side information available.
The key idea is to interpret each message as a secret key for
the other message and use them as an one-time pad [17]. In
more detail, the relay encodes a combined XOR-message

m̃ = m1 ⊗m2

and transmits it to both receivers. Then, this corresponds to
a multicast problem and, therefore, the transmission will only
be successful if the rates R1 and R2 satisfy (2).

If the receivers have decoded the combined message m̃, they
use their own message as side information to conclude on the
other one, i.e., m̃⊗m1 = m1⊗m2⊗m1 = m2 at receiver 1
and similarly m̃⊗m2 = m1 ⊗m2 ⊗m2 = m1 at receiver 2.

Since all messages are independent, the eavesdropper is not
able to conclude on the confidential messages m1 or m2 even
if it is able to decode the combined message m̃. Thus, the
secrecy condition (1) is obviously satisfied.

This approach exploits the structure of the network and
makes use of the available side information at the receivers
to guarantee the confidentiality of the transmitted messages.
A drawback of this approach is that both rates are limited by
the worst channel.

IV. CHANNEL CODING APPROACH

In this approach we exploit the nature of the wireless
channel to establish the secret communication.

Theorem 2: An achievable secrecy rate region for the
broadcast channel with receiver side information is given by
the set of all rate pairs (R1, R2) ∈ R2

+ that satisfy

Ri ≤ I(V; Yi)− I(V; Z), i = 1, 2 (3)

for random variables V −X− (Y1,Y2,Z).
Proof: It is sufficient to show that the rate region given

by the set of all rate pairs (R1, R2) ∈ R2
+ satisfying

Ri ≤ I(X; Yi)− I(X; Z), i = 1, 2,

with I(X; Yi) > I(X; Z), i = 1, 2, is achievable with perfect
secrecy, cf. (1). Then, the region (3) with the prefixed random
variable V follows immediately from standard arguments as
in [4, Lemma 4].

A. Random Codebook Generation and Coding

The most important part is the construction of a codebook
with a product structure similarly as in [4]. Thereby, one part
is designated for the messages to transmit and the other one is
spent for additional randomization. This is done in such a way
that the eavesdropper is forced to decode the randomization
index at the maximum rate its channel provides so that it
cannot decode the remaining information.

To achieve this, we define message sets M1 and M2

with |M2| = b2n(I(X;Y1)−I(X;Z)−δ/4)c and |M1| =
b2n(I(X;Y2)−I(X;Z)−δ/4)c and further a randomization set J
with |J | = b2n(I(X;Z)−δ/4)c. We only consider the case
where these sets are non-empty and set ε := δ/16. We
generate |J ||M1||M2| independent codewords xnjm1m2

∈ Xn
according to PXn(xn) =

∏n
k=1 PX(xk).



To sent the messages (m1,m2) ∈ M1 × M2, the relay
chooses uniformly at random a randomization index j ∈ J
and transmits the codeword xnjm1m2

∈ Xn.
The receivers use typical set decoding where the legitimate

receivers exploit their side information to create the decoding
sets. In more detail, if xnjm1m2

∈ Xn has been sent, receiver
1 uses the received yn1 ∈ Yn1 and its own m1 ∈M1 to create

D1(m1, y
n
1 ) :=

{
(j,m2) : (xnjm1m2

, yn1 ) ∈ A(n)
ε (X,Y1)

}
.

If there is a unique (j,m2) ∈ D1(m1, y
n
1 ), it declares that

(j,m1,m2) has been sent. The decoding set D2(m2, y
n
2 ) and

the decoding rules for receiver 2 are defined accordingly.
For given (m1,m2) ∈M1 ×M2 the eavesdropper define

De(m1,m2, z
n) :=

{
j : (xnjm1m2

, zn) ∈ A(n)
ε (X,Z)

}
.

It declares that (j,m1,m2) has been sent if there is a unique
j ∈ De(m1,m2, z

n).

B. Analysis of Probability of Error

For the analysis we introduce for any (j,m1,m2) ∈ J ×
M1 ×M2 the random error events at receiver 1:

E11(j,m2|m1) := {(xnjm1m2
, yn1 ) /∈ A(n)

ε (X,Y1)}
E12(j,m2|m1) := {∃(ĵ, m̂2) 6= (j,m2) :

(xn
ĵm1m̂2

, yn1 ) ∈ A(n)
ε (X,Y1)}.

Obviously, from the union bound we have for the probability
of error at receiver 1

λ1(j,m2|m1) ≤ P{E11(j,m2|m1)}+P{E12(j,m2|m1)} (4)

where we bound each event separately in the following using
standard arguments, cf. for example [18].

For the first event we know from the definition of the
decoding sets, cf. also [18], that for increasing n we have

P
{

(xnjm1m2
, yn1 ) /∈ A(n)

ε (X; Y1)
}
−→
n→∞

0. (5)

For the second event we get

P
{
E12

}
≤ |J ||M2|P

{
(xn
ĵm1m̂2

, yn1 ) ∈ A(n)
ε (X,Y1)

}
= |J ||M2|

∑
(xn
ĵm1m̂2

,yn1 )∈A(n)
ε (X,Y1)

PYn1
(yn1 )PXn(xĵm1m̂2

)

≤ 2n(I(X;Z)−δ/4)2n(I(X;Y1)−I(X;Z)−δ/4)

× 2n(H(X,Y1)+ε)2−n(H(Y1)−ε)2−n(H(X)−ε)

= 2−n5ε −→
n→∞

0 (6)

where the first inequality follows from the union bound,
the second one from the definition of the sets J , M2 and
|A(n)
ε (X,Y1)| ≤ 2n(H(X,Y1)+ε), cf. [18], and the last equality

from δ = 16ε.
Substituting (5) and (6) into (4) we conclude that

λ1(j,m2|m1) → 0 as n → ∞. Similarly, we also obtain
λ2(j,m1|m2)→ 0 as n→∞ for receiver 2.

The analysis of probability of error at the eavesdrop-
per follows accordingly with the random error events

Ee1(j|m1,m2) := {(xnjm1m2
, zn) /∈ A(n)

ε (X,Z)} and Ee2 :=

{∃ĵ 6= j : (xn
ĵm1m2

, zn) ∈ A
(n)
ε (X,Z)}. Using the same

arguments it is straightforward to show that

λe(j|m1,m2) ≤ P{Ee1(j|m1,m2)}
+ P{Ee2(j|m1,m2)} −→

n→∞
0. (7)

From (4)-(7) we conclude that the probabilities of error,
averaged over all codewords and codebooks, get arbitrarily
small. From the random coding argument it follows that for n
large enough there exists a codebook with the desired rates.

C. Equivocation Computation

It remains to verify that this codebook construction achieves
the required secrecy condition (1) at the eavesdropper. There-
fore, we have to show that 1

nH(M1,M2|Zn) ≥ I(X; Y1) +
I(X; Y2)− 2I(X; Z)− δ is satisfied.

As in [4] we let Xn be the input random variable whose
realizations are the codewords xnjm1m2

∈ Xn. Further, let M1

and M2 be random variables associated with the second and
third coordinate of the realization of Xn. Then, using the chain
rule for entropy we get for the equivocation

H(M1,M2|Zn) = H(M1,M2,Z
n)−H(Zn)

= H(M1,M2,Z
n,Xn)−H(Xn|M1,M2,Z

n)−H(Zn)

= H(M1,M2,X
n)+H(Zn|M1,M1,X

n)

−H(Xn|M1,M2,Z
n)−H(Zn)

≥ H(Xn)+H(Zn|Xn)−H(Xn|M1,M2,Z
n)−H(Zn) (8)

where the last step follows from the fact that (M1,M2)−Xn

forms a Markov chain. In the following we analyze all terms
in (8) separately.

Since Xn has |J ||M1||M2| possible values and we as-
sume Xn to be independently and uniformly distributed,
we have H(Xn) = log |J | + log |M1| + log |M2|. From
the construction of these sets, cf. Section IV-A, we obtain
1
nH(Xn) −→

n→∞
I(X; Y1) + I(X; Y2)− I(X; Z)− 3

4δ.
For second term in (8) we get from the weak law of large

numbers 1
nH(Zn|Xn)→ H(Z|X) as n→∞.

For the third term we define ϕ(m1,m2, z
n) = xnjm1m2

if
(xnjm1m2

, zn) ∈ A(n)
ε (X,Z) for some unique j ∈ J and ar-

bitrary otherwise. Then we have P{Xn 6= ϕ(M1,M2,Z
n)} ≤

ε(n) with ε(n) → 0 as n→∞ and therefore, by Fano’s lemma,
cf. [2, 4], 1

nH(Xn|M1,M2,Z
n)→ 0 as n→∞.

For the last term we obtain 1
nH(Zn) → H(Z) as n → ∞.

Finally, substituting into (8) shows that the desired secrecy
condition is fulfilled.

V. OUTER BOUND ON SECRECY CAPACITY

Theorem 3: An outer bound on the secrecy capacity region
of the broadcast channel with receiver side information is
given by the set of all rate pairs (R1, R2) ∈ R2

+ that satisfy

Ri ≤ I(V; Yi), i = 1, 2

R1 +R2 ≤ I(V; Y1|U) + I(V; Y2|U)− I(V; Z|U)

for random variables U−V −X− (Y1,Y2,Z).



Proof: To show the desired outer bound we need a version
of Fano’s lemma suitable for the broadcast channel with
receiver side information given by H(M2|Yn

1 ,M1) ≤ nε
(n)
1

and H(M1|Yn
2 ,M2) ≤ nε

(n)
2 with ε(n)1 , ε

(n)
2 → 0 as n → ∞,

cf. for example [10].
Let us define the following auxiliary random variables

Ui := (Yi−1
1 ,Yi−1

2 ,Zni+1), Vi := (M1,M2,Ui) (9)

which satisfy the following Markov chain conditions Ui−Vi−
Xi − (Y1i,Y2i,Zi). We follow [2, 4] and get

nR1 ≤ H(M2|Zn) + nδ ≤ H(M2) + nδ = H(M2|M1) + nδ

= I(M2; Yn
1 |M1) +H(M2|Yn

1 ,M1) + nδ

≤ I(M2; Yn
1 |M1)+n(ε

(n)
1 +δ) ≤ I(M1,M2; Yn

1 )+n(ε
(n)
1 +δ)

=

n∑
i=1

I(M1,M2; Y1i|Yi−1
1 ) + n(ε

(n)
1 +δ)

≤
n∑
i=1

I(M1,M2,Y
i−1
1 ,Yi−1

2 ,Zni−1; Y1i) + n(ε
(n)
1 +δ)

=

n∑
i=1

I(Vi; Y1i) + n(ε
(n)
1 +δ) (10)

where the first inequality follows from the perfect secrecy
condition (1) and [16, Lemma 15], cf. also Remark 1, for
some δ > 0 and the last equality from the definition of the
auxiliary random variables (9). Accordingly, we get also get

nR2 ≤
n∑
i=1

I(Vi; Y2i) + n(ε
(n)
2 + δ). (11)

Again, from the perfect secrecy condition (1) we also get

n(R1 +R2) ≤ H(M1,M2|Zn) + nδ

= H(M1,M2|Zn)−H(M1|Yn
2 ,M2)+H(M1|Yn

2 ,M2)

−H(M2|Yn
1 ,M1)+H(M2|Yn

1 ,M1)+ nδ

≤ H(M1,M2|Zn)−H(M1|Yn
2 ,M2)

−H(M2|Yn
1 ,M1)+n(ε

(n)
1 +ε

(n)
2 +δ)

= H(M1|M2)+H(M2|M1)−H(M1,M2)+H(M1,M2|Zn)

−H(M1|Yn
2 ,M2)−H(M2|Yn

1 ,M1)+n(ε
(n)
1 +ε

(n)
2 +δ)

= I(M1; Yn
2 |M2) + I(M2; Yn

1 |M1)

− I(M1,M2; Zn) + n(ε
(n)
1 +ε

(n)
2 +δ)

≤ I(M1,M2; Yn
1 ) + I(M1,M2; Yn

2 )

− I(M1,M2; Zn) + n(ε
(n)
1 +ε

(n)
2 +δ). (12)

As in [4] we analyze the mutual information terms
in (12) separately. For the first term I(M1,M2; Yn

1 ) =∑n
i=1 I(M1,M2; Y1i|Yi−1

1 ) we get with identity

I(M1,M2; Y1i|Yi−1
1 ) = I(M1,M2,Y

i−1
2 ,Zni+1; Y1i|Yi−1

1 )

− I(Yi−1
2 ,Zni+1; Y1i|Yi−1

1 ,M1,M2)

= I(M1,M2; Y1i|Yi−1
1 ,Yi−2

2 ,Zni+1)

+ I(Yi−1
2 ,Zni+1; Y1i|Yi−1

1 )

− I(Yi−1
2 ,Zni+1; Y1i|Yi−1

1 ,M1,M2)

the following expression

I(M1,M2; Yn
1 ) =

n∑
i=1

I(M1,M2; Y1i|Yi−1
1 ,Yi−2

2 ,Zni+1)

+ Σ1 − Σ1m (13)

with

Σ1 =

n∑
i=1

I(Yi−1
2 ,Zni+1; Y1i|Yi−1

1 ) (14a)

Σ1m =

n∑
i=1

I(Yi−1
2 ,Zni+1; Y1i|Yi−1

1 ,M1,M2). (14b)

Similarly, we get for the second term

I(M1,M2; Yn
2 ) =

n∑
i=1

I(M1,M2; Y2i|Yi−1
1 ,Yi−2

2 ,Zni+1)

+ Σ2 − Σ2m (15)

with Σ2 and Σ2m the analogous versions of (14a) and (14b)
where the indices of the legitimate receivers Y1 and Y2 are
swapped. For the third term I(M1,M2; Zn) of the eavesdrop-
per we get

I(M1,M2; Zn) =

n∑
i=1

I(M1,M2; Zi|Yi−1
1 ,Yi−2

2 ,Zni+1)

+ Σe − Σem (16)

with slightly different Σe =
∑n
i=1 I(Yi−1

1 ,Yi−1
2 ; Zi|Zni+1)

and Σem =
∑n
i=1 I(Yi−1

1 ,Yi−1
2 ; Zi|Zni+1,M1,M2).

Substituting (13), (15), and (16) into (12) we get

n(R1+R2) ≤
n∑
i=1

[
I(M1,M2; Y1i|Yi−1

1 ,Yi−2
2 ,Zni+1)

+ I(M1,M2; Y2i|Yi−1
1 ,Yi−2

2 ,Zni+1)

− I(M1,M2; Zi|Yi−1
1 ,Yi−2

2 ,Zni+1)
]

+ Σ1+Σ2−Σe−Σ1m−Σ2m+Σem + n(ε
(n)
1 +ε

(n)
2 +δ).

(17)

In the following we need a version of Csiszár’s sum identity
[4, Lemma 7] modified for our broadcast scenario.

Lemma 1: We have the following identities

Σ1 + Σ2 = Σe (18a)
Σ1m + Σ2m = Σem. (18b)

Proof: To prove the first assertion (18a) we have to show

n∑
i=1

I(Yi−1
2 ,Zni+1; Y1i|Yi−1

1 ) +

n∑
i=1

I(Yi−1
1 ,Zni+1; Y2i|Yi−1

2 )

=

n∑
i=1

I(Yi−1
1 ,Yi−1

2 ; Zi|Zni+1). (19)



Following [4, Lemma 7], we use the chain rule to express the
mutual information terms on the left hand side of (19) as

I(Yi−1
2 ,Zni+1; Y1i|Yi−1

1 ) + I(Yi−1
1 ,Zni+1; Y2i|Yi−1

2 )

=

n∑
j=i+1

[
I(Zj ; Y1i|Yi−1

1 ,Yi−1
2 ,Znj+1)

+ I(Zj ; Y2i|Yi−1
1 ,Yi−1

2 ,Znj+1)
]

(20)

and on the right hand side as

I(Yi−1
1 ,Yi−1

2 ; Zi|Zni+1) =

i−1∑
j=1

I(Y1j ,Y2j ; Zi|Yj−1
1 ,Yj−1

2 ,Zni+1)

=

i−1∑
j=1

[
I(Y1j ; Zi|Yj−1

1 ,Yj−1
2 ,Zni+1)

+ I(Y2j ; Zi|Y1j ,Y
j−1
1 ,Yj−1

2 ,Zni+1)
]

=

i−1∑
j=1

[
I(Y1j ; Zi|Yj−1

1 ,Yj−1
2 ,Zni+1)

+ I(Y2j ; Zi|Yj−1
1 ,Yj−1

2 ,Zni+1)
]

(21)

where the last step follows from the Markov chain
Y1j − (Yj−1

1 ,Yj−1
2 ,Zni+1) − (Y2j ,Zi). Similarly as in [4,

Lemma 7] we observe that (20) and (21) split into terms
I(Y1i; Zj |Yi−1

1 ,Yi−1
2 ,Znj+1) + I(Y2i; Zj |Yi−1

1 ,Yi−1
2 ,Znj+1)

with i < j which proves (18a).
Then, (18b) follows accordingly using the Markov chain

Y1j − (Yj−1
1 ,Yj−1

2 ,Zni+1,M1,M2)− (Y2j ,Zi).
Due to Lemma 1 most terms in (17) cancel out so that with

the definition of the auxiliary random variables (9) we get for
the sum rate

n(R1 +R2) ≤
n∑
i=1

[
I(Vi; Y1i|Ui) + I(Vi; Y2i|Ui)

− I(Vi; Zi|Ui)
]

+ n(ε
(n)
1 +ε

(n)
2 +δ).

Next, we introduce a random variable Q that is independent
of all other random variables and uniformly distributed over
{1, ..., n} and define U := (UQ,Q),V := (VQ,Q), Y1 :=
Y1,Q, Y2 := Y2,Q, and Z := ZQ.

We obtain for the individual rates (10) and (11)

R1 ≤ I(VQ; Y1,Q|Q) + ε
(n)
1 +δ ≤ I(V; Y1) + ε

(n)
1 +δ

R2 ≤ I(VQ; Y2,Q|Q) + ε
(n)
2 +δ ≤ I(V; Y2) + ε

(n)
2 +δ

and further for the sum rate

R1 +R2 ≤ I(VQ; Y1,Q|UQ,Q) + I(VQ; Y2,Q|UQ,Q)

− I(VQ; ZQ|UQ,Q) + ε(n)+δ

≤ I(V; Y1|U) + I(V; Y2|U)− I(V; Z|U) + ε(n)+δ

which establishes the outer bound and proves Theorem 3.

VI. CONCLUSION

We studied the broadcast channel with receiver side infor-
mation where the transmitter sends confidential messages to
two legitimate receivers with side information while keeping
an external eavesdropper ignorant. We provided achievable
secrecy rate regions and an outer bound on the secrecy capacity
region. We expect that an improved achievable secrecy rate
region can be achieved by employing more sophisticated
coding techniques which is also indicated in [19] where the
transmitter sends a common confidential message to two le-
gitimate receivers in the presence of an external eavesdropper.
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