
Symbolic System Level Reliability Analysis
Michael Glaß, Martin Lukasiewycz, Felix Reimann, Christian Haubelt, and Jürgen Teich

University of Erlangen-Nuremberg, Germany
{glass,martin.lukasiewycz,felix.reimann,haubelt,teich}@cs.fau.de

This is the author’s version of the work. The definitive work was published in Proceedings of International Conference on Computer-Aided
Design (ICCAD), pp. 185-189, 2010. The work is supported in part by the German Science Foundation (DFG), SFB 694.

Abstract—More and more embedded systems provide a mul-
titude of services, implemented by a large number of networked
hardware components. In early design phases, dimensioning such
complex systems in terms of monetary costs, power consumption,
reliability etc. demands for new analysis approaches at the
electronic system level. In this paper, two symbolic system level
reliability analysis approaches are introduced. First, a formal
approach based on Binary Decision Diagrams is presented that al-
lows to calculate exact reliability measures for small to moderate-
sized systems. Second, a simulative approach is presented that
hybridizes a Monte Carlo simulation with a SAT solver and
delivers adequate approximations of the reliability measures for
large and complex systems.

I. INTRODUCTION

In modern means of transport such as automobiles, air-
planes, and trains, a multitude of applications that range
from safety-critical to comfort applications are implemented as
networked embedded systems. These systems typically consist
of many hardware resources that interact with each other to
a large extend. A major threat to the reliability of these com-
ponents and, thus, to the entire system are (a) ever shrinking
device structures and (b) their places of activity, i.e., hardware
components move from dedicated and protected mounting
spaces to installation spaces near sensors, moving parts, or
even within the engine. The former leads to components
being susceptible to high temperatures, cosmic rays, manu-
facturing tolerances etc. The latter exposes the components to
destructive agents inducing accelerated aging processes and
stress that, thus, leads to a significant increase of their defect
rate. Together, this results in a growing inherent unreliability
of embedded system components. On the other hand, cus-
tomers surveys reveal that reliability often constitutes the most
important purchase criterion, cf. for example [1]. Thus, an
appropriate trade-off between several design objectives like
monetary costs, energy consumption, volume consumption,
latency, and lifetime reliability becomes mandatory.

Paper Goal. The work at hand gives an introduction
into two complementary system level reliability analysis ap-
proaches that are tailored to be used within an optimization
process of embedded systems during early design phases. The
first approach that is based on Binary Decision Diagrams
(BDDs) allows to calculate exact reliability measures for small
to moderate-sized systems. The second approach copes with
present scalability issues of BDDs by hybridizing a Monte
Carlo simulation with a Satisfiability (SAT) solver. The SAT-
assisted simulation delivers adequate approximations of the
reliability measures for large and complex systems where the
BDD-based approach fails.

Outline. The rest of the paper is outlined as follows:
Section II gives an overview of the analyses described in this

Supported in part by the German Research Foundation (DFG), SFB 694.

work and their application domain. The used system model
is presented in Sec. III. Section IV introduces the BDD-based
reliability analysis approach while the SAT-assisted simulation
is presented in Sec. V. Experimental results are discussed in
Section VI while Section VII concludes the paper and provides
references for further reading.

II. OVERVIEW

The discussed reliability analysis approaches are tailored to
the design space exploration of embedded systems at system
level. The task of design space exploration is to find the set of
optimal feasible implementations for a given specification with
respect to several, often conflicting design objectives. In the
used approach, cf. [2], a set of applications is mapped to an
architecture following the well-known Y-chart approach [3].
At the highest level of abstraction in early design phases, focus
is put on the capability of the used analysis approaches to
investigate thousands of possible design options within a rea-
sonable amount of time while providing acceptable accuracy.

The reliability analysis approaches discussed in this work
focus on the consideration of permanent resource defects.1
In particular, a redundant task binding as the used technique
to cope with resource defects is assumed. The analysis ap-
proaches, moreover, assume that the components of the system
are independent, i.e., the fault of one component does not
influence the reliability function of another component. Of
course, functional dependencies, e.g., a component fails as
soon as its power supply fails, are respected by the analysis
approaches. Although the assumptions may seem stringent at
first glance, it should be noted that the analysis is applied at a
very early stage in the design process where several necessary
design decisions for more detailed investigations may not have
been taken yet. Thus, the proposed approaches can be seen
as the top of a hierarchical analysis approach that is refined
during the design process. Consider an automotive network
where tasks are executed on Electronic Control Units (ECUs).
The defect of each ECU is given by a reliability function and
because of the remote mounting spaces, it can be expected
that the ECUs are independent of each other. In a subsequent
design step, the number of cores, the assignment of tasks to
cores, and local schedules of each ECU are determined. At the
ECU level, the assumption of independent components does
not hold anymore [5] and more sophisticated but, however,
less scalable analysis approaches need to be applied there,
cf. for example [6]. This in depth analysis now delivers a
revised reliability function for the ECU that is propagated
back to the system level analysis. Thus, the proposed analysis
approaches have the ability to increase their accuracy during

1Orthogonally, for the investigation and toleration of soft errors, several
system level mapping techniques and analysis approaches that focus on
scheduling have been developed in recent years, cf. for example [4].

the design process. In particular, the analysis approaches are
capable of handling arbitrary reliability functions used to
model the components. Thus, several important influences on
the reliability of the components such as aging or temperature
effects can seamlessly be modeled by means of sophisticated
distributions such as WEIBULL distribution, lognormal distri-
bution, or linear combinations of these.

III. SYSTEM MODEL

For the reliability analysis that is performed during design
space exploration, a model of the available hardware compo-
nents as well as the tasks that need to be distributed in the
system is defined. This graph-based specification consists of
the applications, the architecture, and a relation between these
two views, the mapping edges:
• The applications are modeled by a graph gt(T,Et) that

represents the functional behavior of the system. The
vertices t1, ..., t|T | ∈ T denote tasks while the directed
edges Et model data dependencies between tasks.

• The architecture is modeled by a graph ga(R,Ea) that
represents the available interconnected hardware com-
ponents. The vertices r1, ..., r|R| ∈ R represent the
resources, e.g., ECUs, buses, sensors, or actuators. The
edges Ea model available communication links between
resources.

• The relation between architecture and application is mod-
eled as a set of mapping edges Em. Each mapping edge
m1, ...,m|Em| ∈ Em is a directed edge from a task to a
resource. A mapping m = (t, r) ∈ Em indicates that a
specific task t can be executed on a resource r.

From the specification of the system that includes all
design alternatives, an implementation has to be deduced. This
implementation corresponds to the actual embedded system
that will be implemented and consists of two main parts:
• The allocation α ⊆ R is a subset of the available

resources and represents the resources that are actually
used and implemented in the embedded system.

• The binding β ⊆ Em is a subset of the mapping edges
in which each task is bound to at least one hardware
resource that executes this task at runtime:

∀t ∈ T : |{m|m = (t, r) ∈ β}| ≥ 1 (1)

The task instances that result from this multiple binding
enables a designer-transparent investigation of redun-
dancy at task level that allows to avoid costly resource
replications, cf. [7].

Definition 1: A binding is called feasible if it guarantees
that all data-dependent tasks are executed on the same or
adjacent resources to ensure a correct communication:

∀(t, t̃) ∈ T : ∃m = (t, r), m̃ = (t̃, r̃) ∈ β :

(r = r̃) ∨ ((r, r̃) ∈ Ea) (2)

Thus, an implementation ω is defined as a pair (α, β), with
a feasible implementation requiring a feasible binding for the
given allocation, cf. Fig. 1.

To enable the reliability analysis of a given implementation,
the components are annotated with properties in the specifica-
tion. The lifetime reliability of each resource r ∈ R is modeled
as a reliability function Rr : R+

0 → R[0,1] that returns the

ts

tc

ta

rsen1 rsen2

rECU1 rECU2

ract

(a) application (b) architecture

Fig. 1. A feasible implementation of a simple system specification. The
application (a) consist of a sensor task ts, a control task tc, and an actuator
task ta. The architecture (b) consists of two different sensors suitable to
carry out the sensor task, two ECUs suitable to execute the control task
and an actuator that carries out the actuator task. The possible mapping of
tasks to resources is depicted by the dashed edges with resources that are
not allocated and mappings that are not activated being shown in gray. The
feasible implementation itself includes a multiple binding of the control task
tc to both ECUs rECU1 and rECU2. This implementation allows to tolerate
the defect of one of the two allocated ECUs.

probability of the lifetime τLT of the resource being greater
than a certain time τ :

Rr(τ) = P[τLT > τ] (3)

It holds thatR(0) = 1 andR(∞) = 0, i.e., a resource provides
correct service at time 0 and will eventually fail.

IV. BDD-BASED RELIABILITY ANALYSIS

In this section, the BDD-based reliability analysis approach
as proposed in [7] is introduced in two steps: First, it is
described how the structure function ϕ [8] of the implementa-
tion can be generated from the system model and represented
by Binary Decision Diagrams (BDDs) [9]. BDDs are an
efficient representation of Boolean functions by means of a
directed acyclic graph with one root and two sinks, the 0
and 1 sink. Traversing the BDD from the root to the sink
determines if the Boolean function evaluates to 0 or 1 based
on the path, determined by the assignment of the variables
that are represented as vertices. After the structure function
is generated, ϕ can efficiently be evaluated to determine the
reliability of the system in terms of the Mean-Time-To-Failure
(MTTF).

A. The structure function ϕ

To model the behavior of the system under the influence of
defects, the structure function ϕ : {0, 1}|α| → {0, 1} with the
Boolean input vector α = (r1, . . . , r|α|) is determined. This
Boolean function indicates a system providing correct service
by evaluating to ϕ = 1 and a system failure by evaluating
to ϕ = 0, respectively. For each allocated resource r ∈ α, a
binary variable r is introduced with r = 1 indicating a correct
service and r = 0 a resource defect, respectively. For a given
implementation ω = (α, β), ϕ is determined by

ϕ(α) =∃β : ψ(α,β) (4)

ract

rsen1

rECU1

rECU2

0 1

Fig. 2. The structure function ϕ of the implementation in Fig. 1, encoded
as a Binary Decision Diagram (BDD). The regular edges correspond to the
variable of the corresponding node being 1, while the dashed edges correspond
to the variable being 0, respectively.

with ψ(α,β) being the characteristic function of the imple-
mentation that is given by:

ψ(α,β) =
∧
t∈T

 ∨
m=(t,r)∈β

m

 ∧ (5a)

∧
m=(t,r)∈β

m→ r ∧ (5b)

∧
(t,t̃)∈Et

∧
m=(t,r),

m̃=(t̃,r̃)∈β

m ∧ m̃→ C(m, m̃) (5c)

Here, β = (m1, . . . ,m|β|) is a vector of Boolean variables
with a variable m = 1 encoding the assumption that a
task instance m is active and, thus, capable of providing
correct service or inactive, i.e., m = 0. ψ(α,β) encodes
the following: Term (5a) states that at least one instance
m = (t, r) ∈ β of each task t ∈ T is necessary for a
working system. Term (5b) implies that any task instance relies
on a non-defect resource. Furthermore, if two instances of
data dependent tasks are assumed to contribute to a working
system, they must be able to communicate properly. Term (5c)
uses the communication function C : β × β → {0, 1} shown
in Eq. (6) to indicate whether this communication is feasible
or not:

C(m, m̃) =

{
1, if m=(t,r),m̃=(t̃,r̃):

r=r̃ ∨ (r,r̃)∈Ea

0, else
(6)

For determining the reliability of the implementation with
respect to resource defects, knowledge about the actual set
of tasks that implements the system that provides correct
service is not necessary. In fact, to perform a correct reliability
analysis, it is sufficient to know that there exists a set of task
instances that guarantee a system that provides correct service
for a given set of properly working resources. This is achieved
by applying existential quantification2 to the characteristic
function ψ(α,β) that results in the desired structure function
ϕ(α), cf. Fig. 2.

2∃y : ψ(x,y) = ψ(x,y)|y=1 ∨ ψ(x,y)|y=0

B. Evaluating ϕ

In order to quantify the reliability of an implementation,
its reliability function R has to be determined. Using a
specific SHANNON-decomposition as proposed in [10], the
probability P of the system providing correct service at time
τ is determined. This decomposition scheme can be applied
to the BDD directly and is defined as follows:

P(τ, ϕ) = Rr(τ)·P(τ, ϕ|r=1)+(1−Rr(τ))·P(τ, ϕ|r=0) (7)

This function determines the probability of a structure function
ϕ to evaluate to 1 at a given time τ . The function Rr : R+

0 →
R[0,1] is the reliability function of a single resource r and
returns the probability of this component to provide correct
service at time τ . To derive the reliability function R of the
entire implementation, the structure function ϕ has to fulfill
the following condition:

ϕ(α) ≥ ϕ(α̃) , if ∀i ∈ {0, . . . , |α|} : ri ≥ r̃i (8)

In other words, a resource that provides correct service can
only improve the overall system performance, but not lead to
a system defect. Since this condition is trivially fulfilled by
the presented approach to generate ϕ, the desired reliability
function Rϕ : R+

0 → R[0,1] of the implementation is given
by:

Rϕ(τ) = P(τ, ϕ) (9)

Based on the reliability function of the system, several
reliability-related measures like the Mean-Time-To-Failure
(MTTF) or the Mission-Time (MT) can be derived. For ex-
ample, the MTTF is calculated as follows:

MTTF(ϕ) =

∫ ∞
0

Rϕ(τ)dτ (10)

In system level design space exploration approaches, the
MTTF is typically used as the design objective that quantifies
the reliability of an implementation.

This BDD-based reliability analysis approach delivers exact
results, but requires the storage of the BDD in the main
memory. As BDDs may grow exponential in the number of
variables in the worst case, the scalability of this approach may
become a serious issue. Approaches to cope with this problem
based on early quantification are, e.g., proposed in [11],
[12]. However, for large systems, a simulative approach, as
presented in the next section, allows to efficiently analyze these
systems while delivering appropriately approximated results.

V. SAT-ASSISTED SIMULATION

Given the fact that BDD-based approaches may fail due
to outsized BDDs in case of large and complex systems, this
section presents a complementary reliability analysis approach
based on the hybridization of a Monte-Carlo simulation and
a SAT solver [13] termed SAT-assisted simulation [12]. While
the explicit encoding of the BDD requires lots of memory, the
simulation is based on iteratively carried out simulation runs
and, thus, allows to trade off the memory for runtime. This
enables an analysis of large and complex systems. However,
the simulation will only deliver approximations while the
BDD-based approach allows to determine exact reliability
measures.

Although using a Monte-Carlo simulation may seem to be a
low hanging fruit at first glance, each simulated fault raises the
need for a feasibility test. This test needs to determine whether
the system provides correct service or whether it failed with
respect to a given set of resource defects. The test can be
reduced to the problem of finding a feasible implementation
for a given platform that only contains the resources that
provide correct service and the mapping possibilities given by
the multiple bound tasks. In particular, the problem of finding
a feasible implementation for a platform is shown to be NP-
complete, cf. [14]. Given the fact that the accuracy of the
simulation is typically related to the number of performable
simulation runs, this test becomes the bottleneck of the Monte-
Carlo simulation.

As a remedy, a state-of-the-art SAT solver based on a
backtracking algorithm is used for the feasibility test within
the simulation. This enables to efficiently perform hundreds
of simulation runs, even for large and complex systems where
known exact methods fail. For the SAT solver, the system
function needs to be provided in Conjunctive Normal Form
(CNF). If the system function is not directly given in CNF like
in [11], several efficient techniques are known to transform any
Boolean function into CNF, cf. [15].

The iterative SAT-assisted simulation approach works as
follows: First, for the overall system encoded in ψ(α,β), a
set Γψ of N times-to-failure is determined by N independent
simulation runs:

Γψ =

N⋃
i=0

mcs(ψ(α,β)) (11)

The function mcs : {0, 1}{0,1}n → R+ carries out one sim-
ulation run based on a given characteristic function ψ(α,β).
The function mcs is outlined in Alg. 1.

Given the times-to-failure Γψ , the desired reliability func-
tion of the system is approximated as follows:

R(τ) ≈ |{γ|γ ∈ Γψ ∧ γ > τ}|
N

(12)

VI. EXPERIMENTAL RESULTS

This section puts focus on the complementary application of
the exact BDD-based analysis approaches and the SAT-assisted
simulation with respect to the scalability vs. the accuracy
of the techniques. The comparison is performed using the
common BDD-based approach as presented in this work that
is proposed in [7], the BDD-based approach that makes use
of early quantification as is proposed in [12], and the SAT-
assisted simulation that discussed here and proposed in [12].
A detailed discussion of the presented results is given in [12].
Testsuite. For the comparison, a testsuite containing various
system level design specifications is prepared: (a) 7 real-
world specifications from the data-streaming as well as the
automotive domain are chosen. The complexity of the real-
world test cases ranges from about 50 tasks with 30 available
resources up to about 250 tasks with about 1000 available
resources. (b) 8 synthetic test cases are generated. The com-
plexity of the synthetic test cases ranges from 50 tasks with 25
available resources to 150 tasks with 75 available resources.
For each of the 15 test cases, 10 implementations of different
complexities with respect to the BDD sizes are generated:

Algorithm 1 mcs(ψ(α,β)) - SAT-assisted Monte-Carlo sim-
ulation. First a set Γ of times-to-failure in ascending order
is computed that contains a specific time-to-failure γ for
each allocated resource r ∈ α of the structure function
using the function timesToFailure : 2R → 2(R×R

+), cf.
line 1. The time-to-failure of each resource r is determined
by using inverse transform sampling γ = R−1r (rnd) based on
the reliability function Rr(τ) of the resource and a random
number rnd ∈ R[0,1]. For each element (r, τ) ∈ Γ and with
respect to the order of Γ, the characteristic function ψ is
incrementally extended with a negated component variable
¬r using conjunction, cf. line 3. This corresponds to the
resource r being faulty. The SAT solver is invoked using
the function sat : {0, 1}{0,1}n → {0, 1} that returns true
if the characteristic function can be satisfied, i.e., if the
overall system provides correct service. If the overall system
failed, cf. line 4, the time-to-failure of the resource that failed
last corresponds to the overall system time-to-failure and is
returned in line 5.
Require: ψ(α,β)
Ensure: Γ is an ordered set

1: Γ := timesToFailure(α)
2: for (r, γ) ∈ Γ do
3: ψ(α,β) := ψ(α,β) ∧ ¬r
4: if ¬ sat(ψ(α,β)) then
5: return γ // time-to-failure
6: end if
7: end for

Using very few resources with marginal task redundancy
creates implementations of low complexity, whereas using
many resources with a high amount of task redundancy results
in implementations of high complexity. The result is a testsuite
of 150 test cases that covers a broad variety of test instances
ranging from simple examples, over moderate, up to hard
and highly-complex real-world test cases. The experiments
are carried out on an Intel Pentium 4 3.00 GHz Dual Core
machine with 1.5 GB RAM. The number of simulation runs
for the SAT approach is set to 2000.
Scalability. From each complexity class, 3 examples and the
corresponding runtimes of the analysis approach are depicted
in Table I. The early quantification approach outperforms both
other approaches in terms of runtime and allows to analyze
also several of the hard examples. In particular, it failed
to analyze 18 of the 150 test cases. The common BDD-
based approach shows the worst scalability, i.e., it failed to
analyze 95 test cases, and, except for a few cases where early
quantification induces too much overhead, requires longer
runtimes than the early quantification approach. The best
scalability is provided by the SAT-assisted simulation that
successfully analyzed all testcases. However, this is bought
by a significantly longer runtime in cases where a BDD-based
approach succeeds. Thus, SAT-assisted simulation should be
replaced by BDD-based analysis whenever possible to take
advantage of the lower runtime and exact results.
Accuracy. The accuracy of the SAT-assisted simulation is
investigated in Table II. The relative error and the deviation
of the results delivered by the SAT-assisted simulation are
calculated using the 132 testcases where a BDD-based analysis

TABLE I
RUNTIMES OF THREE RELIABILITY ANALYSIS APPROACHES: (A) BDD-BASED AS PRESENTED IN THIS WORK, (B) BDD-BASED USING EARLY

QUANTIFICATION (EQ), AND (C) THE SAT-ASSISTED SIMULATION. FOR EACH CLASS OF TESTCASES, THREE EXAMPLES ARE SELECTED. ALL TIMES ARE
GIVEN IN MILLISECONDS (MS).

BDD-based [7] BDD-based + EQ [12] SAT-assisted simulation [12]

simple
14 13 868
10 24 800
36 13 1, 832

moderate
230 72 7, 688

19, 721 27 1, 816
− 169 5, 500

hard
− 3, 008 62, 236
− 42, 494 55, 960
− − 53, 192

TABLE II
ACCURACY OF THE SAT-ASSISTED SIMULATION. THE RELATIVE ERROR IS
CALCULATED BASED ON 132 OUT OF 150 TESTCASES WHERE THE EXACT

RESULTS ARE DELIVERED BY THE EARLY-QUANTIFICATION APPROACH
GIVEN IN [12].

simulation runs relative error in % deviation in%

500 4.01 2.08
2000 1.51 1.02
4000 1.18 0.94

delivered an exact result. For the simulation, 500, 2000, and
4000 simulation runs have been performed. While the relative
error when performing 500 simulation runs is rather high with
about 4% and a deviation of about 2%, the accuracy when
carrying out 2000 runs improves significantly and results in a
relative error of only about 1.5% with a deviation of about 1%.
Given the techniques are tailored to the system level reliability
analysis in early phases of the design process, 2000 simulation
runs deliver a reasonable accuracy. Increasing the number of
simulation runs to 4000 results in a marginal enhancement of
the accuracy at the expense of a doubled runtime.

VII. CONCLUSION AND FURTHER READING

The work at hand introduces two complementary system-
level reliability analysis approaches tailored to a utilization in
early design phases of an embedded system. A formal analysis
based on Binary Decision Diagrams (BDDs) is proposed to
determine the exact reliability of a system implementation
for small to moderate-sized problems. This analysis technique
is capable of automatically taking arbitrary system structures
into account and deriving the overall lifetime reliability of
the system based on arbitrary reliability functions of the
system components. The second approach copes with the
scalability issues of BDDs by using a simulative approach that
hybridizes a Monte Carlo simulation with a SAT solver. This
efficient approach delivers appropriate approximated results
where known exact methods fail.

More experimental results for the BDD-based reliability
analysis can be found in [7]. An application of the analysis in
the design of automotive networks and self-healing systems is
given in [11] and [16], respectively. The integration of majority

voters and the consideration of graceful degradation is pre-
sented in [17] and [18]. The consideration of data-redundancy
in networked embedded systems is proposed in [19]. The
presented techniques are available within the open source
framework JRELIABILITY [20] under LGPL.

REFERENCES

[1] O. Wyman, “Auto & Umwelt 2007: Kundenerwartungen als Chance für
die Hersteller,” 2007.

[2] M. Lukasiewycz at al., “Combined System Synthesis and Communi-
cation Architecture Exploration for MPSoCs,” in Proc. of DATE ’09.
IEEE Computer Society, 2009, pp. 472–477.

[3] D. Gajski et al., High-level synthesis: introduction to chip and system
design. Kluwer Academic, 1992.

[4] P. Pop et al., “Design optimization of time-and cost-constrained fault-
tolerant embedded systems with checkpointing and replication,” IEEE
Trans. on VLSI, vol. 17, no. 3, pp. 389–402, 2009.

[5] Srinivasan et al., J., “The Impact of Technology Scaling on Lifetime
Reliability,” in Proc. of DSN ’2004, 2004.

[6] Gu at al., Z., “Application-specific MPSoC reliability optimization,”
IEEE Trans. on VLSI, vol. 16, no. 5, p. 603, 2008.

[7] M. Glaß et al., “Reliability-Aware System Synthesis,” in Proceedings of
DATE ’07, 2007, pp. 409–414.

[8] A. Birolini, Reliability Engineering - Theory and Practice. Berlin,
Heidelberg, New York: Springer, 4th edition, 2004.

[9] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” Trans. on Comp., vol. 35, no. 8, pp. 677–691, 1986.

[10] A. Rauzy, “New Algorithms for Fault Tree Analysis,” Reliability Eng.
and System Safety, vol. 40, pp. 202–211, 1993.

[11] M. Glaß et al., “Symbolic Reliability Analysis and Optimization of ECU
Networks,” in Proc. of DATE ’08, 2008, pp. 158–163.

[12] ——, “Towards scalable system-level reliability analysis,” in Proc. of
DAC ’10, 2010, pp. 234–239.

[13] M. Davis et al., “A machine program for theorem-proving,” Comm. of
the ACM, vol. 5, no. 7, pp. 394–397, 1962.

[14] C. Haubelt, J. Teich, R. Feldmann, and B. Monien, “SAT-Based Tech-
niques in System Design,” in Proc. of DAC ’03, 2003, pp. 1168–1169.

[15] G. Tseitin, “On the complexity of derivation in propositional calculus,”
Studies in constructive mathematics and mathematical logic, vol. 2, no.
115-125, pp. 10–13, 1968.

[16] M. Glaß et al., “Symbolic Reliability Analysis of Self-healing Net-
worked Embedded Systems,” in Proc. of SAFECOMP ’08, 2008, pp.
139–152.

[17] F. Reimann et al., “Symbolic Voter Placement for Dependability-Aware
System Synthesis,” in Proc. of CODES+ISSS ’08, 2008, pp. 237–242.

[18] M. Glaß et al., “Incorporating Graceful Degradation into Embedded
System Design,” in Proc. of DATE ’09, 2009, pp. 320–323.

[19] M. Lukasiewycz et al., “Exploiting Data-Redundancy in Reliability-
Aware Networked Embedded System Design,” in Proc. of
CODES+ISSS ’09, 2009, pp. 229–238.

[20] JReliability, “The java-based reliability library,”
http://www.jreliability.org/, Version 1.2.

