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Abstract

While there is substantial need for dependence models in higher dimensions, most exist-

ing models quickly become rather restrictive and barely balance parsimony and flexibility.

Hierarchical constructions may improve on that by grouping variables in different levels. In

this paper, the new class of hierarchical Kendall copulas is proposed and discussed. Hier-

archical Kendall copulas are built up by flexible copulas specified for groups of variables,

where aggregation is facilitated by the Kendall distribution function, the multivariate analog

to the probability integral transform for univariate random variables. After deriving prop-

erties of the general model formulation, particular focus is given to inference techniques of

hierarchical Kendall copulas with Archimedean components, for which closed-form analyt-

ical expressions can be derived. A substantive application to German stock returns finally

shows that hierarchical Kendall copulas perform very well for real data, out-of- as well as

in-sample.

Keywords: multivariate copula, hierarchical copula, Kendall distribution function

1 Introduction

Dependence modeling using copulas has made significant progress in the last years. A d-

dimensional copula is a multivariate distribution function on [0, 1]d with uniform margins. Their

central role in dependence modeling is due to the famous theorem by Sklar (1959), which states

that every multivariate distribution function can be expressed in terms of a copula and the uni-

variate marginal distribution functions. More precisely, let FX be the d-dimensional distribution

function of the random vector X = (X1, ..., Xd)
′ with univariate marginal distribution functions

FX1 , ..., FXd
. Then there exists a copula C such that for all x = (x1, ..., xd)

′ ∈ [−∞,∞]d,

FX(x) = C(FX1(x1), ..., FXd
(xd)). (1.1)

The copula C is unique if FX1 , ..., FXd
are continuous.

Many of the standard, and also of the newly proposed, copula models however turn out

to be rather restrictive in higher dimensions, which makes it virtually impossible to use them

for very large data sets as required, e.g., in financial or spatial applications. While standard

multivariate elliptical copulas such as the Gaussian and the Student’s t require the specification

of the full correlation matrix and can only account for symmetric dependence, multivariate

Archimedean copulas are even more restrictive by assuming exchangeability and imposing that
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all multivariate margins are the same. One common procedure to approach such problems

therefore is grouping data, e.g., by industry sectors or nationality. Such copula models include

the grouped Student’s t copula by Daul et al. (2003), elliptical copulas with clustered correlation

matrix (see, e.g., Gregory and Laurent (2004)) and hierarchical Archimedean copulas, which were

initially proposed by Joe (1997). In particular, hierarchical structures such as the latter two are

very appealing and received considerable attention lately (see, e.g., Hofert (2010)).

A major issue of any copula model is to find a good balance between parsimony and flex-

ibility. While elliptical copulas require an enormous number of parameters for specifying the

correlation matrix (the number of parameters grows quadratically with the dimension), Ar-

chimedean and also hierarchical Archimedean copulas are much more parsimonious, since the

number of parameters is at most linear in the dimension. However, such restrictions may be

severe, since hierarchical Archimedean copulas are at the same time limited to the class of Ar-

chimedean copulas as building blocks. Similarly, an elliptical copula with clustered correlation

matrix has to satisfy positive definiteness constraints and is limited to an elliptical dependence

structure, which in particular implies tail symmetry.

Another class of copulas that recently attracted increasing attention are pair copula construc-

tions as proposed by Aas et al. (2009). Such pair copula constructions use bivariate copulas

of arbitrary types as building blocks and are also available for applications in larger dimen-

sions. They however are non-hierarchical models and therefore may also severely suffer from

extreme numbers of parameters. While means to counteract these problems are now investigated

(Brechmann et al. 2012), we focus here on hierarchical constructions, which are inherently more

parsimonious and easier to interpret in terms of within- and between-group dependence.

The purpose of this paper is to introduce the new class of hierarchical Kendall copulas as

a flexible, but yet parsimonious dependence model. It is built up by copulas for groups (clus-

ters) of variables in different hierarchical levels. In particular—and in contrast to hierarchical

Archimedean copulas—, the choice of copulas and their parameters is not restricted. With pair

copula constructions the model shares the property that building blocks can be copulas of ar-

bitrary types. Hierarchical Kendall copulas therefore provide a new and attractive option to

model dependence patterns between large numbers of variables.

The name “hierarchical Kendall copula” is chosen to stress the central role of the Kendall

distribution function in the model formulation. The Kendall distribution function is the multi-

variate analog to the probability integral transform for univariate random variables. It is used

to aggregate the (dependence) information of a group of variables. It was first studied by Gen-

est and Rivest (1993) in the bivariate case and in more detail by Barbe et al. (1996). Other

accounts on it can be found, amongst others, in Imlahi et al. (1999), Genest and Rivest (2001)

and Nelsen et al. (2003) as well as in the copula goodness-of-fit literature (see, e.g., Wang and

Wells (2000) and Genest et al. (2006)).

It has been shown by Genest et al. (1995) that the only copula that gives a valid multivariate

distribution for non-overlapping multivariate marginals is the independence copula. That is, if in

Equation (1.1) non-overlapping multivariate distribution functions instead of univariate ones are

plugged into the copula C, this copula can only be the independence copula. Marco and Ruiz-

Rivas (1992) state conditions how a distribution function with specified multivariate marginals

can be constructed; the easiest case being that margins are max-infinitely divisible, which in-

cludes distributions based on Archimedean copulas. Hierarchical Kendall copulas circumvent

such issues through aggregation facilitated by the Kendall distribution function.
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The model, which we call hierarchical Kendall copula, has previously been mentioned by

Anjos and Kolev (2005), who however do not further develop the model in terms of statistical

properties and inference. The work presented here is completely independent of theirs and devel-

ops properties and inference techniques including sampling algorithms for hierarchical Kendall

copulas, with particular focus on Archimedean cluster components.

The features of hierarchical dependence models and of hierarchical Kendall copulas in par-

ticular are attractive to different areas of applications. In finance and insurance, risk capital

needs to be aggregated over different levels of business lines and operating entities, which intro-

duces a natural hierarchy with different dependencies across levels. Also in other financial areas,

there is a need for such models. For instance, hierarchical Archimedean copulas have previously

been used by Hofert and Scherer (2011) for the pricing of CDOs. For the purpose of market

risk portfolio management, a substantial 30-dimensional application to German stock returns is

presented in this paper, showing the need for careful dependence modeling and a good out-of-

as well as in-sample performance of hierarchical Kendall copulas.

The model is however not limited to applications in finance and insurance, but may be used

in any area that deals with some kind of clustered data such as geographic or temporal clusters.

For instance, in hydrology Kendall distribution functions are used to characterize multivariate

return periods (see Salvadori et al. (2011)) and hierarchical Kendall copulas may be used to

relate different return periods to each other.

The remainder of the paper is organized as follows. The new model is introduced and

discussed in Section 2. Section 3 then treats statistical inference techniques for hierarchical

Kendall copulas, while the financial application is presented in Section 4. Section 5 concludes.

2 Hierarchical Kendall copulas

A central part of the definition of hierarchical Kendall copulas, which will be given below, is

the notion of the Kendall distribution function, which is therefore treated first. Subsequently,

hierarchical Kendall copulas are defined and their properties are discussed, in particular in

comparison to hierarchical Archimedean copulas.

2.1 Kendall distribution functions

Kendall distribution functions were first studied in two dimensions by Genest and Rivest (1993)

and studied in more generality by Barbe et al. (1996). For U := (U1, ..., Ud)
′ ∼ C, where C is a

d-dimensional copula, the Kendall distribution function K(d) is defined as

K(d)(t) := P (C(U) ≤ t), t ∈ [0, 1]. (2.1)

It holds that t ≤ K(d)(t) ≤ 1 for t ∈ [0, 1] as well as K(d)(0−) = 0.

In this paper, it is assumed that copulas are absolutely continuous with continuous Kendall

distribution functions. Because the Kendall distribution function is the univariate distribution

function of the random variable Z := C(U), we then have K(d)(Z) ∼ U(0, 1), which is the

multivariate probability integral transform of U . Another interpretation is that K(d) describes

the distribution of the level sets of a copula

LC(z) = {u ∈ [0, 1]d : C(u) = z}, z ∈ (0, 1). (2.2)
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It has been shown by Genest and Rivest (1993) that bivariate Archimedean copulas are

uniquely characterized by their Kendall distribution functions. Genest et al. (2011) recently

extended this result to the trivariate case and strongly conjecture that this holds in general.

The computation of the Kendall distribution function for a given copula is however compli-

cated in general. Imlahi et al. (1999) provide the recursive formula

K(d)(t) = K(d−1)(t) +

∫ 1

t

∫ 1

C−1
u1

(t)
...

∫ 1

C−1
u1,...,ud−2

(t)

∫ C−1
u1,...,ud−1

(t)

0
c(u1, ..., ud) dud...du1, (2.3)

where K(d) denotes the Kendall distribution function of the d-dimensional copula C with density

c and K(d−1) that of the (d−1)-dimensional margin of the first d−1 variables. Furthermore, the

formula uses the notion of the copula quantile function, as studied by Imlahi et al. (1999) and

Chakak and Ezzerg (2000). Define Cu1,...,ud−1
(·) := C(u1, ..., ud−1, ·), then the copula quantile

function is the inverse C−1u1,...,ud−1
. It holds that

C(u1, ..., ud−1, C
−1
u1,...,ud−1

(z)) = z

for z ∈ (0, 1). For ease of notation, we define Cu1,...,ur(·) := C(u1, ..., ur, ·, 1, ..., 1) for r =

1, ..., d− 2, and C−1∅ (z) := z for z ∈ (0, 1).

Equation (2.3) requires high-dimensional integration and availability of the copula quantile

function in closed form. For general copulas, it is therefore not possible to easily determine the

Kendall distribution function in closed form. A convenient exception are however Archimedean

copulas. For a d-dimensional Archimedean copula (see McNeil and Nešlehová (2009)) with

generator1 ϕ,

C(u1, ..., ud) = ϕ−1 (ϕ(u1) + ...+ ϕ(ud)) , (2.4)

Barbe et al. (1996) showed that the Kendall distribution function is given in terms of the

generator ϕ and higher order derivatives of its inverse ϕ−1 as

K(d)(t) = t+

d−1∑

i=1

(−1)i

i!
ϕ(t)i(ϕ−1)(i)(ϕ(t)), (2.5)

where t ∈ (0, 1].

Example 2.1 (Kendall distribution function). Figure 1 shows Kendall distribution functions

K(d) (2.5) of the independence copula (ϕ(t) = − log(t)) and the Gumbel copula (ϕ(t) = (− log(t))θ,

θ ≥ 1) with parameter θ = 2 (corresponding to a Kendall’s τ of 0.5) for different dimensions d.

Both Kendall distribution functions are, for fixed t, increasing with the dimension d. The rate

of increase in the case of the Gumbel copula with medium positive dependence is however much

weaker. The practical implications of this property on our model will be discussed in Section 3.3.

In the following, the superscript of the Kendall distribution function, which indicates the

dimension of the associated random vector, will be omitted for reasons of readability.

1The continuous and strictly decreasing function ϕ : [0, 1]→ [0,∞) with ϕ(1) = 0 generates a d-dimensional

Archimedean copula if and only if its inverse ϕ−1 is d-monotone on [0,∞), that is, ϕ−1 is differentiable up to

the order d − 2 on [0,∞), it holds that (−1)k(ϕ−1)(k)(x) ≥ 0 for k = 0, 1, ..., d − 2 and for any x ∈ [0,∞), and

(−1)d−2(ϕ−1)(d−2) is non-increasing and convex on [0,∞) (see McNeil and Nešlehová (2009)).
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Figure 1: Kendall distribution functions (2.5) of the independence copula (left panel) and the

Gumbel copula with parameter θ = 2 (right panel) for different dimensions d.

2.2 Model formulation and properties

The constructive definition of the new dependence model class of hierarchical Kendall copulas

is now stated. Although the model has previously been formulated by Anjos and Kolev (2005),

it has—to the best of our knowledge—not yet been treated in detail or used for statistical

inference. We choose the name “hierarchical Kendall copula” to stress the central role the

Kendall distribution function plays in the model formulation.

Definition 2.2 (Hierarchical Kendall copula). Let U1, ..., Un ∼ U(0, 1) and let C0, C1, ..., Cd be

copulas of dimensions d, n1, ..., nd, respectively, where ni ≥ 1, i = 1, ..., d, and n =
∑d

i=1 ni. Fur-

ther, let K1, ...,Kd denote the Kendall distribution functions corresponding to C1, ..., Cd, respec-

tively. We define mi =
∑i

j=1 nj for i = 1, ..., d, and m0 = 0 as well as U i := (Umi−1+1, ..., Umi)
′

and Vi := Ki(Ci(U i)) for i = 1, ..., d. Under the assumptions that

A1: U1, ...,Ud are mutually independent conditionally on (V1, ..., Vd)
′, and

A2: the conditional distribution of U i|(V1, ..., Vd)′ is the same as the conditional distribution of

U i|Vi for all i = 1, ..., d, that is, FU i|V1,...,Vd = FU i|Vi ∀i ∈ {1, ..., d},

the random vector (U1, ..., Un)′ is said to be distributed according to the hierarchical Kendall

copula CK with nesting copula C0 and cluster copulas C1, ..., Cd if

(i) U i ∼ Ci ∀i ∈ {1, ..., d},

(ii) (V1, ..., Vd)
′ ∼ C0.

The distribution function CK of (U1, ..., Un)′ will be characterized in terms of its density

below. First, we discuss the construction, which is illustrated in Figure 2, in more detail and

provide examples.

The intuition behind the two assumptions A1 and A2 is that, given the information of

the nesting variables V1, ..., Vd, the clusters U1, ...,Ud are independent of each other and also

of other nesting variables, since the dependence among the clusters is explained through the

“representatives” V1, ..., Vd. In other words, V1, ..., Vd can be interpreted as unobserved factors,

whose joint behavior determines the dependence of the different clusters. In finance, such factors

may be, e.g., industry sectors.
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U1 := (U1, ..., Um1)
′ ∼ C1 U2 := (Um1+1, ..., Um2)

′ ∼ C2 · · · Ud := (Umd−1+1, ..., Umd
)′ ∼ Cd

C1(U1) ∼ K1 C2(U2) ∼ K2 · · · Cd(Ud) ∼ Kd

V1 := K1(C1(U1)) ∼ U(0, 1) V2 := K2(C2(U2)) ∼ U(0, 1) · · · Vd := Kd(Cd(Ud)) ∼ U(0, 1)

(V1, ..., Vd)
′ ∼ C0

Figure 2: Illustration of a hierarchical Kendall copula (see Definition 2.2).

Note that C0 is in general not the copula of (U1, ..., Un)′ but of (V1, ..., Vd)
′, which are uniform

random variables due to Ci(U i) ∼ Ki for all i = 1, ..., d. The nesting copula C0 and the cluster

copulas C1, ..., Cd can be chosen independently. They can be arbitrary copulas such as common

Archimedean or elliptical copulas or from any other class of copulas. A special case of hierarchical

Kendall copulas is the upper Fréchet-Hoeffding bound.

Example 2.3 (Upper Fréchet-Hoeffding bound). Let CK be a hierarchical Kendall copula,

where the clusters are perfectly positively dependent and the nesting copula also is the upper

Fréchet-Hoeffding bound C0(v1, ..., vd) = M (d)(v1, ..., vd) := min{v1, ..., vd}. Since Ci = M (ni)

and Ki(t) = t for all i = 1, ..., d and t ∈ [0, 1], it holds that Vi = min{Umi−1+1, ..., Umi} and

therefore CK = M (n). In other words, the upper Fréchet-Hoeffding bound belongs to the class of

hierarchical Kendall copulas.

The Kendall distribution functions K1, ...,Kd are used to summarize the information con-

tained in the clusters (transformation of ni-variate to univariate random vector). While one may

also think of other transformations, we believe that Kendall distribution functions are particu-

larly useful for this purpose, since they have a range of properties that are reasonable to demand

of an aggregating function. The properties mainly follow from the definitions of a copula and

the Kendall distribution function (2.1).

Proposition 2.4 (Properties of aggregation with Kendall distribution functions). Let K be

the Kendall distribution function of a p-dimensional copula C. Then the aggregation function

K ◦ C : [0, 1]p → [0, 1],u 7→ K(C(u)) has the following properties:

(i) The function K ◦ C is monotone increasing, that is,

K ◦ C(u1, ..., up) ≤ K ◦ C(v1, ..., vp)

for every u1, ..., up, v1, ...vp ∈ [0, 1] such that ui ≤ vi, i = 1, ..., p.

(ii) If K(0) = 0, then K ◦ C is grounded, that is, K ◦ C(u1, ..., up) = 0 if any ui = 0, i ∈
{1, ..., p}, in particular K ◦ C(0, ..., 0) = 0.

(iii) It holds that K ◦ C(1, ..., 1) = 1.

(iv) In the degenerate case that p = 1, the function K ◦C reduces to the identity function, that

is, K ◦ C(u1) = u1 for u1 ∈ [0, 1].
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(v) If C is exchangeable, then K ◦ C is commutative, that is,

K ◦ C(u1, ..., up) = K ◦ C(uπ(1), ..., uπ(p))

for every u1, ..., up ∈ [0, 1] and any permutation π : {1, ..., p} → {1, ..., p}.

The condition K(0) = 0 in the second property is fulfilled in particular by all absolutely

continuous copulas. Examples of exchangeable copulas are Archimedean (2.4) and elliptical

copulas with equi-correlation matrix.

The nesting copula C0 then essentially models the comovement of the cluster copula level

sets (2.2). This can be seen as a proxy for the strength of dependence in the clusters, since the

dimensionality of the single clusters is “normalized” through the Kendall distribution functions.

Other variables such as components of an elliptical distribution do not contain such specific

information that summarizes the information in a single variable. Thus, the transformation

using the Kendall distribution function reasonably summarizes the (dependence) information of

a multivariate random vector in the spirit of the univariate probability integral transform and

with the appealing characteristics stated in Proposition 2.4. For the particular purpose of risk

aggregation, an alternative hierarchical dependence model for sums of random variables was

recently proposed by Arbenz et al. (2012).

In the case of Archimedean clusters, we can give a particularly convenient representation of

the multivariate distribution of U1, ..., Un.

Remark 2.5 (Hierarchical Kendall copula with Archimedean clusters). Let U := (U1, ..., Un)′

be distributed according to a hierarchical Kendall copula CK, where C1, ..., Cd are Archimedean

with generators ϕ1, ..., ϕd, respectively. According to McNeil and Nešlehová (2009), it holds for

all i = 1, ..., d,

(ϕi(Umi−1+1), ..., ϕi(Umi))
′ d= RiS

(i), (2.6)

where S(i) = (S
(i)
1 , ..., S

(i)
ni )′ is uniformly distributed on the unit simplex {x ≥ 0 :

∑ni
j=1 xj = 1} ⊂

[0, 1]ni, and the radial part Ri =
∑ni

j=1 ϕi(Umi−1+j) is independent of S(i) and has distribution

FRi, which can be determined through the inverse Williamson transform of ϕ−1i .

As a result we can represent the random vector U as

(U1, ..., Un)′
d
= (ϕ−11 (R1S

(1)
1 ), ..., ϕ−11 (R1S

(1)
n1

), ϕ−12 (R2S
(2)
1 ), ..., ϕ−12 (R2S

(2)
n2

), ..., ϕ−1d (RdS
(d)
nd

))′,

(2.7)

where Ri = ϕi(K
−1
i (Vi)) for i = 1, ..., d, since by the definition of Ci, Vi and Ri,

Vi = Ki(Ci(U i)) = Ki

(
ϕ−1i

( ni∑

j=1

ϕi(Umi−1+j)
))

= Ki(ϕ
−1
i (Ri)).

In other words, if all clusters are Archimedean, dependence among clusters is introduced solely

through the dependence between the radial variables of the different clusters. In particular, if the

nesting copula C0 is also Archimedean with generator ϕ0 and corresponding radial variable R0,

we have for i = 1, ..., d that Vi = ϕ−10 (R0S
(0)
i ), where S

(0)
1 , ..., S

(0)
d are uniformly distributed on

the d-dimensional unit simplex. That is, the radial variables of the clusters, Ri, can be expressed

through R0 and uniform random variables on the simplex.

Equation (2.7) also motivates to speak of a “grouped Archimedean copula” similar to the

grouped Student’s t copula by Daul et al. (2003).
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Figure 3: A sample of size 1000 from a four-dimensional hierarchical Kendall copula with Clayton

and Gumbel clusters and Frank nesting copula. Margins are transformed to standard normal.

The lower triangle shows pairwise empirical Kendall’s τ values.

We now provide an illustrative example of a hierarchical Kendall copula with Archimedean

clusters.

Example 2.6 (Hierarchical Kendall copula with Archimedean clusters). Let CK be a four-

dimensional hierarchical Kendall copula with n1 = n2 = 2. The bivariate cluster copulas are

chosen as Clayton (Archimedean with ϕ(t) = t−θ − 1, θ > 0) with parameter θ = 1.33 and

Gumbel with parameter θ = 1.67 (both corresponding to a Kendall’s τ of 0.4). The nesting

copula is set as a Frank (also Archimedean with ϕ(t) = − log((1− e−θt)/(1− e−θ)), θ ∈ R \ {0})
with parameter θ = 11.41 (Kendall’s τ of 0.7). A sample of size 1000 from this hierarchical

Kendall copula is shown in Figure 3. It shows the typical features of lower tail dependence for

the pair (U1, U2)
′ (Clayton copula) and of upper tail dependence for the pair (U3, U4)

′ (Gumbel

copula). The between-cluster dependence looks rather tail-symmetric as implied by the Frank

copula.

The illustration in Example 2.6 also provides an example where the between-cluster de-

pendence is stronger than the within-cluster dependence. This case cannot be modeled using

hierarchical Archimedean copulas as will be discussed in Section 2.3.

The two-level construction given in Definition 2.2 can also be extended to an arbitrary

number of levels.
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Remark 2.7 (Hierarchical Kendall copula with k levels). Let U1, ..., Un ∼ U(0, 1) and let dj , j =

1, ..., k−1, denote the number of clusters per level j, such that d1 ≥ d2 ≥ ... ≥ dk−1. Further, let

the nesting copula C0 be dk−1-dimensional and let the nested cluster copulas C
(j)
i , j = 1, ..., k −

1, i = 1, ..., dj, be of dimension n
(j)
i ≥ 1, where n =

∑d1
i=1 n

(1)
i and dj−1 =

∑dj
i=1 n

(j)
i for

j = 2, ..., k − 1. The index i runs over the dj clusters of each level j. The Kendall distribution

function corresponding to C
(j)
i , j = 1, ..., k − 1, i = 1, ..., dj , is denoted by K

(j)
i and we define

m
(j)
i =

∑i
`=1 n

(j)
` for i = 1, ..., dj, and m

(j)
0 = 0. Under independence assumptions as in

Definition 2.2, we then say that the random vector (U1, ..., Un)′ is distributed according to the

k-level hierarchical Kendall copula CK with nesting copula C0 and cluster copulas C
(j)
i , j =

1, ..., k − 1, i = 1, ..., dj , if

(i) U i := (U
m

(1)
i−1+1

, ..., U
m

(1)
i

)′ ∼ C(1)
i ∀i ∈ {1, ..., d1},

(ii) V
(1)
i := K

(1)
i (C

(1)
i (U i)) ∀i ∈ {1, ..., d1},

(iii) for j = 2, ..., k − 1:

(a) V
(j−1)
i := (V

(j−1)
m

(j)
i−1+1

, ..., V
(j−1)
m

(j)
i

)′ ∼ C(j)
i ∀i ∈ {1, ..., dj},

(b) V
(j)
i := K

(j)
i (C

(j)
i (V

(j−1)
i )) ∀i ∈ {1, ..., dj},

(iv) (V
(k−1)
1 , ..., V

(k−1)
dk−1

)′ ∼ C0.

In particular, the clusters U1, ...,Ud1 at the lowest level (j = 1) are assumed to be mutually

independent given the “representatives” V
(j)
i , j = 1, ..., k− 1, i = 1, ..., dj. In the case of k = 3,

we define

U
(1)
i := (U ′

m
(2)
i−1+1

, ...,U ′
m

(2)
i

)′, i = 1, ..., d2.

Then the assumptions are

A(1)
1 : U

(1)
1 , ..,U

(1)
d2

are mutually independent conditionally on (V
(2)
1 , ..., V

(2)
d2

)′;

A(1)
2 : the conditional distribution of U

(1)
i |(V

(2)
1 , ..., V

(2)
d2

)′ is the same as the conditional distribu-

tion of U
(1)
i |V

(2)
i for all i = 1, ..., d2;

A(2)
1 : U

m
(2)
i−1+1

, ...,U
m

(2)
1

are mutually independent conditionally on (V
(2)
i ,V

(1)′
i )′ for all i =

1, ..., d2;

A(2)
2 : the conditional distribution of U

m
(2)
i−1+j

|(V (2)
i ,V

(1)′
i )′ is the same as the conditional distri-

bution of U
m

(2)
i−1+j

|(V (2)
i , V

(1)

m
(2)
i−1+j

)′ for all i = 1, ..., d2, j = 1, ..., n
(2)
i .

Their interpretation is essentially the same as for the assumptions A1 and A2 stated in Definition

2.2.

An example of a three-level hierarchical Kendall copula is shown in Figure 4. For simplicity

and illustrative reasons, we restrict our exposition here to the case of k = 2 hierarchical levels.

It will be sketched how to generalize all derivations and methods, which are described in the

following, to the general k level case.
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U1 :=
(
U1, ..., Um

(1)
1

)′ ∼ C
(1)
1 · · · U ℓ :=

(
U
m

(1)
ℓ−1+1

, ..., U
m

(1)
ℓ

)′ ∼ C
(1)
ℓ · · ·

V
(1)
1 := K

(1)
1 (C

(1)
1 (U1)) ∼ U(0, 1) · · · V

(1)
ℓ := K

(1)
ℓ (C

(1)
ℓ (U ℓ)) ∼ U(0, 1) · · ·

V
(1)
1 :=

(
V

(1)
1 , ..., V

(1)

m
(2)
1

)′
∼ C

(2)
1 · · · V

(1)
d2

:=
(
V

(1)

m
(2)
d2−1+1

, ..., V
(1)

m
(2)
d2

)′
∼ C

(2)
d2

V
(2)
1 := K

(2)
1 (C

(2)
1 (V

(1)
1 )) ∼ U(0, 1) · · · V

(2)
d2

:= K
(2)
d2

(C
(2)
d2

(V
(1)
d2

)) ∼ U(0, 1)

(
V

(2)
1 , ..., V

(2)
d2

)′ ∼ C0

Figure 4: Illustration of a three-level hierarchical Kendall copula (see Remark 2.7). Here m
(2)
1 =

`.

The two independence assumptions A1 and A2 of Definition 2.2 provide a natural structure

for hierarchical dependence models and allow to derive the joint density function of a hierarchical

Kendall copula as stated in the following theorem. Densities of the copulas C0, ..., Cd are denoted

by c0, ..., cd, respectively.

Theorem 2.8 (Joint density of a hierarchical Kendall copula). Let U = (U1, ..., Un)′ be dis-

tributed according to a hierarchical Kendall copula CK with nesting copula C0 and cluster copulas

C1, ..., Cd. The joint density function cK of CK is then given as follows:

cK(u) = c0(K1(C1(u1)), ...,Kd(Cd(ud)))
d∏

i=1

ci(ui), (2.8)

where u = (u1, ..., un)′ and ui = (umi−1+1, ..., umi)
′, i = 1, ..., d.

Proof: It is

CK(u) = P (U ≤ u) =

∫

[0,1]d
P (U ≤ u|V1 = v1, ..., Vd = vd) c0(v1, ..., vd) dv1...dvd. (2.9)

By applying assumption A1 first and then assumption A2, we obtain

P (U ≤ u|V1 = v1, ..., Vd = vd) =
d∏

i=1

P (U i ≤ ui|V1 = v1, ..., Vd = vd)

=
d∏

i=1

P (U i ≤ ui|Vi = vi).

Using this result, Equation (2.9) simplifies to

CK(u) =

∫

[0,1]d

[
d∏

i=1

FU i|Vi(ui|vi)
]
c0(v1, ..., vd) dv1...dvd. (2.10)

Further, we denote by U i,−mi , i ∈ {1, ..., d}, the (ni − 1)-dimensional sub-vector of U i =

(Umi−1+1, ..., Umi)
′ with element Umi removed. Since Vi = Ki(Ci(U i)) ∼ U(0, 1) and according

to a change of variables, it then holds that

fU i,−mi
|Vi(ui,−mi |vi) = fU i,−mi

,Vi(ui,−mi , vi)

= ci(ui,−mi , C
−1
i;ui,−mi

(K−1i (vi)))
∂

∂vi
C−1i;ui,−mi

(K−1i (vi)),
(2.11)
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if vi ≤ Ki(Ci(ui,−mi , 1)). This yields

FU i|Vi(ui|vi) =

∫ umi−1

0
...

∫ umi−1+1

0
fU i,−mi

|Vi(wi,−mi |vi) 1{C−1
i;wi,−mi

(K−1
i (vi))≤umi}

dwi,−mi .

Plugging this expression into Equation (2.10) and substituting vi by wmi = C−1i;wi,−mi
(K−1i (vi))

for i = 1, ..., d then leads to

CK(u) =

∫ un

0
...

∫ u1

0

[
d∏

i=1

ci(wi)

]
c0(K1(C1(w1)), ...,Kd(Cd(wd))) dw,

where we used that vi = Ki(Ci(wi)), i = 1, ..., d. Taking derivatives with respect to u1, ..., un
therefore gives the desired result. �

Remark 2.9 (Joint density of a k-level hierarchical Kendall copula). The arguments of Theorem

2.8 can be iterated to derive the joint density of a k-level hierarchical Kendall copula. By first

conditioning on the aggregated variables of level k − 1, V
(k−1)
1 , ..., V

(k−1)
dk−1

, then on those of level

k − 2 up to level 1, an expression similar to Equation (2.8) is obtained.

For instance, the density of the three-level hierarchical Kendall copula can be derived along

the lines of the proof of Theorem 2.8 as

cK(u) = c0(v
(2)
1 , ..., v(2)n2

)

d2∏

i=1


c(2)i

(
v
(1)
i

) n(2)
i∏

j=1

c
(1)

m
(2)
i−1+j

(
u
m

(2)
i−1+j

)



= c0(v
(2)
1 , ..., v(2)n2

)

d2∏

i=1

c
(2)
i

(
v
(1)
i

) d1∏

i=1

c
(1)
i (ui) ,

(2.12)

where v
(1)
i = (v

(1)

m
(2)
i−1+1

, ..., v
(1)

m
(2)
i

)′, i = 1, ..., d2, with components v
(1)
i = K

(1)
i (C

(1)
i (ui)), i =

1, ..., d1. Further, v
(2)
i = K

(2)
i (C

(2)
i (v

(1)
i )), i = 1, ..., d2.

This means that the density of a three-level hierarchical Kendall copula also conveniently

decomposes into the product of copula densities, where the arguments are obtained through the

repeated application of Kendall distribution functions.

Another important special case of hierarchical Kendall copulas can easily be stated using

Theorem 2.8.

Example 2.10 (Independence copula). Let CK be a hierarchical Kendall copula, where both

cluster and nesting copulas are independence copulas. Since the independence copula has density

equal to 1, it follows that cK(u) = 1. This means that the independence copula also belongs to

the class of hierarchical Kendall copulas.

Theorem 2.8 also allows to formulate the following corollary which summarizes the marginal

properties of hierarchical Kendall copulas.

Corollary 2.11 (Margins of a hierarchical Kendall copula). The same notation as in Theorem

2.8 is used.

(i) Bivariate margins: Let k, ` ∈ {1, ..., n}, k 6= `. W.l.o.g. k < `.

11



(a) If Uk and U` are in the same cluster i, their marginal distribution function CK,k` is

CK,k`(uk, u`) := Ci(1, ..., 1, uk, 1, ..., 1, u`, 1, ..., 1).

(b) If Uk and U` are in different clusters i and j, respectively, their marginal distribution

function CK,k` is

CK,k`(uk, u`) :=

∫ uk

0

∫ u`

0

∫

[0,1]ni+nj−2
c0,ij(Ki(Ci(wi)),Kj(Cj(wj)))

× ci(wi) cj(wj) dwi,−k dwj,−` dw` dwk,

(2.13)

where c0,ij is the density of the bivariate (i, j)-margin of C0.

(ii) Multivariate margins: The marginal distribution of the cluster U i is Ci.

More general multivariate margins involving variables from different clusters can be derived

as in Equation (2.13).

Remark 2.12 (Mixture representation). As a consequence of Corollary 2.11 (i)(b), bivariate

marginal distributions where the variables are in different clusters can be regarded as a kind of

continuous mixture of the nesting copula C0. The density of CK,k` as defined above is given by

cK,k`(uk, u`) =

∫

[0,1]ni+nj−2
c0,ij(Ki(Ci(ui)),Kj(Cj(uj))) ci(ui) cj(uj) dui,−k duj,−`,

where the mixing density weights are given by the product ci(ui)cj(uj).

This representation complements the results of Remark 2.5. Equation (2.7) shows that hi-

erarchical Kendall copulas with Archimedean cluster copulas can be represented as transformed

mixtures of uniform distributions on unit simplices.

As noted above, the multivariate distribution of U1, ..., Un defined through a hierarchical

Kendall copula is in general not the copula C0 but given through its density (see Equation (2.9)).

We showed that the important special cases of independence as well as of comonotonicity are

hierarchical Kendall copulas (see Examples 2.3 and 2.10), while in general dependence between

clusters ranges between these cases and can also be negative. It is yet an open question which

other common multivariate distributions can be represented as hierarchical Kendall copulas

with non-trivial cluster sizes (at least one ni > 1, that is, d < n). In particular, hierarchical

Archimedean copulas are different from hierarchical Kendall copulas—with positive and negative

implications as discussed next.

2.3 Comparison with hierarchical Archimedean copulas

The popular class of hierarchical Archimedean copulas also allows for a nested modeling of

clusters of variables (see, e.g., Joe (1997), Hofert (2010), Savu and Trede (2010) and Okhrin

et al. (2013)). In contrast to hierarchical Kendall copulas, hierarchical Archimedean copulas are

however limited to Archimedean copulas as building blocks, while hierarchical Kendall copulas

can be built up by any possible copula. Furthermore, hierarchical Archimedean copulas require

stronger within-cluster dependence, which results in parameter restrictions if generators are the

same. This is not the case for hierarchical Kendall copulas (see Example 2.6).

12



Archimedean copulas have many useful properties. For instance, their relationship to Laplace

transforms can be used to conveniently sample from hierarchical Archimedean copulas as de-

scribed, e.g., in Hofert (2010, 2011). Hierarchical Kendall copulas also benefit from many of these

properties. It will be shown in Section 3.1 that closed-form sampling of hierarchical Kendall

copulas is feasible, when cluster copulas are Archimedean. Hierarchical Kendall copulas with

Archimedean cluster copulas are further particularly easy to estimate, since Kendall distribution

functions are known in closed form for Archimedean copulas. For that reason they also provide

a closed-form joint density function, which is numerically tractable even in higher dimensions

(see Equation (2.12) for the case of three hierarchical levels). Although the general density ex-

pression of hierarchical Archimedean copulas is in general hardly accessible (see Savu and Trede

(2010)), Hofert and Pham (2013) recently derived a tractable formula for the case of a moderate

number of nesting levels.

In contrast to hierarchical Archimedean copulas, multivariate margins of hierarchical Kendall

copulas are however not directly available (see Corollary 2.11). For instance, if (U1, U2)
′ ∼ C1,

(U3, U4)
′ ∼ C2 and the nesting copula in both hierarchical copula models is C0, then in the

hierarchical Archimedean copula the margin (U1, U3)
′ is distributed according to C0, while in

the case of the hierarchical Kendall copula this marginal distribution has to be obtained using

integration as in Equation (2.13).

Example 2.13 (Bivariate margin of hierarchical Archimedean and Kendall copulas). Let U1, ..., U4

be distributed according to a hierarchical Kendall copula or hierarchical Archimedean copula with

Gumbel cluster and nesting copulas: as above, (U1, U2)
′ ∼ C1, (U3, U4)

′ ∼ C2 and C0 denotes

the nesting copula. Figure 5 illustrates the marginal density of (U1, U3)
′ in both cases. It shows

contour plots of the marginal density of (Φ−1(U1),Φ
−1(U3))

′, where Φ−1 denotes the inverse

standard normal distribution function. Parameters are chosen as θ1 = 3 (Kendall’s τ of 0.67)

and θ2 = 4 (Kendall’s τ of 0.75) for the bivariate cluster copulas C1 and C2, respectively, and

θ0 = 2 (Kendall’s τ of 0.5) for the nesting copula C0. The difference between the distributions

is minor. However, the contour plot corresponding to the hierarchical Archimedean copula is

slightly sharper in the upper right corner, implying a stronger joint tail behavior.

Note that in the example the parameters of the cluster copulas are larger than that of the

nesting copula, as required for the hierarchical Archimedean copula to yield a valid multivariate

distribution (θ0 ≤ min{θ1, θ2}). This is however not needed for the hierarchical Kendall copula.

Finally, the nesting copula C0 of a hierarchical Kendall copula is also not closed under

addition and removal of cluster components U`, which is contrary to hierarchical Archimedean

copulas. This is because the Kendall distribution function is not independent with respect to

the dimension (see Expression 2.3). That is, if a random variable Un+1 is added to cluster

i ∈ {1, ..., d}, the transformation Ki and thus Vi change, even if Ci is Archimedean; similarly if

a random variable is removed from a cluster.

3 Inference for hierarchical Kendall copulas

We now discuss appropriate statistical inference techniques for hierarchical Kendall copulas.

While hierarchical Kendall copulas could in principle be built up by any possible copula and the

developed methodology holds in general, we focus in the following on the case of Archimedean

clusters (see Remark 2.5 and Example 2.6). In this case, analytical derivations are possible due
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Figure 5: Contour plots of the marginal density of (Φ−1(U1),Φ
−1(U3))

′, where U1, ..., U4 are

distributed according to a hierarchical Kendall copula (black dashed line) or hierarchical Archi-

medean copula (gray line) with Gumbel cluster and nesting copulas.

to the tractability of the Kendall distribution function (2.5) and the copula itself (2.4). We first

treat simulation, then estimation and model selection.

3.1 Simulation

The following general simulation procedure describes how to sample from a given hierarchical

Kendall copula with clusters that are not necessarily Archimedean.

Algorithm 3.1 (Simulation of hierarchical Kendall copulas). Let CK be a hierarchical Kendall

copula with nesting copula C0 and cluster copulas C1, ..., Cd. Further, let K−1i denotes the inverse

of the Kendall distribution function Ki for i = 1, ..., d.

(i) Sample (v1, ..., vd)
′ from C0.

(ii) Set zi := K−1i (vi) ∀i ∈ {1, ..., d}.

(iii) Sample (umi−1+1, ..., umi)
′ from (Umi−1+1, ..., Umi)

′|Ci(Umi−1+1, ..., Umi) = zi for i = 1, ..., d.

(iv) Return u := (u1, ..., un)′.

Remark 3.2 (Simulation of k-level hierarchical Kendall copulas). The above procedure for two

levels can be iterated to simulate from a k-level hierarchical Kendall copula (see Remark 2.7).

In the following, samples of random variables will be denoted in the corresponding lower case

letters. Let (v
(k−1)
1 , ..., v

(k−1)
dk−1

)′ be sampled from C0. Then,

(i) sample from
(
V

(j−1)
m

(j)
i−1+1

, ..., V
(j−1)
m

(j)
i

)′|C(j)
i

(
V

(j−1)
m

(j)
i−1+1

, ..., V
(j−1)
m

(j)
i

)
=
(
K

(j)
i

)−1
(v

(j)
i ) for j = k −

1, ..., 2 and i = 1, ..., dj.

(ii) and finally from
(
U
m

(1)
i−1+1

, ..., U
m

(1)
i

)′|C(1)
i

(
U
m

(1)
i−1+1

, ..., U
m

(1)
i

)
=
(
K

(1)
i

)−1
(v

(1)
i ) for i =

1, ..., d1.

Given that we can simulate from the copula C0, sampling from hierarchical Kendall copulas

thus amounts to the more general question of sampling from a distribution U |C(U) = z, where

C is the copula of a marginally uniform random vector U := (U1, ..., Ud)
′ and z ∈ (0, 1). In other
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Figure 6: A sample from a bivariate Clayton copula with parameter θ = 2 (Kendall’s τ of 0.5)

and level sets LC(z) at levels z = 0.1, ..., 0.9 (solid lines).

words, we want to sample from a multivariate distribution given a specific level set (2.2) at level z

as illustrated in Figure 6. This problem is discussed in the following two sections. First, we solve

the issue using the conditional inverse method, for which expressions of conditional distribution

functions are provided, which are shown to be available in closed form for Archimedean copulas.

An alternative solution based on the representation given in Equation (2.6) is provided thereafter.

Closed-form sampling procedures for Plackett and Archimax copulas, which include the large

class of extreme value copulas, can be found in Brechmann (2013). There, different approximate

methods such as rejection sampling for the case that the cluster copulas do not admit a closed-

form approach are also discussed and evaluated.

Note that inversion of the Kendall distribution function, as required in Step (ii) of Algorithm

3.1, is numerically feasible for an Archimedean copula, since its Kendall distribution function

is known in closed form and can be computed efficiently (see Hofert et al. (2012) for explicit

functional expressions of (ϕ−1)(i) for common Archimedean generators).

3.1.1 Conditional inverse method

A common method to generate samples from a multivariate distribution is the conditional in-

verse method (see Devroye (1986)). For this, we need to determine the iterative conditional

distribution functions of U |C(U) = z, that is, of U1|C(U) = z, U2|(U1 = u1, C(U) = z),

..., Ud−1|(U1 = u1, ..., Ud−2 = ud−2, C(U) = z). The corresponding conditional distribution

functions are denoted by Fj|1,...,j−1(·|u1, ..., uj−1, z) and densities by fj|1,...,j−1(·|u1, ..., uj−1, z)
for j = 1, ..., d − 1, respectively. Then we obtain observations (u1, ..., ud)

′ from U |C(U) =

z by generating w1, ..., wd−1 independently from the uniform distribution and setting uj :=

F−1j|1,...,j−1(wj |u1, ..., uj−1, z) for j = 1, ..., d− 1. For j = d it is ud := C−1u1,...,ud−1
(z). The problem

therefore is to determine the conditional distribution functions, which are generally not given in

closed form.

Theorem 3.3 (Conditional distributions). Let U ∼ C, then for all j = 1, ..., d− 1,

Fj|1,...,j−1(u|u1, ..., uj−1, z) =

∫ u
C−1

u1,...,uj−1
(z) gj(uj) duj

∫ 1
C−1

u1,...,uj−1
(z) gj(uj) duj

, u ∈ (C−1u1,...,uj−1
(z), 1), (3.1)
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where

gj(uj) =

∫ 1

C−1
u1,...,uj

(z)
...

∫ 1

C−1
u1,...,ud−2

(z)
c(u1, ..., ud−1, C

−1
u1,...,ud−1

(z))
∂

∂z
C−1u1,...,ud−1

(z) dud−1...duj+1.

(3.2)

Proof: The idea is to derive the conditional density fj|1,...,j−1(·|u1, ..., uj−1, z) and then integrate

to obtain the distribution function. We begin by observing that

fj|1,...,j−1(uj |u1, ..., uj−1, z) =
fU1,...,Uj ,C(U)(u1, ..., uj−1, uj , z)

fU1,...,Uj−1,C(U)(u1, ..., uj−1, z)
. (3.3)

According to a change of variables as in Equation (2.11), the numerator can then be rewritten

as

fU1,...,Uj ,C(U)(u1, ..., uj , z)

=

∫ 1

C−1
u1,...,uj

(z)
...

∫ 1

C−1
u1,...,ud−2

(z)
fU1,...,Ud−1,C(U)(u1, ..., ud−1, z) dud−1...duj+1

=

∫ 1

C−1
u1,...,uj

(z)
...

∫ 1

C−1
u1,...,ud−2

(z)
c(u1, ..., ud−1, C

−1
u1,...,ud−1

(z))
∂

∂z
C−1u1,...,ud−1

(z) dud−1...duj+1

= gj(uj),

where gj is defined in Equation (3.2) and dependence on u1, ..., uj−1, z is suppressed for ease of

notation. Further, the denominator of Equation (3.3) then reads as

fU1,...,Uj−1,C(U)(u1, ..., uj−1, z) =

∫ 1

C−1
u1,...,uj−1

(z)
gj(uj) duj .

By integration, we obtain the expression for the conditional distribution function (3.1). �

Evidently, the conditional distribution functions given in Equation (3.1) in general do not

allow for explicit expressions. In particular, if the copula quantile function C−1 is not available

in closed form such as for the Gaussian copula, the expression in Equation (3.1) hardly simplifies.

In the case of Archimedean copulas, the conditional distribution functions can be obtained as

particularly convenient expressions.

Lemma 3.4 (Conditional distributions of Archimedean copulas). Let U ∼ C, where C is a

d-dimensional Archimedean copula with generator ϕ, then for all j = 1, ..., d− 1,

Fj|1,...,j−1(u|u1, ..., uj−1, z) =

(
1− ϕ(u)

ϕ(z)−∑1≤i<j ϕ(ui)

)d−j
, u ∈ (C−1u1,...,uj−1

(z), 1). (3.4)

This result can be derived using the general formula provided in Theorem 3.3. As noted

by an anonymous referee, a considerably simpler proof can be formulated by exploiting the

representation (2.6) of Archimedean copulas and properties of the Dirichlet distribution. The

proof is given in the next section in Remark 3.8 using a characterization result of Proposition

3.6 below.

Lemma 3.4 then allows to use the conditional inverse method for Archimedean copulas, for

which the conditional distribution functions can easily be inverted in closed form.
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Figure 7: Left panel: scatter plot of a sample of a bivariate Clayton copula with parameter

θ = 2 at z = 0.2. Middle and right panel: 3D scatter plot and pairwise scatter plots of a sample

of a trivariate Clayton copula with parameter θ = 2 at z = 0.2.

Algorithm 3.5 (Conditional inverse method for Archimedean copulas). Let C be an Archime-

dean copula with generator ϕ and z ∈ (0, 1).

(i) Sample w1, ..., wd−1 independently from the uniform distribution.

(ii) For j = 1, ..., d− 1: uj := ϕ−1((1− w1/(d−j)
j )(ϕ(z)−∑1≤i<j ϕ(ui))).

(iii) Set ud := ϕ−1(ϕ(z)−∑1≤i<d ϕ(ui)).

(iv) Return (u1, ..., ud)
′.

For illustration Figure 7 shows scatter plots of samples from bivariate and trivariate Clayton

copulas with parameter θ = 2 (Kendall’s τ of 0.5).

As a side note, we observe that Algorithm 3.5 can in particular be used to sample from a given

Archimedean copula. For this, draw an additional uniform observation wd and set z := K−1(wd)

prior to preforming Steps (ii) and (iii). An equivalent version of this result has previously been

stated in Wu et al. (2007).

3.1.2 Projected distribution

Clearly the condition C(U) = z on the distribution of U means that we are in fact investigating a

(d−1)-dimensional distribution, namely the distribution ofU projected to the (d−1)-dimensional

level set LC(z) ⊂ [0, 1]d. This distribution is however not easily tractable in general.

Again in the case of Archimedean copulas some convenient results are obtainable.

Proposition 3.6 (Projected distribution of Archimedean copulas). Let U ∼ C, where C is a

d-dimensional Archimedean copula with generator ϕ, then it holds for z ∈ (0, 1) that

[U |C(U) = z]
d
=
(
ϕ−1(S1ϕ(z)), ..., ϕ−1(Sdϕ(z))

)′
, (3.5)

where S = (S1, ..., Sd)
′ is uniformly distributed on the unit simplex.

Proof: According to Equation (2.6), we have the representation (ϕ(U1), ..., ϕ(Ud))
′ d= RS, where

R =
∑d

j=1 ϕ(Uj) = ϕ(C(U)) is the radial part, which is independent of S. Fixing the level set
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LC(z) is therefore equivalent to setting R = ϕ(z), so that we obtain Equation (3.5). �

Equation (3.5) for the projected distribution of an Archimedean copula is particularly ap-

pealing, since it does not depend on the radial variable and its distribution, which may not be

available in closed form. This result can then be used to provide another sampling algorithm

for U |C(U) = z, which can be shown to be equivalent to Algorithm 3.5, when using explicit

expressions for the observations (s1, ..., sd)
′ from S in terms of uniform random variables (see

Hering (2011, Lemma 3.1.8)).

Algorithm 3.7 (Projected distribution sampling for Archimedean copulas). Let C be an Ar-

chimedean copula with generator ϕ and z ∈ (0, 1).

(i) Sample (s1, ..., sd)
′ from S.

(ii) For j = 1, ..., d: uj := ϕ−1(sjϕ(z)).

(iii) Return (u1, ..., ud)
′.

As stated above, it is an open problem to determine this projected distribution for general

copulas. Analogous sampling methods to Algorithm 3.7 could be used then.

Finally, Proposition 3.6 also enables us to formulate a simple proof of Lemma 3.4.

Remark 3.8 (Proof of Lemma 3.4). We show that it holds for an Archimedean copula C and

all j = 1, ..., d− 1 that

Fj|1,...,j−1(u|u1, ..., uj−1, z) =

(
1− ϕ(u)

ϕ(z)−∑1≤i<j ϕ(ui)

)d−j
, u ∈ (C−1u1,...,uj−1

(z), 1).

According to Proposition 3.6, it holds that

Fj|1,...,j−1(u|u1, ..., uj−1, z) = P (Uj ≤ u|U1 = u1, ..., Uj−1 = uj−1, C(U) = z)

= P

(
Sj ≥

ϕ(u)

ϕ(z)

∣∣∣∣S1 =
ϕ(u1)

ϕ(z)
, ..., Sj−1 =

ϕ(uj−1)

ϕ(z)

)
,

where S = (S1, ..., Sd)
′ follows a uniform distribution on the unit simplex, which can be repre-

sented as a Dirichlet distribution with all parameters equal to 1. It then holds that (see Fang

et al. (1990, Theorem 1.6))

Sj
1− s1 − ...− sj−1

∣∣∣∣ (S1 = s1, ..., Sj−1 = sj−1) ∼ Beta(1, d− j), j = 1, ..., d− 1.

Further, the distribution function of the Beta(1, d− j) distribution is FBeta(s; 1, d− j) = 1− (1−
s)d−j. Therefore, we obtain

P

(
Sj ≥

ϕ(u)

ϕ(z)

∣∣∣∣S1 =
ϕ(u1)

ϕ(z)
, ..., Sj−1 =

ϕ(uj−1)

ϕ(z)

)

= 1− FBeta




ϕ(u)
ϕ(z)

1− ϕ(u1)
ϕ(z) − ....−

ϕ(uj−1)
ϕ(z)

; 1, d− j




=

(
1− ϕ(u)

ϕ(z)−∑1≤i<j ϕ(ui)

)d−j
,

as claimed in Lemma 3.4.
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3.2 Estimation

In light of Sklar’s theorem (1.1), it is common in dependence modeling to transform data

(xj1, ..., xjn)′, j = 1, ..., N, to [0, 1]n using the marginal distribution functions FXi , i = 1, ..., n,

that is, we compute uji = FXi(xji). In most cases, FXi will however be unknown so that this

transformation needs to be based on a parametric or non-parametric estimate, which introduces

uncertainty into the modeling.

When a parametric modeling of the margins is chosen, parameters of margins and depen-

dence model can either be estimated jointly or, when this is not feasible, sequentially using

the estimation method of inference functions for margins (IFM) by McLeish and Small (1988)

and Joe and Xu (1996). In the IFM method, first marginal parameters are estimated and then

dependence parameters given the estimated margins F̂Xi , i = 1, ..., n. That is, parameters of

a hierarchical Kendall copula are estimated based on ûji = F̂Xi(xji), j = 1, ..., N, i = 1, ..., n,

by maximizing the log likelihood, which conveniently decomposes into separate sums (see Theo-

rem 2.8) and which is straightforward to evaluate for Archimedean cluster copulas with Kendall

distribution function given in Equation (2.5).

The asymptotic covariance matrix is given by the inverse Godambe information matrix,

which unfortunately is typically very cumbersome to compute. To see this, note that the joint

density (2.8) depends on the parameters of a cluster copula both through the density of the

cluster copula as well as through the arguments of the nesting copula. For such situations, Joe

and Xu (1996) propose a jackknife estimate of the asymptotic covariance. In our application in

Section 4, the margins will be time-dependent. In this case, a stationary block bootstrap can be

used to calculate approximate standard errors (see Politis and Romano (1994) and Gonçalves

and White (2004)).

As an approximation to maximum likelihood estimates of the dependence parameters we

additionally propose a sequential approach and evaluate and compare the finite sample behavior

of the estimators in an extensive simulation study.

3.2.1 Sequential estimation

The hierarchical construction given in Definition 2.2 directly leads to a sequential estimation

procedure of hierarchical Kendall copulas, which avoids higher dimensional maximum likelihood

estimation.

Algorithm 3.9 (Sequential estimation of hierarchical Kendall copulas). Let (uj1, ..., ujn)′j=1,...,N

be a sample of a hierarchical Kendall copula CK as defined in Definition 2.2 (possibly after

appropriate transformation of the margins). Further, let θ0,θ1, ...,θd be the parameters of the

copulas C0, C1, ..., Cd, respectively. We then obtain corresponding sequential estimates θ̂i, i =

0, ..., d, as follows.

(i) For each i ∈ {1, ..., d} estimate θi based on (uj,mi−1+1, ..., uj,mi)
′
j=1,...,N by maximum like-

lihood.

(ii) Estimate θ0 based on the pseudo observations

v̂ji := Ki(Ci(uj,mi−1+1, ..., uj,mi ; θ̂i); θ̂i), i = 1, ..., d, j = 1, ..., N, (3.6)

by maximum likelihood.
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Clearly, this two-step estimation procedure directly generalizes to a k-step estimation ap-

proach for k-level hierarchical Kendall copulas (see Remark 2.7). Resulting estimates may be

used as starting values for a joint maximum likelihood estimation of the dependence parameters.

3.2.2 Simulation study

In order to examine the finite sample behavior of the estimation procedures discussed above,

we perform a large scale Monte Carlo study. For this, we simulate from a four-dimensional

hierarchical Kendall copula (two bivariate clusters; margins are assumed to be known) and then

estimate the parameters according to the following methods:

• Sequential estimation;

• MLE with known starting values (true parameters);

• MLE with sequentially estimated starting values.

The cluster copulas C1 and C2 are chosen as Clayton, Gumbel or Frank; the nesting copula

C0 as Gaussian, Student’s t (ten degrees of freedom), Clayton, Gumbel or Frank. Parameters

are determined according to Kendall’s τ values of 0.4 and 0.7. Sample sizes are 250, 500 and

1000 and the number of repetitions is 100. Estimation accuracy is compared based on the mean

squared error of the estimated nesting copula parameter θ0 (transformed to Kendall’s τ values)

as shown in Figure 8 for the case of Clayton and Gumbel cluster copulas. Results of the other

cases are available from the author upon request. An illustrative sample of size 1000 for the case

of Clayton and Gumbel cluster copulas (Kendall’s τ of 0.4) and Frank nesting copula (Kendall’s

τ of 0.7) is shown in Figure 3.

It turns out that results are essentially independent of the chosen cluster copulas (not shown

here). Similarly, the choice of parameters of the cluster copulas does not have a great influence on

the results, while larger nesting parameters mean more accurate results. Overall, there is hardly

any difference between the three estimation procedures. In particular, this means that sequential

estimation provides good starting values for joint estimation of the dependence parameters.

3.3 Model selection

In practical applications, the clusters (Umi−1+1, ..., Umi)
′, i ∈ {1, ..., d}, have to be identified. In

cases where they are not given from the data (e.g., industry sectors in financial data; see Section

4), common clustering techniques (see, e.g., Hastie et al. (2009)) can be used. If a multi-level

hierarchical Kendall copula is considered, hierarchical clustering methods may be particularly

helpful. In hierarchical clustering, the use of an appropriate metric to measure the closeness

between (groups of) variables is essential. Inspired by Mantegna (1999), who uses the linear

correlation coefficient, we propose to use the following metric between variables j and k,

d(j, k) =
√

1− ρ̂Sjk, (3.7)

where ρ̂Sjk is the empirical Spearman’s ρ between the variables. Thus, the stronger the depen-

dence between variables j and k, the smaller is d(j, k). Obviously, d(j, k) = 0 if variables j and k

are comonotonic, that is, if the observations are the same. Further, it holds that d(j, k) = d(k, j)

(symmetry) and d(j, k) ≤ d(j, `) + d(`, k) for another variable `.
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Figure 8: Mean squared errors (MSEs) of estimated parameters in terms of Kendall’s τ values

of the three estimation procedures for different sample sizes n and nesting copulas C0. Cluster

copula 1: Clayton. Cluster copula 2: Gumbel. Notation for the x-axis: (τ0,τ1,τ2), where L := 0.4

and H := 0.7. The range of the y-axes is chosen such that MSEs in each column are comparable.
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Hierarchical clustering further requires the choice of a linkage criterion to determine the

distance between groups of variables. Classical average linkage clustering simply uses the mean

distance between the elements of the groups. In the setting of hierarchical Kendall copulas,

it is however more natural to form the pseudo observations v̂ji (3.6) based on purely empirical

versions of the copula Ci and the Kendall distribution function Ki (see, e.g., Barbe et al. (1996))

and then compute the distance (3.7) between them, since this respects the model definition.

This measure of association between multivariate random vectors, along with others, is also

discussed by Grothe et al. (2011). It however does not ensure that the closeness between

grouped variables is monotone decreasing with increasing level of the merger. The process of

the merger is typically illustrated in a binary tree, which is called dendogram and represents the

closeness between cluster members (see Figure 11 below).

Recalling the discussion in Example 2.1, the size of clusters has to be carefully chosen because

Kendall distributions may become almost degenerate at 0 for very large clusters. In most

practical situations, this is however not an issue, since already under medium positive dependence

the convergence to the constant function at 1 is very slow (see the right panel of Figure 1).

In the next step, copulas have to be selected for the clusters. Due to the hierarchical nature

of the model, higher order levels depend on copulas in lower levels, so that a careful selection of

cluster copulas is necessary. A possible approach is a stepwise selection similar to the sequential

estimation procedure outlined in Algorithm 3.9, that is, the nesting copula C0 is selected based on

the pseudo observations (3.6). This is similar to selection approaches of hierarchical Archimedean

copulas (Okhrin et al. 2013) and of pair copula constructions (Dißmann et al. 2013). Common

criteria for the selection of copulas are information criteria such as the AIC. Since the selection

based on pseudo observations however induces uncertainty in the selection of the nesting copula,

we perform a misspecification study.

3.3.1 Copula misspecification

To analyze the effect of misspecification of the cluster and nesting copulas, we resume the

setting of Section 3.2.2 and simulate samples of size 1000 from four-dimensional hierarchical

Kendall copulas with cluster copulas C1 and C2 chosen as Clayton, Gumbel or Frank, and the

nesting copula C0 as Gaussian, Student’s t (ten degrees of freedom), Clayton, Gumbel or Frank.

Parameters are again determined according to Kendall’s τ values of 0.4 and 0.7 and the number

of repetitions is 100.

In addition, we simulate from a range of alternative multivariate copulas to investigate how

well these copulas can be approximated by a hierarchical Kendall copula. We consider four-

dimensional regular vine pair copula constructions (see Dißmann et al. (2013) and the R package

VineCopula by Schepsmeier et al. (2013)) with unconditional pair copulas chosen as C1,2 = C1,

C2,3 = C0 and C3,4 = C2 and conditional pair copulas chosen as C1,3|2 = C2,4|3 = C1,4|2,3 = C0,

whose parameters are determined according to a decreasing value of Kendall’s τ compared to the

unconditional copula C2,3
2. Such a pair copula construction mimics, to some extent, a hierarchi-

cal dependence model, but without having explicit between-cluster dependence. Furthermore,

we simulate from hierarchical Archimedean copulas with Clayton, Gumbel and Frank cluster

and nesting copulas. This is however only possible if τ0 ≤ min{τ1, τ2}, since the between-cluster

dependence cannot be stronger than the within-cluster dependence. Finally, we also consider

2If τj,k|D denotes the Kendall’s τ corresponding to the pair copula Cj,k|D and τ0 is the Kendall’s τ of C2,3 = C0,

then we choose τ1,3|2 = τ2,4|3 = 2τ0/3 and τ1,4|2,3 = τ0/3
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four-dimensional Gaussian and Student’s t copulas (ten degrees of freedom) with correlation ma-

trices clustered according to the respective Kendall’s τ values for within- and between-cluster

dependence3.

The effect of misspecification is then examined in terms of the Kullback-Leibler divergence

between the true (simulated) model and the alternative models fitted by maximum likelihood.

The results are illustrated in Figures 9 and 10. First of all, they show that the hierarchical

Kendall copulas provide a very good fit if the cluster copulas are identified correctly. This

means that the effect of the uncertainty with respect to the selection of the nesting copula based

on pseudo observations is not severe. These results also hold when the true model is a hierarchi-

cal Archimedean copula, which apparently can be well approximated by a hierarchical Kendall

copula (see Figure 5). Clearly, differences between the models become more distinct with in-

creasing dependence in terms of Kendall’s τ . In particular, the Clayton copula is rather different

from the other copulas (see the shape of the scatter plots in Figure 3) and therefore harder to

approximate by a misspecified model. As a result, the elliptical copulas are also best approx-

imated by hierarchical Kendall copulas with Gumbel and Frank components. In particular,

hierarchical Kendall copulas with elliptical nesting copula and Gumbel or Frank cluster copulas

are very close in terms of the Kullback-Leibler divergence even if clusters are heterogeneous.

The non-hierarchical pair copula constructions are naturally more difficult to approximate by

hierarchical Kendall copulas. Especially when the cluster copulas C1 and C2 are selected in

the same way as the pair copulas C1,2 and C3,4, respectively, hierarchical Kendall copulas may

however be quite close in terms of the Kullback-Leibler divergence. Conversely, a pair copula

construction may also quite well approximate a hierarchical Kendall copula especially when the

dependence is weak and if the vine copula is well chosen (note that only the results of the best

fitting among the 15 considered vine copulas are shown in Figures 9 and 10). The selection of

vine copulas in higher dimensions is however a major problem (see Czado et al. (2013)) and the

models typically do not stay as parsimonious and as easily interpretable as hierarchical Kendall

copulas. Finally, the results show that also elliptical and hierarchical Archimedean copulas can

sometimes provide good approximations to hierarchical Kendall copulas in this four-dimensional

setting. It is, however, to be expected that the differences among the models become larger in

higher dimensions.

4 Application

Finance is a major field, where copulas are used for dependence modeling (see, e.g., Cherubini

et al. (2004)). Often financial data exhibits some kind of clustering structure such as industry

sectors and national stock markets. For such data, hierarchical Kendall copulas are very suitable.

To investigate the usefulness of this newly proposed class of dependence models and to illustrate

the presented inference techniques, the most important German stock market index DAX is

analyzed.

The DAX is composed of 30 major German stocks. For these we identified ten indus-

try sectors: financials (Allianz, Commerzbank, Deutsche Bank, Deutsche Börse, Munich Re),

chemicals (BASF, Bayer, K+S, Linde), healthcare (Fresenius, Fresenius Medical Care, Merck),

3In order to ensure positive definiteness, Kendall’s τ values have to be adapted when between-cluster de-

pendence is 0.7. Then, within-cluster dependence is set to either 0.6 for both clusters or to 0.7 and 0.5 for the

different clusters.
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Figure 9: Illustration of mean Kullback-Leibler divergences (part 1): light colors indicate a

small divergence, dark colors a large divergence. Notation for x- and y-axes: (C0,C1,C2) with

Gaussian (N), Student’s t (T), Clayton (C), Gumbel (G), and Frank (F) copulas; vine copulas

are indicated by ‘V’, hierarchical Archimedean copulas by ‘HAC’. Columns correspond to the

true (simulated) models, rows to the fitted models (only the best fitting among the 15 considered

vine copulas is shown). Notation for panel titles: (τ0,τ1,τ2), where L := 0.4 and H := 0.7.
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Figure 10: Illustration of mean Kullback-Leibler divergences (part 2): light colors indicate a

small divergence, dark colors a large divergence. Notation for x- and y-axes: (C0,C1,C2) with

Gaussian (N), Student’s t (T), Clayton (C), Gumbel (G), and Frank (F) copulas; vine copulas

are indicated by ‘V’, hierarchical Archimedean copulas by ‘HAC’. Columns correspond to the

true (simulated) models, rows to the fitted models (only the best fitting among the 15 considered

vine copulas is shown). Notation for panel titles: (τ0,τ1,τ2), where L := 0.4 and H := 0.7.
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Figure 11: Dendograms of the DAX constituents according to average linkage (left panel) and

aggregation using the empirical Kendall distribution function of clusters (right panel).

Sectors Fin. Chem. Healthc. Auto. Ind. Retail IT Util. Transp.

Size 5 4 3 3 3 4 3 2 2

Mean pairw. Kendall’s τ 0.41 0.33 0.21 0.39 0.38 0.26 0.28 0.56 0.29

Estimated deg. of freedom 8.80 10.70 22.96 12.65 8.13 10.07 8.74 4.63 7.22

Table 1: Sector size, mean pairwise empirical Kendall’s τ and estimated degrees of freedom of

a Student’s t copula for each cluster.

automobile (BMW, Daimler, Volkswagen), industrials (MAN, Siemens, ThyssenKrupp), retail

and consumer goods (Adidas, Beiersdorf, Henkel, Metro), IT and communications (Deutsche

Telekom, Infineon, SAP), utilities (E.ON, RWE), transportation and logistics (Deutsche Post,

Lufthansa), and building materials (HeidelbergCement).

For all 30 stocks, more than six years of log returns (January 2005 to July 2011) are con-

sidered, where the time series are split into a training set of 1158 observations and a testing

set of 500 observations for out-of-sample validation of our models. As it is common for copula

modeling in finance, we preliminarily fit time series models to the marginal time series and

then work with standardized residuals which are transformed to marginally uniform data by the

probability integral transform (inference functions for margins method; see Section 3.2). In par-

ticular, marginal GARCH(1,1)-models with Student’s t innovations are chosen, which have been

validated with appropriate tests. Using this data, we illustrate the cluster selection procedures

described in Section 3.3 and perform hierarchical clustering with the metric (3.7) and average

linkage as well as aggregation using the empirical Kendall distribution function of clusters. The

resulting dendograms are shown in Figure 11. For instance, the utility and the healthcare sector

can easily be identified. This is not the case for the chemical and the IT companies.

Table 1 shows the mean pairwise empirical Kendall’s τ and the estimated degrees of freedom

of a multivariate Student’s t copula for each cluster. Evidently, within-sector dependence is

variable, since some clusters are more homogeneous than others. Also strong tail dependence,

as indicated by small degrees of freedom, cannot be found in all clusters.

We then fitted different hierarchical Kendall copulas to the training data set. Results (log

likelihood, AIC, BIC) are reported in Table 2. As cluster copulas, we considered three different

Archimedean copulas to account for different dependence structures as typically observed in

financial data: Clayton with lower tail dependence, Gumbel with upper tail dependence and
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Model # Par. Seq. Est. Log Lik. Joint MLE Log Lik. AIC BIC

(Clayton, Student’s t) 55 6656.50 6677.73 -13245.46 -12967.47

(Gumbel, Student’s t) 55 6989.32 6992.29 -13874.57 -13596.58

(Frank, Student’s t) 55 7185.70 7190.29 -14270.58 -13992.58

(Clayton, Clayton) 10 5452.34 5471.09 -10922.17 -10871.63

(Gumbel, Gumbel) 10 5860.74 5862.93 -11705.85 -11655.31

(Frank, Frank) 10 6003.60 6005.56 -11991.12 -11940.58

Multivar. Gaussian 435 - 8487.71 -16105.41 -13906.73

Multivar. Student’s t 436 - 8906.14 -16940.28 -14736.54

Regular vine 509 - 9512.29 -18006.58 -15433.87

Table 2: Estimation results based on the training set. Notation of models: (cluster copulas,

nesting copula). AIC and BIC values are based on the joint MLE.

Frank with no tail dependence. For the nesting copulas, we also investigated Gaussian and

Student’s t copulas, where the fits of the Gaussian copula to the aggregated pseudo observations

of the different sectors were always inferior to that of the Student’s t copula and are therefore

not displayed here. The different specified models are shown in the first column of Table 2. The

finite sample behavior of the estimates is investigated in Section 3.2.2.

For comparison, we also fitted classical multivariate Gaussian and Student’s t copulas as

well as a regular vine pair copula construction using the selection and estimation algorithm by

Dißmann et al. (2013), which is implemented in the R package VineCopula by Schepsmeier

et al. (2013). Pair copulas are selected from the following list: Gaussian, Student’s t, Clayton,

Gumbel and Frank as well as rotations by 90, 180 and 270 degrees of the tail-asymmetric Clayton

and Gumbel copulas. A 30-dimensional hierarchical Archimedean copula could however not be

fitted due to the dependence restrictions of hierarchical Archimedean copulas (see Section 2.3):

while there is moderate dependence within some clusters (see Table 1), there still is considerable

and heterogeneous dependence among clusters (pairwise Kendall’s τ values of aggregated data

are ranging between 0.15 and 0.51), which cannot be modeled using a hierarchical Archimedean

copula.

The hierarchical Kendall copulas therefore benefit from not having this restriction on within-

and between-cluster dependence. Moreover, ten-dimensional Student’s t nesting copulas appear

more reasonable than Archimedean nesting copulas (with only one parameter) due to the varying

pairwise between-cluster dependence. With respect to cluster copulas, the tail-symmetric Frank

copula is, according to the AIC, superior to tail-asymmetric ones (Clayton, Gumbel). For the two

hierarchical Kendall copulas with Frank cluster copulas, parameter estimates and their standard

errors according to the stationary bootstrap by Politis and Romano (1994) with an average block

length of 20 observations can be found in Table 3, showing that there is significant within- and

between-sector dependence. In particular, the within-sector dependence is quite variable and

therefore can also not be appropriately fitted by an exchangeable 30-dimensional Archimedean

copula. For instance, the maximum likelihood parameter estimate of a 30-dimensional Frank

copula is 2.096, of which most cluster copula parameters are significantly different.

In comparison to standard multivariate Gaussian and Student’s t copulas, hierarchical Kendall

copulas perform quite well, in particular when taking into account the enormous number of pa-

rameters of these models. The number of parameters of elliptical copulas could be reduced

significantly by using clustered correlation matrices. Nevertheless, these have to fitted carefully

27



(Frank, Student’s t) (Frank, Frank)

Estimate (Kendall’s τ) Std. Error Estimate (Kendall’s τ) Std. Error

Financials 3.816 (0.374) 0.210 3.946 (0.384) 0.210

Chemicals 2.915 (0.300) 0.197 3.047 (0.311) 0.199

Healthcare 1.810 (0.195) 0.191 2.003 (0.214) 0.182

Automobile 3.775 (0.371) 0.237 3.897 (0.380) 0.238

Industrials 3.634 (0.360) 0.303 3.880 (0.379) 0.304

Retail 2.189 (0.232) 0.168 2.394 (0.252) 0.167

IT and comm. 2.401 (0.253) 0.218 2.664 (0.277) 0.215

Utilities 6.829 (0.555) 0.544 6.912 (0.558) 0.543

Transportation 2.669 (0.278) 0.325 2.981 (0.306) 0.329

Between-sector 0.248–0.704 (0.160–0.497) 0.020–0.043 2.979 (0.305) 0.165

Degrees of freedom 19.597 1.559 - -

Table 3: Parameter estimates and their estimated standard errors of the hierarchical Kendall

copulas with Frank cluster copulas (based on the training set). Kendall’s τ values corresponding

to the parameter estimates are given in brackets. For the entries of the Student’s t correlation

matrix ranges are reported.

in order to satisfy positive definiteness constraints. Overall the regular vine copula provides

the best fit, since it constitutes the most flexible model. It is however even less parsimonious

than the elliptical copulas and is not straightforward to interpret, especially not in terms of

sectoral dependence. Given that the highly parameterized multivariate elliptical copulas and

regular vine pair copula constructions can be regarded as the current state-of-the-art models

for financial return data, we focus on these models and investigate if the more parsimonious

hierarchical Kendall copulas are competitive with them. The good in-sample results obtained

so far are in line with the misspecification study in Section 3.3.1, where hierarchical Kendall

copulas with elliptical nesting and Frank or Gumbel cluster copulas are shown to be reasonably

close to multivariate elliptical models and, to some extent, to pair copula constructions.

4.1 Value-at-Risk forecasting

In finance, interest is however not so much in a good in-sample fit but rather in out-of-sample

validation. A typical exercise for this is Value-at-Risk (VaR) forecasting. If the distribution of

returns is continuous, the (1−α)-VaR is the α-quantile of the distribution. For risk management,

this value needs to be predicted on a daily basis, which we do for the testing set of 500 days

using moving windows of length 1158.

Forecasts are typically evaluated in terms of exceedances, that is, the event that the pre-

dicted VaR is exceeded by the observed return. For 500 forecasts, on average 500×α exceedances

are expected. Whether the number of exceedances (“unconditional coverage”) and their occur-

rences (should be independent; both properties: “conditional coverage”) are appropriate can be

evaluated using a range of tests, so-called backtests, that have been proposed in the literature:

the proportion of failures test of unconditional coverage by Kupiec (1995) (UC), the Markov

test of independence by Christoffersen (1998) (IND1), the joint test of conditional coverage

by Christoffersen (1998) (CC1), the mixed Kupiec test of conditional coverage by Haas (2001)

(CC2), the Weibull test of independence by Christoffersen and Pelletier (2004) (IND2), and the

duration-based GMM test of conditional coverage by Candelon et al. (2011) (CC3 and CC4
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Model Level # Exceed. UC IND1 IND2 CC1 CC2 CC3 CC4

Independence 99% 103 0.00 0.04 0.00 0.00 0.00 0.00 0.00

copula 95% 135 0.00 0.15 0.03 0.00 0.00 0.00 0.00

90% 157 0.00 0.17 0.03 0.00 0.00 0.00 0.00

Gaussian 99% 5 1.00 0.75 0.79 0.95 0.35 0.93 1.00

copula 95% 26 0.84 0.09 0.74 0.23 0.35 0.98 1.00

90% 52 0.77 0.46 0.87 0.73 0.03 0.29 0.73

Student’s t 99% 4 0.64 0.80 0.21 0.87 0.93 0.75 0.95

copula 95% 24 0.84 0.12 0.73 0.29 0.39 0.89 1.00

90% 53 0.66 0.53 0.85 0.74 0.05 0.31 0.73

Regular vine 99% 5 1.00 0.75 0.81 0.95 0.35 0.93 1.00

pair copula 95% 27 0.69 0.08 0.70 0.20 0.35 0.95 1.00

construction 90% 53 0.66 0.53 0.87 0.74 0.04 0.24 0.66

Hierarchical 99% 2 0.13 0.90 0.46 0.31 0.35 0.43 0.82

Kendall copula 95% 31 0.23 0.04 0.76 0.06 0.21 0.55 0.92

(Frank, Student’s t) 90% 57 0.31 0.52 0.81 0.48 0.03 0.22 0.64

Table 4: P -values of VaR backtests for hypotheses of independence and (un)conditional coverage.

We expect 5/25/50 exceedances at the 99%/95%/90%-level, respectively.

with orders 2 and 5, respectively).

Here, the Value-at-Risk of an equally weighted portfolio of the 30 DAX stocks is forecasted.

Backtesting results of the following five different models can be found in Table 4:

• Independence copula (for comparison);

• Gaussian and Student’s t copulas;

• Regular vine pair copula construction;

• Hierarchical Kendall copula with Frank cluster copulas and with Student’s t nesting copula

(best fit among the considered hierarchical Kendall copulas).

In summary, none of the hypotheses of independence and (un)conditional coverage can consis-

tently be rejected for any of the VaR levels and for any of the models—except for the multivariate

independence copula, as expected. The weak lack of conditional coverage at the 90% level, as

detected by the mixed Kupiec test of Haas (2001), is not supported by the other tests.

This shows that hierarchical Kendall copulas are as good as the common Gaussian and

Student’s t copulas and also as the more flexible pair copula constructions when it comes to out-

of-sample validation. In particular, the hierarchical Kendall copula with Frank cluster copulas,

which we consider here, is very parsimonious and allows for closed-form calculations and very

efficient simulations due to its Archimedean clusters. In contrast to elliptical and vine copulas,

it is also directly interpretable in terms of within- and between-sector dependence.

5 Discussion

In this paper we introduce and discuss the new class of hierarchical Kendall copulas. By grouping

variables at different hierarchical levels, it provides an appealing construction principle for high-

dimensional dependence models. It is shown that the important special cases of independence
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as well as of comonotonicity belong to this model class. For Archimedean cluster copulas,

a stochastic representation is given and differences to hierarchical Archimedean copulas are

investigated. Most importantly, the density of hierarchical Kendall copulas is derived.

Thereafter, statistical inference techniques for hierarchical Kendall copulas are developed.

In particular, simulation algorithms are provided, with focus on Archimedean clusters, for which

convenient closed-form expressions are derived. The availability of the density of hierarchical

Kendall copulas renders feasible estimation using maximum likelihood techniques. Finally, we

show that a model with Archimedean cluster copulas and Student’s t nesting copula performs

very well in a substantial financial application.

Nevertheless, it is a open research question to derive sampling and estimation methods for

the case that copulas and Kendall distribution functions are not available in closed form. In

particular, the popular class of elliptical copulas is of interest here.
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