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Abstract

Robots need to be able to perceive their environment when they execute object manipula-
tion tasks or when they interact with humans. To this end, robots are equipped with sensors
to acquire visual and geometric information. Geometric representations of the environment
are important for tasks where the robot has to measure the distances to the objects in the
surroundings, e.g. during navigation or an object grasping process. Image-based represen-
tations acquired from camera images, in turn, provide information for object recognition and

a reference model of the environment for the detection of novel objects.

In the ®rst part of this thesis a novel probabilistic appearance representation is investigated.
This environment model is inspired by image-based scene representations and thus rep-
resents the colors of the robot's 3D environment at a densely spaced series of viewpoints.
Instead of storing the raw color value captured by a camera, however, a Gaussian model is
used for the luminance and chrominance at each pixel of a view. Using depth information
and camera pose data stored at each viewpoint, the probabilistic priors can be interpolated
at intermediate viewpoints, as virtual images are synthesized from image-based representa-
tions. The Gaussian distributions model the uncertainty of the appearance which can arise
from erroneous pose or depth estimates or from moving objects in the scene. The expectation
and uncertainty of the appearance of the scene are used for assessing the level okurpriseof
novel visual stimuli. As the performance analysis shows, the surprise measure is a detector
for novelty which is superior to measures based on image differencing.

As an application of surprise detection, a method for the acquisition of feature-based object
representations is presented. A region in a new camera image where a new object is exhib-
ited in a familiar environment and where high surprise values are measured is analyzed for
local image features. A selected subset of these features is added to a database such that
object representations are generated which can later be used for object recognition during
the robot's tasks.

In the second part of the thesis an illumination-invariant image-based environment repre-
sentation is investigated. This environment representation is computed from multiple image
sequences acquired under different illumination conditions. Together with statistical models
for the variation of the illumination in the environment it is used for detecting the addition

or removal of objects in the environment while illumination changes are suppressed. This
enables the robot to distinguish between novelty from new or disappeared objects, which is
relevant for its tasks, and irrelevant novelty, which can result from varying illumination. In
this context, a special technique allows for the identi®cation and suppression of speculari-
ties, which makes the approach versatile for real-world environments with arbitrary surface
materials.
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Kurzfassung

Roboter messen in der Lage sein, ihre Umgebung wahrzunehmen, wenn sie in ihren Auf-
gaben mit Objekten oder Menschen interagieren. Zu diesem Zweck werden Roboter mit Sen-
soren ausgestattet, um visuelle und geometrische Information aufzunehmen. Geometrische
Umgebungsbeschreibungen sind fer Aufgaben wichtig, in denen der Roboter die Entfernun-
gen der Objekte um ihn herum messen muss, z.B. w€hrend der Navigation oder w€hrend
eines Greifvorgangs. Bildbasierte Umgebungsbeschreibungen, die aus Kamerabildern aufge-
nommen werden, liefern Informationen zur Objekterkennung und ein Referenzmodell der
Umgebung, um neue Objekte zu detektieren.

Im ersten Teil dieser Dissertation wird eine neuartige Umgebungsbeschreibung untersucht,
die das Aussehen der Umgebung wahrscheinlichkeitstheoretisch beschreibt. Diese Umge-
bungsbeschreibung lehnt sich an bildbasierte Szenenbeschreibungen an und beschreibt somit
die Farben der 3D-Umgebung des Roboters an einer dichten Reihe von Blickpunkten. An-
statt die Farbwerte zu speichern, die von einer Kamera aufgenommen werden, wird jedoch
an jedem Pixel einer Ansicht ein Gaud-Modell fer die Luminanz und Chrominanz verwen-
det. Unter Verwendung von Tiefeninformation und der Lagedaten der Kamera, die an jedem
Blickpunkt gespeichert sind, kennen die A-Priori-Verteilungen fer Zwischenansichten inter-
poliert werden, in €hnlicher Weise, wie virtuelle Bilder aus bildbasierten Szenenbeschrei-
bungen berechnet werden. Die Gaud-Verteilungen modellieren die Unsicherheit <ber das
Erscheinungsbild der Umgebung, welche aus fehlerhaften Lage- oder Geometriesch€tzun-
gen, oder durch sich bewegende Objekte entstehen kann. Die Erwartung und die Un-
sicherheit *ber das Aussehen der Szene werden fer die Bewertung des ,berraschungsge-
halts eines neuen visuellen Reizes verwendet. Wie die Performanz-Analyse zeigt, ist das
vorgeschlagene Mad fer sberraschunganderen Malen, die auf der Berechnung von Bilddif-
ferenzen beruhen, *berlegen.

Als Anwendung fer die ,berraschungsdetektion wird eine Methode vorgestellt, mit der
merkmalsbasierte Objektbeschreibungen erstellt werden kennen. Ein Bereich in einem neuen
Kamerabild, der ein neues Objekt in einer sonst bekannten Umgebung zeigt und in dem
hohe ,berraschungswerte gemessen werden, wird nach lokalen Bildmerkmalen untersucht.
Eine Auswahl an Merkmalen wird in einer Datenbank abgelegt, so dass Objektbeschreibun-
gen erzeugt werden, mit denen der Roboter bei seinen Aufgaben Objekte wiedererkennen
kann.

Im zweiten Teil dieser Dissertation wird eine beleuchtungsinvariante bildbasierte Umge-
bungsbeschreibung untersucht. Diese Umgebungsbeschreibung wird aus mehreren Bilder-
sequenzen errechnet, die unter ver€nderlichen Beleuchtungsbedingungen aufgenommen
werden. Zusammen mit statistischen Modellen fer die Beleuchtungs€nderungen in der
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Umgebung wird sie verwendet, um das Hinzufegen oder Entfernen von Objekten fest-
zustellen, wobei Beleuchtungsschwankungen unterdreckt werden. Dies erm€glicht es dem
Roboter zu unterscheiden zwischen neuartigen Ereignissen, wie neuen oder verschwun-
denen Objekten, die relevant fer seine Aufgaben sind, oder nicht-relevanten neuartigen
Ereignissen wie Beleuchtungsenderungen. In diesem Zusammenhang erlaubt es eine spe-
zielle Methode, Spiegelungen auf Ober schen zu identi®zieren und zu unterdrecken. Da-
raus entsteht ein Ansatz, der in der realen Welt mit Ober echen, die aus beliebigen Materi-
alien bestehen, vielseitig eingesetzt werden kann.
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1 Introduction

Robots are becoming more and more ubiquitous in people's everyday lives. While, over
the past decades, robots have been predominantly used in factories to automate production
processes, to increase ef®ciency or to execute tasks which, on the long run, can harm the
workers' health, nowadays, robots found their way into private households. Small robots,
which can be employed for simple tasks like vacuum cleaning, are available as consumer
products and are getting more and more popular.

The vision of many researchers is that robots take over more and more complex tasks in
a household in the future, which are not restricted to “oor cleaning but can also involve
tasks like setting the table, cleaning the dishes etc. Robots could then help elderly people
who need permanent care and cannot do these things on their own. These tasks, however,
require cognitive capabilities which today's robots do not possess yet. Currently, robots
primarily execute their actions according to a rigid program and hardly adapt to their en-
vironment. The execution of tasks in a household, which also includes the interaction with
humans, however, requires that robots be able to autonomously create and maintain knowl-
edge representations of their environment, which contain information about task-relevant
objects and their interaction partners at multiple abstraction levels. Besides, robots have to
be able to make intelligent action plans to execute their tasks in an ef®cient way. In this
context, it is also particularly important that the action plans are adaptive such that a robot
can react to unforeseen events, e.g. that a cleaning action is triggered when a plate breaks.
Besides, intelligent and exible planning can contribute to customizing industrial mass pro-
duction and to further improving the quality of products. Hence, cognition for technical
systems is a hot topic in research which requires collaboration between different disciplines
like electrical engineering, computer sciences, psychology and neurosciences.

Understanding the environment and learning representations of it relies on the perception
of stimuli. To this end, robots can be equipped with sensors to acquire visual, auditory and
tactile data, just like humans do with their eyes, ears and hands. Although multimodal data
acquisition is important for an integral perception of the environment, this thesis focuses
on environment representations obtained from visual data. Images, which are formed on
the retinas of the human eyes or on the imaging sensors of digital cameras, provide plenty
of information which is useful to locate and recognize subjects and objects, to interpret the
emotional state and intentions of humans or to extract geometric information about the en-
vironment. Especially the recognition of landmarks and the inference of geometric data is
essential for a series of algorithms in the ®eld of robotics which deal with Simultaneous Lo-
calization and Mapping (SLAM). The self-localization in a known environment enables a
robot to plan trajectories to get from one point in the environment to another in a fast and
safe way. The computation of a geometric environment map is particularly important for
obstacle avoidance during navigation. Besides, the acquisition of 3D information is indis-
pensable for grasping an object. The 3D shape of an object enables a robot to determine the
object class and optimal grasping parameters like the grasping point and the approaching
direction.



1 Introduction

To acquire visual information, robots are usually equipped with passive imaging devices
like cameras and/or active imaging devices for range ®nding which emit light (laser) and
leverage the time-of-ight of a light ray re ected by the scene to measure distances. The
latter outperform passive stereo vision in 3D reconstruction if the environment exhibits sur-
faces with little texture or under dark lighting conditions. Nevertheless, active range ®nd-
ing usually fails for transparent surfaces since the emitted light passes through them and is
hardly re ected. A similar issue arises with shiny metallic surfaces which usually do not
re ect the emitted light in the direction of the imaging sensor. Passive stereo vision, in gen-
eral, facilitates the reconstruction of the edges of transparent objects, since there acceptable
pixel correspondences can be found between the camera images. However, surface regions
where the light rays pass through the object without being refracted by the glass also pro-
vide poor results in depth estimation. The estimated depth corresponds then, as in case of
active imaging, to the depth of the background behind the transparent object.

Geometric representations are not the only way of describing objects. A lot of informa-
tion for recognizing objects is contained in the gradient structure and the colors in a cam-
era image. Furthermore, many models for human visual attention are primarily based on
appearance cues. Hence, appearance-based environment models can support the robot in
object recognition and visual search tasks which are driven by attention. Having a realis-
tic internal representation of the environment's appearance, a robot can rapidly ®nd novel
interesting regions in the currently captured camera image and concentrate its attention on
them to extract visual features on a high level of detail. In the ®eld of computer graphics, the
appearance of a virtual 3D environment is traditionally visualized by mapping textures on
the faces of a geometric mesh of the environment. Textures are two-dimensional color arrays
which can be obtained by real captured camera images. However, for modeling the appear-
ance of an environment with transparent and shiny surfaces as well as complex illumination
requires sophisticated algorithms like ray tracing which are costly.

To this end, image-based rendering methods have been developed as an alternative way of
visualizing the appearance of virtual 3D environments. Image-based representations encom-
pass a large number of densely acquired camera views (reference viewsand can contain ad-
ditional information as view-dependent geometric information and camera pose data. View
interpolation methods aim at the synthesis of photorealistic virtual images from real images
stored in the representation. The transfer of pixel colors from the real images to the virtual
image, using a geometric approximation of the scene, is independent of the complexity of
the scene, of the illumination and of the surface materials. Thus, no knowledge about the
refraction coef®cient of transparent surfaces or other material properties is required for fast
and high-qualitative rendering.

Apart from its applications in the area of computer graphics, image-based rendering is
a promising technique for the realistic and fast prediction of the appearance of a robot's
environment to support processes like surprise detection and attentional selection of image
regions. Probabilistic extensions of image-based representation enable a robot to assess the
novelty of perceived visual stimuli and to detect unexpected and surprising events in the
environment. Surprise detection in cognitive systems can trigger a replanning of actions in
case of unforeseen situations. Furthermore, surprise can contribute to learning and to the
update and the extension of a robot's knowledge representation.
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Figure 1.1:An overview of the two types of environment representations proposed in this thesis and
their application to novelty detection.

1.1 Overview of the dissertation

This thesis describes two types of environment representations which coexist as components
of an image-based internal model of the environment of a cognitive mobile robot. Techniques
are presented for the detection of novel events from image data, while these two representa-
tions are used as prior knowledge of the robot's environment, as depicted in Figure 1.1.

The ®rst type of environment representation presented in this thesis is a probabilistic ap-
pearance representation. It stores prior distributions describing the expectation and uncer-
tainty of the appearance of the environment in pixel arrays at densely spaced viewpoints. In
addition, a depth map and the camera pose is stored at each viewpoint. This data serves for
the interpolation of the priors at intermediate viewpoints. The uncertainty of the appearance
can arise from erroneous pose or depth estimates or from moving objects in the scene. The
priors are used to assess the surprise level of each pixel in a new captured image. The rep-
resentation is continuously updated from observations which the robot makes along its way
through the environment. The surprise maps indicate all kind of novelty, including novelty
from changing illumination.

The second type of environment representation is acquired over a longer period of time
from training image sequences captured under varying lighting conditions. It consists of
illumination-invariant images, which are recovered at densely spaced viewpoints from the
training images. As the probabilistic appearance representation it stores depth maps and the
camera poses at each viewpoint, so that illumination-invariant images can be interpolated at
intermediate positions. Statistical models which describe the effects of lighting on the varia-
tion of intensity and color saturation are trained and used to compute a hovelty measure for
all pixels in a new captured camera image. Thus, illumination changes usually lead to low
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values in the resulting novelty map.

The surprise and novelty maps can be combined to distinguish relevant novelty from ir-
relevant novelty. Examples for relevant novelty are in this thesis the addition or removal of
new objects, which can trigger tidying-up-tasks or object-search-tasks in the robot's action
planner. In general, it is important to detect lighting effects in the surprise maps. A sudden
moving shadow in the image, e.g., can imply that an object or a human might enter the ®eld
of view of the robot's camera and can cross its way. Hence, the detection of the shadow can
prepare a replanning of the robot's trajectory during navigation at an early stage. However,
for object manipulation tasks, novelty from varying lighting conditions, is considered in this
thesis as irrelevant.

Furthermore, this thesis presents a technique which, driven by surprise, facilitates the ac-
quisition of object representations from local image features which can be used afterwards
for object recognition.

The remainder of this thesis is structured as follows. In the next chapter some mathemati-
cal background is given on the inference of probability models. Besides, related work from
different research areas like image-based rendering, illumination modeling, novelty and sur-
prise detection is revisited. Chapter 3 describes a system which has been developed within
this thesis for the interpolation of virtual images from an image-based representation which
contains explicit view-dependent geometry information. The proposed probabilistic appear-
ance representation is presented in Chapter 4 together with a method for surprise detection.
In Chapter 5, the application of surprise detection to the autonomous acquisition of object
representations is described. Chapter 6 treats illumination-invariant image-based environ-
ment representations and a technique for the detection of novel objects from images which
is robust against varying illumination. Finally, chapter 7 concludes this thesis.

1.2 Contributions of the dissertation

In the following the main contributions of this thesis are stated.

A probabilistic appearance representation for mobile robots

The probabilistic appearance representation presented in this thesis is inspired by image-
based scene representations but extends them in a way that the pixels of the reference views
do not store raw intensity and color values but parameters of statistical models for intensity
and color. This, on the one hand, allows a mobile robot to make a photorealistic prediction
of the appearance of a 3D environment from images captured in the past. On the other hand,
the robot can evaluate the uncertainty of the appearance of the environment in the internal
representation and thus the consistency of the past observations. Modeling the uncertainty
of the appearance of the environment is crucial for a better assessment of the novelty of
new visual stimuli. Furthermore, image-based representations are appropriate for modeling
static scenes. In this thesis, in turn, update rules are presented, which adapt the probabilistic
appearance representation to dynamic environments.
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Bayesian surprise detection

The method for surprise detection which is presented in this thesis is closely related to the
probabilistic appearance representation of the 3D world. This allows for the computation
of per-pixel surprise maps. Existing approaches for surprise detection are based on feature-
based environment representations. Hence, objects which do not exhibit the type of features
which the detector responds to cannot be detected. Furthermore, many models for visual
attention and surprise presented in literature do not take into account the geometric proper-
ties of the environment and the resulting correspondences between visual stimuli acquired
at different viewpoints.

Illumination-invariant image-based environment representations

This thesis presents an approach for the acquisition of illumination-invariant image-based
scene representations, which represent the appearance of a 3D environment free of illumi-
nation effects. Existing approaches only consider the recovery of an illumination-invariant
image at a static camera viewpoint.

Novel statistical and shape-based methods for modeling illumination effects

The detection of novel environment changes from images, which is based on statistical illu-
mination models and thus is robust against illumination changes, is proposed for the ®rst
time in this thesis. Furthermore, the shape-based modeling of specularities and strong shad-
ows allows for the identi®cation of these illumination effects in new images and their sup-
pression during novelty detection. This method has not been presented before.

Acquisition of object representations

Another main contribution is a method for the acquisition of object representations for ob-
ject recognition. Regions of high values in a surprise map are used to isolate a hew object
in the environment and to selectively extract and learn features from the corresponding im-
age region. Since this whole process is driven by surprise, the learning phase is triggered
automatically when a new object is present in the environment. In contrast to existing ap-
proaches, the robot's manipulator does not have to interact with the object and no depth
information is required for object segmentation.

Parts of this dissertation have been published in [MMBSO09], [MBS * 09], [MS10], [MBM* 10],
[MS11] and [MES11].
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This chapter presents mathematical background on the inference of the parameters of prob-
ability distributions. These concepts are applied in the approaches for surprise detection
and illumination-invariant novelty detection described in Chapters 4 and 6 of this thesis.
Besides, a number of approaches from the ®elds image-based rendering, illumination mod-
eling, change, novelty and surprise detection as well as autonomous acquisition of object
representations are revisited.

2.1 Statistical learning

Robots process sensor data in order to get information about their surroundings. In real-
world environments, sensor measurements usually do not re ect the true state of the envi-
ronment but are af icted by noise. Furthermore, the environment of a robot changes over
time, e.g. due to new objects which appear in the scene or disappear, or due to illumination,
which depends on the time of day. Noise and the dynamics of the world make it dif®cult to
make reliable predictions about how the robot will perceive the environment in the future.
The concepts of probability theory provide a way to represent and quantify the uncertainty
which is inherent in the acquired sensor data. The variation of the appearance of the en-
vironment (e.g. the luminance) can be described by a continuous random variable x. A
probability distribution p(x) represents the probability density over a given value range of
X. The probability that x lies in an interval [a; b is
Zy
p(x a*x b= p(x)dx (2.1)
a

In probability theory, non-parametric approaches have been presented to model probabil-
ity distributions [CH67, DHSO01]. Histogram methods, e.g., divide the value range of the
random variable x into equally spaced distinct bins and count the number of samples which
fall into each bin. The advantage of non-parametric density estimation is that no particular
assumption is made with respect to the form of the probability distribution. Parametric ap-
proaches, in contrast, use models for probability distributions which depend on a small set
of parameters and have a special functional form. Although these methods often provide
an approximation of the true probability distribution of the random variable, the probabil-
ity densities over the value range of the random variable are determined by specifying the
parameter values. Storing the parameter values usually requires less memory than storing
the density estimates in non-parametric approaches, which allows for a much more compact
representation of the probability distribution.

In order to assess the probability of future observations, the robot has to learn its probabil-
ity models of the world from its percept history. In case of parametric probability models
this means that an optimal set of parameters has to be determined which explains the dis-
tribution of the observed samples best. In this section, Maximum Likelihood estimation and
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Bayesian inference, two popular methods for learning the parameters of a given probability
distribution, will be revisited.

2.1.1 Maximum Likelihood estimation

Maximum Likelihood estimation starts from a set of samples from a random variable x. The

likelihood function p(D j w). In other words, out of all models which result from differ-
ent parameterizations the model is chosen for which the set of samples achieves the highest
probability. In the following, the approach is described on the basis of the multivariate Gaus-
sian distribution and the gamma distribution as examples. The latter plays an important role
for the statistical modeling of the illumination variation in camera images in the approach
presented in Chapter 6 of this thesis.

Gaussian distribution

1 n (0]

Poauss(Xj i )= ——
(2)7

in the normalization constant of the distribution. The parameters of the Gaussian model,
which are estimated in the Maximum Likelihood approach, are the mean vector and the
covariance matrix . denotes the determinant of the covariance matrix.

It is assumed that the samples in X are independent and identically distributed (i.i.d.), that
means that they are independently drawn from the same Gaussian distribution. Hence, the
likelihood function for the Gaussian, which is to be maximized and which depends on the
mean vector and the covariance matrix, is given by

W
lGauss(X | 5 )= Peauss(Xi ] 5 ): (2.3)
i=1

For probability distributions which belong to the exponential family [BS00, DHSO01] itis more
convenient to consider the natural logarithm of the likelihood function. Furthermore, the
numerical stability of the calculations is improved, especially if some probabilities in (2.3)
take very small values. The log likelihood function for the Gaussian is then

. ND N X
INlgauss(X j 5 )= > In(2 ) > In 5
i=1

xi )Tt ) (29

Since the logarithm is a strictly monotonic increasing function, maximizing the likelihood
function is equivalent to maximizing the log likelihood function. The mean vector mL for
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which the probability of the set of samples is maximum is computed by

g INlgauss(X'j ; ) = 0
'xi ) = 0
i=1
1 X
ML= X (2.5)

i=1

Estimating the covariance matrix . from the sample data is a little bit more tedious. In
[MN99] it is shown that a solution for ML can be obtained from the ®rst differential of the
log-likelihood function in (2.4) using Matrix Differential Calculus. An estimate for the co-
variance matrix in (2.2), which is symmetric and positive de®nite, as required for covariance
matrices, is given by
1 X T
ML= i omo) (X omL) (2.6)
i=1

The Maximum Likelihood approach underestimates the covariances of the Gaussian distri-

bution, especially for small set of samples. Considering various sets of samples drawn from

the Gaussian distribution in (2.2), the expectation of the estimator in (2.6) is [Bis06]

N 1
N

Thus, o is biased with respect to the true covariance matrix . An unbiased estimator for
the covariance matrix is provided by

E ML = (27)

ML = | i om) i om)T (2.8)

While the Maximum Likelihood estimates for the parameters of the Gaussian distribution
can be directly computed from a set of samples using (2.5) and (2.8), an iterative method
has to be applied in order to obtain the parameters of a gamma distribution. Let y =

fy1;y2; 10, yn g represent a set ofN samples which are drawn from a gamma distribution
Peamma(Y] 5 )= () y 1eXp y (2.9
where () denotes the gamma function
Z,
( )= u lexpf ugdu; > O (2.10)

0

Using this set of samples, Maximum Likelihood estimation provides a solution for the pa-
rameters and which determine the shape of the distribution. The log-likelihood function
for the gamma distribution which is maximized is

Inlcamma(y j ; )= N In Nin ( )+( 1) Iny; Vi (2.11)
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The parameter . for which the set of samples has the highest probability is obtained by

@ :
—Inl ; =0
@ Gamma (Y ] )
N X
I yi = 0
i=1
N
ML = PTZ (2.12)
Replacing the parameter in (2.11) by (2.12) yields the log-likelihood function
" I#
1 X X
INlgamma(yj )= N In In N Vi Nin( )+( 1) Inyi N: (2.13)
i=1 i=1

Setting the partial derivative of (2.13) with respect to the parameter  to zero provides the
equation |

1 X 1 X
N Vi N Invy; (2.14)

i=1 i=1

with the digamma function
&)

()

Since no closed-form solution can be found for (2.14), numerical methods have to be used
in order to solve for . In [CW69] the Newton-Raphson algorithm is applied to get the
Maximum Likelihood estimate .. wmL is iteratively computed by

()= (2.15)

P P
N mL (m) In 2 Ny + 32 Ny
ML 1 (2.16)
- 9 W)

ML

ML

where { ) denotes the trigamma function, i.e. the derivative of the digamma function in
(2.15). Aninitial estimate for . can be taken as

1 ,
— h — P }
ML ;0 — b P P L (217)
KoY ox m Ny

2.1.2 Bayesian inference

Maximum Likelihood estimation provides a very simple method to ®nd the parameters of

a probability distribution from a set of samples. If the set of samples is large, the parameter
estimates are accurate and close to the true parameters of the probability model. This can
be seen in (2.7), where the expression% tends to 1 for large values of N. However, the
downside is that Maximum Likelihood estimation only provides one probability model and
ignores that there might also be other models with different parameterization which ®t the
set of samples as well. Especially in case of small sets of samples the probability distribution
found by Maximum Likelihood estimation can be very different from the true probability

10
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distribution of the random variable. Consider as an example a box which contains 50 red,
50 green and 50 blue balls. If three red balls are taken from the box, Maximum Likelihood
estimation will come to the conclusion that the probability to take a red ball out of the box
is 100%whereas the probability to get a green or blue ball is 0%. This result is obviously not
true.

Statistical learning under the Bayesian paradigm is less exclusive and considers multiple
hypotheses for the parameterization of the probability model. The uncertainty of the model
parameters w is represented by a prior distribution p(w). By observing a set of N samples
z = fzy;25;:::;zy g drawn from a probability distribution  p(z), a posterior distribution over
the model parameters is obtained by Bayes' formula

p(zjw) p(vv):

7 (2.18)

p(w j z) =
p(z j w) is a likelihood function. The posterior distribution is the belief distribution over
the model parameters given the observed samples and has a smaller variance than the prior
distribution. This means that the uncertainty with respect to the model parameters decreases
the more samples of the random variable z are taken.

In Bayesian parameter learning it is often very convenient to use conjugate priors. Conju-
gacy means that the posterior distribution in (2.18) has the same functional form as the prior.
This simpli®es the calculus, since the Bayesian update in (2.18) results in a simple set of
equations for the computation of the hyperparameters of the posterior subject to the hyper-
parameters of the prior and the sample data. The hyperparameters denote the parameters
of the prior and posterior distribution.

In the following, the Bayesian inference of the parameters of a univariate Gaussian distri-
bution

N[

Pzi: )= 5 e 5z ) (2.19)

will be discussed as an example. It is assumed that both the mean and the precision of
the Gaussian distribution are unknown. The precision is the reciprocal value of the variance.
As a conjugate joint prior over both parameters the normal-gamma distribution

p(; )= ﬁgzj 3 exp exp (2 ) (2.20)
is chosen. Its hyperparametersare , , and . Note that the normal-gamma distribution

is not separable with respect to the random variables and . While the ®rst exponential
term in (2.20) only contains the precision, the second one depends on both the mean value
and the precision.

A set of samplesz = fz3;2;:::; 2y gis observed and used to compute the posterior

. W .
p(; Jz) / p(zij; ) p(; ) (2.21)

'1 n p 0 n ,0
PG j2) 1 7 exp 5 L@ )P 2 exp exp 5 L)
n 0

: 1

p; 2/ C:exp ° exp 5, 2

11



2 Background and Related Work

where
N
0= 4 > (2.22)
) P 2
0 R T (R T N S
= + > Z N z o+ > N (2.23)
P i=1 i=1 N
0 N, Zi+
= TN+l (2.29)
0 = T (2.25)

2.2 Image-based rendering

In computer graphics, the traditional approach for modeling a virtual environment is based
on a geometric model of the scene. Textures are mapped on the primitives of the geometry
meshes in order to give the surfaces of the objects a realistic appearance. A virtual camera,
whose pose is determined by the user in interactive applications like games, renders images
of the scene, mimicking the imaging process of a real camera in the real world. Local or
global illumination models describe the interaction of the light rays emitted by one or sev-
eral light sources with the surfaces of the objects and determine the shading of the objects.
Traditional computer graphics approaches have advanced a lot and sophisticated techniques
like ray tracing [Whi80, SJO0] and photon mapping [Jen01] have been presented.

Image-based modeling and rendering [SCKO7] has been developed as an alternative ap-
proach to traditional geometry-based techniques for image synthesis with the goal of achiev-
ing photorealistic rendering results of complex real-world scenes using a captured set of
camera images of the environment. The synthesis of virtual views of a scene does not re-
quire detailed knowledge of the material properties of the objects' surfaces nor the light-
ing, since the visual appearance of complex illumination effects can be directly transfered
from the camera images. From a signal processing view, image-based scene representations
can be seen as a sampled discrete representation of the continuous plenoptic function. The
seven-dimensional plenoptic function P7(Vx;VWy;V;; ; ; ;t ), asitis de®ned in [AB91], mea-
sures the dintensity of light rays passing through the center of the pupil [at a 3D position
(Vx; Wy; Vz),] at every possible angle (; ), for every wavelength , at every time t°. Since
signals in high-dimensional spaces are dif®cult to handle, several assumptions are made
in order to eliminate some of the parameters which the plenoptic function depends on. In
[MB95], e.qg., static environments illuminated by monochromatic light are considered, which
results in a ®ve-dimensional plenoptic function Ps(Vy;Vy;V;; ; ). Image-based rendering
techniques reconstruct a continuous representation of the plenoptic function from discrete
samples® [SCKO7] by interpolating the intensities of light rays captured by the virtual cam-
era.

Over the past two decades, image-based rendering has received much attention since it
allows for a photorealistic visualization of complex environments with little computational
effort. Numerous image-based scene representations have been proposed, which all form a
sampled representation of a plenoptic function with reduced dimensionality. They are clas-
si®ed in the image-geometry continuum (IBR continuum) [Len98, SKCO03]. As illustrated in

12
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Figure 2.1:IBR continuum with three categories for the classi®cation of image-based rendering tech-
niques and image-based representations (source: [SKCO03]).

Figure 2.1, the main categories in the IBR continuum are 2Rendering with no geometry®,
aRendering with implicit geometry® and 2Rendering with explicit geometry®°. In the follow-
ing, selected representatives from these categories will be discussed.

2.2.1 Rendering with no geometry

Unlike the term 2Rendering with no geometry® might suggest, the approaches presented

in the following do use a geometric model of the environment, which is, however, a very
coarse approximation of the true scene structure (geometric proxy). The model is not re-
covered from intensity correspondences between images or range sensor data but is de®ned
by a simple parametric surface. Light ®elds [LH96], e.g., which are captured by an array
of cameras arranged in a regularly spaced planar grid, assume that the whole scene resides
on a plane at a given distance from the cameras (focal plane). In many cases the scene con-
sists of a single object. The cameras capture a collection of light rays. Each ray is de®ned
by the indices (u; V), which address the cameras in the 2D grid, and the indices (s;t), which
describe the intersection of the ray with the focal plane. Effectively, the ®ve-dimensional
plenoptic function is simpli®ed to a four-dimensional plenoptic function  P4(u;v;s;t), under
the assumption that the viewpoint of the virtual camera is always outside a bounding box
around the modeled object.

The synthesis of a virtual image can be understood as the interpolation of the intensities of
light rays which are captured by the virtual camera from the intensities of the real light rays.
Each point on the focal plane is seen in multiple camera images, which results in a bunch of
rays running between the point and the projection centers of the cameras. For interpolation
the nearest neighboring rays in the light ®eld are chosen.

The Lumigraph [GGSC96] is an image-based representation which is very similar to light
®elds. As a difference to light ®eld rendering Lumigraph rendering incorporates a more ac-
curate geometry model of the scene for intensity interpolation and compression. Although
the Lumigraph is indeed an image-based representation with explicit geometry, it is ar-
ranged between the categories 2Rendering with no geometry® and 2Rendering with implicit
geometry® in the IBR continuum in Figure 2.1, due to 2its strong similarity with the light
®eld® [SCKO7].

Instead of capturing images in a regular planar two-dimensional grid, the images can also
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be captured by cameras moving along planar concentric circles. This representation is called
Concentric Mosaics and is proposed in [SH99]. Two setups are possible in which the cam-
eras are mounted either in tangential or normal direction to the circle. The virtual images are
synthesized by interpolating pixel columns from pixel columns of nearby reference images.
For the interpolation of the slices it is often assumed that the scene is in®nitely far away
from the acquisition setup. Another common assumption is that the geometry of the scene
is the surface of a cylinder around the Concentric Mosaics. Fast model acquisition and high
computational ef®ciency make Concentric Mosaics attractive for image-based rendering. In
[BMSO08] a scheme is presented for the progressive synthesis of virtual images from a Con-
centric Mosaics representation which is streamed over a network and optimized with respect
to storage rate, distortion, transmission rate and decoding complexity [BS08a, BS08b].

Due to the heavy constraints on the regularity of the structure of image-based scene repre-
sentations used for rendering with no geometry, these representations have a limited appli-
cability in the ®eld of mobile robots. Although it is shown in [DW11] that light ®elds can be
used for modeling the appearance of the sea ground by Autonomous Underwater Vehicles,
it is hardly impossible for mobile robots navigating on wheels in indoor environments to
capture image-based representations on perfect circles.

Furthermore, the very coarse approximation of the scene geometry requires that the camera
views be captured in a very dense manner which leads to a vast amount of data and high
memory consumption for the storage of the environment representation. To this end, meth-
ods have been developed for the ef®cient compression of image-based scene representations
[SKCO03].

2.2.2 Rendering with implicit geometry

The approaches revisited in the following use pixel correspondences between a small num-
ber of reference images to synthesize novel virtual images. Since a geometry model of the
scene in terms of 3D point clouds or 3D meshes is not available, they are embraced by the
term @implicit geometry® [SKCO03].

The method in [CW93] uses two input images and computes virtual images at arbitrary
viewpoints between them using dense optical ow. The best results are achieved if the two
input images are close to each other so that ambiguities in the correspondences between
them are avoided.

Instead of using dense optical ow, virtual images can also be interpolated from sparse
point correspondences between two input images and the resulting fundamental matrix
[Fau93], as shown in [LF94]. The synthesis of a view from sparse point correspondences
leads to holes in the virtual image. To avoid these black pixel regions a reverse mapping is
done which ®nds the image correspondences in the two reference views for each pixel in the
virtual image. In this mapping epipolar constraints between the two reference views and
the virtual view are exploited.

There might be cases where the two epipolar lines in the virtual image coincide. In these
degenerate cases it is useful to add a third reference image. View interpolation is then done
[AS97] using the trifocal tensor [HZ03] which describes the structural relationship between
the three reference views.
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2.2.3 Rendering with explicit geometry

In [CTCSO00] the minimum sampling rate is analyzed for light ®elds. The minimum sampling
rate indicates how dense the cameras in the two-dimensional grid have to be arranged such
that virtual images can be interpolated without aliasing artifacts. One important ®nding is
that the minimum sampling rate is subject to the minimum and maximum depth of the scene
and does not depend on the depth variation in the scene Furthermore, Chai et al. [CTCS00]
consider plenoptic sampling in joint image and geometry space and draw important con-
clusions with respect to the minimum sampling curve, which relates the number of images
in the representation to the number of depth layers of a geometry model which is stored in
addition to the images. They ®nd that the number of images, and thus the density of the
camera views, strongly decreases with the number of depth layers. Hence, the ®ner and
the more accurate a geometry model used for view interpolation is, the less images have
to be acquired of the scene. The reduction of the amount of image data makes rendering
techniques using an explicit geometric model very attractive.

In [DTM96] and [DYB98] an approach for the realistic visualization of virtual 3D models
of buildings is presented. The approach is closely related to traditional geometry-based
methods for image synthesis. However, view-dependent texture mapping is used, where
multiple textures from different viewpoints are mapped on the same surface of the geometric
model. This method allows for capturing effects like specular highlights, whose appearance
is subject to the viewpoint of the observer.

In addition to view-dependent textures, view-dependent geometry models have become
very popular [PCD * 97, KS04]. View-dependent geometry models in terms of depth maps
take into account that the depths which are estimated from stereo images are only valid in a
small viewpoint region if non-Lambertian effects are exhibited.

An intersting aspect is also to relax the strong constraints which are imposed on the struc-
ture of the camera views in image-based representations like light ®elds and Concentric
Mosaics. In [HKP*99] a system is presented which interpolates novel virtual images from
an unstructured image-based representation acquired by a handheld camera. The poses of
the captured camera views are estimated using a structure-from-motion approach which
computes the fundamental matrices between image pairs. For view synthesis the scene ge-
ometry is approximated by one or more multiple planes and the camera images are mapped
on them as textures. A system for the reconstruction of a scene from a handheld moving
camera with similar modules is presented in [PvGV * 04]. In [ESK03] an unstructured image-
based representation is acquired using a handheld multi-camera system. Three criteria are
proposed for the selection of a subset of camera views for view synthesis. They consider
the proximity of the reference cameras to the virtual camera, the viewing directions of the
reference cameras and the virtual camera as well as visibility aspects. The local geometry of
the scene is reconstructed subject to the viewpoint of the virtual camera by fusing the depth
maps of the selected reference views. In [ESNKO06] an improved version of the system is pre-
sented which recovers coarse depth information in an off-line step and re®nes the geometry
model during view synthesis by a tile-based photoconsistency check.

Buehler et al. de®ne in [BBM' 01] a list of properties which an image-based rendering sys-
tem should have. Besides, they propose a rendering approach which generalizes rendering
techniques with no knowledge about the scene geometry and techniques for image-based
rendering using explicit geometric models.
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Image-based representations with view-dependent geometry have also become very pop-
ular for view synthesis in Free Viewpoint Video and Three-dimensional Television (3DTV).
Zitnick et al. propose in [ZKU *04] a system which captures multiple synchronized video
streams from different viewpoints. A two-layered image-based representation which treats
object boundaries in a separate layer is acquired to reduce artifacts in virtual views. Besides,
a stereo matching algorithm which is based on color segmentation provides high-quality
depth maps, which allows for a small number of calibrated video cameras capturing the
scene. A similar multi-view video plus depth representation which consists of multiple lay-
ers is presented in [SMD™ 08] for 3DTV applications. Taguchi et al. present in [TTNO8] a sys-
tem which adopts the layered light-®eld representation in [TNO6]. The pixel colors in virtual
views are determined from the reference cameras, which are arranged in a two-dimensional
grid, using a depth-from-focus method.

Since image-based representations with explicit geometric models allow for unstructured
input and reduce memory consumption, they are very convenient for realistic environment
modeling for mobile robots. The algorithms in Chapter 3 and the representation in Chap-
ter 4 of this thesis are inspired by the approaches in [ESK03], [PvGV* 04] and [ZKU * 04].
However, compared to image-based representations, the environment model in Chapter 4
stores the parameters of probability distributions which do not only represent the expecta-
tion about the appearance of the scene but also the uncertainty. It is shown that this concept
allows for the detection of surprising events in the robot's surroundings.

2.3 lllumination modeling and intrinsic images

A popular illumination model in computer graphics for the computation of the intensity
re ected by a point on a surface which is a nonperfect re ector is proposed by Phong in
[Pho75]. In [FvDFH96] Phong's model is given by
h i
| = 1akaOg +faglp keOg N E +ks RV (2.26)

The re ected intensity | is the sum of three re ection components which describe the re-
“ection of ambient light, the diffuse re ection and the specular re ection of light emitted
by a light source, respectively. |, is the intensity of the ambient light and k4 indicates the
proportion of the ambient light which is re ected by the surface point. Oy represents the
diffuse color of the surface point. The intensity of the light sourceis 1, and f 4 is an attenu-
ation factor which accounts for the attenuation of the light intensity at the surface point with
increasing distance of the light source from the surface or in case of occlusions. kg and kg
describe the proportion of light which is re ected under diffuse and specular re ection, re-
spectively. As illustrated in Figure 2.2, the vectors L and N indicate the opposite direction of
the incident light and the direction of the normal of the surface, respectively. The vectors R
and V represent the direction of specularly re ected light and the direction of an observer's
viewpoint, respectively. R depends on the surface normal and the opposite direction of the
incoming light as

R=2N N C C: (2.27)

The specular exponent n determines how strong the intensity of specularly re ected light
falls off subject to the angle between the direction of the re ected light and the direction of
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Figure 2.2:Light which is emitted by a light source and illuminates the scene from the opposite direc-
tion of C is mirrored about the surface nornidl under specular re ection and leaves the
surface point in directiorR. The Phong illumination model takes into account that the
intensity of the specular component falls off as the angle bet®Remard the direction of
the observer's viewpoit gets larger.

the observer's viewpoint.

In environments with objects that have Lambertian surfaces and thus only re ect diffuse
light the specular term in (2.26) can be omitted. Assuming that there is no ambient light and
that the intensity is constant along a ray of light, a simple illumination model is given by

| =kgqOy lp N L =R L : (2.28)

Thus, the intensity of light which an observer perceives at a surface point depends, on
the one hand, on intrinsic material properties like the spectral re ectance of the surface
R = kyqOg4 and, on the other hand, on the characteristics of the light source, which are

summarizedin L =1, N [ andinclude its intensity, the spectrum of the emitted light

as well as the position of the light source with respect to the object surface. Barrow and
Tenenbaum suggest in [BT78] that the separation of intrinsic scene characteristics from an
intensity image plays a central role in early visual processing. Intrinsic scene characteristics
are range (scene depth), surface orientation, re ectance and incident illumination. The rep-
resentation of the intrinsic properties of the scene in different images is denoted by intrinsic
images The recovery of the intrinsic features is considered as a crucial preprocessing step for
higher-level scene analysis. However, the computation of intrinsic images from an intensity
image is in general very challenging since the estimation of both R and L from a single
equation is an ill-posed mathematical problem.

To make the problem tractable, Freeman and Viola consider in [FV97] two special cases in
which either the re ectance is uniform across a surface varying in shape or the re ectance
changes across the image but the surface is “at and thus exhibits uniform shading. A prior
distribution is placed over the magnitudes of the image gradients and the goal is to deter-
mine in a probabilistic approach whether an image shows only changes in shape or only
changes in re ectance. In experiments the performance of the algorithm is compared to the
classi®cation results by human subjects.

The approach in [TFAQ05] is less restrictive with respect to the re ectance and shape prop-
erties of the scene and uses machine learning techniques to classify each gradient in an in-
tensity image as a re ectance or shading gradient. For the classi®cation of the gradients
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both color and intensity patterns are analyzed. The color vectors of two adjacent pixels
which show surface points of the same intrinsic color under different illumination are usu-
ally collinear. Else, if the two color vectors are linearly independent, and thus the chro-
maticity changes, a re ectance change is exhibited. However, if the scene exhibits only grey
tones a re ectance change can also lead two two adjacent pixels with collinear color vectors.
Hence, using only color information does not allow for an unambiguous decision in favor of

a re ectance or a shading gradient. Therefore, to make the classi®cation more reliable, the
approach in [TFAO05] also analyzes the output of nonlinear ®lters applied to intensity patches.
The ®lter output compared to a threshold is a weak classi®er which assigns the label 1 to re-
“ectance gradients and the label " 1to shading gradients. In a training phase the coef®cients
of the ®lter and the threshold are determined using intensity patches from synthetic images.
After learning the classi®er, the gradients in an intensity image which are classi®ed as shad-
ing gradients are set to zero while the re ectance gradients are left unchanged. A re ectance
image is computed by pseudo-inverse ®ltering as proposed in [Wei0l1]. The strong point of
the approach in [TFAO5] is that, once the classi®er is trained, the re ectance and the shading
image can be computed directy from one single intensity image. However, the approach
also requires a very low false positive rate during classi®cation, which is in general dif®-
cult to achieve with the used machine learning techniques. The misclassi®cation of a single
gradient can lead to strong artifacts in the integrated re ectance image.

In [FDLO4], an approach is presented for the recovery of an |IIum|nat§n |nvar§nt image
which is computed in the logarithmic 2D chromaticity color space flog & B Iog g, where
R, G and B denote the red, green and blue primaries from the RGB color space. Flnlayson
et al. note that the chromaticity values acquired from the same scene under different il-
lumination conditions accumulate along parallel straight lines for a given camera. Hence,
a grayscale illumination-invariant image can be recovered by projecting the chromaticity
values on a straight line which is perpendicular to the set of lines. The orientation of the
line is found by testing several hypothesis for the orientation and evaluating the entropy
of the recovered grayscale image. The orientation for which the entropy is minimum is se-
lected. On the one hand, the approach offers a simple and fast method for the computation
of illumination-invariant images. On the other hand, the approach poses several constraints
on the scene, the light source and the camera. As in [TFAO5], the scene must consist of ob-
jects with exclusively Lambertian surfaces. Furthermore, the light source must emit light
with a spectral power density according to Planck's law [Pla00]. Besides, the three sensitiv-
ity functions of the camera sensor should be narrowband. These conditions can be relaxed to
a certain degree, however, the approach performs poorly if they are ignored. In [FHLDO6],
it is shown that a full shadow-free color image can be computed by extending the grayscale
illumination-invariant image to an equivalent 2D chromaticity representation and, ®nally, to
a RGB color image.

As already mentioned before, the computation of an illumination-invariant image and the
corresponding shading image from one single intensity image is a dif®cult problem since
it is ill-posed in a mathematical sense. Therefore, Weiss looks at an easier version of this
problem in [Wei01] by considering not only one single camera image but a series of camera
images taken of a static scene at the same viewpoint and under different lighting conditions.
Modeling T intensity images I;t = 1;:::; T as a decomposition in their re ectance part R
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Figure 2.3:An illustration of the computation of a re ectance image from a sequence of multiple
images of a scene taken under different illumination conditions. (source: [Wei01])
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and their shading parts L¢;t =1;:::; T results in a system of equations given as
I 1 = R L1 (229)
|2 = R L2 (230)
It = R Lt: (2.31)

This is still an underconstrained system of equations. The number of unknowns (the re-
“ectance and the T shading images) exceeds the number of equations by 1. Hence, with one
additional constraint the system of equations has a unique solution. In [Wei01], it is there-
fore assumed that the horizontal and vertical shading gradients are sparsely distributed in
the images and mostly close to zero. This is a valid assumption since in previous works it
has already been shown that the outputs of derivative ®lters applied to natrual images are
sparse and can be modeled by a Laplacian distribution [OF96, Sim97]. Weiss shows that
the re ectance gradient at a given image location can be computed by the median of the
intensity gradients at that location in all camera images. A re ectance image is recovered
by pseudo-inverse ®ltering from the horizontal and vertical re ectance gradients. Figure 2.3
illustrates the algorithm. As shown in the bottom row, the pixel-wise median of the horizon-
tal and vertical image gradients removes the edges of the shadow over the gray circle whose
position varies in the frames 1 to 3. After the pseudo-inverse ®ltering step, a re ectance
image is obtained which is free of illumination effects.

In [Wei01], grayscale re ectance images are computed. However, applying the method to
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the three color channels of the camera images, a color re ectance image is obtained. The
requirements for a high-quality re ectance image are that both the camera and the scene are
static during the acquisition of the images. Furthermore, the illumination in the captured
images should vary as much as possible such that all illumination effects are removed in
the re ectance image. lllumination effects which are exhibited in the majority of the camera
images will also be visible in the re ectance image. Since the algorithm does not perform a
hard classi®caton of the gradients in re ectance and shading gradients as in [TFAQ5], there
are no artifacts due to misclassi®cation. Due to the natural appearance of the illumination-
invariant images, the algorithm in [Wei0O1] has been chosen as the basis for the computation
of the illumination-invariant image-based environment representation descibed in Chapter
6. One challenge which arises from the acquisition of image sequences with mobile robot
platforms, as considered in this thesis, is the accurate registration of the images taken under
different lighting conditions.

A common assumption which is made in all approaches for the computation of intrin-
sic images revisited in this section is that the shading of the scene can be described by the
Lambertian illumination model in (2.28). However, to handle general real-world scenes, a
number of approaches have been presented for the separation of specular re ections and in-
terre ections from diffuse re ections in images. The diffuse and the specular component of
a scene can be modeled as separate layers which are superimposed in the image formation
process. If a camera moves with constant velocity on a linear trajectory which is parallel
to the camera's image plane, it is shown in [SKS* 02] that the motion of a surface point in
the captured images is subject to the epipolar constraint. The motion of a surface point in
the images perceived under specular re ection, in turn, does not. Specular highlights and
re ections are perceived at a virtual depth behind the surface, depending on the surface cur-
vature, the surface orientation and the camera distance. In [TKS03] a method is presented
for the estimation of the depths of the diffuse layer and the re ection layer of a scene, while
in contrast to [SKS* 02], the type of re ection is not limited to specular highlights.

The approach in [STT* 11] uses specular cues for the detection of screws in a cluttered bin
and the estimation of their pose in an industrial assembly process. Shroff et al. note, as
Swaminathan et al. in [SKS* 02], that the position of a specularity does not vary much with
the position of the light source if the curvature of the surface is high. Hence, surfaces with
high curvature (like on a screw) can be detected using a multi- ash camera [RTF * 04], which
consists of an image sensor and several LEDs which are uniformly placed around the sensor.
With the LEDs ashing light in a sequential order, several views are captured under varying
light direction. By matching specular features of a screw in multiple views taken by the
multi- ash camera at different viewpoints, the pose of the screw is estimated and passed to
a grasping system.

Levin et al. propose in [LZWO04] a method for the separation of re ections on specular
transparent surfaces from the scene behind the surface. The re ection and the distant scene
are treated as two superimposed statistically independent images, which are separated using
Independent Component Analysis.

A method for the removal of specularities in facial images is presented in [LB05]. First, the
image is processed by Luminance Multi-Scale Retinex in [FBBC97], which is based on the
Retinex theory for modeling color constancy [LM71]. Using the luminance and saturation
component of the processed image, the centers of the specularities are found and used as a
seed point for a wavefront propagation algorithm, which stops at the border of the specular-
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ity or the object. This provides the specularity regions in the image, which are then colored
from the boundaries towards the interior with the average color of neighboring pixels just
outside the region.

2.4 lllumination-invariant change detection

The segmentation of an object from a background scene can be tremendously impaired if the
illumination in the background image differs from the illumination in the image containing

the additional new object. To this end, a lot of research has been done in the area of change
detection under varying lighting conditions [RAAKRO05]. One of the earliest straightforward
techniques to make image-based object segmentation robust to illumination changes was to
normalize the intensity values in two images so that they have the same mean and the same
variance. This accounts for global illumination changes.

Under the assumption that the illumination of the scene causes patterns with lower spatial
frequencies than the re ectance of the scene exhibits, the re ectance and the shading compo-
nent can be separated by homomorphic ®ltering [ADMTO1]. This procedure is similar to the
decomposition of a camera image into intrinsic images, as described in Section 2.3. Using
the re ectance components for change detection, illumination effects do not in uence the
segmentation of the object of interest. However, as already pointed out in Section 2.3, the
separation of re ectance and shading from single images is in general very dif®cult and the
approach in [ADMTO01] fails if pronounced shadow edges are present in the images.

In [XRBO04] an algorithm for the suppression of sudden illumination changes between sub-
sequently captured camera frames is presented. The approach uses the Phong illumination
model as described in Section 2.3 and assumes monotone and nonlinear camera response
function as well as locally constant but spatially varying illumination. It is shown that
the sign of the difference between two pixel values is the same across global illumination
changes.

Another method for illumination-invariant image analysis is the transformation to an ap-
propriate color space as a preprocessing step. In [CGZ08] a perception-based color space for
illumination-invariant image processing is presented and used for object segmentation and
image inpainting. The transformation of a color vector in XYZ color space to a color vector
in the color space proposed in [CGZ08] is chosen such that difference vectors between colors
are constant under changing illumination conditions. Furthermore, the length of a difference
vector matches the perceptual distance between the two colors.

Color space transformations have become popular in mobile robot applications for a vision-
based segmentation of the environment by colors [SS09] because they are computationally
cheap and therefore very fast. In [SS07] the objects in a mobile robot's environment, which
is rich in colors, are segmented in a spherically distributed color space which is also used in
[MMHMO1]. The transformation of a RGB color vector to this color space, also known as

21



2 Background and Related Work

Spherical Coordinate Transform (SCT), is given by

p___ -
| = R2+ G2+ B2 (2.32)
= tan ! g (2.33)
= cos ! ;E : (2.34)

where | is intensity and the angles and represent color independently from intensity. The
Euclidean distance of two tupels ( 1; 1) and ( 2; ») is used for color matching.

The approach in [OHO7] proposes the normalized correlation of corresponding intensity
derivatives in two images as a measure for changes which is robust against varying illumi-
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nation. Be 1= “ox ey and = =ox ey the intensity gradients in
two equally sized images at pixel location (x;y). Then the normalised correlation between

the two gradients describes the cosine of the angle between them and is given by

O—cos = — 1 2 . (2.35)
1 2
p__
where = T . The Normalized Gradient Correlation (NGC) coef®cient Cis robust
against illumination variations of the form 15(x;y) = l1(x;y)+ ,where isascaling fac-

torand an additive constant. If the position of the light source changes, the edges of a 3D
object change their appearance due to shading. Depending on how much light falls on the
surface at the object edge, it might appear either brighter or darker than the background.
Consequently, the sign of the intensity gradients at the object edge changes with varying
shading. To account for this, the algorithm in [OHO7] uses a non-linear absolute value oper-
ation in the computation of the inner product of (2.35). A robust change measure is obtained
by evaluating the correlation in block neighborhoods which are bounded horizontally by
Xmin and Xmax and vertically by ymin and ymax. The correlation coef®cient results in
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(2.36)

The smaller the higher is the probability to ®nd changes which are not due to illumination
but due to new/disappeared objects or people in the scene. In [OHO7] the correlation of
gradient structures is analyzed on multiple scales, i.e. in neighborhoods of varying size.
An ef®cient implementation is proposed to achieve low computation times. The approach is
simple and fast. However, it cannot cope with high frequent illumination effects like shadow
borders since these effects also change the gradient structures and lead to a small correlation

coef®cient. Futhermore, specularities pose a problem to the algorithm.

2.5 Attention models, novelty and surprise detection

Modeling human attention has aroused great interest across various research disciplines.
Computational approaches which measure how interesting a part of a signal is are useful
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for the implementation of attentional mechanisms on robots to extract relevant information
from the acquired sensor data for their actions. In electrical engineering and computer sci-
ence, attention models can be used for the compression of images and videos since they
predict which parts of an image will probably receive much attention and which will not.
Psychologists and neuroscientists investigate attentional mechanisms in the human brain to
get insights in the role of attention in visual search. In the following, various approaches
from the different disciplines are revisited.

2.5.1 Saliency-based visual attention

A common notion is that an image region attracts the attention of a human observer if it
is salient, i.e. if it exhibits visual features like color, intensity and orientation which are
different from the features in neighboring regions. In [Li99], a model is proposed which
makes contextual in uences between the neurons in the visual cortex area 2V1° responsible
for the pop out effects of visual stimuli which differ from the stimuli in the surrounding
region. Horizontal connections between nearby pyramid cells suppress the cells' responses
if the stimuli are similar or excite the cells if the stimuli are different.

Itti et al. propose in [IKN98] a model of saliency-based bottom-up visual attention which
is related to the #feature integration theory®, which states that the conjunction of separable
primary visual features needs attention [TG80]. In [IKN98] color, intensity and orientation
are considered as primary visual features. In a later work [IKO1], motion, stereo disparity,
shape from shading etc. are named as additional features. The model presented in [IKN98]
is depicted in Figure 2.4.

After ®ltering the input image, center-surround differences are computed in the color, in-
tensity and orientation maps on multiple scales. Center-surround differences are computed
across different scales while a pixel of a ®ne scale is the center and the corresponding pixel
on a coarser scale describes the surround region. Color information is encoded by red-green
and blue-yellow opponencies. Orientation cues are provided by the output of Gabor ®I-
ters with the prefered orientations 0, 45, 90 and 135 [GBG"* 94]. Since the numbers of
the center-surround differences are in different value ranges for different feature types, they
are normalized to a ®xed value range. Conspicuity maps are computed by multiplying the
center-surround differences by their squared difference from the mean value across the im-
age. This suppresses center-surround differences which are close to the mean value and
ampli®es center-surround differences which are much larger. Finally, the conspicuity maps
of the feature channels are combined to a saliency map. Several highly salient regions in
the map compete for the focus of attention while the region associated with the fastest ®ring
neurons wins (winner-takes-it-all, WTA). Then, an inhibition-of-return mechanism locally
inhibits the area of the focus of attention, which leads to a shift of attention to the next
salient location in the map and prevents that the focus of attention immediately returns to
the current location.

Attention models are used in active vision to position a robot's camera based on the feed-
back from the attention model about interesting, salient objects in the environment (see
[BK11] for a survey). Using graphical processing units (GPUSs), saliency maps at VGA res-
olution can be computed within a few milliseconds, which allows for real-time attentional
control in robotic applications [XPKBO09].

23



2 Background and Related Work

Input image‘q

[ Linear filtering at 8 spatial scales I

[_ Center-surround differences and normalization _-i
7 features
Feature Maps {6 maps per
feature)
Conspicuity Maps

[ Linear combinations ]

Saliency Map = —=

Central Representation

Inhibition of Return

Figure 2.4:The model of saliency-based visual attention proposed in [IKN98] (source: [mba]).

In video coding and streaming applications, saliency-based attention models are used to
determine regions-of-interest in a video frame which attract the attention of a human viewer.
A region-weighted rate-distortion model allocates more bits to the regions-of-interest and
less bits to regions which are less salient [LGW™* 04]. This can improve the subjective visual
quality of video streams compared to traditional lossy video coding schemes under the same
bandwidth.

2.5.2 Novelty detection

Novelty detection aims at the identi®cation of data which is unknown to a machine learn-
ing system based on a prior model which the system has learned during a training phase.
Popular approaches for novelty detection are based on the inference of statistical models
from training data samples [MS03]. The probability of new incoming data samples can be
computed using the learned models. If the probability lies below a given threshold, the data
sample is classi®ed as a novel data sample. Another wide-spread novelty measure is the
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Mahalanobis distance [Mah36], which describes the distance of a new data sample from the
mean of the probability distribution divided by the standard deviation of the distribution.
The parametric or non-parametric probability models in statistical novelty detection meth-
ods are usually infered by learning techniques as described in Section 2.1.

In contrast to the attention model in [IKN98], which explains the phenomenon of visual
salience by neural mechanisms, the method in [SHO3] computes saliency maps using a sta-
tistical approach for novelty detection. Sajda and Han describe the processing of orientation
cues in the primary visual cortex (V1) using ®Ilters which receive input from the retina and
which are organized in an array of pinwheels whose wedges describe the prefered orien-
tation of the ®lters. A pinwheel's response can be represented in an N -dimensional space
where N is the number of wedges of the pinwheel. The pinwheels' responses are consid-
ered as random variables and their distribution is modeled by a mixture of multivariate
Gaussian distributions. The novelty of a pinwheel's response is measured by its negative
log-likelihood given the mixture of Gaussians model. This measure quanti®es the salience
of the scene structure.

2.5.3 Computational approaches for surprise detection

Saliency-based attention models allow for the detection of locations within an image which
pop out from their neighborhood and therefore capture the attention of a human observer.
However, spatial saliency is not the only cue which guides a human's gaze. Temporal events
like the sudden appearance of an object in the scene or unexpected motion can be surprising
and also attract a human's interest in a bottom-up manner.

Itti and Baldi present in [IB0O9] a formal way of de®ning and measuring surprise in a tem-
poral image sequence from low-level visual features like intensity, color, orientation, motion
and icker. As in earlier attention models [IKO1], center-surround differences of these fea-
tures are computed on multiple scales of an image. It is assumed that each feature evokes
a series of spikes emitted by a neuron in the primary visual cortex at a certain ®ring rate.
Dynamic visual stimuli lead to varying ®ring rates of the neurons. Hence, the number of
spikes k in a time window is modeled by a Poisson distribution [IBO5]

k

(k) = 15 exp ; (2.37)

where is the expected number of spikes and determines the shape of the Poisson distribu-
tion. The parameter is learned from observations of the neural ®ring rates over time by
Bayesian inference, as described in Section 2.1. As a conjugate prior the gamma distribu-
tion is chosen. The hyperparameters %and Cof the posterior distribution after observing a
®ring rate kg are

0

+ Ko (2.38)
+1; (2.39)
where and are the hyperparameters of the gamma prior, as given in (2.9). To prevent
them from growing towards in®nity, both and in (2.38) and (2.39) are multiplied with a

forgetting factor, which is smaller than 1. The Kullback-Leibler divergence [Kul59] between
posterior and prior Z

KL= p j‘%oln‘;((jj_o’?d (2.40)

0
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is used to measure how strongly a visual stimulus changes the prior distribution over the ex-
pected neural ®ring rates and to quantify surprise. As Itti and Baldi show in [IB09], Bayesian
surprise is superior to other information-theoretic novelty measures and saliency detectors
with respect to the prediction of locations in images which attract human attention. How-
ever, the surprise model relies on the simulation of neurons in the primary visual cortex
which is dif®cult to realize on the graphics hardware in a mobile robot for the computation
of surprise maps in real-time. Furthermore, Itti and Baldi do not consider correspondences
between visual features at different image locations in consecutive frames resulting from
camera motion.

In [RD09] an approach is presented for the automatic detection of landmarks for the ac-
quisition of a topological map of the environment. A Bayesian surprise metric is used to
determine the novelty of a landmark in the environment. The representation of the environ-
ment can be either appearance-based or geometry-based. The appearance-based component
is based on the bag-of-words paradigm [SRE* 05], which models each camera image as a
set of visual words which are formed by quantized SIFT descriptors. Here SIFT stands for
the Scale-Invariant Feature Transform, as proposed by Lowe in [Low04]. The number of oc-
curences of each visual word in an image is stored in a histogram associated with the image.
Several images captured from a site in the environment show SIFT histograms which are
similar but not identical. This type of noise is modeled by a multinomial distribution over
the histograms. The parameters of the multinomial distribution are infered in a Bayesian ap-
proach. If there are SIFT descriptors in an image which change the prior over the parameters
of the multinomial distribution, a novel landmark is detected. While the environment rep-
resentation in [RD09] is very compact and scales well with large environments, the surprise
detector shows an increased number of false positives in cluttered environments.

The method in [HWP10] provides a concept for the detection of interesting parts in video
frames. A Latent Dirichlet Allocation model [BNJO3] is used to describe a set of video events
like human actions and object motion. Surprising events like a U-turn of a car in a traf®c
scenario or a pedestrian crossing a street intersection in a diagonal way are identi®ed using a
Bayesian framework similar to [IB09] and [RD09]. Hence, the approach is not only limited to
the detection of novel objects and landmarks but also considers the detection of unexpected
actions.

2.5.4 The role of surprise in learning and visual search

In [SSH95], an approach is presented for reinforcement-driven information acquisition dur-
ing the exploration of an unknown environment by a robot. This method evaluates the
information gain which is achieved between two subsequent states along the robot's way
through the environment and uses this metric for assessing the reward of a given explo-
ration policy in a reinforcement learning framework. Similar to the approach by Itti and
Baldi [IB0O9], which is revisited in Section 2.5.3, the Kullback-Leibler divergence is used for
the computation of the information gain.

Reinforcement learning is in general a promising means for the autonomous mental de-
velopment of intrinsically motivated systems [Sch05, SLBS10]. Intrinsic motivation, which
results from the pursuit of maximum internal reward, can be driven by learning progress
[OKHO7] or by novelty and surprise [HW02, Sch10] and leads to the development of com-
plex action sequences. However, the downside of reinforcement learning is that it is not able
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2.6 Autonomous acquisition of object representations

to cope with high-dimensional state and action spaces. Hence, the environment has to be
abstracted from the robot's sensor data and thus its internal representation is often not as

realistic as the appearance representation presented in Chapter 4 of this thesis. Experiments
are often performed in an arti®cial gridworld.

Apart from the body of work on surprise detection published by computer scientists, sur-
prise is also investigated in neurosciences, especially in the context of associative learning. In
[dOFD* 09] it is shown that there are areas in the primary visual cortex and putamen which
respond progressively more to unpredicted and progressively less to predicted visual stim-
uli. A similar behavior has been found in the prefrontal cortex, which shows high activation
if the prediction of associations between perceived stimuli fails [FAS * 01].

Besides, the effect of novelty and surprise in visual search is investigated in psychology.
In experiments a sequence of search displays, which contain a ®xed or varying number of
objects, are presented to human subjects. The search display used by Theeuwes [The92]
consists of objects with a simple shape, e.g. a square or a circle, in a given color, e.g. red
or green. The task of the subject is to ®nd a target which is de®ned by its shape among a
set of nontarget objects which have a different shape. Likewise, the target can be de®ned by
its color among nontarget objects with different color. Once the human has found the target
he/she gives a response and the time between the onset of the display and the response is
measured. This time interval is denoted by reaction time (RT). The repetition of this visual
search task for all displays in the sequence results in several trials per subject. In some trials
one of the nontarget objects differs from the other nontarget objects (distractor) and is salient
due to its color (color-singleton) in case of shape-de®ned targets ot due to its shape (shape-
singleton) in case of color-de®ned targets. M ller et al. ®nd in [MGZKQ09] that the RT of
human subjects varies with the frequency of distractor trials. In case of a rare distractor
the RTs are higher than in case of a a frequent distractor. Similar effects have been found
by Neo and Chua in [NC06] and Horstmann in [Hor02]. This provides evidence that novel
distractors evoke surprise and capture the attention of the subject during visual search.

2.6 Autonomous acquisition of object representations

Robots which are able to autonomously acquire representations of unknown objects in clut-
tered environments can exibly develop skills for the execution of tasks which require the
manipulation and recognition of new objects. Learning visual representations of new objects
from camera images requires attentional selection for the segmentation of the object from the
background.

In [SGW™ 07] an active vision system focusses on objects which are sequentially presented
by a human. The Adaptive Scene Dependent Filter hierarchy is used for the segmentation of
the objects. Maps which contain low-level visual features like color and disparity are com-
puted from the input image. At each pixel the features are summarized across the maps in
a vector which also contains the horizontal and vertical pixel position. In a vector quantiza-
tion step a codebook with prototypes for feature vectors is trained. The Euclidean distance
of the feature vector at a pixel from the nearest prototype indicates the novelty of the feature
combination. A mask is computed by binarizing the novelty map. This mask is combined
with a relevance mask which favors pixel positions near the image center and large disparity
values. In addition a skin color mask excludes image regions which exhibit the hand and
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arm of the human for object segmentation.

In [SLL* 07] a humanoid robot walking around a table acquires a representation of an object
on it. At a series of viewpoints around the object images are taken using a stereo camera.
Both SIFT [Low04] and color descriptors are computed in the images and clustered to visual
words. To segment the object of interest from the background a disparity map is computed
and only features whose disparity values lie above a given threshold are selected from the
image. The 3D position of the features is also used for the estimation of the robot's motion
between two captured images when the object is near. This implies that the object of interest
has to be the closest object.

Another approach for the autonomous acquisition of object models by a humanoid robot is
presented in [WIS* 10]. In contrast to [SLL* 07] the humanoid robot does not move around
a static object but rotates an object in its hand while capturing a series of images. This en-
ables the robot to acquire visual features from the object across a larger range of viewpoints.
The rotation of the robot's hand is preprogrammed so that the images are taken on de®ned
locations on a viewpoint sphere. The object is segmented by comparing the camera image
of the object to a reference image, which is computed from a previously taken set of images
of the background using Eigenvalue decomposition [ORPQO]. It is necessary that the robot's
camera does not move between the acquisition of the background scene and the image of
the new object. To make the segmentation result more robust, disparity information is used
and erroneously segmented parts from the distant background are removed. The visual ap-
pearance of the object is represented by SIFT features and Color Cooccurrence Histograms
[CK99] which are extracted from the images after object segmentation. To keep the memory
consumption of the object model moderate, the features are clustered and a sparse set of
prototypical views is stored. The approach in [WIS * 10] is chosen as a reference approach for
the method presented in Chapter 5 of this thesis.

An issue which arises with the methods in [SGW * 07] and [WIS* 10] is that regions in the
image which exhibit part the human body or the robot's arm have to be ignored during ob-
ject acquisition. Steil et al. [SGW"* 07] use a skin color model for the human hand, which of
course fails if the human's clothes are also visible. Welke et al. [WIS* 10] include propriocep-
tive sensor information to determine the position of the robot's hand and arm in the image.
This requires a very accurate camera-to-hand calibration. Another issue which arises with
the approach in [WIS* 10] is that the robot's hand occludes a large part of the object in certain
poses. As a consequence no features can be computed in these regions.
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3 View Synthesis from Unstructured Image-based
Environment Representations

Image-based scene representations which incorporate explicit geometry information and
camera pose data allow for camera motions on arbitrary smooth trajectories during acquisi-
tion. Thus, this type of scene representation is appropriate for mobile robots as a component
of the internal environment model which preserves the natural appearance of the scene. The
views which sample the appearance of the scene in terms of bunches of light rays at densely
spaced discrete viewpoints are denoted by reference viewthroughout this thesis. The ac-
curate estimation of the camera pose and the dense and exact reconstruction of the scene
geometry are two challenges during the acquisition of the model. Both steps determine the
quality of virtual views which are interpolated from reference views.

This chapter describes a system which is used for image-based scene modeling and ren-
dering in Chapters 4, 5 and 6 of this thesis. The modules of the system provide functions
for camera pose estimation, depth recovery and view synthesis. Since the depth estimation
method is based on the minimization of a global energy function which is de®ned across the
pixel grid of a reference view, it is computationally expensive and done in an of ine step.
The synthesis of virtual images from reference views is GPU-based and thus enables the
robot to rapidly predict the appearance of the environment.

3.1 Camera pose estimation

For the estimation of the camera poses two alternative approaches are employed, depend-
ing on the robot platform used for model acquisition. The views in the image sequences
captured by the Pioneer 3-DX platform (see Chapter 6) are localized using an image-based
approach. In contrast, the laboratory environment of the 2Cobot® platform (see Chapters 4
and 5) is covered by an optical tracking system, which is used for camera localization.

3.1.1 Image-based camera pose estimation

The image-based approach for camera localization applied in this thesis is presented in
[MSSBO09]. As input data the algorithm receives images from a stereo camera and provides
the 6D poses (3D orientation + 3D translation) of the left camera, while using the images of
the right camera for recovering the 3D position of features extracted in the left view. The
pixel correspondences between the features in the left and right image are determined with
subpixel accuracy. Since the algorithm is designed to work at frame rates of 25 Hzand higher
and the 3D reconstruction of the features is time-consuming, it is only done for new, previ-
ously unseen features. To extract the features in the left images, the Kanade-Lucas-Tomasi
(KLT) tracker [LK81, ST94] is used. For a fast feature tracking across several frames, the in-
tensity gradients are only computed in patches around the feature locations and not in the
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whole image as it is done in the original implementation.

The pose estimation method is based on the vision-based GPS (VGPS) approach in [BH04],
which associates a reference coordinate system with the ®rst captured image. The 6D poses
of the images taken afterwards are computed with respect to this coordinate system. The
initial reconstruction of the geometric structure of the features provides a set of N points

f1;:::;Ng;t 1lis predicted in [MSSBO09], using the pose estimate for the (t  1)-th image.
In an iterative procedure both the pose for the t-th view and the 3D positions of the points
in tP; are re®ned.

For the computation of the rotation between the two point sets, the positions of the cen-
troids are subtracted from all points in each set, providing the point sets °P?and 'P?. The
inertia matrix subject to these two point sets is given by

X
tA= tpoopd (3.1)
i=1

In [AHB87], a solution for the rotation matrix is found from the singular value decomposi-
tion (SVD) of 'tA = Ut VT, The rotation matrix is then computed by

'R=tvuT: (3.2)

The translation between the two point sets is given by
‘T = PR P (3.3)

The rotation and translation of the two point sets is directly related to the rotation and trans-
lation of the camera in a static environment.

An important aspect of the algorithm in [MSSBO09], which makes the estimation of the cam-
era pose more robust, is a feature weighting strategy which attenuates the in"uence of fea-
tures which are detected as outliers when ®tting the two point sets. Each feature is weighted
by a factor tw; which decreases with the geometric error between the points in 'P; and the
corresponding points in °P; rotated by {R. The weight equals 0 above a given threshold for
the error. The modi®ed inertia matrix from (3.1) then results in

X!
tAR ="t 1pOOPOT: (3.4)
i=1

One of the strong points of the method in [MSSB09] is that the camera pose estimates are
very accurate, which is achieved, i.a., by special mechanisms which ensure that the features
are extracted in a wide area across the whole image. Furthermore, no arti®cial visual markers
or any external reference systems are required. However, there are also several weaknesses.
One issue is the localization of a camera image which is captured after all features and their
3D positions have been lost. A loss of features might happen in swift rotations of the robot
or after the robot has been switched off. A solution to this problem is given in [MMBS09]
where the pose of a new camera view is computed from SURF correspondences between the
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3.1 Camera pose estimation

new image and a camera image taken in the past and kept in memory. Here SURF stands for
Speeded-Up Robust Features [BETGO08]. However, the image from the memory must have
been captured at a viewpoint close to where the new image is taken since SURF features are
not invariant against viewpoint variations. Another issue results from dynamic scene parts
like moving objects, humans etc. If these objects cover only a small region in the images,
their features can be detected as outliers and receive a low weight during pose estimation.
However, if they cover a large part of the image, the accuracy of the pose estimates drops.
These issues can be tackled by using an active optical tracking system which provides 3D
measurements with respect to a ®xed coordinate frame which are not affected by the image
content.

3.1.2 Camera pose estimation using active optical tracking systems

Figure 3.1(a) shows one of multiple VisualeyeZ™ VZ 4000trackers [pti] which are mounted
on the ceiling of an indoor environment and capture the positions of LED markers attached
to objects moving on the oor. These active-optical real-time 3D trackers are usually em-
ployed for human motion tracking. Due to their high accuracy in the range of 1 mm, the
systems can also be used for acquiring camera pose data during the acquisition of image-
based environment representations. To this end, four LED markers are placed at the corners
of a rectangular plate on top of the camera head, as depicted in Figure 3.1(b). The plate is
strongly attached to the camera system in a way that it is approximately perpendicular to
the cameras' image planes. The markers emit infrared light in a prede®ned pattern and are
controlled via radiocommunication 1.

Figure 3.1(c) shows a top view on the plate and the local coordinate system which is de®ned
for the camera head. As illustrated, the coordinate system has its origin in LED 4. The Xc-
axis is parallel to the line which aligns the LEDs 2 and 3. The zc-axis lies in the plane de®ned
by the LEDs 1, 2 and 3 and is orthogonal to the xc-axis. The yc-axis is orthogonal to both
the x¢-axis and the z¢-axis.

For the estimation of the 3D orientation of the camera head in the world coordinate system
during robot motion the LEDs 1, 2 and 3 are used. The origin of the world coordinate sys-
tem in the environment and the orientation of its axes have been de®ned before during the
calibration of the tracking system. The computation of the camera head rotation requires the
coordinates of the LEDs in the local coordinate system xcyczc. To this end, the 3D positions
of the LEDs are ®rst measured in the world coordinate frame using the tracker, while keep-
ing the camera head static over a time interval. In order to remove noise the measurements
are averaged over time and the position of LED 4 (the origin of the local coordinate system)
is subtracted from the positions of the other LEDs. Then the 3D positions of the LEDs 1, 2
and 3 are rotated so that the LEDs 1 and 2 lie on the x¢-axis and LED 3 in the Xczc-plane. In
general, LED 3 will not exactly lie on the z¢-axis since, in practice, the straight line aligning
the LEDs 1 and 2 is not exactly perpendicular to the straight line aligning the LEDs 2 and
3. The 3D point set with the positions of the LEDs 1, 2 and 3 in the local camera coordinate
system is denoted by °P;; i 2 f 1;2; 3g.

The Visualeyez™ VZ 4000 tracker in Figure 3.1(a) and the Point Grey Bumblebee® XB3 camera system in
Figure 3.1(b) are part of the CoTeSys Central Robotics Laboratory (CCRL), which is supported within the DFG
excellence initiative research cluster Cognition for Technical Systems + CoTeS3yee alsowww.cotesys.org.
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@ (b)

(©

Figure 3.1:(a) One of the trackers which capture the position of LED markers on the camera head from
the ceiling. (b) LED markers in the corners of a rectangular plate on top of the camera
head. (c) The local coordinate system of the camera head.

When the robot moves and acquires an image sequence, the world coordinates of the LEDs
1, 2 and 3 captured by the tracker at the time instant when the t-th image is taken can be
summarized in another 3D point set 'P;; i 2 f 1;2; 3g. To get the matrix 'R which describes
the rotation between the local coordinate frame Xcyczc and the world coordinate frame
XwYw 2w , the two point sets are ®tted using the SVD of the inertia matrix computed from
the two point sets, as described in Section 3.1.1 [AHB87, MSSB09]. The translation'T of
the camera head with respect to the origin of the world coordinate system is provided by
the tracked 3D position of LED 4. The 6D pose of the camera head (3D orientation + 3D
translation) is given by the 4  4-matrix

tR tT

tM=

The matrix is stored for each reference view in the image-based environment representation.
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cost volume

leftimage centerimage righimage

Figure 3.2:Multiple depth hypotheses are tested in a plane sweep to ®nd pixel correspondences for
depth reconstruction.

3.2 View-dependent geometric modeling

As already discussed in Section 2.2.3, view-dependent geometric scene models are often
prefered over one global geometric model of the environment since they account for viewpoint-
dependent depth perception of a point on a re ective surface. The image-based rendering
approach in this thesis uses view-dependent geometry information in terms of dense depth
maps. The depth maps are computed for each reference view using either multiple cameras
in an image acquisition device (see Figure 3.1(b)) or other reference views stored in the envi-
ronment representation. When a dynamic scene is captured, it is preferable to estimate the
depth of the scene from images taken by a multi-camera device with synchronized cameras
since then the images are acquired at the same time instant.

Figure 3.2 illustrates the search for pixel correspondences between the center image and the
left or the right image. This is done by a plane-sweep technique similar to [Col96], which
tests several depth hypotheses by computing the intensity differences between a pixel of the
center image and pixels of the left and right image which correspond to it according to the
depth hypothesis. Comparing the two intensity differences from the left and the rightimage,
the smaller one is stored for each pixel of the center image and for each depth hypothesis,
which results in a cost volume. The intrinsic and extrinsic camera parameters, which are
required for the correspondence search, are determined beforehand by the calibration of the
multi-camera system using [SSF" ]. If the three views in Figure 3.2 are reference views from
the environment representation, the extrinsic camera parameters are provided by their pose
data.

The cost volume is the input data to a global energy minimization technique based on belief
propagation as described in [FHO6]. The pixel grid of the center image is treated as a Markov
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Figure 3.5:Acquisition of an image sequence using a Pioneer 3-DX.

3.4 Results

In experiments a stereo image sequence is acquired using the Pioneer 3-DX platform [mob]
shown in Figure 3.5 which is equipped with a stereo camera 2. The robot is controlled to
move along a circular trajectory around a scene which contains household objects with com-
plex appearance like glasses and knives. On a trajectory length of 1:8 m, the robot captures
213 stereo images with a resolution of 640 480pixels.

The left images of the stereo sequence are stored as reference images in the image-based
scene representation. As described in Section 3.1.1, the poses of the left camera views are
estimated with respect to the coordinate frame of the ®rst acquired camera view, while the
right views are used for the 3D reconstruction of the KLT features. Before the calculation
of a depth map for each left view, the images are subsampled by a factor of 2 to reduce the
computing time and the amount of memory required to store the cost volume.

The Figures 3.6(a), 3.6(b) and 3.6(c) show virtual images rendered at three different view-
points. Figure 3.6(a) shows a distant virtual view of the scene and illustrates the reference
image sequence in terms of red and white squares. The red squares indicate, as in Figure
3.6(c), the seven reference images chosen by the view selection method in Section 3.3.1 for
the current pose of the virtual camera. A comparison between the virtual images and the
real camera images in Figures 3.6(d), 3.6(e) and 3.6(f) shows that the view interpolation ap-
proach in Section 3.3 largely preserves the photorealism of the original images. The rendered
images are nearly free of artifacts. Especially the virtual close-up view in 3.6(b) exhibits a re-
alistic refraction of light by the left glass. In traditional geometry-based approaches for view
synthesis the realistic rendering of such complex optical effects would require exhaustive
raytracing techniques.

Apart from the quality of the virtual images, the execution time of the algorithm is ana-
lyzed. To this end, a sequence of 2620 virtual images is rendered on a Laptop with a Quad
Core processor which works at a clock rate of 1:73 MHz. The shader programs are executed
by the GPU of a NVIDIA GeForce GT 435M. The motion of the virtual camera is controlled

2The Adept MobileRobots Pioneer 3-DX robot and the stereo camera head in Figure 3.5 have been provided by
the German Aerospace Center (DLR).

37


















(h(x)) )
_A%XY

2 + per pixel
- Xc,  depth

P (Xe,)
Yo T X Y,
zZC
: =
+camera '
pose

AW

yw

TW

Figure 4.1:The proposed appearance representation uses Gaussian models for the luminance and the
chrominance of the environment at each pixel at a viewpoint. The Gaussian distributions
are infered from observations along the robot's trajectory. The representation also includes
a depth map and the pose of the robot's camera head for each viewpoint.

Gaussian distribution is the normal-gamma distribution. It has the form

0:k
. — K 0:k % _ k( x o;k)2
Po( ki k) ( 0;k)0p 2 o K exp ok k exp 2 o (4.2)

with k 2 Y;G,;C; again. ( ) is the gamma function in (2.10). Since the form of the

normal-gamma model is fully determined by its four hyperparameters ok, Ok, ok and
ok, It is suf®cient to store these four hyperparameters for a given pixel at a viewpoint. An

example for a normal-gamma distribution in the luminance channel is shown in Figure 4.2.

When the robot makes a new observation Xop = Xopk K=Y:Cy Cr at a viewpoint, the prior
distribution in (4.2) is turned into a posterior distribution using Bayes' formula

P( ki k] Xobk) ! P(Xobk] ki k) Pol( ki k) (4.3)

The posterior distribution in (4.3) is again a normal-gamma distribution with the hyperpa-
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Figure 5.1:An overview of the steps performed by the proposed algorithm for the surprise-driven
autonomous acquisition of object representations.

\. J

5.1 Description of the algorithm

Figure 5.1 shows an overview of the algorithm for the autonomous acquisition of object
representations. The algorithm assumes that the robot is equipped with a multi-camera
system, similar to the one in Figure 3.1(b). The image acquired by the center camera provides
features for the generation of object representations. The left and the right camera images are
used for the reconstruction of the 3D positions of the features. Besides, the algorithm could of
course be easily adapted to a stereo camera system. For each captured image the algorithm
performs the steps @Computation of surprise map®, 2Feature selection®, 2denti®cation of
static features®, 2Recognition / learning of new object features® and 23D reconstruction of
features®. In the following, these steps are explained in detail.
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