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Abstract—We report on our research about the multistreaming
capability of electrically small antenna arrays. It is shown that the
near-�eld interaction of the closely spaced antennas accounts for a
surprisingly good multistreaming capability. This is demonstrated
for a 2 × 2 system of thin half-wavelength dipoles in a multipath
environment provided by two re�ector plates, and isotropic back-
ground noise. Decoupling/power-matching and decoupling/noise-
matching networks are applied at the transmit side and the receive
side arrays, respectively. In the absence of heat loss in the match-
ing networks and antennas, the simultaneous transfer of two data
streams is supported even in the extreme case where the electrical
separation of the antennas in the arrays approaches zero.

I. Introduction

Communication systems which use more than one antenna at
both the transmitting and the receiving end of the link (so-
called multi-input multi-output (mimo) systems), potentially
support the transfer of several data streams at the same time
using the same band of frequencies. In order for this so-called
multistreaming to work, the propagation channel must allow
the transmitted signal to travel to the receiver over a number
of su�ciently di�erent paths in space, and arrive there simulta-
neously from di�erent directions. This spatial structure of the
channel can then be exploited by spatial signal processing at
the transmit and the receive side to establish a number of in-
dependent communication channels [1]. Usually this requires
the antennas inside the array to be spaced su�ciently far apart
such that they can obtain substantially di�erent samples of
the electromagnetic �eld. On the other hand, when the an-
tenna separation is small, the �eld samples are similar and
eventually become almost the same as the distance between
neighboring antennas decreases further towards zero. As this
happens, the wave propagation becomes the same between any
pair of transmit and receive antennas, making the two arrays
essentially look like single antennas. The arrays can no longer
distinguish between di�erent directions, which makes multi-
streaming with very compact antenna arrays impossible [2].

This standard argument from the signal processing litera-
ture ignores, however, the electromagnetic interaction of an-
tennas with each other and the electromagnetic �eld. This in-
teraction causes a number of interesting e�ects to occur which
are important for the multistreaming capability. The electro-
magnetic �eld is changed by the presence of the electric cur-
rents �owing in the antenna [3]. Also, coupling occurs between
the otherwise independent sources of noise inside the receiver
front-ends [4]. Moreover, the noise received by the antenna ar-
ray in an isotropic background noise environment is necessar-
ily correlated when the antennas are placed close to each other

[5]. Moreover, impedance matching networks which are con-
nected between the antenna ports and the inputs of the low-
noise ampli�ers, or the outputs of the high power ampli�ers
impact the properties of the system. When all these e�ects are
taken into account and made use of by proper engineering, it
turns out that multistreaming may still work well even with
compact antenna arrays. We demonstrate this by analyzing a
2×2-mimo system of half-wavelength dipoles and matching
networks in a simple multipath environment consisting of two
metallic re�ection plates. Circuit theoretic multiport analysis
shows that in the absence of heat loss the multistreaming ca-
pability can be maintained even when the distance between
neighboring antennas in the array approaches zero.

II. System under Consideration

Consider two antenna arrays shown on the le� hand side of
Figure 1, each composed of two thin and lossless half wave-
length dipoles. One array is used for transmission the other for
reception. The dipoles are oriented parallel to the z-axis. There
are two ideal metallic re�ection plates placed in the middle
between the two arrays and oriented parallel to the y-z-plane.
These re�ectors ensure that there is multipath transmission
and reception, which is necessary to successfully employ mul-
tistreaming. The circuit theoretic multiport model of this sys-
tem is shown on the right hand side, which also includes the
high power ampli�ers (hpa), the low-noise ampli�ers (lna)
and two lossless impedance matching networks. The hpas are
assumed to be linear and modeled as ideal voltage sources
with a series resistance R. The open-circuit generator voltage
vector uG ∈ CC2×1 ⋅V contains the information that we want to
transfer to the receiver. The generators are connected to an
impedance matching network which operation is described by:

[ uT

uA
] = ZMT [ iT−iA ] , (1)

where ZMT ∈ CC
4×4 ⋅Ω is its impedance matrix, and the port

voltage vectors uT , uA ∈ CC
2×1 ⋅V, and the corresponding port

current vectors iT , iA ∈ CC
2×1 ⋅A are de�ned in Figure 1. We

assume that the transmit impedance matching network is re-
ciprocal and lossless, which necessitates that ZMT is a symmet-
ric matrix with vanishing real-part [6]. Modeling the coupling
between all pairs of the four antennas is taken care of by the
antenna multiport, described by:

[ uA

uB
] = ZA [ iAiB ] = [ ZAT ZATR

ZART ZAR
] [ iA

iB
] , (2)
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Figure 1: Left: Geometrical setup of the multiantenna system under consideration. Right: Multiport system model comprising
(from le� to right) high-power ampli�ers, transmit impedance matching network, noisy antenna multiport, receive impedance
matching network, and low-noise ampli�ers.

where ZA ∈ CC
4×4 ⋅Ω is its impedance matrix which is com-

posed of the transmit impedance matrix ZAT ∈ CC
2×2 ⋅ Ω, that

describes the mutual coupling between the transmit side an-
tennas, the receive impedance matrix ZAR ∈ CC

2×2 ⋅ Ω, which
describes the mutual coupling between the receive side anten-
nas, and �nally, the transimpedance matrix ZART ∈ CC

2×2 ⋅ Ω,
that describes the mutual coupling between each pair of trans-
mit and receive side antennas. Because antennas are reciprocal
there is ZA = Z

T
A, which says that ZATR = Z

T
ART , and that both

ZAT and ZAR are symmetric matrices. The impedance matrix
ZA only describes a noiseless antenna array. In reality, even
lossless antennas are noisy due to the reception of background
noise. When this background noise impinges isotropically, it
can be shown that the open-circuit antenna noise voltage vec-
tor ũN ∈ CC

2×1 ⋅V, has the correlation matrix [5]:

E [ũNũ
H
N] = 4kTA∆f Re{ZAR} , (3)

where k is Boltzmann’s constant, TA is the noise temperature
of the antenna, and ∆f is the bandwidth. The noisy antenna
ports are connected to one side of another impedance match-
ing network, described by:

[ uD

uC
] = ZMR [ iD−iB ] , (4)

where ZMR ∈ CC
4×4 ⋅Ω is its impedance matrix, and the port

voltage vectors uC , uD ∈ CC
2×1 ⋅V, and the corresponding port

current vectors iB , iD ∈ CC
2×1 ⋅A are de�ned in Figure 1. We

assume that the receive impedance matching network is recip-
rocal and lossless, which necessitates that ZMR is a symmetric
matrix with vanishing real-part [6]. The noise contributions of
the lnas can be modeled by inclusion of both a voltage noise
uN ∈ CC

2×1 ⋅V, and a current noise iN ∈ CC
2×1 ⋅A, [7]. This is

shown in the right-most part of Figure 1. We assume that the
noise contributions of the two lnas are uncorrelated, which is
reasonable when the lnas are independent devices. However,
the noise voltage and the noise current corresponding to each
lna are usually correlated. Hence,

E[iN iHN] = β I2 , E[uNu
H
N] = βR2

N I2 , E[uN i
H
N] = ρβRN I2 .

(5)
Here β ∈ RR+ ⋅A2 denotes the second moment of the noise cur-
rent within a bandwidth ∆f , and RN =

√
E[∣uN, j ∣2]/E[∣iN, j ∣2],

is the noise-resistance of the lnas, while the complex noise
correlation ρ = E[uN, j i

∗
N, j]/√E[∣uN, j ∣2] ⋅ E[∣iN, j ∣2].

While it is true in general that in the equation (2), we have
ZATR = Z

T
ART , it is also true that in radio communications the

signal attenuation between the transmitter and the receiver is
usually extremely large. Hence, ∣∣ZATR ∣∣F = ∣∣ZART ∣∣F ≪ ∣∣ZAT ∣∣F
holds true in practice. This motivates to keep ZART as it is,
but to set ZATR = O2 in (2). This will be called the unilat-
eral approximation. Because then uA ≈ ZAT iA, the electrical
properties at the transmit side antenna ports are (almost) in-
dependent of what happens at the receiver.

III. Decoupling the Antenna Ports

In the noiseless case, the cascade of the antenna multiport and
both impedance matching networks can be described (within
the realm of the unilateral approximation) as:

[ uT

uD
]∣
ũN = 0

= [ ZT O2

ZRT ZR
] [ iT

iD
] . (6)

The transmit impedance matching network can be designed
such that in (6): ZT = R I2 holds true. In this way, the antenna
ports at the transmitter are decoupled and each behaves like a
resistance matching the internal impedance of the generators.
Analyzing the circuit from Figure 1 shows that

ZMT =

⎡⎢⎢⎢⎢⎣
O2 −j√RRe{ZAT}1/2
−j√RRe{ZAT}1/2 −j Im{ZAT}

⎤⎥⎥⎥⎥⎦ , (7)

ensures that ZT = R I2 holds true. Note that ZMT from (7) is
a symmetric matrix with vanishing real-part, thus it describes
a reciprocal and lossless multiport. In a similar fashion, one
can design the receive impedance matching network such that
it has an impedance matrix given by:

ZMR =

⎡⎢⎢⎢⎢⎢⎣
j Im{Zopt} I2 j

√
Re{Zopt}Re{ZAR}1/2

j
√

Re{Zopt}Re{ZAR}1/2 −j Im{ZAR}
⎤⎥⎥⎥⎥⎥⎦
,

(8)
which leads in (6) to ZR = Zopt I2. As a consequence, the ports
of the receiver’s antennas become decoupled and each provides a

source with impedance Zopt = RN(√1 − (Im{ρ})2 + jIm{ρ}),
ensuring the receiver’s noise �gure is minimized [4]. Such an-
tenna arrays with a decoupling network are realizations of mul-
timode antennas [8].

2682



IV. MIMO ChannelMatrix

The impedance matching networks impact the e�ective tran-
simpedance ZRT in (6). The speci�c choice of the transmit
and receive impedance matching networks according to (7)
and (8) leads to:

ZRT =

√
R ⋅ Re{Zopt} Re{ZAR}−1/2ZART Re{ZAT}−1/2. (9)

While the impedance matching networks have done their job
to decoupled the receiver’s ports and the transmitter’s ports,
the mutual coupling within both arrays (in terms of Re{ZAR}
and Re{ZAT}), has reappeared by modifying the coupling be-
tween the transmitter and the receiver. Circuit analysis of the
multiport in Figure 1, given the impedance matching networks
from (7) and (8), reveals that the noise contaminated observ-
able uR ∈ CC

2×1 ⋅V is given by:

uR =
1⁄2

R + Zout

ZRTuG + n, (10)

where n ∈ CC2×1 ⋅V is the resulting noise voltage with

E [nnH] = σ 2
n I2 , (11)

with

σ 2
n =

R2RN∣R + Zopt ∣2
√
1 − (Im{ρ})2 4kTA∆f nfmin . (12)

Herein, nfmin is the minimum noise �gure [4]:

nfmin = 1 + βRN

2kTA∆ f
⋅ (√1 − (Im{ρ})2 − Re{ρ}) . (13)

It is reasonable to de�ne transmit power PT as the total electric
power which is delivered by the generators into the transmit
impedance matching network, as indicated on the le� hand
side of Figure 1. Thus, PT = E[Re{uH

T iT}]. From (6), we have
uT = ZT iT, and the transmit impedance matching network en-
sures that ZT = R I2 . The latter implies that uT = 1⁄2uG, thus:

PT = 1⁄4E [∣∣uG∣∣22] /R. (14)

It is convenient to de�ne a channel input vector x as a scaled
version of the generator voltage vector uG, and a channel out-
put vector y as a scaled version of the noisy observation uR :

x =
1

2
√
R
uG , y =

∣R + Zopt ∣
R

√
RN

√
1 − (Im{ρ})2 uR . (15)

Applying (15) to (10), it follows with the help of (9) and (12):

y = H̃x + ϑ , (16)

where ϑ contains noise samples with correlation matrix:

E [ϑϑH] = σ 2
ϑ I2 , σ 2

ϑ = 4kTA∆f nfmin , (17)

hence, samples of white noise. Moreover,

PT = E [∣∣x ∣∣22] , (18)

and is, thus, the mean squared Euclidean norm of the channel
input vector x. In this way, (16) is a standard mimo system
model, with the mimo channel matrix H̃ ∈ CC2×2 given by:

H̃ = e−jφ Re{ZAR}−1/2ZART Re{ZAT}−1/2 , (19)

where φ = angle (R + Zopt). Clearly, the unimodular constant
term e−jφ has no impact on performance, so that it can safely
be neglected in information theory, replacing H̃ by:

H = Re{ZAR}−1/2ZART Re{ZAT}−1/2 . (20)

A beautiful aspect of this result is that, from an information
theory perspective, there is no need to know any of the in-
ternal details, such as R, RN, ρ, and Zopt . All that matters is
condensed into the channel matrix given in (20), and can be
obtained solely and readily from parts of the array impedance
matrix ZA .

V. The Array ImpedanceMatrix

Computing the array impedance matrix, let us �rst consider
a single half-wavelength dipole in the origin O of a Cartesian
coordinate system and lined up with its z-axis. With a current
i �owing through the dipole’s excitation port, the resulting
electric �eld at a point P in the far-�eld is given in spherical
coordinates as (e.g., [9], page 153):

E⃗ = e⃗θ
jie−j2πr/λ

2πrє0c
⋅ cos (1⁄2π cos θ)

sin θ
, (21)

where λ is the wave length, r the distance of the point P to
the origin O, and θ the angle that OP makes with the z-axis.
Moreover, є0 is the electric constant, and c is the speed of light.
Now let the point P be in the x-y-plane, such that θ = π/2. If
another λ/2-dipole is located in P and oriented in parallel to
the �rst dipole (i.e., in the direction of the z-axis), then the
open-circuit voltage that is induced into this dipole is given
by the product of the electric �eld strength and the dipole’s
e�ective length leff (e.g., [9], page 80). Because leff = λ/π for
a λ/2 dipole (e.g., [3], page 509), the transimpedance of these
two dipoles equals:

ZART =
e−j2πr/λ

r
⋅ jλ

2π2є0c
, r ≫ λ. (22)

Consider now the scenario from the le� hand side of Figure 1.
The transmitter’s and the receiver’s array are separated by the
distance D, while the two λ/2-dipoles inside each array are
spaced a distance d apart. Two symmetrically located metal-
lic re�ection plates provide a de�ned multi-path environment.
They are set a distance L apart. When a line were drawn from
the center of each array to the center of each re�ection plate, it
would make an angle ϕ with the array line-ups (parallel to the
x-axis). The distance D is assumed to be large enough such
that the partner array and the re�ectors are well in the far
�eld. We assume in the following that the wave propagation
can be approximated accurately enough by quasi optical rays
with perfect re�ections. Because there are three paths (a direct
path and two paths over the re�ection plates) by which the
transmitter can reach the receiver, the transimpedance matrix
ZART can be written as the sum of three components:

ZART = ZART,1 + ZART,2 + ZART,3 , (23)

where (applying (22) for each pair of distant antennas)

ZART,1 =
αe−j2πD/λ

D
[ 1 1
1 1
] , with α =

jλ

2π2є0c
, (24)
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corresponds to the direct path, and

ZART,2,3 =
−αe−j2πr/λ

r
[ e±j2π d

λ cos ϕ 1

1 e∓j2π
d
λ cos ϕ

] (25)

correspond to the paths over the two re�ection plates, respec-
tively. Herein, r is the distance from the center of the trans-
mitter’s array to the center of the receiver’s array, taking the
longer way over the re�ection plates:

r = D/ sin ϕ. (26)

The negative sign of the factor α in (25) is due to the re�ected
waves having to change their phase by 180 degrees, because
the incident �eld is polarized tangential to the re�ectors. Using
the relationship D/r = sin ϕ from (26), we can rewrite (23) as:

ZART =
αe−j2πD/λ

D
[ ã b̃

b̃ ã
] , ã = 1 − 2e−jΨ sin(ϕ) cos(2π d

λ
cos ϕ)

b̃ = 1 − 2e−jΨ sin ϕ,
(27)

where we have introduced the variable

Ψ =
2πD

λ
( 1

sin ϕ
− 1) , (28)

for notational convenience. Now what happens when the dis-
tance d of the dipoles inside the arrays is made smaller and
smaller? It is clear from (27) that ZART will tend to become a
rank one matrix:

lim
d/λ→0

ZART =
αe−jkD

D
(1 − 2e−jΨ sin ϕ)[ 1 1

1 1
] . (29)

Because of this it is usually argued that by making d smaller
and smaller, the two antennas in each array essentially look
like a single antenna, making multi-streaming more and more
di�cult, and ultimately impossible as d/λ→ 0. However, recall
that from an information theory point of view, it is not ZART

which is the relevant mimo channel matrix, but rather the
matrix H given in (20). Therefore, in order to �nd H, we also
have to �nd the real-parts of the transmit and receive array
impedance matrices, which account for the mutual coupling
of the antennas within the arrays (intra-array coupling), in ad-
dition to ZART , which describes the mutual coupling between
the arrays (inter-array coupling). Now it is an interesting fact
that the real-part of the normalized array impedance matrix
(normalized such that the main diagonal is unity) for two co-
linear λ/2-dipoles is almost exactly the same as the normal-
ized array impedance matrix of two Hertzian dipoles [10]. One
therefore obtains: [10], [11]:

Re{ZAT} = Re{ZAR} = 73Ω [ 1 Θ(2πd/λ)
Θ(2πd/λ) 1

] , (30)

where
Θ(x) = 3

2
( sin x

x
+ cos x

x2
− sin x

x3
) . (31)

Notice that as d/λ→ 0, the rank of these impedance matrices
becomes unity. Because in (20), these matrices appear with
their inverse square root, it is possible that the channel matrix
H retains full rank, despite that ZART , Re{ZAT}, and Re{ZAR}
all tend to rank-de�cient matrices. Let us look now into this.

VI. Super-CompactMIMO System

By substituting (31) into (30) and the latter together with (27)
into (20), one can calculate the actual mimo channel matrix
H. To this end, one can make use of the fact that:

[ 1 Θ
Θ 1

]−1/2 [ ã b̃

b̃ ã
] [ 1 Θ

Θ 1
]−1/2= 1

1 − Θ2
[ ã − b̃Θ b̃ − ãΘ
b̃ − ãΘ ã − b̃Θ ] .

(32)
Asymptotically, letting the electric distance d/λ→ 0, one ob-
tains a super-compact mimo system with channel matrix:

H0 = lim
d/λ→0

H = γ [ a b
b a
] , a = 4e jΨ − 3 sin(ϕ) + 5 sin 3ϕ

b = 4e jΨ − 13 sin(ϕ) − 5 sin 3ϕ,
(33)

where
γ =

j1.64e−j2πD/λ

2πD/λ ⋅ e−jΨ
8

. (34)

As det H0 = γ
2 80 (e jΨ − 2 sin ϕ) (sin(ϕ) + sin 3ϕ), we can see

that, in general, H0 has full rank which makes multi-streaming
possible even for arbitrarily small antenna separation d/λ inside
the arrays.
In order to obtain more insight we should look at the eigen-

values of HH
0 H0 , for they are directly related to the informa-

tion theoretic channel capacity [1].

HH
0 H0 = V [ ξ1 0

0 ξ2
]VH . (35)

The eigenvalues ξ1 and ξ2 compute to:

ξ1 = ∣γ∣2 64 (3 − 2 cos(2ϕ) − 4 cos(Ψ) sin ϕ) ,
ξ2 = ∣γ∣2 1600 cos4(ϕ) sin2 ϕ.

⎫⎪⎪⎬⎪⎪⎭ (36)

Of course, it is good to have as large eigenvalues as possible,
so that from (36) we see that Ψ should be chosen such that
cosΨ = −1, because sin ϕ ≥ 0. Hence:

Ψopt = π + n ⋅ 2π, n ∈ {0,±1,±2,⋯}. (37)

Substituting Ψopt for Ψ in (36), it turns out that ξ1 > ξ2. Hence,
we obtain for the eigenvalue ratio:

ξmin

ξmax

=
ξ2
ξ1
= 25

cos4(ϕ) sin2 ϕ

(1 + 2 sin ϕ)2 < 1. (38)

E�ective multistreaming requires that both these eigenvalues
are similar, for otherwise the system supports one »strong«
and one »weak« data stream. The weak data stream, contribut-
ing only marginally to the total channel capacity, would make
multistreaming much less e�ective. Because ξmin/ξmax < 1, it
is clear that the ideal case of having identical eigenvalues does
not happen for the super-compact mimo system under consid-
eration. However, one can bring the ratio ξmin/ξmax as close
to unity as possible by maximization with respect to the angle
ϕ. Taking the �rst derivative of (38) with respect to ϕ and
setting it to zero, we �nd that ϕopt ≈ 27

○. By letting Ψ = Ψopt ,
and ϕ = ϕopt , it follows with (28) and (37) that the optimum
distance Dopt is given by

Dopt = λ
n + 1⁄2

−1+ 1/ sin ϕopt

. (39)
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Figure 2: Smallest achievable eigenvalue spread of HHH.

Using the numerical value for ϕopt ≈ 27
○, we obtain

Dopt ≈ 0.836λ ⋅ (n + 1⁄2) , n ∈ NN , n ≫ 1. (40)

Finally, we can also give the optimum distance L between the
re�ectors explicitly:

Lopt = Dopt / tan ϕopt ≈ 1.955 ⋅ Dopt . (41)

When ϕ = ϕopt , we obtain from (38) that

max
ξmin

ξmax

≈ 0.892. (42)

Now this ratio of eigenvalues of HH
0 H0 is pretty close to unity.

In fact, ξmin is less than 0.5dB below ξmax. This means that
e�ective multistreaming is possible even if the electrical antenna
separation inside the arrays approaches zero.

VII. CompactMIMO System

While the asymptotic analysis where we let d/λ→ 0 is inter-
esting and insightful, a real mimo system will always have
�nite d/λ. In the following, we therefore have a look at the
system from Figure 1 with variable distance d. The solid curve
in Figure 2 shows the quantity

Ψ =max
ϕ

ξmin

ξmax

,

as a function of d/λ. One can spot a number of interesting ob-
servations. For a relatively large antenna separation, character-
ized by d > 0.82λ, there always is some way or other to place
the re�ection plates which result in a unity Ψ . This represents
the best use of multistreaming because two streams can be sup-
ported with perfectly equal share of the total channel capacity.
Now when we reduce d below 0.82λ, we see that Ψ begins
to drop until it reaches its global minimum of Ψmin ≈ 0.45
at an antenna separation of about 0.61λ. It is quite remark-
able that a relatively large separation of d = 0.61λ is the worst
case with respect to multistream transmission, where even the
best placing of the re�ection plates will result in more than
3dB eigenvalue spread. However, as we decrease the distance

d further, remarkably enough, Ψ begins to increase again, ulti-
mately reaching the limit of 0.892, as d → 0. In fact, compact
arrays, with d ≤ 0.25λ, can allow for remarkably e�ective mul-
tistream operation. The dashed curve in Figure 2 shows the
hypothetical result for Ψ for the case where the intra-array
coupling, i.e., mutual coupling between antennas inside the
arrays, is ignored. This can be calculated by merely setting the
real-parts of ZAT and ZAR equal to scaled identity matrices,
irrespective of the antenna separation d. This ignorance of
intra-array coupling is commonplace in contemporary signal
processing and information theory literature [2]. Without con-
sidering intra-array coupling the results for Ψ are remarkably
di�erent. Once d is reduced below λ/2, the hypothetical value
of Ψ drops monotonically towards zero as d is reduced. This
is in striking contrast to the large value of Ψ which actually
results from taking the full antenna mutual coupling into ac-
count. Moreover, ignoring intra-array coupling does not pre-
dict the actual low value of Ψ for the relatively large separa-
tion of d = 0.61λ, thereby predicting falsely that Ψ is unity for
d ≥ λ/2. This demonstrates how important it is to take the full
mutual antenna coupling into account not only for compact
antenna arrays, but also for arrays with an antenna separation
in the neighborhood of λ/2.

VIII. Conclusion

From a circuit theoretic multiport analysis, capturing all rele-
vant physics of mutual antenna coupling, we have shown for
a 2×2-mimo system, composed of four thin half-wavelength
dipoles and two re�ecting plates in otherwise empty space,
that, in the absence of heat loss, e�ective multistreaming re-
mains possible even for arbitrarily small antenna separation
inside the arrays, provided means are taken to decouple the
antenna ports at both arrays, for example by employing de-
coupling multiports.
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