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SUMMARY 

Annual sum and seasonal patterns of gross nitrogen (N) turnover in soils of 

terrestrial ecosystems in general and steppe soils in particular are poorly understood 

due to limited temporal resolution in previous studies. Based on whole-year round 

sampling with monthly to submonthly temporal resolution at replicated ungrazed (UG) 

and wintergrazed (WG) steppe plots in Inner Mongolia, we show that annual gross 

ammonification was 240 and 215 kg N ha-1 year-1, while annual net ammonification 

was -9 and -6 kg N ha-1 year-1 for UG and WG respectively. Annual gross nitrification 

was 417 and 362 kg N ha-1 year-1, while annual net nitrification was 31 and 19 kg N 

ha-1 year-1 at UG and WG, respectively. Furthermore, no relationship was found 

between gross and net N turnover. Net rates of N turnover did not provide insight into 

dynamics and magnitude of actual (gross) rates of N turnover.  

In the whole-year round experiment, four different seasons with characteristic 

patterns of N turnover were identified: (1) Growing season characterized by 

drying/rewetting cycles and counter-rotating cycles of microbial growth and gross 

rates of ammonification, contributed 46% to annual cumulative gross ammonification 

and 30.5% to nitrification, and almost all net N turnover . (2) Transition to winter 

with first freeze events characterized by a sharp decline in microbial biomass in 

conjunction with a peak of gross nitrification, contributed 6.5% to gross 

ammonification while 27.5% to nitrification. (3) Winter with constantly frozen soil 

characterized by low rates of N turnover, while there was slow buildup of microbial 

biomass; contributed 8.5% to gross ammonification and 8.5% to nitrification (4) 

Spring freeze-thaw period characterized by peaks of gross N turnover and soil nitrate 

concentrations at highest soil moisture values, contributed 39% to gross 

ammonification and 33.5% to nitrification. Winter grazing significantly decreased 

gross N turnover and microbial biomass only in freeze-thaw period by decreasing soil 

moisture and temperature. This study shows that freeze thaw periods are key periods 

for understanding patterns and magnitudes of gross N turnover and that low temporal 

resolution studies on gross N turnover as well as net N turnover studies in general 
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may not allow for a functional insight into ecosystem N turnover. 

During the last decades, scientists are considerably interested in the competition for 

nitrogen between plant and microbe which are crucial regulators of belowground 

nitrogen cycling in terrestrial ecosystems. However, such interactions have mostly 

been excluded from experimental setups for the investigation of gross inorganic N 

fluxes and N partitioning to plants and microorganisms. Ungulate grazing is likely to 

feed back on soil N fluxes, and hence it is of special importance to simultaneously 

investigate grazing effects on both plant and microbial N fluxes in intact plant-soil 

systems, where plant-microbe interactions persist during the experimental incubation. 

Based on the homogenous 15NH4
+ labelling of intact plant-soil monoliths we 

investigated how various stocking rates (0, 1.5, 4.5, and 7.5 sheep ha−1 grazing 

season−1) in steppe of Inner Mongolia feedback on gross rates of N mineralization 

and short-term inorganic N partitioning between plant, microbial and soil N pools. 

Our results showed that the effect of grazing on gross N mineralization was 

non-uniform. At low stocking rate gross N mineralization tended to decrease but 

increased with higher grazing pressure. Hence, there was no significant correlation 

between stocking rate and gross N mineralization across the investigated grazing 

intensities. Grazing decreased 15N recovery both in plant and microbial N pools but 

strongly promoted NO3
− accumulation in the soil and thus egatively affected potential 

ecosystem N retention. This appeared to be closely related to the grazinginduced 

decline in easily degradable soil C availability at increasing stocking rate. 

Grazing affects not only the N cycling in the steppe grsaaland, but also the soil 

labile organic carbon (LOC) oxidation, which drives the flux of CO2 between soils 

and the atmosphere. However, the impact of grazing management and the 

contribution soil aggregate size classes (ASC) to LOC from grassland soils is unclear. 

We evaluated the effects of grazing intensity and soil ASC on the soil LOC, including 

CO2 production, microbial biomass carbon (MBC) and dissolved organic carbon 

(DOC) and nitrogen mineralization (Nmin) in topsoils (0-10 cm) in Inner Mongolia, 

Northern China. Soil samples were separated into aggregate size classes of 0-630 um 

(fASC), 630-2000 um (mASC) and >2000um (cASC). The results showed that heavy 

grazing (HG) and continuous grazing (CG) increased LOC significantly compared to 
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an ungrazed site since 1999 (UG99) and an ungrazed site since 1979 (UG79). For 

winter grazing site (WG), no significant differences were found. CO2 production was 

highest in cASC, while lowest in fASC. MBC and DOC showed the highest values in 

mASC and were significantly lower in fASC. Grazing increased Nmin in bulk soils 

while exhibited complex effects in the three ASCs. The results suggest that the rate of 

carbon mineralization was related with the rate of nitrogen accumulation. To reduce 

CO2 emission, nutrient loss, and improve soil quality and productivity, moderate 

grazing is suggested. 

To summarize, this study shows the freeze-thaw process is the key period to 

understand the whole-year round N cycling which produces approx. 50% inorganic N. 

Grazing effects were mostly pronounced in the spring freeze thaw period by 

decreasing the temperature and soil moisture in winter grazed site, but not in other 

periods of the year. Net rates of N turnover did not provide insight into dynamics and 

magnitude of actual (gross) rates of N turnover. Gross nitrification exceeded gross 

ammonfication both during freeze-thaw periods and at the annual scale. Grazing 

reduced both plant and microbial N acquisition but increased nitrification and nitrate 

accumulation in the soil and thus negatively affected potential ecosystem N retention. 

The grazing stock of approximately 1.5 sheep ha-1 y-1 is recommended to establish 

sustainable summer grazing in semi-arid steppe of Inner Mongolia. Heavy grazing 

(i.e. HG and CG) increased CO2 production significantly as well as Nmin in bulk soils; 

however, moderate grazing (i.e. WG) exhibited no significant effects, which is 

consistent with the finding that moderate grazing increases C and N sequestration. 
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ZUSAMMENFASSUNG 

Sowohl die Gesamtjahresleistung wie auch saisonale Schwankungen von 

Brutto-N-Umsetzungen in Böden terrestrischer Ökosysteme sind aufgrund von stark 

eingeschränkter zeitlicher Auflösung früherer Studien bisher kaum verstanden. Dies 

gilt insbesondere für semi-aride kontinentale Steppenböden. Auf Basis von 

Ganzjahresmessungen mit mindestens monatlicher zeitlicher Auflösung zeigt diese 

Dissertation, dass die jährliche Brutto-Ammonifikation in unbeweideten (UG) und im 

Winter beweideten (WG) Steppenböden der Inneren Mongolei 240 und 215 kg N ha-1 

Jahr-1 betrug, während eine Netto-Ammonifikation von -9 and -6 kg N ha-1 Jahr-1 für 

UG und WG bestimmt wurde. Die jährliche Brutto-Nitrifikationsleistung betrug 417 

(UG) und 362 (WG) kg N ha-1 Jahr-1, während die Netto-Nitrifikation nur 31 und 19 

kg N ha-1 Jahr betrug. Es konnte kein Zusammenhang zwischen Netto- und 

Brutto-Raten der Ammonifikation und Nitrifikation gefunden werden, so daß die 

Netto-Raten keinen Einblick in die Dynamik und Größenordnung der tatsächlichen 

N-Umsetzungen erlaubten. 

Im Rahmen von Ganzjahresmessungen konnten vier Jahreszeiten mit 

charakteristischen N-Umsetzungsmustern identifiziert werden: (1) Wachstumsperiode 

mit Austrocknungs/Wiederbefeuchtungszyklen und gegenläufigen Zyklen von 

mikrobiellem Wachstum und Brutto-Ammonifikation. Diese Periode trug 46 bzw.  

30.5 % zur jährlichen Brutto- Ammonifikation bzw. –Nitrifikation bei, während 

gleichzeitig fast die gesamte Netto-N-Mineralisierung beobachtet wurde. (2) 

Übergangsphase zum Winter mit ersten Frostereignissen im Oberboden. Dieser 

Zeitraum war gekennzeichnet von einem scharfen Einbruch der mikrobiellen 

Biomasse im Boden und gleichzeitig einem starken Anstieg der Brutto-Nitrifikation. 

Insgesamt wurden hier 6.5 % bzw. 27.5 % der jährlichen Brutto-Ammonifikation bzw. 

–Nitrifikation beobachtet. (3) Winter mit permanent geforenem Boden. Dieser 

Zeitraum war durch niedrigste N-Umsetzungsraten (jeweils 8.5% der jährlichen 

Brutto-Ammonifikation wie auch der Brutto-Nitrifikation) gekennzeichnet, während 

ein Netto-Aufbau der mikrobiellen Biomasse beobachtet werden konnte. (4) Die 

Frühlings-Frost-Tau-Periode war gekennzeichnet durch hohe Brutto-N- 
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Umsetzungsraten (39% bzw. 33.5% der jährlichen Brutto-Ammonifikation bzw. 

Brutto-Nitrifikation) und Boden-Nitrat-Konzentrationen.  

Winterbeweidung führte nur in der Frost-Tau-Periode des Frühlings zu reduzierten 

Brutto-N-Umsetzungen und verringerter mikrobieller Biomasse, was auf reduzierte 

Temperaturminima und Bodenfeuchte auf den beweideten Untersuchungsflächen 

zurückgeführt werden konnte. Die vorliegende Arbeit zeigt somit, daß 

Frost-Tau-Perioden der Schlüssel zum Verständnis der Größenordnung von 

Brutto-N-Umsetzungen in kontinentalen Steppenböden sind und daß Studien, die auf 

geringerer zeitlicher Auflösung und auf Netto-N-Umsetzungen basieren, kein 

funktionales Verständnis des N-Kreislaufes dieser Ökosysteme zulassen. 

Die Konkurrenz um mineralischen N zwischen Pflanzen und Mikroorganismen ist 

ein wesentlicher Steuerfaktor der Boden-N-Umsetzungen. Jedoch wurden 

Pflanze-Mikroorganismen-Boden-Interaktionen in bisherigen experimentellen 

Ansätzen zur Untersuchung mikrobieller N-Umsetzungen und zur Allokation von 

mineralischem N im Pflanze-Boden-Mikroorganismen-System in der Regel 

ausgeblendet. Beweidung durch Paarhufer dürfte sehr sich sehr wahrscheinlich auf 

solche Interaktionen auswirken. Daher ist es in Beweidungsexperimenten von 

besonderer Wichtigkeit, simultan sowohl mikrobielle wie auch pflanzliche 

N-Umsetzungen in intakten Pflanzen-Boden-Systemen, in denen Pflanze-Mikroben- 

Interkationen fortdauern,  zu untersuchen. So wurden im Rahmen dieser Arbeit 

intakte Pflanzen-Boden-Monolithe homogen mit 15NH4
+ gelabelt, um zu untersuchen, 

wie sich verschiedene Beweidungsintensitäten (0, 1.5, 4.5, und 7.5 Schafe pro Hektar 

und Beweidungsperiode) auf Brutto-N-Mineralisierung und kurzfristige Allokation 

von mineralischem N in pflanzlichen, mikrobiellen und abiotischen Boden-N-Pools 

auswirken. Es zeigte sich, dass der Beweidungseffekt auf Brutto-N-Mineralisierung 

nicht-linear war. So tendierte die Brutto-N-Mineralisierung im Vergleich zur 

unbeweideten Kontrolle bei niedriger Beweidungsintensität abzunehmen, während 

eine Zunahme bei größeren Beweidungsintensitäten beobachtet wurde. Die 

Beweidung reduzierte die 15N-Wiederfindung sowohl in der Pflanze wie auch in den 

Bodenmikroorganismen, während die Nitrat-Akkumulation im Boden mit der 

Beweidung zunahm, so daß mit zunehmender Beweidung eine Abnahme der 
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potenziellen N-Retention im Ökosystem beobachtet wurde. Dies schien in engem 

Zusammenhang mit einer beweidungsbedingten Abnahme der Verfügbarkeit an 

labilem C im Boden zu stehen. 

Beweidung beeinflusst nicht nur den N-Kreislauf in semi-ariden Grasländern, 

sondern wirkt sich auch auf die Oxidation von labilem organischem Kohlenstoff 

(LOC) aus, was den CO2-Fluß zwischen Boden und Atmosphäre steuert. Über die 

genauen Auswirkungen des Beweidungsmanagements und den Beitrag von 

Aggregatklassen (ASC) auf LOC gibt es allerdings keine Erkenntnisse. Für eine 

Abschätzung der Auswirkungen der Beweidungsintensität und von Bodenag- 

gregatklassen auf LOC wurden für Oberböden (0-10 cm) der Inneren Mongolei in 

Norchina die CO2-Produktion, Kohlenstoff der mikrobiellen Biomasse (MBC), 

gelöster organischer Kohlenstoff (DOC) und Stickstoffmineralisierung (Nmin) 

gemessen. Die Bodenproben wurden in Aggregatklassen von 0-630 um (fASC), 

630-2000 um (mASC) und >2000um (cASC) aufgeteilt. Die Ergebnisse zeigen, dass 

intensive Beweidung (HG) and kontinuierliche Beweidung (CG) zu signifikant 

höheren Anteilen an LOC führten verglichen mit Flächen, die seit 1999 (UG99) und 

1979 (UG79) unbeweidet sind. Für Flächen mit Winterbeweidung (WG) konnten 

keine signifikanten Unterschiede festgestellt werden. Für cASC wurde die höchste 

und für fASC die niedrigste CO2-Produktion gemessen. Bezüglich MBC und DOC 

wurden die höchsten Werte für mASC und significant niedrigere Werte für fASC 

festgestellt. Beweidung führte zu generell höheren Nmin-Werten in Gesamtböden, 

wohingegen sich unterschiedliche Reaktionen für die drei ASCs zeigten. Die 

Ergebnisse legen nahe, dass die Rate der Kohlenstoffmineralisierung mit der Rate der 

Stickstoffakkumulation zusammenhängt. Für eine Reduzierung der CO2-Emissionen 

und des Nährstoffverlust sowie für eine Verbesserung der Bodenqualität und 

–produktivität wird ein extensiveres Beweidungsmanagement empfohlen. 

Zusammenfassend ist festzuhalten, daß Frost-Tau-Perioden mit einem Beitrag von 

etwa der Hälfte der jährlichen Brutto-Produktion von mineralischem Stickstoff sich 

als Schlüssel für das Verständnis des N-Kreislaufes der untersuchten kontinentalen 

Steppen erwiesen haben. Auch die Beweidungseffekte auf Brutto-N-Umsetzungen 

waren im wesentlichen auf diese Zeiträume beschränkt und wurden über die 
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Auswirkung beweidungsbedingt reduzierter Vegetationshöhe auf Schneemengehöhe 

und damit Bodentemperatur und Bodenfeuchte gesteuert. Nicht nur in der 

Frost-Tau-Periode, sondern auch auf jährlicher Skala war die Brutto-Nitrifikation 

größer als die Brutto-Ammonifikation. Zunehmende Beweidungsintensität führte zu 

einer Reihe ökologisch unerwünschter Konsequenzen wie reduzierte N-Aufnahme 

durch Pflanzen und Mikroorganismen wie auch Nitrat-Akkumulation im Boden und 

somit zu reduzierter N-Retention im Ökosystem. Diese Folgen blieben unterhalb 

einer Beweidungsintensität von 1.5 Schafen pro Hektar und (Sommer-) 

Beweidungssaison aus, so daß dieser Schwellenwert für eine nachhaltige Beweidung 

in den untersuchten semi-ariden Steppen empfohlen wird. Intensive Beweidung (z.B. 

HG und CG) führte zu einer signifikant erhöhten CO2-Produktion sowie zu 

signifikant erhöhten Nmin-Werten in Gesamtböden; im Gegensatz dazu zeigten sich 

auf moderat beweideten Flächen (z.B. WG) keine signifikanten Auswirkungen, was 

sich mit der Feststellung deckt, dass moderate Beweidung zu einer erhöhten 

Sequestrierung von C und N führt.
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 1

1. INTRODUCTION AND AIMS 

 1.1 Introduction 

Inner Mongolia grassland is a part of Eurasian Steppe, the largest contiguous 

grassland area in the world (Bai et al., 2004), which is more than 8% of the Earth‘s 

land surface. Eurasian continental, semi-arid steppe areas had undergone a 

considerable change in the last decades which was associated with the sedentarization 

of nomads, the collectivization of their livestock and, after reprivatisation, the 

increase of livestock. Subsequently, population increase in conjunction with poor 

management caused over-grazing and over-cropping that reduced vascular plant cover, 

accelerated soil loss, and decreased soil nutrient level (Graetz 1994, Kang et al. 2007), 

which lead to detoriation and desertification in approx. 60-70% of the grasslands of 

China, Mongolia and the Asian parts of the former Soviet Union (Li et al. 2000; 

Graetz, 1994), following the rapid expansion of the livestock industry after 1980 

(Tong et al., 2003). The Inner Mongolian grasslands are of denotative ecological and 

economical importance (He et al., 2011). 

The ecological significance of the N cycle, in terms of regulating plant 

productivity, ecosystem N retention and N loss, which can affect soil acidification, 

streamwater quality, eutrophication, as well as atmospheric chemistry and radiative 

forcing, is well acknowledged (Galloway et al. 2008, Butterbach-Bahl et al. 2011). 

However, due to its complexity and methodological difficulties in the quantification 

of actual soil N turnover processes, our understanding is still fragmentary. The current 

state of knowledge on N cycling may correspond to the state of knowledge on the 

Carbon (C) cycle several decades ago (Schlesinger 2009). Nitrogen cycling in steppe 

in general and the effect of grazing in particular have been studied predominantly in 

temperate grasslands of North America (Chen and Stark 2000; Corre et al. 2002; 

Verchot et al. 2002), but rarely in semi arid grass land of Asia.  

Belowground nitrogen (N) cycling in terrestrial ecosystems is characterized by a 

variety of N transformation processes and fluxes involving organic as well as 

inorganic N species mediated by both plants and microorganisms. Grazing in general 

is thought to increase N mineralization by the dropping of readily decomposable 

faeces (Tracy and Frank 1998) and by incorporation of plant litter into the soil via 
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ungulate trampling (Zacheis et al. 2002). Further grazing impacts, which may 

feedback on soil N conversion, involve reduction of aboveground plant biomass (van 

Wijnen et al. 1999) or altered plant species composition (Olofsson et al. 2001). 

However, the effect of grazing on N mineralization reported in previous studies 

remains contradictory – ungulate grazing has been reported to both increase 

(Groffman et al. 1993, Le Roux et al. 2003) and decrease (Biondini et al. 1998, 

Bardgett and Wardle 2003) N mineralization. These contradictory results may be 

explained by variable responses of N mineralization at different levels of grazing 

intensity (Xu et al. 2007).  

Most previous studies focused on the measurements of net rates of 

ammonification and nitrification across a wide variety of terrestrial ecosystems. 

However, it is well acknowledged that net rates comprise both production and 

consumption of inorganic N, and that such studies do not necessarily provide insight 

into actual gross rates of N turnover. Gross N mineralization, i. e. the microbial 

production of ammonium (NH4
+) from organic N compounds is a key processes of 

soil N cycling, since free NH4
+ in soil is subject to a variety of competing processes 

and fates, e. g. microbial nitrification to nitrate (NO3
-), microbial immobilization (i. e. 

incorporation in microbial cell walls), and plant uptake (plant N nutrition). After 

nitrification, NO3
--N may also either be taken up by plants or microorganisms, or 

undergo denitrification i. e. a stepwise reduction to N gases with nitrous oxide (N2O) 

as an intermediate and molecular dinitrogen (N2) as the end-product, and thus get lost 

from the ecosystem. Therefore, net mineralizaiton is a poor approximation to the real 

N status of ecosystems (Davidson et al. 1991, 1992, Schimel and Bennett 2004). Few 

studies on gross N turnover are available for such ecosystems (Holst et al. 2007). 

Grazing is also one of the most important factors that could change the soil C 

stock in grassland ecosystems (Cui et al., 2005), which influences organic matter 

input and associated soil properties (Steffens et al., 2009b, Wiesmeier et al. 2009). 

Moreover, the rate of changes in soil C over time in the processes of biotic community 

development is tightly coupled with soil nitrogen mechanisms (Knops and Tilman, 

2000). Previous studies have shown that heavy grazing could reduce SOC(soil organic 

carbon) contents and stocks associated with higher bulk densities in topsoil in 

semiarid steppes in Inner Mongolia (Cui et al., 2005; He et al., 2011; Steffens et al., 

2008, Wiesmeier et al. 2011). However, light grazing pressure for 20 years caused no 
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significant decrease of SOC contents (Cui et al., 2005). The influence of grazing on 

soil C turnover in grasslands is complex and difficult to predict. Until now, only few 

studies have been conducted on the impact of grazing on LOC.  

1.2 Objectives 

The aim of this work is to elucidate the seasonality of soil microbial nitrogen 

turnover in continental steppe soils of Inner Mongolia. As more and more studies 

indicate that plants can efficiently compete for inorganic N with microbese, we then 

evaluate the grazing intensity effects on gross rates of N mineralization and short-term 

inorganic N partitioning in intact plant-soil systems of semi-arid steppe of Inner 

Mongolia. Finally, an incubation experiment of CO2 production is developed to assess 

the labile organic C and N mineralization of soil aggregate size classes in semi-arid 

grasslands as affected by grazing management. 

For the estimation of the seasonality of soil microbial nitrogen turnover, the 

whole year-round 15N dilution experiment was developed which comprise 20 - 21 

times at 8 - 38 days intervals in total of 14 months. In every plot, 5 - 10 spots were 

sampled and mixed to account for spatial variability. All soil samples were 

immediately processed after sampling within 24 hours in order to avoid storage 

artifacts. For the evaluation of the grazing effects on gross mineralization and 

short-term inorganic N competiton in intact plant-soil systems, in situ 15N application 

experiment was conducted in the controlled field with the grazing intensity of 0, 1.5, 

4.5, 7 sheeps ha-1 y-1. On each plot, 18 stainless steel soil cores with the inner 

diameter of 15 cm and height of 20 cm were driven into the soil within an area of 160 

m2. To reveal the impact of grazing on the labile organic C and N mineralization of 

soil aggregate size classes, an incubation experiment of CO2 production was carried 

out for one month with the soil sampled from five different grazing intensities sites 

that is CG, HG, WG, UG99, UG79. 

In this work three main objectives were examined in detail: 

 

ObjectiveⅠ: To investigate the seasonality of soil microbial nitrogen turnover in 

continental steppe soils of Inner Mongolia (The whole year-round 15N dilution 

experiment, Chapter 3, partly taken from Wu et al. 2012) 
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Biogeochemical nitrogen (N) cycling in terrestrial ecosystems is complex, since it 

comprises many players ranging from microorganisms to higher plants performing a 

wide range of processes with very different magnitudes of N turnover (Schimel and 

Bennett 2004; Booth et al. 2005; Kreutzer et al. 2009; Rennenberg et al. 2009, 

Butterbach-Bahl et al. 2011).  The terrestrial N cycle is dominated by the soil 

microbial N turnover processes of ammonification, i. e. the conversion of organic N 

compounds to ammonium, nitrification (conversion of organic N or ammonium to 

nitrate), and the subsequent allocation of bioavailable N such as ammonium and 

nitrate to plants, microorganisms as well as to N loss pathways.  

Since the determination of gross rates of ammonification and nitrification is 

based on time- and resource-intensive techniques mostly involving the use of stable 
15N isotopes, actual gross rates of N turnover have been determined less often than net 

rates. However, a few points in time measurements are available for a range of 

terrestrial ecosystems (Booth et al. 2005), though the temporal resolution of such 

studies is strongly limited. The few available studies examining the temporal 

variability of gross N turnover in soils (e. g. Dannenmann et al., 2006, Rosenkranz et 

al., 2010) showed that its rates may markedly fluctuate across seasons. Hence, the 

available studies on gross N turnover in general do neither allow to understand 

seasonal dynamics nor reliable estimates of annual rates of gross N turnover. However, 

actual gross rates of N turnover in soil subjected to winter conditions have only been 

determined few times in laboratory studies (Müller et al. 2002, Ludwig et al. 2004, 

Freppaz et al. 2007), but not in situ.  

The latter studies determined significant rates of gross ammonification and/or 

nitrification in soil subjected to freeze thaw events, however also were restricted to 

single point in time measurements. So far, no study has investigated gross N turnover 

in permanently frozen soil. However, based on more indirect parameters of N turnover, 

several studies showed that significant biogeochemical C and N turnover can occur in 

frozen soils and during freeze/thaw periods (Vogt et al. 1986; Clein & Schimel 1995; 

Brooks et al. 1999).  

Soil Microbial N turnover may persist in winter under snowpack in the soil, as 

indicated e. g. by measurements of significant net N turnover rates in continental 

steppe of China (Zhou et al. 2009, Zhao et al. 2010), boreal forests (Kielland et al. 

2006), arctic tundra (Schimel et al. 2004), and temperate hardwood forests (Groffman 
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et al. 2001b). Microbial biomass and several soil enzyme activities were even found to 

peak in late winter in alpine soils (Lipson et al. 1999, 2002). Furthermore, significant 

plant litter decomposition was found in winter in seasonally snow-covered ecosystems 

(Taylor and Jones 1990, Hobbie and Chapin 1996, Schmidt and Lipson 2004).  

Soil freeze thaw cycles have been reported to kill a portion of soil microbial 

biomass (DeLuca et al. 2002, Clein and Schimel 1995, Schimel and Clein 1996). The 

resulting increase of easy degradable N and C substrates in soil during spring 

snowmelt has been shown to prime fine root turnover, increase net N mineralization 

(Groffman et al. 2001a, Schmidt et al. 2007, Matzner and Borken 2008), nutrient 

leaching (Brooks et al. 1999), or N2O emissions from soil (Wolf et al. 2010).   

The lack of insight into actual soil N turnover in soils subjected to harsh winter 

conditions still hampers a functional and quantitative understanding of soil N 

biogeochemistry in frozen soil, under freeze-thaw conditions and at the annual scale. 

In particular, it remains uncertain whether our understanding of the contribution of 

cold seasons to annual N flux, as estimated from dynamics and magnitude of 

measurements of net rates of N turnover, enzyme activities and microbial community 

parameters, is valid. 

However, also these studies were based on single or few measurements in the 

growing seasons and thus could neither provide detailed insight in the temporal 

dynamics and environmental controls of N turnover at the annual scale. Hence, also 

for semi-arid, winter-cold continental steppe ecosystems of Asia, understanding of 

both the magnitude of annual gross N and net N turnover as well as the contribution 

of the cold seasons to the annual budget of N turnover and thus a functional 

understanding of the importance of the winter period for annual soil N cycling has not 

yet been achieved. 

Therefore, we measured gross and net N turnover as well as dynamics of soil 

inorganic N and microbial biomass concentrations in monthly or bi-weekly temporal 

resolution over an entire year at replicated plots of two contrasting steppe systems, i.e. 

grazed and ungrazed. The aim of this study was to characterize and quantify both the 

temporal dynamics and annual sum of microbial N turnover over a full year (Chapter 

3; partly taken from Wu et al., 2012).  

 

In particular, we tested the following hypotheses:  
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(1)  There is significant gross N turnover in permanently frozen steppe soils 

(2)  Both N turnover in the growing season as well as during freeze thaw periods 

are of major importance for the annual budget of gross N turnover  

(3)  To elucidate the significance of potential environmental controls 

(temperature, soil moisture, microbial biomass) on gross N turnover 

(4)  To investigate whether net rates of N turnover provide insight into magnitude 

and dynamics of gross N turnover over the annual course  

 

Objective Ⅱ: To evaluate the grazing intensity effects on gross rates of N 

mineralization and short-term inorganic N partitioning in intact plant-soil 

systems of semi-arid steppe of Inner Mongolia (In situ 15N application 

experiment, Chapter 4, mostly taken from Wu et al. 2011a) 

 

While the general ecological significance of the N cycle in terms of regulating 

ecosystem N retention, N loss (which can affect atmospheric chemistry, climate 

change and water quality), and plant nutrition has remained unchallenged, our 

perception of the functioning of this complex network of closely interlinked processes 

has changed considerably during the last decades (Schimel and Bennett 2004, 

Chapman et al. 2006, van der Heijden et al. 2008, Rennenberg et al. 2009). Among 

others, central paradigm shifts were: (1) plants actively compete for nitrogen (organic 

and inorganic species) with microbes, and they are not a priori inferior in this 

competition (Schimel and Bennett 2004, Harrison et al. 2007, 2008, Xu et al. 2008) 

and (2) not only microorganisms control plant growth but plants may actively control 

microbial nitrogen conversion in soils (Chapman et al. 2006). Microorganisms 

regulate plant productivity, e.g. by acquisition of plant nutrients by mycorrhizal fungal 

plant symbionts, or by mineralization of, and competition for, nutrients by free-living 

microbes (van der Heijden et al. 2008). Vice versa, plants influence microbial N 

turnover in soil by the determination of organic matter composition via plant residues 

and root exudates, thus influencing substrate quality for N mineralization (Chapman 

et al. 2006), and by direct carbon (C) allocation to microorganisms via root exudation 

(Kuzyakov 2000, Bais et al. 2006).  

Surprisingly, the view of close reciprocal interconnections and interactions 

between plant and microbial belowground N fluxes has not been reflected in 
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experimental setups for process-oriented investigations: soil ecologists/micro- 

biologists still exclude the plant part for the determination of soil N turnover 

processes while plant physiologists frequently determine N uptake rates after 

removing soil (Gessler et al. 2005, Högberg and Read 2006, Rennenberg et al. 2009). 

Thus, competitive and other plant-microbe interactions are excluded in these 

experiments of ecosystem N turnover / immobilization. However, comparing N 

turnover in root-free soil with N turnover in root enclosures revealed different patterns 

and rates of N fluxes, especially with respect to internal cycles of N turnover (Jones et 

al. 1994; Burger and Jackson 2004). In order to reduce the current major deficits in 

knowledge on N cycling, it is essential to link plant physiology and microbial N 

metabolism in experimental designs where plant-microbe competition and further 

interactions persist (Rennenberg et al. 2009). 

The available studies investigating grazing effects on soil N conversion 

conducted in Asia in general confined themselves to the determination of net rates of 

N turnover only (Xu et al. 2007), which comprise both production and consumption of 

inorganic N, and thus do not allow an insight into actual N turnover in soil. An 

exception is the study of Holst et al. (2007), who investigated gross rates of N 

turnover in Inner Mongolia, China, and found that grazing tended to decrease gross 

rates of N turnover. However, experiments on gross rates of N turnover in the latter 

study was based – like in nearly all other comparable studies on gross rates of N 

turnover – on experiments with disturbed soil where living plants and roots were 

excluded. Hence, such experiments do not provide insight into simultaneously 

occurring N fluxes in the plant-soil system. As outlined above, the exclusion of 

plant-microbe interaction is likely to significantly alter soil N cycling. It may be of 

special importance to investigate soil N cycling in intact plant-soil systems when the 

plant compartment is affected by a treatment, as is the case in the example of grazing. 

Hence, we developed a method for the determination of gross rates of N 

mineralization and subsequent partitioning of inorganic N to plants and 

microorganisms in large soil cores where plant-microbe interactions persisted 

throughout the experimental incubation (Chapter 4; mostly taken from Wu et al., 

2011a). We applied this method to plots subjected to different stocking rate in Inner 

Mongolia.  
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The hypotheses are: 

(1) Grazing increases gross N mineralization  

(2) Grazing alters short-term plant-microbe competition for inorganic N in favour  

of microorganisms and at the expense of plants 

 

Objective Ⅲ: To assess the labile organic C and N mineralization of soil 

aggregate size classes in semi-arid grasslands as affected by grazing management 

(incubation experiment of CO2 production, Chapter 5, mostly taken from Wu et 

al. 2011b) 

 

Soil labile organic carbon (LOC) is a soil fraction with turnover time of less than 

a few years (even less than weeks) as compared to recalcitrant carbon with a turnover 

time of several thousand years (Parton et al., 1987; Schimel et al., 1985). LOC as the 

most active fraction of soil organic carbon (SOC) can be readily influenced by 

disturbance and management (Harison et al., 1993). Therefore, LOC oxidation drives 

the flux of CO2 between soils and the atmosphere (Zou et al., 2005) and makes a 

greater contribution to nutrient cycling than stable SOC (Whalen et al., 2000). As 

most studies are focusing on total organic carbon storage and sequestration, 

mineralization of LOC is not well understood, particularly for typical grassland soils.  

SOC protection mechanisms are intimately tied to the processes of aggregate 

turnover and stabilization at multiple scales (Steffens et al., 2009b). The deposition 

and transformation of organic matter plays a major role in aggregate stabilization and 

there are strong feedbacks between aggregate turnover and SOC dynamics (Jastrow et 

al., 2007; Lützow et al., 2006). Differences in turnover rates of SOM fractions may be 

due to physical protection of organic matter within soil aggregates as well as chemical 

protection from humification (Cambardella and Elliott, 1993). The fractions of SOM 

that turn over rapidly are believed to make a greater contribution to nutrient cycling 

than fractions that turn over slowly because they provide a more readily accessible 

source of energy for the saprotrophic soil organisms responsible for nutrient cycling 

(Janzen et al., 1992). It is becoming increasingly important to determine not only how 

land management practices affect the retention or loss of these fractions of SOM, but 

also how they affect nutrient cycling from SOM fractions. Improved understanding of 

these processes will provide valuable information for maintaining or implementing 
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environmentally-sustainable land management practices in agricultural and forest 

soils (Whalen et al., 2000). 

The effects of grazing on soil N mineralization have been intensively studied. 

However, variable grazing effects have been reported with both increasing (Groffman 

et al., 1993; Le Roux et al., 2003) and decreasing (Bardgett and Wardle, 2003; 

Biondini et al., 1998) N mineralization. Furthermore, N mineralization of soil 

aggregate size classes (ASC) is not well understood, especially under the influence of 

grazing (He et al., 2011). Estimating N mineralization would be helpful to understand 

C mineralization of ASCs in semi-arid grasslands affected by grazing management 

(Chapter 5; mostly taken from Wu et al., 2011b).  

 

The objectives of this research are:  

(1)  To evaluate the influence of different grazing intensities on soil LOC and N 

mineralization 

(2)  To estimate the effect of different ASCs on soil LOC and N mineralization  

(3)  To elucidate the interactions of LOC and N mineralization 
 

 I note that major parts of the thesis have been published previously with me as the 

leading author. I have meationed this in the upper text and have cited them in this 

thesis. The text passages from these papers have been used in this thesis.  
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2. MATERIAL AND METHODS 

2.1 Plot description 

Our study was carried on in the Inner Mongolia grassland, a part of the largest 

contiguous grassland area in the world (Bai et al., 2004).  The sites located in the 

Xilin River Basin, Inner Mongolia Autonomous Region, China (43°38′ N, 116°42′ E). 

These sites are managed by the Inner Mongolia Grassland Ecosystem Research 

Station (IMGERS), which belongs to the Chinese Ecological Research Network 

(CERN).  

The climate in this area belongs to the continental middle temperate semi-arid 

zone (Chen 1988). Winter is cold and dry, while summer is warm and wet.The mean 

annual temperature in the Xilin River Basin is about 0.3 ℃ with mean monthly 

temperatures ranging from - 21.6 ℃ in January to 19.0 ℃ in July.  The mean 

annual precipitation is 346 mm with 60–80% falling during the growing season from 

May to September with mean monthly temperature ≥5°C (figure 1) and approximately 

10% of which falls as snow. The soil is classified as alkalescent loamy sand.   

The steppe grassland covers 72% of the Xilin River Basin with a large number of 

typical plant species. The mainly vegetation types are Leymus chinensis and Stipa 

grandis in this region. Leymus chinensis in general dominated steppe communities at 

areas that is lightly or moderately grazed with relatively wet soil conditions, Stipa 

grandis mostly dominated communities in drier area that is usually heavily 

grazed(Tong et al., 2004; Chen et al., 2005b). The other species are Agropyron 

michnoi, Carex korshinskii, Puccinellia tenuiflora, Salsola collina, Melissitus 

ruthenica, Axyris amaranthoides and Caragana microphylla. Cleistogenes squarrosa 

and Artemisia frigida appears when the steppe grassland degraded (Schroeder, 2010).  

The Inner Mongolia grassland is the most important area of livestock grazing in 

China, which covers 78.8×107 ha and accounts for 39% Chinese grassland (alata，

2006). Over the past half century, the herders change their nomadic life style and 

move to the permanent settlements with an intensive livestock production system. The 

sedentarization of the nomads and improved livestock (Figure 2) resulted in a massive 

degradation of the grasslands. The grasslands are nearly fully grazed with high  
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Figure 1：The mean annual temperature and precipitation（1982-2005,data given by IMGERS) 

 

stocking rates around villages, farms and streets. According to the remote sensing, 

until 1995 the degradation area is 38.7×107 ha, which accounts for 60.1% available 

grassland of Inner Mongolia (Wei Z. J. and Shuang Q.，2001). The aboveground fresh 

biomss decreased 45%, from 1912 kg ha-1 in 1950’ to 1050 kg ha-1 in 1980’. 

2.1.1 Fenced experiment 

Five experimental sites with different grazing intensities (Fig. 3) were chosen in 

this study. The whole area is grazed by herds that are composed of 70–90% sheep and 

10–30% goats. The whole experimental area was grazed before with low intensity. In 

1979, one plot (24 ha) was fenced and excluded from grazing (UG79). After 20 years 

of moderate grazing, two plots were fenced again: one was completely excluded from 

grazing (25 ha; UG99), the other is still grazed during winter (34 ha; WG), equivalent 

to a grazing intensity of 0.5 sheep unit ha-1 year-1. The ungrazed site was a Leymus 

chinensis grassland.  
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Figure 2: population(a) and grazing stock, (b) change during the past half century in xilinhot 

grassland, Inner Mongolia（Xu et al.，2003） 

 

Another site (24 ha) was grazed during the whole year (continuously grazed; CG), 

equivalent to a grazing intensity of 3 sheep units ha-1 year-1. An unfenced site was 

grazed with approximately 4 sheep units ha-1 (HG) during the vegetation period that is 

located approximately 2 km away from the other sites (table 1). The vegetation 

composition in this site has significantly changed, that is the abundances of Potentilla 

acaulis L., Artemisia frigida Willd. and the abundances of C4 grasses [Cleistogenes 

squarrosa (Trin.) Keng] increased dramaticaly, at the same time, the C3 grasses [L. 

chinensis (Trin.) Tzvel., Stipa grandis P. Smirn. ] reduced. These vegetation changes 

indicated typically the effect of overgrazing (Wang and Ripley 1997; Wang 2002; 

Tong and others 2004). 
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Table 1: Main charactersistics of the different experimental sites 

 

 UG99 WG UG79 CG HG 

Geographic coordinates 43°33.0′N 43°33.0′N 43°33.1′N 43°33.1′N 43°34.7′N 

 116°40.1′E 116°40.1′E 116°40.5′E 116°40.0′E 116°40.6′E 

Height above sea level(m) 1,268 1,267 1,252 1260 1,218 

Maximum vegetation height 2005 (cm) n.d. 19.6 ± 3.0 24.2 ± 2.8 n.d. 6.9 ± 1.9 

Slope(°) 2.2–2.5 2.5–2.7 1.9–2.9 Flat Flat 

pH, 0–4 cm, ± s.d  6.8 ± 0.3 6.7 ± 0.3 6.6 ± 0.2 6.6 ± 0.35 6.6 ± 0.3 

Bulk density, 0–4 cm, ± s.d. (g cm3) 1.09± 0.12 1.09± 0.08 0.94± 0.10 1.17±0.07 1.28 ± 0.08 

C to N ratio, 0–4 cm, ± s.d. .9.7 ± 0.7 9.5 ± 0.4 9.8 ± 0.3 9.6 ± 0.4 9.7 ± 0.4 

Organic C content, 0–4 cm, ± s.d. (%) 2.55± 0.63 2.59± 0.45 3.10± 0.55 2.30± 0.41 1.70 ± 0.42 

Soil texture, 0–10 cm: sand (%) 48.3 54.9 64.2 54.8 66.2 

Silt (%) 25.8 18.2 13.5 21.1 15.8 

Clay (%) 25.9 27.0 22.3 24.2 18.0 

Grazing intensity (sheep units ha-1 y-1) 0 1.2 0 3 ~4 

n.d. = not determined 

For further details on soil data see Steffens and others (2008) 

 

2.1.2 Meteorological data 

At the site UG99 and WG, soil temperature at 0.05 m depth was recorded 

continuously with PT100 thermometers (Th2-h, UMS GmbH, Munich, Germany) at 

one minute intervals. Soil moisture was recorded with the same frequency using three 

FD probes (ECH2O-5, Decagon Devices, Pullman, WA, USA) per site. The FD 

sensors were installed in a way that they integrated soil moisture over a depth of 0 - 

0.05 m. During wintertime when soil temperatures dropped below 0°C, soil samples 

from 0 - 0.05 m soil depth were taken by means of 100 ml core cutters at least twice a 

week. The samples were dried in the oven at a temperature of 105°C for 24 hours in 

order to determine volumetric water content. Precipitation data was provided by the 

IMGERS station in daily resolution (from Wu et al. 2012). 

2.1.3 Controlled grazing experiment 

The controlled grazing experiment was established in 2005 (Schönbach et al. 2009) 

on a grazed typical steppe next to a farm. Until 2003, the area was moderately grazed 
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by local famers. Thereafter, it was recovered from grazing for 2 years before the 

experiment started in June 2005. Approximately 160 ha were fenced and divided into 

plots of 2 ha with different stocking rates and land use management. We choose four 

different stocking rates: ungrazed, low, moderate and heavy (0, 1.5, 4.5 and 7.5 sheep 

ha-1 grazing season-1) for this experiment (figure 4). Typically single plots (n=4) of 2 

ha size were grazed continuously by sheep from June to September. 
 

2.2 Experimental design and sample analysis 

2.2.1 Whole-year round field N cycling experiment (Chapter 3) 

2.2.1.1 Sampling description 

Net rates of N turnover, microbial biomass C and N, gross N turnover were 

measured 20 times at 8-38 days interval from August 16, 2007 to October 13, 2008 in 

our study. The intervals changed according to seasons (short interval in summer while 

long interval in winter). Soil sampling was conducted on three replicated plots both in 

the ungrazed and winter grazed site. Sampling in each plot was conducted at 6-10 

spots to reduce the spatial variability (see details for each measurement). All the 

measurements were carried on immediately after sampling and situ incubations were 

used both for gross and net rate assays of N turnover to avoid any storage of soil and 

thus released factitious effect on N turnover. The soil samples for determination of net 

rates of N turnover, soil mineral N concentrations and microbial biomass C and N 

were sampled after the sampling for gross N turnover. On average, the delay between 

sampling for gross rates of N turnover and microbial biomass, mineral N and net N 

turnover determination was 5 days (from Wu et al. 2012).  

2.2.1.2 Gross rates of microbial N turnover 

Gross rates of ammonification and nitrification were determined using an in situ 

15N pool dilution technique described previously by Dannenmann et al. (2006) and 

Wolf et al. (2010). The experimental procedure was adapted to the logistic and 

climatic conditions at the remote experimental site. Sampling was conducted at ten  
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Figure 3: The details of sites (provided by IBCAS) 

WG, UG99， 

UG79, CG, HG  
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Figure 4: The grazing map (the asterisk is experimental plot, provided by IMGERS). 
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sampling spots at every plot. For these experiments, sample were pooled for single 

plots (n=6 plots, 3 plots in WG, 3 plots in UG), sieved (5mm mesh width) and 

homogeneously sprayed with (NH4)2SO4 or KNO3 solution at 30 atom% 15N 

enrichment (Dannenmann et al. 2009) at the same day of sampling. Label application 

increased the soil water content by 3% and the total NH4
+-N or NO3

--N content by 

approximately 1 mg N kg-1 sdw, which is well below the mean pool sizes in this soil 

(compare Fig. 6 F, G). Six subsamples of 30 g each for every labelling treatment and 

plot were placed in parafilm-sealed 250 ml plastic bottles and buried close to the 

sampling location after labelling. Eighteen hours (time 1) and 42 hours after labelling 

(time 2), half of the bottles, i. e. 3 bottles per labelling treatment and plot were 

excavated and immediately extracted with 60 ml 1M KCl as described by 

Dannenmann et al. (2006). Diffusion steps for trapping NH4
+ and NO3

- on acid filter 

disks (Dannenmann et al. 2006) and subsequent GC-IRMS analyses for 

15N-enrichment (Dannenmann et al. 2009) were performed as described earlier. A 

heater blower ensured temperatures well above 25 °C during the diffusion steps also 

in winter. Total ammonium and nitrate concentrations in the extracts were determined 

as described above. In 2008, gross nitrification is available with reduced temporal 

resolution only (see Fig. 6 C) (from Wu et al. 2012). 

Gross ammonification (gross N mineralization) and nitrification rates were 

calculated using the equations given by Kirkham and Bartholomew (1954). For 

frozen soil conditions, a different labelling technique was applied (Wolf et al. 2010).  

Here, the labelling solution was amended with triple hot washed and autoclaved 

quartz sand at a ratio of 1:2.5, frozen and then crushed to a fine powder. This powder 

was homegenuously mixed with the frozen soil for labelling. All experimental steps 

until the amendment of the KCl solution for soil extraction were performed outdoors 

at air temperatures below -10°C in order to ensure that the investigated soil and the 

labelling solution remained constantly frozen. Incubations took place in situ at the 

plots by burying the incubation bottles also in winter (from Wu et al. 2012). The 



MATERIAL AND METHODS 

 19

process about gross rates of mineralization and nitrification and NH4
+ and NO3

- 

immobilization (Shaw, M. R. & Harte J., 2001) was given in Figure 5. 

 

 
 
Figure 5: Diagram of N cycle including relevant transformations (Shaw, M. R. & Harte J.， 2001) 
 

A=gross ammonification 
B1=gross nitrification (autotrophic) 
B2=gross nitrification with organic N (heterotrophic) 
C= gross immobilization (microbial assimilation) of NH4

+ 
D=gross immobilization (microbial assimilation) of NO3

- 
E=plant uptake of NH4

+ 
F=plant uptake of NO3

- 

G= organic N inputs from microorganisms 
H= organic N inputs from plants 
I=denitrification 
J = NO3

- leaching 
Net ammonification=A-(B1+C),  
Net nitrification= (B1+B2)-D 

Net mineralization= (A+B2)-(C+D) 

2.2.1.3 15N dilution calculation 

Gross ammonification (gross N mineralization) and nitrification rates were carried 
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out according to Kirkham and Bartholomew (1954):  
 

 
 

NH4
+ and NO3

– consumption rates were calculated directly using the equations 

given by Kirkham and Bartholomew (1954). It is assumed that gaseous N losses and 

other possible fates of inorganic N were negligible (Davidson et al. 1991). Microbial 

NH4
+ immobilization was determined by subtracting nitrification rates from NH4

+ 

consumption rates while NO3
– immobilization was equal to microbial NO3

– 

consumption. 

where 

 

M0: initial (after 18 h incubation) 14+15NH4
+ pool (mg N kg-1 soil) 

M1: post-incubation (after 42 h incubation) 14+15NH4
+ pool (mg N kg-1 soil) 

H0: initial (after 18h incubation) 15NH4
+ pool (mg N kg-1 soil) above natural 

abundance 

H1: post-incubation (after 42 h incubation) 15NH4
+ pool (mg N kg-1 soil) above 

natural abundance 

m: gross mineralization rate (mg N kg-1 soil) 

c: gross NH4
+ consumption rate(mg N kg-1 soil) 

t: time (24h for the present study) between initial and post-incubation harvest 

(days) 

 

It should be kept in mind, the microbial NH4
+ immobilization is likely to be 

overestimated  since immobilization is determined as the difference between NH4
+ 
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consumption (Immobilization and nitrification may have been stimulated by addition 

of NH4
+) and nitrification (Nitrification should not have been stimulated as it is the 

outcome that was added). 

2.2.1.4 Net rates of N turnover and mineral N concentrations 

Net rates of N turnover were determined according to the method of Wang et al. 

(2006). For the first 4 sampling dates paired soil cores from 10 sampling spots (5 cm 

diameter, 10 cm depth) were taken as spatial replicates on each plot. Based on 

analysis of variance, the spatial replication was reduced to eight sampling spots 

starting from the fifth sampling date both for net rates of N turnover and microbial 

biomass C and N determination. One of the paired soil cores was immediately 

harvested (time 1; in total 60 or 48 soil cores), soil was removed out of the core and 

coarse material was separated from the soil. Subsamples of single cores were 

analysed for inorganic N concentrations, microbial biomass C and N (see below). Soil 

extraction for mineral N concentrations was conducted with 30 g of soil by use of 1M 

KCl (soil to solution ratio 1:2) as described in detail by Dannenmann et al. (2006). 

Concentrations of inorganic N (NH4
+-N and NO3

--N) in the filtered extracts were 

conducted at IMGERS using a flow injection autoanalyzer (Zhou et al. 2009, FIAstar 

5000 Analyzer, Foss Tecator, Denmark). Soil water content was determined with 

subsamples being dried at 105℃ for 24 h. The expression of soil inorganic N 

concentrations was based on dry soil weight. After two weeks, the remaining 60 or 48 

soil cores, were harvested, extracted and analyzed for mineral N (time 2). The 

ammonium and nitrate concentrations from the first harvesting date (time 1) are 

referred to soil ammonium and nitrate concentrations (Fig. 6 F, G).  Net rates of 

ammonification and nitrification (Fig. 6 H, I) were calculated from the changes in the 

concentrations of extractable ammonium and nitrate between the 2 soil core 

harvesting dates (Wang et al. 2006) (from Wu et al. 2012).  

Under frozen soil conditions, the use of the PVC soil cores was not possible.  
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Here, an in situ incubation buried bag technique (Dannenmann et al. 2006) was used 

for the determination of net N turnover. For this purpose, paired intact portions of soil 

and vegetation cover (10*5 cm are, 10 cm depth) were gained by use of a spate.  

One half was immediately extracted and analyzed as described above (time 1). The 

second half was packed into polyethylene bags with pinholes (Dannenmann et al. 

2006) and reburied for the time 2 extraction. If applicable, the incubated soil was 

covered with snow of a representative height. Soil samples were kept frozen during 

transport from the field sites to the lab until extraction (from Wu et al. 2012). 

2.2.1.5 Net mineralization calculation 

Net ammonificaiton and nitrification were calculated according to the difference 

of inorganic N (NH4
+, NO3

–) ammount between initial and post incubation. 

The calculation of net mineralization（Wang et al. 2006）: 

Aa=At2-At1 

Na=Nt2-Nt1 

NAmm= Aa /（t2-t1） 

NNit= Na /（t2-t1） 

At1：initial (time1) NH4
+ pool (mg N kg-1 soil) 

At2：post-incubation (time2) NH4
+ pool (mg N kg-1 soil) 

Aa: the amount of NH4
+ produced between t2 and t1(mg N kg-1 soil) 

Na: the amount of NO3
– produced between t2 and t1(mg N kg-1 soil)  

NAmm：Net ammonificaiton(mg N kg-1 d-1) 

NNit：Net nitrification(mg N kg-1 d-1) 

 

2.2.1.6 Microbial biomass C and N 

Microbial biomass C and N was estimated using the chloroform 

fumigation-extraction (FE) method (Brookes et al., 1985; Vance et al., 1987; Tate et 
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al., 1988) as described in detail by Dannenmann et al. (2006). Time 1 subsamples of 

the soil sampled for the determination of net N turnover (see above) was used for this 

purpose. For the first 3 sampling dates, ten samples per plot were taken at randomly 

selected spots, then the spatial replication was decreased to six sampling spots per 

plot. After removal of coarse organic materials and stones, samples were divided in 

paired subsamples of 30 g each. One subsample was immediately extracted with 60 

ml 0.5 M K2SO4 while the second subsample was fumigated under chloroform vapour 

for 24 h in a desiccator. Subsequently, ten vacuum/release purge cycles ensured the 

complete removal of chloroform and fumigated subsamples were extracted as 

described above. Extracts were filtered using a 0.45 µm syringe filter (Schleicher and 

Schuell, Dassel, Germany) and immediately frozen until analysis for total organic 

carbon (TOC) and total chemically bound nitrogen (TNb) using a TOC analyzer with 

a coupled TNb module (Dimatec Analysentechnik GmbH, Essen, Germany). Total 

carbon (TC) and total inorganic carbon (TIC) were determined based on 

non-dispersive infrared photometrical detection of evolving CO2 after thermic and 

chemical oxidation of the samples. TOC was calculated as TC – TIC. TNb was 

analyzed by use of a chemoluminescence detector. Correction factors (0.54 for 

microbial biomass N and 0.379 for microbial biomass C, Brookes et al., 1985; Vance 

et al., 1987) were applied to the difference in total extractable N and TOC between 

paired untreated and fumigated subsamples to estimate microbial biomass C and N. 

Soil samples were kept frozen until extraction (from Wu et al. 2012). 

 2.2.2 In situ 15N application experiment (Chapter 4) 

The in situ 15N application experiment was conducted in the controlled grazing plots. 

we choose four different stocking rates: ungrazed, low, moderate and heavy (0, 1.5, 

4.8 and 7.5 sheep ha-1 grazing season-1). The plots were grazed continuously by sheep 

from June to September every year. For the low stocking rate of 1.5 sheep ha-1 

grazing season-1 4 ha plots were used. On August 15 and August 16, 2007, 18 

stainless steel soil cores were driven into the soil on each of the four plots within an 
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area of 160 m2. The inner diameter of the soil cores was 15 cm and the height was 20 

cm. The minimum distance between the individual cores was 2m. On August 17 and 

August 30, 2007, all soil cores were irrigated with 18 mm of water in order to prevent 

drying or death of enclosed grass plants due to inevitable cutting of roots. The 

simulated rainfall equals typical midsummer convective rainfall events in the 

investigation area. Subsequently the soil cores were left undisturbed in situ for nearly 

a complete year in order to facilitate regeneration of the enclosed plant-soil system 

from the coring and trenching impacts (from Wu et al. 2011a).  

From May to June 2008, labelling tests by use of Brilliant Blue FCF colour dye 

solutions were performed with additional soil cores in order to find an optimum 

labelling method for the intact soil monoliths. Various injection patterns, numbers of 

injections per soil core and injection volumes per single injection were tested in order 

to comply with the opposing requirements 1) 3-dimensional homogeneous 

distribution of the label solution in the soil monolith; 2) minimization of water 

addition in order to minimize stimulation of N turnover and leaching of labelling 

solution out of the cores. Harvesting of the soil cores was performed 24 hours after 

colour dye application. For harvesting, soil was removed stepwise from bottom to top 

in 2 cm layers and the distribution of the colour dye in the soil was monitored visually. 

Outflow at the bottom of the labelled plant-soil-system was monitored by storing the 

soil cores on white paper sheets. Finally 38 single injections into the soil cores of 3 

ml solution each turned out to be the best compromise. The injections were applied to 

four different depths of the soil cores by use of custom-made stainless steel side-port 

cannulas. This labelling treatment increased the water content of the soil by approx. 

2.2 % soil dry weight and lead to a homogeneous distribution of the colour dye over 

the soil profile, while only occasionally some solution was leached out along root 

channels. Custom-made PVC calibres were built to fit into the soil cores in order to 

ensure reproducible labelling (from Wu et al. 2011a). 

Labelling of all soil cores was done between 03:00 and 06:30 pm on June 14, 

2008 by means of a solution containing NO3
- at natural abundance and NH4

+ at 60 

atom % 15N enrichment. The amount of added N was approximately 0.9 mg NH4
+-N 
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g-1 sdw and 0.9 mg NO3
--N g-1 sdw. This corresponded to approximately 30-50% of 

the ambient NH4
+-pool and approximately 5-40 % of the ambient NO3

- pool (from 

Wu et al. 2011a).  

2.2.2.1 Sampling and sample preparation 

Half of the 18 soil cores on each plot were harvested on June 15, 2008, (time 1) 

and the other half on June 17, 2008 (time 2), starting at 7:00 am. Soil cores were dug 

out carefully with shovels and an even ending was maintained at the bottom of the 

soil cores to ensure that the identical volume was enclosed in every soil core. Soil 

cores were placed in plastic bags and transferred to IMGERS for immediate 

processing. Aboveground biomass (AGB) was cut, dried at 70°C for 48 h and 

subsequently weighed (from Wu et al. 2011a).  

Soil was completely removed from the soil cores, sieved (3.15 mm mesh) to 

separate belowground biomass (BGB). Belowground biomass was washed and 

separated by hand to obtain the living part which was then dried and weighed. Fresh 

weight of the whole soil contained in the soil core and its gravimetric water content 

were determined. Total sieved soil gained from each core was mixed by hand for at 

least ten minutes in order to assure full mixing to a homogenous sample. Out of the 

total soil sample, subsamples were taken from 10 spots and composited (200-300g in 

total). This representative soil sample was used for further processing of the soil, i. e. 

analyses of NH4
+, NO3

-, dissolved organic N (DON) and microbial biomass C (MBC) 

and N (MBN) concentrations, and, furthermore the 15N enrichment in the respective 

pools. Plant samples were used for analyses of total N and 15N enrichment. Extraction 

of the soil samples took place 24 hours (time 1) and 72 hours (time 2) after 
15N-labelling (from Wu et al. 2011a). 

2.2.2.2 Analysis of total N and 15N concentrations in plant biomass. 

Aboveground and belowground biomass samples were milled in a ball mill 

(MM200, Retsch, Germany). 15N:14N ratios and total N of all milled plant samples 

were analysed by EA-IRMS (Thermo Finnigan, Bremen, Germany) as measured 
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against a certified plant isotope reference (from Wu et al. 2011a).  

2.2.2.3 Analysis of total N, C and 15N concentrations in soil pools. 

Out of the representative soil sample of every soil core, a subsample of 30 g each 

was extracted with 0.5 M K2SO4 (soil: solution ratio 1:2). Subsequently, sequential 

diffusion steps for trapping NH4
+-N, NO3

--N and DON-N on acid filter disks were 

performed, based on the transformation of all N compounds to NH4
+, conversion to 

NH3 by pH increase, and subsequent capturing on acid traps in order to determine the 
15N enrichment in the respective pools. Ammonium and nitrate diffusion was 

performed by use of MgO and Devarda’s alloy as described earlier (Dannenmann et 

al. 2006). After NH4
+ and NO3

- had been completely exhausted from the solution by 

additional open shaking, extracted organic nitrogen was quantitatively converted to 

NO3
- by adding 30 ml of a persulfate reagent (50 g K2S2O8, 30 g H3BO3, 100 ml of 

3.75 mol l-1 NaOH in 1 l of solution) (Cabrera and Beare 1993, Corre et al. 2007) and 

heating to 121 °C for 4 hours. Subsequently, the NO3
--N originating from DON-N 

was transformed to NH4
+-N by addition of 0.5 g of Devarda’s alloy and the pH was 

increased to a value of 13 by adding NaOH pellets in order to facilitate a third 

diffusion step for capturing DON-N on an acid filter traps analoguously as was 

performed for NH4
+ and NO3

- (Dannenmann et al. 2006) (from Wu et al. 2011a).  

Further soil subsamples of 30 g each for control and fumigated treatment were 

used to determine microbial biomass C, N and 15N enrichment by use of the 

chloroform-fumigation extraction technique as described in detail by Dannenmann et 

al. 2009. One subsample of the extract was used for auto-analysis of total organic 

carbon and total chemically bound nitrogen (see below). Further extract subsamples 

of 30 ml were used for analysis of total 15N content in the sample. For this purpose, 

both control and fumigated soil extraction solutions (30 ml each) were amended with 

30 ml of persulfate reagent (see above) immediately after extraction and the gastight 

and pressure resistant bottles containing the solution were heated at 121°C for 4 hours. 

Hence, dissolved organic N and NH4
+-N were converted to NO3

--N. Subsequently, 

Devarda’s alloy and NaOH were added and the diffusion on acidified filter disks was 

performed as described above (from Wu et al. 2011a).  
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For GC-IRMS analyses of 15N-enrichment (Dannenmann et al. 2009), filter traps 

were dried in desiccators over silica gel, transferred into tin capsules and transported 

to the Centre of Stable Isotopes of IMK-IFU, Germany. Total C and N pool sizes in 

the extracts were analyzed directly with different (in comparison with diffusion on 

acid traps), and more precise methods by use of subsamples of the extract solution. 

Ammonium and NO3
- concentrations were determined colorimetrically by a 

commercial laboratory (see Dannenmann et al. 2006), after frozen samples had been 

transported to Germany. Total carbon (TC) and total inorganic carbon (TIC) were 

determined based on non-dispersive infrared photometrical detection of evolving CO2 

after thermic and chemical oxidation of the samples (Dannenmann et al. 2007). 

Extractable dissolved organic carbon (DOC) was calculated as TC – TIC. Total 

chemically bound nitrogen (TNb) was analyzed by use of a chemoluminescence 

detector coupled to the TOC analyzer (Dannenmann et al. 2007). Correction factors 

(0.54 for microbial biomass N and 0.379 for microbial biomass C, (Brookes et al. 

1985, Vance et al. 1987) were applied to the difference in TNb and TOC between 

paired untreated and fumigated subsamples to estimate microbial biomass C and N. 

DON-N concentrations were calculated as TNb  (NH4
+-N + NO3

-N concentrations). 

The 15N enrichment in microbial biomass was calculated from the 15N enrichment in 

total N in control and fumigated samples as determined by mass spectrometry and the 

respective TNb pool sizes in the control and fumigated treatment extracts gained from 

the chemoluminescence detection (from Wu et al. 2011a).  

Gross N mineralization was calculated by use of the 15NH4
+ pool dilution 

formula given by Kirkham and Bartholomew (1954). In view of the patchiness of 

vegetation cover and hence, large small-scale spatial variability of soil organic matter 

distribution (Wiesmeier et al. 2009), we did not use paired soil cores in this study. 

Hence, only one calculation was performed for every plot based on the mean values 

of 15N excess in the NH4
+-pool and the total NH4

+ pool size determined at time 1 and 

time 2. Uncertainty analysis was performed based on the standard error of the mean 

as a quality criteria of the input parameters derived from the nine replications. Hence, 

it was not possible to conduct statistical tests for significant differences in gross N 

mineralization across the plots based on analysis of variance (from Wu et al. 2011a).  
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15N recovery rates in the investigated N pools were calculated for every single 

soil core under consideration of added excess 15N and the specific amount of soil and 

aboveground/belowground plant biomass contained in the individual plant-soil 

microcosms (from Wu et al. 2011a). 

2.2.3 Incubation experiment of CO2 production (Chapter 5)  

The soil was sampled from UG79, UG99, WG, HG, CG. At all experimental sites, 

three randomly located soil pits were sampled at the upper 10 cm of the topsoil using 

a steel cylinder with a volume of 100 cm³ to determine soil properties (from Wu et al. 

2011b). 

2.2.3.1 Physical fractionation 

The upper 10 cm of one pit in each of the five plots were used for physical 

fractionation (4 kg for each sample). The air-dried soil was dry sieved gently by hand 

to three ASCs: 2000–6300 mm, 630–2000 mm and < 630 mm (referred to as coarse 

ASC=cASC, medium ASC=mASC and fine ASC=fASC; Steffens et al., 2009b) (from 

Wu et al. 2011b). 

2.2.3.2 Soil incubations 

Carbon and N mineralization of the ASCs were determined after soil incubation 

at 25 ± 0.5°C for 30 days. 50g of dry soil material were adjusted to 60% field 

moisture capacity in100 ml glass bottle with an open mouth, which was put in 1-L 

glass jars with a septum to keep it gas tight. ASCs were inoculated with 1ml dilute 

suspensions (soil to solution ratio 1:10) of the corresponding fresh whole soil. A thin 

film of water was put into the bottom of the jars to prevent the soil drying (from Wu 

et al. 2011b).  

2.2.3.3 Determination of soil properties 

In order to characterize LOC mineralization, CO2 production after incubation, 

microbial biomass carbon (MBC) and dissolved organic carbon (DOC) were 
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determined which were related to SOC contents of the samples. Additionally, 

ammonium (NH4
+) and nitrate (NO3

-) contents were analyzed which were related to 

total nitrogen contents (TN) of the samples. All the analyses were performed in 

triplicate (from Wu et al. 2011b). 

SOC and TN were determined in duplicate by dry combustion on a Vario Max 

CNS elemental analyser (Elementar, Hanau, Germany). The measured C 

concentrations of the samples that were free of carbonate represent the SOC 

concentration. Samples that contained CaCO3 were heated to 500 °C for 4 hours to 

remove organic carbon and the concentration of inorganic C of the residual material 

was determined by dry combustion. The content of inorganic C was subtracted from 

the C concentration of the untreated material and represents the SOC content (from 

Wu et al. 2011b).  

CO2 production after incubation was determined by incubating the soil fractions 

in 1-L airtight jars with a vial of 20 ml 0.1 M NaOH. The NaOH solution was 

removed and replaced with fresh solution during sampling. The NaOH solution was 

sampled on 2 th,5 th,8 th,11 th,14 th,17 th,23 th,30th day after the incubation started. At the 

sampling dates, the captured CO2 was determined by titration with 0.1 M HCl 

(Zibilske 1994) after precipitation of the carbonate with excess BaCI2. The CO2 

produced after the incubation was used to calculate the C mineralization rate (from 

Wu et al. 2011b). 

MBC was determined using the fumigation-extraction (FE) method (Vance, 1987, 

Dannenmann et al., 2006). 10g sample was immediately extracted with 30 ml 0.5 M 

K2SO4 for 60 min on a rotary shaker at 150 rpm. The second sample was fumigated 

under chloroform vapor for 24 h in a desiccator and then extracted as described above. 

Extracts were frozen under -20℃ and analyzed within one month for DOC(Dimatec 

Analysentechnik GmbH, Essen, Germany). Correction factors (0.379 for microbial 

biomass C, Vance et al. 1987) were applied to the difference in total DOC between 

untreated and fumigated subsamples to estimate MBC (from Wu et al. 2011b).  

After rewetting the soil fractions, 10g subsample was immediately (t1) extracted 

as described above in order to analyze NH4
+ and NO3 

– concentrations. The other 

subsample were incubated in the glass jar for one month, and thereafter extracted with 
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0.5 M K2SO (t2). The extract solution was immediately frozen until the colorimetrical 

determination of NH4
+ and NO3

– concentrations (FIAstar 5000 Analyzer, Foss Tecator, 

Denmark). The difference of NH4
+, NO3 

– and inorganic N between t2 and t1 were the 

net ammonification, nitrification and mineralization respectively (from Wu et al. 

2011b). 

2.3 Statistics and calculations 

In general, the plot mean values were used as statistical unit in this study (n = 3 

for grazing and n = 3 for ungrazed). The Wilcoxon test was applied to test for 

significant differences of the determined parameters at a given sampling date.  

For the calculation of cumulative annual N turnover, gross and net N turnover was 

calculated on a daily basis by linear interpolation considering the mean bulk density 

of the uppermost 10 cm of the soil. Thus, the given cumulative curves of N turnover 

are representative for the uppermost 10 cm of the soil. Furthermore, Pearson`s 

correlation coefficients were calculated to illustrate dependency between soil 

moisture and microbial biomass (n = 618).   

Changes of the analyzed parameters between time 1 and time 2 for the controlled 

grazing intensities were investigated by use of the Wilcoxon test (N=9). Linear 

regression analysis was used to investigate the effect of grazing intensity on the 

investigated plant and soil parameters. Pearson coefficients were calculated.  

To test the significance of grazing and soil aggregate size effects on the examined 

parameters, a two-way analysis of variance (ANOVA) was applied.  

The threshold value for significant correlations or differences was set at P < 0.05. 

All statistical analyses were performed with SPSS 10.0 (SPSS Inc., Chicago, USA). 
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3. Seasonality of soil microbial nitrogen turnover in 

continental steppe soils of Inner Mongolia* 

3.1 Results 

3.1.1 Meteorological data 

The meteorological dataset of this study begins in August 2007 with a drying 

event, i. e. a decrease in soil moisture from approx. 25 vol % to values well below 

10% (Fig. 6 A). After a few weeks of such low soil moisture values, precipitation 

events during three consecutive days in mid of September increased soil moisture 

again to nearly 30 vol %, followed again by a rapid drying out of soil in the last 

September week. Throughout this period, soil temperature was higher at the winter 

grazed plots (from Wu et al. 2012). 

Following these two drying/rewetting cycles, the mean daily soil temperature in 

5 cm depth declined slowly towards the 0°C mark indicating the first freeze events in 

topsoil which actually took place in the first week of October as also indicated by the 

several slight de-/increases in soil moisture at low moisture level of approx. 5-10 vol 

%. By mid of October 2007, the soil was constantly frozen until the beginning of 

March. Throughout this whole winter period with severe soil frost, both soil 

temperature in 5 cm depth and soil moisture were continuously lower at the winter 

grazed plots.  

The subsequent period characterized by frequent and strong freeze/thaw-period 

lasted from beginning of March until beginning of May. The beginning of this period 

is clearly marked by a sharp increase in soil moisture both at WG and UG. While soil  

 

* Wu H.H., Dannenmann M., Wolf B., Han X.G., Butterbach-Bah K. (2012). Seasonality of soil 

microbial nitrogen turnover in continental steppe soils of Inner Mongolia – insights from a full 

year dataset of gross and net nitrogen turnover. Ecosphere, in press. 

I note that this chapter is partly from Wu et al. 2012. 

 



Nitrogen turnover in steppe soils of Inner Mongolia as affected by sheep grazing 

 32 

moisture at UG clearly reached the highest values of the whole dataset, it was 

constantly lower at WG than at UG within the 2 months-freeze-thaw-period. 

Following the spring freeze-thaw period, there were series of pronounced 

drying-rewetting cycles caused by episodic strong convective rainfall events 

throughout the whole growing season (Fig. 6 A) until the onset of the transition to 

winter in 2008. 

3.1.2 Growing season with drying/rewetting cycles: opposite cycles of microbial 

growth and gross rates of N mineralization 

The drying-rewetting cycles in the growing seasons, i. e. strong to extreme 

precipitation events followed by dry and hot weather conditions (Fig. 6A) coincided 

with oscillations in soil microbial biomass N (range approx. 20 to 100 mg N kg-1 sdw, 

Fig. 6D) and simultaneous counterrotating cycles of gross rates of ammonification 

(range from close to zero to 3 mg N kg-1 sdw d-1, Fig. 6B). Microbial biomass was not 

only positively correlated to soil moisture during the growing season, but 

significantly correlated throughout the whole year (Fig. 9). The two major events of 

microbial decline at the beginning of July and at the end of summer 2008 were 

accompanied by a more than doubling of the ratio between microbial biomass C and 

microbial biomass N (Fig. 6E, partly from Wu et al. 2012).  

Oscillation patterns of microbial biomass N in soil and gross ammonification 

were inversely pronounced in summer 2008 (Fig. 6 B, D). Consequently, gross 

ammonification was negatively correlated with soil water content in summer 2008 

(R=-0.579, p=0.012, N=18). These interrelationships indicate that microbial residues 

from dieback events served as a substrate for gross ammonification.  

Gross nitrification is available for five points in time in summer 2008 and was in 

the range between approx. 0 and 1.5 mg N kg-1 sdw d-1 (Fig. 6C). At least data based 

on this – compared to gross ammonification - lower temporal resolution do not give 

evidence for a strong oscillation of gross nitrification during the summer 

drying-rewetting events as was observed for gross ammonification (Fig. 6B). 

Net ammonification was close to zero over the whole year, but became 

significantly negative in summer 2008 (Fig. 6 H). This did not affect extractable soil 



Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia 

 33

ammonium concentrations which were low and little variable both in summer 2008 

and throughout the whole investigated time span (Fig. 6 F). In contrast, net 

nitrification was characterized by two peaks at the beginning and end of the 2008 

vegetation period and a final decline in September 2008 (Fig. 6 I). However, this 

dynamics rarely affected extractable soil NO3
- concentrations (Fig. 6 G).  

Grazing did not affect the pattern of temporal dynamics of the determined 

parameters in summer 2008 (Fig. 6B) However, occasionally grazing significantly 

decreased soil microbial biomass N (Fig. 1 D), the microbial C:N ratio (Fig. 6E) and 

soil ammonium concentrations (Fig. 6 F).  

3.1.3 Transition to winter with first freeze events: Sharp decline in microbial 

biomass in conjunction with a peak of gross nitrification 

The first freeze/thaw events in the uppermost cm of the topsoil in autumn 2007 

occurred by mid of October and lasted approx. 3 weeks until the soil was constantly 

frozen (Fig. 6A). Compared to the previous period without soil frost, microbial 

biomass declined dramatically by more than 80% (Fig. 6 D) while at the same time 

the microbial C:N ratio was more than doubled (Fig. 6 E). Simultaneously, a 

moderate increase of gross ammonification at low level occurred (Fig. 6 B) while 

gross nitrification was increased dramatically and within in this period of first topsoil 

freeze thaw events and was up to an order of magnitude larger than gross 

ammonification (Fig. 6 C). These dynamic changes in gross rates of N turnover and 

microbial biomass N were not reflected by net rates of N turnover (Fig. 6 H, I) and 

inorganic N concentrations in soil (Fig. 6 F, G). Grazing did not affect the determined 

parameters of N turnover in this period (Fig. 6, partly from wu et al. 2012). 

3.1.4 Winter with constantly frozen soil: Low rates of N turnover, 

recovery/buildup of microbial biomass 

From the beginning of November 2007 until beginning of March 2008, the soil 

was constantly frozen (Fig. 6A). Both soil temperature and soil moisture were 

significantly and continuously smaller at WG than at UG (Fig. 6A). This coincided 
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with lower snow height at WG compared to UG due to reduced surface roughness 

length at the grazed plots (Wolf et al. 2010). 

Both gross ammonification and gross nitrification were either not significantly 

different from zero or slightly but significantly positive throughout the soil frost 

period, and characterized by the absence of temporal dynamics throughout the whole 

freeze period. Low but significant 15NH4
+ and 15NO3

- consumption occurred within 

these experiments indicating microbial immobilization of inorganic N (data not 

shown), which is in accordance with an increase of microbial biomass N over time at 

the beginning and end of winter (Fig. 6D). Similarly, net rates of ammonfication were 

not significantly different from zero within this period of constantly frozen soil, while 

net nitrification was slightly larger than zero at the end of the winter period (Fig. 6 H, 

I). Both ammonium and nitrate concentrations were constantly at low level (Fig. 6 F, 

G). After the initial increase, microbial biomass N declined in the beginning of 

January 2008 in conjunction with an intensification of soil frost, i. e. a drop in soil 

temperatures to approx. -10°C at the ungrazed plots and to approx. -15°C at the 

wintergrazed plots (Fig. 6 A, D). The first winter-measurements of microbial biomass 

N revealed significantly smaller microbial biomass N at the wintergrazed site than at 

the control site (Fig. 6 D). Other parameters were not significantly affected by 

grazing in the freeze period (Fig. 6, partly from wu et al. 2012). 

3.1.5 Spring freeze thaw period: peaks of gross N turnover and soil nitrate 

concentrations at highest soil moisture values 

The first thaw events beginning of March 2008 lead to a sharp increase of soil 

moisture due to snow melt (Fig. 6 A) to the highest soil moisture values of the whole 

investigated period at UG and to values which equal the summer values following 

extreme precipitation events at WG (Fig. 6 A). Considerably larger snow 

accumulation at UG than at WG (Wolf et al. 2010) resulted in a more than doubling 

of volumetric soil moisture content at UG compared to WG in the spring freeze thaw 

period (Fig. 6 A). The sudden increase in soil moisture due to spring thaw events 

coincided with an increase in soil microbial biomass N, gross rates of ammonfication 

and nitrification as well as soil NO3
- concentrations. In contrast, net rates of  
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Figure 6: Gross N turnover, net N 

turnover, inorganic N, microbial 

biomass and Meteorological data 

dynamics along whole year (Taken 

from Wu et al. 2012.). 
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Figure 7: Cumulative gross N turnover and net N turnover along whole year (Taken from Wu et 
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nitrification and ammonification as well as soil NH4+ concentrations did not strongly increase 

after winter (Fig. 6 F, H, I). 

3.1.6 Cumulative annual N turnover and contribution of seasons 

Cumulative N turnover as gained by linear interpolation between the measured 

values of N expressed on areal basis further illustrated the importance of both autumn 

and spring freeze-thaw periods for annual gross N turnover (Fig. 7). Annual gross 

ammonification for the uppermost 10 cm of soil was 240 and 215 kg N ha-1 year-1, 

while annual gross nitrification was 417 and 362 kg N ha-1 year-1 for UG and WG, 

respectively. In contrast, annual net ammonification was -9 and -6 kg N ha-1 year-1, 

while annual net nitrification was 31 and 19 kg N ha-1 year-1 at UG and WG, 

respectively. Neither magnitude nor dynamics of net rates of N turnover were related 

to gross rates of N turnover. 

Freeze-thaw period are particularly important for gross N turnover, which 

contributed 50 % and 41 % to annual cumulative gross ammonification (Table 2), 65 

% and 57 % to annual cumulative gross nitrification in UG and WG respectively. In 

contrast, growing season contributed 40 % and 52 % to annual cumulative gross 

ammonification, 29 % and 32 % to annual cumulative gross nitrification in UG and 

WG respectively, while the winter period was of minor importance for both annual 

gross ammonification and annual gross nitrification (Table 2). However, totally 

different patterns occurred for net N turnover. Significant net N turnover only 

happened in growing season for WG with nearly zero values in freeze-thaw period 

and winter. In contrast, freeze-thaw period contributed 16% in UG both for net 

ammonification and nitrification. 

3.1.7 Effects of soil temperature, moisture and microbial biomass N on N 

turnover 

Soil temperature positively related with net nitrification (r2 = 0.14, P = 0.0047, 

Fig. 8), net mineralization (r2 = 0.20, P = 0.0006) and microbial biomass N (r2 = 0.07, 

P = 0.0359) while negatively related with net ammonification (r2 = 0.17, P = 0.0022), 
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nitrate N (r2 = 0.10, P = 0.0225) and inorganic N (r2 = 0.12, P = 0.0118). The 

relationship between soil temperature and gross ammonification  (r2 = 0.31, P < 

0.0001), gross nitrification (r2 = 0.22, P = 0.0046) was a hump-shaped form, which 

means that gross ammonification and gross nitrification increased at low levels of soil 

temperature and decreased at high levels of temperature. The threshold temperature 

was 6℃ for both gross ammonification and gross nitrification.  

Gross ammonification was positively related with soil moisture (r2 = 0.14, P = 

0.0036, Fig. 9). Net ammonification (r2 = 0.14, P = 0.02) and soil ammonia (r2 = 0.14, 

P = 0.0035) decreased with soil moisture at low levels of soil moisture and increased 

at high levels of soil moisture. Net nitrification (r2 = 0.35, P < 0.0001), net 

mineralization (r2 = 0.24, P = 0.0006), and microbial biomass N (r2 = 0.73, P < 

0.0001) showed an opposite relationship, which increased with soil moisture at low 

levels of soil moisture while decreased at high levels. The threshold soil moisture was 

about 0.22 for all net N turnover factors (net ammonification, net nitrification and net 

mineralization). However, it was 0.12 for soil ammonia and 0.25 for microbial 

biomass N. 

Microbial biomass had significant effects on both net N turnover and gross N 

turnover. Net ammonification was negatively related with microbial biomass (r2 = 

0.19, P = 0.0007), while positive relationship occurred for net nitrification (r2 = 0.33, 

P < 0.0001), net mineralization (r2 = 0.15, P = 0.0035) and gross ammonification (r2 = 

0.13, P = 0.0046).  

3.2 Disscussion 

3.2.1 Net rates of N turnover did not provide insight into dynamics and 

magnitude of actual (gross) rates of N turnover. 

Annual gross ammonification was 240 and 215 kg N ha-1 year-1, while annual net 

ammonification was -9 and -6 kg N ha-1 year-1 for UG and WG respectively. Annual 

gross nitrification was 417 and 362 kg N ha-1 year-1, while annual net nitrification was 

31 and 19 kg N ha-1 year-1 at UG and WG, respectively (partly from wu et al. 2012). 

So, net rates of N turnover were less than 8% of gross rates of N turnover, which 
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correspondence well with the report that gross N mineralization rates were 23 times 

higher than net mineralization rates in a forest soil (Stottlemyer and Toczydlowski 

1999). Furthermore, no relationships were found between net N turnover and gross N  

G
ro

ss
 a

m
m

on
ifi

ca
tio

n

-1

0

1

2

3

4

5

y=-0.003x2+0.035x+0.765
r2=0.31, P<0.0001

gr
os

s 
ni

tr
ifi

ca
tio

n 

-2

0

2

4

6

8
G
F1
W
F2

N
et

 a
m

m
o

ni
fic

at
io

n

-0.2

-0.1

0.0

0.1

N
et

 n
itr

ifi
ca

tio
n

-0.2

0.0

0.2

0.4

0.6

0.8

Soil Temperature

-20 -10 0 10 20

N
et

 m
in

er
al

iz
at

io
n 

-0.4

-0.2

0.0

0.2

0.4

Soil Temperature

-10 0 10 20 30

M
ic

ro
bi

al
 b

io
m

as
s 

N
 

0

30

60

90

120

y=-0.005x2+0.059x+1.749
r2 = 0.22, P = 0.0046

Open  WG
Filled   UG

y=-0.002x+0.007
r2 = 0.17, P =0.0022

y=0.0045x+0.0078
r2 = 0.14, P =0.0047

y=-0.0077x-0.0275
r2 = 0.20, P = 0.0006

y=-1.52x+42.23
r2=0.30, P<0.0001

 

 

Figure 8: Effects of daily mean soil temperature in 5 cm depth soil temperature on gross N 

turnover, net N turnover, inorganic N and microbial biomass. 

 

turnover in our study. It is not consistent with the findings in agroforestry systems 

that strong positive correlations were obtained between gross and net rates of N 
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mineralization (Zaman and Chang 2004), but for most studies no relationship were 

found (Booth 2005). Thus, net N mineralization rates do not give a clear picture of 

the total rate of microbial activities, because they do not provide information on the 

rate of the microbial immobilization which is concurrent with the N mineralization 

process (Zaman and Chang 2004). Net rates of N turnover therefore are a poor 

approximation to actual N turnover in semi-arid steppe ecosystems. However, net 

nitrification may be a stronger predictor for trace gas emission than gross nitrification 

(Stark et al. 2002).  Additionally, inorganic N that is available to plants lies 

somewhere between net rates and gross rates, and microbes take up more N than roots 

(Schmidt et al. 2002). 
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Figure 9: Effects of soil moisture on gross N turnover, net N turnover and microbial biomass. 
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Furthermore, N mineralization (both gross and net) is typically assayed in bulk 

soils, but experimental evidence suggests that N cycling rates are higher in 

rhizosphere soils than bulk soil (Norton and Firestone 1996), which may lead to 

higher rates of both N mineralization and microbial assimilation, but spatial or 

temporal segregation of these two processes may allow roots to acquire mineralized N 

as it “goes by” that might otherwise be taken up by microbes if the roots were not 

present (Booth et al. 2005). 

 

3.2.2 Gross nitrification exceeded gross ammonfication both during freeze-thaw 

periods and at the annual scale  

Gross nitrification is lower than gross ammonfication usually because gross 

nitrification is the process that translate the NH4
+ (the production of ammonfication) 

to NO3
- in the classical paradigm of soil N cycle (Schimel and Bennett 2004, Booth et 

al. 2005). However, gross nitrification exceeded gross ammonfication both during 

freeze-thaw periods and at the annual scale in our study, which also occasionally 

occur in the study adjacent to our experiment site (Holst et al. 2007). Nitrogen 

dynamics study in an Australian semiarid grassland soil showed heterotrophic 

nitrification rate explained >50% of total nitrification (Cookson et al. 2006). We also 

found that nitrate concentrations were higher than ammonium concentrations, MBN 

was positively correlated with NO3
- but negatively correlated with NH4

+ 

concentrations. Therefore, we predicted that N turnover may be nitrification-prone in 

the investigated ecosystem. Heterotrophic nitrification (i. e. direct oxidation of 

organic substrate to NO3
- without a free NH4

+ pool, Barraclough and Puri 1995; Corre 

et al. 2003) is hypothesized to have facilitated gross nitrification exceeding gross 

ammonification. 
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Figure 10: Effects of microbial biomass and microbial biomass C/N on gross N turnover and net 

N turnover. 
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Table 2: Contributions of Seasons to Gross N turnover. 

 
Gross Ammonification Gross Nitrification 

Sites Seasons Amount 
(kg N ha-1y-1) 

Contri-
bution

Average 
(kg N ha-1 d-1)

Amount 
(kg N ha-1y-1) 

Contri- 
bution 

Average 
(kg N ha-1 d-1)

WG Freeze-thaw 1 14.12±4.02 0.07 0.31±0.05 129.55±11.45 0.36 2.82±0.15 

 Freeze-thaw 2 73.52±6.98 0.34 0.92±0.09 76.80±19.92 0.21 0.96±0.27 

 
Growing 
season 

111.98±17.42 0.52 0.77±0.11 116.98±17.58 0.32 0.80±0.11 

 Winter 15.57±6.45 0.07 0.17±0.05 38.63±109.42 0.11 0.41±0.83 

 Whole year 215.19±34.87  0.59±0.1 361.97±158.36  0.99±0.44 

UG Freeze-thaw 1 14.95±2.72 0.06 0.32±0.04 79.36±36.03 0.19 1.73±0.48 

 Freeze-thaw 2 106.54±4.72 0.44 1.33±0.06 190.60±62.66 0.46 2.38±0.84 

 
Growing 
season 

95.02±28.58 0.40 0.65±0.19 122.24±31.41 0.29 0.84±0.21 

 Winter 23.15±9.29 0.10 0.25±0.07 24.71±47.09 0.06 0.26±0.36 

 Whole year 239.66±45.31  0.65±0.13 416.91±177.19  1.14±0.49 

 
Days of seasons: first freeze-thaw period, 46 days, second freeze-thaw period, 80 days; growing 

season, 146 days; winter, 94 days. The values are expressed by mean ± se (Taken from Wu et al. 

2012.).  

   

3.2.3 Freeze-thaw periods are key periods for understanding annual N turnover 

in soils of semi-arid steppe  

Averagely, freeze-thaw period contributed 53% to annual cumulative gross N 

turnover (Table 2 and Fig.7), growing season contributed 38%, winter contributed 9 

%, which consistent with gross N mineralization highest in the spring and autumn and 

lowest in summer (Jamieson et al. 1999). It is likely because that greater soil moisture 

during freeze-thaw period stimulate microbial activity (we will discuss soil moisture 

effect in detail later). Low but significant gross N turnover in winter indicated that 

gross N turnover in winter should not be ignored. In the period of transition to winter, 

gross nitrification peaked in conjunction with sharp decline in microbial biomass 

likely because that some microorganism died because of low temperature and NO3
- 
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released from the died microorganism. 

In contrast, significant net N turnover only occurred in growing season for WG 

with nearly zero values in freeze-thaw period and winter. However, freeze-thaw 

period contributed 16% in UG for both net ammonification and nitrification. Our 

results suggested that estimating net N turnover only in summer seems ideal to 

evaluate annual net N turnover for grazed grassland, however, freeze-thaw period 

should not be ignored for ungrazed grassland. 

3.2.4 Grazing effects on N turnover, microbial biomass and soil properties 

Grazing effects were mostly pronounced in the spring freeze thaw period, but not 

in other periods of the year. Therefore grazing must have changed the soil and 

environmental conditions that determine gross N turnover during the freeze-thaw 

period. The aboveground biomass and vegetation height were greater and thus more 

snow in UG than that in WG (Wolf et al. 2010). Moreover, WG site with lower 

vegetation/snow cover have significantly higher freezing rates, lower winter soil 

temperatures and reduced soil moisture during snow melt. Study on annual N2O 

emission in the same sites with ours also found enormous differences in spring 

freeze-thaw between UG and WG (Wolf et al. 2010) mainly because of the soil 

moisture. Our results showed that soil moisture was positively related with gross N 

mineralization, which is likely the reason that grazing effect only significant in 

freeze-thaw period. Grazing reduces microbial activity during spring freeze thaw 

period by reduced wintertime water rentention and microbial growth.  

Our findings that grazing had no significant effect on gross and net N turnover in 

growing season, which is opposite with the result of Holst et al. (2007) though they 

also found small differences in soil texture, soil organic C content and bulk density 

between UG and WG. Most studies have proved the effect of grazing on N turnover 

especially net N turnover, but in this study, our WG site was only grazed in winter 

which has much less effect on ecosystem than summer grazing. Thus, the gross and 
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net N mineralization between WG and UG in growing season is similar. Our results 

about soil temperature, soil moisture, microbial biomass, inorganic N proved the 

patterns of gross and net N turnover. A study including the determination of net 

mineralization and net nitrification rates under grazing disturbance at the same sites 

of the present study also could not observe differences between grazed and ungrazed 

plots (Wang et al. 2006). 

3.2.5 Soil temperature and moisture dominate microbial biomass and N turnover 

in Inner Mongolia grassland 

Our results showed clearly that soil temperature and moisture appeared to be the 

most critical factors affecting gross and net N turnover and microbial biomass, which 

are basically consistent with previous studies. Gross N turnover increased with soil 

temperature at low temperature levels, and opposite trends appeared at high 

temperature. Sierra and Marban (2000) found the optimum temperature was 25 – 35 

℃ contrasting with our 6 ℃, while gross N mineralization in agroforestry systems 

increased with soil temperature until 40 ℃ (Zaman and Chang 2004). The optimum 

temperature was much lower than that of other studies may reflect the microorganism 

adaption to low temperature of Inner Mongolia grassland. Another possible reason is 

that high temperature reduced the soil moisture in growing season (except days after 

raining), and high soil moisture with low temperature in freeze-thaw period. Soil 

temperature positively related with net nitrification and mineralization while 

negatively related with net ammonification, which suggested that mesophilic nitrifiers 

(such as fungi and actinomycetes) were more active at high temperature while 

ammonifiers were more active at low temperature (Wang et al. 2006). The low net 

ammonification and high nitrification in growing season also approved that.  

Soil moisture is another driven factor that control N turnover, which significantly 

affected gross ammonification and net N turnover, especially microbial biomass N (r2 

= 0.73). The strongly significant correlation between soil water content and microbial 
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biomass N over the full dataset including all investigated periods indicated that soil 

moisture is the dominant factor in the regulation of microbial growth. Water 

availability controls soil microbial activity and thus the rates of gross and net N 

turnover. Our findings are consistent with other studies (Zaman and Chang 2004). 

However, most studies found maximal net N mineralization occurs when soil 

moisture is close to field water holding capacity (about 40%). In contrast, we 

suggested that 25% is the optimal soil moisture for net mineralization and microbial 

biomass maybe because that microorganism in our sites have adapted to the semiarid 

environment. Another possible reason is that the interactive with soil temperature, the 

highest soil moisture occurred in freeze-thaw period when soil temperature was very 

low while high soil temperature was often accompanied by sever arid in summer.  

The two major events of microbial decline at the beginning of July and at the end 

of summer 2008 were accompanied by a more than doubling of the ratio between 

microbial biomass C and microbial biomass N (Fig. 6E). This may indicate that 

bacterial communities were more negatively affected by the microbial decline in 

favour of fungi. Outliers of microbial biomass N in Fig. 10 at highest soil moisture 

are from UG at the onset of spring freeze-thaw and may be explained by a temporal 

delay between sudden high water availability and somewhat retarded microbial 

growth. Oscillation patterns of microbial biomass N in soil and gross ammonification 

were inversely pronounced in summer 2008 (Fig. 6 B, D). Consequently, gross 

ammonification was negatively correlated with soil water content in summer 2008 

(R=-0.579, p=0.012, N=18). These interrelationships indicate that microbial residues 

from dieback events served as a substrate for gross ammonification. Decaying 

microbial biomass appears to be a major substrate for N turnover in summer and 

during first freeze-thaw events. 

As we showed in upper, grazing effect only significant in freeze-thaw period, 

which indicate that moderate winter-grazing decreased gross rates of N turnover and 

microbial biomass, in particular due to a reduction of soil moisture during spring 
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freeze-thaw period. Freeze-thaw contributed to annual gross N turnover more than 

50% also mainly because of the great soil moisture. However, the high N turnover in 

summer suggested that temperature is another key drive factor for N turnover. The 

great fluctuation of N turnover and microbial biomass reflected the alternation of dry 

and wet. Therefore, soil temperature and moisture seems the most direct and drive 

factor that control N turnover and microbial activity. 
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4. Grazing intensity effects on gross rates of N 

mineralization and short-term inorganic N partitioning in 

intact plant-soil systems of semi-arid steppe of Inner 

Mongolia* 

4.1 Results 

4.1.1 C and N pool sizes, soil parameters 

Average bulk density of the whole soil cores until 20 cm depth significantly 

increased with increasing stocking rate (Fig. 11 A), while soil moisture decreased 

with increasing grazing pressure (Fig. 11 B). Over the two days incubation period, 

while there was no precipitation, soil moisture tended to slightly decrease at all four 

investigated plots with a significant decrease at the plot with low grazing intensity 

(Fig. 11 B). Conversely to bulk density, extractable TOC (Fig. 11 C) and DON 

concentrations (Fig. 11 D) decreased with increasing grazing pressure. However, soil 

microbial biomass carbon and nitrogen were not affected by grazing (Fig. 11 E, F). 

Both microbial biomass C and N significantly decreased over the two days incubation 

period at most of the plot (Fig.11 E, F). Extractable soil NH4
+ concentrations 

significantly decrased with increasing stocking rate while NO3
- concentrations 

sharply increased at moderate and heavy grazing intensity (Fig. 11 G, H). Soil NH4
+ 

and NO3
- concentrations were of similar magnitude at the control plot and under low 

stocking rate, while NO3
- concentrations under moderate and heavy stocking rates  

 

* Wu H.H., Dannenmann M., Fanselow N., Wolf B., Yao Z.S., Wu X.,  Brüggemann N., Zheng 

X.H., Han X.G., Dittert K., Butterbach-Bahl K. (2011a). Feedback of grazing on gross rates of N 

mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant & soil, 

340:127-139. 

I note that this chapter is mostly taken from Wu et al 2011a. 
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Figure 11: Soil parameters and soil and plant nitrogen pools as influenced by stocking rate. Black 
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squares represent values from the time 1 extraction (24 hours after 15N application), open circles 

represent values from the time 2 extraction (72hours after 15N application). Regression lines for 

time 1 values are in black colour while regression lines for time 2 are in light grey. Asterisks 

indicate significant differences between time 1 and time 2 values for a given stocking rate. DON: 

dissolved organic nitrogen; DOC: dissolved organic carbon (Taken from Wu et al 2011a.). 

 

 

Table 3: Gross rates of N mineralization at the plots exposed to different grazing pressure. For  

uncertainty analysis see Materials and Method section . 

 

Stocking rate 
[Sheep ha-1 grazing 

season-1] 
0 1.5 4.5 7. 5 

Gross rate of 
N mineralization 
[mg N m-2 d-1] 

222 ± 16 125 ± 18 245 ± 60 309 ± 20 

Taken from Wu et al 2011a. 
 

were up to an order of magnitude larger than NH4
+ concentrations (Fig. 11 G, H). Soil 

NH4
+ concentrations significantly decreased over the incubation period at the heavy 

stocking rate plot and tended to decrease at the other plots (Fig. 11 G). The 

belowground biomass contained in general more nitrogen than the aboveground 

biomass at all plots (Fig. 11 I, J). Grazing strongly decreased the aboveground plant 

biomass N pool (Fig. 11 I), while belowground biomass was not significantly affected 

by grazing (Fig. 11 J).   

4.1.2 Gross N mineralization 

 Gross N mineralization ranged from 125 mg N m-2 d-1 at the plot with low grazing 

intensity to 309 mg N m-2 d-1 at the plot with the highest grazing intensity (Table 2). 

Expressed on a soil dry weight basis, gross N mineralization was 0.85, 0.49, 0.85 and 

1.04 mg N kg sdw d-1 at the control plot, lightly grazed plot, moderately grazed plot 

and heaviliy grazed plot. When expressed on an annual basis, these values equal 810, 

455, 893 and 1128 kg N ha-1 year-1. The gross N mineralization was considerably 
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Figure 12: Recovery of 15N in the investigated pools (% of added 15N) as affected by stocking 

rate. Quadratic black symbols represent values from the time 1 extraction (24 hours after 15N 

application), open circles represent values from the time 2 extraction (72 hours after 15N 

application). Regression lines for time 1 values are in black while regression lines for time 2 are 
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in light grey. Asterisks indicate significant differences between time 1 and time 2 values for a 

given stocking rate. AGB: Aboveground plant biomass, BGB: belowground plant biomass, DON: 

dissolved organic nitrogen; DOC: dissolved organic carbon; competition index: 15N recovery in 

microbial biomass divided by 15N recovery in total plant biomass (aboveground plus belowground) 

(Taken from Wu et al 2011a.).  
 

 

smaller at the lightly grazed plot than at the control plot (Table 2), but then strongly 

increased with increasing grazing intensity at SR 4.5 and SR 7.5 (Table 2). However, 

the increase of gross ammonification with grazing intensity was not significant when 

data from both the ungrazed control plot and the three grazed plots were included.  

4.1.3 15N recovery 

15N recovery in the NH4
+ pool one day after the 15NH4

+ labelling of the soil cores 

was already consistently below 10% and significantly further decreased in the 

following 2 days at all plots (Fig. 12 A). This decline in 15NH4
+ recovery was 

predominantly caused by a marked decrease of the 15NH4
+ enrichment due to 15N pool 

dilution via gross mineralization of unlabelled organic N substrates and a parallel 

consumption of NH4
+, as indicated by the slight net decline of the NH4

+ pool (Fig 11 

G). Conversely to the 15N recovery in the soil NH4
+ pool, the recovery in the soil 

NO3
- pool was several fold up to an order of magnitude larger (Fig. 12 B). At all plots 

except for the control plots, the 15N recovery in the NO3
- pool significantly declined 

between time 1 and time 2 (Fig 12 B). Both at time 1 and time 2, grazing had a 

significant negative effect on 15N recovery in the NH4
+ pool (Fig. 12A), while it 

significantly increased the 15N recovery in the NO3
- pool (Fig. 12 B).  

Conversely to the 15N recovery in the inorganic soil N pools, the 15N recovery in 

aboveground (Fig. 12 C) and belowground plant biomass (Fig. 12 D) significantly 

increased from time 1 to time 2 at all plots. Grazing significantly decreased the 15N 

recovery in aboveground plant biomass both at time 1 and time 2 (Fig. 12 C), while 

the decrease in 15N recovery in belowground plant biomass with increasing stocking 

rate was significant only at time 2 (Fig. 12 D). Consequently, the sum of 15N recovery 
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in aboveground and belowground plant biomass significantly increased between time 

1 and time 2 and was significantly negatively correlated with stocking rate (Fig. 12 

G). 

In contrast to the 15N recovery in plant biomass, the 15N recovery in soil 

microbial biomass did not significantly change over the 2-days incubation period (Fig. 

12 E). This was a combined effect of an increase in the 15N enrichment of microbial 

biomass between time 1 and time 2, and, at the same time, a decrease of the total 

microbial biomass N pool size (see Fig. 11 E).  The 15N recovery in soil microbial 

biomass was significantly negatively correlated with stocking rate for both harvesting 

dates (Fig. 12 E).  
15N recovery in the DON pool significantly decreased with increasing grazing 

intensity (Fig. 12F), but was under total N mass balance considerations of minor 

importance as the range of mean recovery across the plots and harvesting dates was 

only 0.1 to 1.1 %.  

As an index of plant-microbe competition for inorganic N, we divided the 15N 

recovery in soil microbial biomass by the 15N recovery in total plant biomass. 

Interestingly, this index was not affected by grazing intensity (Fig. 12 F). This index 

equalled a value of approximately three in time 1 and significantly declined to 

approximately one in time 2 (Fig. 12 H). Hence, microbes significantly acquired more 

nitrogen than plants 24h after 15NH4
+ application, but plants overhauled microbes in 

nitrogen acquisition already 72 hours after the 15N fertilizer had been injected into the 

soil cores.  

The sum of 15N recovery in the investigated pools ranged from 30 to 60 % 

(Table 3). Overall, most of the injected 15N was recovered in the NO3
-, plant biomass 

and soil microbial biomass pools, while recovery of 15N in the NH4
+ pools and DON 

pools was of minor importance. 

4.1.4 Correlation of dissolved organic carbon (DOC) and C:N ratio in the soil 

extracts with 15N recovery 

Extractable DOC concentrations were significantly negatively correlated with 15N 

recovery in the NO3
- pool and significantly positively correlated with 15N recovery in 
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the NH4
+, ABGBM, BGBM and DON pools both at time 1 and time 2 (Table 4). 

Furthermore, DOC concentrations were significantly positively correlated with MBN 

at time 1. The ratio between extractable DOC and TN was consistently significantly 

negatively correlated with 15N recovery in the NO3
- pool and positively correlated 

with 15N recovery in NH4
+, MBN, ABGBM, BGBM and DON pools both at time 1 

and time 2 (Table 4) 

 

Table 4: Sum of 15N recovery ± standard deviation. The following N pools were analyzed: soil 

mineral N, aboveground and belowground plant tissues, microbial biomass and DON. 

 

Stocking rate 
[Sheep ha-1 grazing 

season-1] 
0 1.5 4.5 7.5 

Total 15N recovery 
time 1 [%] 

31 ± 6 33 ± 3 40 ± 6 60 ± 12 

Total 15N recovery 
time 2 [%] 

38 ± 4 37 ± 7 35 ± 7 30 ± 6 

Taken from Wu et al 2011a. 

4.2 Discussion 

4.2.1 Methodological uncertainties, patterns and magnitudes of N turnover 

The still common procedure of excluding the plant/root compartment from 

experiments on soil N turnover and immobilization as well as disturbing soil before 

the experimental incubation begins, has the potential to dramatically alter N turnover 

rates (Murphy et al. 2003, Booth et al. 2006, Burger and Jackson 2004, Rennenberg et 

al. 2009). Gross rates of N mineralization and 15N partitioning to plant and microbial 

pools in this study were determined in large intact plant soil microcosms where 

plant-microbe competition for organic and inorganic nitrogen as well as further 

plant-microbe interactions like substrate supply to microorganisms via root exudation 

persisted. Furthermore, potential bias due to non-uniform 15N labelling of the intact 
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soil core (Davidson et al. 1991) could be minimized in this study by the labelling 

technique involving 38 single injections into every soil core. Additionally, potential 

bias by storing soil (Arnold et al. 2008) could be avoided by immediate processing.  

 

Table 5: Pearson’s coefficients for correlations between extractable soil dissolved organic carbon 

concentrations (DOC) and the ratio of DOC to total extractable soil N (TN) with 15N 

recovery in the investigated plant and soil nitrogen pools (N=36).  

 

Time 1 
15N rec. 
NH4

+ 

15N rec. 
NO3

- 

15N rec. 
MBN 

15N rec. 
AGBM 

15N rec. 
BGBM 

15N rec. 
DON 

Soil DOC 0.432** -0.644*** 0.381* 0.738** 0.448** 0.785*** 

DOC:TN 
ratio 

0.472** -0.820*** 0.488** 0.786*** 0.446** 0.680** 

Time 2 
15N rec. 
NH4

+ 

15N rec. 
NO3

- 

15N rec. 
MBN 

15N rec. 
AGBM 

15N rec. 
BGBM 

15N rec. 
DON 

Soil DOC 0.478** -0.375* N. S. 0.535*** 0.445** 0.626*** 

DOC:TN 
ratio 

0.741*** -0.692** 0.407* 0.733*** 0.656*** 0.583*** 

MBN: microbial biomass nitrogen; AGBM: aboveground plant biomass; BGBM: belowground 

plant biomass; DON: dissolved organic nitrogen. N. S.: not significant; * significant at p<0.05; ** 

significant at p<0.01; *** significant at p<0.001. These correlations were calculated across all 

plots and grazing intensities (Taken from Wu et al 2011a.).  

 

Another potential bias in the application of 15N pool dilution techniques - internal 

N recycling - is commonly thought to be non-significant within periods of one week 

(Murphy et al. 2003), however, could occur faster in intact plant-soil-systems in the 

presence of roots due to internal recycling of 15N via the microbial loop or via plant 

paths (Burger and Jackson 2004). In the present study, the slight decline of microbial 

biomass between time 1 and time 2 and the appearance of small amounts of 15N in the 

extractable DON pool may indicate that indeed some internal N cycle occurred and 
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hence gross rates of N mineralization could be considered to be rather conservative. 

However, as the 15N recovery in the DON pool was only approx. 1 % of the added 
15N (Fig. 12 F), a potential underestimation of gross N mineralization may be small. 

Overall, we assume that the chosen methodology represents a unique realistic 

approach to actual gross rates of N mineralization and short-term partitioning of 

inorganic N to plant-, soil- and microbial N pools.  

Due to the short incubation time in the present study, plant and microbial N uptake 

as interpreted from 15N recovery in this study does represent short-term, 

process-competition mediated N partitioning. In contrast, medium- to long-term 

plant-microbe competition for nitrogen is mainly influenced by the mean N residence 

time in the pools. Nitrogen acquired by microorganisms via strong short-term process 

competition may repeatedly enter the plant-microbe competition pools while plants 

sequester nitrogen for longer periods than microorganisms (Hodge et al. 2000).  

The present study represents a snapshot on midsummer N mineralization and 

inorganic N partitioning in the plant-soil-system of typical steppe of Inner Mongolia. 

Due to the dynamic character of gross rates of N turnover (Dannenmann et al. 2006, 

Rosenkranz et al. 2009), it does neither allow to draw conclusions on N turnover and 

N partitioning at larger time scales nor to estimate annual N fluxes. As there is 

increasing evidence that winter fluxes and especially N conversion in freeze-thaw 

periods may be of great importance in steppe ecosystems, a major goal of future 

studies should be to gain full annual cycles of gross rates of N conversion, though 

such studies will be extremely elaborate.   

4.2.2 Grazing effects on soil and plant parameters 

The observed increase in bulk density (Fig. 11 A) with increasing stocking rate is in 

accordance with nearby conducted studies by Holst et al. 2007 and Steffens et al. 

2008. The latter studies also found positive effects of grazing on bulk density, 

accompanied by decreases in soil organic C and soil total N. This was attributed to a 

combined effect of trampling, reduced aboveground organic matter input and root 

growth as well as grazing-induced erosion. We expect similar causes and effects in 

our study, e. g. by reduced aboveground biomass (Fig. 11 I), which may – in 
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conjunction with a decline in soil organic matter - also explain decreasing extractable 

DOC concentrations (Fig. 11 C), and, furthermore, decreasing soil moisture (Fig. 11 

B). The negative effect of grazing on midsummer soil moisture is in accordance with 

another study conducted in Inner Mongolia (Xu et al. 2007).  

4.2.3 Grazing effects on N turnover in the plant-soil system 

Among the most obvious effects of grazing was the strong increase of soil NO3
- 

concentrations with stocking rate (Fig. 11 H). High soil NO3
- concentrations at 

intensively grazed plots may lead to undesired environmental consequences like 

increased N losses from the ecosystem in general and increased N2O emissions at the 

soil-atmosphere interface in particular (Holst et al. 2007). Ecosystem N losses could 

have contributed to the decline in total 15N recovery which was observed between 

time 1 and time 2 for the highest grazing intensity (Table 4), as this was caused by a 

decline in 15N recovery in the NO3
- pool. However, also other mechanisms could 

explain this decline, e. g. abiotic NO3
- immobilization and stabilization in 

non-extractable organic pools (e. g. Davidson et al. 2003).  Decreasing NO3
- 

uptake/immobilization by plants/soil microorganisms and increased gross nitrification 

may have caused the increase of the NO3
- pool with increasing grazing intensity. 

Smaller NO3
- uptake by both plants and by soil microbes at intensively grazed plots is 

indicated by smaller 15N recoveries in plant and microbial N pools (Fig. 12 C, D, E, 

G). The observation that the ratio of recovery in microbial and plant N pools did not 

change due to grazing (Fig. 12 H) implies that the competitive strength in NO3
- 

acquisition of both plants and heterotrophic soil microorganisms was negatively 

affected by grazing. Hence, a given pool of soil NO3
- can be expected to be less 

exhausted by both plants and microorganisms at increasing grazing pressure.  

Postitive effects of grazing on gross rates of nitrification may also have contributed 

to the strong increase in soil NO3
- as indicated by a decrease in both total NH4

+ pool 

size (Fig. 11 G) and 15N recovery in the 15NH4
+ (Fig. 12 B), while the 15N recovery in 

the soil NO3
- pool increased with stocking rate (Fig. 12 B). Nitrification may be 

supported at grazed plots by increased NH4
+ substrate supply via increased N 

mineralization (Table 3). It is expected that easily decomposable feces input (Tracy 
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and Frank 1998) represent the major organic substrate for the observed higher gross 

N mineralization at higher stocking rate, since the total nitrogen content of the soil is 

decreased by grazing in the investigated ecosystem (Steffens et al. 2008). 

Furthermore, in the present study, extractable organic nitrogen decreased with grazing 

intensity (Fig. 11 D). Interestingly, Steffens et al. 2009 found within a study 

conducted nearby that grazing decreased the aggregate stability in soil. Such an effect 

may have made the soil organic matter more available for depolymerization and 

mineralization and hence could also have contributed to the high gross rates of N 

mineralization found at the heavily grazed plot.  

A key role in mediating grazing effects on changing patterns of soil N fluxes 

leading to the observed increase in soil NO3
- appears to be attributed to soil C 

availability, as extractable DOC concentrations and the ratio of extractable DOC to 

extractable TN in the soil were correlated to the 15N recovery in all investigated pools 

(Table 5). Soil DOC availability may affect both consumption and production of soil 

NO3
-. First, lower C availability at intensively grazed plots (Fig. 11 C) may inhibit 

heterotrophic NO3
- utilization (Booth et al. 2005, Dannenmann et al. 2006, 2007). 

Second, it may alter the competitive balance of microbial NH4
+ utilization in favour 

of autotrophic nitrification and at the expense of heterotrophic microbial NH4
+ 

immobilization (Booth et al. 2005, Dannenmann et al. 2006, 2007).  

In the present study, the influence of grazing on N mineralization was not 

uni-directional. Gross N mineralization appeared to decrease at low grazing intensity 

but strongly decreased with more grazing pressure and was larger at the heavily 

grazed plot than at the ungrazed control plot (Table 3). Hence, there was no 

significant linear correlation between grazing intensity and gross N mineralization but 

only a positive trend. Comparably little studies investigated gross N mineralization as 

influenced by grazing in semi-arid grassland. In a nearby conducted study, Holst et al. 

(2007) found a contradictory trend that grazing decreased gross N mineralization, but 

lack a final conclusion due to unsufficient replication. The different grade of 

disturbance could have contributed to these contradictory results, as sieved soil was 

used by Holst et al. (2007). In the latter study, the mean rates of N mineralization at 

lightly to heavily grazed plots (0.6 to 1.3 mg N g-1sdw) were similar with this study, 
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but N mineralization rates were considerably higher (1.4 to 4.1 mg N kg-1 sdw d-1) at 

ungrazed plots. The results of our study are better in agreement with studies 

conducted in grasslands of North America, where grazing was mostly found to 

stimulate N mineralization and subsequent N fluxes like nitrification and 

denitrification (Groffman et al. 1993; Frank et al. 2000; Le Roux et al. 2003). Such 

effects have been attributed to increased root exudation after defoliation (Holland et 

al. 1996, Hamilton and Frank 2001). In particular rhizodeposition, competition- and 

other plant effects on microbial soil N turnover are excluded in high disturbance 

sieved soil 15N pool dilution techniques like used by e. g. Holst et al. (2007) which 

could be an explanation for controversial results. In view of the limited number of 

studies investigating grazing effects on gross N turnover rates, in general low 

available temporal resolution and enormous differences in the grade of disturbance 

induced by the applied methods, the reasons for contradictory results of the available 

studies currently remain speculative.  

In the present study, where sheep grazed over a time-period of three months, a 

series of undesirable consequences (decrease in soil moisture, soil C availability, 

aboveground plant biomass, plant N acquisition but increase in soil nitrate 

accumulation) occurred at stocking rates of 4.5 and 7.5 sheep ha-1, but not at the 

grazing intensity of 1.5 sheep ha-1 (Fig. 11, 12). Hence, we assume that the critical 

threshold value for a sustainable summer grazing practice is around 1.5 sheep ha-1 for 

the investigated ecosystem.  
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5. Labile organic C and N mineralization of soil aggregate 

size classes in semi-arid grasslands as affected by grazing 

management* 

5.1 Results 

5.1.1 Labile organic carbon 

CO2 production after incubation ranged from 1 to 12 mg g-1 between all grazing 

intensities and ASCs (Fig. 13). HG and CG showed a much higher CO2 production 

than WG, UG99 and UG79. HG was significantly (P < 0.05) higher than CG while 

there were no differences among WG, UG99 and UG79. Grazing intensity had a 

consistent effect on CO2 production across all ASCs. CO2 production was highest for 

cASC while fASC showed the lowest value (P < 0.05). CO2 production of the bulk 

soil was 3.75 ± 1.60 mg g-1, which was between mASC and fASC.  

MBC and DOC showed similar patterns after incubation. Both MBC and DOC in 

CG and HG were considerably higher compared to WG, UG99 and UG79 (Fig.13). 

CG showed significantly (P < 0.01) higher value than HG both for MBC and DOC. 

No differences were found between WG, UG99 and UG79. Grazing intensities had a 

consistent effect on MBC and DOC across all ASCs (Fig. 13). Among the three ASCs, 

MBC and DOC of mASC showed the highest values, MBC of fASC was the lowest 

(P < 0.05), MBC of cASC was the lowest. Aggregate size, grazing and their 

interaction effect all influenced CO2 production, MBC and DOC significantly (Table 

6 and Fig. 13, two-way ANOVA, P < 0.0001). 

 

*Wu H.H., Wiesmeier M., Yu Q., Steffens M., Han X.G., Kögel-Knabner I. (2011b). Labile 

organic C and N mineralization of soil aggregate size classes in semi-arid grasslands as affected 

by grazing management. Biology & Fertility of Soils, 48:305-313. 

I note that this chapter was mostly taken from Wu et al 2011b.  
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Figure 13: CO2 production (A), microbial biomass carbon (MBC, B) and dissolved organic 

carbon (C) influenced by soil aggregate size and grazing. All factors were based on organic 

carbon (OC) (Taken from Wu et al. 2011b.).  
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Figure 14: Ammonification (A), nitrification (B) and mineralization (C) affected by soil  

aggregate size and grazing. All factors were based on total nitrogen (TN) (Taken from Wu et al. 

2011b.).  
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5.1.2 N mineralization 

Land-use styles, soil aggregate sizes and their interaction effect had significant 

effects on ammonification, nitrification and mineralization (Table 7, P < 0.0001). 

However, there were no consistent patterns across all land-use styles and aggregate 

sizes. 

For bulk soil, net ammonification (Fig. 14) of all experimental sites was negative. 

Net ammonification of CG was significantly lower (P < 0.05) compared to all other 

grazing intensities. Furthermore, net ammonification of HG and WG was 

significantly higher (P < 0.05) than that of UG99 and UG79. For mASC, all net 

ammonification rates were positive. For cASC and fASC, net ammonification of WG 

and UG79 was positive while that of UG99, CG and HG was negative.  

Net nitrification revealed the highest values for HG (Fig. 14). Net nitrification in 

UG79 was the lowest between all experimental sites. WG showed a high net 

nitrification for bulk soil, but for three ASCs WG had the lowest nitrification. In 

General, bulk soil showed higher nitrification rates than the ASCs. fASC was 

significantly higher than mASC, but cASC had no difference with them. 

Grazing increased net N mineralization significantly (Fig.14 and Table 7), 

especially in bulk soils. Net N mineralization of bulk soil was the highest among all 

ASCs, but no difference was found among cASC, mASC and fASC. 

5.1.3 Inorganic Nitrogen 

Both grazing intensities and ASC significantly influenced ammonium, nitrate and 

inorganic nitrogen concentrations. For bulk soils, only CG exhibited a significant 

effect on ammonium concentration. There was no significant difference among HG, 

WG, UG99 and UG79 (Fig. 15 A). There were also no clear patterns of grazing 

intensity effects across the three ASCs. However, the ammonium concentrations in 

cASC, mASC and fASC were much higher than that in bulk soil across all grazing 

intensities (Fig. 15 A) while nitrate and inorganic concentrations in cASC, mASC and 

fASC was much lower than that in bulk soil (Fig. 15 B, C). Grazing significantly 

increased nitrate and inorganic N in bulk soil (Fig. 15 B, C).  
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Figure 15: Ammonium (A), nitrate (B) and inorganic nitrogen (C) affected by soil aggregate size 

and grazing. All factors were based on total nitrogen (TN) (Taken from Wu et al. 2011b.).  
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Table 6: Two-way ANOVA results for the effects of soil aggregate size (SAZ) and grazing 

intensity (GI) on CO2 production, microbial biomass carbon (MBC) and dissolved organic carbon 

(DOC). 
 

 CO2 production MBC DOC 

CG 5.12 ± 2.14B 0.073 ± 0.033A 10.91 ± 2.61A 

HG 7.67 ± 2.99A 0.053 ± 0.026B 9.56 ± 1.94B 

WG 3.15 ± 0.59C 0.020 ± 0.006C 5.01 ± 0.74C 

UG99 3.52 ± 1.37C 0.022 ± 0.005C 5.66 ± 0.68C 

UG79 2.83 ± 1.40C 0.012 ± 0.007D 4.94 ± 0.75C 

Bulk soil 3.75 ± 1.60c 0.311 ± 0.014c 6.42 ± 1.96c 

cASC 6.60 ± 2.93a 0.038 ± 0.025b 7.41 ± 2.78b 

mASC 4.96 ± 2.43b 0.056 ± 0.044a 8.81 ± 3.99a 

fASC 2.53 ± 0.92d 0.020 ± 0.015d 6,23 ± 2.14c 

GI F = 120.7*** F = 410.77*** F = 128.92*** 

SAZ F = 113.81*** F = 176.5*** F = 28.55*** 

GI*SAZ F = 8.87*** F = 40.28*** F = 4.72*** 

 
Different superscript letters represent statistically significant difference between treatments at P < 

0.05. Values are expressed by mean ± SD. *** represents P < 0.0001 (Taken from Wu et al. 

2011b.).  

5.2 Discussion 

5.2.1 Effect of Grazing on labile organic carbon 

The results showed that CG and HG increased CO2 production, MBC and DOC 

significantly across all ASCs and bulk soil, indicating overgrazing increased LOC 

inInner Mongolia grassland. Our results correspond well with the fact that 

overgrazing increased carbon loss and decreased carbon storage (He et al., 2008; He 

et al., 2011; Ingram et al., 2008). However, the results also showed that WG exhibited 
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no significant effect on LOC compared to UG99 and UG79, suggesting that 

moderately grazing would not increase carbon loss or even increased carbon storage 

(Han et al., 2008; Milchunas and Lauenroth, 1993; Schuman et al., 1999). Our results 

are inconsistent with the finding of a higher CO2 production in UG99 compared to 

WG during freezing-thawing cycles (Holst et al., 2008) and greater microbial and 

enzyme activities in ungrazed compared to grazed plots in semiarid Australia (Holt, 

1997). They attributed their findings to greater soil moisture and greater input of 

organic matter in ungrazed plots. Thus, the effects of grazing are complex because of 

the variations in climate, soil, landscape location, plant community type and grazing 

management practices (Milchunas and Lauenroth, 1993; Reeder and Schuman, 2002). 

 

Table 7: Two-way ANOVA results for the effects of soil aggregate size (SAZ) and grazing 

intensity (GI) on ammonification, nitrification and mineralization. 
 

 Ammonification Nitrification Mineralization 

CG -0.13 ± 0.18B 0.68 ± 0.29B 0.54 ± 0.25B 

HG -0.13 ± 0.16B 1.05 ± 0.58A 0.93 ± 0.44A 

WG 0.09 ± 0.30A 0.48 ± 0.56C 0.57 ± 0.30B 

UG99 -0.18 ± 0.10B 0.65 ± 0.26B 0.46 ± 0.22BC 

UG79 0.11 ± 0.26A 0.29 ± 0.20D 0.39 ± 0.17C 

Bulk soil -0.23 ± 0.12c 1.04 ± 0.50a 0.81 ± 0.46a 

cASC 0.00 ± 0.20ab 0.47 ± 0.28bc 0.47 ± 0.13b 

mASC 0.06 ± 0.15a 0.42 ± 0.19c 0.48 ± 0.18b 

fASC -0.03 ± 0.33b 0.59 ± 0.56b 0.56 ± 0.37b 

GI F = 26.10*** F = 29.99*** F = 17.72*** 

SAZ F = 28.05*** F = 37.93*** F = 13.59*** 

GI*SAZ F = 13.45*** F = 10.96*** F = 6.88*** 

 

Different superscript letters represent statistically significant difference between treatments at P < 

0.05. Values are expressed by mean ± SD. *** represents P < 0.0001 (Taken from Wu et al. 

2011b.).  
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5.2.2 Labile organic carbon of different soil aggregate sizes 

ASC had a consistent effect on CO2 production of all grazing intensities. CO2 

production of cASC was highest while fASC was lowest among the three ASCs, 

suggesting that C in cASC was most labile while it was stable in fASC. This is 

consistent with the findings that coarse aggregates are less stable and have faster 

turnover times than small aggregates (Six et al., 2004; Steffens et al., 2009b). The 

CO2 release of cASC is high because it contains more labile SOM and it is less 

protected against mineralization (Steffens et al., 2009b). 
 

Table 8: Two-way ANOVA results for the effects of soil aggregate size (SAZ) and grazing 

intensity (GI) on inorganic nitrogen. 

 

 NH4
+ NO3

- DIN 

CG 7.5 ± 4.52B 24.94 ± 10BC 32.44 ± 9.04C 

HG 8.13 ± 6.13B 39.32 ± 20.56A 47.44 ± 15.36A 

WG 16.14 ± 8.51A 21.4 ± 20.04C 37.53 ± 12.04BC 

UG99 7.18 ±5.74B 27.62 ± 8.75BC 34.80 ± 7.39BC 

UG79 15.73 ± 9.64A 24.03 ± 14.25BC 39.76 ± 15.97BC 

Bulk soil 3.82 ± 2.66c 43.83 ± 14.63a 47.64 ± 13.88a 

cASC 15.39 ± 7.59a 23.09 ± 7.94b 38.48 ± 8.24b 

mASC 16.29 ± 4.82a 19.8 ± 7.77b 36.09 ± 9.99b 

fASC 8.24 ± 8.44b 23.13 ± 19.67b 31.36 ± 14.50c 

GI F =37.23*** F =15.15*** F =10.85*** 

SAZ F =78.76*** F =47.05*** F =19.09*** 

GI*SAZ F =11.73*** F =13.43*** F =11.16*** 

 

Different superscript letters represent statistically significant difference between treatments at P < 

0.05. Values are expressed by mean ± SD. *** represents P < 0.0001 (Taken from Wu et al. 

2011b.).  
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For mASC, high values of MBC and DOC were found whereas fASC reveales 

much lower amounts. This can be explained by a high microbial biomass in mASC 

due to a high efficient usage of SOM within this fraction (Sainju et al., 2009). C 

mineralization of fASC was low suggesting that aggregates protect the mineralization 

of SOC by reducing microbial access to the substrates that bind them (Elliott, 1986; 

Six et al., 2000). Coarse aggregates had higher C and N concentrations than small 

aggregates because coarse aggregates are composed of microaggregates and organic 

binding agents (Elliott, 1986) while aggregate-protected C and N pools are more 

labile than unprotected pools because protected pools are less exposed to microbial 

decay (Beare et al., 1994; Cambardella and Elliott, 1993).  

In WG, UG99 and UG79, ASC exhibited no significant effect on MBC and DOC 

while there is a significant effect on CG and HG, indicating that overgrazing 

increased MBC and DOC in ASCs more than those in bulk soil. It also supports the 

findings that small aggregates are more stable while coarse aggregates are more likely 

to be influenced by grazing (Cambardella and Elliott, 1993; Six et al., 2004). To 

reduce CO2 emission, soil erosion, nutrient loss, and improve soil quality and 

productivity, the management practices should adopt moderate grazing to promote the 

fASC aggregation size (Sainju et al., 2009). 

5.2.3 N mineralization and inorganic N of soil aggregate size classes affected by 

grazing and its interaction with C mineralization 

The effects of grazing intensity and soil ASC on net ammonification, nitrification, 

N mineralization were complex. Grazing increased N mineralization significantly in 

bulk soils, which is consistent with other studies (Groffman et al., 1993; Le Roux et 

al., 2003). However grazing exhibited indefinite effects in the three soil ASCs. Most 

of them were not significant with the exceptions that net nitrification and 

mineralization of fASC in CG increased significantly compared to UG99 and UG79 

and net nitrification in WG decreased significantly for the three ASCc. The 

inconsistent effect of bulk soil and soil ASC on N mineralization suggests the 

interactions of soil ASCs in bulk soil. Further research is needed in terms of N 

mineralization in soil ASCs, especially under the effect of grazing. 
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6. MAIN CONCLUSIONS AND OUTLOOK 

This work shows that based on whole-year round experiment at ungrazed (UG99) 

and wintergrazed (WG) steppe plots, the annual net rates of ammonification is -6, -9 

kg N ha-1 year-1, with net nitrification of 31, 19 kg N ha-1 year-1, gross ammonification 

of 240, 215 kg N ha-1 year-1 and nitrification of 417, 362 kg N ha-1 year-1 separately in 

the uppermost 10 cm of soil. Four different seasons with characteristic patterns of 

gross N dynamics could be distinguished in the investigated semi-arid continental 

Asian grassland. Both freeze-thaw cycles and the growing season were key periods 

for understanding patterns and magnitudes of gross N turnover. Various patterns of 

biogeochemical N turnover between seasons appeared to be closely related to 

microbial succession in periods of environmental stress or transition. In this context, 

turnover of soil microbial biomass appeared to be the major driver of gross N fluxes, 

and hence is of outstanding importance for nutrient retention and availability and may 

mitigate nutrient shortage in drought periods of the growing season. Net rates of N 

turnover may be of limited use in steppe ecosystem studies, since they provided only 

a very poor approximation to magnitude, dynamics and status of actual N turnover in 

soil. The observed high dynamics of N turnover within and between seasons 

emphasizes the necessity for high resolution gross N turnover studies as a prerequisite 

to infer functioning and annual budget of N turnover. Furthermore such high temporal 

resolution data on gross N turnover process dynamics are an indispensable 

prerequisite to test and improve process-oriented biogeochemical ecosystem models. 

In-situ 15N labeling of large intact plant-soil microcosms proved to be a valuable 

and realistic approach for the investigation of grazing effects on gross N 

mineralization and short-term inorganic N partitioning to plant and microbial 

pathways. Grazing negatively affected both plant and microbial N acquisition but 

favored nitrification and nitrate accumulation in the soil and thus negatively affected 

potential ecosystem N retention. These effects appear to be mediated by a decrease in 

soil DOC availability with increasing stocking rate. A critical threshold value for 

these ecologically and economically undesirable effects was found to be 

approximately 3 sheep ha-1 considering a grazing duration of three months during the 
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vegetation period. This threshold value is recommended to establish sustainable 

summer grazing in semi-arid steppe of Inner Mongolia. In view potentially high 

intra-annual dynamics of patterns of N turnover in the plant-soil systems, further 

studies investigating full annual cycles of soil gross N fluxes as influenced by grazing 

are required to finally verify the proposed threshold value for a sustainable grazing 

management in Inner Mongolia.  

This study also indicated that heavy grazing (i.e. HG and CG) increased LOC 

significantly compared to ungrazed sites, while moderate grazing (i.e. WG) exhibited 

no significant effect. CO2 production was highest in cASC, while lowest in fASC. 

MBC and DOC showed the highest values in mASC and were significantly lower in 

fASC. Grazing increased Nmin in bulk soils while exhibited complex effects in the 

three ASCs. Generally, grazing increased C and N mineralization in bulk soils that is 

consistent with the finding that moderate grazing increases C and N sequestration (He 

et al., 2011), suggesting the rate of carbon mineralization was related with the rate of 

nitrogen accumulation (Knops and Tilman, 2000). We recommend moderate grazing 

as a proper way to protect C and N losses in semi-arid graslands. 

Freeze-thaw period contributed significantly to the gross mineralization nearly up 

to 50%, while N turnover appeared evidently even at the freezing period of extremely 

low temperature of below -20℃ in winter. Gross N turnover in growing season is not 

as much as net mineralization which accured nearly totally in the growing season. 

Hence, to evaluate N turnover of the whole year round, the contributions of all the 

seasons must be included. It is very important to conduct the whole year round 

experiment in order to assess the real state of N turnover, particularly, in the northern 

arid steppe. 

Gross mineralization is highly related with temperature and soil moisture, and 

also affected by other biotic and environmental factors such as grazing, plants 

community, pH, et al.. Then, in the study about the effect of one factor on the gross N 

turnover, all the other factors should be involved detailed to avoid the inaccurate 

results. 

This study emphasizes the importance of the freeze-thaw period for estimatation 

of the impact of grazing to microbial N turnover. Grazing decreased N turnover 



MAIN CONCLUSIONS AND OUTLOOK 

 73

mainly because that grazing decrease the coverage and height of the vegetation, and 

reduce the snow depth and area, which in turn decrease the soil moisture and 

microbial activity in the freeze-thaw period. But the hypothesis shoud be approved by 

carrying out further experiments. 

With the in-situ 15N tracer method, we determined the competition of inorganic 

nitrogen in plants, microbes and soil in the intact plant-soil system impacted by 

grazing intensity. Understanding of the N turnover in the whole plant-soil system is 

very important since the ecosystem is indivisible. It is very interesting to develop the 

further research in more abundunt ecosystems to elucidate the real state of N turnover 

of the whole plant-soil system in the future. 

This work also showed that heavy grazing caused to a considerable degradation in 

soil labile organic carbon with the significantly emission of CO2 production, and 

decrease in soil inorganic N availability. Hence, we suggest that around 3 sheep ha-1 

in the grasslands of Northern China is the critical threshold value for a sustainable 

summer grazing management. Grazing exclusion is effective for the restoration of the 

depleted grassland as inorganic N was promoted and labile organic C was decreased 

in the ungrazed field. 
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