
Technische Universität München

Zentrum Mathematik

Time Series Modelling of
Wind Speeds with View on

Renewable Energies

Diplomarbeit

von

Sarah Maria Davoudabadi-Farahani

Themenstellerin: Prof. Dr. Claudia Klüppelberg
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Abstract

Due to the recent events in Japan, the discussion about renewable energies and about
the future energy supply in Germany and in Europe is, more than ever, in the focus
of politics and science. To judge whether and to which extent wind power will be
able to replace other traditional power plants, we need a deeper understanding of the
dependencies of wind speeds in time and space. This is, in particular, important to
guarantee a constant energy supply without any blackouts. In this thesis we develop
a time series model for wind speed data. One major challenge is to find a model
which is flexible enough to capture wind speed characteristics for different types of
locations, as mountains, plains, and offshore regions. We apply our model to wind
speed data from several monitoring stations in Germany, as, for instance, Munich
and Helgoland.
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Zusammenfassung

Erneuerbare Energien und die zukünftige Energieversorgung in Deutschland und
Europa werden derzeit, ausgelöst durch die Ereignisse in Japan, in der Politik und
Wissenschaft verstärkt diskutiert. Dabei stellt sich die Frage, in welchem Ausmaß
man herkömmliche Kraftwerke durch erneuerbare Energieträger wie Windenergie er-
setzen kann ohne die konstante Energieversorgung zu gefährden. Zur Beantwortung
benötigt man unter anderem ein tieferes Verständnis von Windgeschwindigkeiten
mit deren Abhängigkeiten in Zeit und Raum. In dieser Diplomarbeit entwickeln wir
daher ein Zeitreihenmodell für Windgeschwindigkeitsdaten. Eine der großen Heraus-
forderungen ist es, ein Modell zu finden, welches flexibel genug ist, Besonderheiten
von Windgeschwindigkeiten an unterschiedlichen Orten wie zum Beispiel auf Bergen,
im Flachland, oder in Offshore-Bereichen zu beinhalten. Wir wenden unser Modell
auf verschiedene Wetterstationen in Deutschland an, unter anderem München und
Helgoland.
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Chapter 1

Introduction

”Wir können nicht so (weitermachen) wie es vorher war. Wir können nicht einfach
zur Tagesordnung übergehen.”
(We cannot proceed as done before. We cannot carry on as usual.)
Angela Merkel, Chancellor of the Federal Republic of Germany, 24.03.20111

These words were spoken by Angela Merkel in the context of the nuclear catastrophe
that began to unfold in the nuclear plants in Fukushima, Japan on March 11, 2011
after the severe Tohoku-earthquake. Reaching a highly sensitive public in Germany,
it was clear that these events would lead to discussions with respect to power supply.
And indeed, at the time of writing in May 2011, a panel which was established by
the German Chancellor, urges the government to close all nuclear plants within the
next ten years.

Even if the changes do not turn out as dramatic as suggested by the panel, it is
clear that Germany will not only continue, but will also accelerate on its path from
fossil fuels to renewable energy sources. Within the last ten years Germany has al-
ready seen a more than 100 percent increase in the number of wind energy facilities.
Europe 2020, a 10-year strategy proposed by the European Commission on March
3, 2010, suggests a share of renewable energy of at least 20% until 2020.

Figure 1.12 shows the amount of renewable energies as percentage of total energy
produced in the member states of the European Union. Based on its existing re-
newable energy generation, its GDP and a flat-rate increase, each member state is
given a national target to meet. However, it it will be extremely challenging for
many member states of the EU to realize the national targets by 2020. The UK, for
instance, has been set a target rate of 15%3, while its current share of renewable
energy has a maximum of 3.8% (cf. Figure 1.1). Consequently, renewable energies

1http://www.bundeskanzlerin.de/nn 683698/Content/DE/Mitschrift/
Pressekonferenzen/2011/03/2011-03-24-statements-europaeischer-rat.html

2http://epp.eurostat.ec.europa.eu/tgm/mapToolClosed.do?tab=map&init1&plugin=
1&language=de&pcode=ten00081&toolbox=types

3http://www.publications.parliament.uk/pa/ld200708/ldselect/ldeucom/175/175.pdf
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Proportion of renewable energy in Europe, 2008

such as wind power, solar power, geothermal energy and hydropower will become
even more important in science and politics. In order to guarantee a constant energy
supply without risking any blackouts, several questions need to be answered.

Some work regarding the optimal mix of renewables, in particular wind and sun
power, is presented in Heide et al. [2010]In this paper the requirements of storage
for energy should be kept at a minimum level. Therefore following the seasonal load
curve, the best point of counterbalancing the seasonal behavior of wind power and
solar power, the seasonal optimal mix, is searched. As a result, the seasonal optimal
mix for an EU, where 100% of energy production stems from renewable energies,
consists of 55% of wind and 45% of solar power generation. For less than 100%
renewable scenarios the percentage of wind power generation increases whereas per-
centage of solar power generation decreases. The required stored energy for all of
Europe is reduced by a factor of two for the optimal mix and amounts to 1.5–1.8
times its monthly load.

Reducing requirements of storage for energy and improving the reliability of energy
supply not only an optimal mix, but also a enhanced prediction of energy production
will help. A regional forecasting for single wind farms based on principle component
regression is discussed in von Bremen [2007]. In this paper wind power is considered
approximately proportional to squared wind speed, which is additionally multiplied
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with the normalized spatial distribution of wind power capacity. Using these wind
power weighted squared wind speed maps as input to the principle component analy-
sis, main patterns that explain most variance of wind power generation in Germany
are identified. The variability of these weighted squared wind speed maps is ex-
pressed by principle components, which determine the weight of each eigenvector
for a particular state of the maps. From the European Centre for Medium-Range
Weather Forecast (ECMWF) some forecast calculation of the wind speed maps is
used to compute the principle components. The total wind power feed-in for Ger-
many is estimated by the principle components and regression coefficients gained
from a multivariate linear regression between the first six principle components and
the (historic) wind power feed-in, which are recalculated every 15 days. The first
four eigenvectors explain about 84% of the observed variance. Another benefit of
this wind power forecasting model is the moderate computational time.

As mentioned above renewable energies have huge potential for future development.
However, traditional power plants could be replaced, if a constant energy supply can
be guaranteed. Wind has become one of the fastest growing sources of renewable en-
ergy worldwide. As wind power is the conversion of wind speed into electric energy,
wind speed can also be focused directly. In order to judge whether wind power will
be able to replace other traditional power plants, it is imperative to understand the
dependencies of wind in space and time.

One approach is the regime-switching space-time method used in Gneiting [2006].This
paper focuses on modelling wind speed at a 2-hour horizon. The Regime-Switching
Space-Time method (RST) identifies two forecast regimes, westerly and easterly
ones, and fits a conditional predictive model for each regime. The examined time
series of wind speed and wind direction are collected at Vansycle in northeastern
Oregon (close to the Stateline wind energy center), Kennewick and Goodnoe Hills in
southern Washington about 50 to 150 kms away, which are used to identify regimes as
well. Different attempts to fit the model were made. The Regime-Switching Space-
Time method without modelling a diurnal component (RST-N and RST-N-CH)
uses homoscedastic and heteroscedastic (therefore the CH at the short cut) variance
structures, respectively. The RST-D and RST-D-CH techniques fit a diurnal trend
component (D), but do so only in the westerly regime. The variance structures are
homoscedastic and conditionally heteroscedastic (CH), respectively. Generally no
diurnal component is modelled in the easterly regime, because this did not improve
the predictive performance. The technique of minimum continuous ranked proba-
bility score (CRPS) estimation for estimating predictive distributions is used. In
minimum CRPS estimation, the continuous ranked probability score is expressed
for the training data as a function of the model parameters, and this function is
minimized with respect to the parameter values.

In this thesis we also model wind speeds directly. Since transforming the wind speeds
with the adequate wind turbine curves is straightforward, this approach seems to
have advantages for finding dependencies and influencing factors. One major chal-
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lenge is to find a model which is flexible enough to capture wind speed characteristics
for different types of locations as mountains, plains, and offshore regions. On the
basis of different monitoring stations all over Germany local differences are observed.
Diurnal and annual seasonalities exhibit different patterns for the different monitor-
ing stations. Besides the structure caused by diurnal or annual seasonalities, further
patterns are found to be inherent in wind speed. We will use an autoregressive pro-
cess as well as a component for conditional heteroscedasticity to capture the whole
structure of the data. For the error terms we assume an hyperbolic distribution.
This distribution turns out to be flexible enough to model the different behavior of
wind speed, depending on the location. As we will see from the parameter estimates
for the hyperbolic distribution, we can identify different parameter patterns of the
wind speeds at monitoring stations on mountains, plains and close to cities.



Chapter 2

Theoretical Basics: Hyperbolic
Distribution Function

The hyperbolic distributions form a family of continuous distributions and can be
considered as a subclass of the generalized hyperbolic distributions, which were intro-
duced by Barndorff-Nielsen [1977]. Further information about hyperbolic distribu-
tions can be found in Eberlein [1995].One application for wind shear is demonstrated
in Barndorff-Nielsen et al. [1989].

Definition 2.1 (Hyperbolic distribution)
A random variable Z has an hyperbolic distribution, Z ∼ hyperbol(α, β, δ, µ), if its
probability density function is

fHY P (x) =
γ

2αδK1(δγ)
exp

(
−α
√
δ2 + (x− µ)2 + β(x− µ)

)
(2.1)

with γ :=
√
α2 − β2, 0 < |β| < α, δ > 0 and x ∈ R.

The function Kλ(x) appearing in the hyperbolic density is the modified Bessel func-
tion of the second kind. It is defined as

Kλ(t) =
1

2

∫ ∞
0

xλ−1 exp

(
−1

2
t(x+ x−1)

)
dx , t > 0

The function is one of the linear independent solutions to the ordinary differential
equation x2 d

2y
dx2

+ x dy
dx
− (x2 + λ2)y = 0.

The parameter λ represents the order of the function. Graphs for modified Bessel
function of the second kind with order 1, 2 and 3 are shown in Figure 2.1. Further
information concerning Bessel functions can be referred to e.g. in Bayin [2006], Ch.6
and Ćıžek et al. [2011].
The parametrization by (α, β, δ, µ) in Equation (2.1) is the most common parame-
terization. Interpreting parameters, µ can be considered as location parameter and

5
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Figure 2.1: Modified Bessel function of the second kind of different order, λ = 1, 2
and 3

δ as scale parameter. The shape of the distribution is affected by α and β.
Defining

ζ := δγ = δ
√
α2 − β2

γ :=
√
α2 − β2 =

ζ

δ

ξ := (1 + ζ)−
1
2

ρ :=
β

α
=
ξ

χ
χ := ξρ

we can parameterize the hyperbolic distribution using the parameter vector (ξ, χ, δ, µ).
Deriving

α =
ξβ

χ
and

β =
1− ξ2

δξ2
√

ξ2−χ2

χ2

.

the hyperbolic density in (ξ, χ, δ, µ) parametrization is
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Figure 2.2: Density function of hyperbolic distribution, parameter values for
parametrization hyperbol(ξ, χ, δ, µ) used are: (1) (0.7, 0.1, 3, 0), (2) (0.8, 0.1, 3, 0),
(3) (0.7, 0.2, 3, 0), (4) (0.7, 0.1, 4, 0), (5) (0.7, 0.1, 3, 1)

fHY P (x) =
1

2δ ξ
ν
K1

(
1−ξ2
ξ2

) exp

(
−1− ξ2

ξν

√
1 + (x− µ)2

1

δ2
+ χ

1− ξ2

ξ2ν

(x− µ)2

δ2

)
(2.2)

with ν :=
√
ξ2 − χ2, 0 < |χ| < ξ < 1 and x ∈ R.

The parameters µ and δ have the same meaning as before and can again be consid-
ered as a location and a scale parameter. The parameters ξ and χ affect the shape of
the distribution. Examples can be seen in Figure 2.2. The influence of the parameter
ξ can be seen by comparing curves 1 and 2, of the parameter χ by comparing curves
1 and 3, of the parameter δ by comparing curves 1 and 4 and of the parameter µ by
comparing curves 1 and 5.

For data fitting, skewness and kurtosis of the distribution are of interest, too. How-
ever, due to the Bessel function appearing inside the density function of the hyper-
bolic distribution, a closed formulation of skewness is difficult. In Atkinson and Fien-
berg [1985], Ch.4 Barndorff gives an approximate relationship γ1 ≈ 3χ for skewness
and γ2 ≈ 3ξ2 for kurtosis at (ξ, χ, δ, µ) parametrization. Because of this interpreta-
tion of ξ and χ, the parametrization (ξ, χ, δ, µ) in Equation (2.2) is more convenient
for our purpose.

Compared to the normal distribution, the hyperbolic distribution has a slower de-
cay due to exponential descending. In Barndorff-Nielsen [1977] it is shown, that
the hyperbolic distribution can be considered as a mixture of normal distributions.
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Figure 2.3: The triangle of shape, i.e. the domain of variation of invariant parameters
ξ and χ of the hyperbolic distribution. Normal distribution (N), generalized inverse
Gaussian distribution with λ = 1 (N−1 ), Laplace distribution (L) (symmetry of skew-
ness) and exponential distribution (E) at the boundaries are limits of the hyperbolic
distribution (cf. Atkinson and Fienberg [1985], Ch. 4).

The link between the normal distribution and the hyperbolic distribution can be
expressed using generalized inverse Gaussian distributed random variables.

Proposition 2.2
If Z is an hyperbolically distributed random variable with parameter vector (α, β, δ, µ)
and Y ∼ GIG(λ = 1, ξ, ψ) distributed a generalized inverse Gaussian (GIG) random
variable with parameters λ = 1, ξ and ψ, then

(Z | Y ) ∼ N(µ+ βY, Y )

where N(m, s2) denotes the normal distribution with mean m and standard deviation
s.

Further information can be found in Ćıžek et al. [2011]. A proof is shown in Taille
[1981] by Barndorff-Nielsen and Blaesild.

Definition 2.3 (Generalized inverse Gaussian distribution)
A variable Y is said to be generalized inverse Gaussian distributed, Y ∼ GIG(λ =
1, ξ, ψ), if its probability density function is

fGIG(x) =
(ψ/χ)λ/2

2Kλ(
√
χψ)

xλ−1 exp

(
−1

2
(
χ

x
+ ψx)

)
(2.3)

defined on (0,∞) with χ, ψ ≥ 0.

Further information on GIG distribution can also be found in Ćıžek et al. [2011].
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Data

3.1 Siemens

The Siemens data set consists of three time series for all Europe, which are also
available separated in regions. The time series are solar power, wind power and load
data. The considered period of time is January 1, 2000 to December 31, 2007. Dur-
ing this period information is provided at hourly intervals. Sun and wind power are
derived from a weather model by considering parameters like irradiance and wind
speed. The required weather data are produced by Weather&Wind Energy Prog-
nosis (WEPROG). WEPROG downscales medium-resolved analysis data from the
National Center for Environmental Prediction (NCEP), the U.S. National Weather
Service.

Figure 3.1: Average annual load in
TWh for Europe during years 2000 to
2007. The total load across all 50 onshore
regions sums up to 3130 TWh annual
consumption (cf. Heide et al. [2010]).

The third time series contains load
data for the same space and period
of time. Load profiles are retrieved
from ”Union for the Coordination of
Transmission of Electricity” (UCTE),
now ”European Network of Transmis-
sion System Operators for Electricity”
(ENTSO-E) or from national transmis-
sion providers. As original load pro-
files are not available for every re-
gion and year, missing load profiles
are calculated with the help of elec-
tric power consumption (EPC). Fig-
ure 3.1 shows an average annual load
in Europe for the observed period of
time.

Hourly resolution can be found for the
two years 2006 and 2007 at least. The
prior six years are replicated using the

9
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Figure 3.2: A typical wind turbine power curve. Two different curves are used to
convert WEPROG wind speeds to wind power. One is used for onshore and one for
offshore grid points.

relative annual electric power consumption, which is mostly known. For countries
with large average load regional data profiles can be obtained from the country pro-
files. These are also used for smaller countries by calculating a factor from a linear
regression. Linear regression analysis is performed between annual electric power
consumption, population and the respective gross domestic product. Load time se-
ries are given in megawatt (MW ).

As forementioned the time series starts on January 1, 2000 and every hour is taken
into consideration until December 31, 2007. Time steps refer to Coordinated Uni-
versal Time (UTC). Europe is divided in sections by a grid of 0.45× 0.45 degrees of
latitude and longitude. This is equivalent to a spatial resolution of about 2500 km2

per grid.

Using the weather model to derive wind generated power, several assumptions are
made. Referring to the wind speed data of the WEPROG model, these wind speeds
are converted into wind power by using typical wind power curves (see Figure 3.2)
for each grid cell. A distinction in the curves is made between onshore and offshore
grid points. Because of possible reductions in power production due to incalculable
circumstances a factor of 0.93 is applied. The most important circumstances may
be electrical losses and inoperable turbines. For offshore turbines power output is
additionally reduced on account of wake effects. An estimation of local distribution
of wind capacities in 2020 is shown in Figure 3.3.

Determining photovoltaic power, we have to assume a mixture of photovoltaic plant
technologies per region. Characteristics of photovoltaic plants like tilt angle, ori-
entation, fixed/with solar tracker, etc. are also assumed. Meteorological data like
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Figure 3.3: Targets of wind power ca-
pacities per spatial grid cell in 2020. Ca-
pacities larger than 0.73 GW are indi-
cated in dark red. A total sum of 227GW
installed wind power capacity is expected
across Europe in 2020, including 66 GW
offshore installed capacity, cf. Heide et al.
[2010].

Figure 3.4: Targets of solar photo-
voltaic power capacities per spatial
grid cell in 2020. Capacities larger than
0.50 GW are indicated in dark red. In to-
tal a sum of 68 GW installed sun power
capacity is expected across Europe in
2020, cf. Heide et al. [2010].

global radiation, air temperature, total cloud cover, surface albedo, etc. are used to
calculate photovoltaic plants affecting irradiance. An estimation of local distribution
of wind capacities in 2020 is shown in Figure 3.4. Both, wind and solar power time
series have been scaled by the installed capacity, resulting in a value range between
0 and 1.
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3.2 Deutscher Wetterdienst

Germany’s National Meteorological Service, the Deutscher Wetterdienst1 (DWD),
is a public institution with partial legal capacity under the Bundesministerium für
Verkehr, Bau und Stadtentwicklung (Federal Ministry of Transport, Building and
Urban Development). It is responsible for meeting meteorological requirements aris-
ing from all areas of the economy and the society in Germany. Therefore DWD is a
major source of meteorological data.

Measurement points are meteorological stations of DWD, which are distributed all
over Germany. The oldest data is from 1946, even though DWD was officialy founded
in 1952. For the period of 2000 until 2007 a huge offer of local measurements is avail-
able. Data is available for different monitoring stations from very early on. Figure
3.5 shows locations of DWD. The locations marked with  have monitoring stations.
The symbol t represents ”Klimareferenzstationen” (reference stations for climate)
which means that these monitoring stations are specially maintained and provide
high quality data. Helgoland, Brocken and Fichtelberg belong to the category of
reference stations. Munich is a regional center, therefore it is marked with �. A
research unit, that is also responsible for the administration, works there. The be-
ginning and end of measurement activity of every single weather station is published
by the DWD on its website. We choose the registration-only portal of DWD. Data
can be retrieved from WebWerdis2.

As observation points Munich airport, Helgoland, Brocken, Fichtelberg and Trier
are selected. The exact coordinates can be found in Table 3.1.

Weather station Coordinates
Munich 48.36◦ N 11.81◦ E
Helgoland 54.18◦ N 7.89◦ E
Brocken 51.80◦ N 10.62◦ E
Fichtelberg 50.43◦ N 12.96◦ E
Trier 49.75◦ N 6.66◦ E

Table 3.1: Considered weather stations in Germany and their latitude and longi-
tude.

Each time series starts on January 1, 2000 and ends on December 31, 2007. Hourly
values exist for wind speed, temperature, sunshine duration, precipitation and air
humidity (cf. Figure 4.10 for Munich and Figure 4.11 for Helgoland). Wind speed is
provided in m

s , temperature in degree Celsius, precipitation in mm and air humidity
in percent.

1http : //www.dwd.de/
2http : //werdis.dwd.de/werdis de/WebWerdis start.do
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In almost every time series, there are some missing values. We replace the missing
values by the respective measurements of neighborhood stations like Weihenstephan
instead of Munich and St. Peter Ording instead of Helgoland and the average value
for the still missing of the respective time series. This approach seems to be accept-
able because of the small amount of missing values. Moreover, a final model of six
hourly data will be used. The six hourly data originates from means of the prevailing
six hours. This reduction in time resolution is caused by the lack of hourly resolved
air pressure. Air pressure, which influences wind speed strongly, is only available on
a daily basis at the DWD data base. In another source (cf. Section 3.3) air pres-
sure is reported in six hourly intervals. Hence this additional data source is used, too.
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Deutscher Wetterdienst
Standortkarte

- Stand: 01. Januar 2011 -

Schematische Darstellung: Standorte nicht maßstabsgetreu

Rostock-
Warnemünde

Arkona

Greifswald

Schwerin

Schleswig

Helgoland

Norderney

Emden

Lingen
Diepholz Hannover

Braunschweig

Bremen

Cuxhaven

Hamburg

Pinneberg

Fehmarn

St. Peter-
Ording

Marnitz Angermünde

B.-Tegel

B. Buch B.-Tempelh.

Potsdam

Wiesenburg
Münster/
Osnabrück

B.-Schönef.

Lindenberg

Cottbus

Seehausen

Magdeburg

Artern

Leipzig

Gera

Meiningen

Neuhaus

Chemnitz

Fichtelberg

Zinnwald-G.

Dresden
Görlitz

Erfurt

Brocken

Bad Lippspringe
Essen

Düsseldorf

Kahler
Asten

Köln/Bonn

Aachen

Hahn

Trier

Saarbrücken

Rheinstetten

Stuttgart

Stötten

Würzburg

Langen
Hof

Nürnberg

Weißenburg

Augsburg

Hohenpeißen-
berg

München

Wendelstein

Zugspitze

Regensburg

Weihen-
stephan

Fürstenzell

Gr. Arber

Bad Kissingen

KonstanzFeldberg/Schw.

Lahr

Freiburg

Freudenstadt

Michelstadt-
Vielbrunn

Frankfurt

Mainz

Geisenheim

Nürburg-
Barweiler

Bad Marienberg

Offenbach

Wasserkuppe

Göttingen

Oberstdorf

Zentrale des DWD

Regionalzentrale / Regionale 
Messnetzgruppe / Verwaltungsstelle
Wetterwarte / Flugwetterwarte / LBZ

Klimareferenzstation

Abteilung / Abteilungsaußenstelle

Observatorium

Bildungs- u. Tagungszentrum

NAVTEX - Sender

Figure 3.5: Locations of DWD weather stations in Germany
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3.3 European Centre for Medium-Range Weather

Forecast

The European Centre for Medium-Range Weather Forecasts (ECMWF) is an inter-
governmental organisation with headquarters in Reading in the United Kingdom. It
is a union of national meteorological services in Europe supported by 34 States. The
main focus of research is to develop numerical methods for medium-range weather
forecasting. Another principal objective of the Centre is the collection and storage
of appropriate meteorological data.

In the data archive services downloadable data sets can be found. For purpose of
wind speed modelling we retrieved data from the ECMWF Interim Re-Analysis.3

At the ECMWF Interim Re-Analysis data set data can be selected on a daily base.
Further selection criteria are date range, time steps (maximal every six hours), and
parameters like total precipitation, temperature, snowfall, surface solar radiation,
among others. A list of parameters and their denomination in the files can be seen
on the ECMWF homepage4. The surface of the earth is grasped as a grid. For every
grid box the respective parameters are stored. Consequently, an enormous amount
of data is available. The requested data is provided as a GRIB-file. GRIB stands
for gridded binary, a data storage standard defined by the World Meteorological
Organization (WMO) and known as GRIB FM 92-IX. This standard is commonly
used in meteorology. The Manual on Codes (WMO-No. 306) (cf. WMO [1998]) ex-
plains the format in detail. Additional information on GRIB files can be found in
WMO [2003]. On its web site, WMO offers further service manuals about the dif-
ferent WMO codes5. Instructions on how to retrieve data from grib files are given
in Appendix A.

3http : //data− portal.ecmwf.int/data/d/interim daily/
4http : //www.ecmwf.int/publications/manuals/d/gribapi/param/
5http : //www.wmo.int/pages/prog/www/WMOCodes.html





Chapter 4

Explorative Data Analysis

4.1 Siemens Data Set

As described in Section 3.1, the data set consists of wind power, sun power and load
data. The three time series are plotted in Figure 4.1. As one can see the graphs have
some cyclical behavior. For sun power higher values are observed in summer and
lower values in winter, which is, of course, to expect on the northern hemisphere.
It is to be noted an angle of incidence closer to the right angle, which causes more
intensive sunshine.

An adverse behavior can be seen in wind power time series. All the peaks are realised
during the winter month. Lower values can be observed during spring and reach
minima in summer months. The same cyclical behavior can be seen at the load time
series. During the winter months electricity consumption increases. Due to the lack
of sunlight artificial light is required. Sometimes even heating is done by electricity.
In summer month air-conditioning may increase electricity consumption. Due to the
unpopularity of air-conditioning,the positive effects of additional daylight and due
to the comfortable climate, electricity consumption is reduced during the summer.
These factors may cause higher load levels in winter.

Considering the cyclical behavior during the year, one average year is investigated.
Such an average year consists of daily averages over the eight years from 2000 to
2007. Every point in the Figure 4.2 is the mean of 24 · 8 = 192 values. In Figure 4.2
this average year is shown for each time series. Every curve has its specific pattern
over the year. The yellow plot shows photovoltaic power all over Europe. The yearly
cycle which is first noted in Figure 4.1 is also visible in Figure 4.2. Differences over
the year’s path are obvious. Naturally, higher photovoltaic power levels are reached
in summer, as sunlight has higher intensity and duration at this time of the year.

The average wind power, represented by the aquamarine points in Figure 4.2, has
higher values in winter and its trough in summer. Considering tight time intervals,
the amplitude of values split is much bigger than for sun power. Due to a stronger
variation of values the average wind power contains some local peaks as well.

17
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Figure 4.1: Wind power, sun power and load data time series all over Europe for the
period 2000 to 2007. Sun and wind power are values scaled by capacity to be between
0 and 1. Unity of load is megawatt.
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Figure 4.2: Average year of sun power, wind power and load data time series. The
average year is calculated by taking the mean of 24 hours and again averaging these
day means over the years 2000 to 2007. Sun and wind power are values scaled by
capacity to be between 0 and 1. Unity of load is megawatt.
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Figure 4.3: Average for the period of 2000 to 2007 for wind power. One point rep-
resents one average day. The grey circle marks the region which is further examined.
In Figure 4.4 this period of time is shown.

Figure 4.4: Wind power as end of March
and beginning of April. Each year from
2000 to 2007 has a single curve.

For a more detailed analysis of this
phenomenon a peak at the begin-
ning of April is chosen. The peak
is marked with a grey circle in
Figure 4.3. Separately this period
is shown in Figure 4.4. Original
hourly values of wind energy are
plotted from March, 28 to April,
10 for every single year. There-
fore eight curves can be seen for
the years 2000 till 2007. The peak
seems to be caused by the values
in the years 2000, 2002 and 2003.
But in Figure 4.4, where one can
see the curves for the years 2000
through 2007, a peak at the begin-
ning of April seems not to be evi-
dent.

Considering the lowest graph in Figure 4.2, energy load in Europe, the shift in the
energy load pattern over the entire time series is attention caching. These shapes
seem to originate from a weekly scheme. The date shift of the weekends over the
reviewed year biases this effect at an average over all years. In Figure 4.5 averages
over 24 hours of energy load in Europe are plotted for year 2000 only. Three different
levels appear. The lowest level is present on Sundays and the second lowest on Sat-
urdays. Higher values are measured on working days. As economies with industrial
production have a huge energy load, the stop of the production process in many
companies on the weekends is probably the principal factor for this phenomenon.
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Figure 4.5: Average of energy load data (in MW) per day for year 2000.

In Figure 4.6 no average is built over the successive hours in contrast to Figure 4.2.
Figure 4.6 shows the mean of every hour of a year for sun power, wind power and
load. One mean point is calculated by eight values of one hour in the years 2000 till
2007. Each of the three plots has 365 ·24 = 8760 observation points showing average
values over the eight examined years.

Having daily cycles like sunrise and sunset, the average hour has a certain value,
which is similar to the value that can be measured at the same time on the follow-
ing days. Thus a structure of different lines originating from hourly measurements is
observed. The inherent daily seasonality of sun power data can be observed through
clear separation of different day times. Different levels of value lead to the separated
structure, that can be observed in the yellow graph of Figure 4.6. At most 24 lines of
points could be drawn, but as all points before sunrise and after sunset coincide into
zero, less levels are observed. Due to the increase and decrease in daylight during
the seasons, the duration as well as the intensity change. This is reflected in the
increase and the decrease of the amount of levels and the levels themselves. Most of
the levels are observed in summer with the highest values, concomitantly.

Hourly wind power data for average years in all of Europe, which can be seen in
the second plot of Figure 4.6, do not seem to have any daily seasonality, because
no different levels are observed. However an annual seasonality can be observed
again. This pattern has been seen already in Figure 4.2.The amount of wind power
produced is obviously higher in winter than in summer. Due to meteorological con-
ditions large winter storms, which are hardly predictable, occur in Northern Europe
(cf. Quaschning[2007/2008]).

In Figure 4.6 the red points marking load profile in Europe increase during the winter
times as well. Differences per hour seem to exist, but no well-defined levels can be
found. As there is some free space at this broad data band, maybe a distinction
into two groups could be done. Lower values may represent night and work free
time where as higher values could originate from day and core working time. Having
in mind, that main energy consumption comes from industry and business, this
assumption seems to fit. Two cuttings which attract attention could be explained
considering the same reason. One is around Christmas and New Year, the other one
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Figure 4.6: Average over the considered eight years per hour. Average is not built
over successive hours. Instead mean is calculated by eight values of one hour in year
2000 to 2007. Each plot has 365 · 24 = 8760 observation points. Having different levels
of values for different hours of the day at sun power and load data, a structure of
at most 24 levels appears. Sun and wind power are values scaled by capacity to be
between 0 and 1. Unity of load is megawatt.
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Figure 4.7: Boxplots of sun power, wind power and load data for the period 2000 to
2007. Sun and wind power are values scaled by capacity to be between 0 and 1. Unity
of load is megawatt.

at the beginning of August. Both periods are classical holiday periods all over Europe
and may contain temporary shutdowns of industrial production entities which could
lead to the observed effect of load decrease.

The fact that sun energy production is restricted to daytime only is evident from
the data. The median for the sun time series in the boxplots in Figure 4.7 is skewed
strongly to zero. This behavior of the sun time series being clearly predictable to
be zero every night, causes a special treatment of sun time series which is taken a
closer look at the section of influences on photovoltaic power (cf. Section 6.1).

Besides seasonal trend per year in Figure 4.2 and per day in Figure 4.8 a slight trend
in the load time series is implied by Figure 4.9. The red graph of load data shows a
slightly increasing mean for all data of every single year and the belonging variance
of this year.
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Considering the mean of 24 hours over the whole time series, a concise and reasonable
daily seasonality is visible for sun power, the first graph in Figure 4.8. There are
variations over day, observable for wind power and load data, too. But the amplitude
for the variations of both time series is much smaller than the amplitude for the sun
power time series. Since sun power is, of course, only available when sun shines, we
observe always zeros during night.

Figure 4.8: Averages over the whole time series of sun power, wind power and load
data for the period 2000 to 2007 is calculated. The plotted points represent an average
day with hours in Universal Coordinated Time. Sun and wind power are values scaled
by capacity to be between 0 and 1. Unity of load is megawatt.
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Figure 4.9: Mean and variance of sun power, wind power and load data for the
period 2000 until 2007. Mean and variance are calculated over all values of prevailing
year. Sun and wind power are values scaled by capacity to be between 0 and 1. Unity
of load is megawatt.
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4.2 DWD Data Set

Instead of wind power we now examine wind speeds, as wind power is the conver-
sion of wind speed into electric energy wind speed can also be examined directly.
Transforming the wind speeds with the adequate wind turbine curve may be more ac-
curate than just estimating an approximate proportional relationship of wind power
to squared wind speed. From now on we focus on wind speed, therefore DWD data
are examined. The data set contains not only the wind speed, but also tempera-
ture, precipitation, air humidity and sunshine duration. As described in Section 3.2,
we consider the period from 2000 to 2007. The different monitoring stations are
reported in Table 3.1. Plots are shown exemplarily for weather stations in Munich
(Figure 4.10) and Helgoland (Figure 4.11).

As can be especially seen in Figure 4.10, (monitoring station of Munich) air humid-
ity corresponds with temperature and precipitation developments. Cross-correlations
between air humidity and temperature show a strong dependency (cf. upper graph
of Figure 4.12). The oscillating behavior is caused by daily fluctuations of tempera-
ture. The lower graph of Figure 4.12 has smaller cross-correlations for every lag. A
wider time horizon of a year (cf. Figure 4.13) exposes annual seasonalities. Temper-
ature and precipitation are higher during summer times. In winter mostly high air
humidity is measured. Due to low temperatures low variation in air humidity occurs.
In summer months the precipitation is higher and therefore air humidity is high too.
But high temperatures cause more evaporation, which leads to more variation in air
humidity with low and high values during summer.

We now consider wind speed in detail. Respective Figures can be found in Ap-
pendix B. As wind speed has a high fluctuation, we examine the differences in wind
speed for each month. For each month, we calculate separately daily averages. E.g.
for January 1, the average is based on all wind speeds measured on January 1, 2000,
January 1, 2001, January 1, 2002, ... January 1, 2007. From the graphs for Munich
(cf. Figure B.1) one can see, that the differences in the course of the year are smaller
than for Helgoland. Generally, measured wind speeds are smaller in summer than in
winter time. Any further fluctuations over the days of the month seem to be arbitrary.

In comparison to Munich, Helgoland (cf. Figure B.2) shows stronger differences be-
tween wind speeds in summer and winter. Generally, the measured wind speeds on
Helgoland are higher, which is no surprise for an island located in the North Sea.
Even in summer Helgoland has higher wind speeds than Munich in winter. In Hel-
goland values of about 12 m

s are standard during winter which is about twice as
high as summer wind speeds.

In Figure B.3 for Brocken and Figure B.4 for Fichtelberg a behavior similar to that
of Helgoland (cf. Figure B.2) can be observed. Wind speeds are quite high. They
range between 6 m

s and 14 m
s , whereas Trier (Figure B.5) has wind speeds between

2 m
s and 6 m

s , which makes it more comparable to Munich (Figure B.1).
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Figure 4.10: Wind speed (m
s ), temperature (◦ C), air humidity (%) and precipitation

(mm) reported at hourly intervals at the weather station of Munich airport
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Figure 4.11: Wind speed (m
s ), temperature (◦ C), air humidity (%) and precipitation

(mm) reported at hourly intervals at the weather station of Helgoland
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Figure 4.12: Cross-correlations between air humidity and temperature and between
air humidity and precipitation in Munich. A time step has an hourly resolution. A
period of four days is considered.

Figure 4.13: Cross-correlations between air humidity and temperature and between
air humidity and precipitation in Munich. A time step has an hourly resolution. A
period of one year is considered.
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Figure 4.14: Moving average of wind
speed in Munich for six weeks interval,
a rough structure of wind speed over the
year; Values vary between 2.6 m

s and 3.8
m
s over the year.

Figure 4.15: Moving average of wind
speed in Helgoland for six weeks inter-
val, a rough structure of wind speed over
the year; Values vary between 6.8 m

s and
10.2 m

s over the year. Here an eminently
higher amplitude than in Figure 4.14 is
seen.

The patterns in Figure B.1, B.2, B.3, B.4 and B.5 suggest the presence of an annual
seasonality component. Building a moving average over six weeks, this seasonality
can clearly be seen (Figure 4.14, 4.15, 4.16, 4.17 and 4.18). Higher values are observed
in winter. A decrease evolves in spring. During the summer months, wind speeds
reach the bottom of their yearly averages. During autumn wind speed increases
again.

Having considered the daily averages over all months, we consider the hourly aver-
ages. Recalling the annual variety of the graphs, we have a look at the daily behavior
for each months. Figures B.6, B.7, B.8, B.9 and B.10 show average wind speeds for
each hour of the day based on data from the month January to December, sepa-
rately. For each month the hourly values are calculated as means of the respective
hour over the period of eight years and then standardized.

As one can see the resulting values have some structure. For Helgoland (Figure B.7)
and the two monitoring stations on mountains (Figure B.8 for Brocken and Figure
B.9 for Fichtelberg) a trough can be observed in the afternoon. This trough is more
refined in spring and autumn. As opposed to the monitoring stations on mountains,
a peak is observed for Figure B.6 and B.10 in the afternoon, which are the measure-
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Figure 4.16: Moving average of wind
speed at Brocken for six weeks interval,
a rough structure of wind speed over the
year; Values vary between 8 m

s and 14 m
s

over the year.

Figure 4.17: Moving average of wind
speed at Fichtelberg for six weeks in-
terval, a rough structure of wind speed
over the year; Values vary between 7 m

s
and 12 m

s over the year.

Figure 4.18: Moving average of wind
speed in Tier for six weeks interval, a
rough structure of wind speed over the
year; Values vary between 2.5 m

s and 4.2
m
s over the year.
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Figure 4.19: Centered average values of
wind speed in Munich per hour, hav-
ing an average day of underlying years
2000 to 2007 portrayed. The values vary
quite strongly over one day. Maximum of
the day is reached between 2:00 pm and
3:00 pm.

Figure 4.20: Centered average value of
wind speed on Helgoland per hour, hav-
ing an average day of underlying years
2000 to 2007 portrayed. The values de-
velop adverse to the averages of Munich.
Lowest point of the day is reached in the
afternoon between 2:00 pm and 3:00 pm.

ment data of monitoring stations in cities. Having nearly the same diurnal structure
the maximum in the afternoons is more revealing in spring, summer and autumn.
In winter the same structure is evident, but the extent is smaller.

For Munich and Trier (Figure B.6 and B.10) the this structure does not alter a
lot during the year. Monitoring stations in Helgoland, at Brocken and Fichtelberg
(Figures B.7, B.8 and B.9) have more changes in structure. But calculating hourly
averages, the diurnal seasonality is still evident. The graph for Helgoland is shown
in Figure 4.20, for Brocken in Figure 4.21 and for Fichtelberg in Figure 4.22. For
these monitoring stations at mountain and on the island in the North of Germany
a different diurnal seasonality is observed in comparison to the cities. For the cities
Munich and Trier the diurnal seasonalities resulting of hourly averages over all data
are seen in Figure 4.19 and 4.23.



4.2. DWD DATA SET 33

Figure 4.21: Centered average values of
wind speed at Brocken per hour, hav-
ing an average day of underlying years
2000 to 2007 portrayed. Lowest point is
reached in the afternoon.

Figure 4.22: Centered average value of
wind speed at Fichtelberg per hour,
having an average day of underlying
years 2000 to 2007 portrayed. Lowest
point is reached in the afternoon.

Figure 4.23: Centered average values
of wind speed in Trier per hour, hav-
ing an average day of underlying years
2000 to 2007 portrayed. The values vary
quite strongly over one day. Maximum of
the day is reached between 2:00 pm and
3:00 pm.
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4.3 ECMWF Data Set

Figure 4.24: Measurement points of surface
pressure. A radius of 400 km was selected
due to high correlations between wind speed
and surface pressure differences. Munich, Hel-
goland, Brocken, Fichtelberg and Trier were
set as prevailing center.

One factor effecting wind speed
is pressure, as wind originates
from movements of air masses to
equiponderate pressure conditions
at different locations. Thus wind
speed is influenced by the ex-
tent of pressure differences. Dur-
ing high pressure differences a
larger suction exists from area
with high pressure to areas with
low pressure. Since wind speed in-
creases for higher suction, wind
speed increases with higher differ-
ences of pressure in its surround-
ing.

Therefore surface pressure was ex-
amined at the observation points,
which are the five monitoring stations, and at four points on a circle around the
observation points (see Figure 4.24) with a certain kilometer radius. Since retrieving
data from a GRIB file requests coordinates, information in kilometers were trans-

formed into coordinates by the approximation of 2π·6378· 1
360

cos(”current latitude”
180π

)
for one degree of longitude and 111 km per degree of latitude (cf. Longley et al.
[2005]). Locating the data read out at the nearest grid point, this approximation is
far enough. The four main points of the compass were selected as directions. Trying
a distance of 200, 400, 600 and 800 kms, the 400 km radius was chosen because of
the highest correlations for wind speed and surface pressure differences.

In Figures 4.25 one can see the standardized pressure differences which exist between
Munich and 400 kms northwards, eastwards, southwards and westwards. In winter
higher pressure differences can be observed than in summer. Same behavior is seen
in Figure 4.25. This observation coincides with the observations for higher wind
speeds in winter and lower wind speed in summer.
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Figure 4.25: Standardized surface pressure differences at the celestial directions
around Munich in a distance of 400 kms. The observed period of time is from be-
ginning of 2000 to the end of 2007. Munich is considered as the center.

Figure 4.26: Standardized surface pressure differences at the celestial directions
around Helgoland in a distance of 400 kms. The observed period of time is from
beginning of 2000 to the end of 2007. Helgoland is considered as the center.





Chapter 5

Time Series Models for Wind
Speed

In this chapter we focus on time series modelling for wind speed data. In Chapter 4
the data are described in detail. Some annual and daily seasonalities are noticed,
which are reflected by differences in wind speeds over one day and in the course of
the year. These persistent variations are to be detected by a model for wind speeds.
The annual component is modelled by moving averages of two weeks over an average
year in the period of 2000 to 2007. The diurnal component describes the fluctua-
tions during one day, which are calculated by hourly averages on the whole time
series. The daily course can be seen in Figures 4.19, 4.20, 4.21, 4.22 and 4.23 for
each monitoring station. Likewise the annual course is shown in Figures 4.14, 4.15,
4.16, 4.17 and 4.18. Serving as daily and annual component to detect seasonalities,
the values are standardized. Further information about methods for deseasonalizing
and detrending data can be found in Brockwell and Davis [1991], Ch.1.4.

Using a daily and an annual component as covariates, modelling wind speed data
starts with a linear regression of the form

Wi = γ0 + γ1di + γ2ai + Yi

where

Wi are wind speeds in an hourly resolution.
di represents seasonality over one day. It is calculated as standardized hourly

average on the whole time series. The shape for Munich can be seen in Fig-
ure 4.19, which is similar to the curve of Trier in Figure 4.23. At Helgoland
the shape of the daily curve is different (Figure 4.20). Daily seasonalities of
Brocken and Fichtelberg are plotted in Figures 4.21 and 4.22.

ai is the annual component, which represents a standardized moving average of
two weeks or 14 days of an average year originating from the observed years
2000 to 2007 (see Figures 4.14, 4.15, 4.16, 4.17 and 4.18).

Yi are deseasonalized and centered wind speed data in an hourly resolution(cf.
Figure 5.1).

37
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Figure 5.1: Deseasonalized and centered wind speed data for Munich and Helgoland
in an hourly resolution.

Figure 5.2: Autocorrelation function of the residuals Yi for Munich and Helgoland.
Yi are the deseasonalized and centered wind speeds.

Daily and annual seasonalities are removed by these covariates. The resulting resid-
uals of the regression should merely show seasonalities with daily or annual cycles
(cf. Figure 5.1).

As wind speed data of DWD are available every hour, the parameter i measures time
in units of 1 hour. For residuals Yi of the regression the autocorrelation function is
shown in Figure 5.2. The appearance gives notice of autocorrelations in the data.
Obviously, there are strong dependencies left in the data after removing the daily
and annual seasonalities.

We now try to explain the deseasonalized and centered wind speeds using covariates.
As mentioned in Section 4.3 the main influence factors on wind speed are investi-
gated. Keeping in mind that movements of air are due to pressure differences, the
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Figure 5.3: Pairs plot for wind speeds in Munich and standardized surface pressures
400 km away in every cardinal direction.

correlations between deseasonalized wind speeds and the standardized surface pres-
sure differences were considered (Figures 5.3 and 5.4).

For Munich the highest absolute correlation is generated at westerly direction. The
correlation has a value of 0.550. Northerly and easterly direction have both values
of about −0.2, southerly direction just of 0.022.

The highest correlation being in westerly direction does not surprise, because in the
system of global atmospheric circulation central Europe is in the cell of west winds,
the Ferrel or mid-latitude cell with the prevailing westerlies. Major air circulations
pump from the equator the heated air, which rises and causes high pressure, to the
poles with cool air and lower pressure. As earth is a rotating reference frame, the
coriolis effect applies. In the northern hemisphere the effect causes a deflection to
the right of the motion of the object. This means for local areas of low and high
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Figure 5.4: Pairs plot for wind speeds on Helgoland and standardized surface pres-
sures 400 km away in every cardinal direction.
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pressure, the pressure differences create equipondering wind movements which ro-
tate counterclockwise around the low pressure point. The global wind currents are
deflected westwards in the northern hemisphere to form the prevailing westerlies (cf.
Etling [2008] and Quaschning [2010]).

Keeping the variable of surface pressure differences like a regime-switching factor,
the direction with the highest correlation is selected as currents regime. So just the
surface pressure differences of western direction are chosen, which also avoids mul-
ticollinearity.

Helgoland has the highest correlation of 0.333 between wind speed and surface pres-
sure differences in southerly direction. Correlation between wind speed and the vari-
able in westerly direction is lower at 0.026. In addition easterly direction has also a
positive correlation of 0.145. In northerly direction the correlation is negative with
the value −0.118, matching the positive correlation in southerly direction. Hence
surface pressure differences in southerly direction are used for the model. Keeping
in mind the location of Helgoland in the North sea, huge landmass places mainly
south and a little bit in the east. Recalling the local wind currents phenomena of
sea- or onshore-breeze, the result seems to match.

Sea breeze is given rise by the development of pressure fields due to unequal air
temperature. As sea is able to absorb more heat than land, the land’s surface warms
up faster during day. The warm air has lower dense and starts rising, which causes
lower pressure on surface and higher pressure above surface.

Figure 5.5: Scheme of sea breeze during day.

The compensating motion moves
towards the sea with lower air pres-
sure above the sea. The lower air
pressure is caused by cooler air
which has higher dense. This cooler
air sinks, causing higher pressure on
the sea surface. The compensating
motion, the sea breeze, moves to-
wards the land. At night land be-
comes cool faster than the sea and
this cycle is reversed. Since the dif-
ferences in temperature are impor-
tant, sea breeze does not necessarily depend on high surface temperature. This
coincides with the diurnal pattern of Helgoland. Lowest wind speeds are described
in the afternoon. At this time differences in temperature between land and sea have
assimilated. During night differences in temperature do not change so much, there-
fore the reversed local wind currents stay at the same range, too. In Figure 5.5 the
process is schematized.

Mountain breeze is a similar phenomenon caused by higher absorbtion of heat in
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the valley. Cold air streams down the mountain slopes and heated air of the valley
rises up to increase air pressure. In the afternoon differences of temperature have
assimilated, which coincides with the diurnal pattern of Brocken and Fichtelberg.
The smallest wind speeds are observed in the afternoon. As regime for Brocken,
southern pressure differences are selected with a correlation of 0.45. For Fichtelberg
northern differences are selected with a slightly higher absolute correlation than
southern ones. By involving surface pressure differences we include phenomena like
sea breeze, mountain breeze or other dominant local winds in our model naturally.
Further information to local winds can be found in Simpson [1994] and Malberg
[1997].

Since pressure differences are available only every six hours, a mean of six consecutive
hours of the deseasonalized wind speeds Yi is chosen as values of the new variable Y t.

Y t =
1

6

6t∑
i=6t−5

Yi

These variables Y t are influenced by the standardized surface pressure difference Zt,
as we have seen above.

Y t = β1Zt + ut (5.1)

Again the autocorrelation function of the resulting residuals ut is inspected (cf.
Figure 5.6). The shape with high autocorrelations for small lags and a rather quick
decreasing for increasing lags suggests an autoregressive process of first or second
order.

The autoregressive process of second order is built with the residuals ut:

ut = φ1ut−1 + φ2ut−2 + vt

Comparing the autocorrelation functions of the residuals of an AR(1) process (Fig-
ure 5.7) and an AR(2) process (Figure 5.8), the values for AR(2) for small lags are
even smaller. Hence an AR(2) process is considered and incorporated into the model
for wind speed.

In Figure 5.8 are still some autocorrelations outside the confidence interval. Addi-
tionally, we have a look at the the autocorrelation function of the squared residuals
v2t in Figure 5.9. From the retained structure of the autocorrelation function, a
GARCH(1,1) process is considered for the vt:

vt = σtεt

σ2
t = α0 + α1σ

2
t−1 + α2v

2
t−1
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Figure 5.6: Autocorrelation function of the variable ut for Helgoland. The variable
ut origins from a regression of standardized western surface pressure differences to
the variable of the deseasonalization regression in six hourly resolution as response.
The autocorrelation function of the variable ut for Munich has basically the same
appearance. This shape seems to suggest an autoregressive process of first or second
order.(e.g. Stralkowski.1970)

Figure 5.7: Autocorrelation function of the variable vt of the AR(1) process of ut for
Helgoland. The autocorrelations for small lags outside the confidence interval indicate,
that there is some more autocorrelation at the data.

Figure 5.8: Autocorrelation function of the variable vt of the AR(2) process of ut for
Helgoland. The autocorrelations for small lags are even smaller. That is the reason
why we decided to incorporate an AR(2) process at our model.
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Figure 5.9: Autocorrelation function of v2t .

Therefore we arrive at the following model

Wi = γ0 + γ1di + γ2ai + Yi,

and, switching to a six hourly resolution by defining Y t = 1
6

∑6t
i=6t−5 Yi,

Y t = β1Zt + ut

ut = φ1ut−1 + φ2ut−2 + vt

vt = σtεt

σ2
t = α0 + α1σ

2
t−1 + α2v

2
t−1

for t = 1, u−1 := 0, u0 := 0, v0 := 0 and σ2
0 := α0

1−α1
.

The variables of the model are

Wi: wind speed (hourly resolution)
di: diurnal seasonality component (hourly resolution) (cf. Figures 4.19, 4.20, 4.21,

4.22 and 4.21)
ai: annual seasonality component (houly resolution) (cf. Figures 4.14, 4.15, 4.16,

4.17 and 4.18)
Yi: deseasonalized wind speed (hourly resolution)
Yt: deseasonalized wind speed (six hourly resolution)
Zt: standardized differences of surface pressure (six hourly resolution)
ut: AR(2) process
vt: GARCH(1,1) process
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The transition from time scale i (one hour per step) to time scale t (six hours per
step) is necessary as surface pressure differences are available only every six hours.
Therefore, the model keeps an hourly base before using surface pressure differences.
The transition to six hourly values takes place at the point where one uses surface
pressure differences. At the point of using surface pressure differences the transition
to six hourly values takes place. A maximum likelihood estimation was implemented
in MATLAB for the process that was described above. For reasons of identifiability,
constraints on εt have to be imposed. Moreover, the distribution of the variable εt
must be fixed for the maximum likelihood estimation.
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5.1 Model with Normal Distribution

We first assume that (εt)t∈N is a sequence of normally distributed random variables
with mean 0 and standard deviation 1, εt ∼ N(0, 1). This implies that vt|σt is
N(0, σ2

t ) distributed.

Transforming Equation (5.1) of surface pressure differences to obtain the variable
ut, we get ut = Y t−β1Zt. To obtain the residuals vt of the AR(2) process, we rewrite
the process to vt = ut − φ1ut−1 − φ2ut−2. These expressions can be used to rewrite
the GARCH process vt in the following manner:

vt = [Y t − β1Zt]− φ1[Y t−1 − β1Zt−1]− φ2[Y t−2 − β1Zt−2].

Let µ̃t be an element of R, µ̃t := β1Zt + φ1[Y t−1− β1Zt−1] + φ2[Y t−2− β1Zt−2], then

Y t = vt + µ̃t. (5.2)

Consequently, Y t|σt is N(µ̃t, σ
2
t ) distributed.

For Munich we obtain the following model:

Wi = 2.9302 + 0.5363di − 0.0251ai + Yi

Y t = 3.6239Zt + ut

ut = 0.7716ut−1 − 0.0592ut−2 + vt

vt = σtεt

σ2
t = 0.2668 + 0.7027σ2

t−1 + 0.0588v2t−1

For Helgoland we get:

Wi = 8.0214 + 0.0843di + 1.2275ai + Yi

Y t = 2.9406Zt + ut

ut = 0.9691ut−1 − 0.2049ut−2 + vt

vt = σtεt

σ2
t = 0.5477 + 0.6699σ2

t−1 + 0.0249v2t−1

In Table 5.1 the estimated parameters and corresponding standard errors are shown
for the monitoring stations at Munich and on Helgoland.
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Weather station Munich Helgoland
γ0 2.9302 8.0214

(se) (0.2605) (1.1487)
γ1 0.5363 0.0843

(se) (0.0159) (0.1242)
γ2 -0.0251 1.2275

(se) (0.0817) (0.0526)
β1 3.6239 2.9406

(se) (0.0807) (0.1380)
φ1 0.7716 0.9691

(se) (0.0103) (0.0097)
φ2 -0.0592 -0.2049

(se) (0.0102) (0.0096)
α0 0.2668 0.5477

(se) (0.0185) (0.0580)
α1 0.7027 0.6699

(se) (0.0185) (0.0326)
α2 0.0588 0.0249

(se) (0.0036) (0.0020)

Table 5.1: Estimates and the corresponding standard errors for the model with
normally distributed wind speeds Yt.

A histogram of the residuals εt is shown in Figure 5.10 for Munich. The red dashed
line is the density of the normal distribution with mean 0 and standard deviation 1.
Obviously, the distribution of the εt does not coincide with the normal distribution.
The plotted histogram gives the impression that a distribution with more shape pa-
rameters is needed. The distribution should be able to change skewness and kurtosis
depending on shape parameters.

For Helgoland the corresponding histogram of εt with a red dashed line for the
density of the normal distribution can be seen in Figure 5.11. The assumption of
normally distributed εt’s does not hold either. The deseasonalized wind speeds ob-
viously require the incorporation of a different distribution.

As we checked, also the Weibull distribution is not suitable to capture the structure
of the data. In the end, we selected an hyperbolic distribution which is described
in detail in Section 2. The model with hyperbolic distribution is illustrated in the
following Section 5.2.
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Figure 5.10: Histogram of resulting εts for the wind speed modelling at Munich,
assuming a normal distribution with mean 0 and standard deviation 1. The red dashed
line is the distribution function of the Normal distribution for mean 0 and standard
deviation 1. The graph does not fit the histogram exemplarily, some skewness seems
to be observed.

Figure 5.11: Histogram of resulting εts for the wind speed modelling at Helgoland,
assuming a normal distribution with mean 0 and standard deviation 1. The red dashed
line is the distribution function of the Normal distribution for mean 0 and standard
deviation 1. The graph does not fit the histogram exemplarily, the observed kurtosis
seems to be different.
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5.2 Model with Hyperbolic Distribution

Analogous to the model with the assumption of normal distributed wind speeds Yt,
we use the same model structure but assume a hyperbolic distribution for Yt. Skew-
ness and kurtosis of the hyperbolic distribution depend on the shape parameter ξ
and χ (cf. Section 2). Having two more parameters than the normal distribution, the
hyperbolic distribution is, of course, much more flexible. We recall the construction
of the model

Wi = γ0 + γ1di + γ2ai + Yi

and, switching to a six hourly resolution by defining Y t = 1
6

∑6t
i=6t−5 Yi,

Y t = β1Zt + ut

ut = φ1ut−1 + φ2ut−2 + vt

vt = σtεt

σ2
t = α0 + α1σ

2
t−1 + α2v

2
t−1

for t = 1, u−1 := 0, u0 := 0, v0 := 0 and σ2
0 := α0

1−α1
.

The variables of the model are

Wi: wind speed (hourly resolution)
di: diurnal seasonality component (hourly resolution) (cf. Figures 4.19, 4.20, 4.21,

4.22 and 4.21)
ai: annual seasonality component (houly resolution) (cf. Figures 4.14, 4.15, 4.16,

4.17 and 4.18)
Yi: deseasonalized wind speed (hourly resolution)
Yt: deseasonalized wind speed (six hourly resolution)
Zt: standardized differences of surface pressure (six hourly resolution)
ut: AR(2) process
vt: GARCH(1,1) process

With Equation (5.2) Yt = vt + µ̃t and vt = σtεt,

εt =
Y t − µ̃t
σt

.

So is also Y t hyperbolically distributed, characterized by the relation

fHY P (Y ) (Yt) = fHY P (ε) (ε(Yt))
dε(Yt)

dYt
= fHY P (ε) (ε(Yt))

1

σt
.

The function fHY P (Y ) represents the hyperbolic density function for Yt and fHY P (ε)
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is the density function for εt ∼ hyperbol(ξ, χ, δ, µ). Additional constraints have to be

defined to get an identifiable model. Therefore we assume E[εt]
!

= 0. This assumption
determines the location parameter µ, which can be calculated by

µ = − δ√
ξ2 − χ2

K2(ζ)

K1(ζ)
.

Furthermore a value for the variance has to be assumed. By reason of numerical
stability

V ar(εt) =
δ2K2(ζ)

ζK1(ζ)
+

δ2

ξ2

χ2 − 1
(
K3(ζ)

K1(ζ)
− K2(ζ)2

K1(ζ)2
)

!
= 4

is assumed. This condition initiates a separate optimization of δ, which uses least
square optimization to find a solution.

Achieving δ by a single optimization depending on the model parameter, the pa-
rameters of the whole model are estimated by maximum likelihood optimization
consistent with the δ. In Table 5.2 the achieved parameter estimates for the hyper-
bolically distributed wind speed model are shown.

The intercept of the model, γ0 could be interpreted as an average wind speed indi-
cating the range of wind speed at the respective location. The parameter that scales
the daily component is γ1, which is quite similar for Brocken and Fichtelberg, as
well as for Munich and Trier. For Helgoland the parameter of the daily component
is relatively small compared to the other locations, which induces no huge effects
of daily seasonality. For the parameter of the annual seasonality component, γ2, a
small value is estimated for Munich, inducing no huge effects of annual seasonality.
The scale factor of surface pressure differences, β1, depends on the covariate. As
measurements and obtained surface differences differ for the observed locations, the
values are non-uniform. The negative algebraic sign at Fichtelberg is caused by the
selection of the direction of surface pressure differences. Recalling from the model
description at the beginning of this chapter, the direction with the highest correla-
tion is selected. For Fichtelberg the selected direction points at an area with lower
surface pressure, which causes negative values for the pressure difference covariate Z.

The parameters of the AR(2) process, φ1 and φ2 show similar behavior on the one
hand for the cities Munich and Trier and on the other hand for the mountains
Brocken and Fichtelberg, as well the island Helgoland. The autoregressive parame-
ter of first order, φ1 is quite high for all locations. The autoregressive parameter of
second order, φ2, is rather small for the cities, but still significant. The mountain
group has higher φ2, containing the island Helgoland with the highest one of all ob-
served locations. All locations have in common the negative influence of the second
autoregressive parameter.

For the GARCH(1,1) parameter, α0, α1 and α2, the locations again seem to be
groupable to the cities fraction and the mountains fraction, which contains the
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Weather Munich Helgo- Brocken Fichtel- Trier
station land berg
γ0 2.8061 8.2456 10.7005 9.0313 3.1376

(se) (0.2017) (1.1303) (0.8911) (0.7669) (0.0377)
γ1 0.4986 0.0712 0.2952 0.2993 0.4327

(se) (0.0146) (0.1213) (0.0634) (0.0562) (0.0091)
γ2 -0.0514 1.2730 1.9523 1.5831 0.4498

(se) (0.0626) (0.0531) (0.0524) (0.0619) (0.0348)
β1 2.7837 2.9656 4.0762 -1.4173 1.3022

(se) (0.0793) (0.1399) (0.1207) (0.1718) (0.0709)
φ1 0.7165 0.9844 0.9295 0.9825 0.7888

(se) (0.0099) (0.0097) (0.0096) (0.0095) (0.0098)
φ2 -0.0479 -0.2097 -0.1490 -0.1745 -0.0711

(se) (0.0091) (0.0095) (0.0095) (0.0094) (0.0094)
α0 0.0641 0.1458 0.0623 0.0400 0.0458

(se) (0.0107) (0.0378) (0.0214) (0.0128) (0.0082)
α1 0.6397 0.7620 0.9058 0.9253 0.7376

(se) (0.0265) (0.0397) (0.0203) (0.0142) (0.0221)
α2 0.0434 0.0215 0.0131 0.0109 0.0342

(se) (0.0069) (0.0045) (0.0031) (0.0025) (0.0056)
ξ 0.5419 0.4543 0.3952 0.3974 0.4973

(se) (0.0214) (0.0230) (0.0244) (0.0239) (0.0215)
χ 0.2365 0.0274 0.0534 0.0524 0.1730

(se) (0.0094) (0.0086) (0.0085) (0.0085) (0.0091)

3χ 0.7095 0.0822 0.1602 0.1572 0.5190
3ξ2 0.8810 0.6192 0.4685 0.4738 0.7419

Table 5.2: Parameter estimates for the different monitoring stations, assuming
hyperbolically distributed deseasonalized wind speeds Yt.

monitoring station on the island Helgoland. The estimates for the hyperbolic dis-
tribution parameters affirm this impression of two groups with different behavior fr
wind speeds. As 3χ is an approximation for skewness, the skewness at the obser-
vation points Munich and Trier is within the same range, which is higher than for
the mountain’s group. Kurtosis, which is approximated by 3ξ2 is again higher for
Munich and Trier. The mountains Brocken and Fichtelberg have identical values up
to two decimals although being more than 300 kms apart.

Controlling for any remaining influence, autocorrelation functions of εt and of ε2t are
considered. In Figure 5.12 and 5.13 almost no structure can be observed. The fit
of the model is reflected by the histograms of εt, too (cf. Figure 5.14 for Munich,
5.15 for Helgoland, 5.16 for Brocken, 5.17 for Fichtelberg and 5.18 for Trier). Also
the shape of the QQ-plot (cf. Figure 5.20) supports the assumption of hyperbolic
distribution.
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Figure 5.12: ACF of εt at monitoring station on Helgoland

Figure 5.13: ACF of ε2t at monitoring station on Helgoland

Figure 5.14: Histogram of resulting εts for the wind speed measurements in Munich,
assuming a hyperbolic distribution with hyperbol(0.5419, 0.2365, 2.0774,−1.6828).
The red dashed line is the distribution function of the hyperbolic distribution for
hyperbol(0.5419, 0.2365, 2.0774,−1.6828).
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Figure 5.15: Histogram of resulting εts for the wind speed mea-
surements on Helgoland, assuming a hyperbolic distribution with
hyperbol(0.4543, 0.0274, 3.2944,−0.28038). The red dashed line is the distribution
function of the hyperbolic distribution for hyperbol(0.4543, 0.0274, 3.2944,−0.28038).

Figure 5.16: Histogram of resulting εts for the wind speed mea-
surements at Brocken, assuming a hyperbolic distribution with
hyperbol(0.3952, 0.0534, 4.0494,−0.71163). The red dashed line is the distribution
function of the hyperbolic distribution for hyperbol(0.3952, 0.0534, 4.0494,−0.71163).
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Figure 5.17: Histogram of resulting εts for the wind speed mea-
surements at Fichtelberg, assuming a hyperbolic distribution with
hyperbol(0.3974, 0.0524, 4.0185,−0.69071). The red dashed line is the distribution
function of the hyperbolic distribution for hyperbol(0.3974, 0.0524, 4.0185,−0.69071).

Figure 5.18: Histogram of resulting εts for the wind speed measurements at Trier,
assuming a hyperbolic distribution with hyperbol(0.4973, 0.1730, 2.5942,−1.4668).
The red dashed line is the distribution function of the hyperbolic distribution for
hyperbol(0.4973, 0.1730, 2.5942,−1.4668).
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Figure 5.19: A QQ-plot comparing the
quantiles of the set of εt at observation
point Munich on the vertical axis to the
hyperbolic theoretical quantiles on the
horizontal axis.

Figure 5.20: A QQ-plot comparing the
quantiles of the set of εt at observation
point Helgoland on the vertical axis to
the hyperbolic theoretical quantiles on
the horizontal axis.

Figure 5.21: A QQ-plot comparing the
quantiles of the set of εt at observation
point Brocken on the vertical axis to the
hyperbolic theoretical quantiles on the
horizontal axis.

Figure 5.22: A QQ-plot comparing the
quantiles of the set of εt at observation
point Fichtelberg on the vertical axis
to the hyperbolic theoretical quantiles on
the horizontal axis.

Figure 5.23: A QQ-plot comparing the quantiles of the set of εt at observation point
Trier on the vertical axis to the hyperbolic theoretical quantiles on the horizontal
axis.
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5.3 Forecasts

5.3.1 Forecasts Based on Seasonal Components Only

The simplest way of forecasting by means of our model is to use only the diurnal and
annual seasonality components of the linear regression. No difference occurs between
one-step and multi-step predictors, since forecasts are based only on the long-term
average at the time under consideration, but not on specific wind speeds directly
before.

Ŵ t+1 = γ̂0 + γ̂1 ·
1

6

6(t+1)∑
i=6(t+1)−5

di + γ̂2 ·
1

6

6(t+1)∑
i=6(t+1)−5

ai

The mean squared error (MSE) is

MSE
(
Ŵ n,W t

)
=

1

n

n∑
t=1

(
Ŵ t −W t

)2
where n indicates the number of observations taken into account. The true val-
ues are W t = 1

6

∑6t
i=6t−5Wi, i.e. the six hourly means of the hourly resolved wind

speeds. For our data set n = 11680. The resulting mean squared error of Helgoland

is MSE
(
Ŵ 11680,W t

)
= 12.10.

5.3.2 Forecasts Based on Seasonal Components and Surface
Pressure Differences

Using the diurnal and annual seasonality components of the linear regression and
an additional covariate, the surface pressure differences, we get a better fit, but still
nearly no difference exists between one-step and two-step predictors. Seasonality
components are known constants and surface pressure differences are measurements
which can easily be predicted at a time scale of six or twelve hours. For multiple-
step predictors, estimation of surface pressure difference might be more difficult and
vague. Therefore the MSE for higher multiple-step predictions gets worse.

̂̂
W t+1 = γ̂0 + γ̂1 ·

1

6

6(t+1)∑
i=6(t+1)−5

di + γ̂2 ·
1

6

6(t+1)∑
i=6(t+1)−5

ai +
̂̂
Y t+1

̂̂
Y t+1 = β̂1Zt+1

For Helgoland we get MSE

(̂̂
W 11680,W t

)
=11.08
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5.3.3 Forecasts Based on Seasonal Components, Surface Pres-
sure Differences and AR(2) Process

Not only the seasonality components and the covariate are used, but also the au-
toregressive process is integrated in the prediction. As the variable ut of the AR(2)
process is unknown for future values, differences occur for each step-width, even for
one- and two-step predictors. A one-step prediction can be calculated bŷ̂̂

W t+1(6h) = γ̂0 + γ̂1 ·
1

6

6(t+1)∑
i=6(t+1)−5

di + γ̂2 ·
1

6

6(t+1)∑
i=6(t+1)−5

ai +
̂̂̂
Y t+1

̂̂̂
Y t+1 = β̂1Zt+1 +

̂̂̂
ut+1̂̂̂

ut+1 = φ̂1ut + φ̂2ut−1,

and a two-step prediction bŷ̂̂
W t+2(12h) = γ̂0 + γ̂1 ·

1

6

6(t+2)∑
i=6(t+2)−5

di + γ̂2 ·
1

6

6(t+2)∑
i=6(t+2)−5

ai +
̂̂̂
Y t+2

̂̂̂
Y t+2 = β̂1Zt+2 +

̂̂̂
ut+2̂̂̂

ut+2 = φ̂1
̂̂̂
ut+1 + φ̂2ut̂̂̂

ut+1 = φ̂1ut + φ̂2ut−1.

Considering exemplarily Helgoland again, the MSE of a six hourly forecast is 3.84.
For a two step prediction, a 12 hourly forecast, the MSE increases to 7.85. For these
calculations we assumed a good prediction of future surface pressure differences,
therefore we inserted the true values. Actually we need a prediction model for pres-
sure differences to insert the predicted values. But even with the assumption of the

last known period, which means
̂̂̂
Y t+1 = β̂1Zt +

̂̂̂
ut+1 for the one-step prediction, we

get the reasonable results with a MSE

(̂̂̂
W 11680(6h,Prt+1

t ),W t

)
= 4.03. The symbol

Prt+1
t indicates that for the prediction of period t+1 the known surface pressure dif-

ferences of period t are assumed. For a two-step prediction
̂̂̂
Y t+2 = β̂1Zt+

̂̂̂
ut+2 when

we use the last known pressure difference as future value. The MSE of the two-step
prediction with pressure differences of period t, which is the value of the surface pres-

sure differences two time steps backwards, is MSE

(̂̂̂
W 11680(12h,Prt+2

t ),W t

)
= 8.11

for Helgoland. The symbol Prt+2
t indicates that for the prediction of period t+ 2 the

known surface pressure differences of period t are assumed.
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The errors for each station and respective standard deviation can be found in Table
5.3. Therefore our predictions seem to be reasonable. The best forecast is always the
one-step prediction based on seasonal components, surface pressure differences and
an AR(2) process. For Munich, predicting only based on seasonal components and
surface pressure differences leads to a better prediction as a two-step prediction based
on seasonal components, surface pressure differences and an AR(2) process. Thus
one can see, that wind speeds in Munich are highly dependent on surface pressure
differences. Also for the wind speeds measured next to Trier (Figures 5.32, 5.33), the
surface pressure differences seem to be more important than the AR(2) process. The
two-step prediction based on the model with the AR(2) process is hardly better than
the prediction based on seasonal components and surface pressure differences. This
could be interpreted as a weaker dependency on local circulation or phenomenons.
For Fichtelberg an adverse behavior is observed. The prediction with the AR(2)
process is much better. This improvement of fit due to the AR(2) process indicates
higher dependency of the local circulation. The surface pressure differences, which
represent the wider surrounding, do not have such an huge impact. Considering the
Figures 5.26 and 5.27 one can see the good impacts of surface pressure differences,
whereas in Figures 5.30 and 5.31 the orange graph of the prediction with surface
pressure differences hardly improves comparing to the forecast based on seasonal
components only. For Brocken (Figures 5.28 and 5.29) the close predictions based
on the model with AR(2) process can be seen. Generally, a similar behavior to
Fichtelberg with local circulation dependencies is observed. However, the depen-
dency on bigger circulation systems and therefore on surface pressure differences is
a bit more distinctive for Brocken, which improves the fit.
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Weather station Munich Helgoland Brocken Fichtelberg Trier

W 11680 3.15 8.50 10.88 9.24 3.35

Std dev. 2.26 3.76 5.21 4.71 2.12

RMSE
(
Ŵ 11680

)
2.23 3.48 4.83 4.36 2.06

RMSE

(̂̂
W 11680

)
1.91 3.33 4.12 4.21 1.90

RMSE

(̂̂̂
W 11680(6h)

)
1.53 2.17 2.44 2.27 1.23

RMSE

(̂̂̂
W 11680(12h)

)
2.57 2.75 3.33 3.22 1.61

Table 5.3: Root mean squared errors for the different monitoring stations. For the
forecasts in the last two rows a good prediction model for surface pressure differences
is assumed. Therefore we calculated our wind speed forecast with the true surface
pressure differences.
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Figure 5.24: Forecast of six hourly wind speeds (one-step prediction) for Helgoland.
The period of 60 days, starting January 1, 2000, is shown and x-axis is labeled per
day, but plotted values are hourly values. The y-axis shows wind speeds in m

s . The
thin black line are the originally measured wind speeds and the blue line are the six
hourly means. The forecast of Subsection 5.3.1 is shown in yellow. The orange graph
is the forecast described in Subsection 5.3.2. The red graph is the forecast described
in Subsection 5.3.3.

Figure 5.25: Forecast of 12 hourly wind speeds (two-step prediction) for Helgoland.
The period of 60 days, starting January 1, 2000, is shown and x-axis is labeled per
day, but plotted values are hourly values. The y-axis shows wind speeds in m

s . The
thin black line are the originally measured wind speeds and the blue line are the six
hourly means. The forecast of Subsection 5.3.1 is shown in yellow. The orange graph
is the forecast described in Subsection 5.3.2. The red graph is the forecast described
in Subsection 5.3.3.
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Figure 5.26: Forecast of six hourly wind speeds (one-step prediction) for Munich.
The period of 60 days, starting January 1, 2000, is shown and x-axis is labeled per
day, but plotted values are hourly values. The y-axis shows wind speeds in m

s . The
thin black line are the originally measured wind speeds and the blue line are the six
hourly means. The forecast of Subsection 5.3.1 is shown in yellow. The orange graph
is the forecast described in Subsection 5.3.2. The red graph is the forecast described
in Subsection 5.3.3.

Figure 5.27: Forecast of 12 hourly wind speeds (two-step prediction) for Munich.
The period of 60 days, starting January 1, 2000, is shown and x-axis is labeled per
day, but plotted values are hourly values. The y-axis shows wind speeds in m

s . The
thin black line are the originally measured wind speeds and the blue line are the six
hourly means. The forecast of Subsection 5.3.1 is shown in yellow. The orange graph
is the forecast described in Subsection 5.3.2. The red graph is the forecast described
in Subsection 5.3.3.
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Figure 5.28: Forecast of six hourly wind speeds (one-step prediction) for Brocken.
The period of 60 days, starting January 1, 2000, is shown and x-axis is labeled per
day, but plotted values are hourly values. The y-axis shows wind speeds in m

s . The
thin black line are the originally measured wind speeds and the blue line are the six
hourly means. The forecast of Subsection 5.3.1 is shown in yellow. The orange graph
is the forecast described in Subsection 5.3.2. The red graph is the forecast described
in Subsection 5.3.3.

Figure 5.29: Forecast of 12 hourly wind speeds (two-step prediction) for Brocken.
The period of 60 days, starting January 1, 2000, is shown and x-axis is labeled per
day, but plotted values are hourly values. The y-axis shows wind speeds in m

s . The
thin black line are the originally measured wind speeds and the blue line are the six
hourly means. The forecast of Subsection 5.3.1 is shown in yellow. The orange graph
is the forecast described in Subsection 5.3.2. The red graph is the forecast described
in Subsection 5.3.3.
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Figure 5.30: Forecast of six hourly wind speeds (one-step prediction) for Fichtel-
berg. The period of 60 days, starting January 1, 2000, is shown and x-axis is labeled
per day, but plotted values are hourly values. The y-axis shows wind speeds in m

s . The
thin black line are the originally measured wind speeds and the blue line are the six
hourly means. The forecast of Subsection 5.3.1 is shown in yellow. The orange graph
is the forecast described in Subsection 5.3.2. The red graph is the forecast described
in Subsection 5.3.3.

Figure 5.31: Forecast of 12 hourly wind speeds (two-step prediction) for Fichtel-
berg. The period of 60 days, starting January 1, 2000, is shown and x-axis is labeled
per day, but plotted values are hourly values. The y-axis shows wind speeds in m

s . The
thin black line are the originally measured wind speeds and the blue line are the six
hourly means. The forecast of Subsection 5.3.1 is shown in yellow. The orange graph
is the forecast described in Subsection 5.3.2. The red graph is the forecast described
in Subsection 5.3.3.
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Figure 5.32: Forecast of six hourly wind speeds (one-step prediction) for Trier. The
period of 60 days, starting January 1, 2000, is shown and x-axis is labeled per day, but
plotted values are hourly values. The y-axis shows wind speeds in m

s . The thin black
line are the originally measured wind speeds and the blue line are the six hourly means.
The forecast of Subsection 5.3.1 is shown in yellow. The orange graph is the forecast
described in Subsection 5.3.2. The red graph is the forecast described in Subsection
5.3.3.

Figure 5.33: Forecast of 12 hourly wind speeds (two-step prediction) for Trier. The
period of 60 days, starting January 1, 2000, is shown and x-axis is labeled per day, but
plotted values are hourly values. The y-axis shows wind speeds in m

s . The thin black
line are the originally measured wind speeds and the blue line are the six hourly means.
The forecast of Subsection 5.3.1 is shown in yellow. The orange graph is the forecast
described in Subsection 5.3.2. The red graph is the forecast described in Subsection
5.3.3.



Chapter 6

Excursus - Photovoltaic Power
Modelling

6.1 Influences on Photovoltaic Power

Irradiance, disturbed by cloud cover and other external factors, is converted into
power. Blatantly sun exerts the dominating influence on photovoltaic power. Due to
the earth’s rotation we have strong diurnal fluctuations, e.g. after sunset and before
sunrise no new photovoltaic power is produced.

6.1.1 Seasonal Behavior

The photovoltaic power has a clear seasonal behavior. During the day a maximum
is achieved around noon (cf. Figure 6.1), during the year a maximum is achieved in
summer (cf. Figure 6.2). The difficulty is how to model these patterns. The diurnal
path of sun can be represented by altitude coordinate, a coordinate denomination
in the horizontal coordinate system.

6.1.2 Horizontal Coordinate System

The horizontal coordinate system contains two coordinates: altitude (sometimes
called elevation) and azimuth. So it is even referred to as altitude-azimuth (altaz)
or azimuth-elevation (Az,El) system. It appoints the location of any celestial body
from the observer´s point of view. So these coordinates are dependent on time and
location.
The fundamental plane, which is designated as the horizontal plane, is the tangent
plane of the earth at the observer´s location. Zenith is the perpendicular above
the observer and nadir the antipodal one. Altitude measures the angle between the
horizontal plane and the celestial body. At zenith per definition an altitude of 90◦

is observed. The range of altitude is [−90◦,+90◦]. Objects with negative altitude
are above the horizontal plane and invisible to the observer. As a consequence no

65



66 CHAPTER 6. EXCURSUS - PHOTOVOLTAIC POWER MODELLING

Figure 6.1: An average day of pho-
tovoltaic power production. Being stan-
dardized by capacity the values of pho-
tovoltaic power are between 0 and 1.

Figure 6.2: ”An average year of pho-
tovoltaic power production. Being stan-
dardized by capacity the values of pho-
tovoltaic power are between 0 and 1.

sunlight can reach the observer´s location, if altitude of sun is smaller than 0◦ at
this time. The zenith distance, which is more popular in astronomy, is defined as
the angle between the celestial body and zenith. This angle is in a range of [0◦, 180◦]
and can be derived as 90◦ − altitude.

Azimuth describes the angular distance

Figure 6.3: ”Altitude and azimuth in
the horizon system. S is the position of
the star” Birney [1991], Ch.1.

between the defined point of origin and
the observed celestial body in the hor-
izontal plane. The range is [0◦, 360◦], com-
monly starting from south or north as
0◦. Measurement direction is mostly clock-
wise. As there are different conventions
exact definition has to be ascertained on
every occasion. Additional information
and more elaborate explanation can be
found in Karttunen [2000], Ch. 2.

6.1.3 Distance between Sun and Earth

The distance between sun and earth varies over the year. The annual perihelion
happens in winter, which means in summer distance is wider than in winter. Thus
the development of the distance is inversely proportional to the annual seasonality
component of photovoltaic power (cf. Figure 6.4).
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Figure 6.4: Distance between
sun and earth changes in the
course of the year, because
the orbit of earth around the
sun is elliptical. Considering the
sun in the center, ”perihelion”,
which names the shortest dis-
tance to earth occurs in summer
and ”aphelion”, which names
the longest distance happens in
summer.

6.2 Modelling of Photovoltaic Power

Starting with the supposition of a connection between sun power and sun position
we cut the sun power series by all values in which azimuth is smaller or equal to
0◦. So the problem of zeros at night is solved. Clearly at night azimuth is smaller or
equal to 0◦. This new sun time series does not have equidistant time space, but we
can have a look at the data without distortion towards zero.

We obtain the following model

Si =

{
β1 + β2alt

β3
i + β4(1 + β5 sin( (i+β6)π

4380
))Disti for alti > 0

0 else

where

Si: solar power in Europe normalized by estimated capacity (hourly resolution,
but not equidistant: no values at the dark)

alti: altitude in Munich at time i
Disti: distance between earth and sun

To get an at least approximate idea of the fit of the model, Adjusted-R2 is calculated.
Being slightly higher than 90% the approximation to the solar power time series over
all Europe seems to be adequate with this model. One average year of measurement
data and the estimates of the model are demonstrated in Figure 6.5.



Figure 6.5: The horizontal axis shows one average year, the values of photovoltaic
power are averaged over the period of 2000 to 2007. The vertical axis has values be-
tween 0 and 1, as the photovoltaic power is standardized by capacity. The yellow
graph originates from the model, the black graph is drawn by the averaged measure-
ment data.



Chapter 7

Conclusion

Renewable energies are essential for a sustainable future development. However, tra-
ditional power plants can only be replaced, if a constant energy supply is guaranteed.
Therefore we need to improve our understanding of wind speed.

In this thesis we introduced a time series model for wind speeds. Seasonal behav-
ior of wind speed is modelled by two seasonal components: one component models
daily seasonalities and the other one models annual seasonalities. As expected, the
seasonal components vary between the different monitoring stations in pattern and
magnitude. In search for influencing factors we tried different covariates like tem-
perature, air humidity, precipitation, sunshine duration and surface pressure, but
only surface pressure differences could improve our model considerably. Moreover,
an autoregressive process of order 2 is incorporated. Additionally, a GARCH pro-
cess is used to capture the remaining dependencies. For the error terms, we assume
an hyperbolic distribution. After fixing two of the four hyperbolic parameters for
reasons of identifiability, we have two free parameters left, which are used to model
the specific wind speed behavior at the different monitoring locations. Indeed, these
two parameters turn out to be quite different for different types of locations. In
particular, these parameters indicate a different wind speed pattern for locations
close to cities (as Munich or Trier) than for mountainous and offshore regions (as
Brocken, Fichtelberg, and Helgoland).

Close to cities as Munich and Trier we observe lower average wind speeds. The an-
nual seasonality varies nearly in the same range as the daily seasonality and the
parameter of annual seasonality implies only small effects. The average wind speed
during one day reaches its peak in the afternoon for these two stations. As the sec-
ond parameter of the AR(2) process is very small, wind speeds remain usually in
the same range of values. The variance process has a higher impact for wind speeds
at this locations and therefore the error terms get higher influence, too. These error
terms are modelled with an hyperbolic distribution. For this group, the approxima-
tion of the skewness give a right-skewed distribution, with higher skew than for the
other group. Few wind speeds are very high compared to the main part. Both groups
have a smaller kurtosis than the normal distribution, which indicates more extreme
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wind speeds. However, the kurtosis of this group is smaller than the kurtosis of the
other group. In this case we consider the fact that only few high wind speeds occur,
which influence the distribution to be right-skewed. In total, however, here we have
more values closer to the mean that in the other group.

The second observed group is formed by the monitoring stations at the mountains,
Brocken and Fichtelberg, which have nearly the same behavior. Similar behavior is
also observed for Helgoland, which is an island in the North sea. Generally, these
stations have much higher wind speeds. Seasonality over the year causes a higher
change in wind speeds and is more important as the huge parameter shows. The
average wind speeds during a day reach a low in the afternoons. These patterns
represent the local circulation phenomenons at these locations. For the AR(2) pro-
cess the first parameter mitigates the second parameter, which negatively influences
the model. Observing values about three times bigger than than the parameter in
the other group the impact on this group is higher. Hence, changes in wind speed
occur more frequently than in the other group. However, wind speeds develop rela-
tively smooth. The influence of the variance is bigger for this group. The variation
in the variance is higher, but the variance process which is scaled by the error terms
has a smaller influence. The estimation of the the hyperbolic distribution gives a
right-skewed distribution, too. This shows the influence of few outlining high wind
speeds. Observing a kurtosis smaller than the normal distribution, we can suppose
the existence of more distinct values. The tails, which reflect very small and very
high wind speeds, occur more often. This represents the location with some calm
periods and strong storms especially in winter.

Our derived model is relatively flexible and includes characteristics arising from
different locations. The estimates of our model give reasonable forecast values. In
order to improve the fit, more covariates can be incorporated instead of only one
direction of surface pressure. Having hourly pressure differences the time scale can
be downsized to an hourly resolution. If wind directions are available, a regime-
switching component can be included as well.



Appendix A

Retrieving Data from GRIB-files

In order to retrieve the required data from the GRIB-file an appropriate program
is needed. GRIB API, the GRIB decoder offered by ECMWF is an application pro-
gram interface to encode and decode WMO FM-92 GRIB edition 1 and edition 2
messages. A set of command line tools1 are provided at ECMWF website to easily
start using the data. To be able to use the main features of GRIB API, some exam-
ples can be found on the ECMWF homepage in Python, Fortran 90, C and Fortran
77.2

As GRIB API is a linux based program, one needs a linux environment to run the
program. Operating with a windows system, a linux-like environment for a windows
computer is needed. A program fulfilling these demands is e.g. Cygwin. During the
installation process a minimum of Cygwin packages has to be downloaded and in-
stalled containing Archive, Base, Devel, Graphics, Interpreters, Jasper, Libs, Utils,
Web and X11. As a minimum, these packages are needed to work with GRIB API. A
list of all available packages, help for the installation process and documentation can
be found on Cygwin´s web page.3 Inside this interface GRIB API could be installed
even on a windows operating system. Therein one can apply all the command line
tools mentioned above and process with the data.

Since we needed a time series of surface pressure for the period from January 1,
2000 until December 31, 2007 at best in an hourly resolution, we requested a GRIB
file from the ECMWF homepage containing the value of pressure at a restricted
area. To achieve data from that file the grib ls routine is used. Being at the storage
location of grib ls searched values can be retrieved by the command line order:

grib ls − l xx.xx, yy.yy, 1 − p paramID, dataDate,DataT ime, name
/cygdrive/c/Documents/datafile.grib − > newfile.txt

Data is read out of datafile.grib and saved in newfile.txt. The system path reflects
the storage location of the GRIB file. By the assignment of − > the data read

1http : //www.ecmwf.int/publications/manuals/grib api/tools.html
2http : //www.ecmwf.int/publications/manuals/grib api/grib examples.html
3http : //cygwin.com/
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out will be saved at present system location in which grib ls is also stored. Then
newfile.txt contains the values of the variable at the grid point of the inserted
coordinates, which is here symbolized as xx.xx and yy.yy. The placeholder xx.xx
symbolizes degree of latitude, which is inserted positive for the northern latitude
and negative for the southern latitude. The longitude yy.yy is inserted positive for
the eastern longitude and negative for the western ones. In front of the coordinates
option ”−l” is inserted to obtain the nearest grid point belonging to these coordi-
nates. After typing the coordinates, the numeral 1 is inserted. This numeral ensures
one output value closest from the nearest grid point. The default modus would be 4,
which means that the values at the four nearest grid points to the selected coordi-
nates would be outputted. The ”−p” option is used to set the keys which should be
printed in the txt-file. The ”Parameter ID” is a unique value which classifies every
parameter. ”DataDate” prints the date at which data is measured, e.g 20030201 for
01st of February 2003. ”DataTime” shows the hour, 0000 for 00:00 am, 0600 for
06:00 am and so on. The key name prints out the names of the saved parameters.



Appendix B

Graphs of DWD Explorative Data
Analysis

Here we report some graphs related to wind speed at the monitoring stations Munich,
Helgoland, Brocken, Fichtelberg and Trier. The are used to find seasonal patterns
in the data. Daily averages are considered per month to detect any seasonality over
the year. As well one average day per month is considered to follow the changes in
the seasonalities occurring during the year. In Section 4.2 these figures are explained
in detail.
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Figure B.1: Average value of wind speed in Munich per day in m
s , a 24 hours

mean of every day is built for every single month. The considered months are as well
average months, which come from one average year constructed by the values of the
years 2000-2007. From these graphs one can see that the difference of levels in the
course of the year can barely be noticed in comparison to Helgoland.
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Figure B.2: Average value of wind speed on Helgoland per day in m
s , a 24 hours

mean of every day is built for every single month. The considered months are as well
average months, which come from one average year constructed by the values of the
years 2000-2007. From these graphs one can see that the differences of levels in the
course of the year are fairly high. In summer times values of about 6 m

s seem usual,
whereas in winter times values vary at about 12 m

s .
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Figure B.3: Average value of wind speed at Brocken per day in m
s , a 24 hours

mean of every day is built for every single month. The considered months are as well
average months, which come from one average year constructed by the values of the
years 2000-2007.
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Figure B.4: Average value of wind speed at Fichtelberg per day in m
s , a 24 hours

mean of every day is built for every single month. The considered months are as well
average months, which come from one average year constructed by the values of the
years 2000-2007.
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Figure B.5: Average value of wind speed at Trier per day in m
s , a 24 hours mean of

every day is built for every single month. The considered months are as well average
months, which come from one average year constructed by the values of the years
2000-2007.
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Figure B.6: One day average of wind speed for Munich for each month of the year.
For every hour an average value separated per month of all the eight years is plotted.
The hourly means are centered by an average wind speed value of the particular day
in the prevailing month. The intra-daily oscillation partly reaches more than 2 m

s ,
which is quite big in comparison to the measured wind speeds of about 2-5 m

s .
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Figure B.7: One day average of wind speed for Helgoland for each month of the year.
For every hour an average value separated per month of all the eight years is plotted.
The hourly means are centered by an average wind speed value of the particular day
in the prevailing month. The intra-daily oscillation hardly reaches more than 1 m

s ,
which is a slight change in comparison to the measured wind speeds of about 6-12 m

s .
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Figure B.8: One day average of wind speed for Brocken for each month of the year.
For every hour an average value separated per month of all the eight years is plotted.
The hourly means are centered by an average wind speed value of the particular day
in the prevailing month.
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Figure B.9: One day average of wind speed for Fichtelberg for each month of
the year. For every hour an average value separated per month of all the eight years
is plotted. The hourly means are centered by an average wind speed value of the
particular day in the prevailing month.



83

Figure B.10: One day average of wind speed for Trier for each month of the year.
For every hour an average value separated per month of all the eight years is plotted.
The hourly means are centered by an average wind speed value of the particular day
in the prevailing month.
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