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Abstract. We consider quasi maximum likelihood (QML) estimation for general non-Gaussian discrete-time
linear state space models and equidistantly observed multivariate Lévy-driven continuous-time autoregressive
moving average (MCARMA) processes. In the discrete-time setting, we prove strong consistency and as-
ymptotic normality of the QML estimator under standard moment assumptions and a strong-mixing condition
on the output process of the state space model. In the second part of the paper, we investigate probabilistic
and analytical properties of equidistantly sampled continuous-time state space models and apply our results
from the discrete-time setting to derive the asymptotic properties of the QML estimator of discretely recorded
MCARMA processes. Under natural identifiability conditions, the estimators are again consistent and asymp-
totically normally distributed for any sampling frequency. We also demonstrate the practical applicability of
our method through a simulation study and a data example from econometrics.

1. Introduction

Linear state space models have been used in time series analysis and stochastic modelling for many
decades because of their wide applicability and analytical tractability (see, e. g., Brockwell and Davis,
1991; Hamilton, 1994, for a detailed account). In discrete time they are defined by the equations

Xn = FXn−1 + Zn−1, Yn = HXn + Wn, n ∈ Z, (1.1)

where X = (Xn)n∈Z is a latent state process, F, H are coefficient matrices and, Z = (Zn)n∈Z, W = (Wn)n∈Z
are sequences of random variables, see Definition 2.1 for a precise formulation of this model. In this
paper we investigate the problem of estimating the coefficient matrices F,H as well as the covariances of
Z and W from a sample of observed values of the output process Y = (Yn)n∈Z, using a quasi maximum
likelihood (QML) or generalized least squares approach. Given the importance of this problem in practice,
it is surprising that a proper mathematical analysis of the quasi maximum likelihood estimation for the
model (1.1) has only been performed in cases where the model is in the so-called innovations form

Xn = FXn−1 + Kεn−1, Yn = HXn + εn, n ∈ Z, (1.2)

where the innovations ε form a martingale difference sequence (Hannan and Deistler, 1988, Chapter 4).
This includes state space models in which the noise sequences Z,W are Gaussian, because then the inno-
vations, which are uncorrelated by definition, form an i. i. d. sequence. Restriction to these special cases
excludes, however, the state space representations of aggregated linear processes, as well as of equidistantly
observed continuous-time linear state space models.

In the first part of the present paper we shall prove consistency and asymptotic normality of the quasi
maximum likelihood estimator for the general linear state space model (1.1) under the assumptions that the
noise sequences Z,W are ergodic, and that the output process Y satisfies a strong-mixing condition in the
sense of Rosenblatt (1956). This assumption is not very restrictive, and is, in particular, satisfied if the noise
sequence Z is i. i. d. with an absolutely continuous component, and W is strongly mixing. Our results are a
multivariate generalization of Francq and Zakoïan (1998), who considered the quasi maximum likelihood
estimation for univariate strongly mixing ARMA processes. The very recent paper Boubacar Mainassara
and Francq (2011), which deals with the structural estimation of weak vector ARMA processes, instead
makes a mixing assumption about the innovations sequence ε of the process under consideration, which
is very difficult to verify for state space models; their results can therefore not be used for the estimation
of general discretely-observed linear continuous-time state space models. More importantly, their proof
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appears to be incomplete, because a crucial step in the proof of their Lemma 4 is claimed by the authors to
be analogous to the corresponding step in the proof of Francq and Zakoïan (1998, Lemma 3). It is, however,
not clear how the argument given there can be modified in order to be compatible with the assumption of
strongly mixing innovations, which is weaker than the assumption of a strongly mixing output process as
employed in Francq and Zakoïan (1998).

As alluded to above, one advantage of relaxing the assumption of i. i. d. innovations in a discrete-time
state space model is the inclusion of sampled continuous-time state space models. These were introduced
in the form of continuous-time ARMA (CARMA) models in Doob (1944) as stochastic processes satisfy-
ing the formal analogue of the familiar autoregressive moving average equations of discrete-time ARMA
processes, namely

a(D)Y(t) = b(D)DW(t), D = d/dt, (1.3)

where a and b are suitable polynomials, and W denotes a Brownian motion. In the recent past, a consid-
erable body of research has been devoted to these processes (see, e. g., Brockwell, 2001a, and references
therein). One particularly important extension of the model (1.3) was introduced in Brockwell (2001b),
where the driving Brownian motion was replaced by a Lévy process with finite logarithmic moments.
This allowed for a wide range of possibly heavy-tailed marginal distribution of the process Y as well as
the occurrence of jumps in the sample paths, both characteristic features of many observed time series,
e. g. in finance (Cont, 2001). Recently, Marquardt and Stelzer (2007) further generalized Eq. (1.3) to the
multivariate setting, which gave researchers the possibility to model several dependent time series jointly
by one linear continuous-time process. This extension is important, because many time series, exhibit
strong dependencies and can therefore not be modelled adequately on an individual basis. In that paper,
the multivariate non-Gaussian equivalent of Eq. (1.3), namely P(D)Y(t) = Q(D)DL(t), for matrix-valued
polynomials P and Q and a Lévy process L, was interpreted by spectral techniques as a continuous-time
state space model of the form

dG(t) = AG(t)dt + BdL(t), Y(t) = CG(t); (1.4)

see Eq. (3.4) for an expression of the matricesA, B and C. The structural similarity between Eq. (1.1) and
Eq. (1.4) is apparent, and it is essential for many of our arguments. Taking a different route, multivariate
CARMA processes can be defined as the continuous-time analogue of discrete-time vector ARMA mod-
els, described in detail in Hannan and Deistler (1988); Lütkepohl (2005). As continuous-time processes,
CARMA processes are suited particularly well to model irregularly spaced and high-frequency data, which
makes them a flexible and efficient tool for building stochastic models of time series arising in the natural
sciences, engineering and finance (e. g. Benth and Šaltytė Benth, 2009; Fan et al., 1998; Na and Rhee,
2002; Todorov and Tauchen, 2006).

In the univariate Gaussian setting, several different approaches to the estimation problem of CARMA
processes have been investigated (see, e. g., Larsson et al., 2006; Nielsen et al., 2000, and references
therein). Maximum likelihood estimation based on a continuous record was considered in Brown and
Hewitt (1975); Feigin (1976); Pham (1977). Due to the fact that processes are typically not observed con-
tinuously and the limitations of digital computer processing, inference based on discrete observations has
become more important in recent years; these approaches include variants of the Yule–Walker algorithm
for time-continuous autoregressive processes (Hyndman, 1993), maximum likelihood methods (Brockwell
et al., 2011; Duncan et al., 1999), and randomized sampling (Rivoira et al., 2002) to overcome the aliasing
problem. Alternative methods include discretization of the differential operator (Larsson and Söderström,
2002; Söderström et al., 1997), and spectral estimation (Gillberg and Ljung, 2009; Lahalle et al., 2004;
Lii and Masry, 1995; Masry, 1978). For the special case of Ornstein–Uhlenbeck processes, least squares
and moment estimators have also been investigated without the assumptions of Gaussianity (Hu and Long,
2009; Spiliopoulos, 2009).

In the second part of this paper we consider the estimation of general multivariate CARMA processes
with finite second moments based on equally spaced discrete observations exploiting the results about the
quasi maximum likelihood estimation of general linear discrete-time state space models. Under natural
identifiability assumptions we obtain strongly consistent and asymptotically normal estimators for the co-
efficient matrices of a second-order MCARMA process and the covariance matrix of the driving Lévy
process, which determine the second-order structure of the process. It is a natural restriction of the quasi
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maximum likelihood method that distributional properties of the driving Lévy process which are not de-
termined by its covariance matrix cannot be estimated. However, once the autoregressive and moving
average coefficients of a CARMA process are (approximately) known, and if high-frequency observations
are available, a parametric model for the driving Lévy process can be estimated by the methods described
in Brockwell and Schlemm (2011).
Outline of the paper. The organization of the paper is as follows. In Section 2 we develop a quasi max-
imum likelihood estimation theory for general non-Gaussian discrete-time linear stochastic state space
models with finite second moments. In Section 2.1 we precisely define the class of linear stochastic state
space models as well as the quasi maximum likelihood estimator. The following two sections 2.3 and 2.4
contain the proofs that, under a set of technical conditions, this estimator is strongly consistent and asymp-
totically normally distributed as the number of observations tends to infinity, see Theorems 2.5 and 2.6.

In Section 3 we use the results from Section 2 to establish asymptotic properties of a quasi maximum
likelihood estimator for multivariate CARMA processes which are observed on a fixed equidistant time
grid. As a first step, we review in Section 3.1 their definition as well as their relation to the class of
continuous-time state space models. This is followed by an investigation of the probabilistic properties
of a sampled MCARMA process in Section 3.2 and an analysis of the important issue of identifiability
in Section 3.3. Finally, we are able to state and prove our main result, Theorem 3.17, about the strong
consistency and asymptotic normality of the quasi maximum likelihood estimator for equidistantly sampled
multivariate CARMA processes in Section 3.4.

In the final Section 4, we present canonical parametrizations, and we demonstrate the applicability of
the quasi maximum likelihood estimation for continuous-time state space models with a simulation study
and a data example from economics.
Notation. We use the following notation: The space of m× n matrices with entries in the ring K is denoted
by Mm,n(K) or Mm(K) if m = n. The set of symmetric matrices is denoted by Sm(K), and the symbols
S+

m(R) (S++
m (R)) stand for the subsets of positive semidefinite (positive definite) matrices, respectively. AT

denotes the transpose of the matrix A, im A its image, ker A its kernel, σ(A) its spectrum, and 1m ∈ Mm(K)
is the identity matrix. The vector space Rm is identified with Mm,1(R) so that u = (u1, . . . , um)T ∈ Rm

is a column vector. ‖·‖ represents the Euclidean norm, 〈·, ·〉 the Euclidean inner product, and 0m ∈ R
m

the zero vector. K[X] (K{X}) denotes the ring of polynomial (rational) expressions in X over K, IB(·) the
indicator function of the set B, and δn,m the Kronecker symbol. The symbols E, Var, and Cov stand for the
expectation, variance and covariance operators, respectively. Finally, we write ∂m for the partial derivative
operator with respect to the mth coordinate and ∇ =

(
∂1 · · · ∂r

)
for the gradient operator. When there

is no ambiguity, we use ∂m f (ϑ0) and ∇ϑ f (ϑ0) as shorthands for ∂m f (ϑ)|ϑ=ϑ0 and ∇ϑ f (ϑ)|ϑ=ϑ0 , respectively.
A generic constant, the value of which may change from line to line, is denoted by C.

2. Quasi maximum likelihood estimation for discrete-time state space models

In this section we investigate quasi maximum likelihood (QML) estimation for general linear state space
models in discrete time, and prove consistency and asymptotic normality. On the one hand, due to the
wide applicability of state space systems in stochastic modelling and control, these results are interesting
and useful in their own right. In the present paper they will be applied in Section 3 to prove asymptotic
properties of the QML estimator for discretely observed multivariate continuous-time ARMA processes.

Our theory extends existing results from the literature, in particular concerning the QML estimation
of Gaussian state space models, of state space models whose innovations sequences are martingale dif-
ferences (Hannan, 1969, 1975; Reinsel, 1997), and of weak univariate ARMA processes which satisfy a
strong mixing condition (Francq and Zakoïan, 1998). The techniques used in this section are similar to
Boubacar Mainassara and Francq (2011).

2.1. Preliminaries and definition of the QML estimator. The general linear stochastic state space model
is defined as follows.

Definition 2.1 (State space model). AnRd-valued discrete-time linear stochastic state space model (F,H, Z,W)
of dimension N is characterized by a strictly stationary RN+d-valued sequence

(
ZT WT

)T
with mean
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zero and finite covariance matrix

E

[(
Zn

Wn

) (
ZT

m WT
m

)]
= δm,n

(
Q R
RT S

)
, n,m ∈ Z, (2.1)

for some matrices Q ∈ S+
N(R), S ∈ S+

d (R), and R ∈ MN,d(R); a state transition matrix F ∈ MN(R); and an
observation matrix H ∈ Md,N(R). It consists of a state equation

Xn = FXn−1 + Zn−1, n ∈ Z, (2.2a)

and an observation equation

Yn = HXn + Wn, n ∈ Z. (2.2b)

The RN-valued autoregressive process X = (Xn)n∈Z is called the state vector process, and Y = (Yn)n∈Z is
called the output process.

The assumption that the processes Z and W are centred is not essential for our results, but simplifies
the notation considerably. The following lemma collects important probabilistic properties of the output
process Y of such a state space model. Its proof is standard (Brockwell and Davis, 1991, §12.1).

Lemma 2.1. Assume that (F,H, Z,W) is a state space model according to Definition 2.1, and that the
eigenvalues of F are less than unity in absolute value.

i) There exists a unique stationary process Y solving Eqs. (2.2). This process has the moving average
representation Yn = Wn + H

∑∞
ν=1 Fν−1Zn−ν.

ii) If both Z and W have a finite kth moments for some k > 0, then Y has finite kth moments as well.
iii) If the expected value of Yn is finite, it is given by EYn = EW1 + H

∑∞
ν=1 Fν−1EZ1. In particular, if both

Z and W have mean zero, then Y has mean zero as well.

Before we turn our attention to the estimation problem for this class of state space models, we review
the necessary aspects of the theory of Kalman filtering, see Kalman (1960) for the original control-theoretic
account and Brockwell and Davis (1991, §12.2) for a treatment in the context of time series analysis. The
linear innovations of the output process Y are of particular importance for the quasi maximum likelihood
estimation of state space models.

Definition 2.2 (Linear innovations). Let Y = (Yn)n∈Z be an Rd-valued stationary stochastic process with
finite second moments. The linear innovations ε = (εn)n∈Z of Y are then defined by

εn = Yn − Pn−1Yn, Pn = orthogonal projection onto span {Yν : −∞ < ν 6 n} , (2.3)

where the closure is taken in the Hilbert space of square-integrable random variables with inner product
(X,Y) 7→ E〈X,Y〉.

This definition immediately implies that the innovations ε of a stationary stochastic process Y are sta-
tionary and uncorrelated. The following proposition is a combination of Brockwell and Davis (1991,
Proposition 12.2.3) and Hamilton (1994, Proposition 13.2).

Proposition 2.2. Assume that Y is the output process of the state space model (2.2), that at least one of
the matrices Q and S is positive definite, and that the absolute values of the eigenvalues of F are less than
unity. Then the following hold.

i) The discrete-time algebraic Riccati equation

Ω = FΩFT + Q −
[
FΩHT + R

] [
HΩHT + S

]−1 [
FΩHT + R

]T
(2.4)

has a unique positive semidefinite solution Ω ∈ S+
N(R).

ii) The absolute values of the eigenvalues of the matrix F − KH ∈ MN(R) are less than one, where

K =
[
FΩHT + R

] [
HΩHT + S

]−1
∈ MN,d(R) (2.5)

is the steady-state Kalman gain matrix.
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iii) The linear innovations ε of Y are the unique stationary solution to

X̂n = (F − KH) X̂n−1 + KYn−1, εn = Yn − HX̂n, n ∈ Z. (2.6a)

Using the backshift operator B, which is defined by B Yn = Yn−1, this can be written equivalently as

εn =
{
1d − H [1N − (F − KH) B]−1 K B

}
Yn = Yn − H

∞∑
ν=1

(F − KH)ν−1KYn−ν. (2.6b)

The covariance matrix V = Eεnε
T
n ∈ S

+
d (R) of the innovations ε is given by

V = Eεnε
T
n = HΩHT + S . (2.7)

iv) The process Y has the innovations representation

X̂n = FXn−1 + Kεn−1, Yn = HXn + εn, n ∈ Z, (2.8a)

which, similar to Eqs. (2.6), allows for the moving average representation

Yn =
{
1d − H [1N − F B]−1 K B

}
Yn = εn + H

∞∑
ν=1

Fν−1Kεn−ν, n ∈ Z. (2.8b)

We now consider parametric families of state space models. For some parameter space Θ ⊂ Rr, r ∈ N,
the mappings

F(·) : Θ→ MN(R), H(·) : Θ→ Md,N , (2.9a)
together with a collection of strictly stationary stochastic processes Zϑ, Wϑ, ϑ ∈ Θ, with finite second
moments determine a parametric family (Fϑ,Hϑ, Zϑ,Wϑ)ϑ∈Θ of linear state space models according to
Definition 2.1. For the variance and covariance matrices of the noise sequences Z,W we use the notation
(cf. Eq. (2.1)) Qϑ = EZϑ,nZT

ϑ,n, S ϑ = EWϑ,nWT
ϑ,n, and Rϑ = EZϑ,nWT

ϑ,n, which defines the functions

Q(·) : Θ→ S+
N(R), S (·) : Θ→ S+

d , R(·) : Θ→ MN,d(R). (2.9b)

It is well known (Brockwell and Davis, 1991, Eq. (11.5.4)) that for this model, minus twice the logarithm
of the Gaussian likelihood of ϑ based on a sample yL = (Y1, . . . ,YL) of observations can be written as

L (ϑ, yL) =

L∑
n=1

lϑ,n =

L∑
n=1

[
d log 2π + log det Vϑ + εT

ϑ,nV−1
ϑ εϑ,n

]
, (2.10)

where εϑ,n and Vϑ are given by analogues of Eqs. (2.6a) and (2.7), namely

εϑ,n =
{
1d − Hϑ [1N − (Fϑ − KϑHϑ) B]−1 Kϑ B

}
Yn, n ∈ Z, Vϑ = HϑΩϑHT

ϑ + S ϑ, (2.11)

and Kϑ,Ωϑ are defined in the same way as K, Ω in Eqs. (2.4) and (2.5). In the following we always assume
that yL = (Yϑ0,1, . . . ,Yϑ0,L) is a sample from the output process of the state space model

(
Fϑ0 ,Hϑ0 , Zϑ0 ,Wϑ0

)
corresponding to the parameter value ϑ0. We therefore call ϑ0 the true parameter value. It is important
to note that εϑ0 are the true innovations of Yϑ0 , and that therefore Eεϑ0,nε

T
ϑ0,n

= Vϑ0 , but that this relation
fails to hold for other values of ϑ. This is due to the fact that εϑ is not the true innovations sequence of
the state space model corresponding to the parameter value ϑ. We therefore call the sequence εϑ pseudo-
innovations.

The goal of this section is to investigate how the value ϑ0 can be estimated from yL by maximizing
Eq. (2.10). The first difficulty one is confronted with is that the pseudo-innovations εϑ are defined in
terms of the full history of the process Y = Yϑ0 , which is not observed. It is therefore necessary to
use an approximation to these innovations which can be computed from the finite sample yL. One such
approximation is obtained if, instead of using the steady-state Kalman filter described in Proposition 2.2,
one initializes the filter at n = 1 with some prescribed values. More precisely, we define the approximate
pseudo-innovations ε̂ϑ via the recursion

X̂ϑ,n = (Fϑ − KϑHϑ) X̂ϑ,n−1 + KϑYn−1, ε̂ϑ,n = Yn − Hϑ X̂ϑ,n, n ∈ N, (2.12)

and the prescription X̂ϑ,1 = X̂ϑ,initial. The initial values X̂ϑ,initial are usually either sampled from the sta-
tionary distribution of Xϑ, if that is possible, or set to some deterministic value. Alternatively, one can
additionally define a positive semidefinite matrix Ωϑ,initial and compute Kalman gain matrices Kϑ,n recur-
sively via Brockwell and Davis (1991, Eq. (12.2.6)). While this procedure might be advantageous for small
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sample sizes, the computational burden is significantly smaller when the steady-state Kalman gain is used.
The asymptotic properties which we are dealing with in this paper are expected to be the same for both
choices because the Kalman gain matrices Kϑ,n converge to their steady state values as n tends to infinity
(Hamilton, 1994, Proposition 13.2).

The quasi maximum likelihood estimator ϑ̂
L

for the parameter ϑ based on the sample yL is defined as

ϑ̂
L

= argminϑ∈Θ L̂ (ϑ, yL), (2.13)

where L̂ (ϑ, yL) is obtained from L (ϑ, yL) by substituting ε̂ϑ,n from Eq. (2.12) for εϑ,n, that is

L̂ (ϑ, yL) =

L∑
n=1

l̂ϑ,n =

L∑
n=1

[
d log 2π + log det Vϑ + ε̂T

ϑ,nV−1
ϑ ε̂ϑ,n

]
. (2.14)

2.2. Technical assumptions and main results. Our main results about the quasi maximum likelihood
estimation for discrete-time state space models are Theorem 2.5, stating that the estimator ϑ̂

L
given by

Eq. (2.13) is strongly consistent, which means that ϑ̂
L

converges to ϑ0 almost surely, and Theorem 2.6,
which asserts the asymptotic normality of ϑ̂

L
with the usual L1/2 scaling. In order to prove these results,

we need to impose the following conditions.

Assumption D1. The parameter space Θ is a compact subset of Rr.

Assumption D2. The mappings F(·), H(·), Q(·), S (·), and R(·) in Eqs. (2.9) are continuous.

The next condition guarantees that the models under consideration describe stationary processes.

Assumption D3. For every ϑ ∈ Θ, the following hold:
i) the eigenvalues of Fϑ have absolute values less than unity,

ii) at least one of the two matrices Qϑ and S ϑ is positive definite,
iii) the matrix Vϑ is non-singular.

The next lemma shows that the assertions of Assumption D3 hold in fact uniformly in ϑ.

Lemma 2.3. Suppose that Assumptions D1 to D3 are satisfied. Then the following hold.
i) There exists a positive number ρ < 1 such that, for all ϑ ∈ Θ, it holds that

max {|λ| : λ ∈ σ (Fϑ)} 6 ρ. (2.15a)

ii) There exists a positive number ρ < 1 such that, for all ϑ ∈ Θ, it holds that

max {|λ| : λ ∈ σ (Fϑ − KϑHϑ)} 6 ρ, (2.15b)

where Kϑ is defined by Eqs. (2.4) and (2.5).
iii) There exists a positive number C such that

∥∥∥V−1
ϑ

∥∥∥ 6 C for all ϑ.

Proof. Assertion i) is a direct consequence of Assumption D3, i), the assumed smoothness of ϑ 7→ Fϑ

(Assumption D2), the compactness of Θ (Assumption D1) and the fact (Bernstein, 2005, Fact 10.11.2)
that the eigenvalues of a matrix are continuous functions of its entries. The claim ii) follows with the same
argument from Proposition 2.2, ii) and the fact that the solution of a discrete-time algebraic Riccati equation
is a continuous function of the coefficient matrices (Lancaster and Rodman, 1995, Chapter 14),(Sun, 1998).
Moreover, by Eq. (2.7) and what was already said, the function ϑ 7→ Vϑ is continuous, which shows that
Assumption D3, iii) holds uniformly in ϑ as well, and so iii) is proved. �

For the following assumption about the noise sequences Z and W we use the usual notion of ergodicity
(see, e. g., Durrett, 2010, Chapter 6).

Assumption D4. The process
(

WT
ϑ0

ZT
ϑ0

)T
is ergodic.

The assumption that the processes Zϑ0 and Wϑ0 are ergodic implies via the moving average representa-
tion in Lemma 2.1, i) and Krengel (1985, Theorem 4.3) that the output process Y = Yϑ0 is ergodic. As a
consequence, the pseudo-innovations εϑ defined in Eq. (2.11) are ergodic for every ϑ ∈ Θ.

Our first identifiability assumption precludes redundancies in the parametrization of the state space
models under consideration and is therefore necessary for the true parameter value ϑ0 to be estimated



QML ESTIMATION FOR STRONGLY MIXING STATE SPACE MODELS AND MCARMA PROCESSES 7

consistently. It will be used in Lemma 2.11 to show that the quasi likelihood function given by Eq. (2.14)
asymptotically has a unique global minimum at ϑ0.

Assumption D5. For all ϑ0 , ϑ ∈ Θ, there exists a z ∈ C such that

Hϑ [1N − (Fϑ − KϑHϑ) z]−1 Kϑ , Hϑ0

[
1N −

(
Fϑ0 − Kϑ0 Hϑ0

)
z
]−1 Kϑ0 , (2.16a)

or
Vϑ , Vϑ0 . (2.16b)

Assumption D5 can be rephrased in terms of the spectral densities fYϑ
of the output processes Yϑ of

the state space models (Fϑ,Hϑ, Zϑ,Wϑ). This characterization will be very useful when we apply the
estimation theory developed in this section to state space models that arise from sampling a continuous-
time ARMA process.

Lemma 2.4. If, for all ϑ0 , ϑ ∈ Θ, there exists an ω ∈ [−π, π] such that fYϑ
(ω) , fYϑ0

(ω), then Assump-
tion D5 holds.

Proof. We recall from Hamilton (1994, Eq. (10.4.43)) that the spectral density fYϑ
of the output process Yϑ

of the state space model (Fϑ,Hϑ, Zϑ,Wϑ) is given by the expression fYϑ
(ω) = (2π)−1Hϑ

(
eiω

)
VϑHϑ

(
e−iω

)T
,

ω ∈ [−π, π], where Hϑ(z) B Hϑ [1N − (Fϑ − KϑHϑ) z]−1 Kϑ + z. If Assumption D5 does not hold, we have
that both Hϑ(z) = Hϑ0 (z) for all z ∈ C, and Vϑ = Vϑ0 , and, consequently, that fYϑ

(ω) = fYϑ0
(ω), for all

ω ∈ [−π, π], contradicting the assumption of the lemma. �

Under the assumptions described so far we obtain the following consistency result.

Theorem 2.5 (Consistency of ϑ̂
L
). Assume that (Fϑ,Hϑ, Zϑ,Wϑ)ϑ∈Θ is a parametric family of state space

models according to Definition 2.1, and let yL = (Yϑ0,1, . . . ,Yϑ0,L) be a sample of length L from the out-
put process of the model corresponding to ϑ0. If Assumptions D1 to D5 hold, then the quasi maximum
likelihood estimator ϑ̂

L
= argminϑ∈Θ L̂ (ϑ, yL) is strongly consistent, that is ϑ̂

L
→ ϑ0 almost surely, as

L→ ∞.

We now describe the conditions which we need to impose in addition to Assumptions D1 to D5 for the
asymptotic normality of the quasi maximum likelihood estimator to hold. The first one excludes the case
that the true parameter value ϑ0 lies on the boundary of the domain Θ.

Assumption D6. The true parameter value ϑ0 is an element of the interior of Θ.

Next we need to impose a higher degree of smoothness than stated in Assumption D2 and a stronger
moment condition than Assumption D4.

Assumption D7. The mappings F(·), H(·), Q(·), S (·), and R(·) in Eqs. (2.9) are three times continuously
differentiable.

By the results of the sensitivity analysis of the discrete-time algebraic Riccati equation in Sun (1998),
the same degree of smoothness, namely C3, also carries over to the mapping ϑ 7→ Vϑ.

Assumption D8. The process
(

WT
ϑ0

ZT
ϑ0

)T
has finite (4 + δ)th moments for some δ > 0.

By Lemma 2.1, ii), Assumption D8 implies that the process Y has finite (4 + δ)th moments. In the
definition of the general linear stochastic state space model and in Assumption D4, it was only assumed
that the sequences Z and W are stationary and ergodic. This structure alone does not entail a sufficient
amount of asymptotic independence for results like Theorem 2.6 to be established We assume that the
process Y is strongly mixing in the sense of Rosenblatt (1956), and we impose a summability condition on
the strong mixing coefficients, which is known to be sufficient for a Central Limit Theorem for Y to hold
(Bradley, 2007; Ibragimov, 1962).

Assumption D9. Denote by αY the strong mixing coefficients of the process Y = Yϑ0 . There exists a
constant δ > 0 such that

∑∞
m=0 [αY(m)]

δ
2+δ < ∞.
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In the case of exponential strong mixing, Assumption D9 is always satisfied, and it is no restriction to
assume that the δ appearing in Assumptions D8 and D9 are the same. It has been shown in Mokkadem
(1988); Schlemm and Stelzer (2011) that, because of the autoregressive structure of the state equation
(2.2a), exponential strong mixing of the output process Yϑ0 can be assured by imposing the condition
that the process Zϑ0 is an i. i. d. sequence whose marginal distributions possess a non-trivial absolutely
continuous component in the sense of Lebesgue’s decomposition theorem, see e. g., Halmos (1950, §31,
Theorem C) or Lebesgue (1904).

Finally, we require another identifiability assumption, that will be used to ensure that the Fisher infor-
mation matrix of the quasi maximum likelihood estimator is non-singular. This is necessary because the
asymptotic covariance matrix in the asymptotic normality result for ϑ̂

L
is directly related to the inverse of

that matrix. Assumption D10 is formulated in terms of the first derivative of the parametrization of the
model only, which makes it relatively easy to check in practice; the Fisher information matrix, in contrast,
is related to the second derivative of the logarithmic Gaussian likelihood.

For j ∈ N and ϑ ∈ Θ, the vector ψϑ, j ∈ R( j+2)d2
is defined as

ψϑ, j =


[
1 j+1 ⊗ KT

ϑ
⊗ Hϑ

] [
(vec 1N)T (vec Fϑ)T · · ·

(
vec F j

ϑ

)T
]T

vec Vϑ

 , (2.17)

where ⊗ denotes the Kronecker product of two matrices, and vec is the linear operator that transforms a
matrix into a vector by stacking its columns on top of each other.

Assumption D10. There exists an integer j0 ∈ N such that the [( j0 + 2)d2] × r matrix ∇ϑψϑ0, j0 has rank r.

Our main result about the asymptotic distribution of the quasi maximum likelihood estimator for dis-
crete-time state space models is the following theorem. Equation (2.19) shows in particular that this as-
ymptotic distribution is independent of the choice of the initial values X̂ϑ,initial.

Theorem 2.6 (Asymptotic normality for ϑ̂
L
). Assume that (Fϑ,Hϑ, Zϑ,Wϑ)ϑ∈Θ is a parametric family of

state space models according to Definition 2.1, and let yL = (Yϑ0,1, . . . ,Yϑ0,L) be a sample of length L
from the output process of the model corresponding to ϑ0. If Assumptions D1 to D10 hold, then the maxi-
mum likelihood estimator ϑ̂

L
= argminϑ∈Θ L̂ (ϑ, yL) is asymptotically normally distributed with asymptotic

covariance matrix Ξ = J−1IJ−1, that is
√

L
(
ϑ̂

L
− ϑ0

)
d
−−−−→
L→∞

N (0,Ξ), (2.18)

where
I = lim

L→∞
L−1 Var

(
∇ϑL

(
ϑ0, yL

))
, J = lim

L→∞
L−1∇2

ϑL
(
ϑ0, yL

)
. (2.19)

2.3. Proof of Theorem 2.5 – Strong consistency. In this section we prove the strong consistency of the
quasi maximum likelihood estimator ϑ̂

L
. As a first step we show that the stationary pseudo-innovations

processes defined by the steady-state Kalman filter are uniformly approximated by their counterparts based
on the finite sample yL.

Lemma 2.7. Under Assumptions D1 to D3, the pseudo-innovations sequences εϑ and ε̂ϑ defined by the
Kalman filter equations (2.6a) and (2.12) have the following properties.

i) If the initial values X̂ϑ,initial are such that supϑ∈Θ
∥∥∥X̂ϑ,initial

∥∥∥ is almost surely finite, then, with probability
one, there exist a positive number C and a positive number ρ < 1, such that supϑ∈Θ

∥∥∥εϑ,n − ε̂ϑ,n∥∥∥ 6 Cρn,
n ∈ N. In particular, ε̂ϑ0,n converges to the true innovations εn = εϑ0,n at an exponential rate.

ii) The sequences εϑ are linear functions of Y, that is there exist matrix sequences
(
cϑ,ν

)
ν>1, such that

εϑ,n = Yn +

∞∑
ν=1

cϑ,νYn−ν, n ∈ Z. (2.20)

The matrices cϑ,ν are uniformly exponentially bounded, that is there exist a positive constant C and a
positive constant ρ < 1, such that supϑ∈Θ

∥∥∥cϑ,ν
∥∥∥ 6 Cρν, ν ∈ N.
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Proof. We first prove part i) about the uniform exponential approximation of ε by ε̂. Iterating the Kalman
equations (2.6a) and (2.12), we find that, for n ∈ N,

εϑ,n =Yn − Hϑ (Fϑ − KϑHϑ)n−1 X̂ϑ,1 −

n−1∑
ν=1

Hϑ (Fϑ − KϑHϑ)ν−1 KϑYn−ν,

and

ε̂ϑ,n =Yn − Hϑ (Fϑ − KϑHϑ)n−1 X̂ϑ,initial −

n−1∑
ν=1

Hϑ (Fϑ − KϑHϑ)ν−1 KϑYn−ν.

Thus, using the fact that, by Lemma 2.3, the spectral radii of Fϑ − KϑHϑ are bounded by ρ < 1, it follows
that

sup
ϑ∈Θ

∥∥∥εϑ,n − ε̂ϑ,n∥∥∥ = sup
ϑ∈Θ

∥∥∥Hϑ (Fϑ − KϑHϑ)n−1 (Xϑ,0 − Xϑ,initial)
∥∥∥

6 ‖H‖L∞(Θ) ρ
n−1 sup

ϑ∈Θ

∥∥∥Xϑ,0 − Xϑ,initial

∥∥∥ ,
where ‖H‖L∞(Θ) B supϑ∈Θ ‖Hϑ‖ denotes the supremum norm of H(·), which is finite by the Extreme Value
Theorem. Since the last factor is almost surely finite by assumption, the claim follows. For part ii), we
observe that Eq. (2.6a) and Lemma 2.3, ii) imply that εϑ has the infinite-order moving average represen-
tation εϑ,n = Yn − Hϑ

∑∞
ν=1 (Fϑ − KϑHϑ)ν−1 KϑYn−ν, with uniformly exponentially bounded coefficients

cϑ,ν B −Hϑ (Fϑ − KϑHϑ)ν−1 Kϑ. Explicitly, ‖cϑ.ν‖ 6 ‖H‖L∞(Θ) ‖K‖L∞(Θ) ρ
n−1. This completes the proof. �

Lemma 2.8. Let L and L̂ be given by Eqs. (2.10) and (2.14). If Assumptions D1 to D3 are satisfied, then
the sequence L−1 supϑ∈Θ

∣∣∣∣L̂ (ϑ, yL) −L (ϑ, yL)
∣∣∣∣ converges to zero almost surely, as L→ ∞.

Proof. We first observe that∣∣∣∣L̂ (ϑ, yL) −L (ϑ, yL)
∣∣∣∣ =

L∑
n=1

[
ε̂T
ϑ,nV−1

ϑ ε̂ϑ,n − ε
T
ϑ,nV−1

ϑ εϑ,n
]

=

L∑
n=1

[(
ε̂ϑ,n − εϑ,n

)T V−1
ϑ ε̂ϑ,n + εT

ϑ,nV−1
ϑ

(
ε̂ϑ,n − εϑ,n

)]
.

The fact that, by Lemma 2.3, iii), there exists a constant C such that
∥∥∥V−1

ϑ

∥∥∥ 6 C, for all ϑ ∈ Θ, implies that

1
L

sup
ϑ∈Θ

∣∣∣∣L̂ (ϑ, yL) −L (ϑ, yL)
∣∣∣∣ 6C

L

L∑
n=1

ρn
[
sup
ϑ∈Θ

∥∥∥ε̂ϑ,n∥∥∥ + sup
ϑ∈Θ

∥∥∥εϑ,n∥∥∥]. (2.21)

Lemma 2.7, ii) and the assumption that Y has finite second moments imply the finiteness of the expectation
E supϑ∈Θ

∥∥∥εϑ,n∥∥∥. Applying Markov’s inequality, one sees that, for every positive ε,
∞∑

n=1

P

(
ρn sup

ϑ∈Θ

∥∥∥εϑ,n∥∥∥ > ε) 6 E sup
ϑ∈Θ

∥∥∥εϑ,1∥∥∥ ∞∑
n=1

ρn

ε
< ∞,

because ρ < 1. The Borel–Cantelli Lemma shows that ρn supϑ∈Θ
∥∥∥εϑ,n∥∥∥ converges to zero almost surely,

as n → ∞. In an analogous way one can show that ρn supϑ∈Θ
∥∥∥ε̂ϑ,n∥∥∥ converges to zero almost surely, and,

consequently, so does the Cesàro mean in Eq. (2.21). The claim thus follows. �

Lemma 2.9. Assume that Assumptions D3 and D4 as well as the first part of Assumption D5, Eq. (2.16a),
hold. If εϑ,1 = εϑ0,1 almost surely, then ϑ = ϑ0.

Proof. Assume, for the sake of contradiction, that ϑ , ϑ0. By Assumption D5, there exist matrices
C j ∈ Md(R), j ∈ N0, such that, for |z| 6 1,

Hϑ [1N − (Fϑ − KϑHϑ)z]−1 Kϑ − Hϑ0

[
1N − (Fϑ0 − Kϑ0 Hϑ0 z

]−1 Kϑ0 =

∞∑
j= j0

C jz j, (2.22)
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where C j0 , 0, for some j0 > 0. Using Eq. (2.6b) and the assumed equality of εϑ,1 and εϑ0,1, this equation
implies that 0d =

∑∞
j= j0 C jY j0− j almost surely; in particular, the random variable C j0 Y0 is almost surely

equal to a linear combination of the components of Yn, n < 0. It thus follows from the interpretation of the
innovations sequence εϑ0 as linear prediction errors for the process Y that C j0εϑ0,0 is equal to zero, which
implies that EC j0εϑ0,0ε

T
ϑ0,0

CT
j0

= C j0 Vϑ0C
T
j0

= 0d. Since Vϑ0 is assumed to be non-singular, this implies that
the matrix C j0 is the null matrix, a contradiction to Eq. (2.22). �

Lemma 2.10. If Assumptions D1 to D4 hold, then, with probability one, the sequence of random functions
ϑ 7→ L−1L̂ (ϑ, yL) converges, as L tends to infinity, uniformly in ϑ to the limiting function Q : Θ → R
defined by

Q(ϑ) = d log(2π) + log det Vϑ + EεT
ϑ,1V−1

ϑ εϑ,1. (2.23)

Proof. In view of the approximation results in Lemma 2.8, it is enough to show that the sequence of
random functions ϑ 7→ L−1L (ϑ, yL) converges uniformly to Q. The proof of this assertion is based on the
observation following Assumption D4 that for each ϑ ∈ Θ the sequence εϑ is ergodic and its consequence
that, by Birkhoff’s Ergodic Theorem (Durrett, 2010, Theorem 6.2.1), the sequence L−1L (ϑ, yL) converges
to Q(ϑ) point-wise. The stronger statement of uniform convergence follows from Assumption D1 that Θ is
compact by an argument that is inspired by the proof of Ferguson (1996, Theorem 16): for δ > 0, we write
Bδ(ϑ) =

{
ϑ′ ∈ Θ :

∥∥∥ϑ′ − ϑ∥∥∥ < δ} for the open ball of radius δ around ϑ. The sequences σδ
ϑ

=
(
σδ
ϑ,n

)
n∈Z

and

σδϑ =
(
σδϑ,n

)
n∈Z

, which are defined by

σδϑ,n = inf
ϑ′∈Bδ(ϑ)

[
εT
ϑ′,nV−1

ϑ′
εϑ′,n − Eε

T
ϑ′,1V−1

ϑ′
εϑ′,1

]
and σδϑ,n = sup

ϑ′∈Bδ(ϑ)

[
εT
ϑ′,nV−1

ϑ′
εϑ′,n − Eε

T
ϑ′,1V−1

ϑ′
εϑ′,1

]
,

are strictly stationary, ergodic and monotone in δ. By Lemma 2.7, ii) there exists an integrable random
variable Z such that σδ

ϑ,1 < Z for all δ and all ϑ ∈ Θ. Since, moreover, εT
ϑ,1V−1

ϑ
εϑ,1 is almost surely a

continuous function of ϑ, and σδ
ϑ,n thus converges to εT

ϑ,nV−1
ϑ
εϑ,n − Eε

T
ϑ,1V−1

ϑ
εϑ,1 almost surely, as δ → 0,

it follows from the Ergodic Theorem and Lebesgue’s Dominated Convergence Theorem (Klenke, 2008,
Corollary 6.26) that

1
L

L∑
n=1

σδϑ,n
a. s.
−−−−→
L→∞

Eσδϑ,1 −−−→δ→0
E

[
εT
ϑ,nV−1

ϑ εϑ,n − Eε
T
ϑ,1V−1

ϑ εϑ,1
]

= 0, (2.24)

and similarly for σδϑ. Since, for any ϑ′ ∈ Bδ(ϑ), it holds that

1
L

L∑
n=1

σδϑ,n 6
1
L

L∑
n=1

εT
ϑ′,nV−1

ϑ′
εϑ′,n − Eε

T
ϑ′,1V−1

ϑ′
εϑ′,1 6

1
L

L∑
n=1

σδϑ,n,

it follows that

sup
ϑ′∈Bδ(ϑ)

∣∣∣∣∣∣∣ 1L
L∑

n=1

εT
ϑ′,nV−1

ϑ′
εϑ′,n − Eε

T
ϑ′,1V−1

ϑ′
εϑ′,1

∣∣∣∣∣∣∣ 6
∣∣∣∣∣∣∣ 1L

L∑
n=1

σδϑ,n

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣ 1L
L∑

n=1

σδϑ,n

∣∣∣∣∣∣∣ .
Letting L tend to infinity on both sides of this inequality, we see that, almost surely,

lim sup
L→∞

sup
ϑ′∈Bδ(ϑ)

∣∣∣∣∣∣∣ 1L
L∑

n=1

εT
ϑ′,nV−1

ϑ′
εϑ′,n − Eε

T
ϑ′,1V−1

ϑ′
εϑ′,1

∣∣∣∣∣∣∣ 6 ∣∣∣Eσδϑ,1∣∣∣ +
∣∣∣Eσδϑ,1∣∣∣ .

By Eq. (2.24) one finds, for every ε > 0 and every ϑ ∈ Θ, a δ(ε,ϑ) > 0 such that
∣∣∣∣Eσδϑ,1∣∣∣∣ +

∣∣∣Eσδϑ,1∣∣∣ < ε, for
all δ < δ(ε,ϑ). The collection of balls

{
Bδ(ε,ϑ)(ϑ)

}
ϑ∈Θ covers Θ, and since the domain Θ is assumed to be

compact, one can extract a finite subcover
{
Bδ(ε,ϑi)(ϑi)

}
i=1,...,k. Defining δ(ε) to be the minimum of the radii
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δ(ε,ϑi), i = 1, . . . , k, it follows that, with probability one,

lim sup
L→∞

sup
ϑ∈Θ

∣∣∣∣∣∣∣ 1L
L∑

n=1

εT
ϑ,nV−1

ϑ εϑ,n − Eε
T
ϑ,1V−1

ϑ′
εϑ,1

∣∣∣∣∣∣∣
= lim sup

L→∞
max

i=1,...,k
sup

ϑ∈Bδ(ε,ϑi )

∣∣∣∣∣∣∣ 1L
L∑

n=1

εT
ϑ,nV−1

ϑ εϑ,n − Eε
T
ϑ,1V−1

ϑ εϑ,1

∣∣∣∣∣∣∣
6 max

i=1,...,k

{∣∣∣∣Eσδ(ε,ϑi)
ϑi,1

∣∣∣∣ +
∣∣∣∣Eσδ(ε,ϑi)

ϑi,1

∣∣∣∣} 6 ε,
for all δ 6 δ(ε). Intersecting over a sequence εn which converges to zero proves the result. �

Lemma 2.11. Under Assumptions D1 to D3 and D5, the function Q : Θ → R, as defined in Eq. (2.23),
has a unique global minimum at ϑ0.

Proof. We first observe that the difference εϑ,1 − εϑ0,1 is an element of the Hilbert space spanned by the
random variables {Yn, n 6 0}, and that εϑ0,1 is, by definition, orthogonal to this space. This implies that the
expectation E

(
εϑ,1 − εϑ0,1

)T V−1
ϑ
εϑ0,1 is equal to zero and, consequently, that Q(ϑ) can be written as

Q(ϑ) = d log(2π) + EεT
ϑ0,1

V−1
ϑ εϑ0,1 + E

(
εϑ,1 − εϑ0,1

)T V−1
ϑ

(
εϑ,1 − εϑ0,1

)
+ log det Vϑ.

In particular, since EεT
ϑ0,1

V−1
ϑ0
εϑ0,1 = tr

[
V−1
ϑ0
Eεϑ0,1ε

T
ϑ0,1

]
= d, it follows that Q(ϑ0) = log det Vϑ0 + d(1 +

log(2π)). The elementary inequality x − log x > 1, for x > 0, implies that tr M − log det M > d for all
symmetric positive definite d × d matrices M ∈ S++

d (R) with equality if and only if M = 1d. Using this
inequality for M = V−1

ϑ0
Vϑ, we thus obtain that, for all ϑ ∈ Θ,

Q(ϑ) −Q(ϑ0) =d + tr
[
V−1
ϑ Eεϑ0,1ε

T
ϑ0,1

]
− log det

(
V−1
ϑ0

Vϑ
)

+ E
(
εϑ,1 − εϑ0,1

)T V−1
ϑ

(
εϑ,1 − εϑ0,1

)
− EεT

ϑ0,1
V−1
ϑ0
εϑ0,1

>E
(
εϑ,1 − εϑ0,1

)T V−1
ϑ

(
εϑ,1 − εϑ0,1

)
> 0.

It remains to argue that this chain of inequalities is in fact a strict inequality if ϑ , ϑ0. If Vϑ , Vϑ0 , the first
inequality is strict, and we are done. If Vϑ = Vϑ0 , the first part of Assumption D5, Eq. (2.16a), is satisfied.
The second inequality is an equality if and only if εϑ,1 = εϑ0,1 almost surely, which, by Lemma 2.9, implies
that ϑ = ϑ0. Thus, the function Q has a unique global minimum at ϑ0. �

of Theorem 2.5. We shall first show that the sequence L−1L̂ (ϑ̂
L
, yL), L ∈ N, converges almost surely

to Q(ϑ0) as the sample size L tends to infinity. Assume that, for some positive number ε, it holds that
supϑ∈Θ

∣∣∣∣L−1L̂ (ϑ, yL) −Q(ϑ)
∣∣∣∣ 6 ε. It then follows that

L−1L̂ (ϑ̂
L
, yL) 6 L−1L̂ (ϑ0, yL) 6 Q(ϑ0) + ε and L−1L̂ (ϑ̂

L
, yL) > Q(ϑ̂

L
) − ε > Q(ϑ0) − ε,

where it was used that ϑ̂
L

is defined to minimize L̂ (·, yL) and that, by Lemma 2.11, ϑ0 minimizes Q(·).
In particular, it follows that

∣∣∣∣L−1L̂ (ϑ̂
L
, yL) −Q(ϑ0)

∣∣∣∣ 6 ε. This observation and Lemma 2.10 immediately
imply that

P

(
1
L

L̂ (ϑ̂
L
, yL) −−−−→

L→∞
Q(ϑ0)

)
> P

(
sup
ϑ∈Θ

∣∣∣∣∣ 1LL̂ (ϑ, yL) −Q(ϑ)
∣∣∣∣∣ −−−−→L→∞

0
)

= 1. (2.25)

To complete the proof of the theorem, it suffices to show that, for every neighbourhood U of ϑ0, with
probability one, ϑ̂

L
will eventually lie in U. For every such neighbourhood U of ϑ0, we define the real

number δ(U) B infϑ∈Θ\U Q(ϑ) − Q(ϑ0), which is strictly positive by Lemma 2.11. Then the following
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sequence of inequalities holds:

P
(
ϑ̂

L
−−−−→
L→∞

ϑ0

)
=P

(
∀U ∃L0 : ϑ̂

L
∈ U ∀L > L0

)
>P

(
∀U ∃L0 : Q(ϑ̂

L
) −Q(ϑ0) < δ(U) ∀L > L0

)
>P

(
∀U ∃L0 :

∣∣∣∣∣ 1LL̂ (ϑ̂
L
, yL) −Q(ϑ0)

∣∣∣∣∣ < δ(U)
2

and
∣∣∣∣∣ 1LL̂ (ϑ̂

L
, yL) −Q(ϑ̂

L
)
∣∣∣∣∣ < δ(U)

2
∀L > L0

)
>P

(
∀U ∃L0 :

∣∣∣∣∣ 1LL̂ (ϑ̂
L
, yL) −Q(ϑ0)

∣∣∣∣∣ < δ(U)
2

∀L > L0

)
+ P

(
∀U ∃L0 : sup

ϑ∈Θ

∣∣∣∣∣ 1LL̂ (ϑ, yL) −Q(ϑ)
∣∣∣∣∣ < δ(U)

2
∀L > L0

)
− 1.

The first probability in the last line is equal to one by Eq. (2.25), the second because, by Lemma 2.10, the
random functions ϑ 7→ L−1L̂ (ϑ, yL) converge almost surely uniformly to the function ϑ 7→ Q(ϑ). It thus

follows that P
(
ϑ̂

L
−−−−→
L→∞

ϑ0

)
= 1, which proves the theorem. �

2.4. Proof of Theorem 2.6 – Asymptotic normality. In this section we prove the assertion of Theo-

rem 2.6, namely that the distribution of L1/2
(
ϑ̂

L
− ϑ0

)
converges to a normal random variable with mean

zero and covariance matrix Ξ = J−1IJ−1, an expression for which is given in Eq. (2.19). First, we collect
basic properties of ∂mεϑ,n and ∂mε̂ϑ,n, where ∂m = ∂/∂ϑm denotes the partial derivative with respect to the
mth component of ϑ; the following lemma mirrors Lemma 2.7.

Lemma 2.12. Assume that Assumptions D1 to D3 and D7 hold. The pseudo-innovations sequences εϑ and
ε̂ϑ defined by the Kalman filter equations (2.6a) and (2.12) have the following properties.

i) If, for k ∈ {1, . . . , r}, the initial values X̂ϑ,initial are defined such that both supϑ∈Θ
∥∥∥X̂ϑ,initial

∥∥∥ and
supϑ∈Θ

∥∥∥∂k X̂ϑ,initial

∥∥∥ are almost surely finite, then, with probability one, there exist a positive number C
and a positive number ρ < 1, such that supϑ∈Θ

∥∥∥∂kεϑ,n − ∂kε̂ϑ,n
∥∥∥ 6 Cρn, n ∈ N.

ii) For each k ∈ {1, . . . , r}, the random sequences ∂kεϑ are linear functions of Y, that is there exist matrix
sequences

(
c(k)
ϑ,ν

)
ν>1

, such that

∂kεϑ,n =

∞∑
ν=1

c(k)
ϑ,ν

Yn−ν, n ∈ Z. (2.26)

The matrices c(k)
ϑ,ν

are uniformly exponentially bounded, that is there exist a positive constant C and a

positive constant ρ < 1, such that supϑ∈Θ
∥∥∥∥c(k)
ϑ,ν

∥∥∥∥ 6 Cρν,ν ∈ N.

iii) If, for k, l ∈ {1, . . . , r}, the initial values X̂ϑ,initial are defined such that supϑ∈Θ
∥∥∥X̂ϑ,initial

∥∥∥, as well as
supϑ∈Θ

∥∥∥∂iX̂ϑ,initial

∥∥∥, i ∈ {k, l}, and supϑ∈Θ
∥∥∥∂2

k,l X̂ϑ,initial

∥∥∥ are almost surely finite, then, with probability
one, there exist a positive number C and a positive number ρ < 1, such that supϑ∈Θ

∥∥∥∂2
k,lεϑ,n − ∂

2
k,lε̂ϑ,n

∥∥∥ 6
Cρn, n ∈ N.

iv) For each k, l ∈ {1, . . . , r}, the random sequences ∂2
k,lεϑ are linear functions of Y, that is there exist

matrix sequences
(
c(k,l)
ϑ,ν

)
ν>1

,such that

∂2
k,lεϑ,n =

∞∑
ν=1

c(k,l)
ϑ,ν

Yn−ν, n ∈ Z. (2.27)

The matrices c(k,l)
ϑ,ν

are uniformly exponentially bounded, that is there exist a positive constant C and a

positive constant ρ < 1, such that supϑ∈Θ
∥∥∥∥c(k,l)
ϑ,ν

∥∥∥∥ 6 Cρν, ν ∈ N.
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Proof. Analogous to the proof of Lemma 2.7, repeatedly interchanging differentiation and summation and
using the fact that, as a consequence of Assumptions D1 to D3 and D7, both ∂k

[
Hϑ (Fϑ − KϑHϑ)ν−1 Kϑ

]
and ∂2

k,l

[
Hϑ (Fϑ − KϑHϑ)ν−1 Kϑ

]
are uniformly exponentially bounded in ν. �

Lemma 2.13. For each ϑ ∈ Θ and every m = 1, . . . , r, the random variable ∂mL (ϑ, yL) has finite variance.

Proof. By Assumption D8 and the exponential decay of the coefficient matrices cϑ,ν and c(m)
ϑ,ν

proved in
Lemma 2.7, ii) and Lemma 2.12, ii), it follows that

E
∥∥∥εϑ,n∥∥∥4

6

C ∞∑
ν=0

ρν
4

E ‖Y1‖
4 < ∞ and E

∥∥∥∂mεϑ,n
∥∥∥4
6

C ∞∑
ν=0

ρν
4

E ‖Y1‖
4 < ∞.

Consequently, the Cauchy–Schwarz inequality implies that, for some constant C,

E
∣∣∣∣∂m

(
εT
ϑ,nV−1

ϑ εϑ,n
)∣∣∣∣2 =E

∣∣∣∣− tr
[
V−1
ϑ εϑ,nε

T
ϑ,n (∂mVϑ)

]
+ 2

(
∂mε

T
ϑ,n

)
V−1
ϑ εϑ,n

∣∣∣∣2
6C

{
E

∥∥∥εϑ,n∥∥∥4
+

(
E

∥∥∥εϑ,n∣∣∣4 E ∥∥∥∂mεϑ,n
∥∥∥4

)1/2
}
< ∞,

which proves that ∂mL (ϑ, yL) has finite second moments. �

We need the following multivariate covariance inequality which is a consequence of Davydov’s inequal-
ity and the multidimensional generalization of an inequality used in the proof of Francq and Zakoïan (1998,
Lemma 3). For a positive real number α, we denote by bαc the greatest integer smaller than or equal to α.

Lemma 2.14. Let X be a strictly stationary, strongly mixing d-dimensional stochastic process with finite
(4 + δ)th moments for some δ > 0. Then there exists a constant C, such that for all d × d matrices A, B,
every n ∈ Z, ∆ ∈ N, and time indices ν, ν′ ∈ N0, µ, µ′ = 0, 1 . . . , b∆/2c, it holds that

Cov
(
XT

n−νAXn−ν′ ; XT
n+∆−µBXn+∆−µ′

)
6 C ‖A‖ ‖B‖

[
αX

(⌊
∆

2

⌋)]δ/(δ+2)

, (2.28)

where αX denotes the strong mixing coefficients of the process X.

Proof. We first note that the bilinearity of Cov(·; ·) and the elementary inequality Mi j 6 ‖M‖, M ∈ Md(R),
imply that

Cov
(
XT

n−νAXn−ν′ ; XT
n+∆−µBXn+∆−µ′

)
=

d∑
i, j,s,t=1

Ai jBst Cov
(
Xi

n−νX
j
n−ν′ ; Xs

n+∆−µXt
n+∆−µ′

)
6d4 ‖A‖ ‖B‖ max

i, j,s,t=1,...,d
Cov

(
Xi

n−νX
j
n−ν′ ; Xs

n+∆−µXt
n+∆−µ′

)
.

Since the projection which maps a vector to one of its components is measurable, it follows that the random
variable Xi

n−νX
j
n−ν′ is measurable with respect to F n−min{ν,ν′}

−∞ , theσ-algebra generated by {Xk : −∞ < k 6 n −min{ν, ν′}}.
Similarly, the random variable Xs

n+∆−µ
Xt

n+∆−µ′
is measurable with respect to F∞

n+∆−max{µ,µ′}. Davydov’s in-
equality (Davydov, 1968, Lemma 2.1) implies that there exists a universal constant K such that

Cov
(
Xi

n−νX
j
n−ν′ ; Xs

n+∆−µXt
n+∆−µ′

)
6K

(
E

∣∣∣∣Xi
n−νX

j
n−ν′

∣∣∣∣2+δ
)1/(2+δ) (

E
∣∣∣∣Xs

n+∆−µXt
n+∆−µ′

∣∣∣∣2+δ
)1/(2+δ)

×
[
αX

(
∆ −max

{
µ, µ′

}
+ min

{
ν, ν′

})]δ/(2+δ)

6C
[
αX

(⌊
∆

2

⌋)]δ/(2+δ)

,

where it was used that ∆ − max {µ, µ′} + min {ν, ν′} > b∆/2c, and that strong mixing coefficients are non-
increasing. By the Cauchy–Schwarz inequality the constant C satisfies

C = K
(
E

∣∣∣∣Xi
n−νX

j
n−ν′

∣∣∣∣2+δ
)1/(2+δ) (

E
∣∣∣∣Xs

n+∆−µXt
n+∆−µ′

∣∣∣∣2+δ
)1/(2+δ)

6 K
(
E ‖X1‖

4+2δ
) 2

2+δ ,

and thus does not depend on n, ν, ν′, µ, µ′,∆, nor on i, j, s, t. �
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The next lemma is a multivariate generalization of Francq and Zakoïan (1998, Lemma 3). In the proof
of Boubacar Mainassara and Francq (2011, Lemma 4) this generalization is used without providing details
and, more importantly without imposing Assumption D9 about the strong mixing of Y. In view of the de-
rivative terms ∂mεϑ,n in Eq. (2.30) it is not clear how the result of the lemma can be proved under the mere
assumption of strong mixing of the innovations sequence εϑ0 . We therefore think that a detailed account,
properly generalizing the arguments in the original paper (Francq and Zakoïan, 1998) to the multidimen-
sional setting, is justified.

Lemma 2.15. Suppose that Assumptions D1 to D3, D8 and D9 hold. Then, for every ϑ ∈ Θ, the sequence
L−1 Var∇ϑL (ϑ, yL) of deterministic matrices converges to a limit I(ϑ) as L→ ∞.

Proof. It is enough to show that, for each ϑ ∈ Θ, and all k, l = 1, . . . , r, the sequence of real-valued random
variables I(k,l)

ϑ,L , defined by

I(k,l)
ϑ,L =

1
L

L∑
n=1

L∑
t=1

Cov
(
`(k)
ϑ,n, `

(l)
ϑ,t

)
, (2.29)

converges to a limit as L tends to infinity, where `(m)
ϑ,n = ∂mlϑ,n is the partial derivative of the nth term in

expression (2.10) for L (ϑ, yL). It follows from well-known differentiation rules for matrix functions (see,
e. g. Horn and Johnson, 1994, Sections 6.5 and 6.6) that

`(m)
ϑ,n = tr

[
V−1
ϑ

(
1d − εϑ,nε

T
ϑ,nV−1

ϑ

)
(∂mVϑ)

]
+ 2

(
∂mε

T
ϑ,n

)
V−1
ϑ εϑ,n. (2.30)

By the assumed stationarity of the processes εϑ, the covariances in the sum (2.29) depend only on the
difference n − t. For the proof of the lemma it suffices to show that the sequence c(k,l)

ϑ,∆
= Cov

(
`(k)
ϑ,n, `

(l)
n+∆,ϑ

)
,

∆ ∈ Z, is absolutely summable for all k, l = 1, . . . , r, because then the Dominated Convergence Theorem
implies that

I(k,l)
ϑ,L =

1
L

L∑
∆=−L

(L − |∆|) c(k,l)
ϑ,∆
−−−−→
L→∞

∑
∆∈Z

c
(k,l)
ϑ,∆

< ∞. (2.31)

In view of the of the symmetry c(k,l)
ϑ,∆

= c
(k,l)
ϑ,−∆

, it is no restriction to assume that ∆ ∈ N. In order to show that∑
∆

∣∣∣∣c(k,l)ϑ,∆

∣∣∣∣ is finite, we first use the bilinearity of Cov(·; ·) to estimate∣∣∣∣c(k,l)ϑ,∆

∣∣∣∣ 64
∣∣∣∣Cov

((
∂kε

T
ϑ,n

)
V−1
ϑ εϑ,n;

(
∂lε

T
ϑ,n+∆

)
V−1
ϑ εϑ,n+∆

)∣∣∣∣
+

∣∣∣∣Cov
(
tr

[
V−1
ϑ εϑ,nε

T
ϑ,nV−1

ϑ ∂kVϑ
]

; tr
[
V−1
ϑ εϑ,n+∆ε

T
ϑ,n+∆

V−1
ϑ ∂lVϑ

])∣∣∣∣ +
+ 2

∣∣∣∣Cov
(
tr

[
V−1
ϑ εϑ,nε

T
ϑ,nV−1

ϑ ∂kVϑ
]

;
(
∂lε

T
ϑ,n+∆

)
V−1
ϑ εϑ,n+∆

)∣∣∣∣ +
+ 2

∣∣∣∣Cov
((
∂kε

T
ϑ,n

)
V−1
ϑ εϑ,n; tr

[
V−1
ϑ εϑ,n+∆ε

T
ϑ,n+∆

V−1
ϑ ∂lVϑ

])∣∣∣∣ .
Each of these four terms can be analysed separately. We give details only for the first one, the arguments
for the other three terms being similar. Using the moving average representations (2.20) and (2.26) for εϑ,
∂kεϑ and ∂lεϑ, it follows that∣∣∣∣Cov

((
∂kε

T
ϑ,n

)
V−1
ϑ εϑ,n;

(
∂lε

T
ϑ,n+∆

)
V−1
ϑ εϑ,n+∆

)∣∣∣∣
=

∞∑
ν,ν′,µ,µ′=0

∣∣∣∣Cov
(
YT

n−νc
(k),T
ϑ,ν

V−1
ϑ cϑ,ν′Yn−ν′ ,YT

n+∆−µc(l),T
ϑ,µ

V−1
ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣∣ .
This sum can be split into one part I+ in which at least one of the summation indices ν, ν′, µ and µ′ exceeds
∆/2, and one part I− in which all summation indices are less than or equal to ∆/2. Using the fact that, by
the Cauchy–Schwarz inequality,∣∣∣∣Cov

(
YT

n−νc
(k),T
ϑ,ν

V−1
ϑ cϑ,ν′Yn−ν′ ; YT

n+∆−µc(l),T
ϑ,µ

V−1
ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣∣
6

∥∥∥V−1
ϑ

∥∥∥2
∥∥∥∥c(k)
ϑ,ν

∥∥∥∥ ∥∥∥cϑ,ν′
∥∥∥ ∥∥∥∥c(l)

ϑ,µ′

∥∥∥∥ ∥∥∥cϑ,µ′
∥∥∥E ‖Yn‖

4 ,
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it follows from Assumption D8 and the uniform exponential decay of
∥∥∥cϑ,ν

∥∥∥ and
∥∥∥∥c(m)
ϑ,ν

∥∥∥∥ proved in Lemma 2.7,
ii) and Lemma 2.12, ii) that there exist constants C and ρ < 1 such that

I+ =

∞∑
ν,ν′,µ,µ′=0

max{ν,ν′,µ,µ′}>∆/2

∣∣∣∣Cov
(
YT

n−νc
(k),T
ϑ,ν

V−1
ϑ cϑ,ν′Yn−ν′ ,YT

n+∆−µc(l),T
ϑ,µ

V−1
ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣∣ 6 Cρ∆/2. (2.32)

For the contribution from all indices smaller than or equal to ∆/2, Lemma 2.14 implies that

I− =

b∆/2c∑
ν,ν′,µ,µ′=0

∣∣∣∣Cov
(
YT

n−νc
(k),T
ϑ,ν

V−1
ϑ cϑ,ν′Yn−ν′ ,YT

n+∆−µc(l),T
ϑ,µ

V−1
ϑ cϑ,µ′Yn+∆−µ′

)∣∣∣∣ 6 C
[
αY

(⌊
∆

2

⌋)]δ/(2+δ)

. (2.33)

It thus follows from Assumption D9 that the sequences
∣∣∣∣c(k,l)ϑ,∆

∣∣∣∣, ∆ ∈ N, are summable, and Eq. (2.31)
completes the proof of the lemma. �

Lemma 2.16. Let L and L̂ be given by Eqs. (2.10) and (2.14). Assume that Assumptions D1 to D3
and D7 are satisfied. Then the following hold.

i) For each m = 1, . . . , r, the sequence L−1/2 supϑ∈Θ
∣∣∣∣∂mL̂ (ϑ, yL) − ∂mL (ϑ, yL)

∣∣∣∣ converges to zero in
probability, as L→ ∞.

ii) For all k, l = 1, . . . , r, the sequence L−1 supϑ∈Θ
∣∣∣∣∂2

k,lL̂ (ϑ, yL) − ∂2
k,lL (ϑ, yL)

∣∣∣∣ converges to zero almost
surely, as L→ ∞.

Proof. Similar to the proof of Lemma 2.8. �

Lemma 2.17. Under Assumptions D1, D3 and D7 to D9, the random variable L−1/2∇ϑL̂ (ϑ0, yL) is asymp-
totically normally distributed with mean zero and covariance matrix I(ϑ0).

Proof. Because of Lemma 2.16, i) it is enough to show that L−1/2∇ϑL
(
ϑ0, yL

)
is asymptotically normally

distributed with mean zero and covariance matrix I(ϑ0). We begin the proof by recalling the equation

∂iL (ϑ, yL) =

L∑
n=1

{
tr

[
V−1
ϑ

(
1d − εϑ,nε

T
ϑ,nV−1

ϑ

)
∂iVϑ

]
+ 2

(
∂iε

T
ϑ,n

)
V−1
ϑ εϑ,n

}
, (2.34)

which holds for every component i = 1, . . . , r. The facts that Eεϑ0,nε
T
ϑ0,n

equals Vϑ0 , and that εϑ0,n

is orthogonal to the Hilbert space generated by {Yt, t < n}, of which ∂iε
T
ϑ,n is an element, show that

E∂iL
(
ϑ0, yL

)
= 0. Using Eq. (2.20), expression (2.34) can be rewritten as

∂iL
(
ϑ0, yL

)
=

L∑
n=1

[
Y (i)

m,n − EY (i)
m,n

]
+

L∑
n=1

[
Z(i)

m,n − EZ(i)
m,n

]
,

where, for every m ∈ N, the processes Y (i)
m and Z(i)

m are defined by

Y (i)
m,n = tr

[
V−1
ϑ0

(∂iVϑ0 )
]

+

m∑
ν,ν′=0

{
− tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0

(∂iVϑ0 )
]

+ 2YT
n−νc

(i),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′
}
,

(2.35a)

Z(i)
m,n =U(i)

m,n + V (i)
m,n, (2.35b)

and

U(i)
m,n =

∞∑
ν=0

∞∑
ν′=m+1

{
− tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0

(∂iVϑ0 )
]

+ 2YT
n−νc

(i),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′
}
,

V (i)
m,n =

∞∑
ν=m+1

m∑
ν′=0

{
− tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0

(∂iVϑ0 )
]

+ 2YT
n−νc

(i),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′
}
.

It is convenient to also introduce the notations

Ym,n =
(

Y (1)
m,n · · · Y (r)

m,n

)T
and Zm,n =

(
Z(1)

m,n · · · Z(r)
m,n

)T
. (2.36)
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The rest of the proof proceeds in three steps: first we show that, for each natural number m, the sequence
L−1/2 ∑

n
[
Ym,n − EYm,n

]
is asymptotically normally distributed with asymptotic covariance matrix Im, and

that Im converges to I(ϑ0) as m tends to infinity. In the second step we prove that L−1/2 ∑
n
[
Zm,n − EZm,n

]
goes to zero uniformly in L, as m → ∞, and the last step is devoted to combining the first two steps to
prove the asymptotic normality of L−1/2∇ϑL

(
ϑ0, yL

)
.

Step 1. Since Y is stationary, it is clear that Ym is a stationary process. Moreover, the strong mixing
coefficients αYm (k) of Ym satisfy αYm (k) 6 αY(max{0, k − m}) because Ym,n depends only on the finitely
many values Yn−m, . . . ,Yn of Y (see Bradley, 2007, Remark 1.8 b)). In particular, by Assumption D9, the
strong mixing coefficients of the processes Ym satisfy the summability condition

∑
k[αYm (k)]δ/(2+δ) < ∞.

Since, by the Cramér–Wold device, weak convergence of the sequence L−1/2 ∑L
n=1

[
Ym,n − EYm,n

]
to a

multivariate normal distribution with mean zero and covariance matrix Σ is equivalent to the condition that,
for every vector u ∈ Rr, the sequence L−1/2uT ∑L

n=1
[
Ym,n − EYm,n

]
converges to a one-dimensional normal

distribution with mean zero and variance uT Σu, we can apply the Central Limit Theorem for univariate
strongly mixing processes (Herrndorf, 1984),(Ibragimov, 1962, Theorem 1.7) to obtain that

1
√

L

L∑
n=1

[
Ym,n − EYm,n

] d
−−−−→
L→∞

N (0r, Im), where Im =
∑
∆∈Z

Cov
(
Ym,n;Ym,n+∆

)
. (2.37)

The claim that Im converges to I(ϑ0) will follow if we can show that

Cov
(
Y (k)

m,n; Y (l)
m,n+∆

)
−−−−→
m→∞

Cov
(
`(k)
ϑ0,n

; `(l)
ϑ0,n+∆

)
, ∀∆ ∈ Z, (2.38)

and that
∣∣∣∣Cov

(
Y (k)

m,n; Y (l)
m,n+∆

)∣∣∣∣ is dominated by an absolutely summable sequence. For the first condition, we
note that the bilinearity of Cov(·; ·) implies that

Cov
(
Y (k)

m,n; Y (l)
m,n+∆

)
− Cov

(
`(k)
ϑ0,n

; `(l)
ϑ0,n+∆

)
=Cov

(
Y (k)

m,n; Y (l)
m,n+∆

− `(l)
ϑ0,n+∆

)
+ Cov

(
Y (k)

m,n − `
(k)
ϑ0,n

; `(l)
ϑ0,n+∆

)
.

These two terms can be treated in a similar manner so we restrict our attention to the second one. The
definitions of Y (i)

m,n (Eq. (2.35a)) and `(i)
ϑ,n (Eq. (2.29)) allow us to compute

Y (k)
m,n − `

(k)
ϑ0,n

=
∑
ν,ν′

max{ν,ν′}>m

[
tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0
∂iVϑ0

]
− 2YT

n−νc
(i),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′
]
.

As a consequence of the Cauchy–Schwarz inequality, Assumption D8 and the exponential bounds in
Lemma 2.7, i), we therefore obtain that Var

(
Y (k)

m,n − `
(k)
ϑ0,n

)
6 Cρm independent of n. The L2-continuity of

Cov(·; ·) thus implies that the sequence Cov
(
Y (k)

m,n − `
(k)
ϑ0,n

; `(l)
ϑ0,n+∆

)
converges to zero as m tends to infinity at

an exponential rate uniformly in ∆. The existence of a summable sequence dominating
∣∣∣∣Cov

(
Y (k)

m,n; Y (l)
m,n+∆

)∣∣∣∣
is ensured by the arguments given in the proof of Lemma 2.15, reasoning as in the derivation of Eqs. (2.32)
and (2.33).
Step 2. In this step we shall show that there exist positive constants C and ρ < 1, independent of L, such
that

trVar

 1
√

L

L∑
n=1

Zm,n

 6 Cρm, Zm,n given in Eq. (2.36). (2.39)

Since

trVar

 1
√

L

L∑
n=1

Zm,n

 6 2

trVar

 1
√

L

L∑
n=1

Um,n

 + trVar

 1
√

L

L∑
n=1

Vm,n

 , (2.40)

it suffices to consider the latter two terms. We first observe that

trVar

 1
√

L

L∑
n=1

Um,n

 =
1
L

tr
L∑

n,n′=1

Cov
(
Um,n;Um,n′

)
=

1
L

r∑
k,l=1

L−1∑
∆=−L+1

(L − |∆|) u(k,l)
m,∆ 6

r∑
k,l=1

∑
∆∈Z

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ , (2.41)
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where

u
(k,l)
m,∆ =Cov

(
U(k)

m,n; U(l)
m,n+∆

)
=

m∑
ν,µ=0

ν′,µ′=m+1

Cov
(
− tr

[
V−1
ϑ0

cϑ0,νYn−νYT
n−ν′c

T
ϑ,ν′V

−1
ϑ0
∂kVϑ0

]
+ YT

n−νc
(k),T
ϑ0,ν

V−1
ϑ0

cϑ0,ν′Yn−ν′ ;

− tr
[
V−1
ϑ0

cϑ0,µYn+∆−µYT
n+∆−µ′c

T
ϑ,µ′V

−1
ϑ0
∂lVϑ0

]
+ YT

n+∆−µc(l),T
ϑ0,µ

V−1
ϑ0

cϑ0,µ′Yn+∆−µ′

)
.

As before, under Assumption D8, the Cauchy–Schwarz inequality and the exponential bounds for
∥∥∥cϑ0,ν

∥∥∥
and

∥∥∥∥c(k)
ϑ0,ν

∥∥∥∥ imply that
∣∣∣∣u(k,l)

m,∆

∣∣∣∣ < Cρm. By arguments similar to the ones used in the proof of Lemma 2.14 it
can be shown that Davydov’s inequality implies that for m < b∆/2c it holds that

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ 6C
∞∑
ν=0

∞∑
ν′=m+1

b∆/2c∑
µ,µ′=0

ρν+ν
′+µ+µ′

[
αY

(⌊
∆

2

⌋)]δ/(2+δ)

+ C
∞∑

ν,ν′=0

∑
µ,µ′

max{µ,µ′}>b∆/2c

ρν+ν
′+µ+µ′

6Cρm


[
αY

(⌊
∆

2

⌋)]δ/(2+δ)

+ ρ∆/2

 .
It thus follows that, independent of the value of k and l,

∞∑
∆=0

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ =

2m∑
∆=0

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ +

∞∑
∆=2m+1

∣∣∣∣u(k,l)
m,∆

∣∣∣∣ 6 Cρm

m +

∞∑
∆=0

[αY (∆)]δ/(2+δ)

 ,
and therefore, by Eq. (2.41), that trVar

(
L−1/2 ∑L

n=1Um,n

)
6 Cρm. In an analogous way one can show that

trVar
(
L−1/2 ∑L

n=1Vm,n

)
6 Cρm, and thus the claim (2.39) follows with Eq. (2.40).

Step 3. In step 1 it has been shown that L−1/2 ∑
n
[
Ym,n − EYm,n

] d
−−−−→
L→∞

N (0r, Im), and that Im −−−−→
m→∞

I(ϑ0). In particular, the limiting normal random variables with covariances Im converge weakly to a normal
random variable with covariance matrix I(ϑ0). Step 2 together with the multivariate Chebyshev inequality
implies that, for every ε > 0,

lim
m→∞

lim sup
L→∞

P


∥∥∥∥∥∥∥ 1
√

L
∇ϑL

(
ϑ0, yL

)
−

1
√

L

L∑
n=1

[
Ym,n − EYm,n

]∥∥∥∥∥∥∥ > ε


6 lim
m→∞

lim sup
L→∞

r
ε2 trVar

 1
√

L

L∑
n=1

Zm,n

 6 lim
m→∞

Cr
ε2 ρ

m = 0.

Brockwell and Davis (1991, Proposition 6.3.9) thus completes the proof. �

A very important step in the proof of asymptotic normality for quasi maximum likelihood estimators is
to establish that the Fisher information matrix J, evaluated at the true parameter value, is non-singular. We
shall now show that Assumption D10 is sufficient to ensure that J−1 exists for linear state space models.
For vector ARMA processes, formulae similar to Eqs. (2.43) below have been derived in the literature (see,
e. g., Klein et al., 2008; Klein and Neudecker, 2000), but have not been used to derive criteria for J being
non-singular. Our arguments are similar to Boubacar Mainassara and Francq (2011, Lemma 4).

Lemma 2.18. Assume that Assumptions D1 to D4, D7 and D10 hold. With probability one, the matrix
J = limL→∞ L−1∇2

ϑ
L̂ (ϑ0, yL) exists and is non-singular.

Proof. We note that, by Lemma 2.16, ii), it is enough to show that limL→∞ L−1∇2
ϑ
L (ϑ0, yL) exists and is

non-singular. As seen earlier, for every i = 1, . . . , r,

∂ilϑ,n = tr
[
V−1
ϑ

(
1d − εϑ,nε

T
ϑ,nV−1

ϑ

)
∂iVϑ

]
+ 2

(
∂iε

T
ϑ,n

)
V−1
ϑ εϑ,n. (2.42)
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Consequently, the second partial derivatives are given by

∂2
i, jlϑ,n = tr

[
V−1
ϑ

(
∂2

i, jVϑ
)
− V−1

ϑ (∂iVϑ) V−1
ϑ

(
∂ jVϑ

)
− V−1

ϑ εϑ,nε
T
ϑ,nV−1

ϑ

(
∂2

i, jVϑ
)

+V−1
ϑ (∂iVϑ) V−1

ϑ εϑ,nε
T
ϑ,nV−1

ϑ

(
∂ jVϑ

)
+ V−1

ϑ εϑ,nε
T
ϑ,nV−1

ϑ (∂iVϑ) V−1
ϑ

(
∂ jVϑ

)
−V−1

ϑ (∂iVϑ) V−1
ϑ

(
∂iεϑ,nε

T
ϑ,n

)]
+ 2

(
∂2

i, jε
T
ϑ,n

)
V−1
ϑ εϑ,n + 2

(
∂iε

T
ϑ,n

)
V−1
ϑ

(
∂ jεϑ,n

)
− 2 tr

[
V−1
ϑ εϑ,n

(
∂iε

T
ϑ,n

)
V−1
ϑ

(
∂ jεϑ,n

)]
.

By Lemma 2.1, iii), Eεϑ0,n = 0d, and by Eq. (2.7), Eεϑ0,nε
T
ϑ0,n

= Vϑ0 . The sequence εϑ0 being the innova-
tions of the process Y implies that εϑ0,n is orthogonal to the Hilbert space spanned by {Yt, t < n}, of which,
by Eq. (2.20), both ∂iεϑ0,n and ∂2

i, jεϑ0,n are elements. It thus follows that

E
[
∂2

i, jlϑ0,n

]
= tr

[
V−1
ϑ0

(
∂iVϑ0

)
V−1
ϑ0

(
∂ jVϑ0

)]
+ 2E

[(
∂iε

T
ϑ,n

)
V−1
ϑ

(
∂ jεϑ,n

)]
.

Equations (2.20), (2.26) and (2.27), the ergodicity of Y, and Krengel (1985, Theorem 4.3) imply that the
sequence ∂2

i, jlϑ0 is ergodic, and Birkhoff’s Ergodic Theorem shows that

1
L
∇2
ϑL

(
ϑ0, yL

)
=

1
L

L∑
n=1

∇2
ϑlϑ0,n

a.s
−−−−→
L→∞

E
[
∇2
ϑlϑ0,n

]
C J1 + J2,

where

J1 = 2E
[(
∇ϑεϑ0,1

)T V−1
ϑ0

(
∇ϑεϑ0,1

)]
and J2 =

(
tr

[
V−1/2
ϑ0

(
∂iVϑ0

)
V−1
ϑ0

(
∂ jVϑ0

)
V−1/2
ϑ0

])
i j
. (2.43)

J2 is positive semidefinite because it can be written as J2 =
(

b1 . . . br

)T (
b1 . . . br

)
, where

bm =
(
V−1/2
ϑ0
⊗ V−1/2

ϑ0

)
vec

(
∂mVϑ0

)
. Since J1 is positive semidefinite as well, proving that J is non-singular

is equivalent to proving that for any non-zero vector c ∈ Rr, the numbers cT Jic, i = 1, 2, are not both zero.
Assume, for the sake of contradiction, that there exists such a vector c = (c1, . . . , cr)T . The condition cT J1c
implies that, almost surely,

∑r
k=1 ck∂kεϑ0,n = 0d for all n ∈ Z. It thus follows from the infinite-order moving

average representation (2.8b) that
∞∑
ν=1

r∑
k=1

ck
(
∂kMϑ0,ν

)
εϑ0,−ν = 0d,

where the Markov parameters Mϑ,ν are given by Mϑ,ν = −HϑFν−1
ϑ

Kϑ, ν > 1. Since the sequence εϑ0

is uncorrelated with positive definite covariance matrix, it follows that
∑r

k=1 ck
(
∂kMϑ0,ν

)
= 0d, for every

ν ∈ N. Using the relation vec(ABC) =
(
CT ⊗ A

)
vec B (Bernstein, 2005, Proposition 7.1.9), we see that the

last display is equivalent to ∇ϑ
([

KT
ϑ0
⊗ Hϑ0

]
vec Fν−1

ϑ0

)
c = 0d2 for every ν ∈ N. The condition cT J2c = 0

implies that
(
∇ϑ vec Vϑ0

)
c = 0d2 . By the definition of ψϑ, j in Eq. (2.17) it thus follows that ∇ϑψϑ0, jc =

0( j+2)d2 , for every j ∈ N, which, by Assumption D10, is equivalent to the contradiction that c = 0r. �

of Theorem 2.6. Since ϑ̂
L

converges almost surely to ϑ0 by the consistency result proved in Theorem 2.5,
and ϑ0 is an element of the interior of Θ by Assumption D6, the estimate ϑ̂

L
is an element of the interior

of Θ eventually almost surely. The assumed smoothness of the parametrization (Assumption D7) implies
that the extremal property of ϑ̂

L
can be expressed as the first order condition ∇ϑL̂ (ϑ̂

L
, yL) = 0r. A Taylor

expansion of ϑ 7→ ∇ϑL̂ (ϑ, yL) around the point ϑ0 shows that there exist parameter vectors ϑi ∈ Θ of the
form ϑi = ϑ0 + ci(ϑ̂

L
− ϑ0), 0 6 ci 6 1, such that

0r = L−1/2∇ϑL̂ (ϑ0, yL) +
1
L
∇2
ϑL̂ (ϑL, yL)L1/2

(
ϑ̂

L
− ϑ0

)
, (2.44)

where ∇2
ϑ
L̂ (ϑL, yL) denotes the matrix whose ith row, i = 1, . . . , r, is equal to the ith row of ∇2

ϑ
L̂ (ϑi, yL).

By Lemma 2.17 the first term on the right hand side converges weakly to a multivariate normal random
variable with mean zero and covariance matrix I = I(ϑ0). As in Lemma 2.10 one can show that the
sequence

(
ϑ 7→ L−1∇3

ϑ
L̂ (ϑ, yL)

)
L∈N

of random functions converges almost surely uniformly to the contin-
uous function ϑ 7→ ∇3

ϑ
Q(ϑ) taking values in the space Rr×r×r. Since on the compact space Θ this function
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is bounded in the operator norm obtained from identifying Rr×r×r with the space of linear functions from
Rr to Mr(R), that sequence is almost surely uniformly bounded, and we obtain that∥∥∥∥∥ 1

L
∇2
ϑL̂ (ϑL, yL) −

1
L
∇2
ϑL̂ (ϑ0, yL)

∥∥∥∥∥ 6 sup
ϑ∈Θ

∥∥∥∥∥ 1
L
∇3
ϑL̂ (ϑ, yL)

∥∥∥∥∥ ∥∥∥ϑL
− ϑ0

∥∥∥ a. s.
−−−−→
L→∞

0,

because, by Theorem 2.5, the second factor almost surely converges to zero as L tends to infinity. It follows
from Lemma 2.18 that L−1∇2

ϑ
L̂ (ϑL, yL) converges to the matrix J almost surely, and thus from Eq. (2.44)

that L1/2
(
ϑ̂

L
− ϑ0

)
d
−→ N

(
0r, J−1IJ−1

)
, as L→ ∞. This shows Eq. (2.18) and completes the proof. �

In practice, one is interested in also estimating the asymptotic covariance matrix Ξ, which is useful in
constructing confidence regions for the estimated parameters or in performing statistical tests. This prob-
lem has been considered in the framework of estimating weak VARMA processes in Boubacar Mainassara
and Francq (2011) where the following procedure has been suggested, which is also applicable in our set-

up. First, J(ϑ0) is estimated consistently by ĴL = L−1∇2L̂ϑ

(
ϑ̂

L
, yL

)
. For the computation of ĴL we rely on

the fact that the Kalman filter can not only be used to evaluate the Gaussian log-likelihood of a state space
model but also its gradient and Hessian. The most straightforward, but computationally burdensome way
of achieving this is by direct differentiation of the Kalman filter equations, which results in increasing the
number of passes through the filter to r + 1 and r(r + 3)/2 for the gradient and the Hessian, respectively.
More sophisticated algorithms, including the Kalman smoother and/or the backward filter have been de-
vised and can be found in Kulikova and Semoushin (2006); Segal and Weinstein (1989). The construction
of a consistent estimator of I = I(ϑ0) is based on the observation that I =

∑
∆∈Z Cov(`ϑ0,n, `ϑ0,n+∆), where

`ϑ0,n = ∇ϑ
[
log det Vϑ0 + εT

ϑ0,n
V−1
ϑ0
εϑ0,n

]
. Assuming that (`ϑ0,n)n∈N+ admits an infinite-order AR represen-

tation Φ(B)`ϑ0,n = Un, where Φ(z) = 1r +
∑∞

i=1 Φizi and (Un)n∈N+ is a weak white noise with covariance
matrix ΣU, it follows from the interpretation of I/(2π) as the value of the spectral density of (`ϑ0,n)n∈N+ at
frequency zero that I can also be written as I = Φ−1(1)ΣUΦ(1)−1. The idea is to fit a long autoregression to
(`
ϑ̂

L
,n

)n=1,...L, the empirical counterparts of (`ϑ0,n)n∈N+ which are defined by replacing ϑ0 with the estimate

ϑ̂
L

in the definition of `ϑ0,n. This is done by choosing an integer s > 0, and performing a least-squares
regression of `

ϑ̂
L
,n

on `
ϑ̂

L
,n−1

, . . . , `
ϑ̂

L
,n−s

, s + 1 6 n 6 L. Denoting by Φ̂L
s (z) = 1r +

∑s
i=1 Φ̂L

i,sz
i the ob-

tained empirical autoregressive polynomial and by Σ̂L
s the empirical covariance matrix of the residuals of

the regression, it was claimed in Boubacar Mainassara and Francq (2011, Theorem 4) that under the addi-
tional assumption E

[
‖εn‖

8+δ
]
< ∞ the spectral estimator ÎL

s =
(
Φ̂L

s (1)
)−1

Σ̂L
s

(
Φ̂L

s (1)
)T,−1

converges to I in

probability as L, s→ ∞ if s3/L→ 0. The covariance matrix of ϑ̂
L

is then estimated consistently as

Ξ̂L
s =

1
L

(
ĴL

)−1
ÎL

s

(
ĴL

)−1
. (2.45)

In the simulation study performed in Section 4.2, this estimator for Ξ performs convincingly.

3. Quasi maximum likelihood estimation for Lévy-driven multivariate continuous-time ARMA processes

In this section we pursue the second main topic of the present paper, a detailed investigation of the
asymptotic properties of the quasi maximum likelihood estimator of discretely observed multivariate con-
tinuous-time autoregressive moving average processes. We will make use of the equivalence between
MCARMA and continuous-time linear state space models, as well as of the important observation that the
state space structure of a continuous-time process is preserved under equidistant sampling, which allows for
the results of the previous section to be applied. The conditions we need to impose on the parametrization
of the models under consideration are therefore closely related to the assumptions made in the discrete-time
case, except that the mixing and ergodicity assumptions D4 and D9 are automatically satisfied (Marquardt
and Stelzer, 2007, Proposition 3.34).

We start the section with a short recapitulation of the definition and basic properties of Lévy-driven con-
tinuous-time ARMA processes; this is followed by a discussion of the second-order properties of discretely
observed CARMA process, leading to a set of accessible identifiability conditions. Section 3.4 contains
our main result about the consistency and asymptotic normality of the quasi maximum likelihood estimator
for equidistantly sampled MCARMA processes.
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3.1. Lévy-driven multivariate CARMA processes and continuous-time state space models. A natural
source of randomness in the specification of continuous-time stochastic processes are Lévy processes. For
a thorough discussion of these processes we refer the reader to the monographs Applebaum (2004); Bertoin
(1996); Sato (1999).

Definition 3.1 (Lévy process). A two-sided Rm-valued Lévy process (L(t))t>0 is a stochastic process, de-
fined on a probability space (Ω,F ,P), with stationary, independent increments, continuous in probability,
and satisfying L(0) = 0m almost surely.

The class of Lévy processes includes many important processes such as Brownian motions, stable pro-
cesses, and compound Poisson processes as special cases, which makes them very useful in stochastic
modelling. Another advantage is that the property of having stationary independent increments implies
that Lévy process have a rather particular structure which makes many problems analytically tractable.
More precisely, the Lévy–Itô decomposition theorem asserts that every Lévy process can be additively
decomposed into a Brownian motion, a compound Poisson process, and a square-integrable pure-jump
martingale, where the three terms are independent. This is equivalent to the statement that the characteris-
tic function of a Lévy process L has the special form Eei〈u,L(t)〉 = exp{tψL(u)}, u ∈ Rm, t ∈ R+, where the
characteristic exponent ψL is given by

ψL(u) = i〈γL,u〉 −
1
2
〈u,ΣGu〉 +

∫
Rm

[
ei〈u,x〉 − 1 − i〈u, x〉I{‖x‖61}

]
νL(dx). (3.1)

γL ∈ Rm is called the drift vector, ΣG is a non-negative definite, symmetric m × m matrix called the
Gaussian covariance matrix, and the Lévy measure νL satisfies the two conditions νL({0m}) = 0 and∫
Rm min(‖x‖2 , 1)νL(dx) < ∞. For the present purpose it is enough to know that a Lévy process L has

finite kth absolute moments, k > 0, that is E ‖L(t)‖k < ∞, if and only if
∫
‖x‖>1 ‖x‖

k νL(dx) < ∞ (Sato, 1999,

Corollary 25.8), and that the covariance matrix ΣL of L(1), if it exists, is given by ΣG +
∫
‖x‖>1 xxTνL(dx)

Sato (1999, Example 25.11).

Assumption L1. The Lévy process L has mean zero and finite second moments, which means that γL +∫
‖x‖>1 xνL(dx) is zero, and that the integral

∫
‖x‖>1 ‖x‖

2 νL(dx) is finite.

Just like i. i. d. sequences are used in time series analysis to define ARMA processes, Lévy processes
can be used to construct (multivariate) continuous-time autoregressive moving average processes, called
(M)CARMA processes. If L is a two-sided Lévy process with values in Rm and p > q are integers, the
d-dimensional L-driven MCARMA(p, q) process with autoregressive polynomial

z 7→ P(z) B 1dzp + A1zp−1 + . . . + Ap ∈ Md(R[z]) (3.2a)

and moving average polynomial

z 7→ Q(z) B B0zq + B1zq−1 + . . . + Bq ∈ Md,m(R[z]) (3.2b)

is defined as the solution to the formal differential equation P(D)Y(t) = Q(D)DL(t), D ≡ (d/dt). It is often
useful to allow for the dimensions of the driving Lévy process L and the L-driven MCARMA process to be
different, which is a slight extension of the original definition of Marquardt and Stelzer (2007). The results
obtained in that paper remain true if our definition is used. In general, the paths of a Lévy process are
not differentiable, so we interpret the defining differential equation as being equivalent to the state space
representation

dG(t) = AG(t)dt + BdL(t), Y(t) = CG(t), t ∈ R, (3.3)
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whereA ,B, and C are given by

A =



0 1d 0 . . . 0

0 0 1d
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 1d

−Ap −Ap−1 . . . . . . −A1


∈ Mpd(R), (3.4a)

B =
(
βT

1 · · · βT
p

)T
∈ Mpd,m(R), βp− j = −I{0,...,q}( j)

p− j−1∑
i=1

Aiβp− j−i − Bq− j

 , (3.4b)

C = (1d, 0, . . . , 0) ∈ Md,pd(R). (3.4c)

It follows from representation (3.3) that MCARMA processes are special cases of linear multivariate con-
tinuous-time state space models, and in fact, the class of linear state space models is equivalent to the class
of MCARMA models (Schlemm and Stelzer, 2011, Corollary 3.4). By considering the class of linear state
space models, one can define representations of MCARMA processes which are different from Eq. (3.3)
and better suited for the purpose of estimation.

Definition 3.2 (State space model). A continuous-time linear state space model (A, B,C, L) of dimension
N with values in Rd is characterized by an Rm-valued driving Lévy process L, a state transition matrix
A ∈ MN(R), an input matrix B ∈ MN,m(R), and an observation matrix C ∈ Md,N(R). It consists of a state
equation of Ornstein–Uhlenbeck type

dX(t) = AX(t)dt + BdL(t), t ∈ R, (3.5a)

and an observation equation
Y(t) = CX(t), t ∈ R. (3.5b)

The RN-valued process X = (X(t))t∈R is the state vector process, and Y = (Y(t))t∈R the output process.

A solution Y to Eq. (3.5) is called causal if, for all t, Y(t) is independent of the σ-algebra generated by
{L(s) : s > t}. Every solution to Eq. (3.5a) satisfies

X(t) = eA(t−s)X(s) +

∫ t

s
eA(t−u)BdL(u), ∀s, t ∈ R, s < t, (3.6)

where the stochastic integral with respect to L is well-defined by Protter (1990, Theorem 3.9). The inde-
pendent-increment property of Lévy processes implies that X is a Markov process. The following can be
seen as the multivariate extension of Brockwell et al. (2011, Proposition 1) and recalls conditions for the
existence of a stationary causal solution of the state equation (3.5a) for easy reference. We always work
under the following assumption.

Assumption E. The eigenvalues of the matrix A have strictly negative real parts.

Proposition 3.1 (Sato and Yamazato (1983, Theorem 5.1)). If Assumptions E and L1 hold, then Eq. (3.5a)
has a unique strictly stationary, causal solution X given by X(t) =

∫ t
−∞

eA(t−u)BdL(u), which, for fixed t ∈ R,
has the same distribution as

∫ ∞
0 eAuBdL(u). Moreover, X(t) has mean zero and second-order structure

Var(X(t)) CΓ0 =

∫ ∞

0
eAuBΣLBT eAT udu, (3.7a)

Cov (X(t + h), X(t)) CγY(h) = eAhΓ0, h > 0, (3.7b)

where the variance Γ0 satisfies AΓ0 + Γ0AT = −BΣLBT .

It is an immediate consequence that the output process Y has mean zero and autocovariance function
R 3 h 7→ γY(h) given by γY(h) = CeAhΓ0CT , h > 0, and that Y itself can be written succinctly as a moving
average of the driving Lévy process as

Y(t) =

∫ ∞

−∞

g(t − u)dL(u), t ∈ R; g(t) = CeAtBI[0,∞)(t). (3.8)
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As in Marquardt and Stelzer (2007, Proposition 3.30) one shows the following result about the existence
of moments.

Proposition 3.2. Let Y be the output process of the state space model (3.5) driven by the Lévy process L.
If L(1) is in Lr(Ω,P) for some r > 0, then so are Y(t) and the state vector X(t), t ∈ R.

Equation (3.8) which, in conjunction with Eq. (3.4), serves as the definition of a multivariate CARMA
process with autoregressive and moving average polynomials given by Eq. (3.2), shows that the behaviour
of the process Y depends on the values of the individual matrices A, B, and C only through the products
CeAtB, t ∈ R. The following lemma relates this analytical statement to an algebraic one about rational
matrices, allowing us to draw a connection to the identifiability theory of discrete-time state space models.

Lemma 3.3. Two matrix triplets (A, B,C), (Ã, B̃, C̃) of appropriate dimensions satisfy CeAtB = C̃eÃt B̃ for
all t ∈ R if and only if C(z1 − A)−1B = C̃(z1 − Ã)−1B̃ for all z ∈ C.

Proof. If we start at the first equality and replace the matrix exponentials by their spectral representations
(see Lax, 2002, Theorem 17.5), we obtain∫

γ

eztC(z1 − A)−1Bdz =

∫
γ̃

eztC̃(z1 − Ã)−1B̃dz, ∀t ∈ R, (3.9)

where γ is a closed contour in C winding around each eigenvalue of A exactly once, and likewise for γ̃.
Since we can always assume that γ = γ̃ by taking γ to be R times the unit circle, R > max{|λ| : λ ∈ σA∪σÃ},
we can write Eq. (3.9) as ∫

γ

ezt
[
C(z1 − A)−1B − C̃(z1 − Ã)−1B̃

]
dz = 0, ∀t ∈ R. (3.10)

Since the rational matrix function ∆(z) = C(z1−A)−1B−C̃(z1−Ã)−1B̃ has only poles with modulus less than
R, it has an expansion around infinity, ∆(z) =

∑∞
n=0 Anz−n, An ∈ Md(C), which converges in a region {z ∈ C :

|z| > r} containing γ. Using the fact that this series converges uniformly on the compact set γ and applying
the Residue Theorem from complex analysis (Dieudonné, 1968, 9.16.1), which implies

∫
γ

eztz−ndz = tn/n!,

Eq. (3.10) becomes
∑∞

n=0
tn

n! An+1 ≡ 0N . Consequently, by the Identity Theorem (Dieudonné, 1968, Theorem
9.4.3), An is the zero matrix for all n > 1, and since ∆(z)→ 0 as z→ ∞, it follows that ∆(z) ≡ 0d,m. �

Because of its importance for the following discussion, the rational matrix function H : z 7→ C(z1N −

A)−1B is given a special name: it is called the transfer function of the state space model (3.5) and is closely
related to the spectral density fY of the output process Y, which is defined as fY(ω) =

∫
R

e−iωhγY(h)dh – the
matrix transform of γY . Before we make this relation explicit, we prove the following lemma.

Lemma 3.4. For any real number v, and matrices A, B,ΣL,Γ0 as in Eq. (3.7a), it holds that∫ ∞

−v
eAuBΣLBT eAT udu = e−AvΓ0e−AT v. (3.11)

Proof. We define the functions l, r : R → MN(R) by l(v) =
∫ ∞
−v eAuBΣLBT eAT udu and r(v) = e−AvΓ0e−AT v.

Clearly, both l : v 7→ l(v) and r : v 7→ r(v) are differentiable functions of v; taking the derivatives yields

d
dv

l(v) =e−AvBΣLBT e−AT v and
d
dv

r(v) = −Ae−AvΓ0e−AT v − e−AvΓ0AT e−AT v.

Using Proposition 3.1 one sees immediately that (d/dv)l(v) = (d/dv)r(v), for all v ∈ R. Hence, l and r
differ only by an additive constant. Since l(0) equals r(0) by the definition of Γ0, the constant is zero, and
l(v) = r(v) for all real numbers v. �

Proposition 3.5. Let Y be the output process of the state space model (3.5), and denote by H : z 7→
C(z1N − A)−1B its transfer function. Then the relation fY(ω) = (2π)−1H(iω)ΣLH(−iω)T holds for all real
ω; in particular, ω 7→ fY(ω) is a rational matrix function.
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Proof. First, we recall (Bernstein, 2005, Proposition 11.2.2) that the Laplace transform of any matrix A is
given by its resolvent, that is, (zI − A)−1 =

∫ ∞
0 e−zueAudu, for any complex number z. We are now ready to

compute

1
2π

H(iω)ΣLH(−iω)T =
1

2π
C(iω1N − A)−1BΣLBT (−iω1N − AT )−1

CT

=
1

2π
C

[∫ ∞

0
e−iωueAuduBΣLBT

∫ ∞

0
eiωveAT vdv

]
dhCT .

Introducing the new variable h = u − v, and using Lemma 3.4, this becomes

1
2π

C
[∫ ∞

0

∫ ∞

−v
e−iωheAheAvBΣLBT eAT vdhdv

]
CT

=
1

2π
C

[∫ ∞

0

∫ ∞

0
e−iωheAheAvBΣLBT eAT vdhdv +

∫ ∞

0

∫ 0

−v
e−iωheAheAvBΣLBT eAT vdhdv

]
CT

=
1

2π
C

[∫ ∞

0
e−iωheAhΓ0dh +

∫ 0

−∞

e−iωhΓ0e−AT hdh
]

CT .

By Eq. (3.7b) and the fact that the spectral density and the autocovariance function of a stochastic process
are Fourier duals of each other, the last expression is equal to (2π)−1

∫ ∞
−∞

e−iωhγY(h)dh = fY(ω), which
completes the proof. �

A converse of Proposition 3.5, which will be useful in our later discussion of identifiability, is the
Spectral Factorization Theorem. Its proof can be found in Rozanov (1967, Theorem 1.10.1) and also in
Caines (1988, Theorem 4.1.4).

Theorem 3.6. Every positive definite rational matrix function f ∈ S+
d (C{ω}) of full rank can be factorized

as f (ω) = (2π)−1W(iω)W(−iω)T , where the rational matrix function z 7→ W(z) ∈ Md,N (R{z}), called a
spectral factor, has full rank. For fixed N, the spectral factor W is uniquely determined up to an orthogonal
transformation W(z) 7→ W(z)O, for some orthogonal N × N matrix O.

3.2. Equidistant observations. We now turn to properties of the sampled process Y(h) = (Y(h)
n )n∈Z which

is defined by Y(h)
n = Y(nh) and represents observations of the process Y at equally spaced points in time.

A very fundamental observation is that the linear state space structure of the continuous-time process is
preserved under sampling, as detailed in the following proposition. Of particular importance is the explicit
formula (3.14) for the spectral density of the sampled process Y(h).

Proposition 3.7. Assume that Y is the output process of the state space model (3.5). Then the sampled
process Y(h) has the state space representation

Xn = eAhXn−1 + N(h)
n , N(h)

n =

∫ nh

(n−1)h
eA(nh−u)BdL(u), Y(h)

n = CX(h)
n . (3.12)

The sequence
(
N(h)

n

)
n∈Z

is i. i. d. with mean zero and covariance matrix

�Σ
(h) =

∫ h

0
eAuBΣLBT eAT udu. (3.13)

Moreover, the spectral density of Y(h), denoted by f (h)
Y , is given by

f (h)
Y (ω) = C

(
eiω1N − eAh

)−1
�Σ

(h)
(
e−iω1N − eAT h

)−1
CT ; (3.14)

in particular, f (h)
Y : [−π, π]→ S+

d

(
R

{
eiω

})
is a rational matrix function.

Proof. Eqs. (3.12) follow from setting t = nh, s = (n − 1)h in Eq. (3.6). That the sequence (Zn)n∈Z is i. i. d.
as well as expression (3.13) for �Σ(h) are immediate consequences of the Lévy process L having independent,
homogeneous increments. Expression (3.14) is an application of Hamilton (1994, Eq. (10.4.43)). �
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In the following we analyse further the sampled state space model (3.12), in particular we will derive
conditions for it to be minimal in the sense that the process Y(h) is not the output process of any state
space model of dimension less than N, and for the noise covariance matrix �Σ

(h) given in Eq. (3.13) to be
non-singular. We begin by recalling some well-known notions from discrete-time realization and control
theory. For a detailed account we refer to Åström (1970); Caines (1988); Sontag (1998), which also explain
the origin of the terminology.

Definition 3.3 (Algebraic realization). Let H ∈ Md,m(R{z}) be a rational matrix function. A matrix triple
(A, B,C) is called an algebraic realization of H of dimension N if H(z) = C(z1N−A)−1B, where A ∈ MN(R),
B ∈ MN,m(R), and C ∈ Md,N(R).

Every rational matrix function has many algebraic realizations of various dimensions. A particularly
convenient class are the ones of minimal dimension, which have a number of useful properties.

Definition 3.4 (Minimality). Let H ∈ Md,m(R{z}) be a rational matrix function. A minimal realization
of H is an algebraic realization of H of dimension smaller than or equal to the dimension of every other
algebraic realization of H. The dimension of a minimal realization of H is the McMillan degree of H.

Two other important properties of algebraic realizations, which are intimately related to the notion of
minimality and play a key role in the study of identifiability, are introduced in the following definitions.

Definition 3.5 (Controllability). An algebraic realization (A, B,C) of dimension N is controllable if the
controllability matrix C =

[
B AB · · · An−1B

]
∈ Mm,mN(R) has full rank, i. e., if rank C = N.

Definition 3.6 (Observability). An algebraic realization (A, B,C) of dimension N is observable if the ob-
servability matrix O =

[
CT (CA)T · · · (CAn−1)T

]T
∈ MdN,N(R) has full rank, i. e., if rank O = N.

Remark 3.7. We will often say that a state space system (3.5) is minimal, controllable or observable if the
corresponding transfer function has this property.

The next theorem characterizes minimality in a useful way in terms of controllability and observability.

Theorem 3.8 (Hannan and Deistler (1988, Theorem 2.3.3)). A realization (A, B,C) is minimal if and only
if it is both controllable and observable.

Lemma 3.9. For all matrices A ∈ MN(R), B ∈ MN,m(R), Σ ∈ S++
m (R), and every real number t > 0, the

linear subspaces im
[
B, AB, . . . , AN−1B

]
and im

∫ t
0 eAuBΣBT eAT udu are equal.

Proof. The assertion is a straightforward generalization of Bernstein (2005, Lemma 12.6.2). �

Corollary 3.10. If the triple (A, B,C) is minimal of dimension N, and Σ is positive definite, then the N × N
matrix �Σ =

∫ h
0 eAuBΣBT eAT udu has full rank N.

Proof. By Theorem 3.8, minimality of (A, B,C) implies controllability, i. e. full rank of the controllability
matrix

[
B AB · · · AN−1B

]
. By Lemma 3.9, this is equivalent to �Σ having full rank. �

Proposition 3.11. Assume that Y is the d-dimensional output process of the state space model (3.5) with
(A, B,C) being a minimal realization of McMillan degree N. Then a sufficient condition for the sampled
process Y(h) to have the same McMillan degree, is the Kalman–Bertram criterion

λ − λ′ , 2h−1πik, ∀(λ, λ′) ∈ σ(A) × σ(A), ∀k ∈ Z\{0}. (3.15)

Proof. We will prove the assertion by showing that the N-dimensional state space representation (3.12)
is both controllable and observable, and thus, by Theorem 3.8, minimal. Observability has been shown
in Sontag (1998, Proposition 5.2.11) using the Hautus criterion (Hautus, 1969). The key ingredient in
the proof of controllability is Corollary 3.10, where we showed that the autocovariance matrix �Σ

(h) of N(h)
n ,

given by Eq. (3.13), has full rank; this shows that the representation (3.12) is indeed minimal and completes
the proof. �

Remark 3.8. Since, by Hannan and Deistler (1988, Theorem 2.3.4), minimal realizations are unique up
to a change of basis (A, B,C) 7→ (T AT−1,T B,CT−1), for some non-singular N × N matrix T , and such a
transformation does not change the eigenvalues of A, the criterion (3.15) does not depend on what particular
triple (A, B,C) one chooses.
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Uniqueness of the principal logarithm (Higham, 2008, Theorem 1.31) implies the following.

Lemma 3.12. Assume that the matrices A, B ∈ MN(R) satisfy ehA = ehB for some h > 0. If the spectra
σA, σB of A, B satisfy | Im λ| < π/h for all λ ∈ σA ∪ σB, then A = B.

Lemma 3.13. Assume that A ∈ MN(R) satisfies Assumption E. For every h > 0, the linear map M :
MN(R)→ MN(R), M 7→

∫ h
0 eAuMeAT udu is injective.

Proof. If we apply the vectorization operator vec : MN(R) → RN2
and use the well-known identity (Bern-

stein, 2005, Proposition 7.1.9) vec(UVW) = (WT ⊗ U) vec(V) for matrices U,V and W of appropriate
dimensions, we obtain the induced linear operator

vec ◦M ◦ vec−1 : RN2
→ RN2

, vec M 7→
∫ h

0
eAu ⊗ eAudu vec M.

To prove the claim that the operator M is injective, it is thus sufficient to show that the matrix A B∫ h
0 eAu ⊗ eAudu ∈ MN2 (R) is non-singular. We write A ⊕ A B A ⊗ 1N + 1N ⊗ A. By Bernstein (2005, Fact

11.14.37), A =
∫ h

0 e(A⊕A)udu and since σ(A ⊕ A) = {λ + µ : λ, µ ∈ σ(A)} (Bernstein, 2005, Proposition
7.2.3), Assumption E implies that all eigenvalues of the matrix A ⊕ A have strictly negative real parts; in
particular, A ⊕ A is invertible. Consequently, it follows from Bernstein (2005, Fact 11.13.14) that A =

(A ⊕ A)−1
[
e(A⊕A)h − 1N2

]
. Since, for any matrix M, it holds that σ(eM) = {eλ, λ ∈ σ(M)} (Bernstein, 2005,

Proposition 11.2.3), the spectrum of e(A⊕A)h is a subset of the open unit disk, and it follows that A is
invertible. �

3.3. Overcoming the aliasing effect. One goal in this paper is the estimation of multivariate CARMA
processes or, equivalently, continuous-time state space models, based on discrete observations. In this
brief section we concentrate on the issue of identifiability, and we derive sufficient conditions that prevent
redundancies from being introduced into an otherwise properly specified model by the process of sampling,
an effect known as aliasing (Hansen and Sargent, 1983; McCrorie, 2003).

For ease of notation we choose to parametrize the state matrix, the input matrix, and the observation
matrix of the state space model (3.5), as well as the driving Lévy process L; from these one can always
obtain an autoregressive and a moving average polynomial which describe the same process by applying a
left matrix fraction decomposition to the corresponding transfer function, see Patel (1981) and the upcom-
ing Theorems 4.2 and 4.3. We hence assume that there is some compact parameter set Θ ⊂ Rr, and that,
for each ϑ ∈ Θ, one is given matrices Aϑ, Bϑ and Cϑ of matching dimensions, as well as a Lévy process
Lϑ. A basic assumption is that we always work with second order processes (cf. Assumption L1).

Assumption C1. For each ϑ ∈ Θ, it holds that ELϑ = 0m, that E ‖Lϑ(1)‖2 is finite, and that the covariance
matrix ΣL

ϑ
= ELϑ(1)Lϑ(1)T is non-singular.

To ensure that the model corresponding to ϑ describes a stationary output process we impose the ana-
logue of Assumption E.

Assumption C2. For each ϑ ∈ Θ, the eigenvalues of Aϑ have strictly negative real parts.

Next, we restrict the model class so as to only contain minimal algebraic realizations of a fixed McMillan
degree.

Assumption C3. For all ϑ ∈ Θ, the triple (Aϑ, Bϑ,Cϑ) is minimal with McMillan degree N.

Since we shall base the inference on a quasi maximum likelihood approach and thus on second-or-
der properties of the observed process, we require the model class to be identifiable from these available
information according to the following definitions.

Definition 3.9 (L2-equivalence). Two stochastic processes, irrespective of whether their index sets are
continuous or discrete, are L2-observationally equivalent if their spectral densities are the same.

Definition 3.10. A family
(
Yϑ,ϑ ∈ Θ

)
of continuous-time stochastic processes is identifiable from the

spectral density if, for every ϑ1 , ϑ2, the two processes Yϑ1 and Yϑ2 are not L2-observationally equivalent.
It is h-identifiable from the spectral density, h > 0, if, for every ϑ1 , ϑ2, the two sampled processes Y(h)

ϑ1

and Y(h)
ϑ2

are not L2-observationally equivalent.
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Assumption C4. The collection of output processes K(Θ) B
(
Yϑ,ϑ ∈ Θ

)
corresponding to the state space

models (Aϑ, Bϑ,Cϑ, Lϑ) is identifiable from the spectral density.

Since we shall use only observations of Y at discrete points in time separated by a sampling interval
h, it would seem more natural to impose the stronger requirement that K(Θ) be h-identifiable. We will
see, however, that this is implied by the previous assumptions if we additionally assume that the following
holds.

Assumption C5. For all ϑ ∈ Θ, the spectrum of Aϑ is a subset of {z ∈ C : −π/h < Im z < π/h}.

Theorem 3.14 (Identifiability). Assume that Θ ⊃ ϑ 7→
(
Aϑ, Bϑ,Cϑ,Σ

L
ϑ

)
is a parametrization of continuous-

time state space models satisfying Assumptions C1 to C5. Then the corresponding collection of output
processes K(Θ) is h-identifiable from the spectral density.

Proof. We will show that for every ϑ1,ϑ2 ∈ Θ, ϑ1 , ϑ2, the sampled output processes Y(h)
ϑ1

and Y(h)
ϑ2

(h) are
not L2-observationally equivalent. Suppose, for the sake of contradiction, that the spectral densities of the
sampled output processes were the same. Then the Spectral Factorization Theorem (Theorem 3.6) would
imply that there exists an orthogonal N × N matrix O such that

Cϑ1 (eiω1N − eAϑ1 h)�Σ
(h),1/2
ϑ1

O = Cϑ2 (eiω1N − eAϑ2 h)�Σ
(h),1/2
ϑ2

, −π 6 ω 6 π,

where �Σ
(h),1/2
ϑi

, i = 1, 2, are the unique positive definite matrix square roots of the covariance matrices∫ h
0 eAϑi uBϑiΣ

L
ϑi

BT
ϑi

eAT
ϑi

udu, defined by spectral calculus. This means that the two triples(
eAϑ1 h, �Σ

(h),1/2
ϑ1

O,Cϑ1

)
and

(
eAϑ2 h, �Σ

(h),1/2
ϑ2

,Cϑ2

)
are algebraic realizations of the same rational matrix function. Since Assumption C5 clearly implies the
Kalman–Bertram criterion (3.15), it follows from Proposition 3.11 in conjunction with Assumption C3 that
these realizations are minimal, and hence from Hannan and Deistler (1988, Theorem 2.3.4) that there exists
an invertible matrix T ∈ MN(R) satisfying

eAϑ1 h = T−1eAϑ2 hT, �Σ
(h),1/2
ϑ1

O = T−1
�Σ

(h),1/2
ϑ2

, Cϑ1 = Cϑ2 T. (3.16)

It follows from the power series representation of the matrix exponential that T−1eAϑ2 hT equals eT−1Aϑ2 Th.
Under Assumption C5, the first equation in conjunction with Lemma 3.12 therefore implies that Aϑ1 =

T−1Aϑ2 T . Using this, the second of the three equations (3.16) gives

�Σ
(h)
ϑ1

=

∫ h

0
eAϑ1 u

(
T−1Bϑ2

)
ΣL
ϑ2

(
T−1Bϑ2

)T
eAT

ϑ1
udu,

which, by Lemma 3.13, implies that (T−1Bϑ2 )ΣL
ϑ2

(T−1Bϑ2 )T = Bϑ1Σ
L
ϑ1

BT
ϑ1

. Together with the last of the
equations (3.16) and Proposition 3.7 it follows that, for every ω ∈ [−π, π],

fϑ1 (ω) =Cϑ1 (iω1N − Aϑ1 )−1Bϑ1Σ
L
ϑ1

BT
ϑ1

(−iω1N − AT
ϑ1

)−1CT
ϑ1

=Cϑ2 (iω1N − Aϑ2 )−1Bϑ2Σ
L
ϑ2

BT
ϑ2

(−iω1N − AT
ϑ2

)−1CT
ϑ2

= fϑ2 (ω);

this contradicts Assumption C4 that Yϑ1 and Yϑ2 are not L2-observationally equivalent. �

3.4. Asymptotic properties of the QML estimator. In this section we apply the theory that we developed
in Section 2 for the quasi maximum likelihood estimation of general discrete-time linear state space mod-
els to the estimation of continuous-time linear state space models or, equivalently, multivariate CARMA
processes. We have already seen that a discretely observed MCARMA process can be represented by a
discrete-time state space model and that, thus, a parametric family of MCARMA processes induces a para-
metric family of discrete-time state space models. More precisely, Eqs. (3.12) show that the process of
sampling with spacing h maps the continuous-time state space models (Aϑ, Bϑ,Cϑ, Lϑ)ϑ∈Θ to the discrete-
time state space models (

eAϑh,Cϑ, N(h)
ϑ
, 0

)
ϑ∈Θ

, N(h)
ϑ,n =

∫ nh

(n−1)h
eAϑuBϑdLϑ(u), (3.17)
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which are not in the innovations form (1.2). The quasi maximum likelihood estimator ϑ̂
L,(h)

is defined by
Eq. (2.14), applied to the state space model (3.17), that is

ϑ̂
L,(h)

= argminϑ∈Θ L̂ (h)(ϑ, yL,(h)), (3.18a)

L̂ (h)(ϑ, yL,(h)) =

L∑
n=1

[
d log 2π + log det V (h)

ϑ
+ ε̂(h),T

ϑ,n V (h),−1
ϑ

ε̂(h)
ϑ,n

]
, (3.18b)

where ε̂(h)
ϑ

are the pseudo-innovations of the observed process Y(h) = Y(h)
ϑ0

, which are computed from the

sample yL,(h) = (Y(h)
1 , . . . ,Y(h)

L ) via the recursion

X̂ϑ,n =
(
eAϑh − K(h)

ϑ
Cϑ

)
X̂ϑ,n−1 + K(h)

ϑ
Y(h)

n−1, ε̂(h)
ϑ,n = Y(h)

n −CϑX̂ϑ,n, n ∈ N.

The initial value X̂ϑ,1 may be chosen in the same ways as in the discrete-time case. The steady-state Kalman
gain matrices K(h)

ϑ
and pseudo-covariances V (h)

ϑ
are computed as functions of the unique positive definite

solution Ω
(h)
ϑ

to the discrete-time algebraic Riccati equation

Ω
(h)
ϑ

= eAϑhΩ
(h)
ϑ

eAT
ϑ

h + �Σ
(h)
ϑ
−

[
eAϑhΩ

(h)
ϑ

CT
ϑ

] [
CϑΩ

(h)
ϑ

CT
ϑ

]−1 [
eAϑhΩ

(h)
ϑ

CT
ϑ

]T
,

namely

K(h)
ϑ

=
[
eAϑhΩ

(h)
ϑ

CT
ϑ

] [
CϑΩ

(h)
ϑ

CT
ϑ

]−1
, V (h)

ϑ
= CϑΩ

(h)
ϑ

CT
ϑ .

In order to obtain the asymptotic normality of the quasi maximum likelihood estimator for multivariate
CARMA processes, it is therefore only necessary to make sure that Assumptions D1 to D10 hold for
the model (3.17). The discussion of identifiability in the previous section allows us to specify accessible
conditions on the parametrization of the continuous-time model under which the quasi maximum likelihood
estimator is strongly consistent. In addition to the identifiability assumptions C3 to C5, we impose the
following conditions.

Assumption C6. The parameter space Θ is a compact subset of Rr.

Assumption C7. The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, and ϑ 7→ ΣL
ϑ

are continuous. Moreover, for
each ϑ ∈ Θ, the matrix Cϑ has full rank.

Lemma 3.15. Assumptions C1 to C3, C6 and C7 imply that the family
(
eAϑh,Cϑ, N(h)

ϑ
, 0

)
ϑ∈Θ

of discrete-time
state space models satisfies Assumptions D1 to D4.

Proof. Assumption D1 is clear. Assumption D2 follows from the observation that the functions A 7→ eA

and (A, B,Σ) 7→
∫ h

0 eAuBΣBT eAT udu are continuous. By Assumptions C2, C6 and C7, and the fact that the
eigenvalues of a matrix are continuous functions of its entries, it follows that there exists a positive real
number ε such that, for each ϑ ∈ Θ, the eigenvalues of Aϑ have real parts less than or equal to −ε. The
observation that the eigenvalues of eA are given by the exponentials of the eigenvalues of A thus shows that
Assumption D3, i) holds with ρ B e−εh < 1. Assumption C1 that the matrices ΣL

ϑ
are non-singular and the

minimality assumption C3 imply by Corollary 3.10 that the noise covariance matrices �Σ
(h)
ϑ

= EN(h)
ϑ,nN(h),T

ϑ,n
are non-singular, and thus Assumption D3, ii) holds. Further, by Proposition 2.2, the matrices Ωϑ are non-
singular, and so are, because the matrices Cϑ are assumed to be of full rank, the matrices Vϑ; this means
that Assumption D3, iii) is satisfied. Assumption D4 is a consequence of Proposition 3.7, which states that
the noise sequences Nϑ are i. i. d. and in particular ergodic; their second moments are finite because of
Assumption C1. �

In order to be able to show that the quasi maximum likelihood estimator ϑ̂
L,(h)

is asymptotically normally
distributed, we impose the following conditions in addition to the ones described so far.

Assumption C8. The true parameter value ϑ0 is an element of the interior of Θ.

Assumption C9. The functions ϑ 7→ Aϑ, ϑ 7→ Bϑ, ϑ 7→ Cϑ, and ϑ 7→ ΣL
ϑ

are three times continuously
differentiable.

Assumption C10. There exists a positive number δ such that E
∥∥∥Lϑ0 (1)

∥∥∥4+δ
< ∞.
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Lemma 3.16. Assumptions C8 to C10 imply that Assumptions D6 to D8 hold for the model (3.17).

Proof. Assumption D6 is clear. Assumption D7 follows from the fact that the functions A 7→ eA and
(A, B,Σ) 7→

∫ h
0 eAuBΣBT eAT udu are not only continuous, but infinitely often differentiable. For Assump-

tion D8 we need to show that the random variables N B Nϑ0,1 have bounded (4 + δ)th absolute moments.
It follows from Rajput and Rosiński (1989, Theorem 2.7) that N is infinitely divisible with characteristic
triplet (γ,Σ, ν) and that∫

‖x‖>1
‖x‖4+δ ν(dx) 6

∫ 1

0

∥∥∥eAϑ0 (h−s)Bϑ
∥∥∥4+δ

ds
∫
‖x‖>1

‖x‖4+δ νLϑ0ϑ(dx).

The first factor on the right side is finite by Assumptions C6 and C9, the second by Assumption C10 and
the well known equivalence of finiteness of the αth absolute moment of an infinitely divisible distribution
and finiteness of the αth absolute moments of the corresponding Lévy measure restricted to the exterior
of the unit ball (Sato, 1999, Corollary 25.8). The same corollary shows that E ‖N‖4+δ < ∞ and thus
Assumption D8. �

Our final assumption is the analogue of Assumption D10. It will ensure that the Fisher information
matrix of the quasi maximum likelihood estimator ϑ̂

L,(h)
is non-singular by imposing a non-degeneracy

condition on the parametrization of the model.

Assumption C11. There exists a positive index j0 such that the
[
( j0 + 2)d2

]
× r matrix

∇ϑ


[
1 j0+1 ⊗ K(h),T

ϑ
⊗Cϑ

] [ (
vec e1N h

)T (
vec eAϑh

)T
· · ·

(
vec eA j0

ϑ
h
)T ]T

vec Vϑ


ϑ=ϑ0

has rank r.

Theorem 3.17 (Consistency and asymptotic normality for ϑ̂
L,(h)

). Assume that (Aϑ, Bϑ,Cϑ, Lϑ)ϑ∈Θ is a
parametric family of continuous-time state space models, and denote by yL,(h) = (Y(h)

ϑ0.1
, . . . ,Y(h)

ϑ0.L
) a sample

of length L from the discretely observed output process corresponding to the parameter value ϑ0 ∈ Θ.
Under Assumptions C1 to C7 the quasi maximum likelihood estimator ϑ̂

L,(h)
= argminϑ∈Θ L̂ (ϑ, yL,(h)) is

strongly consistent, that is

ϑ̂
L,(h) a. s.
−−−−→
L→∞

ϑ0. (3.19)

If, moreover, Assumptions C8 to C11 hold, then ϑ̂
L,(h)

is asymptotically normally distributed, that is
√

L
(
ϑ̂

L,(h)
− ϑ0

)
d
−−−−→
L→∞

N (0,Ξ), (3.20)

where the asymptotic covariance matrix Ξ = J−1IJ−1 is given by

I = lim
L→∞

L−1 Var
(
∇ϑL

(
ϑ0, yL

))
, J = lim

L→∞
L−1∇2

ϑL
(
ϑ0, yL

)
. (3.21)

Proof. Strong consistency is a consequence of Theorem 2.5 if we can show that the parametric family(
eAϑh,Cϑ, Nϑ, 0

)
ϑ∈Θ

of discrete-time state space models satisfies Assumptions D1 to D5. The first four of
these are shown to hold in Lemma 3.15. For the last one, we observe that, by Lemma 2.4, Assumption D5
is equivalent to the family of state space models (3.17) being identifiable from the spectral density. Under
Assumptions C3 to C5 this is guaranteed by Theorem 3.14.

In order to prove Eq. (3.20), we shall apply Theorem 2.6 and therefore need to verify Assumptions D6
to D10 for the state space models

(
eAϑh,Cϑ, Nϑ, 0

)
ϑ∈Θ

. The first three hold by Lemma 3.16, the last one as a
reformulation of Assumption C11. Assumption D9, that the strong mixing coefficients α of a sampled mul-
tivariate CARMA process satisfy

∑
m[α(m)]δ/(2+δ) < ∞, follows from Assumption C1 and Marquardt and

Stelzer (2007, Proposition 3.34), where it was shown that MCARMA processes with a finite logarithmic
moment are exponentially strongly mixing. �
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4. Practical applicability

In this section we complement the theoretical results from Sections 2 and 3 by commenting on their
applicability in practical situations. Canonical parametrizations are a classical subject of research about
discrete-time dynamical systems, and most of the results carry over to the continuous-time case; without
going into great detail we present the basic notions and results about these parametrizations. The assertions
of Theorem 3.17 are confirmed by means of a simulation study for a bivariate non-Gaussian CARMA
process. Finally, we estimate the parameters of a CARMA model for a bivariate time series from economics
using our quasi maximum likelihood approach.

4.1. Canonical parametrizations. We present parametrizations of multivariate CARMA processes that
satisfy the identifiability conditions C3 and C4, as well as the smoothness conditions C7 and C9; if, in
addition, the parameter space Θ is restricted so that Assumptions C2, C5, C6 and C8 hold, and the driving
Lévy process satisfies Assumption C1, the canonically parametrized MCARMA model can be estimated
consistently. In order for this estimate to be asymptotically normally distributed, one must additionally
impose Assumption C10 on the Lévy process and check that Assumption C11 holds – a condition which
we are unable to verify analytically for the general model; for explicit parametrizations, however, it can be
checked numerically with moderate computational effort. The parametrizations we are to present are well-
known from the discrete-time setting; detailed descriptions with proofs can be found in Deistler (1983);
Hannan and Deistler (1988); Lütkepohl and Poskitt (1996); Reinsel (1997) or, from a slightly different
perspective, in the control theory literature Gevers (1986); Gevers and Wertz (1984); Guidorzi (1975). We
begin with a canonical decomposition for rational matrix functions.

Theorem 4.1 (Bernstein (2005, Theorem 4.7.5)). Let H ∈ Md,m(R{z}) be a rational matrix function of
rank r. There exist matrices S 1 ∈ Md(R[z]) and S 2 ∈ Mm(R[z]) with constant determinant, such that
H = S 1MS 2, where

M =

[
diag {εi/ψi}

r
i=1 0r,m−r

0d−r,r 0d−r,m−r

]
∈ Md,m(R{z}), (4.1)

and ε1, . . . εr, ψ1, . . . , ψr ∈ R[z] are monic polynomials uniquely determined by H satisfying the following
conditions:

i) for each i = 1, . . . , r, the polynomials εi and ψi have no common roots,
ii) for each i = 1, . . . , r − 1, the polynomial εi divides the polynomial εi+1, and

iii) for each i = 1, . . . , r − 1, the polynomial ψi+1 divides the polynomial ψi.

The triple (S 1,M, S 2) is called the Smith–McMillan decomposition of H.

The degrees νi of the denominator polynomials ψi in the Smith–McMillan decomposition of a rational
matrix function H are called the Kronecker indices of H, and they define the vector ν = (ν1, . . . , νd) ∈ Nd,
where we set νk = 0 for k = r + 1, . . . , d. They satisfy the important relation

∑d
i=1 νi = δM(H), where δM(H)

denotes the McMillan degree of H, that is the smallest possible dimension of an algebraic realization of H,
see Definition 3.4. For 1 6 i, j 6 d, we also define the integers νi j = min{νi + I{i> j}, ν j}, and if the Kronecker
indices of the transfer function of an MCARMA process Y are ν, we call Y an MCARMAν process.

Theorem 4.2 (Echelon state space realization, Guidorzi (1975, Section 3)). For positive integers d and m,
let H ∈ Md,m(R{z}) be a rational matrix function with Kronecker indices ν = (ν1, . . . , νd). Then a unique
minimal algebraic realization (A, B,C) of H of dimension N = δM(H) is given by the following structure.

(i) The matrix A = (Ai j)i, j=1,...,d ∈ MN(R) is a block matrix with blocks Ai j ∈ Mνi,ν j (R) given by

Ai j =


0 · · · · · · · · · · · · 0
...

...
0 · · · · · · · · · · · · 0
αi j,1 · · · αi j,νi j 0 · · · 0

 + δi, j


0

1νi−1...
0
0 · · · 0

 , (4.2a)

(ii) B = (bi j) ∈ MN,m(R) unrestricted,
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(iii) if νi > 0, i = 1, . . . , d, then

C =


1 0 . . . 0

... 0 0 . . . 0
...

... 0(d−1),νd

0(d−1),ν1

... 1 0 . . . 0
...

...
... 0(d−2),ν2

...
... 1 0 . . . 0

 . (4.2b)

If νi = 0, the elements of the ith row of C are also freely varying, but we concentrate here on the
case where all Kronecker indices νi are positive. To compute ν as well as the coefficients αi j,k and bi j

for a given rational matrix function H, several numerically stable and efficient algorithms are available in
the literature (see, e. g., Rózsa and Sinha, 1975, and the references therein). The orthogonal invariance
inherent in spectral factorization (see Theorem 3.6) implies that this parametrization alone does not ensure
identifiability. In the case m = d, one remedy is to restrict the parametrization to those transfer functions H
satisfying H(0) = H0, for a non-singular matrix H0. To see how one must constrain the parameters αi j,k, bi j

in order to ensure this normalization, we work in terms of left matrix fraction descriptions.

Theorem 4.3 (Echelon MCARMA realization, Guidorzi (1975, Section 3)). For positive integers d and
m, let H ∈ Md,m(R{z}) be a rational matrix function with Kronecker indices ν = (ν1, . . . , νd). Assume that
(A, B,C) is a realization of H, parametrized as in Eqs. (4.2). Then a unique left matrix fraction description
P−1Q of H is given by

P(z) =
[
pi j(z)

]
i, j=1,...,d

, Q(z) =
[
qi j(z)

]
i=1,...,d
j=1,...,m

, (4.3)

where

pi j(z) = δi, jzνi −

νi j∑
k=1

αi j,kzk−1, qi j(z) =

νi∑
k=1

κν1+...+νi−1+k, jzk−1, (4.4)

and the coefficient κi, j is the (i, j)th entry of the matrix K = T B, where the matrix T = (Ti j)i, j=1,...,d ∈ MN(R)
is a block matrix with blocks Ti j ∈ Mνi,ν j (R) given by

Ti j =



−αi j,2 . . . −αi j,νi j 0 . . . 0
... . .

. ...

−αi j,νi j

...

0
...

...
...

0 . . . . . . . . . . . . 0


+ δi, j



0 0 . . . . . . 0 1
0 0 . . . 1 0
...

... . .
. ...

... . .
. ...

...
0 1 . . . 0 0
1 0 . . . . . . 0 0


. (4.5)

The orders p, q of the polynomials P,Q satisfy p = max{ν1, . . . , νd} and q 6 p − 1. Using this
parametrization, there are different ways to impose the normalization H(0) = H0 ∈ Md,m(R). One
first observes that the special structure of the polynomials P and Q implies that H(0) = P(0)−1Q(0) =

−(αi j,1)−1
i j (κν1+...+νi−1+1, j)i j. The canonical state space parametrization (A, B,C) given by Eqs. (4.2) therefore

satisfies H(0) = −CA−1B = H0 if one makes the coefficients αi j,1 functionally dependent on the free pa-
rameters αi j,m, m = 1, . . . νi j and bi j by setting αi j,1 = −[(κν1+...+νk−1+1,l)klH∼1

0 ]i j, where κi j are the entries
of the matrix K appearing in Theorem 4.3 and H∼1

0 is a right inverse of H0. Another possibility, which
has the advantage of preserving the multi-companion structure of the matrix A, is to keep the αi j,1 as free
parameters, and to restrict some of the entries of the matrix B instead. Since | det K| = 1 and the matrix T is
thus invertible, the coefficients bi j can be written as B = T−1K. Replacing the (ν1 + . . .+ νi−1 + 1, j)th entry
of K by the (i, j)th entry of the matrix −(αkl,1)klH0 makes some of the bi j functionally dependent on the
entries of the matrix A, and results in a state space representation with prescribed Kronecker indices and
satisfying H(0) = H0. This latter method has also the advantage that it does not require the matrix H0 to
possess a right inverse. In the special case that d = m and H0 = −1d, it suffices to set κν1+...+νi−1+1, j = αi j,1,
for i, j = 1, . . . , d. Examples of normalized low-order canonical parametrizations are given in Tables 1
and 2.
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ν n(ν) A B C

(1, 1) 7
(
ϑ1 ϑ2

ϑ3 ϑ4

) (
ϑ1 ϑ2

ϑ3 ϑ4

) (
1 0
0 1

)
(1, 2) 10

 ϑ1 ϑ2 0
0 0 1
ϑ3 ϑ4 ϑ5


 ϑ1 ϑ2

ϑ6 ϑ7

ϑ3 + ϑ5ϑ6 ϑ4 + ϑ5ϑ7


(

1 0 0
0 1 0

)

(2, 1) 11

 0 1 0
ϑ1 ϑ2 ϑ3

ϑ4 ϑ5 ϑ6


 ϑ7 ϑ8

ϑ1 + ϑ2ϑ7 ϑ3 + ϑ2ϑ8

ϑ4 + ϑ5ϑ7 ϑ6 + ϑ5ϑ8


(

1 0 0
0 0 1

)

(2, 2) 15


0 1 0 0
ϑ1 ϑ2 ϑ3 ϑ4

0 0 0 1
ϑ5 ϑ6 ϑ7 ϑ8




ϑ9 ϑ10

ϑ1 + ϑ4ϑ11 + ϑ2ϑ9 ϑ3 + ϑ2ϑ10 + ϑ4ϑ12

ϑ11 ϑ12

ϑ5 + ϑ8ϑ11 + ϑ6ϑ9 ϑ7 + ϑ6ϑ10 + ϑ8ϑ12


(

1 0 0 0
0 0 1 0

)

Table 1. Canonical state space realizations (A, B,C) of normalized (H(0) = −12) rational transfer
functions in M2(R{z}) with different Kronecker indices ν; the number of parameters, n(ν), includes
three parameters for a covariance matrix ΣL.

ν n(ν) P(z) Q(z) (p, q)

(1, 1) 7
(

z − ϑ1 −ϑ2
−ϑ3 z − ϑ4

) (
ϑ1 ϑ2
ϑ3 ϑ4

)
(1, 0)

(1, 2) 10
(

z − ϑ1 −ϑ2
−ϑ3 z2 − ϑ4z − ϑ5

) (
ϑ1 ϑ2

ϑ6z + ϑ3 ϑ7z + ϑ5

)
(2, 1)

(2, 1) 11
(

z2 − ϑ1z − ϑ2 −ϑ3
−ϑ4z − ϑ5 z − ϑ6

) (
ϑ7z + ϑ2 ϑ8z + ϑ3
ϑ5 ϑ6

)
(2, 1)

(2, 2) 15
(

z2 − ϑ1z − ϑ2 −ϑ3z − ϑ4
−ϑ5z − ϑ6 z2 − ϑ7z − ϑ8

) (
ϑ9z + ϑ2 ϑ10z + ϑ4
ϑ11z + ϑ6 ϑ12z + ϑ8

)
(2, 1)

Table 2. Canonical MCARMA realizations (P,Q) with order (p, q) of normalized (H(0) = −12)
rational transfer functions in M2(R{z}) with different Kronecker indices ν; the number of parame-
ters, n(ν), includes three parameters for a covariance matrix ΣL.

4.2. A simulation study. In order to get a better feeling for how the quasi maximum likelihood estima-
tion procedure performs in reality, we present a simulation study for a bivariate CARMA process with
Kronecker indices (1, 2), i. e. CARMA indices (p, q) = (2, 1). As the driving Lévy process we chose a
zero-mean normal-inverse Gaussian (NIG) process (L(t))t∈R. Such processes have been found to be useful
in the modelling of stock returns and stochastic volatility, as well as turbulence data (see, e. g., Barndorff-
Nielsen, 1997, 1998; Barndorff-Nielsen et al., 2004; Rydberg, 1997). The distribution of the increments
L(t) − L(t − 1) of a bivariate normal-inverse Gaussian Lévy process is characterized by the density

fNIG(x;µ, α,β, δ,∆) =
δ exp(δκ)

2π
exp(〈βx〉)
exp(αg(x))

1 + αg(x)
g(x)3 , x ∈ R2,

where

g(x) =

√
δ2 + 〈x − µ,∆(x − µ〉, κ2 = α2 − 〈β,∆β〉 > 0,

and µ ∈ R2 is a location parameter, α > 0 is a shape parameter, β ∈ R2 is a symmetry parameter, δ > 0 is
a scale parameter and ∆ ∈ M+

2 (R), det ∆ = 1, determines the dependence between the two components of
(L(t))t∈R. For our simulation study we chose parameters

δ = 1, α = 3, β = (1, 1)T , ∆ =

(
5/4 −1/2
−1/2 1

)
, µ = −

1

2
√

31
(3, 2)T , (4.6)
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resulting in a skewed, semi-heavy-tailed distribution with mean zero and covariance matrix

ΣL =
1

313/2

(
82 −28
−28 64

)
≈

(
0.4751 −0.1622
−0.1622 0.3708

)
. (4.7)

A sample of 350 independent replicates of the bivariate CARMA1,2 process (Y(t))t∈R driven by a normal-in-
verse Gaussian Lévy process (L(t))t∈R with parameters given in Eq. (4.6) were simulated on the equidistant
grid 0, 0.01, . . . , 2000 by applying an Euler scheme to the stochastic differential equation (3.5) making use
of the canonical parametrization given in Table 1. For the simulation, the initial value X(0) = 03 and
ϑ1:7 = (−1,−2, 1,−2,−3, 1, 2) was used. Each realization was sampled at integer times (h = 1), and quasi
maximum likelihood estimates of ϑ1, . . . , ϑ7 as well as (ϑ8, ϑ9, ϑ10) B vech ΣL were computed by numer-
ical maximization of the quasi log-likelihood function using a differential evolution optimization routine
(Price et al., 2005) in conjunction with a subspace trust-region method (Branch et al., 1999; Byrd et al.,
1988). In Table 3 the sample means and sampled standard deviations of the estimates are reported. More-
over, the standard deviations were estimated using the square roots of the diagonal entries of the asymptotic
covariance matrix (2.45) with s(L) = bL/ log Lc1/3, and the estimates are also displayed in Table 3. One

parameter sample mean bias sample std. dev. mean est. std. dev.
ϑ1 -1.0001 0.0001 0.0354 0.0381
ϑ2 -2.0078 0.0078 0.0479 0.0539
ϑ3 1.0051 -0.0051 0.1276 0.1321
ϑ4 -2.0068 0.0068 0.1009 0.1202
ϑ5 -2.9988 -0.0012 0.1587 0.1820
ϑ6 1.0255 -0.0255 0.1285 0.1382
ϑ7 2.0023 -0.0023 0.0987 0.1061
ϑ8 0.4723 -0.0028 0.0457 0.0517
ϑ9 -0.1654 0.0032 0.0306 0.0346
ϑ10 0.3732 0.0024 0.0286 0.0378

Table 3. Quasi maximum likelihood estimates for the parameters of a bivariate NIG-driven
CARMA1,2 process observed at integer times over the time horizon [0, 2000]. The second col-
umn reports the empirical mean of the estimators as obtained from 350 independent simulated
paths; the third and fourth columns contain the resulting bias and the sample standard deviation
of the estimators, respectively, while the last column reports the average of the expected standard
deviations of the estimators as obtained from the asymptotic normality result Theorem 3.17.

sees that the bias, the difference between the sample mean and the true parameter value, is very small in
accordance with the asymptotic consistency of the estimator. Moreover, the estimated standard deviation is
always slightly larger than the sample standard deviation, yet close enough to provide a useful approxima-
tion for, e. g., the construction of confidence regions. In order not to underestimate the uncertainty in the
estimate, such a conservative approximation to the true standard deviations is desirable in practice. Overall,
the estimation procedure performs very well in the simulation study.

4.3. Application to weekly bond yields. In this section we provide an illustrative data example and apply
the techniques established in the preceding sections to the bivariate weekly series of Moody’s seasoned
Aaa and Baa corporate bond yields from October 1966 through April 2009; these data are available from
the Federal Reserve Bank of St. Louis. We first took the logarithm of the data and the resulting series was
seen to have a unit root in each component, so the next step in the data preparation was differencing at lag 1.
Using a moving window of length 52 — corresponding to a period of one year — we removed the stochas-
tic volatility effects displayed by the differenced time series to obtain data with no obvious departure from
stationarity. Figure 1 shows the weekly bond log-yields after differencing and devolatilization. We have
fitted bivariate CARMA processes of McMillan degrees n = 2, 3, 4 using the quasi maximum likelihood
method described in Section 3.4 and employing the canonical parametrizations of Section 4.1. The numer-
ical values of ϑ̂ as well as their standard errors estimated by the square root of the diagonal entries in the
approximate asymptotic covariance matrix Ξ̂L

s , defined in Eq. (2.45), can be found in Table 4. The last row
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Figure 1. Weekly series of Moody’s seasoned Aaa and Baa corporate bond yields after differenc-
ing and devolatilization

displays the value of twice the negative logarithm of the Gaussian likelihood of the observations under the
model corresponding to the estimated parameter value ϑ̂. The quality of the fit can be assessed from Fig. 2

(α, β) (1, 1) (1, 2) (2, 1) (2, 2)
ϑ̂i σ(ϑi) ϑ̂i σ(ϑi) ϑ̂i σ(ϑi) ϑ̂i σ(ϑi)

ϑ̂1 -1.1326 0.1349 -1.1538 0.1401 -1.3776 0.0320 -0.0010 0.0336
ϑ̂2 0.2054 0.1171 0.2307 0.1008 -2.4033 0.0197 -1.1601 0.5964
ϑ̂3 0.3316 0.1206 -0.2528 0.1716 0.0228 0.0050 -0.0098 0.0268
ϑ̂4 -1.0935 0.1065 -0.0362 0.0472 -4.9948 0.1096 0.1829 0.7429
ϑ̂5 2.4105 0.2324 -1.2516 0.1286 -4.6276 0.1538 1.4646 0.3931
ϑ̂6 2.2483 0.2061 -2.5747 0.4595 -0.0153 0.0108 1.3662 0.4039
ϑ̂7 2.7055 0.2116 1.6345 0.2940 -1.2442 0.0391 -0.7438 0.2387
ϑ̂8 2.8552 0.1966 0.2573 0.0492 -1.7563 0.7209
ϑ̂9 3.5702 0.2151 2.4302 0.1370 -2.6936 0.6694
ϑ̂10 4.9076 0.3888 2.9784 0.2766 1.7369 0.5381
ϑ̂11 4.1571 0.5043 -3.6136 3.0265
ϑ̂12 2.8483 2.5122
ϑ̂13 4.4848 0.3327
ϑ̂14 5.5079 0.1803
ϑ̂15 7.0218 1.4357

L (ϑ̂, yL) 9,893.8 9,850.4 9,853.0 9,840.7

Table 4. QML estimates of the parameters of an MCARMAα,β model for weekly yields of
Moody’s seasoned corporate bonds. The marginal standard deviations σ(ϑi) are estimated from
the asymptotic covariance matrix in Theorem 3.17. The parameters whose confidence region to
the level 5% contains zero are marked in bold.

where we compare the autocorrelation functions of the fitted models with the empirical autocorrelation
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function of the data. One sees how the fit becomes better as one increases the model order in accordance
with an increasing value of the Gaussian likelihood; in particular, the autocorrelations of the second com-
ponent at higher lags are better captured by the higher order models. This phenomenon is well known from
the estimation of discrete-time parametric processes where penalty terms in the likelihood together with
order selection criteria like the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC) are used to formalize the trade-off between goodness of fit and model complexity. Understanding
their applicability in a continuous-time set-up remains a problem for future research.
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Figure 2. Empirical auto- and crosscorrelations of the weekly bond data from Fig. 1
compared to the theoretical auto- and crosscorrelations of estimated MCARMAα,β mod-
els, for different Kronecker indices (α, β)
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