
Compiling AI Engineering Models for Probabilistic
Inference?

Paul Maier and Dominik Jain and Martin Sachenbacher

Deparment of Informatics, Technische Universität München

Abstract. In engineering domains, AI decision making is often confronted with
problems that lie at the intersection of logic-based and probabilistic reasoning.
A typical example is the plan assessment problem studied in this paper, which
comprises the identification of possible faults and the computation of remaining
success probabilities based on a model. In addition, AI solutions to such prob-
lems need to be tailored towards the needs of engineers, and thus use high-level,
expressive modeling formalisms such as probabilistic hierarchical constraint au-
tomata (PHCA).
This work introduces a translation from PHCA models to statistical relational
models, which enables a wide array of probabilistic reasoning solutions to be
leveraged (e.g., by grounding to problem-specific Bayesian networks). We illus-
trate this approach for the plan assessment problem, and compare it to an alter-
native logic-based approach that translates the PHCA models to lower-level logic
models and computes solutions by enumerating most likely hypotheses. Exper-
imental results on realistic problem instances demonstrate that the probabilistic
reasoning approach is a promising alternative to the logic-based approach.

Introduction
In engineering domains, AI decision making is often confronted with problems that lie
at the intersection of model-based diagnosis and probabilistic reasoning. For example,
in a manufacturing scenario, the AI controller of a factory plant needs to take deci-
sions depending on the success or failure of the production of individual products. The
manufacturing of products is automatically scheduled in advance, specifying which ac-
tions to perform where and when. During production, model-based diagnosis computes
most likely diagnostic hypotheses for given observations [1], and thus provides the con-
troller with a global view of the plant. To take the aforementioned decisions, however,
it additionally needs a local view indicating, for example, the probability with which
the production of a particular item will succeed given the observations. For example, a
product might be predicted to be successfully manufactured with 0.35 probability. This
is the classical probabilistic reasoning problem of computing posterior marginals. The
problem of computing most likely hypotheses and, at the same time, probabilities for
certain model states is a variant of the plan assessment problem [2].

Model-based diagnosis is a technique that supports AI decision making by identifing
faulty components of a technical system, typically based on logical reasoning, while
probabilistic reasoning is the classical AI technique for decision support. A key aspect
? Preprint submitted to KI 2011.



in applying these methods is modeling. Both model-based diagnosis and probabilis-
tic reasoning follow a trend towards rich and expressive formalisms, auto-generating
low-level representations such as Bayesian networks (BNs), which can then be fed to
off-the-shelf tools. This has three advantages: 1) It spares users the tedious effort of
hand crafting low-level models and re-implementing algorithms, 2) the algorithms im-
plemented by said tools seek to exploit problem structure in a most general fashion and
3) they are typically supported by large communities. Probabilistic hierarchical con-
straint automata (PHCA) [3] are a first-order model-based diagnosis formalism specifi-
cally tailored to compactly represent complex hard- and software behavior, addressing
the needs of engineers. Following the approach of using off-the-shelf tools, [4] provides
an automatic translation for constraint optimization, which is common in model-based
diagnosis. This work was extended in [2] towards solving plan assessment. However,
there is still a gap between high-level modeling on the model-based diagnosis side and
the methods and frameworks on the probabilistic reasoning side.

This work aims to provide engineers with a way of applying the tools of proba-
bilistic reasoning to the novel engineering problem of plan assessment. We contribute
a translation of first-order PHCA models to statistical relational models (a first-order
generalisation of graphical models such as Bayesian nets). This opens up the oppor-
tunity to choose among a wide range of probabilistic reasoning off-the-shelf tools. To
our knowledge, it is the first such translation from PHCAs to a high-level probabilistic
reasoning framework. We evaluate our approach by translating different PHCAs and
feeding the resulting BNs to the publicly available probabilistic reasoning tool Ace 2.0
[5, 6] in order to solve the plan assessment problem. We compare the results with the
aforementioned model-based diagnosis approach.

The remainder of this section discusses some related work and details the example
scenario used throughout the paper. The next three sections formally define plan as-
sessment, recap the model-based diagnosis solution and describe our novel translation
along with the probabilistic reasoning solution based upon it. The final sections discuss
the evaluation results and conclude the paper.

Related work. Closely related is [7], which solves plan assessment for a hand-crafted
BLN model. While there has been work on combining model-based diagnosis and prob-
abilistic reasoning [8, 9], a general bridge between the two areas, such as our translation,
which allows the comparison of model-based diagnosis and probabilistic reasoning so-
lutions, has not yet been developed. The field of probabilistic model checking [10],
which is close to plan assessment, can answer queries such as “What is the probability
that the system reaches state s?”, based on a model of the system. However, plan as-
sessment is ultimately geared towards supporting robust online control, which, unlike
probabilistic model checking, includes generating diagnoses and focussing computation
using available observations.

Example: metal machining and assembly. Within the aforementioned manufacturing
scenario, products (toy mazes) are first being machined and then assembled. Two dif-
ferent faults can flaw products. The cutter of machining stations might break, damaging
the alloy base plate (see Fig. 1d). This damage triggers an observable alarm at the
assembly station later on. That same alarm might also be triggered if the assembly sta-
tion is miscalibrated (the second fault). The question is: Given the alarm, how are the



ok

failure: flawed

maze0

Idle

cut

machining1

idle

failure: cutter
broken

cut

cutter blunt

idle

cover

assembly
assembly-status

ok

failure: 
misaligned

bolts

robot

idle

cut

failure: cutter
broken

machining0

ok

failure: flawed

maze1

ok

failure: flawed

robot0

(a)

idle
product = ok

cut

product = ok

failure: cutter
broken

product = flawed

cmd = cut; 
0.9

cmd = noop; 1.0

cmd = cut;
0.9

cmd = noop; 1.0

cmd = cut; 0.1

cmd = cut; 0.1

machining0

(b)

idle

product = ok

cmd = cut; 0.9

cmd = noop; 1.0

cut

product = ok

cmd = cut;
0.9

cmd = noop;
1.0

cmd = cut; 0.1

cmd = cut; 0.1

machining1

idle

product = ok

failure: cutter
broken

product = flawed

cut

product = ok

cmd = noop; 1.0

cmd = cut;
1.0

; 1.0

cmd = cut; 0.5

cmd = cut; 0.5

cmd = cut; 0.5
cmd = noop;

1.0

cutter blunt

(c) (d)

Fig. 1: (1a) Overview of a typical PHCA. It models a factory scenario with three in-
dividual products being manufactured. (1b and 1c) Detail views of sub-automata ma-
chining0, with simple probabilistic behavior, and machining1, showing a more complex
hierarchical machining fault: the cutter goes blunt before breaking. (1d) A product dam-
aged during machining.

manufacturing goals affected, and what are potential faults? We modeled several slight
variations of this scenario. Fig. 1a shows a PHCA that models an assembly and two
machining stations, as well as three products which are to be produced. Fig. 1c and 1b
show detailed versions of the two machining stations.

PHCA-Based Plan Assessment
Plan assessment extends the maximum probability diagnosis problem [11] towards ad-
ditionally computing success probabilities for given goals. The problem arises when
three aspects come together: 1) A rigidly designed system with some remaining uncer-
tainties that would be hard to eliminate executes 2) pre-planned operations to 3) achieve
defined goals. These aspects are reflected in three formal elements: 1) A system model,
in our case a PHCA MPHCA, 2) an operation sequence S of operation steps, and 3) a
set of goals {Gi}.
System Model. PHCA models define automata states, called locations, and transitions
between them. The transitions may be guarded and probabilistic, locations may be com-
posed of sub-locations. PHCAs are formally defined as follows [4]:

Definition. A PHCA is a tuple (Σ,PΞ , Π,O,Cmd, C, PT ):

– Σ = Σp ] Σc is a set of locations, partitioned into primitive locations Σp and
composite locations Σc, where a composite location represents a PHCA whose



elements are subsets of the elements of the containing PHCA. A location may be
marked or unmarked. A marked location represents an active execution branch. A
marking mt (at time t during execution) is given as a subset of Σ.

– PΞ(Ξi) denotes the probability that Ξi ⊆ Σ is the set of start locations (initial
state).

– Π = O ] Cmd ] Dep is a set of variables with finite domains. O is the set of
observation variables, Cmd is the set of action or command variables, and Dep
is a set of dependent hidden variables which are connected to other variables via
constraints.

– C is the set of finite domain constraints defined over Π , which comprises behavior
constraints of locations and guard constraints of transitions. A location’s behavior
constraint serves to define the observations that are consistent with the location; a
transition’s guard defines the conditions under which the transition can be taken
(usually depending on commands).

– PT [li] (defined for each li ∈ Σp) is a probability distribution over the subset of the
set of transitions T , which contains transitions leading away from li whose guards
(elements of C[Π]) are satisfied given the current state.

Given a PHCA modelMPHCA of a technical system, the behavior of the system over
time is estimated by generating sequences of location markings θ = (mt0 ,mt1 , . . . ,mtN ).
We denote by St(MPHCA) the set of all such fixed-length sequences (called trajecto-
ries).

Operation Sequences. Pre-planned operations are typically given as a sequence S of
operation steps. Steps can be anything from simple (sets of) commands to more com-
plicated operations, such as scheduled allocations of machines, products and actions
to perform. We consider scenarios where S is synthesized automatically (using, e.g., a
planner or a scheduler), and later executed on the system. This is captured by an execu-
tion adaptation function ES , which adapts a PHCA modelMN

PHCA unfolded forN time
steps (reproducing the PHCA’s components for each time step t, yielding Σt, Πt, T t
and Ct). It sets all command variables as given by S, removing the transitions whose
guards become unsatisfiable as a result, and modifies the constraints Ct. The resulting
model MSPHCA = ES(MN

PHCA) therefore no longer contains the command variables
Cmd and will typically feature a reduced number of possible trajectories. Markov prop-
erties of MPHCA are unaffected.

Each sequence of observations o0:t (t ≤ N ) and each modelMSPHCA defines a joint
distribution P (θ,O = o0:t):

P (θ,O0:t = o0:t) = PΞ(m0)
∏

u∈{0..t}

P (Ou |mu)
∏

τ∈T [θ]

P (τ) (1)

where T [θ] is the multiset of all transitions between primitive locations as implied
by θ, in which a transition τ from location li to lj may occur multiple times; the transi-
tion probability is computed as P (τ) = PT [li](τ). The above distribution corresponds
to the PHCA hidden Markov model semantics [4, 3].

Goals. A goal Gi is a set of goal-achieving trajectories. A practical way of defining Gi
is in terms of designated goal states mtGi that trajectories in Gi should lead to, and the
time tGi when the goal should be achieved.



Definition. Let MPHCA be a PHCA model, S a sequence of N operation steps with
execution adaptation function ES and {Gi} a set of goals. Let MSPHCA = ES(MN

PHCA).
The plan assessment problem is, given observations o0:t, to compute the most proba-
ble diagnosis as trajectory in St(MSPHCA) as well as P (Gi | o0:t) for each i.

Solving Plan Assessment

Model representation always strongly influences problem solving efficiency. Often,
Markov modelling is used to exploit the Markov property during inference. However,
compared to more expressive non-Markov modeling this can lead to bigger represen-
tations. This size-vs-expressiveness trade-off impacts even more when automatically
generating such representations from high-level models. Originally, PHCA semantics
were defined in terms of hidden Markov models (HMM) [3], which allows complex
Markov modeling at the cost of potentially larger models. This is problematic for ex-
isting off-the-shelf HMM solvers: On the one hand, a naive automated flattening of
hierarchical models would generate prohibitively large HMMs. Automatically decom-
posing PHCAs into explicit, tractable HMM representations, on the other hand, is only
possible in a small number of special cases where components are not connected. Our
example is not such a case: The assembly and manufacturing stations seem indepen-
dent of each other; however, they are connected via product models and their scheduled
actions. In addition, automatic compilation typically incurs an overhead compared to
custom tailored translation, which further increases the size of explicit HMMs. Con-
sequently, it is not usually advisable to encode ground models as explicit HMMs: We
would easily obtain hidden variables with domain sizes of ≈ 2100, thus requiring a
2100 × 2100 transition matrix!

For these reasons, we apply a different approach. Using a translation Υ we trans-
late, in an offline step, MPHCA to low-level representations M that are still expressive
enough to represent structure and are sufficiently general to allow the use of off-the-
shelf solvers that do not depend on the Markov property but exploit model structure
in a general fashion. We define execution adaptation functions ES on these representa-
tions, which allows to reuse the translation for different operation sequences. We now
describe two solutions for plan assessment that we evaluate in this work.

Hypothesis Enumeration
Recent work developed a model-based diagnosis-inspired solution that first computes
the most likely trajectories as the best solutions to a constraint optimization problem
(COP) and then computes P (Gi | o0:t) by summing over goal-achieving trajectories
among these, normalizing over all [2]. The work exploits an automatic translation of
a PHCA to a COP R = (X,D,C) [4]. We term this translation ΥCOP, which maps
a model MPHCA to variables X , their finite domains D and local objective functions
c ∈ C, called soft constraints. Soft constraints map partial variable assignments to [0, 1].
Execution functions modifyR by adding soft constraints. We refer to [4] for the details.

Plan assessment is solved for a translated and adapted model ES(ΥCOP(MPHCA))
as follows. Each COP solution of the translation corresponds directly to a trajectory θ
of MPHCA. A COP solution is an assignment to all variables in X . P (Gi | o0:t) can be

computed as P (Gi | o0:t) =
∑
θ∈Gi P (θ | o0:t) =

P
θ∈Gi

P (θ,o0:t)P
θ∈Θ P (θ,o0:t) , i.e. P (Gi | o0:t) can



be computed exactly based on probabilities P (θ,o0:t), which correspond to objective
values of the COP solutions.

The key motivation for this approach is that strong off-the-shelf constraint optimiza-
tion solvers can be exploited to generate a list of all non-zero probability assignments,
corresponding to valid trajectories, sorted by probability. The most probable trajectory
is then chosen as most probable diagnosis, while the complete list is used as set Θ.
While [2] used the Toolbar solver, in this work, we use the more recent, award-winning
Toulbar2 solver1, which implements many state-of-the-art techniques (including, for
example, soft-constraint consistency [12]).

Note that Toulbar2 requires another transcoding that involves conversion between
probability values and integer costs, resulting in a precision loss. For our examples,
however, this loss was negligible.

Probabilistic Inference
From a probabilistic reasoning point of view, plan assessment can be seen as a combina-
tion of simultaneously computing most likely explanations (MPE) and marginals. MPE
and the computation of marginals are long time standard problems in probabilistic rea-
soning with existing off-the-shelf solutions. Bayesian networks (BNs) are a common
representation for probabilistic models. We now describe a new translation of PHCA
models to abstract, generalized Bayesian networks, which can in turn be automatically
instantiated to BNs. This opens up the possibility of comparing the COP-based ap-
proach from the previous section with solutions from the probabilistic reasoning com-
munity. Once translated, P (Gi | o0:t) can be computed as the posterior marginal of a
goal variable (BN node).

We translate PHCAs into Bayesian logic networks (BLNs) [13]. A BLN is a statis-
tical relational model and can be seen as a template for the construction of Bayesian
networks. Given a set of entities, a BLN may be instantiated to either a ground BN
or a ground mixed network (MN) that explicitly represents logical constraints on the
distribution [14]. Probabilistic inference is often performed in such ground models.
However, recent research in statistical relational reasoning tries to (partially) lift the

1 https://mulcyber.toulouse.inra.fr/projects/toulbar2 (02/2011)

(a) (b)

Fig. 2: Figures 1b and 1c translated to BLN fragments, showing excerpts of location
marking and probabilistic transition choice (2a) as well as composite and full target
marking (2b).



inference problem to the first-order level in order to exploit repeated sub-structures in
ground models [15]. Besides the added expressivity and flexibility offered by a first-
order formalism, the possibility of exploiting first-order encodings is one of our main
reasons for seeking a relational translation rather than a direct encoding to BNs.

Key elements of a BLN MB are abstract random variables (ARVs), typed entities,
fragments and first-order logical (FOL) formulas. ARVs are parametrized random vari-
ables that correspond to either predicates or non-boolean functions. They encode, for
example, partial states such as a station being faulty, relations such as stations work-
ing on specific products or a probabilistically chosen transition. The arguments of an
ARV refer to abstract, typed entities, which allows, in particular, quantification over
time. A fragment associates an ARV with a conditional probability table (CPT); the
set of fragments (ellipses in Fig. 2) collectively defines, for a set of ground instances
of ARVs, a probability distribution. The applicability of a fragment may be restricted
by (mutually exclusive) first-order logic preconditions (boxes in Fig. 2). Finally, hard
logical formulas may be specified in the model, restricting the set of possible worlds.
When instantiating a BLN to a BN, a grounding (X,D,G, P ) is created that consists
of random variables X , their corresponding set of domains D, a graph G connecting
variables according to parent-child condition relations defined via the fragments, and
the set of CPTs P .

For our novel translation, we adapted the COP encoding ΥCOP of PHCAs. This
encoding is defined in terms of formal higher-order rules for structure, probabilis-
tic behavior and consistency with observations and commands [4]. The translation to
BLNs largely follows these rules, however often exploits first-order modeling features
of BLNs. The translation function ΥBLN takes as input a model MPHCA and cre-
ates a BLN MB = (D,F ,L) and a knowledge base DB. MB consists of the funda-
mental declarations D, the set of fragments F and the set of FOL formulas L. The
knowledge base defines existing objects or entities for the FOL formulas and frag-
ments as well as known facts about relations among these entities. When the BLN is
grounded, DB is extended with further evidence. Execution adaptation functions ES for
BLNs add formulas to L and facts to DB. D contains, among other things, the en-
tity types and predicate signatures for ARVs. Most of D is model-independent, i.e.
stays the same for arbitrary MPHCA. Formulas in L are, in particular, used to define
behavior and transition guard consistency predicates in terms of formulas over assign-
ments of PHCA variables O and Cmd. An example of a concrete behavior constraint is
behaviorConsistent(t,Cutter broken) <=> var PRODUCT(t,Faulty).
It specifies that the behavior of location “broken” (which is part of composite loca-
tion “cutter”) is consistent if and only if the product being processed will be bro-
ken in the next time step. In addition, L contains the general behavior consistency
rule: locMarked(t,l) => behaviorConsistent(t,l). It says that for all
points in time, a location’s behavior must be consistent if it is marked.

Next, we look at target marking, i.e. the marking of locations that are enabled start
locations or that are transitioned to. In general, the predicate locMarked(t, l) (abbrevi-
ated as lm(t, l)) encodes a location l being marked at time t. We first treat the marking
of composite locations. The composite target marking rule marks a composite loca-
tion if it is transitioned to or if it is an enabled start location:

∀t∈{1..N}. ∀lc∈Σc. transTo(t, lc) ∨ startEnabled(t, lc)⇒ lm(t, lc)



The transTo predicate is defined as follows,

∀t0 ∈ {0..N−1}. ∀t1 ∈ {1..N}. ∀lc ∈ Σc. next(t0, t1)⇒
(transTo(t1, lc)⇔ ∃l ∈ parents(lc). target(chooseTrans(t0, l)) = lc)

where the function target maps transitions to their target locations and parents maps a
location to the set of locations connected to it via transitions.

Using the location Cutterblunt as an example, we show how the composite marking
rule is translated into fragments. Generally, one fragment is created for each predicate
occuring in a rule, except if the translator can determine, e.g. from the model structure,
that a predicate is always True or False. Predicates are partially instantiated, remov-
ing all quantification except over time. In case of Cutterblunt, fragments for partially
instanciated predicates transTo(t,Cutterblunt) and lm(t,Cutterblunt) are created. No
fragment is created for startEnabled(t,Cutterblunt) because Cutterblunt is no start lo-
cation and the predicate thus always False. The following table shows the CPT template
for lm(t,Cutterblunt):

transTo(t, Cutterblunt) T F
lm(t, Cutterblunt) = T 1 0.5
lm(t, Cutterblunt) = F 0 0.5

The CPT encodes that Cutterblunt is marked if it is being transitioned to. If not, the
CPT doesn’t influence the marking. See Fig. 2b for the partial fragment network.

The second rule that influences the marking of composite locations is the hierar-
chical marking/unmarking rule, which ensures that a composite location is marked
iff at least one of its sub-locations (which are given by function sub) is marked:

∀t∈{0..N}. ∀lc∈Σc. lm(t, lc)⇔ ∃lp ∈ sub(lc). lm(t, lp)

This rule can be directly translated using logical formulas that we can add to L.
The primitive target marking rule marks primitive locations if they are either tran-

sitioned to or if they are enabled starting locations:

∀t0∈{0..N−1}. ∀t1∈{1..N}. ∀lp∈Σp. ∃l∈parents(lp). next(t0, t1)⇒
(target(chooseTrans(t0, l)) = lp ∨ startEnabled(t1, lp)⇔ lm(t1, lp))

The full target marking rule ensures that all start sub-locations of a composite
location are enabled iff this composite location is the target of a chosen transition or is
itself enabled:

∀t ∈ {1..N}. ∀lc ∈ Σc. transTo(t, lc) ∨ startEnabled(t, lc)⇔ ∀l ∈
sub(lc). startEnabled(t, l)

These two rules are handled analogously to the composite marking rule.
The central rule for probabilistic behavior is probabilistic transition choice. Given

a primitive location, exactly one of its outgoing transitions may be chosen (according to
transition probabilities defined in the model) iff the location is marked and the chosen
transition’s guard is consistent:

∀t ∈ {0..N}. ∀lp ∈ Σp. ∃τ ∈ outgoing(lp) ∪ {NoTransition}. lm(t, lp) ∧
guardIsConsistent(t, τ)⇔ chooseTrans(t, lp) = τ ∧ τ 6= NoTransition



In the formula, function chooseTrans(t, lp) maps time and location to an admissi-
ble outgoing transition. The translation creates BLN functions of time only, eliminating
quantification over lp (see, e.g., Fig. 2a and 2b). Their CPTs define the following prob-
ability function:

Pr(T tlp = τ | Ltp,Gt) =


pτ if (a)
1 if (b)
0 otherwise

(2)

where T tlp is a random variable for choosing among lp’s outgoing transitions, Ltp en-
codes lm(t, lp) and Gt is a vector of random variables encoding guardIsConsistent(t, τ)
for each outgoing transition. Condition (a) is lm(t, lp) ∧ guardIsConsistent(t, τ) and
(b) is (¬lm(t, lp)∨(¬∃τ ′ ∈ outgoing(lp). guardIsConsistent(t, τ ′)))∧τ = NoTransition .
Note that this fragment also encodes guard consistency, which is more compact than
having a separate logical rule as for behavior consistency.

We now address the issue of incorporating the constraints added by ES . In our im-
plementation, S is a schedule, i.e. a sequence of tuples 〈(p, c, t, a)〉j , each defining an
action a to perform on a product p at time t on a station or component c. We call these
tuples product-component links. We can exploit the flexibility of the BLN framework
to encode these: If at time t a product p is worked by station c, logical formulas are
added to L that enforce equality of variables {Xt

p} and {Xt
c} for products and stations

respectively. The common domain of two variables Xt
p and Xt

c encodes influences, e.g.
Faulty for c inflicting damage on p or a faulty p causing unusual observations in c. Ok
encodes no (harmful) influence. Commands given in S are simply added as facts to DB.

We have not looked in detail at rules for the initial time point t0, which encode
which locations are initially marked/unmarked. Special t0 rules encode the marking
and unmarking as given by the start distribution PΞ(Ξi) and handle special conditions
for hierarchical marking, e.g., that at t0 locations cannot be transitioned to. For more
details we refer to [4].

Translation Correctness

We say that the translation is correct iff the BN given by translating MPHCA to a BLN
and grounding it, encodes the same distribution over variables Lti (that encode location
markings at time points t) as PHCA distribution P (θ,O = o0:t). Variable Lti being
True corresponds to location li being marked, i.e. li ∈ mt.

Theorem. Let MB = (D,F ,L) be a BLN generated with the above described trans-
lation process from a PHCA model: MB = ΥBLN(MPHCA). Let EBLN, EPHCA be the
execution adaptation functions for an arbitrary operation sequence, BN (X,D,G, P )
the grounding of EBLN(MB), and θ = (mt0 ,mt1 , . . . ,mtN ) an arbitrary trajectory of
the adapted PHCA EPHCA(MPHCA). Then

PΞ(m0)
Y

u∈{0..t}

P (Ou |mu)
Y

τ∈T [θ]

P (τ) = (3)

P (Lt0 = mt0 , . . . ,LtN = mtN ,OBN = o0:t |Xaux = xaux)

Ltj are vectors of location marking variables Ltji in the BN for each time point tj ,
and OBN is a vector of observation variablesOtjl for each time point tj (l ranges over in-
dices of observation variables for a given time point).Xaux = X−{Lt0 , . . . ,LtN ,OBN}



is a set of auxiliarly variables used to represent additional logical constraints. mt is
boolean vector that encodes a marking in terms of Lti assignments for time t.

Solving Plan Assessment with Probabilistic Reasoning Tools and Methods

Translating and executing a given PHCA, ES(ΥBLN(MPHCA)), yields a BLN as starting
point for possible probabilistic reasoning solutions for plan assessment. In our experi-
ments, we ground BLN to an auxiliary BN and used the state-of-the-art inference tool
Ace 2.02, which compiles a given BN into an arithmetic circuit (AC) [5, 6]. Ace ex-
ploits local structure given by, e.g., determinism in the model, to achieve very compact
ACs. Once an AC is given, marginals, and thus P (Gi | o0:t), can be computed online
in time linear in the size of the AC. Note that we focus on computing P (Gi | o0:t) in
this work, while, in general, solving plan assessment also requires computing the most
probable trajectory (as a diagnosis). This can be done by computing the most probable
explanation.

The Ace compilation is considered a (potentially expensive) offline step, the evalu-
ation the (quick) online step. The addition of evidence, i.e. clamping variables to given
values, is part of the latter. This step is independent of translation, execution adapta-
tion, grounding, and Ace compilation, which means we can perform all of these steps
offline without introducing evidence too early. Ace compilation can only be done of-
fline if the execution adaptation is done offline, because the latter modifies the model.
Real-world applications, however, might require execution adaptation to be performed
online. Because the size of S might be too large to allow reasoning over the complete
time horizon, receding horizon schemes such as [16] may be applied: the model would
be translated for a fixed number N of time steps, then iteratively moved along the op-
eration sequence with potentially much larger length NS � N . Consequently, ES must
be applied for every iteration. It is nontrival to redefine ES such that it could be applied
online to an Ace compiled model.

A different class of approximate probabilistic reasoning algorithms for tasks such as
the computation of marginals is sampling. Sampling is attractive, since it is an anytime
approach with a stochastic accuracy guarantee for marginals in terms of the confidence
interval [7]. Models with strong determinism, such as ours, pose practical problems
owing to the rejection problem. However, schemes such as SampleSearch [17] have re-
cently been proposed to address this problem by exploiting constraint-solving methods
to quickly exclude inconsistent samples.

Evaluation
Experiments. We ran experiments on six different problem instances, five plan assess-
ment instances based on factory models and one diagnosis instance based on a satellite
camera model from [4]. The factory models 2 and 3 are variations of the model shown
in 1a, factory model 1 is taken from [2]. All models contain one assembly and one or
two machining stations. Factory models 1, 2 and 3 model one, two and three products
respectively. There are some other, minor differences regarding, e.g., the sensors. Fac-
tory models 2 and 3 are used for two scenarios each, one with a short and one with a

2 http://reasoning.cs.ucla.edu/ace/ (03/2011)



longer operation sequence S. Finally, the diagnosis instance simulates diagnosing hard-
ware or software faults in a satellite camera module [4]. Tab. 1 lists the size statistics
for the instances: the number of time steps N , the PHCA size (primitive loc./composite
loc./no. transitions), the number of variables and constraints in the COP translation,
and the number of nodes in the BN model obtained through the BLN translation. In
the following we denote the six instances by fm1, fm2, fm3, fm2(long S), fm3(long S)
and sm, where we abbreviate “factory model i” with “fmi” and “satellite model” with
“sm”. We used a virtual machine with 2GB of memory, one core of an intel Core 2 Duo
and Ubuntu Linux. For all scenarios, we computed the exact results for P (Gi | o0:t)
using both Toulbar2 and Ace 2.0. (For the diagnosis instance we defined the goal as a
certain location of interest being marked). We used default options for both tools except
for Ace compilation of fm2(long S), where enforcing logical model counting yielded
much better results. The results table shows, for Toulbar2, search time (seconds), mem-
ory usage (MB) and expanded search tree nodes, and, for Ace, compilation + evaluation
time (both in seconds) and memory usage during compilation (in MB).

Results and Discussion. When taking into account that Ace compilation must poten-
tially be done online (as explained in the previous section), Toulbar2 outperforms Ace
for most of our instances in runtime (e.g., fm2(long S)) or memory usage (e.g., sm).
Still, Ace performs well for four instances out of six, yielding exact results within 2 sec-
onds, even including compilation. The two bigger instances with long S failed due to
precision loss (indicated by “ERR”). With the not yet publicly available Ace 3.0, results
for fm3(long S) could be obtained, but not for fm2(long S) within the 2GB memory
limit. Interestingly, fm2 and fm2(long S) are much more costly for Ace (compilation)
than the bigger instances fm3 and fm3(long S). Toulbar2 and Ace 2.0 differed slightly
(4 < 0.0001) in their exact results, most likely due to precision loss or Toulbar2 using
a lower bound to cut off solutions.

Conclusion
In this work, we formalized and described the first automatic translation from the high-
level model-based diagnosis framework probabilistic hierarchical constraint automata
(PHCA) to a high-level probabilistic reasoning framework, Bayesian logic networks
(BLNs). It provides engineers with a way of applying a wide range of probabilistic rea-
soning methods and tools to problems such as the plan assessment problem, which
occurs in AI decision making in engineering domains. It lies at the intersection of
model-based diagnosis and probabilistic reasoning and involves the computation of the

Table 1: (Left) The size of PHCAs, COP and BN translations. (Right) Measurements
for Toulbar2 and Ace solving the instances. ∗ Results from Ace 3.0.

instance N phca size # var # con # nodes
fm1 [2] 6 11/6/27 643 670 1106

fm2 9 15/8/33 1202 1251 2122
fm3 9 17/8/33 1305 1311 2292

fm2(long S) 19 15/8/33 2482 2601 4444
fm3(long S) 33 18/8/35 4748 4892 8878

sm [4] 8 8/4/22 640 661 1080

instance Toulbar2 Ace
fm1 [2] 0.01 / 8 / 186 0.37 + 0.09 / 10

fm2 0.05 / 10 / 1878 0.93 + 0.18 / 90
fm3 0.32 / 10 / 5464 0.36 + 0.07 / 5

fm2(long S) 0.65 / 19 / 11320 1128.04 + ERR / ≈ 900
fm3(long S) 3.79 / 53 / 10180 (1.36 + 0.17 / –)∗

sm [4] 0.01 / 9 / 176 0.87 + 0.03 / 187



probabilities with which pre-planned operations for a technical system achieve their
goals. We evaluate our approach by solving six realistic problem instances with a) an
existing solution based on generating most probable hypotheses as the best solutions of
a constraint optimization problem, generated by an off-the-shelf solver, and b) a novel
solution based on our translation, which employs the Ace 2.0 probabilistic reasoning
solver. The results demonstrate that probabilistic reasoning tools such as Ace provide a
strong alternative for solving plan assessment. Future work will fully exploit our novel
translation by evaluating more probabilistic reasoning solutions, such as the more recent
Ace 3.0, lifted inference and sampling methods. In particular, we found combinations
of sampling with state-of-the-art constraint solvers to be a promising future direction.

References
1. Kurien, J., Nayak, P.P.: Back to the future for consistency-based trajectory tracking. In: Proc.

AAAI, AAAI Press (2000) 370–377
2. Maier, P., Sachenbacher, M., Rühr, T., Kuhn, L.: Automated plan assessment in cognitive

manufacturing. Adv. Eng. Informat. (May 2010)
3. Williams, B.C., Chung, S., Gupta, V.: Mode estimation of model-based programs: Monitor-

ing systems with complex behavior. In: Proc. IJCAI. (2001) 579–590
4. Mikaelian, T., Williams, C.B., Sachenbacher, M.: Model-based Monitoring and Diagnosis of

Systems with Software-Extended Behavior. In: Proc. AAAI, Pittsburgh, USA, AAAI Press
(2005)

5. Chavira, M., Darwiche, A.: Compiling bayesian networks with local structure. In: Proc.
IJCAI. (2005) 1306–1312

6. Darwiche, A.: A differential approach to inference in bayesian networks. Journal of the
ACM 50(3) (2003) 280–305

7. Maier, P., Jain, D., Waldherr, S., Sachenbacher, M.: Plan assessment for autonomous manu-
facturing as bayesian inference. In: Proc. KI. LNAI, Springer (Sep. 2010)

8. Abreu, R., Zoeteweij, P., Van Gemund, A.J.C.: A new bayesian approach to multiple in-
termittent fault diagnosis. In: Proc. IJCAI, San Francisco, CA, USA, Morgan Kaufmann
Publishers Inc. (2009) 653–658

9. Knox, B., Mengshoel, O.: Diagnosis and reconfiguration using bayesian networks: An elec-
trical power system case study. In: Workshop Proc. SAS. (2009)

10. Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques for Analyz-
ing Concurrent and Probabilistic Systems. Volume 23 of CRM Monograph Series. American
Mathematical Society (2004)

11. Sachenbacher, M., Williams, B.: Diagnosis as semiring-based constraint optimization. In:
Proc. ECAI-2004, Valencia, Spain (2004)

12. Cooper, M., De Givry, S., Sanchez, M., Schiex, T., Zytnicki, M.: Virtual arc consistency for
weighted csp. In: Proc. AAAI, AAAI Press (2008) 253–258

13. Jain, D., Waldherr, S., Beetz, M.: Bayesian Logic Networks. Technical report, Technische
Universität München (2009)

14. Mateescu, R., Dechter, R.: Mixed Deterministic and Probabilistic Networks. Annals of
Mathematics and Artificial Intelligence 54(1) (2008) 3–51

15. Poole, D.: First-order probabilistic inference. In: IJCAI. (2003) 985–991
16. Maier, P., Sachenbacher, M.: Receding time horizon self-tracking and assessment for au-

tonomous manufacturing. In: Workshop Proc. Self-X. (Sep. 2010)
17. Gogate, V., Dechter, R.: SampleSearch: A Scheme that Searches for Consistent Samples. In:

Proc. AISTATS. (2007)


