
Diagnostic Hypothesis Enumeration vs. Probabilistic
Inference for Hierarchical Automata Models

Paul Maier 1, Dominik Jain 1, Martin Sachenbacher 1

1 Technische Universität München, Department of Informatics, Boltzmannstraße 3, 85748 Garching, Germany
{maierpa,jain,sachenba}@in.tum.de

ABSTRACT

AI problems in engineering domains often lie
at the intersection of model-based diagnosis and
probabilistic reasoning. A typical example is
the plan assessment problem studied in this pa-
per, which comprises the identification of possi-
ble faults and the computation of remaining suc-
cess probabilities based on a model. In addi-
tion, solutions to such problems need to be tai-
lored towards the needs of engineers, and thus use
high-level, expressive modeling formalisms such
as probabilistic hierarchical constraint automata
(PHCA).
This work introduces a translation from PHCA
models to lower-level Bayesian nets, which en-
ables to compare model-based diagnosis ap-
proaches with a wide array of probabilistic rea-
soning methods. Using a state-of-the-art proba-
bilistic solver, we compare this approach to an
alternative model-based diagnosis approach that
translates the PHCA models to lower-level logic
models and computes solutions by enumerating
most likely hypotheses. Experimental results
on realistic problem instances demonstrate that
the probabilistic reasoning approach is a promis-
ing alternative to the model-based diagnosis ap-
proach.

INTRODUCTION
In engineering domains, one is increasingly confronted
with AI problems that lie at the intersection of the
fields of model-based diagnosis and probabilistic rea-
soning. Furthermore, both model-based diagnosis and
probabilistic reasoning follow a trend towards rich and
expressive formalisms, auto-generating low-level rep-
resentations such as Bayesian networks (BNs), which
can then be fed to off-the-shelf tools. This has three ad-
vantages: 1) It spares users the tedious effort of hand
crafting low-level models and re-implementing algo-
rithms, 2) the algorithms implemented by said tools
seek to exploit problem structure in a most general
fashion and 3) they are typically supported by large

communities. Probabilistic hierarchical constraint au-
tomata (PHCA) (Williams, Chung, and Gupta, 2001)
are a first-order model-based diagnosis formalism
specifically tailored to compactly represent complex
hard- and software behavior, addressing the needs of
engineers. Following the approach of using off-the-
shelf tools, (Mikaelian, Williams, and Sachenbacher,
2005) provides an automatic translation for constraint
optimization, which is common in model-based diag-
nosis. However, there is still a gap between first-order
modeling on the model-based diagnosis side and the
methods and frameworks on the probabilistic reason-
ing side.

This work aims to provide a possibility to compare
solution approaches from the model-based diagnosis
side, typically logic-based, with approaches from the
probabilistic reasoning side. We contribute a trans-
lation of first-order PHCA models to statistical rela-
tional models (a first-order generalisation of graphical
models such as Bayesian nets). This opens up the op-
portunity to choose among a wide range of probabilis-
tic reasoning off-the-shelf tools. To our knowledge,
it is the first such translation from PHCAs to a first-
order probabilistic reasoning framework. We evaluate
our approach within the context of a novel problem
called plan assessment (Maier et al., 2010). We trans-
late different PHCAs and feed the resulting BNs to the
publicly available probabilistic reasoning tool Ace 2.0
(Darwiche, 2003) in order to solve this problem and
compare the results with an existing model-based di-
agnosis approach for this problem (Maier et al., 2010),
which builds on the afore mentioned PHCA translation
for constraint optimization.

The problem of plan assessment arises when techni-
cal systems, in particular manufacturing systems, shall
be equipped with the necessary autonomous behavior
to automatically cope with contingencies. For exam-
ple, in a manufacturing scenario, the AI controller of a
factory plant needs to take decisions depending on the
success or failure of the production of individual prod-
ucts. The manufacturing of products is automatically
scheduled in advance, specifying which actions to per-
form where and when. During production, model-
based diagnosis computes most likely diagnostic hy-

1

22nd International Workshop on Principles of Diagnosis

potheses for given observations (Kurien and Nayak,
2000). For informed decisions, however, the controller
additionally needs the probability with which the pro-
duction of a particular item will succeed given the ob-
servations. This is the classical probabilistic reasoning
problem of computing posterior marginals. This prob-
lem of computing most likely hypotheses and, at the
same time, probabilities for certain model states is a
variant of the plan assessment problem introduced in
(Maier et al., 2010).

The remainder of this section discusses some related
work and details the example scenario used throughout
the paper. The next three sections formally define plan
assessment, recap the model-based diagnosis solution
and describe our novel translation along with the prob-
abilistic reasoning solution based upon it. The final
sections discuss the evaluation results and conclude the
paper.

Related work While there has been work on com-
bining model-based diagnosis and probabilistic rea-
soning (Abreu, Zoeteweij, and Van Gemund, 2009;
Knox and Mengshoel, 2009), a general bridge between
the two areas, such as our translation, which allows the
comparison of model-based diagnosis and probabilis-
tic reasoning solutions, has not yet been developed.
The field of probabilistic model checking (Rutten et
al., 2004), which is close to plan assessment, can an-
swer queries such as “What is the probability that the
system reaches state s?”, based on a model of the sys-
tem. However, plan assessment is ultimately geared
towards supporting robust online control, which, un-
like probabilistic model checking, includes generating
diagnoses and focussing computation using available
observations.

Example: metal machining and assembly Within
the aforementioned manufacturing scenario, products
(toy mazes) are first being machined and then assem-
bled. Two different faults can flaw products. The cut-
ter of machining stations might break, damaging the
alloy base plate (see Fig. 1d). This damage later on
triggers an observable alarm at the assembly station.
That same alarm might also be triggered if the assem-
bly station is miscalibrated (the second fault). The
question is: Given the alarm, how are the manufactur-
ing goals affected, and what faults could have caused
the alarm? We modeled several slight variations of this
scenario. Fig. 1a shows a PHCA that models an as-
sembly and two machining stations, as well as three
products which are to be produced. Sub-PHCA model
the stations’ (nominal and known fault) behavior as
well as the production processes for each scheduled
product. Stations, or generally components, and prod-
ucts are connected via shared variables. The connec-
tions are called product-component-links and are de-
rived from the schedule. Fig. 1b and 1c show detailed
versions of the two machining stations.

PHCA-BASED PLAN ASSESSMENT
Plan assessment extends the maximum probability di-
agnosis problem (Sachenbacher and Williams, 2004)
towards additionally computing success probabilities

for given goals. The problem arises when three as-
pects come together: 1) A rigidly designed system
with some remaining uncertainties that would be hard
to eliminate executes 2) pre-planned operations to 3)
achieve defined goals. These aspects are reflected in
three formal elements: 1) A system model, in our case
a PHCA MPHCA, 2) an operation sequence S of oper-
ation steps, and 3) a set of goals {Gi}.

System Model PHCA models define automata
states, called locations, and transitions between them.
The transitions may be guarded and probabilistic, loca-
tions may be composed of sub-locations. PHCAs are
formally defined as follows (Mikaelian, Williams, and
Sachenbacher, 2005):
Definition. A PHCA is a tuple
(Σ, PΞ,Π, O,Cmd, C, PT):
• Σ = Σp] Σc is a set of locations, partitioned

into primitive locations Σp and composite loca-
tions Σc, where a composite location represents
a PHCA whose elements are subsets of the ele-
ments of the containing PHCA. A location may
be marked or unmarked. A marked location rep-
resents an active execution branch. A markingmt

(at time t during execution) is given as a subset of
Σ.
• PΞ(Ξi) denotes the probability that Ξi ⊆ Σ is the

set of start locations (initial state).
• Π = O] Cmd] Dep is a set of variables with

finite domains. O is the set of observation vari-
ables, Cmd is the set of action or command vari-
ables, and Dep is a set of dependent hidden vari-
ables which are connected to other variables via
constraints.
• C is the set of finite domain constraints defined

over Π, which comprises behavior constraints of
locations and guard constraints of transitions. A
location’s behavior constraint serves to define the
observations that are consistent with the location;
a transition’s guard defines the conditions under
which the transition can be taken (usually de-
pending on commands).
• PT [li] (defined for each li ∈ Σp) is a probability

distribution over the subset of the set of transi-
tions T , which contains transitions leading away
from li whose guards (elements of C) are satisfied
given the current state.

Given a PHCA model MPHCA of a technical sys-
tem, the behavior of the system over time is esti-
mated by generating sequences of location markings
θ = (mt0 ,mt1 , . . . ,mtN). We denote by St(MPHCA)
the set of all such fixed-length sequences, called tra-
jectories.

Operation Sequences Pre-planned operations are
typically given as a sequence S of operation steps.
Steps can be anything from simple (sets of) commands
to more complicated operations, such as scheduled al-
locations of machines, products and actions to per-
form. We consider scenarios where S is synthesized
automatically (using, e.g., a planner or a scheduler),

2

22nd International Workshop on Principles of Diagnosis

ok

failure: flawed

maze0

Idle

cut

machining1

idle

failure: cutter
broken

cut

cutter blunt

idle

cover

assembly
assembly-status

ok

failure:
misaligned

bolts

robot

idle

cut

failure: cutter
broken

machining0

ok

failure: flawed

maze1

ok

failure: flawed

robot0

(a)

idle

product = ok

cmd = cut; 0.9

cmd = noop; 1.0

cut

product = ok

cmd = cut;
0.9

cmd = noop;
1.0

cmd = cut; 0.1

cmd = cut; 0.1

machining1

idle

product = ok

failure: cutter
broken

product = flawed

cut

product = ok

cmd = noop; 1.0

cmd = cut;
0.5

; 1.0

cmd = cut; 0.5

cmd = cut; 0.5

cmd = cut; 0.5
cmd = noop;

1.0

cutter blunt

(b)

idle
product = ok

cut

product = ok

failure: cutter
broken

product = flawed

cmd = cut;
0.9

cmd = noop; 1.0

cmd = cut;
0.9

cmd = noop; 1.0

cmd = cut; 0.1

cmd = cut; 0.1

machining0

(c) (d)

Figure 1: (1a) Overview of a typical PHCA. It models a factory scenario with three individual products being
manufactured. (1c and 1b) Detail views of sub-automata machining0, with simple probabilistic behavior, and
machining1, showing a more complex hierarchical machining fault: the cutter goes blunt before breaking. (1d) A
product damaged during machining.

and later executed on the system. This is captured
by an execution adaptation function ES , which adapts
a PHCA model MN

PHCA unfolded for N time steps
(reproducing the PHCA’s components for each time
step t, yielding Σt, Πt, T t and Ct). It sets all com-
mand variables as given by S, removing the transi-
tions whose guards become unsatisfiable as a result,
and modifies the constraints Ct. The resulting model
MSPHCA = ES(MN

PHCA) therefore no longer contains
the command variables Cmd and will typically fea-
ture a reduced number of possible trajectories. Markov
properties of MPHCA are unaffected.

Each sequence of observations o0:t (t ≤ N)
and each model MSPHCA defines a joint distribution
P (θ,O = o0:t):

P (θ,O = o0:t) =

PΞ(m0)
∏

u∈{0..t}

P (Ou |mu)
∏

τ∈T [θ]

P (τ) (1)

where T [θ] is the multiset of all transitions as im-
plied by θ, in which a transition τ from location li
to lj may occur multiple times; the transition proba-
bility is computed as P (τ) = PT [li](τ). The above
distribution corresponds to the PHCA hidden Markov
model semantics (Mikaelian, Williams, and Sachen-
bacher, 2005; Williams, Chung, and Gupta, 2001).

Goals A goal is a tuple (l, t) of a location
l that should be marked at time t. Gi :=
{(mt0 , . . . ,mt, . . . ,mtN) | l ∈ mt} denotes the set
of goal-achieving trajectories, i.e. which lead to the
marking required by the goal. As goal for a product we
use (Ok, t) (see product model in Fig. 1a), following

the assumption that the product is produced success-
fully after all scheduled operations if no station was
faulty while working the product. t is the discrete time
point in the schedule after the last operation.
Definition. Let MPHCA be a PHCA model, S a se-
quence of N operation steps with execution adap-
tation function ES and {Gi} a set of goals. Let
MSPHCA = ES(MN

PHCA). The plan assessment prob-
lem is, given observations o0:t, to compute the most
probable diagnosis as a trajectory in St(MSPHCA) as
well as P (Gi | o0:t) for each i.

Solving Plan Assessment
Model representation always strongly influences prob-
lem solving efficiency. Often, Markov modelling is
used to exploit the Markov property during infer-
ence. However, compared to more expressive non-
Markov modeling this can lead to bigger representa-
tions. This size-vs-expressiveness trade-off impacts
even more when automatically generating such repre-
sentations from first-order models. Originally, PHCA
semantics were defined in terms of hidden Markov
models (HMM) (Williams, Chung, and Gupta, 2001),
which allows complex Markov modeling at the cost of
potentially larger models. This is problematic for ex-
isting off-the-shelf HMM solvers: On the one hand,
a naive automated flattening of hierarchical models
would generate prohibitively large HMMs. Auto-
matically decomposing PHCAs into explicit, tractable
HMM representations, on the other hand, is only pos-
sible in a small number of special cases where com-
ponents are not connected. Our example is not such a
case: The assembly and manufacturing stations seem
independent of each other; however, they are con-
nected via product models and their scheduled actions.

3

22nd International Workshop on Principles of Diagnosis

In addition, automatic compilation typically incurs
an overhead compared to custom tailored translation,
which further increases the size of explicit HMMs.
Consequently, it is not usually advisable to encode the
translation result as explicit HMMs: We would easily
obtain hidden variables with domain sizes of ≈ 2100,
thus requiring a 2100 × 2100 transition matrix!

For these reasons, we apply a different approach.
Using a translation Υ we translate, in an offline step,
MPHCA to low-level representations M that are still
expressive enough to represent structure and are suffi-
ciently general to allow the use of off-the-shelf solvers
that do not depend on the Markov property but exploit
model structure in a general fashion. We define execu-
tion adaptation functions ES on these representations,
which allows to reuse the translation for different op-
eration sequences. We now describe two solutions for
plan assessment that we evaluate in this work.

HYPOTHESIS ENUMERATION
Recent work developed a model-based diagnosis in-
spired solution that first computes the most likely
trajectories as the best solutions to a constraint
optimization problem (COP) and then computes
P (Gi | o0:t) by summing over goal-achieving trajec-
tories among these, normalizing over all (Maier et
al., 2010). The most probable trajectory is chosen
as most probable diagnosis. The work exploits an
automatic translation of a PHCA to a COP R =
(X,D,C) (Mikaelian, Williams, and Sachenbacher,
2005). We term this translation ΥCOP, which maps a
model MPHCA to variables X , their finite domains D
and local objective functions c ∈ C, called soft con-
straints. Soft constraints map partial variable assign-
ments to [0, 1]. Execution adaptation functions modify
R by adding soft constraints. We refer to (Mikaelian,
Williams, and Sachenbacher, 2005) for the details.

Plan assessment is solved for a translated and
adapted model ES(ΥCOP(MPHCA)) as follows. Each
COP solution of the translation corresponds to a trajec-
tory θ of MPHCA. A COP solution is an assignment to
all variables in X . P (Gi | o0:t) can be computed as

P (Gi | o0:t) =
∑
θ∈Gi P (θ | o0:t) =

P
θ∈Gi

P (θ,o0:t)P
θ∈Θ P (θ,o0:t) ,

i.e. P (Gi | o0:t) can be computed based on proba-
bilities P (θ,o0:t), which can be retrieved from ob-
jective values of the COP solutions. The computa-
tion is exact if all trajectories with non-zero proba-
bility Θ ⊆ St(MPHCA) are enumerated. This can
become intractable quickly, therefore we approximate
P (Gi | o0:t) by resorting to the subset Θ(k) ⊆ Θ of the
k best (most probable) trajectories and the set of goal-
achieving trajectories among them, Gi(k) ⊆ Θ(k).

The key motivation for this approach is that strong
off-the-shelf constraint optimization solvers can be ex-
ploited. While (Maier et al., 2010) used the Tool-
bar solver, in this work, we use the more recent,
award-winning Toulbar2 solver1, which implements
many state-of-the-art techniques (including, for exam-
ple, soft-constraint consistency (Cooper et al., 2008)).

1https://mulcyber.toulouse.inra.fr/projects/toulbar2
(02/2011)

(a)

(b)

Figure 2: Figures 1c and 1b translated to BLN frag-
ments, showing excerpts of location marking and prob-
abilistic transition choice (2a) as well as composite and
full target marking (2b).

For k-best enumeration, we replaced Toulbar2’s core
branch-and-bound procedure with a k-best branch-
and-bound algorithm (Dechter and Flerova, 2011).

PROBABILISTIC INFERENCE
From a probabilistic reasoning point of view, plan as-
sessment can be seen as a combination of comput-
ing most likely a posteriori hypotheses (MAP) and
marginals. MAP and the computation of marginals
are long time standard problems in probabilistic rea-
soning with existing off-the-shelf solutions. Bayesian
networks (BNs) are a common representation for prob-
abilistic models. We now describe a new translation of
PHCA models to abstract, generalized Bayesian net-
works, which can in turn be automatically instantiated
to BNs. This opens up the possibility of comparing the
COP-based approach from the previous section with
solutions from the probabilistic reasoning community.
Once translated, P (Gi | o0:t) can be computed as the
posterior marginal of a goal variable (BN node).

We translate PHCAs into Bayesian logic networks
(BLNs) (Jain, Waldherr, and Beetz, 2009). A BLN is
a combination of Bayesian networks with first-order
logic. These types of models are also known as sta-
tistical relational models. A BLN can be seen as a
template for the construction of Bayesian networks,
much like a first-order logic model can be seen as tem-
plate for propositional models. Given a set of enti-
ties, a BLN may be instantiated to either a BN or a
mixed network (MN) that explicitly represents logical
constraints on the distribution (Mateescu and Dechter,
2008). The instantiation is called grounding, and the
resulting BNs or MNs are called ground models. Prob-
abilistic inference is often performed in these. How-
ever, the strength of relational models is a very com-
pact representation of repeated substructures in ground
models. This is exploited in recent research, which de-

4

22nd International Workshop on Principles of Diagnosis

velops inference algorithms that work directly on the
relational models (Poole, 2003). So besides the added
expressivity and flexibility offered by a first-order for-
malism, the possibility of exploiting first-order encod-
ings is one of our main reasons for seeking a relational
translation rather than a direct encoding to BNs.

Key elements of a BLN MB are abstract random
variables (ARVs), typed entities, fragments and first-
order logical (FOL) formulas. ARVs are parametrized
random variables that correspond to either predicates
or non-boolean functions. They encode, for exam-
ple, partial states such as a station being faulty, rela-
tions such as stations working on specific products or
a probabilistically chosen transition. The arguments of
an ARV refer to abstract, typed entities, which allows,
in particular, quantification over time. A fragment as-
sociates an ARV with a conditional probability table
(CPT); the set of fragments (ellipses in Fig. 2) collec-
tively defines, for a set of ground instances of ARVs,
a probability distribution. The applicability of a frag-
ment may be restricted by (mutually exclusive) first-
order logic preconditions (boxes in Fig. 2 as well as
ellises with special symbol ’+’). Finally, hard logical
formulas may be specified in the model, restricting the
set of possible worlds. When instantiating a BLN to a
BN, a grounding (X,D,G, P) is created. It consists
of random variables X , their corresponding set of do-
mains D, a graph G connecting variables according to
parent-child condition relations defined via the frag-
ments, and the set of CPTs P .

For our novel translation, we adapted the COP
encoding ΥCOP of PHCAs. This encoding is defined
in terms of formal higher-order rules for structure,
probabilistic behavior and consistency with obser-
vations and commands (Mikaelian, Williams, and
Sachenbacher, 2005). The translation to BLNs largely
follows these rules, however often exploits first-order
modeling features of BLNs. The translation function
ΥBLN takes as input a model MPHCA and creates a
BLN MB = (D,F ,L) and a knowledge base DB.
MB consists of the fundamental declarationsD, the set
of fragments F and the set of FOL formulas L. The
knowledge base defines existing objects or entities for
the FOL formulas and fragments as well as known
facts about relations among these entities. When
the BLN is grounded, DB is extended with further
evidence. Execution adaptation functions ES for
BLNs add formulas to L and facts to DB. D contains,
among other things, the entity types and predicate sig-
natures for ARVs. Most of D is model-independent,
i.e. stays the same for arbitrary MPHCA. Formulas
in L are, in particular, used to define behavior and
transition guard consistency predicates in terms of
formulas over assignments of PHCA variables O and
Cmd. An example of a concrete behavior constraint is
behaviorIsConsistent(t,Cutter broken)
<=> var PRODUCT(t,Faulty). It specifies that
the behavior of location “broken” (which is part of
composite location “cutter”) is consistent if and only
if the product being processed will be broken in the
next time step. In addition, L contains the general
behavior consistency rule: locMarked(t,l)
=> behaviorIsConsistent(t,l). It says
that for all points in time, a location’s behavior must
be consistent if it is marked. Note that this rule

suffices to connect locations and their behavior, the
behaviorIsConsistent() predicate will not appear
among the fragments.

Next, we look at target marking, i.e. the mark-
ing of locations that are enabled start locations or
that are transitioned to. In general, the predicate
locMarked(t, l) (abbreviated as lm(t, l)) encodes a lo-
cation l being marked at time t. We first treat the
marking of composite locations. The composite tar-
get marking rule marks a composite location if it is
transitioned to or if it is an enabled start location:

∀t∈{1..N}. ∀lc∈Σc.
transTo(t, lc) ∨ startEnabled(t, lc)⇒ lm(t, lc)
Note that the marking for t = 0 is treated separately.
The transTo predicate is defined as follows,

∀t0 ∈ {0..N−1}. ∀t1 ∈ {1..N}. ∀lc ∈ Σc.
next(t0, t1)⇒ (transTo(t1, lc)⇔
∃l ∈ parents(lc). target(chooseTrans(t0, l)) = lc),
where the function target maps transitions to their tar-
get locations and parents maps a location to the set of
locations connected to it via transitions.

Using the location Cutterblunt as an example, we
show how the composite marking rule is translated
into fragments. Generally, each predicate in a rule
corresponds to one fragment. The fragment is cre-
ated only if the translator cannot determine, e.g.
from the model structure, that its predicate is al-
ways True or False. Predicates are partially in-
stantiated, removing all quantification except over
time. In case of Cutterblunt, fragments for par-
tially instanciated predicates transTo(t,Cutterblunt)
and lm(t,Cutterblunt) are created. No fragment is
created for startEnabled(t,Cutterblunt) because Cut-
terblunt is not a start location and the predicate is thus
always False. The following table shows the CPT tem-
plate for lm(t,Cutterblunt):

transTo(t, Cutterblunt) T F
lm(t, Cutterblunt) = T 1 0.5
lm(t, Cutterblunt) = F 0 0.5

The CPT encodes that Cutterblunt is marked if it is
being transitioned to. If not, the CPT doesn’t influ-
ence the marking. See Fig. 2b for the partial fragment
network.

The visual BLN coding uses ’+’ to declare a spe-
cial precondition. The child fragment of such a par-
ent only applies if the parent evaluates to True. E.g.,
lm(t1,Cutterblunt) only applies if next(t, t1) is True.
’#’ declares a reference to an existing fragment else-
where in the BLN, allowing cleaner arrangements.

The second rule that influences the marking of
composite locations is the hierarchical marking/un-
marking rule, which ensures that a composite location
is marked iff at least one of its sub-locations (which are
given by function sub) is marked:

∀t∈{0..N}. ∀lc∈Σc. lm(t, lc)⇔ ∃l ∈ sub(lc). lm(t, l)

This rule can be directly translated using logical for-
mulas that we can add to L.

The primitive target marking rule marks primitive
locations if they are either transitioned to or if they are
enabled starting locations:

5

22nd International Workshop on Principles of Diagnosis

∀t0∈{0..N−1}. ∀t1∈{1..N}. ∀lp∈Σp. ∃l∈
parents(lp).
next(t0, t1)⇒ (target(chooseTrans(t0, l)) = lp∨
startEnabled(t1, lp)⇔ lm(t1, lp))

The full target marking rule ensures that all start
sub-locations of a composite location are enabled iff
this composite location is the target of a chosen transi-
tion or is itself enabled:
∀t ∈ {1..N}. ∀lc ∈
Σc. transTo(t, lc) ∨ startEnabled(t, lc)⇔ ∀l ∈
sub(lc). startEnabled(t, l)

These two rules are handled analogously to the com-
posite marking rule.

The central rule for probabilistic behavior is proba-
bilistic transition choice. Given a primitive location,
exactly one of its outgoing transitions may be cho-
sen (according to transition probabilities defined in the
model) iff the location is marked and the chosen tran-
sition’s guard is consistent:
∀t ∈ {0..N}. ∀lp ∈ Σp. ∃τ ∈
outgoing(lp) ∪ {NoTransition}. lm(t, lp) ∧
guardIsConsistent(t, τ)⇔ chooseTrans(t, lp) =
τ ∧ τ 6= NoTransition

In the formula, function chooseTrans(t, lp) maps
time and location to an admissible outgoing transition.
The translation creates BLN functions of time only,
eliminating quantification over lp (see, e.g., Fig. 2a
and 2b). Their CPTs define the following probability
function:

Pr(T tlp = τ | Ltp,Gt) =

pτ if (a)
1 if (b)
0 otherwise

(2)

where T tlp is a random variable for choosing
among lp’s outgoing transitions, Ltp encodes lm(t, lp)
and Gt is a vector of random variables en-
coding guardIsConsistent(t, τ) for each outgo-
ing transition. Condition (a) is lm(t, lp) ∧
guardIsConsistent(t, τ) and (b)2 is (¬lm(t, lp) ∨
(¬∃τ ′ ∈ outgoing(lp). guardIsConsistent(t, τ ′))) ∧
τ = NoTransition . Other cases, e.g. chooseTrans()
returning an inconsistent transition, are ill-conditioned
and hence yield probability 0. Note that this fragment
also encodes guard consistency, which is more com-
pact than having a separate logical rule as for behavior
consistency.

We now address the issue of incorporating the con-
straints added by ES . In our implementation, S is
a schedule, i.e. a sequence of tuples 〈(p, c, t, a)〉j ,
each defining for time t two entities p and c being
connected and an action a to perform. In our ex-
ample, a is a command to be executed on station c,
which works product p. We call these tuples product-
component links. We can exploit the flexibility of
the BLN framework to encode these: For any tuple
(p, c, t, a), logical formulas are added to L that en-
force equality of variables {Xt

p} and {Xt
c}. Those

2(b) means “don’t care” if the location isn’t marked or no
consistent,outgoing transition exists. Also, chooseTrans()
is expected to return NoTransition .

variables and formulas encode the connection between
p and c for time t. The common domain of two
variables Xt

p and Xt
c encodes influences, e.g. Faulty

for a station c inflicting damage on a product p or a
faulty p causing unusual observations in c. Ok encodes
no (harmful) influence. An example is the follow-
ing rule in BLN code: var MAZE0 WORKER(T1,x)
<=> var MACHINING1 PRODUCT(T1,x). The
var ... predicates encode variable assignments,
e.g. x being assigned to PHCA variable Worker of the
Maze0 product at time T1. Commands given as a in
tuples in S are simply added as facts to DB.

We have not looked in detail at rules for the initial
time point t0, which encode which locations are ini-
tially marked/unmarked. Special t0 rules encode the
marking and unmarking as given by the start distribu-
tion PΞ(Ξi) and handle special conditions for hierar-
chical marking, e.g., that at t0 locations cannot be tran-
sitioned to. For more details we refer to (Mikaelian,
Williams, and Sachenbacher, 2005).

Translation Correctness
We say that the translation is correct iff the BN given
by translating MPHCA to a BLN and grounding it, en-
codes the same distribution over variables Lti (that en-
code location markings at time points t) as PHCA dis-
tribution P (θ,O = o0:t). Variable Lti being True cor-
responds to location li being marked, i.e. li ∈ mt.
Theorem. Let MB = (D,F ,L) be a BLN gen-
erated with the above described translation process
from a PHCA model: MB = ΥBLN(MPHCA).
Let EBLN, EPHCA be the execution adaptation
functions for an arbitrary operation sequence, BN
(X,D,G, P) the grounding of EBLN(MB), and θ =
(mt0 ,mt1 , . . . ,mtN) an arbitrary trajectory of the
adapted PHCA EPHCA(MPHCA). Then

PΞ(m0)
Y

u∈{0..t}
P (Ou |mu)

Y
τ∈T [θ]

P (τ) = (3)

P (Lt0 = mt0 , . . . ,LtN = mtN ,OBN = o0:t|A = a)

Ltj are vectors of location marking variables Ltji in
the BN for each time point tj , and OBN is a vector
of observation variables Otjr for each time point tj (r
ranges over indices of observation variables for a given
time point). A is a set of auxiliarly variables used to
represent additional logical constraints. mt is boolean
vector that encodes a marking in terms of Lti assign-
ments for time t.

Solving Plan Assessment with Probabilistic
Reasoning Tools and Methods
Translating and executing a given PHCA,
ES(ΥBLN(MPHCA)), yields a BLN as starting
point for possible probabilistic reasoning solutions for
plan assessment. In our experiments, we grounded
BLN to an auxiliary BN and used the state-of-the-art
inference tool Ace 2.03, which compiles a given BN
into an arithmetic circuit (AC) (Darwiche, 2003). Ace
exploits local structure given by, e.g., determinism in

3http://reasoning.cs.ucla.edu/ace/ (03/2011)

6

22nd International Workshop on Principles of Diagnosis

Table 1: The size of PHCAs, COP and BN translations.
PHCA models fm1 and sm are taken from (Maier et al.,
2010) and (Mikaelian, Williams, and Sachenbacher,
2005), respectively.

instance N phca size # var # con # nodes
fm1 6 11/6/27 643 670 1106
fm2 9 15/8/33 1202 1251 2122
fm3 9 17/8/33 1305 1311 2292

fm2(long S) 19 15/8/33 2482 2601 4444
fm3(long S) 33 18/8/35 4748 4892 8878

sm 8 8/4/22 640 661 1080

the model, to achieve very compact ACs. Once an
AC is given, marginals, and thus P (Gi | o0:t), can be
computed online in time linear in the size of the AC.
The most probable trajectory (as a diagnosis) can be
computed as the most probable a posteriori hypothesis
using the algorithm AceMAP (Huang, Chavira, and
Darwiche, 2006). The algorithm based on Ace is not
yet part of the public distribution, therefore we focus
on computing P (Gi | o0:t) in this work. The Ace
compilation is considered a (potentially expensive)
offline step, the evaluation the (quick) online step. The
compilation is done after ES has been applied. Certain
applications might require to apply ES online, which
in turn requires a non-trivial modification of ES such
that it can be applied to the Ace compilation.

EVALUATION
Experiments We ran experiments on six different
problem instances, five plan assessment instances
based on factory models and one diagnosis instance
based on a satellite camera model from (Mikaelian,
Williams, and Sachenbacher, 2005). The factory mod-
els 2 and 3 are variations of the model shown in Fig.
1a, factory model 1 is taken from (Maier et al., 2010).
All models contain one assembly and one or two ma-
chining stations. Factory models 1, 2 and 3 model
one, two and three products respectively. There are
some other, minor differences regarding, e.g., the sen-
sors. Factory models 2 and 3 are used for two sce-
narios each, one with a short and one with a longer
operation sequence S. Finally, the diagnosis instance
simulates diagnosing hardware or software faults in
a satellite camera module (Mikaelian, Williams, and
Sachenbacher, 2005). Tab. 1 lists the size statistics for
the instances: the number of time steps N , the PHCA
size (primitive loc./composite loc./no. transitions), the
number of variables and constraints in the COP trans-
lation, and the number of nodes in the BN model ob-
tained through the BLN translation. In the follow-
ing we denote the six instances by fm1, fm2, fm3,
fm2(long S), fm3(long S) and sm, where we abbrevi-
ate “factory model i” with “fmi” and “satellite model”
with “sm”. We used a virtual machine with 2GB of
memory, one core of an intel Core 2 Duo and Ubuntu
Linux. For all scenarios, we computed the exact results
(i.e. k = kmax for Toulbar2) for P (Gi | o0:t) using
both Toulbar2 and Ace 2.0. (For the diagnosis instance
we defined the goal as a certain location of interest be-
ing marked). We used default options for both tools,
except when it was obvious how to obtain better re-
sults. For Toulbar2, the results table shows search time

Table 2: Measurements for Toulbar2 and Ace solving
the instances shown in Tab. 1. ∗ Results obtained with
Ace 3.0.

instance Toulbar2 Ace
fm1 0.01 / 8 / 186 0.37 + 0.09 / 10
fm2 0.05 / 10 / 1878 0.93 + 0.18 / 90
fm3 0.32 / 10 / 5464 0.36 + 0.07 / 5

fm2(long S) 0.65 / 19 / 11320 1128.04 + ERR / ≈ 900
fm3(long S) 3.79 / 53 / 10180 (1.36 + 0.17 / –)∗

sm 0.01 / 9 / 176 0.87 + 0.03 / 187

(seconds), memory usage (MB) and expanded search
tree nodes. For Ace, it shows compilation + evalua-
tion time (both in seconds) and memory usage during
compilation (in MB).

We additionally ran Toulbar2 with different settings
for k to evaluate approximation quality. Fig. 3 shows
graphs of these results. On the left, the absolute error
|P (Gi | o0:t) − P k(Gi(k) | o0:t)| is plotted against k
for all instances (k ∈ {2, . . . , kmax} on a log scale).
kmax is the number of trajectories with probability >
0. On the right, we plot the error and the number of
trajectories relative to the maximum error and kmax,
respectively, against the number of expanded nodes.

Results and Discussion When taking into account
that Ace compilation must potentially be done online
(as explained in the previous section), Toulbar2 outper-
forms Ace for most of our instances in runtime (e.g.,
fm2(long S)) or memory usage (e.g., sm). Still, Ace
performs well for four instances out of six, yielding
exact results within 2 seconds, even including compi-
lation. The two bigger instances with long S failed due
to precision loss (indicated by “ERR”). With the not
yet publicly available Ace 3.0, results for fm3(long S)
could be obtained, but not for fm2(long S) within the
2GB memory limit. Interestingly, fm2 and fm2(long
S) are much more costly for Ace (compilation) than
the bigger instances fm3 and fm3(long S). Toulbar2
and Ace 2.0 differed slightly (4 < 0.0001) in their
exact results, most likely due to precision loss or Toul-
bar2 using a lower bound to cut off solutions. Consid-
ering diagnosis, the good runtime results of Ace indi-
cate that AceMAP could be competitive with Toulbar2.
However, dedicated experiments need to confirm that.

For the approximations computed by Toulbar2, we
observe that the error decreases non-monotonically
with increased k or resource investment (search
nodes). However, in our examples Toulbar2 was quick
enough to enumerate all of the relatively few trajec-
tories with non-zero probability (1710 in the biggest
instance fm3), allowing quick exact computation.

CONCLUSION
In this work, we compared two approaches to solve
a problem at the intersection of model-based diagno-
sis and probabilistic reasoning. This problem, called
plan assessment, involves computing diagnoses for a
technical system and the probabilities with which this
system’s pre-planned operations achieve their goals.
To enable comparison of model-based diagnosis ap-
proaches with a wide range of probabilistic reason-

7

22nd International Workshop on Principles of Diagnosis

100 101 102 103 104
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

fm1

fm2

fm3

fm2(long S)

fm3(long S)

sm

k

er
ro

r

0 2000 4000 6000 8000 10000 12000
0.0

0.2

0.4

0.6

0.8

1.0

% error

% traj.

expanded search nodesre
la

tiv
e

er
ro

r/
re

la
tiv

e
#

tr
aj

ec
to

ri
es

Figure 3: Results for running Toulbar2 with increasing k. (Left) k vs. the absolute error for all instances. (Right)
For factory model 2 with long S: expanded nodes vs. relative error in % and relative number of trajectories in %.

ing methods, we formalized and described the first au-
tomatic translation from the first-order model-based
diagnosis framework probabilistic hierarchical con-
straint automata (PHCA) to a first-order probabilis-
tic reasoning framework, Bayesian logic networks
(BLNs). On six realistic instances of plan assessment
we compared a), an existing solution based on generat-
ing most probable hypotheses as the best solutions of a
constraint optimization problem, with b), a novel solu-
tion based on our translation, which employs the Ace
2.0 probabilistic reasoning solver. The results demon-
strate that probabilistic reasoning tools such as Ace
provide a strong alternative for solving plan assess-
ment. Future work will fully exploit our novel trans-
lation by evaluating more probabilistic reasoning solu-
tions, such as the more recent Ace 3.0, lifted inference
and sampling methods.

REFERENCES
(Abreu, Zoeteweij, and Van Gemund, 2009) Abreu,

Rui, Peter Zoeteweij, and Arjan J. C. Van Gemund
(2009). A new Bayesian Approach to Multiple
Intermittent Fault Diagnosis. In Proc. IJCAI-2009,
pp. 653–658, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

(Cooper et al., 2008) Cooper, M., S. De Givry,
M. Sanchez, T. Schiex, and M. Zytnicki (2008).
Virtual Arc Consistency for Weighted CSP. In Proc.
AAAI, pp. 253–258. AAAI Press.

(Darwiche, 2003) Darwiche, Adnan (2003). A Differ-
ential Approach to Inference in Bayesian Networks.
Journal of the ACM 50(3): 280–305.

(Dechter and Flerova, 2011) Dechter, Rina and Na-
talia Flerova (2011). Heuristic search for m best
solutions with applications to graphical models. In
Proc. Soft-2011 (a workshop of CP 2011).

(Huang, Chavira, and Darwiche, 2006) Huang, Jinbo,
Mark Chavira, and Adnan Darwiche (2006). Solv-
ing MAP Exactly by Searching on Compiled Arith-
metic Circuits. In Proc. AAAI-2006, pp. 143–148.
AAAI, AAAI Press.

(Jain, Waldherr, and Beetz, 2009) Jain, Dominik, Ste-
fan Waldherr, and Michael Beetz (2009). Bayesian

Logic Networks. Technical report, Technische Uni-
versität München.

(Knox and Mengshoel, 2009) Knox, Bradley and Ole
Mengshoel (2009). Diagnosis and Reconfigura-
tion using Bayesian Networks: An Electrical Power
System Case Study. In Workshop Proc. SAS.

(Kurien and Nayak, 2000) Kurien, James and P. Pan-
durang Nayak (2000). Back to the Future for
Consistency-Based Trajectory Tracking. In Proc.
AAAI, pp. 370–377. AAAI Press.

(Maier et al., 2010) Maier, Paul, Martin Sachen-
bacher, Thomas Rühr, and Lukas Kuhn (2010). Au-
tomated Plan Assessment in Cognitive Manufactur-
ing. Adv. Eng. Informat. 24(3): 241–376.

(Mateescu and Dechter, 2008) Mateescu, R. and
R. Dechter (2008). Mixed Deterministic and
Probabilistic Networks. Annals of Mathematics
and Artificial Intelligence 54(1): 3–51.

(Mikaelian, Williams, and Sachenbacher, 2005)
Mikaelian, Tsoline, C. Brian Williams, and Martin
Sachenbacher (2005). Model-Based Monitoring
and Diagnosis of Systems with Software-Extended
Behavior. In Proc. AAAI, Pittsburgh, USA. AAAI
Press.

(Poole, 2003) Poole, David (2003). First-Order
Probabilistic Inference. In Proc. IJCAI-2003,
pp. 985–991.

(Rutten et al., 2004) Rutten, J., M. Kwiatkowska,
G. Norman, and D. Parker (2004). Mathematical
Techniques for Analyzing Concurrent and Proba-
bilistic Systems, Vol. 23 of CRM Monograph Series.
American Mathematical Society.

(Sachenbacher and Williams, 2004) Sachenbacher,
Martin and Brian Williams (2004). Diagnosis as
Semiring-based Constraint Optimization. In Proc.
ECAI-2004, Valencia, Spain.

(Williams, Chung, and Gupta, 2001) Williams,
Brian C., Seung Chung, and Vineet Gupta (2001).
Mode Estimation of Model-Based Programs:
Monitoring Systems with Complex Behavior. In
Proc. IJCAI-2001, pp. 579–590.

8

