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Abstract—Quality of Experience is becoming increasingly im-
portant in signal processing applications. In taking inspiration
from chemometrics, we provide an introduction to the design
of video quality metrics by using data analysis methods, which
are different from traditional approaches. These methods do not
necessitate a complete understanding of the human visual system.
We use multidimensional data analysis, an extension of well
established data analysis techniques, allowing us to exploit higher
dimensional data better. In the case of video quality metrics,
it enables us to exploit the temporal properties of video more
properly, the complete three dimensional structure of the video
cube is taken into account in metrics’ design. Starting with the
well known principal component analysis and an introduction
to the notation of multi-way arrays, we then present their
multidimensional extensions, delivering better quality prediction
results. Although we focus on video quality, the presented design
principles can easily be adapted to other modalities and to even
higher dimensional datasets as well.

UALITY OF EXPERIENCE (QoE) is a relatively new

concept in signal processing that aims to describe how
video, audio and multi-modal stimuli are perceived by human
observers. In the field of video quality assessment, it is often
of interest for researchers how the overall experience is in-
fluenced by different video coding technologies, transmission
errors or general viewing conditions. The focus is no longer on
measurable physical quantities, but rather on how the stimuli
are subjectively experienced and whether they are perceived
to be of acceptable quality from a subjective point of view.

QoE is in contrast to the well-established Quality of Service
(QoS). There, we measure the signal fidelity, i.e. how much
a signal is degraded during processing by noise or other
disturbances. This is usually done by comparing the distorted
with the original signal, which then gives us a measure of
the signal’s quality. To understand the reason why QoS is not
sufficient for capturing the subjective perception of quality,
let us take a quick look at the most popular metric in signal
processing to measure the QoS, the mean squared error (MSE).
It is known that the MSE does not correlate very well with
the human perception of quality, as we just determine the
difference between pixel values in both images. The example
in Fig. 1 illustrates this problem. Both images on the left
have the same MSE with respect to the original image. Yet,
we perceive the upper image distorted by coding artefacts to
be of worse visual quality, than the lower image, where we
just changed the contrast slightly. Further discussions of this
problem can be found in [1].

I. HOwW TO MEASURE QUALITY OF EXPERIENCE

How then can we measure QoE? The most direct way is
to conduct tests with human observers, who judge the visual
quality of video material and provide thus information about
the subjectively perceived quality. However, we face a problem
in real-life: these tests are time consuming and quite expensive.
The reason for this is that only a limited number of subjects
can take part in a test at the same time, but also because
a multitude of different test cases have to be considered.
Apart from these more logistical problems, subjective tests
are usually not suitable if the video quality is required to be
monitored in real time.

To overcome this difficulty, video quality metrics are de-
signed and used. The aim is to approximate the human quality
perception as good as possible with objectively measurable
properties of the videos. Obviously, there is no single mea-
surable quantity that by itself can represent the perceived
QoE. Nevertheless, we can determine some aspects which are
expected or shown to have a relation to the perception of
quality and use these to design an appropriate video quality
metric.

II. DESIGN OF VIDEO QUALITY METRICS
- THE TRADITIONAL APPROACH

In the traditional approach, the quality metrics aim to
implement the spatial and temporal characteristics of the
human visual system (HVS) as well as possible in our metric.
Many aspects of the HVS are not sufficiently understood and
therefore a comprehensive model of the HVS is hardly possible
to be built. Nevertheless, at least parts of the HVS can be de-
scribed sufficiently enough in order to utilize these properties
in video quality metrics. In general, there are two different
ways to exploit these properties according to Winkler [2]:
either a psychophysical or an engineering approach.

The psychophysical approach relies primarily on a (partial)
model of the HVS and tries to exploit known psychophysical
effects, e.g. masking effects, adaption and contrast sensitivity.
One advantage of this approach is that we are not limited
to a specific coding technology or application scenario, as
we implement an artificial observer with properties of the
HVS. In Daly’s visual differences predictor [3], for example,
the adaption of the HVS at different light levels is taken
into account, followed by an orientation dependent contrast
sensitivity function and finally models of the HVS’s different
detection mechanism are applied. This full-reference predictor
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Fig. 1: Images with same MSE, but different visual quality (left) and how a model is built with data analysis: subjective testing

and feature extraction for each video sequence (right)

then delivers a measure for the perceptual difference in the
same areas of two images. Further representatives of this
approach are Lubin’s visual discrimination model [4], the
Sarnoff Just Noticeable Difference (JND) [5] and Winkler’s
perceptual distortion metric [6].

In the engineering approach, the properties of the HVS
are not implemented directly, but rather it determines features
known to be correlated to the perceived visual quality. These
features are then extracted and used in the video quality metric.
As no in-depth understanding of the HVS is needed, this type
of metric is commonly used in current research. In contrast
to the psychophysical approach, however, we are limited to
predefined coding technologies or application scenarios, as
we do not construct an artificial observer, but rather derive
the features from artifacts introduced by the processing of
the videos. One example for such a feature is blocking as
seen in Fig. 1. This feature is well known, as it is especially
noticeable in highly compressed video. It is caused by block-
based transforms such as the Discrete Cosine Transform
(DCT) or integer transform in the current video encoding
standards MPEG-2 and H.264/AVC. With this feature, we
exploit the knowledge, that human perception is sensitive to
edges, and assume therefore that artificial edges introduced by
the encoding results in a degraded, perceived quality. Usually,
more than one feature is extracted and these features are
then combined into one value, by using assumptions about
the HVS. Typical representatives of this approach are the
widely used Structural Similarity (SSIM) index by Wang et
al. [7], the video quality metric by Wolf and Pinson [8]
and Watson’s digital video quality metric [9]. Moreover we
can distinguish between full-reference, reduced-reference and
no-reference metrics, where we have either the undistorted
original, some meta information about the undistorted original
or only the distorted video available, respectively. We refer
to [10] for further information on the HVS, and [11], [12] for
an overview of current video quality metrics.

In general, the exploitation of more properties of the HVS
or their corresponding features in a metric allows us to model
the perception of quality better. However, since the HVS

is not understood completely, and consequently, no explicit
model of the HVS describing all its aspects is available in
the community, it is not obvious how the features should be
combined. But do we really need to know a-priori how to
combine the features?

III. AN ALTERNATIVE METHOD: DATA ANALYSIS

Sometimes it is helpful to look at other disciplines. Video
quality estimation is not the only application area in which
we want to quantify something that is not directly accessible
for measurement. Similar problems often occur in chemistry
and related research areas. In food science, for example,
researchers face a comparable problem: they want to quantify
the taste of samples, but taste is not directly measurable.
The classic example is about the determination of the perfect
mixture for hot chocolate that tastes best. One can measure
milk, sugar or cocoa content, but there is not an a-priori
physical model that allows us to define the resulting taste.
To solve this problem, a data-driven approach is applied, i.e.
instead of making explicit assumptions of the overall system
and relationship between the dependent variable, e.g. taste and
the influencing variables e.g. milk, sugar and cocoa, the input
and output variable are analyzed. In this way we obtain models
purely via the analysis of the data.

In chemistry, this is known as chemometrics and has been
applied successfully to many problems in this field for the
last three decades. It provides a powerful tool to tackle the
analysis and prediction of systems that are understood only to
a limited degree. So far this method is not well known in the
context of video quality assessment or even multimedia quality
assessment in general. A good introduction into chemometrics
can be found in [13].

By applying this multivariate data analysis to video quality,
we now consider the HVS as a black box and therefore do not
assume a complete understanding of it. The input corresponds
to features we can measure and the output of the box to the
perceived visual quality obtained in subjective tests. Firstly,
we extract m features from an image or video frame I,
resulting in a 1 X m row vector x. While this is similar to



the engineering approach described in the previous section, an
important difference is that we do not make any assumption
about the relationship between the features themselves, but
also not about how they are combined into a quality value.

In general, we should not limit the number of selected
features unnecessarily. Or to quote Martens and Martens [13],
Beware of wishful thinking! As we do not have a complete
understanding of the underlying system, it can be fatal if we
exclude some features before conducting any analysis, because
we consider them to be irrelevant. On the other hand, data that
can be objectively extracted, like the features in our case, is
usually cheap or in any case less expensive to generate than
subjective data gained in tests. If some features are irrelevant
to the quality, we will find out during the analysis. Of course
it is only sensible to select features that have some verified
or at least some suspected relation to the human perception
of visual quality. For example, we could measure the room
temperature, but it is highly unlikely that room temperature
has any influence in our case.

For n different video sequences, we extract a corresponding
feature vector x for each sequence and thus get an n X m
matrix X, where each row describes a different sequence or
sample and each column describes a different feature as shown
in Fig. 1. We generate a subjective quality value for each of
the n sequences by subjective testing and get an n X 1 column
vector y that will represent our ground truth. Based on this
dataset, a model can be generated to explain the subjectively
perceived quality with objectively measurable features. Our
aim is now to find an m x 1 column vector b that relates the
features in X to our ground truth in y or provides the weights
for each feature to get the corresponding visual quality. This
process is called calibration or training of the model, and
the used sequences are the training set. We can use b to also
predict the quality of new, previously unknown sequences. The
benefit of using this approach is that we are able to combine
totally different features into one metric without knowing their
proportional contribution to the overall perception of quality
beforehand.

IV. CLASSIC AND WELL KNOWN:
LINEAR REGRESSION

One classic approach to estimate the weight vector b is via
a simple multiple linear regression model, i.e.

y =Xb+e, (1)

where ¢ is the error term. Without loss of generality, the data
matrix X can be assumed to be centered, namely with zero
means, and consequently the video quality values y are also
centered.
Using a least squares estimation, we are given an estimation
of b as R
b=(X"X)"X"y, 2)

where Z 1 denotes the More-Penrose pseudo-inverse of matrix
Z. We use the pseudo-inverse, as we can not assume that
columns of X representing the different features are linearly
independent and therefore X T X can be rank deficient. For an
unknown video sequence Vi; and the corresponding feature

vector x,, we are then able to predict its visual quality 7,
with

Yu = Xy b. (3)

Yet, this simple approach has a drawback: we assume implic-
itly in the estimation process of the weights that all features
are equally important. Clearly, this will not always be the case,
as some features may have a larger variance than others.

V. AN IMPROVEMENT:
PRINCIPAL COMPONENT REGRESSION

We can address the aforementioned issue by selecting the
weights in the model, so that they take into account the
influence of the individual features on the variance in the
feature matrix X. We are therefore looking for so-called latent
variables, that are not directly represented by the measured
features themselves, but rather by a hidden combination of
them. In other words, we aim to reduce the dimensionality of
our original feature space into a more compact representation,
more fitting for our latent variables. One well known method
is the Principal Component Analysis (PCA), which extracts
the latent variables as the Principal Components (PCs). The
variance of the PCs is expected to preserve the variance of the
original data. We then perform a regression on some of these
PCs leading to the principal component regression (PCR). As
PCA is a well known method, we just briefly recap some
basics.

Let X be a (centered) data matrix, we define r =
min {n, m} and using a singular value decomposition (SVD)
we get the following factorization:

X = UDP', (4)

where U is an n x r matrix with r orthonormal columns,
P is an m x r matrix with r orthonormal columns and D
is a r X r diagonal matrix. P is called the loadings matrix
and its columns py, . .., p, are called loadings. They represent
the eigenvectors of X " X. Furthermore we define the scores
Matrix

T =UD = XP. 5)

The basic idea behind PCR is to approximate X by only
using the first g columns of T and P, representing the g largest
eigenvalues of X "X and also the first ¢ PCs. We hereby
assume that the combination of the largest g eigenvalues
describe the variance in our data matrix X sufficiently and
that we can therefore discard the smaller eigenvalues. If g is
smaller than r, the model can be built with a reduced rank.
Usually we aim to explain at least 80-90% of the variance in
X. But also other selection criteria are possible.

Our regression model with the first g PCs can thus be written
as

y= Tgca 6)

where T, represents a matrix with the first g columns of T
and c the (unknown) weight vector. Once again, we perform a
multiple linear regression. We estimate ¢ with the least squares
method as

o~ T \—1T

c=(T, T, T,y. (7
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Fig. 2: Temporal pooling

In the end, we are interested in the weights, so that we can
directly calculate the visual quality. Therefore we determine
the estimated weight vector b as

b = P,c, (8)

with P, representing the matrix with the first g columns of
P. We can predict the visual quality for an unknown video
sequence Vi and the corresponding feature vector x, with
3).

PCA was firstly used in the design of video quality metrics
by Miyahara in [14]. We refer to [15] for further information
on PCA and PCR. A more sophisticated method often used in
chemometrics is the partial least squares regression (PLSR).
This method also takes the variance in the subjective quality
vector y into account as well as the variance in the feature
matrix X. PLSR has been used in the design of video quality
metrics in e.g. [16]. Further information on PLSR itself can
be found in [13] and [17].

VI. VIDEO IS A CUBE

The temporal dimension is the main difference between still
images and video. In the previous section we assumed that we
extract the feature vector only from one image or one video
frame, which is a two dimensional matrix. In other words,
video was considered to be just a simple extension of still
images. This is not a unique omission only in this article so
far, but the temporal dimension is quite often neglected in
many contributions in the field of video quality metrics. The
additional dimension is usually managed by temporal pooling.
Either the features themselves are temporally pooled into one
feature value for the whole video sequence or the metric is
applied to each frame of the video separately and then the
metric’s values are pooled temporally over all frames to gain
one value, as illustrated in Fig. 2.

Pooling is mostly done by averaging, but also other simple
statistical functions are employed such as standard deviation,
10/90% percentiles, median or minimum/maximum. Even if a
metric considers not only the current frame, but also preceding
or succeeding frames, e.g. with a 3D filter [18] or spatio-
temporal tubes [19], the overall pooling is still done with one
of the above functions. But this arbitrary pooling, especially
averaging, obscures the influence of temporal distortions on
the human perception of quality, as intrinsic dependencies
and structures in the temporal dimension are disregarded. The
importance of video features’ temporal properties in the design
of video quality metrics was recently shown in [20].

Omitting the temporal pooling step and introducing the
additional temporal dimension directly in the design of the
video quality metrics can improve the prediction performance.
We propose therefore to consider video in its natural three
dimensional structure as a video cube. Extending the data
analysis approach, we add an additional dimension to our
dataset and thus arrive at multidimensional data analysis, an
extension of the two dimensional data analysis. In doing so,
we gain a better understanding of the video’s properties and
will thus be able to interpret the extracted features better. We
no longer employ an a-priori temporal pooling step, but use
the whole video cube to generate the prediction model for the
visual quality and thus consider the temporal dimension of
video more appropriately.

VII. TENSOR NOTATION

Before moving on to the multidimensional data analysis, we
shortly introduce the notation for handling multi-way arrays
or tensors.

In general, our video cube can be presented as a three-way
ux v xtarray V(:,:,:), where the u and v are the frame size,
and ¢ is the number of frames. Similarly, we can extend the
two dimensional feature matrix X into the temporal dimension
as a n X m Xt three-way array or feature cube. Both are shown
in Fig. 3. In this work, we denote X(i, j, k) as the (4, j, k)-th
entry of X, X(4,7,:) as the vector with a fixed pair of (3, j)
of X, referred to as tensor fiber, and X (4, :, :) the matrix of X
with a fixed index i, referred to as tensor slice. The different
fibers and slices are shown in Fig. 4. For more information
about tensors and multi-way arrays, see [21] and for multi-way
data analysis refer to [22], [23].

VIII. UNFOLDING TIME

The easiest way to apply conventional data analysis methods
for analyzing tensor data, is to represent tensors as matrices.
It transforms the elements of a tensor or multi-way array into

Fig. 3: Video cube and feature cube
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Fig. 4: Tensor notation: fibre (left) and slice (right)

entries of a matrix. Such a process is known as unfolding,
matricization, or flattening.

In our setting, we are interested in the temporal dimension
and therefore perform the mode-1 unfolding of our three-
way array X(i,j,k). Thus we obtain a new n x (m - t)
matrix X, fo14, Whose columns are arranged mode-1 fibers of
X(i, 4, k). For simplicity, we assume that the temporal order
is maintained in X, to14. The structure of this new matrix is
shown in Fig. 5. We then perform a PCR on this matrix as
described previously and obtain a model of the visual quality.
Finally, we can predict the visual quality of an unknown video

m"t

Fig. 5: Unfolding of the feature cube

sequence Vi with its feature vector x,, by using (3).

Note, that x,, is now of the dimension 1 x (m - t). One
disadvantage during the model building step with PCR is
that the SVD must be performed on a rather large matrix.
Depending on the frames in the video sequence, the time
needed for model building can increase by a factor of 10 or
higher. But more importantly, we still lose some information
about the variance by unfolding and thus destroying the
temporal structure.

IX. 2D PRINCIPAL COMPONENT REGRESSION

Instead of unfolding we can include the temporal dimension
directly in the data analysis via performing a multidimensional
data analysis. We use the two-dimensional extension of the
PCA, the (2D-PCA), recently proposed by Yang et al. [24], in
combination with a least squares regression as 2D-PCR. For a
video sequence with ¢ frames, we can carve the n x m X t fea-
ture cube into ¢ slices, where each slice represents one frame.
Without loss of generality, we can compute the covariance or

horizontal slice frontal slice
X(1,:,:) X(:,2,:)
lateral slice X1
scatter matrix as
t
1 T .
Xset = ZZX(:,:,@) X(::,14), )

i=1
where, by abusing the notation, X(:,:, ) denotes the centered
data matrix. It describes therefore the average covariance
over the temporal dimension ¢. Then we perform the SVD
performed on X g.; to extract the PCs, similar to the previously
described one dimensional PCR in (4).

Instead of a scores matrix T, we now have a three-way
n X g X t scores array T(:,:,:), with each slice defined as

T(;,: 1) = X(:,:,0)P. (10)

Similar to (7), we then estimate a g X 1 x t prediction weight
for each slice with the first g principal components as

Cyii) = (Ty(ey,8) Ty 50) T Tyrnd) Ty(i), (1)

before expressing the weights in our original feature space
with a m x 1 x t three-way array

ﬁ(:,:,i) :Pga(:,:,i), (12)

comparable to (8) for the one dimensional PCR. Note, that the
weights are now represented by a (rotated) matrix.

A quality prediction for the i-th slice can then be performed
in the same manor as in (3), i.e.

Vu(i) = X0 (:y:5,4)B(:, 5, 1),
where X, represents a 1 x m x t feature matrix for one
sequence and ¥, () the 1 x ¢ predicted quality vector. We
can now use this quality prediction individually for each slice
or generate one quality value for the whole video sequence

by pooling. 2D-PCR has been used so far for video quality
metrics in [25].

13)

X. CROSS VALIDATION

In general data analysis methods require a training phase or
a training set. One important aspect is to employ a separate
data set for the validation of the designed metric. Using the
same data set for training and validation will usually give us
misleading results. Not surprisingly, our metric performs ex-
cellently with its training data. For unknown video sequences,
on the other hand, the prediction quality could be very bad. But
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as mentioned previously, the data in video quality metrics is
usually expensive to generate as we have to conduct subjective
tests. Hence we can not really afford to use only a sub-set of
all available data for the model building, as the more training
data we have, the better the prediction abilities of our metric
will be.

This problem can be partially avoided by performing a
cross validation, e.g. leave-one-out. This allows us to use all
available data for training, but also to use the same data set
for the validation of the metric. Assuming we have 7 video
sequences with different content, then we use ¢ — 1 video
sequences for training and the left out sequence for validation.
All in all, we eventually get ¢ models. This is illustrated in
Fig. 6. The general model can then be obtained by different
methods e.g. averaging the weights over all models or selecting
the model with the best prediction performance. For more
information on cross validation in general we refer to [13]
and [26].

XI. USING DATA ANALYSIS: AN EXAMPLE METRIC

But do more dimensions really help us in designing better
video quality metrics? In order to compare the approaches to
data analysis we presented in this work, we therefore design
as an example a simple metric for estimating the visual quality
of coded video with each method in this section.

The cheapest objective data available for an encoded video
can be found directly in its bitstream. Even tough we do not
know a-priori which of the bitstream’s properties are more,
and which are less important, we can safely assume that
they are related in some way to the perceived visual quality.
How they are related, will be determined by data analysis.
In this example, we use videos encoded with the popular
H.264/AVC standard, currently used in many applications from
high definition HDTV to internet based IPTV. For each frame,
we extract 16 different features describing the partitioning
into different block sizes and types, the properties of the
motion vectors and lastly the quantization, similar to the
metric proposed in [27]. Each frame is thus represented as
1 x 16 feature vector x. Note, that no further preprocessing
of the bitstream features was done. Alternatively, one can also

extract features independent of the used coding technology,
e.g. blocking or blurring, as described in [16].

Certainly, we also need subjective quality values for these
encoded videos as ground truth in order to perform the data
analysis. Different methodologies as well as the requirements
on the test set-up and equipment for obtaining this data are
described in international standards e.g. ITU-R BT.500 or
ITU-T P.910. Another possibility is to use existing, publicly
available datasets, containing both the encoded videos and the
visual quality values. One advantage of using such datasets is
that different metrics can be compared more easily.

For this example, we will use a dataset provided by IT-
IST [28]. It consists of eleven videos in CIF resolution (352 x
288) and a frame rate of 30 frames per second as shown in
Fig. 7. They cover a wide range of different content types,
at bitrates from 64 kBit/s to 2.000 kBit/s, providing a wide
visual quality range with in total n = 52 data points, leading
to a 52 x 1 quality vector y. According to [28], the test was
conducted using to the DCR double stimulus method described
in ITU-T P.910. For each data point, the test subjects were
shown the undistorted original video, followed by the distorted
encoded video, and then asked to assess the impairment of the
coded video with respect to the original on a discrete five point
mean opinion score (MOS) scale from 1, very annoying, to 5,
imperceptible. For more information on H.264/AVC in general
we refer to [29], and for the H.264/AVC feature extraction
to [27]. A comprehensive list of publicly available datasets is
provided at [30].

XII. MORE DIMENSIONS ARE REALLY BETTER

Finally, we compare the four video quality metrics, each
designed with one of the presented methods. By using a cross
validation approach, we design eleven different models for
each method. Each model is trained using ten video sequences
and the left out sequence is then used for validation of the
model built with the training set. Hence, we can measure
the prediction performance of the models for unknown video
sequences.

The performance of the different models is compared by
calculating the Pearson correlation and the Spearman rank
order correlation between the subjective visual quality and the



Fig. 7:

Test
Coastguard, Container, Crew, Football, Foreman, Mobile,
Silent, Stephan, Table Tennis and Tempete.

videos from top to bottom, left to right: Ciry,

quality predictions. The Pearson correlation gives an indication
about the prediction accuracy of the model and the Spearman
rank order correlation gives an indication how much the
ranking between the sequences changes between the predicted
and subjective quality. Additionally, we determine the root
mean squared error (RMSE) between prediction and ground
truth, but also the percentage of predictions that fall outside
the used quality scale from 1 to 5.

By comparing the results in Fig. 8 and Table I, we can see
that a better inclusion of the temporal dimension in the model
building helps to improve the prediction quality. Note, that this
improvement was achieved very easily, as we did nothing else,
but just changing the data analysis method. In each step we
exploit the variation in our data better. Firstly just within our
temporally pooled features with the step from multiple linear
regression to PCR, then by the step in the third dimension
with unfolding and 2D-PCR.

XIII. SUMMARY

In this work, we provide an introduction into the world of
data analysis and especially the benefits of multidimensional
data analysis in the design of video quality metrics. We have
seen in our example, that even with a very basic metric, by
using multidimensional data analysis, we can increase the per-
formance of predicting the Quality of Experience significantly.
Although the scope of this introduction covered only the qual-
ity of video, the proposed methods can obviously be extended
to more dimensions and/or other areas of application. It is
interesting to note, that the dimensions need not be necessarily
spatial or temporal, but also may represent different modalities
or perhaps even a further segmentation of the existing feature
spaces.
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Fig. 8: Comparison of the presented methods: subjective quality vs. predicated quality on a mean opinion score (MOS) scale
from 1 to 5, worst to best quality.

Pearson. Spearmgn RMSE Outside scale
correlation correlation
linear regression
PCR
unfolding + PCR
2D-PCR

TABLE I: Performance measurements: Pearson correlation, Spearman rank order correlation and RMSE. Additionally, the ratio
of how many quality predictions are outside of the given scale.
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