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ABSTRACT

We introduce features based on Non-Negative Matrix Factorization
(NMF) for discrimination of speech and non-linguistic vocalizations
such as laughter or breathing, which is a crucial task in recognition
of spontaneous speech. NMF has been successfully used in speech-
related tasks such as de-noising and speaker separation. While exist-
ing approaches use it as a preprocessing step for conventional speech
recognizers, we aim at directly classifying the output of the NMF al-
gorithm. To this end, we propose a feature extraction procedure based
on a supervised variant of NMF, considering two different algorithms.
Applying our approach to a spontaneous speech corpus, we show
that addition of NMF features to an MFCC-based classifier increases
mean recall of speech and non-linguistic vocalizations by over 2.5 %
absolute, and particularly recall of laughter by 6.6 % absolute. The
improvement is significant at a level of 0.4 %.

Index Terms— Non-Negative Matrix Factorization, Non-
linguistic vocalizations, Speech recognition, Spontaneous speech

1. INTRODUCTION

Non-negative matrix factorization (NMF) and its extensions have
been successfully used in areas related to speech recognition, includ-
ing speech de-noising and speaker separation [1–6].

The basic principle of NMF-based audio processing is to find a
locally optimal factorization of a short-time magnitude spectrogram
into two factors, of which the first one represents the spectra of the
events occurring in the signal and the second one their activation over
time. The mathematical background of NMF is explained in Sec. 2.

Previous works in NMF-based speech processing either aim for
best separation quality or use NMF as a signal enhancement technique
that is applied before conventional speech recognition procedures.
In contrast, we propose to use the NMF algorithm as a data-based
feature extractor. While a data-based NMF feature extraction process
for sound classification has been described in [7], we aim at using
NMF features as an addition to conventional acoustic features for
discrimination of speech and non-linguistic vocalizations, including
laughter, breathing, hesitation (e. g. “uhm”) or non-verbal consent
(e. g. “aha”). To this end, we perform a supervised NMF variant
with spectra that were pre-computed from instances of speech and
non-linguistic vocalizations to measure which spectra contribute the
most to the signal.

Discrimination of speech and non-linguistic vocalizations plays
an important role in speech recognition systems dealing with spon-
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taneous speech, like dialog systems, call center loops or automatic
transcription of meetings. In contrast to read speech, which conveys
only the information contained in the spoken words and sentences,
spontaneous speech contains more extra linguistic information. As
non-linguistic vocalizations reveal much about this information [8],
it is vital for a spontaneous speech recognizer to spot non-linguistic
vocalizations and their type [9].

Several specialized approaches have been proposed for the de-
tection of filled pauses [10] and laughter [11–13]. In contrast, our
previous work [14] in this area considered the discrimination of five
types of non-linguistic vocalizations in a purely data-driven man-
ner. Experiments were carried out on segments extracted from the
Audio-Visual Interest Corpus (AVIC) [15]. In this paper, we ex-
tend this approach to not only distinguish between different types
of non-linguistic vocalizations, but also to discriminate them from
speech. Furthermore, we will aim at a speaker-independent recog-
nizer, and most notably we will show that features generated by NMF
can increase classification accuracy compared to traditional acous-
tic features such as Mel frequency cepstral coefficients (MFCCs).
Thereby we also consider the impact on accuracy caused by different
NMF algorithms.

The paper is structured as follows: first, we introduce the math-
ematical background of NMF and its usage in signal processing in
Sec. 2. Second, we describe our feature extraction procedure based
on NMF in Sec. 3. Third, we show the results of our experiments
with speech and non-linguistic vocalizations from the AVIC corpus
in Sec. 4 before concluding in Sec. 5.

2. NON-NEGATIVE MATRIX FACTORIZATION

2.1. Definition

Given a matrix V ∈ R
n×m
+ and a constant r ∈ N, non-negative

matrix factorization (NMF) computes two matrices W ∈ R
n×r
+ and

H ∈ R
r×m
+ , such that

V ≈ WH (1)

Usually one chooses r � n,m, so that NMF performs informa-
tion reduction.

2.2. NMF in Signal Processing

NMF in signal processing is usually applied to magnitude spectra. Ba-
sic NMF approaches assume a linear signal model, i. e. that the short-
time magnitude spectra of a monophonic signal can be expressed
as linear combinations of spectra of several distinct components.
Thereby the coefficients are restricted to be non-negative.
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Considering Eq. 1, one can interpret the columns of W as spectral
components and the corresponding rows of H as their time-varying
activations. In particular, the i-th row of the H matrix indicates the
amount that the spectrum in the i-th column of W contributes to
the spectrogram of the original signal. This fact is the basis for our
feature extraction approach, which will be explained in Sec. 3. But
first, the algorithmic aspects of NMF shall be discussed.

2.3. Factorization Algorithm

Factorization is usually achieved by iterative minimization of cost-
functions. An ‘obvious’ cost-function is the squared Euclidean dis-
tance between the original matrix and the product of the NMF factors:

ce(W,H) = ||V −WH||F =
n∑

i=1

m∑
j=1

(V −WH)2ij (2)

This function is the basis of an approach for speaker separation with
NMF [1]. However, several recent works in NMF-based speech
processing [3–6] use cost-functions based on a modified version of
Kullback-Leibler (KL) divergence:

cd(W,H) =
∑
ij

(
Vij log

Vij

(WH)ij
− (V −WH)ij

)
(3)

Thus, both cd and ce have been successfully used for NMF in
speech-related tasks, but to our knowledge the impact of different
cost-functions on the results has not been thoroughly evaluated apart
from the field of blind source separation in music [16]. As the feature
extraction procedure in Sec. 3 is independent from the NMF cost-
function, we could use either cd or ce in our experiments and show a
comparison of both in Sec. 4.

For minimization of either cost-function, we implemented the
two algorithms by Lee and Seung [17], which iteratively modify W
and H using ‘multiplicative update’ rules.

While H is initialized randomly, for W we use a ‘targeted ini-
tialization’ approach which will be explained in the next section.

3. NMF FEATURE EXTRACTION

3.1. Supervised Variant of NMF

We now consider a supervised variant of NMF using a predefined
matrix W which is kept constant throughout the iteration while
H is updated iteratively. In this case, NMF seeks a minimal-error
representation of the signal (in terms of the cost-function) with only
a set of given spectra.

As outlined in Sec. 2.2, the H matrix measures the contribution of
spectra to the original signal. Thus, by using a matrix W that contains
spectra of speech and different non-linguistic vocalizations, the rows
of H provide information whether the original signal consists of
speech or a certain type of non-linguistic vocalization.

Assuming that we aim at discrimination of C different classes
of signals, our algorithm for the computation of a W matrix for
supervised NMF can be summarized as follows: for each class c ∈
{1, . . . , C}:

1. Concatenate the corresponding training samples

2. Compute the magnitude spectrogram Vc by short-time Fourier
transformation (STFT)

3. From Vc obtain matrices Wc, Hc by NMF

Fig. 1. Block diagram showing the extraction of NMF activation
features for discrimination of C classes in N input signals. Matrices
denoted by V are spectrograms. The matrix W consists of spectra
computed from training data according to Sec. 3.1 and is used to
perform supervised NMF on the spectrograms of all input signals.
Feature extraction is carried out on the resulting H (activation) matri-
ces. || · ||2 indicates that the Euclidean norm of each matrix row is
computed, and

∑
= 1 is a normalization such that the components

of each vector ai sum up to 1.

Intuitively speaking, each Wc contains ‘characteristic’ spectra
of class c. More precisely, these are the spectra that model all of
the training samples belonging to class c with the least overall error.
From the Wc we build the matrix W by column-wise concatenation:

W := W1|W2| · · · |WE ,

In our experiments, we empirically determined the number of com-
ponents to use for each class. Best results were achieved with 10-20
components per class (see Sec. 4 for details).

Note that a similar technique has been used e. g. in [3, 4], aiming
at separation of speech and noise, and in [1] for speaker separation.

3.2. NMF Activation Features

From H ∈ R
r×m we calculate a feature vector a ∈ R

r such that ai

is the Euclidean length of the i-th row of H. To obtain features that
are independent of the length and power of the signal, we normalize
a such that |a|1 = 1.

The components of the vector a shall be subsequently referred
to as ‘NMF activation features‘. A block diagram summarizing the
procedure presented in this section is given in Fig. 1.

4. EXPERIMENTS

4.1. Data Set

We prepared a data set based on the Audio-Visual Interest Corpus
(AVIC). This corpus consists of 3 901 turns, spoken by 21 subjects
(10 of them female). The total recording time for males resembles
5:14:30 h with 1 907 turns, for females 5:08:00 h with 1 994 turns,
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respectively. The spoken content, including non-linguistic vocaliza-
tions, is transcribed on the word level. For a detailed description of
AVIC we refer to [15].

We divided the corpus into a training, development, and test set.
Each of the 21 speakers was assigned to exactly one of the sets to
evaluate the recognition procedure in a speaker-independent manner.
The sets were chosen such that the total length of the utterances is
approximately equal for each set, and furthermore each set is balanced
by the length of male and female utterances, as is the whole corpus.
In detail, speakers 4, 6, 8, 10, 28, 34 and 36 were assigned to the
training set, speakers 12, 13, 15, 26, 30, 33, 35 to the development
set, and speakers 5, 9, 16, 27, 29, 31, 32 to the test set.

We used the transcription of the corpus to extract the signal parts
containing non-linguistic vocalizations of the 4 classes ‘consent’,
‘laughter’, ‘hesitation’, and ‘breathing’. Note that we ignored the
‘coughing’ class due to a very small number of instances, as well
as the ‘garbage’ class corresponding to other human noise, as it is
rather application dependant. Then we generated ‘speech-only’ turns
by cutting out all segments that contain non-linguistic vocalizations
according to the transcription. Thus we ended up with instances
from 5 classes. We eliminated all instances with a length of less
than 100 ms, as feature extraction and model evaluation on such
short segments is very error-prone [14]. In total, the training set
consisted of 2 070, the development set of 1 980 and the test set of
2 184 instances.

As the number of instances of the ‘speech’ class is clearly domi-
nating, we applied upsampling to the training set (when testing with
the development set) and to the union of training and development set
(when testing with the test set). Thereby all instances of each of the
‘smaller’ classes were duplicated such that these classes had roughly
equal numbers of instances.

4.2. Feature Extraction and Classification

Each instance was transferred to the frequency domain by applying
STFT with a Hamming window, 25 ms window size, and 10 ms frame
rate. From the resulting spectrograms, we extracted Mel frequency
cepstral coefficients (MFCCs) 0-12 with 26 filter banks, as common
in speech processing. We considered the mean and standard devi-
ation as time- and length-independent functionals of each MFCC.
Furthermore we added the MFCCs from 5 equidistant signal frames,
starting with the first and ending with the last signal frame. Finally,
we also computed the first-order (δ) and second-order regression (δδ)
coefficients, and added their mean and standard deviation as well as
their values at 5 equidistant signal frames, yielding a total of 273
acoustic features per instance.

Performance of the NMF activation features was evaluated by
training with the training set and testing with the development set.
Spectra for the extraction of NMF activation features were computed
from signals concatenated from all the training utterances for each of
the laughter, consent, hesitation, and breathing classes, respectively.
Note that for this concatenation the original training set (before down
sampling) was used, as from our experience the performance of
NMF features increases when spectra are computed from longer
input signals. However, for the speech class, as in [1], only 10 %
of the training material was used, since a factorization of all speech
utterances from the training set is not feasible considering memory
requirements and limitations. The NMF cost-function as well as the
number of components was varied, as will be explained in the next
section.

Each feature is linearly scaled to the range [−1, 1]. As classifier,
we used Support Vector Machines (SVM). It turned out that in our

Recall [%] Euclidean distance mod. KL divergence
N70 N90 N100 N70 N90 N100

speech 66.69 68.35 69.65 69.50 71.23 71.02
hesitation 67.63 61.35 62.80 71.01 73.19 76.09
consent 84.18 86.44 89.27 89.27 88.70 85.88
laughter 51.32 55.26 47.37 71.05 75.00 71.05
breathing 95.38 91.54 94.62 87.69 88.46 91.54

mean 73.04 72.59 72.73 77.71 79.32 79.11

Table 1. Recall and mean recall for 4 different non-linguistic vocal-
izations and speech on the test set of the AVIC corpus, consisting of
2 184 utterances from 4 male and 3 female subjects. All results are
achieved using an SVM with RBF kernel, trained with different sets
of NMF activation features: N70, N90, and N100, corresponding to
70, 90, and 100 NMF components, respectively. NMF was computed
by minimization of either Euclidean distance (Eq. 2) or modified KL
divergence (Eq. 3). The best result per class is highlighted.

task SVM with radial basis functions (RBF) outperform SVM with
linear kernel.

4.3. Results

After combining the training and development set, we evaluated the
performance of the aforementioned feature extraction and classifi-
cation procedure on the test set. To this end, we extracted NMF
activation features using spectra that were computed from a concate-
nation of samples from both the training and development set.

We considered NMF activation features computed with 70, 90,
and 100 components (N70, N90, N100). The spectra for 70 com-
ponents were distributed among the classes as follows: 20 for the
speech and laughter classes, and 10 for the remaining three classes
(consent, hesitation, breathing), corresponding to the fact that speech
and laughter are probably more diverse than hesitation, consent, or
breathing. For 90 components, the number of speech spectra was
doubled from 20 to 40; for 100 components, 20 spectra for each of the
5 classes were used. Both Euclidean distance (Eq. 2) and modified
KL divergence (Eq. 3) were considered as cost-functions.

The results achieved with these features are shown in Table 1,
indicating the recall in percent for an SVM classifier with RBF kernel.
As to the cost-function, we conclude that NMF feature extraction
works best when minimizing modified KL divergence, outperforming
Euclidean distance by up to 7 % absolute. The improvement observed
by choosing modified KL divergence over Euclidean distance for
computing the N100 feature set is significant at p ≈ 1.1 · 10−5 (one-
tailed McNemar test). Particularly the Euclidean distance features
perform poorly in the detection of laughter, which is mostly misclas-
sified as breathing. Compared to the choice of the cost-function, the
number of NMF components seems to have a smaller influence on
performance. Overall the best mean recall is achieved by using 90
components and minimizing modified KL divergence.

Results achieved by using MFCC features and MFCC together
with NMF activation features are shown in Table 2. The columns
denote the recall in percent for an SVM classifier with RBF kernel,
provided with 273 MFCC features (M) or both MFCC and one of the
NMF activation feature sets (M+N70, M+N90, M+N100). For the
experiments in this table, NMF activation features were computed by
minimization of Euclidean distance, which yielded slightly – yet not
significantly – better results.

First, it is evident that, though performing considerably well in

5056



Recall [%] M M+N70 M+N90 M+N100
speech 79.52 80.25 80.61 80.97
hesitation 85.99 86.96 85.99 85.27
consent 89.27 90.96 92.09 93.79
laughter 81.58 86.84 86.84 88.16
breathing 93.85 93.85 94.62 94.62
mean 86.04 87.77 88.03 88.56

Table 2. Recall and mean recall for 4 different non-linguistic vocal-
izations and speech on the test set of the AVIC corpus, consisting of
2 184 utterances from 4 male and 3 female subjects. All results are
achieved using an SVM with RBF kernel. The columns indicate four
different feature sets: 273 MFCC features (M) and MFCC plus NMF
activation features (M+N70, M+N90, M+N100), corresponding to 70,
90, and 100 NMF components as in Table 1. NMF activation features
are computed by minimization of Euclidean distance (Eq. 2). The
best result per class is highlighted.

detection of breathing and consent, NMF activation features alone
cannot surpass MFCCs in terms of mean recall. However, considering
the impact of adding NMF activation features to MFCC features, it
can be seen that they increase the recall for all classes but hesitation.

Notably the M+N100 set yields the best mean recall and dras-
tically increases the recall for the laughter class by 6.6 % absolute,
compared to MFCC features only. For the consent class there is an
increase of 4.5 % absolute. Conducting the one-tailed McNemar test
reveals that the improvement by using the M+N100 feature set instead
of MFCCs only (M) is significant at p ≈ 3.76 · 10−3.

5. CONCLUSION

We presented a supervised NMF procedure to compute ‘activation
features’ and could show that they perform considerably well for the
discrimination of speech and non-linguistic vocalizations. Thereby
an NMF algorithm minimizing a criterion related to Kullback-Leibler
divergence produced clearly better results than the corresponding
algorithm for Euclidean distance. Furthermore, we demonstrated
that this type of feature can significantly improve performance of
MFCC-based static classifiers: in an experiment carried out on a large
corpus of spontaneous speech, NMF activation features could increase
unweighted mean recall by 2.5 % absolute, recall of the ‘consent’ type
of vocalization by 4.5 % absolute, and recall of laughter by 6.6 %
absolute.

Our future work in this area will investigate whether extensions
of NMF, such as non-negative matrix deconvolution [18], or various
extensions of the cost-functions such as sparseness constraints [1]
can further improve the performance of NMF features. Furthermore,
we want to include a greater variety of audio features such as the
ones proposed in [14] and extend the classification procedure by de-
correlation and feature selection techniques. Finally, our goal is to
extend the presented feature extraction metaphor to use time-varying
features with dynamic classifiers for segmentation of signals into
speech and non-linguistic vocalizations.
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