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Abstract— Recent results in networked control systems in- iS no concrete specification of how to choose optimally the
dicate substantial benefits of event-based control compateto  ryles when an event occurs. The focus of this paper is to
conventional designs. This paper identifies structural prperties design event-triggered controllers for a networked cdntro

of optimal event-based controllers designed for stochastilinear t h ¢ ¢ twork
systems. The controller is updated by measurements that are Sysiém, whereé sensor measurements areé sent over a networ

sent over a resource-constrained communication channel.ie  to the controller. An event-triggered controller consiefs
timings for sending updates are determined by an event-triger ~ a (i) control policy that applies control inputs from availa

whose decisions are based on noisy measurements. The obi\eet  gpservations and (i) a scheduling policy assigning traasm
is to design event-triggering mechanisms and controllershat g0 timings. The goal is to minimize an objective function

optimally meet a trade-off between control performance and isti f tandard drati trol t and
average number of update transmissions. It is shown that the CONSISUNG OF a Standard quadralic control cost and a com-

optimal controller is a certainty equivalence controller with an ~ Munication cost penalizing information exchange between

affine linear estimator. The optimal event-trigger consiss of a sensor and controller. The choice for this cost function is

Kalman state estimator and a copy of the state predictor at te  inspired by related work for estimation problems with lieit

controller. Th.e difference between b'oth estlmates. determes, communication capabilities [6], [7]. In [8], [9], optimal

whether to trigger an update transmission. Numerical simu&- . . L

tions illustrate the obtained results event-triggered controllers are obtained, when limitihg t

number of transmissions for a finite interval and restrigtin

I. INTRODUCTION the controller to be time-invariant. Other related results

Recently, there is an increasing interest in designingPpear in [10], [11], which consider discrete-time systems
control Systemsy which take into account constraints OWith a hard constraint on the number of transmissions. In
the information exchange between devices, such as sens@@trast to that, this paper penalizes the average number of
controllers, and actuators. The development of such ndtansmissions which is reflected within the cost function.
worked controllers is urged by the emergence of more and The main contribution of this paper is to obtain struc-
more complex and highly distributed systems. While digitalural properties of the optimal event-triggered controtfeat
controllers commonly have time-triggered information acminimizes the underlying cost function. The obtained ressul
quisition schemes, several examples have shown that eve@xtend the results of [12] to the case of noisy observatibns a
triggered exchange of information outperforms its timethe event-trigger. It is shown that the optimal event-teiggl
triggered counterpart [1]-[5]. controller consists of an affine linear controller, where th

Contributions can be found in the field of control overgains can be obtained by standard methods. The optimal
communications [1], [2], multi-agent systems [3], [4] andevent-triggering law is a policy depending on the discregan
distributed optimization algorithms [5]. All these proble of state estimate at the controller and at the event-trigger
have in common that they must deal with limited exchange dfrns out that transmitting the Kalman state estimate auste
information between engineering entities. In [1], it is wimo  Of the complete observation history at the event-triggiir st
that an event-triggered impulsive controller is capable dfields the optimal cost.
reducing the state variance significantly compared to a-time Although these structural properties seem to be intuitive,
triggered minimum variance controller, while both havihgt @ rigorous derivation of these poses the need of innovative
same average transmission rate. The work in [2] consideféformulation techniques. This is mainly due to the diffare
multiple independent control loops which share a commot#iformation available at controller and event-trigger.eTh
digital network. There, it turns out that an event-triggere reformulation techniques constitute the key tool for hgvin
scheduling scheme outperforms a time-triggered schegluliffew insights into the proposed problem and for enabling the
scheme in terms of aggregate state variance. In the field é$e of standard optimization methods. It should be mentione
multi-agent systems, it is shown in [3] that an event-trigge that this kind of the optimal event-triggered controllevéa
control strategy reduces the need of communication signifdlready been proposed in other works. There, they resulted
cantly while maintaining a certain degree of connectivity. from heuristics [13] or restricting assumptions [6], [14].

Whereas the objective of these motivating examples is tbherefore, the results derived in this paper support these a

show the benefits of event-triggered control schemes, theggmptions by giving an interpretation in terms of optimalit
The remainder of the paper is organized into four sec-
A. Molin and S. Hirche are with the Institute of Automatic tions, Section Il introduces the system model and gives the
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D-80290 Minchen, Germanyhttp://wwmu. | sr.ei.tumde, Problem statement. In section lll, the underlying problem |

adam ol i n@um de, hi rche@um de reformulated and a structural characterization of thenogli



solution is given for the controller and the event-trigger,

. . . . b4
respectively. Finally, a numerical example illustrate th
solution algorithm for finding the optimal event-triggered Ji‘k
controller in section V. 2k—1 Uk —1] Yk
Notation. In this paper, the operatots-] and(-)T denote ¢ ( T )
Yrp+1y- -5 Yk

the trace and the transpose operator of a square matrix,
respectively. The variable denotes the probability measure
on the abstract sample space denoted2byrhe expectation
operator is denoted bl[-] and the conditional expectation

P
N
is denoted byE[|]. W

Il. PROBLEM STATEMENT Fig. 1. System model of the networked control system witmplR,

. . . . . . __event-trigger€, controllerC and communication network/.
We consider the following stochastic time-invariant 99

discrete-time syster®

Remark 2: It should be noted that sending no update is
Try1 = Azg + Bug + wy, 1) still valuable information for the controller. This will @y a
yr = Cxyp + vg, crucial role in section IlI-B.
The design objective is to find admissible event-triggering
olicies f and control policiesy that minimize the finite-
orizon criterion

whered € R"*" B € R"*% andC € R™*". The variables,
xk, ur and y, denote the state, the control input anc{:
measurement and are taking valuesRft, R? and R™,
respectively. The system noisge. and measurement noisg

take values inR™ and R™, respectively, and are i.i.d. (in- . N-1 - -
dependent identically distributed) zero-mean Gaussian di J(f,7) = E |23y Qnan + > @} Quy + wf Ruy, + Ad
tributed sequences with identity covariance matrix. The k=0

initial state, zo is Gaussian with mean:' and covari- N . o - (3)
’ m T 0 The weighting matrice§), Q y are positive definite an® is
anceS = E[(xo — z(')(zo — 20") - " A -
. : positive semi-definite. The positive factarcan be regarded

Remark 1. It is straight forward to extend all results to : L :
L , . . . as the weight of penalizing information exchange between
time-invariant systems and arbitrary noise covariance ma- - -
: - o . ; Sensor and controller. The admissible policies for the even
trices. The chosen restriction facilitates the illustatiof . . :

: . . trigger and the controller at timé are defined as Borel-

results without loosing generality.

- measurable functions of their past available data
We assume that system parameters and statistics are known P

to the event-trigger and the controller. The event-trig§er S = £1,(ZE)
situated at the sensor side has access to the complete (1€
observation history and decides, whether the contrdler ur = (L )-

should receive an update over the network denotecdvby
The controller calculates inputg, to regulate proces®.
The system model is illustrated in Figure 1.

The event-trigger outpu, € {0,1} is defined as follows:

The information patterngf andZ¢ of the event-trigger and
controller are defined as

T = {40, 00, U0, Y1, - - - s Y1, Okm 1+ Uk—1, Yis }+
{1 update is sent Iy, = {00, 20, U0, - - - Ok—1, Zk—1, Uk—1, Ok, 2k }-
k =

0 otherwise With a slight abuse of notation, we ug¢ andZ{ as sets,

If the event-trigger decides to update the controller, alitp When referring to information patterns, and as vectors,rwhe
measurements starting from the last update transmissen &ferring to the information state. Apart from this, we will
sent to the controller. Transmission of all past measurésnerpften consider the history of a specific signal up to tilne
between two update timings constitutes a preliminary ag-hese are summarized into vectors denoted by

sumption which is relaxed in section 11I-B. Hence,

UF =[ul, ..., uf]", Yr=[d,...,yi]", 4
Zk{é)ka+1a"'ayk)a gkzl @) Wk:[’wOT,...,'LUE]Ta Vk:[Uga-..,Ug]T'
) k=

It can be seen from the definition GfS that control
inputs are assumed to be known to the event-trigger. In the
7o = max{l|6; = 1,1 < k} following, we assume our system has a side informgtion
channel communicating the control inputs to the evengtrig
being the last time step, where an update has been tramas-indicated in Figure 2. It will be observed in section III-C
mitted. In case no transmission has occurred, we déiat control inputs can indeed be calculated at the event-
fine 7, = —1. triggering unit without the additional side channel.

with



I1l. STRUCTURAL CHARACTERIZATION sample pathv € Q, the sequencéd,); will be the same
independent of the control inputs chosen. By definition of

This section is divided into three subsections. First, w ] )
transformatiorf/; in (5), we observe that

investigate the form of the optimal controller. This urgas u
to characterize the least-squares state estimators até¢he e
trigger and controller. Finally, the obtained results allos
to specify the form of optimal event-triggers.

Yo =90 = C(xo +w_1)+vo
Y1 = C(A:Z?() 4+ wo) —+ v + CB"_)/(EQ)

A. Sructure of the optimal controller : b1
In order to derive a structural characterization of theji = C(A*zo+ ZAk_m_l(Bﬁm(Zo,...,zm)+wm))+vk-
optimal control policy, we first consider a related, but Istlg m=0

different problem, where the event-trigger is prespecified  This implies thaty,, z, andu,, can be expressed by primitive
the optimal control law is to be found. The resulting solatio random variables, which shows that is a function of
will yield important insights to the original problem. primitive variables and independent of the control inputs
The prespecified event-trigger is constructed by admissibirhis key feature is used for showing the following lemma.
policy f and a transformatioff; which is parameterized by  Lemma 1. The optimal control policyy* minimizing cost
an admissible control policy. The applied;, is fed into7;  function J from (3) for the reformulated system is given by
through a one-step delay element denotedrbyhe system o c
with prespecified event-trigger is calleeformulated system ur = (Zy) = —Li Elxr|Zi] (6)
in the following and is illustrated in Figure 2. The aim is toyiih
find the optimal control policy/* for this system minimizing 1
the cost function given by (3). Ly = (R+B"P.y1B)  B'PryiA,
The transformatiori/; recalculates measurement output P, = ATpk+1A +Q— ATP;CHB
and control input that would result, § and f were used

T -1 o7
in the original problem. These variables are denoted;py x (R+ B Pk+1B) B" P4,

and . It can be shown thafy is given by the following Py =Qn,
equations: where P, € R"*™ is non-negative definite for alt.
k-1 Proof: Due to the fact that the sequengg,);, is in-
Uk =Yk + Z CAF ™ 1B (20, ... Zm) — wm), dependent of the sequence of control inputs for each sample
m=0 pathw € €, the termE ZkN:_Ol )\54 in Equation (3) is
Z = {(?mﬂ, cos k), Ok =1, ®) constant and can be omitted from the optimization. Sinyilarl
0, o =0, to [15], we show that there is a functiaky, = zj, — E[z|Z¢]
e = 31(Z0, - - Z1)- of the primitive _random variable_s which does not depend on
R the policy v being used. The internal states of the event-
In other words, transformatiofi; emulates the closed-loop trigger may be disregarded as (i) they do not contribute to
behavior of a system with policies andf. the cost function and (i) the control input does not influenc
the evolution of output,. We fix a policy~ and consider
Yk _ two types of the reformulated system: The forced system
T 1| | model is given by (1), whereas the unforced system model
L with zero inputs reads
Uk—1
O Tpy1 = ATy + 0, Gk = CTp + U
Zk—1 Yk
¢ P We assume both have the same evolution of primitive random
(Yre+15 -+ YK) variable, i.e.
To = Tg, Wk =Wk, V=7V, k=0,...,N—1.
m The received signal at the controller is given by (2) for the
W forced system and
Fig. 2. Reformulated s_ystem quel with transformatiGn one-step delay 5 (g,;k+1, ey ﬂk), Sk =1
elementT and prespecified policie andf. 2k = 0, Sk —0 (7)

The event-triggering law f, decides upon past
data Y*, %! and 6!, whether or not to transmit for the unforced system. Due to linearity, we can rewrite the
an update at timek. An obvious observation is that forced and the unforced to the following form
c_hoosmgv as the c_or_itrol law in th_e refqrr_rlulateg system 2n = Foro + GRUM1 + HWF—1
yields exactly the original system with policigsandf. The R b1
key property within the reformulated system is that for each T = Fpzo + HipW



whereU*~1 WW*~1 are the augmented vectors defined in (4}jhe structure of the optimal controller structure given by
and Fy,, G, and H;, are appropriate matrices constructed.emma 1 is invariant to the specific equivalence class chosen
from A, B and k. As U*~! is measurable with respect to the optimal lawy* given by (6) is optimal for our original

the information patterd¢, the conditional expectations are problem within the complete solution space. This concludes

EforlZE] = Fi ElaolZ8) + GUF + H EA-tzg) 1 PrOot "
E[#r|ZS) = F E[zo|ZS] + Hy E[W*1ZE] B. Structure of the optimal state estimator

It has been shown in the last section that the optimal
controller is a certainty equivalence controller conegtof
linear gainsL; that can be computed in advance and a state
YF=Y* - RU* ' = CFoao + S,WF 1 + T, VF! estimatorE|[z|ZS]. The aim of this paragraph is to specify

(8) the form of E[z)|Z{].

For notational convenience, we define

The output vecto’’* of the unforced system can be ex-
pressed by

where Ry, S, and T, are appropriate matrices. As the
reformulated system has a fixed sequefi¢e;, independent @i‘k = E[kaf]’

of the control inputs chosen, we state . c
Lrlk—1 = Elzk|Z,_4],

Sk:(sk and »f-k:']‘k, I{:O,,N_l (9) ig‘k:E[‘rkLZ’-g]
Hence, with :%g‘_l = E[zo] and the error covariance matrices
Zk: [?Tk+1)@7-")@] = [YTk+1 _RT UTk+1_17(Z))"'7(Z)]' ol P
ket (10) Eilk =E[(z — wiw)(l’k - xi\k)T]a

5 ZS —E _ &€ _ &€ T )
By (8) and (9), we observe thatZ* only depends bli-1 = El@e = S (@ = Sy )]

on the primitive variables. Equation (10) implies Lemma 3: The optimal state estimator at the event-trigger

that E[#|Z¢] = E[#x| 2%, 6%] and we have is given by the Kalman filter
AL =T — E[iﬂZ’“,S"] ji\k :A"%‘Igfl\kfl + Bug_1
Accordingly, the functionA, = &), — E[i,|Z%,6%] is a + S5k C (g — CAL_ ), — CBug—1)  (11)

function of the primitive random variables and is indepertde independently of the scheduling law chosen.
on the control policy used.

. . . L Proof:  Fix heduling lawf. As the variabl i
Having this result and using the fact that the objective 00 ,flsc eduk 9 anf. As the a ab e(S.k. S
N - a function ofU andY”, it does not contain additional
function is a standard quadratic cost term, we can procee .
. . . . .~ “information. Hence, we have
along the same lines as in section 5.2 in [15] to obtain the

optimal controller stated in above lemma. [ ] wiu = E[z|U*1, YH).
Remark 3: The gainsl;, correspond to the optimal control _
gains of the standard LQG problem. Given the control inputé/*~1, the stater;, and past obser-

The result in Lemma 1 for the reformulated system can b‘éatiOH.SY.k. are jointly Gaussian. This is due to the fact that
used to characterize the optimal control law of the origindh€ Primitive random variable are Gaussian andand yj

prob|em_ This is summarized in Lemma 2. are linear functions of them. Therefore, the Ieast'squares
Lemma 2: The optimal control lawy* minimizing cost ~estimatorE[z;[U*~!,Y*] is linear and can be computed by
function J given by (3) for the original system has the samédhe Kalman filter given by (11). u

form as the optimal control law for the reformulated system. Remark 4: The covariance matrix), appearing in (11)
Proof: The reformulated problem with prespecifiedis computed in advance by

event-trigger constructed by and f considers a subset of vE _ ¥y _yE OT(osE o7 4 D -losE

admissible policy pairs~(f) which is parameterized by ?k ""’"‘”’*}5 T’“"“l (5 w0 ) klk—1

admissible control laws. In fact, this subset can be viewed Zx11x = A¥ppA” + 1, X, =5

as an equivalence class defined by the following equivalenceDetermining the optimal state estimator at the con-

relation. Two po|icies,(7A7fA) and (VviB) are equivalent troller zilk turns out to be a more difficult task, as (i) it
if and only if is dependent on the scheduling law and (ii) non-Gaussian
A 8 observations are to be incorporated. Despite these difisul
(0)k = (6K, Vw € €L it is possible to give a characterization &ff , stated in the

Having fixed a control policyy in the reformulated prob- following Ie.mma. o ,
lem, the system resembles the original system with policy L8Mma 4: Let the event-triggering la# be fixed. Then,
pair (v,f o 75) and therefore, both have the same costs. TH8€ optimal state estimator at the controller takes the form

composition operatop is applied for every time step:. #E 5 =

A basic property of equivalence classes is that the whole i, = Kk (12)
. . ” . HE T A€ + Bug_1 +a 5k =0

solution space is partitioned by the equivalence relatim. k—1|k—1 k=17 Grek Ok



where the bias termy,, ; € R™ depends on the event-
triggering lawf.
Proof: In case ofd, = 1, we hav = I‘g because
of Z¥ = Y*. This implies thatz:klk = :zzk X for 5k =1.
In case ofék = 0, we first c0n5|der7k k—1,
= 25 1jx—1- Due to the tower property of the
condltlonal expectation, we have
Elwk| Ty, 0r = 0] = E[25,|TF, 6x = 0]
= E[AZ]_ 5y + Buk—1 + 55,07 (yr—
- CAi"I‘c:—l\k—l - CBuk,1)|I,f_1,5k = 0]
= Ai"lz—l\k—l + Bug—1 + f;,C" Elyr—
- CAi"I‘c:—l\k—l - CBuk,1)|I,f_1,5k = 0]

The conditional expectation can be split into two terms

Elyr — C(A‘%‘Iz—l\k—l - Buk—1)|11§—1a5k =0] =
= CAE[zp—1 — ‘%‘Iz—l\k—llIIf—la b = 0]
+ E[Cwy—1 + vg|dr = 0]

Applying the tower property again to the first term yields

E[wk—l—fi—1\k—1 T, 65 = 0]

= E[E[mk_1|I;f] - i’k—1|k—1|Ilf—1v5k = 0]
Due to Corollary E.3.7 from [15], we know that

Elwn—1|Z5) =51 51 =Elwa—1 [y —Elyn[Y* ] —E[zr_1]

identity from [16] the cost function defined in (3) can be
written as
N-1
J(,v)=E {ngoxo + Z Wi Pryqwy
k=0
N-1
+ 3 (uk + Liwk) T (R + BT Poy1 B) (ug, + Lyzy) + Adg |,
k=0
where L, and P, are given by Lemma 1.
Taking into account the optimal control law* given
by (6) and Lemma 2, we obtain the following optimization
problem

N—-1
mm E [ () — zklk Ty (zk — xk‘k) + )\54 (13)
k=0
where
I',=L (R+B"P,WB)Ly, k=0,N—-1. (14)

As the termE |z Pyzo + fo;ol wEPkHwk} is constant,
it can be omitted from the optimization.

The fact that:i:glk is dependent on the event-triggering
law f restrains us from applying the dynamic programming
algorithm to problem (13). Lemma 4 states that this depen-
dence appears within the parameters .

When fixing an event-triggering polict; we are able to
calculate bias terms., , by Lemma 4. Subsequently, we
proceed the other way round by fixing bias terms,
and calculating the optimdl for such configuration. When
minimizing over all possible configurations ef,, ., we

Therefore, above term is independent of past observalso obtain the optimal event-triggering ldwThrough this

tions Zt_,. By defining

-1, =E[CAZ(yr, — E[ye|Y*1])

+ Cwg—1 + vi|0, = 0] — Ewg],

we have proved above lemma for = k£ — 1. By fixing
the scheduling law, all variables have a unique probability
distribution which enables the computation ®f_ ;. It is
possible to obtain similar results fef, € {—1,...,k — 2},
but this is omitted due to page limitation. ]

Remark 5: The biasa.,, , can be interpreted as a correc-

tion term to enhance the state estimate at the controllenwh
incorporating additional informatiot,, = - -- = 0, = 0.

Remark 6. As a side result of Lemma 4, it can be seentriggering lawf;, for all k& € {0,...,

from (12) that it suffices to transmit the state estin‘@iﬁ,
instead of the complete sequen@g., +1,...,yx). This is

advantageous from a technological point of view, because
it roughly states that the amount of information to beAssumer

approach, we obtain further insights into the structure of
the optimal event-triggering law. It should be noted that
the optimal control policyy* is fully determined, when
fixing parametersy,, . This implies that the side-channel
transmittinguy, to the event-trigger is not needed anymore,
as it can be computed directly at the event-trigger with its
full measurement knowledge. Furthermore, we obtain the
following lemma.

Lemma 5: Leta,, ; be fixed forallk, 7, € {0,..., N — 1}.
Then, the estimation discrepancy defined as

[ j;‘li\k — E[xk|I,S,6k = 0]

and 7, are a sufficient statistics for the optimal event-

N —1}.

Proof: For notational convenience, we define

~C ~C NY
e — %\k”%k = (@ — xk\k)TFk(mk - xk\k)-

. be given by Lemma 4 with fixed, ;. for all &

transmitted is independent of the time elapsed between twpq 7. . By c0n5|der|ngzk to be the information state with

subsequent transmissions.

C. Structure of the optimal event-trigger

Based on the results of the preceding paragraphs, we
investigate the form of the optimal event-triggering law
in this subsection. Therefore, we rewrite the optimization
problem taking into account Lemma 1 and 2. By using an

Ik-‘rl = (Ik y Yk+1, Uk, 6k)a

we can apply the dynamic programming algorithm [15]

min E
6,€{0,1}

Ti(Z5)

[llew = & l17, + A0+

+ Jk+1(II§7 Yke+1, Uk, 5k>|zlfv Ok



with Jx (Z§) = 0 to solve optimization problem (13). Remark 7: Summarizing Lemma 1-5, we can state: The
The running costs fod, = 1 can be written as controller consists of an affine-linear state predictor and
£ 1o e linear gainsLy. The event-trigger consists of a Kalman filter
E[ka_wklk”FJIk’(sk =0+ (15)  and a copy of the affine-linear predictor at the controller.
For 8, = 0 the running costs are The resulting error discrepancy, and the time step of
the last transmission, determine, whether the event-trigger
E[l|zk *ik\kﬂ%k |ZE, 6, = 1] + Hiiik —E[zx|Zf, 6, = 0]},  transmits the actual Kalman estimate to the controller.
(16) Remark 8: If the biasa-, ; are assumed to be zero, the
obtained results in this paper are in accordance with [14].
In [14], it is assumed that the event-trigger is a threshold
policy, which is a function ofe, that is point-symmetric
to the origin. It can be seen easily from Lemma 5 that by
J(TE_) = min(len—1|%, , ), (17) choosingaT,ﬂ,k =0 for a!l 7, and k, the resulting policy.
on -1 will be a threshold policy, where the threshold is point
symmetric to the origin for every. On the other hand,
observe that the value functiohy_; may be expressed as Lemma_ _1'5 quport the z_issumptiops made in [14] by giving it
a function ofey_1. Subsequently, the evolution of the errord" additional interpretation on optimality through costdu
signale;, is derived. Fors, — 1, we have yon (3). This also applies to the control systems devgloped
in [6], [7], [13], where controllers are presumed to be linea
€kl = ji-ﬁ-l\k—ﬁ-l — E[:z:k+1|I,f+1, Ok+1 = 0] controllers with state estimators, and the event-triggees
= Aziw + Buy, + 2§+1|k+10T (Yos1 — CAziuc — CBuy) 21)5;:252?;?:3 zi)I‘:/lg:rsit(_)trr]i;réeeﬁstlmat|on discrepancy éetw

The termE[[|a; — 7, [|7, |Z} . 6] in the running costs is
independent ob,, because of Lemma 3. Therefore, foe=
N — 1, the optimalf ;y_; is determined by

whereen_1 = 25 | y_; — Elen—1]Z§_1,0n-1 = 0]. We

- Aiiik - Buk — QK (18)

IV. NUMERICAL ILLUSTRATION
For §;, = 0, we have

The obtained characterization of the optimal event-

€ht1 = jiJrl\kJrl — Elzr |I,ff+1, Ok41 = 0] triggered controller enables the construction of an atgori
= Aj;ilk + Buy, + Ei+1|k+1CT(yk+1 — CA:iilk — CBuy,) that obt_ains the optimal solution. The algorithm can be
B Aii\k — Buj, — ar s (19) summarized as follows: . -
1) Calculate the control gains; and matricesP, I'i,
Summarizing Equations (18) and (19) yields S, given in Lemma 1, by Equation (14) and in
Remark 4.
ekt =(1 = ) dex = an 2) Determine the optimal cost for every fixed parame-
+ 27,0 (yrsr — CARYy, — CBuy)  (20) tersas, 1 by using dynamic programming.

3) The parametera., ; with minimal cost.J yield the
optimal event-triggered controller.

The search for finding the optimal parameter set ;
i {Tk 0, =0 is numerically tedious as the number of parameter grows
k+1 —

The state estimaté,flk is obtained by (11) and the evolution
of 71 is given by

ko op=1 qguadratically with the time horizoiv. It should be noted,
however, that the optimal event-triggering law and control
In the following, we prove thatey, ;) is sufficient to  |Jaw can be computed offline. During execution time the
derive the statistical properties of the value function, bgvent-trigger computes the state estimate via Kalmanifitier
using induction. We have already seen in Equation (1And decides upon the vectéey, ), whether to transmit
that this is true fork = N — 1. Assuming thatJi11 iS the state estimate to the controller. Thus, online computa-
a function of (ex+1, 7x+1), we show thatJy is a function tions within the event-trigger are numerically feasibléjot
of (ex, 7). Due to Equations (15) and (16) the running costenakes it attractive for systems with limited computational
are functions ofe,. It remains to calculate the conditional power at sensor nodes.
expectation ofJy1 given {Z{,6,} The variables,r; For illustrative purpose, we give a numerical exam-
andu;, are measurable with respect{df , 5, }. The remain- ple of a scalar system and display the optimal event-
ing issue is the calculation of the probablllty distriburtio triggering law. Consider the System given by Equation (1)
of ex1 given {Zf,4;}. By Equation (20), we observe with A =1, B=1 and C = 1. The covarianceS of the
that ex,, is Gaussian giver(Zf, 4} with predetermined initial statex, is 1 and its mean can be chosen arbitrary as
covarianceXf,,, which is independent ofj,, and mean the cost in (13) is independent of. The cost function has
determined bye, 7, and d;. Therefore, we conclude] parameters)y = Q =1, R = 10 and A\ = 10 with hori-
may be expressed byy, 7. and dx, which completes the zon N = 5. An exhaustive search over the parameters;,
induction and proves above lemma. B showed for this configuration that the minimal costs are



achieved, whena,, , =0 for all 7, and k. As already event-trigger. This characterization enables the sysiema
stated in Remark 7, the resulting event-triggering poliey idesign of optimal event-triggered controllers. In additio

symmetric and in addition independent of, as all a,, &

it provides interpretations with respect to optimality for

are equal. The optimal event-triggering law is calculatedxisting results that propose the same type of controller.
numerically by uniform spatial gridding @f, and is drawn in  Further investigations concern the properties of the leiaas

Figure 3. The value function for time stép= 0 is illustrated

in the state estimator at the controller which will allow an

in Figure 4. It remains an open problem to show, whethegfficient calculation of the optimal solution. Future resba
the optimal parameters.,, , are zero for any arbitrary aims at the application of the obtained results to multploo

control systems embedded in contention-based networks.
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