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Abstract— Recent results in networked control systems in-
dicate substantial benefits of event-based control compared to
conventional designs. This paper identifies structural properties
of optimal event-based controllers designed for stochastic linear
systems. The controller is updated by measurements that are
sent over a resource-constrained communication channel. The
timings for sending updates are determined by an event-trigger
whose decisions are based on noisy measurements. The objective
is to design event-triggering mechanisms and controllers that
optimally meet a trade-off between control performance and
average number of update transmissions. It is shown that the
optimal controller is a certainty equivalence controller with an
affine linear estimator. The optimal event-trigger consists of a
Kalman state estimator and a copy of the state predictor at the
controller. The difference between both estimates determines,
whether to trigger an update transmission. Numerical simula-
tions illustrate the obtained results.

I. INTRODUCTION

Recently, there is an increasing interest in designing
control systems, which take into account constraints on
the information exchange between devices, such as sensors,
controllers, and actuators. The development of such net-
worked controllers is urged by the emergence of more and
more complex and highly distributed systems. While digital
controllers commonly have time-triggered information ac-
quisition schemes, several examples have shown that event-
triggered exchange of information outperforms its time-
triggered counterpart [1]–[5].

Contributions can be found in the field of control over
communications [1], [2], multi-agent systems [3], [4] and
distributed optimization algorithms [5]. All these problems
have in common that they must deal with limited exchange of
information between engineering entities. In [1], it is shown
that an event-triggered impulsive controller is capable of
reducing the state variance significantly compared to a time-
triggered minimum variance controller, while both having the
same average transmission rate. The work in [2] considers
multiple independent control loops which share a common
digital network. There, it turns out that an event-triggered
scheduling scheme outperforms a time-triggered scheduling
scheme in terms of aggregate state variance. In the field of
multi-agent systems, it is shown in [3] that an event-triggered
control strategy reduces the need of communication signifi-
cantly while maintaining a certain degree of connectivity.

Whereas the objective of these motivating examples is to
show the benefits of event-triggered control schemes, there
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is no concrete specification of how to choose optimally the
rules when an event occurs. The focus of this paper is to
design event-triggered controllers for a networked control
system, where sensor measurements are sent over a network
to the controller. An event-triggered controller consistsof
a (i) control policy that applies control inputs from available
observations and (ii) a scheduling policy assigning transmis-
sion timings. The goal is to minimize an objective function
consisting of a standard quadratic control cost and a com-
munication cost penalizing information exchange between
sensor and controller. The choice for this cost function is
inspired by related work for estimation problems with limited
communication capabilities [6], [7]. In [8], [9], optimal
event-triggered controllers are obtained, when limiting the
number of transmissions for a finite interval and restricting
the controller to be time-invariant. Other related results
appear in [10], [11], which consider discrete-time systems
with a hard constraint on the number of transmissions. In
contrast to that, this paper penalizes the average number of
transmissions which is reflected within the cost function.

The main contribution of this paper is to obtain struc-
tural properties of the optimal event-triggered controller that
minimizes the underlying cost function. The obtained results
extend the results of [12] to the case of noisy observations at
the event-trigger. It is shown that the optimal event-triggered
controller consists of an affine linear controller, where the
gains can be obtained by standard methods. The optimal
event-triggering law is a policy depending on the discrepancy
of state estimate at the controller and at the event-trigger. It
turns out that transmitting the Kalman state estimate instead
of the complete observation history at the event-trigger still
yields the optimal cost.

Although these structural properties seem to be intuitive,
a rigorous derivation of these poses the need of innovative
reformulation techniques. This is mainly due to the different
information available at controller and event-trigger. The
reformulation techniques constitute the key tool for having
new insights into the proposed problem and for enabling the
use of standard optimization methods. It should be mentioned
that this kind of the optimal event-triggered controller have
already been proposed in other works. There, they resulted
from heuristics [13] or restricting assumptions [6], [14].
Therefore, the results derived in this paper support these as-
sumptions by giving an interpretation in terms of optimality.

The remainder of the paper is organized into four sec-
tions. Section II introduces the system model and gives the
problem statement. In section III, the underlying problem is
reformulated and a structural characterization of the optimal



solution is given for the controller and the event-trigger,
respectively. Finally, a numerical example illustrates the
solution algorithm for finding the optimal event-triggered
controller in section IV.

Notation. In this paper, the operatorstr[·] and(·)T denote
the trace and the transpose operator of a square matrix,
respectively. The variableP denotes the probability measure
on the abstract sample space denoted byΩ. The expectation
operator is denoted byE[·] and the conditional expectation
is denoted byE[·|·].

II. PROBLEM STATEMENT

We consider the following stochastic time-invariant
discrete-time systemP

xk+1 = Axk +Buk + wk,

yk = Cxk + vk,
(1)

whereA ∈ R
n×n, B ∈ R

n×d andC ∈ R
m×n. The variables,

xk, uk and yk denote the state, the control input and
measurement and are taking values inRn, R

d and R
m,

respectively. The system noisewk and measurement noisevk
take values inRn and R

m, respectively, and are i.i.d. (in-
dependent identically distributed) zero-mean Gaussian dis-
tributed sequences with identity covariance matrix. The
initial state, x0 is Gaussian with meanxm

0 and covari-
anceS = E[(x0 − xm

0 )(x0 − xm
0 )

T].
Remark 1: It is straight forward to extend all results to

time-invariant systems and arbitrary noise covariance ma-
trices. The chosen restriction facilitates the illustration of
results without loosing generality.

We assume that system parameters and statistics are known
to the event-trigger and the controller. The event-triggerE
situated at the sensor side has access to the complete
observation history and decides, whether the controllerC
should receive an update over the network denoted byN .
The controller calculates inputsuk to regulate processP .
The system model is illustrated in Figure 1.

The event-trigger outputδk ∈ {0, 1} is defined as follows:

δk =

{

1 update is sent

0 otherwise

If the event-trigger decides to update the controller, all past
measurements starting from the last update transmission are
sent to the controller. Transmission of all past measurements
between two update timings constitutes a preliminary as-
sumption which is relaxed in section III-B. Hence,

zk =

{

(yτk+1, . . . , yk), δk = 1

∅, δk = 0
(2)

with

τk = max{l|δl = 1, l < k}

being the last time step, where an update has been trans-
mitted. In case no transmission has occurred, we de-
fine τk = −1.

PC

N

E

(yτk+1, . . . , yk)

zk−1 ykuk−1

δk

Fig. 1. System model of the networked control system with plant P ,
event-triggerE , controllerC and communication networkN .

Remark 2: It should be noted that sending no update is
still valuable information for the controller. This will play a
crucial role in section III-B.

The design objective is to find admissible event-triggering
policies f and control policiesγ that minimize the finite-
horizon criterion

J(f, γ) = E

[

xT
NQNxN +

N−1
∑

k=0

xT
kQxk + uT

kRuk + λδk

]

.

(3)
The weighting matricesQ, QN are positive definite andR is
positive semi-definite. The positive factorλ can be regarded
as the weight of penalizing information exchange between
sensor and controller. The admissible policies for the event-
trigger and the controller at timek are defined as Borel-
measurable functions of their past available data

δk = fk(I
E
k ),

uk = γk(I
C
k ).

The information patternsIE
k andIC

k of the event-trigger and
controller are defined as

IE
k = {y0, δ0, u0, y1, . . . , yk−1, δk−1, uk−1, yk},

IC
k = {δ0, z0, u0, . . . , δk−1, zk−1, uk−1, δk, zk}.

With a slight abuse of notation, we useIE
k andIC

k as sets,
when referring to information patterns, and as vectors, when
referring to the information state. Apart from this, we will
often consider the history of a specific signal up to timek.
These are summarized into vectors denoted by

Uk = [uT
0 , . . . , u

T
k ]

T, Y k = [yT0 , . . . , y
T
k ]

T,

W k = [wT
0 , . . . , w

T
k ]

T, V k = [vT0 , . . . , v
T
k ]

T.
(4)

It can be seen from the definition ofIE
k that control

inputs are assumed to be known to the event-trigger. In the
following, we assume our system has a side information
channel communicating the control inputs to the event-trigger
as indicated in Figure 2. It will be observed in section III-C
that control inputs can indeed be calculated at the event-
triggering unit without the additional side channel.



III. STRUCTURAL CHARACTERIZATION

This section is divided into three subsections. First, we
investigate the form of the optimal controller. This urges us
to characterize the least-squares state estimators at the event-
trigger and controller. Finally, the obtained results allow us
to specify the form of optimal event-triggers.

A. Structure of the optimal controller

In order to derive a structural characterization of the
optimal control policy, we first consider a related, but slightly
different problem, where the event-trigger is prespecifiedand
the optimal control law is to be found. The resulting solution
will yield important insights to the original problem.

The prespecified event-trigger is constructed by admissible
policy f̄ and a transformationTγ̄ which is parameterized by
an admissible control policȳγ. The appliedδk is fed intoTγ̄
through a one-step delay element denoted byT. The system
with prespecified event-trigger is calledreformulated system
in the following and is illustrated in Figure 2. The aim is to
find the optimal control policyγ∗ for this system minimizing
the cost function given by (3).

The transformationTγ̄ recalculates measurement output
and control input that would result, if̄γ and f̄ were used
in the original problem. These variables are denoted byȳk
and ūk. It can be shown thatTγ̄ is given by the following
equations:

ȳk = yk +

k−1
∑

m=0

CAk−m−1B(γ̄m(z̄0, . . . , z̄m)− um),

z̄k =

{

(ȳτk+1, . . . , ȳk), δk = 1,

∅, δk = 0,

ūk = γ̄k(z̄0, . . . , z̄k).

(5)

In other words, transformationTγ̄ emulates the closed-loop
behavior of a system with policies̄γ and f̄.

PC

Tγ̄

N

ȳk

ūk−1
f̄

(yτk+1, . . . , yk)

zk−1

δk−1

T

yk

uk−1

δk

Fig. 2. Reformulated system model with transformationTγ̄ , one-step delay
elementT and prespecified policies̄γ and f̄.

The event-triggering law f̄k decides upon past
data Ȳ k, Ūk−1 and δk−1, whether or not to transmit
an update at timek. An obvious observation is that
choosingγ̄ as the control law in the reformulated system
yields exactly the original system with policiesγ̄ and f̄. The
key property within the reformulated system is that for each

sample pathω ∈ Ω, the sequence(δk)k will be the same
independent of the control inputs chosen. By definition of
transformationTγ̄ in (5), we observe that

ȳ0 = y0 = C(x0 + w−1) + v0

ȳ1 = C(Ax0 + w0) + v1 + CBγ̄(z̄0)

...

ȳk = C(Akx0+

k−1
∑

m=0

Ak−m−1(Bγ̄m(z̄0, . . . , z̄m)+wm))+vk.

This implies that̄yk, z̄k andūk can be expressed by primitive
random variables, which shows thatδk is a function of
primitive variables and independent of the control inputsuk.
This key feature is used for showing the following lemma.

Lemma 1: The optimal control policyγ∗ minimizing cost
functionJ from (3) for the reformulated system is given by

uk = γ∗
k(I

C
k ) = −Lk E[xk|I

C
k ] (6)

with

Lk =
(

R +BTPk+1B
)−1

BTPk+1A,

Pk = ATPk+1A+Q−ATPk+1B

×
(

R+BTPk+1B
)−1

BTPk+1A,

PN = QN ,

wherePk ∈ R
n×n is non-negative definite for allk.

Proof: Due to the fact that the sequence(δk)k is in-
dependent of the sequence of control inputs for each sample
path ω ∈ Ω, the termE

[

∑N−1

k=0
λδk

]

in Equation (3) is
constant and can be omitted from the optimization. Similarly
to [15], we show that there is a function∆k = xk−E[xk|IC

k ]
of the primitive random variables which does not depend on
the policy γ being used. The internal states of the event-
trigger may be disregarded as (i) they do not contribute to
the cost function and (ii) the control input does not influence
the evolution of outputδk. We fix a policyγ and consider
two types of the reformulated system: The forced system
model is given by (1), whereas the unforced system model
with zero inputs reads

x̃k+1 = Ax̃k + w̃k, ỹk = Cx̃k + ṽk.

We assume both have the same evolution of primitive random
variable, i.e.

x0 = x̃0, wk = w̃k, vk = ṽk, k = 0, . . . , N − 1.

The received signal at the controller is given by (2) for the
forced system and

z̃k =

{

(ỹτ̃k+1, . . . , ỹk), δ̃k = 1

∅, δ̃k = 0
(7)

for the unforced system. Due to linearity, we can rewrite the
forced and the unforced to the following form

xk = Fkx0 +GkU
k−1 +HkW

k−1

x̃k = Fkx0 +HkW
k−1



whereUk−1 W k−1 are the augmented vectors defined in (4)
and Fk, Gk and Hk are appropriate matrices constructed
from A, B and k. As Uk−1 is measurable with respect to
the information patternIC

k , the conditional expectations are

E[xk|I
C
k ] = Fk E[x0|I

C
k ] +GkU

k−1 +Hk E[W
k−1|IC

k ]

E[x̃k|I
C
k ] = Fk E[x0|I

C
k ] +Hk E[W

k−1|IC
k ]

The output vectorỸ k of the unforced system can be ex-
pressed by

Ỹ k = Y k −RkU
k−1 = CFkx0 + SkW

k−1 + TkV
k−1

(8)

where Rk, Sk and Tk are appropriate matrices. As the
reformulated system has a fixed sequence(δk)k independent
of the control inputs chosen, we state

δ̃k = δk and τ̃k = τk, k = 0, . . . , N − 1. (9)

Hence,

Z̃k = [Ỹ τk+1 , ∅, . . . , ∅] = [Y τk+1 −Rτk+1
U τk+1−1, ∅, . . . , ∅].

(10)

By (8) and (9), we observe that̃Zk only depends
on the primitive variables. Equation (10) implies
that E[x̃k|IC

k ] = E[x̃k|Z̃k, δ̃k] and we have

∆k = x̃k − E[x̃k|Z̃
k, δ̃k].

Accordingly, the function∆k = x̃k − E[x̃k|Z̃k, δ̃k] is a
function of the primitive random variables and is independent
on the control policy used.

Having this result and using the fact that the objective
function is a standard quadratic cost term, we can proceed
along the same lines as in section 5.2 in [15] to obtain the
optimal controller stated in above lemma.

Remark 3: The gainsLk correspond to the optimal control
gains of the standard LQG problem.

The result in Lemma 1 for the reformulated system can be
used to characterize the optimal control law of the original
problem. This is summarized in Lemma 2.

Lemma 2: The optimal control lawγ∗ minimizing cost
functionJ given by (3) for the original system has the same
form as the optimal control law for the reformulated system.

Proof: The reformulated problem with prespecified
event-trigger constructed bȳγ and f̄ considers a subset of
admissible policy pairs (γ, f) which is parameterized by
admissible control lawsγ. In fact, this subset can be viewed
as an equivalence class defined by the following equivalence
relation. Two policies,(γA , fA) and (γB, fB) are equivalent
if and only if

(δA
k )k = (δB

k )k, ∀ω ∈ Ω.

Having fixed a control policyγ in the reformulated prob-
lem, the system resembles the original system with policy
pair (γ, f̄ ◦ Tγ̄) and therefore, both have the same costs. The
composition operator◦ is applied for every time stepk.
A basic property of equivalence classes is that the whole
solution space is partitioned by the equivalence relation.As

the structure of the optimal controller structure given by
Lemma 1 is invariant to the specific equivalence class chosen,
the optimal lawγ∗ given by (6) is optimal for our original
problem within the complete solution space. This concludes
the proof.

B. Structure of the optimal state estimator

It has been shown in the last section that the optimal
controller is a certainty equivalence controller consisting of
linear gainsLk that can be computed in advance and a state
estimatorE[xk|IC

k ]. The aim of this paragraph is to specify
the form ofE[xk|IC

k ].
For notational convenience, we define

x̂E
k|k = E[xk|I

E
k ],

x̂E
k|k−1 = E[xk|I

E
k−1],

x̂C
k|k = E[xk|I

C
k ]

with x̂E
0|−1

= E[x0] and the error covariance matrices

ΣE
k|k =E[(xk − x̂E

k|k)(xk − x̂E
k|k)

T],

ΣE
k|k−1 =E[(xk − x̂E

k|k−1)(xk − x̂E
k|k−1)

T].

Lemma 3: The optimal state estimator at the event-trigger
is given by the Kalman filter

x̂E
k|k =Ax̂E

k−1|k−1 +Buk−1

+ΣE
k|kC

T(yk − CAx̂E
k−1|k−1 − CBuk−1) (11)

independently of the scheduling law chosen.
Proof: Fix a scheduling lawf. As the variableδk is

a function ofUk−1 andY k, it does not contain additional
information. Hence, we have

x̂E
k|k = E[xk|U

k−1, Y k].

Given the control inputsUk−1, the statexk and past obser-
vationsY k are jointly Gaussian. This is due to the fact that
the primitive random variable are Gaussian andxk and yk
are linear functions of them. Therefore, the least-squares
estimatorE[xk|Uk−1, Y k] is linear and can be computed by
the Kalman filter given by (11).

Remark 4: The covariance matrixΣE
k|k appearing in (11)

is computed in advance by

ΣE
k|k = ΣE

k|k−1 − ΣE
k|k−1C

T(CΣE
k|k−1C

T + I)−1CΣE
k|k−1

ΣE
k+1|k = AΣE

k|kA
T + I, ΣE

0|−1 = S.

Determining the optimal state estimator at the con-
troller x̂C

k|k turns out to be a more difficult task, as (i) it
is dependent on the scheduling law and (ii) non-Gaussian
observations are to be incorporated. Despite these difficulties,
it is possible to give a characterization ofx̂C

k|k stated in the
following lemma.

Lemma 4: Let the event-triggering lawf be fixed. Then,
the optimal state estimator at the controller takes the form

x̂C
k|k =

{

x̂E
k|k δk = 1

Ax̂C
k−1|k−1

+Buk−1 + ατk,k δk = 0
(12)



where the bias termατk,k ∈ R
n depends on the event-

triggering lawf.
Proof: In case ofδk = 1, we haveIC

k = IE
k because

of Zk = Y k. This implies that̂xC
k|k = x̂E

k|k for δk = 1.
In case ofδk = 0, we first considerτk = k − 1, i.e.

x̂C
k−1|k−1

= x̂E
k−1|k−1

. Due to the tower property of the
conditional expectation, we have

E[xk|I
C
k , δk = 0] = E[x̂E

k|k|I
C
k , δk = 0]

= E[Ax̂E
k−1|k−1 +Buk−1 +ΣE

k|kC
T(yk−

− CAx̂E
k−1|k−1 − CBuk−1)|I

E
k−1, δk = 0]

= Ax̂E
k−1|k−1 +Buk−1 +ΣE

k|kC
T
E[yk−

− CAx̂E
k−1|k−1 − CBuk−1)|I

E
k−1, δk = 0]

The conditional expectation can be split into two terms

E[yk − C(Ax̂E
k−1|k−1 −Buk−1)|I

E
k−1, δk = 0] =

= CAE[xk−1 − x̂E
k−1|k−1|I

E
k−1, δk = 0]

+ E[Cwk−1 + vk|δk = 0]

Applying the tower property again to the first term yields

E[xk−1−x̂E
k−1|k−1|I

E
k−1, δk = 0]

= E[E[xk−1|I
E
k ]− x̂E

k−1|k−1|I
E
k−1, δk = 0]

Due to Corollary E.3.7 from [15], we know that

E[xk−1|I
E
k ]−x̂E

k−1|k−1=E[xk−1|yk−E[yk|Y
k−1]]−E[xk−1]

Therefore, above term is independent of past observa-
tions IE

k−1
. By defining

αk−1,k =E[CAx̂(yk − E[yk|Y
k−1])

+ Cwk−1 + vk|δk = 0]− E[xk],

we have proved above lemma forτk = k − 1. By fixing
the scheduling lawf, all variables have a unique probability
distribution which enables the computation ofαk−1,k. It is
possible to obtain similar results forτk ∈ {−1, . . . , k − 2},
but this is omitted due to page limitation.

Remark 5: The biasατk,k can be interpreted as a correc-
tion term to enhance the state estimate at the controller, when
incorporating additional informationδτk = · · · = δk = 0.

Remark 6: As a side result of Lemma 4, it can be seen
from (12) that it suffices to transmit the state estimatex̂E

k|k

instead of the complete sequence(yτk+1, . . . , yk). This is
advantageous from a technological point of view, because
it roughly states that the amount of information to be
transmitted is independent of the time elapsed between two
subsequent transmissions.

C. Structure of the optimal event-trigger

Based on the results of the preceding paragraphs, we
investigate the form of the optimal event-triggering law
in this subsection. Therefore, we rewrite the optimization
problem taking into account Lemma 1 and 2. By using an

identity from [16] the cost function defined in (3) can be
written as

J(f, γ) = E

[

xT
0 P0x0 +

N−1
∑

k=0

wT
k Pk+1wk

+
N−1
∑

k=0

(uk + Lkxk)
T(R +BTPk+1B)(uk + Lkxk) + λδk

]

,

whereLk andPk are given by Lemma 1.
Taking into account the optimal control lawγ∗ given

by (6) and Lemma 2, we obtain the following optimization
problem

min
f

E

[

N−1
∑

k=0

(xk − x̂C
k|k)

TΓk(xk − x̂C
k|k) + λδk

]

, (13)

where

Γk = LT
k (R+BTPk+1B)Lk, k = 0, N − 1. (14)

As the termE

[

xT
0 P0x0 +

∑N−1

k=0
wT

k Pk+1wk

]

is constant,
it can be omitted from the optimization.

The fact thatx̂C
k|k is dependent on the event-triggering

law f restrains us from applying the dynamic programming
algorithm to problem (13). Lemma 4 states that this depen-
dence appears within the parametersατk,k.

When fixing an event-triggering policyf, we are able to
calculate bias termsατk,k by Lemma 4. Subsequently, we
proceed the other way round by fixing bias termsατk,k

and calculating the optimalf for such configuration. When
minimizing over all possible configurations ofατk,k, we
also obtain the optimal event-triggering lawf. Through this
approach, we obtain further insights into the structure of
the optimal event-triggering law. It should be noted that
the optimal control policyγ∗ is fully determined, when
fixing parametersατk,k. This implies that the side-channel
transmittinguk to the event-trigger is not needed anymore,
as it can be computed directly at the event-trigger with its
full measurement knowledge. Furthermore, we obtain the
following lemma.

Lemma 5: Letατk,k be fixed for allk, τk ∈ {0, . . . , N − 1}.
Then, the estimation discrepancy defined as

ek = x̂E
k|k − E[xk|I

C
k , δk = 0]

and τk are a sufficient statistics for the optimal event-
triggering lawfk for all k ∈ {0, . . . , N − 1}.

Proof: For notational convenience, we define

‖xk − x̂C
k|k‖

2
Γk

= (xk − x̂C
k|k)

TΓk(xk − x̂C
k|k).

Assumex̂C
k|k be given by Lemma 4 with fixedατk,k for all k

andτk. By consideringIE
k to be the information state with

IE
k+1 = (IE

k , yk+1, uk, δk),

we can apply the dynamic programming algorithm [15]

Jk(I
E
k ) = min

δk∈{0,1}
E

[

‖xk − x̂C
k|k‖

2
Γk

+ λδk+

+ Jk+1(I
E
k , yk+1, uk, δk)|I

E
k , δk

]



with JN (IE
N ) = 0 to solve optimization problem (13).

The running costs forδk = 1 can be written as

E[‖xk− x̂E
k|k‖

2
Γk
|IE

k , δk = 0] + λ. (15)

For δk = 0 the running costs are

E[‖xk− x̂E
k|k‖

2
Γk
|IE

k , δk = 1] + ‖x̂E
k|k−E[xk|I

C
k , δk = 0]‖2Γk

(16)

The termE[‖xk −xE
k|k‖

2
Γk
|IE

k , δk] in the running costs is
independent ofδk because of Lemma 3. Therefore, fork =
N − 1, the optimalfN−1 is determined by

J(IE
N−1) = min

δN−1

(‖eN−1‖
2
ΓN−1

, λ), (17)

whereeN−1 = x̂E
N−1|N−1

− E[xN−1|IC
N−1, δN−1 = 0]. We

observe that the value functionJN−1 may be expressed as
a function ofeN−1. Subsequently, the evolution of the error
signalek is derived. Forδk = 1, we have

ek+1 = x̂E
k+1|k+1 − E[xk+1|I

C
k+1, δk+1 = 0]

= Ax̂E
k|k +Buk +ΣE

k+1|k+1C
T(yk+1 − CAx̂E

k|k − CBuk)

−Ax̂E
k|k −Buk − ατk,k (18)

For δk = 0, we have

ek+1 = x̂E
k+1|k+1 − E[xk+1|I

C
k+1, δk+1 = 0]

= Ax̂E
k|k +Buk +ΣE

k+1|k+1C
T(yk+1 − CAx̂E

k|k − CBuk)

−Ax̂C
k|k −Buk − ατk,k (19)

Summarizing Equations (18) and (19) yields

ek+1 =(1− δk)Aek − ατk,k

+ΣE
k|kC

T(yk+1 − CAx̂E
k|k − CBuk) (20)

The state estimatêxE
k|k is obtained by (11) and the evolution

of τk is given by

τk+1 =

{

τk δk = 0

k δk = 1

In the following, we prove that(ek, τk) is sufficient to
derive the statistical properties of the value function, by
using induction. We have already seen in Equation (17)
that this is true fork = N − 1. Assuming thatJk+1 is
a function of (ek+1, τk+1), we show thatJk is a function
of (ek, τk). Due to Equations (15) and (16) the running costs
are functions ofek. It remains to calculate the conditional
expectation ofJk+1 given {IE

k , δk} The variables,τk+1

anduk are measurable with respect to{IE
k , δk}. The remain-

ing issue is the calculation of the probability distribution
of ek+1 given {IE

k , δk}. By Equation (20), we observe
that ek+1 is Gaussian given{IE

k , δk} with predetermined
covarianceΣE

k|k, which is independent ofδk, and mean
determined byek, τk and δk. Therefore, we conclude,Jk
may be expressed byek, τk and δk, which completes the
induction and proves above lemma.

Remark 7: Summarizing Lemma 1-5, we can state: The
controller consists of an affine-linear state predictor and
linear gainsLk. The event-trigger consists of a Kalman filter
and a copy of the affine-linear predictor at the controller.
The resulting error discrepancyek and the time step of
the last transmissionτk determine, whether the event-trigger
transmits the actual Kalman estimate to the controller.

Remark 8: If the biasατk,k are assumed to be zero, the
obtained results in this paper are in accordance with [14].
In [14], it is assumed that the event-trigger is a threshold
policy, which is a function ofek that is point-symmetric
to the origin. It can be seen easily from Lemma 5 that by
choosingατk,k = 0 for all τk and k, the resulting policy
will be a threshold policy, where the threshold is point
symmetric to the origin for everyk. On the other hand,
Lemma 1-5 support the assumptions made in [14] by giving it
an additional interpretation on optimality through cost func-
tion (3). This also applies to the control systems developed
in [6], [7], [13], where controllers are presumed to be linear
controllers with state estimators, and the event-triggersare
also threshold policies on the estimation discrepancy between
controller and at event-trigger.

IV. NUMERICAL ILLUSTRATION

The obtained characterization of the optimal event-
triggered controller enables the construction of an algorithm
that obtains the optimal solution. The algorithm can be
summarized as follows:

1) Calculate the control gainsLk and matricesPk, Γk,
ΣE

k|k given in Lemma 1, by Equation (14) and in
Remark 4.

2) Determine the optimal costJ for every fixed parame-
tersατk,k by using dynamic programming.

3) The parametersατk,k with minimal costJ yield the
optimal event-triggered controller.

The search for finding the optimal parameter setατk,k

is numerically tedious as the number of parameter grows
quadratically with the time horizonN . It should be noted,
however, that the optimal event-triggering law and control
law can be computed offline. During execution time the
event-trigger computes the state estimate via Kalman filtering
and decides upon the vector(ek, τk), whether to transmit
the state estimate to the controller. Thus, online computa-
tions within the event-trigger are numerically feasible, which
makes it attractive for systems with limited computational
power at sensor nodes.

For illustrative purpose, we give a numerical exam-
ple of a scalar system and display the optimal event-
triggering law. Consider the system given by Equation (1)
with A = 1, B = 1 and C = 1. The covarianceS of the
initial statex0 is 1 and its mean can be chosen arbitrary as
the cost in (13) is independent ofxm

0 . The cost function has
parametersQN = Q = 1, R = 10 and λ = 10 with hori-
zonN = 5. An exhaustive search over the parametersατk,k

showed for this configuration that the minimal costs are



achieved, whenατk,k = 0 for all τk and k. As already
stated in Remark 7, the resulting event-triggering policy is
symmetric and in addition independent ofτk, as allατk,k

are equal. The optimal event-triggering law is calculated
numerically by uniform spatial gridding ofek and is drawn in
Figure 3. The value function for time stepk = 0 is illustrated
in Figure 4. It remains an open problem to show, whether
the optimal parametersατk,k are zero for any arbitrary
configuration.
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Fig. 3. Optimal event-trigger policyf∗ with indicated thresholds.
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Fig. 4. Value function at timek = 0 with indicated thresholds.

V. CONCLUSIONS

This paper has addressed the problem of designing optimal
event-triggered controllers under costly observations. By re-
formulating the proposed optimization problem, it is possible
to characterize optimal event-triggered controllers for linear
systems penalizing the transmission of sensor information.
The optimal controller is affine linear with an additional bias
term in the estimator. The optimal event-trigger depends on
the difference between the state estimates at controller and

event-trigger. This characterization enables the systematic
design of optimal event-triggered controllers. In addition,
it provides interpretations with respect to optimality for
existing results that propose the same type of controller.
Further investigations concern the properties of the bias terms
in the state estimator at the controller which will allow an
efficient calculation of the optimal solution. Future research
aims at the application of the obtained results to multi-loop
control systems embedded in contention-based networks.
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