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Zusammenfassung

Diese Diplomarbeit handelt von der gemeinsamen bayesianischen Schätzung von mar-
ginalen Zeitreihen- und Copula-Parametern eines D-Vines, der aus bivariaten t-Copulas
besteht.

Zuerst wird die notwendige Theorie für diese Arbeit erläutert. Dies geschieht in Form
von grundlegenden Sätzen der mathematischen Statistik. Dann werden die verwendeten
ein- und mehrdimensionalen Wahrscheinlichkeitsverteilungen und die Abhängigkeitsmaße
definiert. Nach der Einführung der Grundlagen der Zeitreihentheorie werden Copulas und
die damit eng verknüpften Pair-Copula Zerlegungen und D-Vines erläutert. Auch die
Erzeugung von Zufallsvariablen bzw. die Bestimmung des Likelihoods wird gezeigt. Am
Ende des zweiten Kapitels werden noch die Markov Chain Monte Carlo Verfahren und
die verwendeten Schätzmethoden vorgestellt.

Im dritten Kapitel steht eine kurze Einführung in die Theorie der australischen Strom-
und Ladungsmärkte, bevor die konkret beobachteten Daten beschrieben und analysiert
werden. Es handelt sich um je 1142 Beobachtung der durchschnittlichen täglichen La-
dungsmenge in den australischen Bundesstaaten Queensland, New South Wales, Victo-
ria und South Australia. Anschließend werden mögliche Vorbearbeitungsmöglichkeiten
gezeigt und auf die beobachteten Daten angewendet. Die beste dieser Methode wird
durchgeführt, um eine Stationarität der Beobachtungen und die Modellierung durch einen
AR(1)-Prozess zu errreichen.

Das vierte Kapitel enthält die Entwicklung des Modells für den Likelihood bzw. für die
A-posteriori-Verteilung der einzelnen zu schätzenden Parameter. Diese Ergebnisse werden
in einer Simulationsstudie getestet, ehe alle möglichen Pärchen der beobachteten vierdi-
mensionalen und vorbearbeiteten Daten geschätzt werden. Hierbei zeigt sich, dass die
Simulationsergebnisse sehr nahe bei den entsprechenden Werten eines Maximum Like-
lihood Schätzers liegen.

Im fünften Kapitel wird das Modell auf vier Dimensionen erweitert, wobei eine Pair-
Copula Zerlegung mit t-Copulas verwendet wird. Die Simulationsstudie zeigt sehr gute
Schätzungen, die jedoch auch eng bei den ML-Schätzern liegen. Nun wenden wir un-
seren Algorithmus auf die beobachteten vierdimensionalen australischen Ladungsdaten
an. Hierbei tritt beim Abhängigkeitsparameter der AR(1)-Zeitreihe der Fall auf, dass für
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New South Wales, Victoria und South Australia der ML-Wert nicht mehr im Bayes’schen
Konfidenzintervall liegt. Weiterhin vergleichen wir die gemeinsame Schätzung mit einer
Schätzung in zwei Schritten, wobei zuerst die marginalen Zeitreihenparameter per MLE
und dann die Copula-Parameter via MCMC geschätzt werden. Die Ergebnisse hierbei sind
sehr eng beieinander. Wir validieren innerhalb vier verschiedener Schätzmethoden die An-
passung an die beobachteten Daten mit einem mehrdimensionalen Cramér-Test und kom-
men zu dem Ergebnis, dass ein reduziertes D-Vine-Modell mit t-Copulas am besten passt.
Schließlich schätzen wir noch bayesianisch einen D-Vine aus t-Copulas, einen D-Vine aus
Normal-Copulas und eine vierdimensionale t-Copula jeweils mit AR(1)-Marginalien in ei-
nem kompletten und in einem reduzierten Modell und berechnen die A-posteriori-Modell-
Wahrscheinlichkeiten nach Congdon (2006). Hierbei ergibt sich, dass das reduzierte Modell
einer vierdimensionalen t-Copula mit AR(1)-Marginalien die höchste Wahrscheinlichkeit
hat.
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Chapter 1

Introduction

Modeling multivariate dependency is an important task in statistics. However, the ob-
served data often follows any kind of additional marginal structure. Therefore, the mod-
eling is very complicated. With the introduction of the concept of copulas by Sklar (1959)
based on the works of Hoeffding and Fréchet in the 1940s and the early 1950s, it is pos-
sible to model the marginal structure and the dependency separately. A good overview
of copulas can be found in Nelsen (2006). Instead of using a higher-dimensional cop-
ula which is often very complicated to fit, Bedford and Cooke (2001, 2002) introduced a
possible decomposition into bivariate building blocks, the pair copulas, and its margins.
Hereby, you decompose the joint density function into a cascade of bivariate copulas of
the original data and their conditional and unconditional distribution functions. This
pair-copula decomposition is a very flexible way of constructing multivariate dependency
concepts. The graphical concept of vines, introduced by Bedford and Cooke (2001, 2002),
helps with the modeling and the determination of the necessary copulas. Aas et al. (2007)
give a good overview of the theory of pair-copula decomposition and show the application
of this theory by denoting the sampling algorithms and the algorithm for determining
the joint likelihood. Very important for the application to real data is the multivariate
Student t-copula, e.g. described in Demarta and McNeil (2005). A Bayesian analysis of
the copula approach is done by Huard et al. (2006) and Dalla Valle (2007).

We want to model our marginals with an autoregressive structure. There is a great
variety of literature dealing with fitting autoregressions, both frequentist methods, e.g.
Box and Jenkins (1976), as well as Bayesian methods, e.g. Zellner (1971, Chapter 7),
Box and Jenkins (1976, p.250), Monahan (1983), Marriott and Smith (1992) and Barnett
et al. (1996).

If the marginal structure as well as the dependency is considered, this is often done by
applying a copula approach since the marginal densities can be defined separately from the
dependency structure. However, most of the proposed methods are two-step approaches
whereby they do not account for the parameter uncertainty of time series and copula pa-
rameters simultaneously. Pitt et al. (2006) and Silva and Lopes (2008) consider a copula
approach with marginal modeling in a Bayesian setting, but Silva and Lopes (2008) for
example fix the parameter for the degrees of freedom for the t-copula and consider only

1
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one-parametric families. Ausin and Lopes (2008) perform a joint Bayesian estimation for
a copula GARCH model.

Our approach is now to estimate jointly the marginal time series and the copula pa-
rameters with an Markov Chain Monte Carlo method. We use the Metropolis-Hastings
algorithm with independence proposal density (cf. Tierney (1994)). Therefore, we de-
velop our model at first in two dimensions. We perform a simulation study and try to
fit the copula AR(1) model to real data. We choose Australian load data, namely daily
observations for the states of Queensland, New South Wales, Victoria and South Aus-
tralia. After having preprocessed these time series to reach stationarity, we fit marginal
AR(1) models and a t-copula to each possible pair out of this set. Then we generalize
our algorithm to four dimensions using the pair copula decomposition with a D-vine of
t-copulas. In this setting, we perform a simulation study before we jointly estimate the
time series and D-vine pair copula parameters for the real data, the Australian load data.
Since a lot of methods described in literature take a two-step approach by estimating the
marginal parameters first and the copula parameters afterwards, we want to compare this
two-step method (marginal parameters estimated first by MLE, then MCMC for the time
series parameters) to the joint MCMC estimation of all parameters. Another method
widely used in econometrics is the vector autoregressive model. Since we encounter big
difficulties in comparing multivariate time series models to marginal time series and cop-
ula models for the dependency, we try an internal validation of the estimation methods by
using a multivariate Cramér test. We also test this for the joint MCMC of the marginal
times series parameters D-vine pair-copula decomposition parameters, for a reduced joint
MCMC where the parameters of the conditional copulas in the D-vine are set to ν = 100
and ρ = 0 and for a marginal AR(1) model and a four-dimensional t-copula for the de-
pendence structure. Finally, we perform a Bayesian model selection using the method of
Congdon (2006). The marginal time series parameters in all cases are estimated in the
same way. The different methods vary only in the modeling of the dependency. We com-
pare a D-vine of bivariate t-copulas and its reduced model, a D-vine of bivariate normal
copulas and its reduced model and a four-dimensional t-copula and its reduced model.
We estimate in each case with a MCMC and compare all these methods on the basis of
posterior model probabilities.

This diploma thesis is organized as follows:
In Chapter 2, we introduce some basic theorems of mathematical statistics, the used
distributions and dependency measures as well as the theory of time series, copulas, pair-
copula decomposition and D-vine and Markov Chain Monte Carlo method.
In Chapter 3, we describe the Australian electricity market and we perform an exploratory
data analysis of the observed load data. Then we show different methods for preprocessing
the data to get stationarity and we choose the best preprocessing for fitting afterwards a
marginal AR(1) model.
Chapter 4 contains the explanation of the two-dimensional modeling, especially the pro-
cedure for the marginal time series. Then we perform a simulation study and show the
estimation of real two-dimensional data.
In Chapter 5, we illustrate the basic procedures for the four-dimensional joint estimation
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of the time series and pair-copula parameters. We implement a simulation study and
estimate the parameters for the observed load data. Then we compare the joint Bayesian
estimation to a two-step estimation and we perform an internal validation of different
estimation methods. Finally, we run a Bayesian model selection for six different models.
Chapter 6 contains a short overview and an outlook.



Chapter 2

Definitions and Basic Properties

2.1 Basic Ideas of Mathematical Statistics and

Bayesian Inference

The basic idea of Bayesian Statistics consists of the point of view that not only the data
X but also the parameters θ are random and follow an unknown distribution. So starting
with the likelihood of the observed data as a function of θ, l(θ) = f(x|θ), and a first view
of the distribution of the parameters, the prior distribution π(θ), we want to calculate
a more exactly distribution of θ, the posterior distribution f(θ|x), using the additional
knowledge gained by the observed data. Very useful in this context is the theorem of
Bayes, which also gave the name for this whole discipline of statistics.

Theorem 2.1 (Bayes theorem)

f(θ|x) =
f(x|θ)π(θ)

f(x)

where f(x) =
∫
f(x|θ)π(θ)dθ.

This can be proved easily by applying the laws of conditional densities.
As the left-hand-side is a function of θ, we can shorten the formula as the data x as well
as f(x) are constant with regard to θ and so no essential part for determining the density
of θ. So it remains

f(θ|x) ∝ l(θ)π(θ).

Very useful to generate random variables with a given distribution function is the
probability integral transform introduced by Rosenblatt (cf. Rosenblatt (1952)).

Theorem 2.2 (Probability Integral Transform) Let X be a real valued random vari-
able and F(x) its continuous cumulative distribution function. Let U denote a random
variable that is uniformly distributed on (0, 1). Then Y=F(X) is uniformly distributed on
(0, 1). Furthermore, Z = F−1(U) has cdf F.

4
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Proof: cf. Angus (1994) 2

The subsequent theorems will help to find the joint distribution of several functions
of a continuous random vector. We will need this for the implementation of the Bayesian
Inference. The presentation of this topic corresponds to the one in Bickel and Doksum
(2001).
Let h = (h1, . . . , hk)

′, where each hi is a real-valued function on Rk. Thus, h is a
transformation from Rk to Rk. Recall that the Jacobian Jh(t) of h evaluated at t =
(t1, . . . , tk)

′ is by definition the determinant

Jh(t) =

∣∣∣∣∣∣∣∣
∂
∂t1
h1(t) . . . ∂

∂t1
hk(t)

...
...

∂
∂tk
h1(t)

... ∂
∂tk
hk(t)

∣∣∣∣∣∣∣∣ .
A very important result of this section, the transformation theorem 2.4, is based on the
following theorem.

Theorem 2.3 (change of variable theorem for multiple integrals) Let
h = (h1, . . . , hk)

′ be a transformation defined on an open subset B of Rk. Suppose that:

(i) h has continuous first partial derivatives in B.

(ii) h is one-to-one on B.

(iii) The Jacobian of h does not vanish on B.

Let f be a real-valued function (defined and measurable) on the range h(B) =
{(h1(t), . . . , hk(t)) : t ∈ B} of h and suppose f satisfies∫

h(B)

|f(x)|dx <∞.

Then for every (measurable) subset K of h(B) we have∫
K
f(x)dx =

∫
h−1(K)

f(h(t))|Jh(t)|dt.

Proof: cf. Apostol (1974, p. 421) 2

Hereby is dx an abbreviation for dx1 · · · dxk and h−1 denotes the inverse transforma-
tion of h; that is, h−1(x) = t if and only if x = h(t). We also use the following calculation
(cf. Apostol (1974, p. 417)),

Jh−1(t) =
1

Jh(h−1(t))
.

Now we can formulate the important transformation theorem.
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Theorem 2.4 (Transformation theorem) Let X be continuous and let S be an open
subset of Rk such that P (X ∈ S) = 1. If g = (g1, . . . , gk)

′ is a transformation from S to
Rk such that g and S satisfy the conditions of Theorem 2.3, then the density of Y = g(X)
is given by

pY (y) = pX(g−1(y))|Jg−1(y)|

for y ∈ g(S).

Proof: cf. Bickel and Doksum (2001, p. 486) 2

Very useful for calculating the asymptotic distribution of a function of an asymptotic
normal distributed sequence of random variables is the Delta method. For proofing this
result we need the following theorem.

Theorem 2.5 (Slutsky’s Theorem) If Un
D→ U and Vn

P→ v0 (a constant), then

(i) Un + Vn
D→ U + v0,

(ii) UnVn
D→ v0U.

Proof: cf. Bickel and Doksum (2001, p.467) 2

A direct application of Slutsky’s theorem yields the following corollary.

Corollary 2.6 Suppose that an is a sequence of constants tending to ∞, b is a fixed

number, and an(Zn − b)
D→ X. Let g be a function of a real variable that is differentiable

and whose derivative g′ is continuous at b. Then

an [g(Zn)− g(b)]
D→ g′(b)X.

Now we can denote the one dimensional Delta method.

Theorem 2.7 Let X1, . . . , Xn be an i.i.d. real valued sequence of random variables,
h : R → R a real valued function, E(X2

1 ) < ∞ and h is differentiable at µ = E(X1).
Then follows for the sample mean X̄ = 1

n

∑n
i=1Xi

√
n
(
h(X̄ − h(µ)

) D→ Y

where

Y ∼ N(0, [h′(µ)]2σ2)

and σ2 = Var(X1).
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Proof: follows with first order Taylor expansion and Slutsky’s theorem (2.5).
cf. Bickel and Doksum (2001, p. 312) 2

A quite easy, cheap (in terms of computational effort) and particularly numerically
stable way to solve linear equations systems and to compute the square root of a symmetric
and positive definite matrix is the Cholesky decomposition.

Theorem 2.8 For each symmetric and positive definite matrix A ∈ Rn×n there exists a
unique lower triangular matrix L ∈ Rn×n with positive diagonal elements so that A = LL′.

Proof: cf. Kanzow (2005, p. 78) 2

For a practical use of the Cholesky decomposition, we need to know the algorithm.
Therefore at first some notation issues:

Let A = LL′ with a lower triangular matrix L =


l11

l21 l22
...

...
. . .

ln1 ln2 . . . lnn

.

Now we can quote the algorithm (cf. Kanzow (2005, p. 80)).

Algorithm 2.1 Cholesky Decomposition for symmetric and positive definite matrices
1: FOR j = 1 : n DO

2: ljj :=
√
ajj −

∑j−1
m=1 l

2
jm;

3: FOR i = (j + 1) : n DO
4: lij := (aij −

∑j−1
m=1 ljmlim)/ljj;

5: END FOR
6: END FOR

2.2 Univariate Distributions

The distributions presented in this section are used as prior distributions for the Bayesian
analysis. At first we will clarify some notations: X ∼ F means that X is a random
variable with distribution function F. X ∼ p says that p is the density of the random
variable X.
This section is based on the presentation in Bickel and Doksum (2001).

2.2.1 Uniform distribution

The Uniform distribution on (a, b) is denoted by U(a, b). Its density function is

p(x) =
1

(b− a)
, a < x < b
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with (a, b) any pair of real numbers with a < b. The corresponding distribution function
is given by

F (x) =
(x− a)

(b− a)
for a < x < b.

If X has a U(a, b) distribution, then

E(X) =
a+ b

2
,Var(X) =

(b− a)2

12
.

2.2.2 Normal distribution

The Normal distribution is denoted by N (µ, σ2) with location parameter µ and scale
parameter σ. Its density function is

p(x) =
1√

2πσ2
exp {− 1

2σ2
(x− µ)2}

where µ can be any real number while σ is positive.
The normal distribution with µ = 0 and σ = 1 is known as the standard normal distribu-
tion. Its density will be denoted by ϕ(x) and its distribution function by Φ(x).
If X has a N (µ, σ2) distribution, then

E(X) = µ,Var(X) = σ2.

2.2.3 Gamma and Inverse Gamma distribution

The Gamma distribution is denoted by Γ(p, λ) with a shape parameter p and an inverse
scale parameter λ. Its density function is

gp,λ(x) =
λpxp−1e−λx

Γ(p)

for x > 0, where the parameters p and λ have to be positive. Γ(p) denotes the Euler
Gamma function defined by

Γ(p) :=

∫ ∞
0

tp−1e−tdt.

If X has a Γ(p, λ) distribution, then

E(X) =
p

λ
,Var(X) =

p

λ2
.

The special case p = 1 corresponds to the exponential distribution E(λ).

Furthermore, there is a connection to the χ2 distribution. Let k be a positive integer.
The chi squared density with k degrees of freedom corresponds to the gamma density with
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p = 1
2
k and λ = 1

2
and is denoted by χ2

k.

Very interesting for using as a prior distribution is the inverse gamma distribution
IG(α, β) with shape parameter α and scale parameter β. Its density function

fα,β(x) =
βα

Γ(α)

(
1

x

)α+1

e−
β
x (2.1)

is defined over the support x > 0. Its cumulative distribution function is the regularized
gamma function

Fα,β(x) =
Γ(α, β

x
)

Γ(α)

where the numerator is the upper incomplete gamma function (Γ(a, b) :=
∫∞
b
ta−1e−tdt)

and the denominator is the gamma function.
If X has a IG(α, β) distribution, then

E(X) =
β

α− 1
for α > 1,Var(X) =

β2

(α− 1)2(α− 2)
for α > 2.

Furthermore, 1
X
∼ Gamma(α, 1

β
).

2.2.4 Beta distribution

The Beta distribution, denoted by β(r, s), is closely connected to the previously defined
Gamma distribution. Its probability density function with two positive shape parameters
r and s is given by

br,s(x) =
1

B(r, s)
xr−1(1− x)s−1

for 0 < x < 1, where B(r, s) := Γ(r)Γ(s)
Γ(r+s)

is the Beta function.

If X has a β(r, s) distribution, then

E(X) =
r

r + s
,Var(X) =

rs

(r + s)2(r + s+ 1)
.

If Y and Z are independently Γ(r, t) and Γ(s, t) distributed, respectively, then Y
Y+Z

has a
β(r, s) distribution.

Interesting as a prior distribution is the linearly transformed β(a, b) distribution on
the interval (−1, 1) (cf. Joe (2006)):

ga,b(x) =
1

2
[B(a, b)]−1

(
1 + x

2

)a−1(
1− x

2

)b−1

, x ∈ (−1, 1)

where B(a, b) is the Beta function defined above. If a = b, the density function simplifies
to

ga(x) =
1

2
[B(a, a)]−1

(
1 + x

2

)a−1(
1− x

2

)a−1

= 2−2a+1[B(a, a)]−1(1− u2)a−1. (2.2)
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2.2.5 t distribution

The t distribution was published in 1908 by William Gosset under the pseudonym ’Stu-
dent’. He recognized that the standardized mean of a sum of normal distributed random
variables is no more normal if the variance is unknown and must be estimated with the
observed sample variance.
So, more generally spoken, if Z has a standard normal distribution and is independent of
V which is χ2

ν distributed, then follows by Cochran’s Theorem that

Z√
V
ν

has a t distribution with ν degrees of freedom.

The probability density function of the t distribution with positive parameter ν,
namely the degrees of freedom, is given by

f(t) =
Γ(ν+1

2
)

Γ(ν
2
)
√
νπ

(
1 +

t2

ν

)− ν+1
2

where Γ(x) is the Gamma function.
If X is t distributed with ν degrees of freedom, then

E(X) = 0 for ν > 1,Var(X) =
ν

ν − 2
for ν > 2.

2.2.6 Cauchy distribution

A generalization of a special case of the above defined t distribution is the Cauchy dis-
tribution as the standard Cauchy distribution corresponds to a t distribution with one
degree of freedom.
The probability density function of the Cauchy distribution with location parameter x0

and positive scale parameter γ is defined as

f(x) =
1

πγ

[
1 +

(
x−x0

γ

)2
] .

Its cumulative distribution function is given by

F (x) =
1

π
arctan

(
x− x0

γ

)
+

1

2
.

The Cauchy distribution with location parameter x0 = 0 and scale parameter γ = 1
is called standard Cauchy distribution. It is closely related to the standard normal dis-
tribution: Let U and V be two independent random variables with a standard normal
distribution. Then U

V
is standard Cauchy distributed.

The Cauchy distribution is very heavy tailed so that no moments exist, especially no mean
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and no variance.

In a later chapter, we will use a half Cauchy distribution as a prior function, i.e. that
the support is only on the positive side of x0. So the density function of a half Cauchy
distribution with parameters x0 and γ is

f(x) =
2

πγ

[
1 +

(
x−x0

γ

)2
] , x ≥ x0 (2.3)

since the Cauchy density is symmetric with symmetry axis v = x0.

2.3 Multivariate Distributions

Multivariate distributions are generalizations of univariate distributions to higher dimen-
sions. In our case, we will mostly use them as a basis for the construction of elliptical
copulas which will follow in later chapters of the diploma thesis.
This section will follow mainly the presentation in Bickel and Doksum (2001).

2.3.1 Multivariate Normal distribution

There are two possibilities to define a multivariate normal distribution, but both lead to
the same family and are therefore equivalent.

• U ∈ Rd has a multivariate (d-variate) normal distribution if and only if U can be
written as

U = µ+ AZ

where µ ∈ Rd, A ∈ Rd×d are constant and Z = (Z1, . . . , Zd)
′ where Zj are indepen-

dent standard normal variables. Then

E(U) = µ,Var(U) = AA′ =: Σ

• U ∈ Rd has a multivariate normal distribution if and only if for every a ∈ Rd

non-random, a′U =
∑d

j=1 ajUj has a univariate normal distribution.

We denote the d-variate normal distribution with mean µ and symmetric positive
definite variance-covariance matrix Σ by Nd(µ,Σ). Its probability density function is
given by

p(x) =
1

(2π)d/2[det(Σ)]d/2
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
, x ∈ Rd.

We can further calculate the marginal and conditional distributions (cf. Koop (2005)).
Suppose that Y ∈ Rd,Y ∼ Nd(µ,Σ) is partitioned as

Y =

(
Y (1)

Y (2)

)
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where Y (i) ∈ Rdi , i = 1, 2 with d1+d2 = d and µ and Σ have been partitioned conformably
as

µ =

(
µ(1)

µ(2)

)
and Σ =

(
Σ(11) Σ(12)

Σ′(12) Σ(22)

)
.

Then

• The marginal distribution of Y(i) is Ndi(µ(i),Σ(ii)) for i = 1, 2.

• The conditional distribution of Y(1) given Y(2) = y(i) is Nd1(µ(1|2),Σ(1|2)) where

µ(1|2) = µ(1) + Σ(12)Σ
−1
(22)(y(2) − µ(2))

and

Σ(1|2) = Σ(11) − Σ(12)Σ
−1
(22)Σ

′
(12)

and vice versa.

If we have only two dimensions, we can further simplify the density function. Let
(X, Y ) have a bivariate normal distribution with mean µ = (µ1, µ2)′ and let

ρ := Corr(X, Y ) =
Cov(X, Y )

σ1σ2

be the correlation coefficient where σ1 and σ2 denote the standard deviation of X and Y,
respectively. Then, we define the variance-covariance matrix of (X, Y ) as the matrix of
central second moments

Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

So the probability density function is given by

f(x, y) =
1

2πσ1σ2

√
1− ρ2

exp

[
− 1

2(1− ρ2)

{(
x− µ1

σ1

)2

−2ρ
(x− µ1)

σ1

(y − µ2)

σ2

+

(
y − µ2

σ2

)2
}]

.

2.3.2 Multivariate t distribution

A continuous d-dimensional random vector, Y = (Y1, . . . , Yd)
′, has a multivariate t distri-

bution, denoted by Y ∼ t(µ,Σ, ν), with parameters µ, the mean vector, with dispersion
or scatter matrix Σ, a quadratic, symmetric positive definite d × d-matrix, and with a
positive scalar ν, the degrees of freedom, if its probability density function is given by

f(y) =
Γ
(
ν+d

2

)
Γ
(
ν
2

)√
(πν)d|Σ|

(
1 +

(y − µ)′Σ−1(y − µ)

ν

)− ν+d
2

.
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If Y ∼ t(µ,Σ, ν), then

E(Y ) = µ for ν > 1,Var(Y ) =
ν

ν − 2
Σ for ν > 2.

Very useful is also the fact that we can explicitly calculate the marginals and condi-
tionals of a multivariate t distribution (cf. DeGroot (2003) and Koop (2005)).

Let Y ∼ t(µ,Σ, ν),Y ∈ Rd,Y =

(
Y (1)

Y (2)

)
,Y (i) ∈ Rdi , d1 + d2 = d and

µ =

(
µ(1)

µ(2)

)
,Σ =

(
Σ(11) Σ(12)

Σ′(12) Σ(22)

)
. Then

• The marginal distribution of Y (i) is t(µ(i),Σ(ii), ν) for i = 1, 2.

• The conditional distribution of Y (1) given Y (2) = y(2) is t(µ(1|2),Σ(1|2), ν+d1) where

µ(1|2) = µ(1) + Σ(12)Σ
−1
(22)(y(2) − µ(2))

Σ(1|2) = h(1|2)

[
Σ(11) − Σ(12)Σ

−1
(22)Σ

′
(12)

]
and

h(1|2) =
1

ν + d2

[
ν + (y(2) − µ(2))

tΣ−1
(22)(y(2) − µ(2))

]
and vice versa.

If Y is bivariate t distributed with zero mean, we can further simplify the density
function:

f(y1, y2) =
1

2π
√

(1− ρ2)

(
1 +

y2
1 − 2ρy1y2 + y2

2

ν(1− ρ2)

)− ν+2
2

. (2.4)

We will denote the bivariate distribution function by tν,ρ.
Applying the cited calculations of Koop (2005) mentioned above, we can deduce in the
bivariate case:

Z := Y1|Y2 ∼ t(µ(1|2),Σ(1|2), ν + 1) (2.5)

where

µ(1|2) = ρ · y2 with Σ12 = ρ

Σ(1|2) =
1

ν + 1
· (ν + y2

2) · (1− ρ2)

and

F (y1|Y2 = y2) = tν+1

 y1 − ρy2√
(ν+y2)·(1−ρ2)

ν+1

 (2.6)

where tν+1(·) is the distribution function of the univariate Student’s t distribution with
ν + 1 degrees of freedom.
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2.3.3 Elliptical Distributions

Following Embrechts, Lindskog, and McNeil (2003), we define the class of elliptical dis-
tributions.

Definition 2.9 If X is a n-dimensional random vector and, for some µ ∈ Rn and some
n × n nonnegative definite symmetric matrix Σ, the characteristic function ϕX−µ(t) of
X − µ is a function of the quadratic form t′Σt, ϕX−µ(t) = φ(t′Σt), we say that X has
an elliptical distribution with parameters µ,Σ and φ, and we write X ∼ En(µ,Σ, φ).

For n = 1 is the class of elliptical distributions identical to the class of one-dimensional
symmetric distributions. The function φ is called a characteristic generator.

The characteristic function of a multivariate normal distributed random vectorX with
mean µ and variance Σ is

φX(x) = exp(ıx′µ) · exp(−1

2
x′Σx).

So the multivariate normal distribution belongs to the class of elliptical distributions,
namely to the subclass of Kotz type distributions (cf. Fang, Kotz, and Ng (1990)).

The characteristic function of a multivariate t distributed random vector Y following
Kibria and Joarder (2006) is given by

φY (y) = exp(ıy′µ) ·
∥∥(νΣ)1/2y

∥∥ν/2
2ν/2−1Γ(ν/2)

·Kν/2

(∥∥(νΣ)1/2y
∥∥)

where
∥∥t∥∥ =

√
t′t and Kν/2

(∥∥(νΣ)1/2y
∥∥) is the Macdonald function with order ν/2 and

argument
∥∥(νΣ)1/2y

∥∥. The Macdonald function can be represented by

Kα(t) =

(
2

t

)α
Γ(α + 1)√

π

∫ ∞
0

(1 + u2)−(α+1/2) cos(tu)du,

where t > 0 and α > −1/2.
This characteristic function can be rewritten as

φY (y) = exp(ıy′µ) · ψ(y′Σy)

for some function ψ(·) and therefore the multivariate t distributions belong to the class
of elliptical distributions, namely to the subclass of multivariate Pearson Type VII distri-
butions (cf. Fang, Kotz, and Ng (1990)).

2.4 Dependence Measures

The presentation of this topic follows mainly Chapter 3.2 in Kurowicka and Cooke (2006).
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Definition 2.10 (Independence) Random variables X1, . . . , Xn are independent if for
any intervals I1, . . . , In,

P (X1 ∈ I1, . . . , Xn ∈ In) =
n∏
i=1

P (Xi ∈ Ii).

Definition 2.11 (Product Moment Correlation) The product moment correlation
(also linear or Pearson correlation) of random variables X, Y with finite expectations
E(X), E(Y ) and finite variances σ2

X , σ
2
Y , is

ρ(X, Y ) =
E(XY )− E(X)E(Y )

σXσY
.

Definition 2.12 (Rank Correlation) The rank correlation (or Spearman’s rho) of ran-
dom variables X, Y with cumulative distribution functions FX and FY and joint distribu-
tion function F is

ρs(X, Y ) = ρ(FX(X), FY (Y )).

Definition 2.13 (Kendall’s tau) Let (X1, Y1), (X2, Y2) be two independent pairs of ran-
dom variables with joint distribution function F and marginal distributions FX and FY .
Kendall’s tau is given by

τ = P ((X1 −X2)(Y1 − Y2) > 0)− P ((X1 −X2)(Y1 − Y2) < 0).

Following Joe (1997), Spearman’s rho and Kendall’s tau can also be expressed in
terms of an integral of the joint distribution function and the copula C associated with
F , respectively.

ρs(X, Y ) = 12

∫ ∫
FX(x)FY (y)dF (x, y)− 3 = 12

∫ ∫
C(u, v)dudv − 3

τ = 4

∫
FdF − 1 = 4

∫
CdC − 1 = 4E(C(U, V ))− 1 for U, V ∼ Unif(0, 1)

We can find a relationship between the linear correlation, Spearman’s rho and Kendall’s
tau.

Lemma 2.14 (Pearson(1904)) Let (X, Y ) be random vectors with joint normal distri-
bution, then

ρ(X, Y ) = 2 sin(
π

6
ρs(X, Y ))

The following result holds for all elliptical distributions.

Lemma 2.15 Let (X, Y ) be random vectors with joint normal or joint Student t distri-
bution, then

τ(X, Y ) = 2 arcsin(ρ(X, Y ))/π
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Proof: cf. Lindskog, McNeil, and Schmock (2003) 2

A partial correlation can be defined in terms of partial regression coefficients.

Definition 2.16 (Partial Correlation) Let Xi be random variables with zero mean and
standard deviation σi = 1, i = 1, . . . , n. Let the numbers b12;3,...,n, . . . , b1n;2,...,n−1 minimize

E((X1 − b12;3,...,nX2 − . . .− b1n;2,...,n−1Xn)2).

Then the partial correlation is defined as

ρ12;3,...,n := sgn(b12;3,...,n)
√
b12;3,...,nb21;3,...,n.

Cramér (1946, p. 306) shows the equivalence of the above defined partial correlation
to

ρ12;3,...,n = − C12√
C11C22

,

where Ci,j denotes the (i, j)-th cofactor (also called minor) of the correlation matrix, i.e.
the determinant of the submatrix obtained by removing row i and column j .
The partial correlation ρ12;3,...,n can be interpreted as the correlation between the orthog-
onal projections of X1 and X2 on the plan orthogonal to the space spanned by X3, . . . , Xn

(cf. Kendall (1945, p. 372 f.) and Baba, Shibata, and Sibuya (2004)).
Yule and Kendall (1965) gave an recursive formula for recursively computing partial cor-
relations:

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1√

1− ρ2
1n;3,...,n−1

√
1− ρ2

2n;3,...,n−1

. (2.7)

Definition 2.17 (Conditional Correlation) The conditional correlation of Y and Z
given X

ρY Z|X = ρ(Y |X,Z|X)

=
E(Y Z|X)− E(Y |X)E(Z|X)

σ(Y |X)σ(Z|X)

is the product moment correlation computed with the conditional distribution of Y and Z
given X.

Following the results of Baba, Shibata, and Sibuya (2004) and Gatz (2007), the partial
correlations and the conditional correlations coincide (i.e. ρ12;3,...,n = ρ12|3,...,n) if the
variables belong to the class of elliptical distributions, e. g. the multivariate normal and
the multivariate Student t distribution. The partial and conditional correlations of copulas
have to be interpreted on the level of the distributions, not on the level of uniform data.
However, zero partial correlation or zero conditional correlation do not imply conditional
independence except for normal distributions.
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2.5 Time Series

2.5.1 Univariate Time Series

The theory of time series as introduced in this section follows the description in Brockwell
and Davis (1991).

Definition 2.18 (Stochastic process) A stochastic process is a family of random vari-
ables {Xt, t ∈ T } defined on a probability space (Ω,F ,P)

As we look at time series, the index (or parameter) set T is a set of time points, i.e.
1, 2, 3, . . .. According to the definition of a random variable, if t ∈ T is fixed, Xt is a
function Xt(·) on the set Ω. In contrast, if ω ∈ Ω is fixed, X·(ω) is a function on T .
The covariance matrix helps to gain insights into the dependency structure for a finite
number of random variables. As we often have an infinite number of random variables,
we have to extend this concept.

Definition 2.19 (Autocovariance function) If {Xt, t ∈ T } is a process such that
var(Xt) < ∞ for each t ∈ T , then the autocovariance function γX(·, ·) of {Xt} is de-
fined by

γX(r, s) := Cov(Xr, Xs) = E [(Xr − E(Xr)) (Xs − E(Xs))] , r, s ∈ T

Definition 2.20 (Stationarity) The time series {Xt, t ∈ Z}, with index set
Z = {0,±1,±2, . . .}, is said to be stationary if

(i) E (|Xt|2) <∞ for all t ∈ Z,

(ii) E(Xt) = m for all t ∈ Z,

and

(iii) γX(r, s) = γX(r + t, s+ t) for all r, s, t ∈ Z.

If {Xt, t ∈ Z} is stationary then γX(r, s) = γX(r − s, 0) for all r, s ∈ Z. So we can
redefine the autocovariance function as a function of only one variable by

γX(h) := γX(h, 0) = Cov(Xt+h, Xt) for all t, h ∈ Z.

So we say that γX(h) is the autocovariance function at lag h. The autocorrelation function
(acf) of {Xt, t ∈ Z} is defined analogously as the function whose value at lag h is

ρX(h) :=
γX(h)

γX(0)
= Corr(Xt+h, Xt) for all t, h ∈ Z. (2.8)

There is also another important definition of stationarity which is frequently used.

Definition 2.21 (Strict stationarity) The time series {Xt, t ∈ Z} is said to be strictly
stationary if the joint distribution of (Xt1 , . . . , Xtk)

′ and (Xt1+h, . . . , Xtk+h)
′ are the same

for all positive integers k and for all t1, . . . , tk, h ∈ Z.
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It follows easily that a strict stationary process with finite second moments is station-
ary. But the converse of this statement is not true. As a counterexample, we can look
at a sequence of random variables {Xt} such that Xt is exponentially distributed with
mean one when t is odd and normally distributed with mean one and variance one when
t is even. Then the time series {Xt, t ∈ Z} is clearly stationary, but it cannot be strictly
stationary.
However, there is one important case where stationarity implies strict stationarity.

Definition 2.22 (Gaussian Time Series) The process {Xt} is a Gaussian time series
if and only if (Xt1 , . . . , Xtk)

′ are multivariate Gaussian for t1 < t2 < . . . < tk∀k.

It follows easily that a stationary Gaussian time series is strictly stationary.

Now we want to define a class of time series defined in terms of linear difference
equations with constant coefficients. Therefore, we define first the error process.

Definition 2.23 (White Noise) The process {Zt} is said to be white noise with mean
0 and variance σ2, written

{Zt} ∼ WN(0, σ2),

if and only if {Zt} has zero mean and the covariance function γZ(h) =

{
σ2 if h = 0

0 if h 6= 0

If the random variables {Zt} are independently and identically distributed with mean 0
and variance σ2 then we shall write

{Zt} ∼ IID(0, σ2).

We can generate a very wide class of stationary processes by using white noise as
the forcing terms in a set of linear difference equations. This leads to the notion of an
autoregressive-moving average (ARMA) process.

Definition 2.24 (ARMA(p, q) process) The process {Xt, t ∈ Z} is said to be an
ARMA(p, q) process if {Xt} is stationary and if for every t,

Xt − φ1Xt−1 − . . .− φpXt−p = Zt + θ1Zt−1 + . . .+ θqZt−q, (2.9)

where {Zt} ∼ WN(0, σ2). We say that {Xt} is an ARMA(p, q) process with mean µ if
{Xt − µ} is an ARMA(p, q) process.

The equations (2.9) can be written symbolically in the more compact form

φ(B)Xt = θ(B)Zt, t = 0,±1,±2, . . .

where φ and θ are the pth and qth degree polynomials

φ(z) = 1− φ1z − . . .− φpzp (2.10)
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and

θ(z) = 1− θ1z − . . .− θqzq

and B is the backward shift operator defined by

BjXt = Xt−j, j = 0,±1,±2, . . . . (2.11)

The polynomials φ and θ will be referred to as the autoregressive and moving average
polynomials, respectively, of the difference equations (2.10).

As an example, we will look at the AR(1) process, i.e.

Yt = γYt−1 + εt (2.12)

where εt ∼ N(0, σ2) iid and |γ| < 1.

First, we have to investigate the existence and uniqueness of a stationary solution of
the process defined in (2.12).

Yt = γYt−i + εt

= εt + γ(γYt−2 + εt−1)

= . . . = εt + γεt−1 + . . .+ γk+1Yt−k−1

Since |γ| < 1 and {Xt} is stationary, ‖Yt‖2 = E(Y 2
t ) is constant and we can conclude that

‖Yt −
k∑
j=0

γjεt−j‖2 = γ2k+2‖Yt−k−1‖2 a.s.→ 0 as k →∞

Since
∑∞

j=0 γ
jεt−j is mean-square convergent (by the Cauchy criterion), it follows that

Yt =
∞∑
j=0

γjεt−j (2.13)

So {Yt} defined by (2.13) is stationary since

E(Yt) =
∞∑
j=0

γjE(εt−j) = 0 (2.14)

and

Cov(Yt+h, Yt) = lim
n→∞

E

[(
n∑
j=0

γjεt+h−j

)(
n∑
k=0

γkεt−k

)]

= σ2γ|h|
∞∑
j=0

γ2j (since E(εiεj) = 0 for i 6= j and εt ∼ N(0, σ2) i.i.d.)

=
σ2γ|h|

1− γ2
(2.15)
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Furthermore, {Yt} as defined by (2.13) satisfies the difference equation (2.12) and is there-
fore the unique stationary solution.

An important technique to analyze the cyclical patterns of data is the spectral analysis.
It decomposes a time series into a few underlying sine and cosine functions with given
wavelength. We express the wavelength in terms of frequency ω, i.e. the number of cycles
per time unit. The period T of a sinusoidal function is defined as the required time for
one full cycle, therefore T = 1/ω. Spectral analysis and the periodogram, its basic tool,
help to understand frequency dependent variability.

Definition 2.25 Let {x1, . . . , xn} be a vector of observations. The periodogram is defined
as

In(ωk) =
1

n

∣∣∣∣ n∑
t=1

xt exp(−ıtωk)
∣∣∣∣2 , (2.16)

where ωk = 2πk/n are the Fourier frequencies expressed in terms of radians per unit time,
k = 1, . . . , [n/2] and [z] denotes the largest integer less than or equal to z.

With a periodogram, we can measure the frequency dependent variability since the
ordinate of the periodogram at Fourier frequency ωk is proportional to the variance ac-
counted for by that frequency component. Hence, relatively large values of In(ωk) indicate
a cycle of period 1/ωk (cf. Weron (2006) and Brockwell and Davis (1991)).

2.5.2 Multivariate Time Series

A generalization of this univariate theory to multivariate data is also possible.
This section follows mainly the description in Brockwell and Davis (1991, §11) Let

X t := (X1t, . . . , Xmt)
′, t = 0,±1,±2, . . . (2.17)

be a m-variate time series, EX2
it <∞ ∀t ∀i, with mean vector

µt := E(X t) = (µ1t, . . . , µmt)
′ (2.18)

and covariance matrices

Γ(t+ h, t) := E[(X t+h − µt+h)(X t − µt)′] = [γij(t+ h, t)]mi,j=1. (2.19)

Definition 2.26 (Stationary Multivariate Time Series) The series (2.17) with means
(2.18) and covariances (2.19) is said to be stationary, if µt and Γ(t+h, t), h = 0,±1, . . . ,
are independent of t.

If X t is stationary, we use the notation

µ := E(X t) = (µ1, . . . , µm)′
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and

Γ(h) := E[(X t+h − µt+h)(X t − µt)′] = [γij(h)]mi,j=1.

µ is called the mean of the series and Γ(h) is the covariance matrix at lag h. If {X t} is
stationary with covariance function Γ(·), then for each i, Xit is stationary with covariance
function γii(·). For i 6= j, we call the function γij(·) the cross-covariance function of the
two series Xit and Xjt. Notice that in general γij(·) is not the same as γji(·). Furthermore,
we define the correlation matrix function R(·) by

R(h) :=

[
γij(h)

[γii(0)γjj(0)]1/2

]m
i,j=1

∈ Rm×m.

This function R(·) corresponds to the covariance matrix function of the normalized series
which we obtain when we subtract µ from X and then divide each component by its
standard deviation.

Definition 2.27 (Multivariate White Noise) The m-variate series {Zt, t = 0,±1,
±2, . . .} is said to be white noise with mean 0 and covariance matrix Σ̃, written

{Zt} ∼ WN(0, Σ̃),

if and only if {Zt} is stationary with mean vector 0 and covariance matrix function,

Γ(h) =

{
Σ̃ if h = 0

0 otherwise.

We use further the notation

{Zt} ∼ IID(0, Σ̃),

to indicate that the random vectors Zt, t = 0± 1, . . . , are independently and identically
distributed with mean 0 and covariance matrix Γ.

Generalizing the univariate case we can define a very useful class of multivariate sta-
tionary processes {X t} by requiring that {X t} should satisfy a set of linear difference
equations with constant coefficients.

Definition 2.28 (Multivariate ARMA(p, q) Process) {X t, t = 0,±1, . . .} is a m-
variate ARMA (p, q) process if {X t} is a stationary solution of the difference equations

X t − Φ1X t−1 − . . .− Φt−pX t−p = Zt −Θ1Zt−1 − . . .−Θt−qZt−q, (2.20)

where Φ1, . . . ,Φt−p,Θ1, . . . ,Θt−q ∈ Rm×m and {Zt} ∼ WN(0, Σ̃.
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The equation (2.20) can be written in the more compact form

Φ(B)X t = Θ(B)Zt, Zt ∼ WN(0, Σ̃),

where Φ(z) := I − Φ1z − . . .− Φpz
p and Θ(z) := I −Θ1z − . . .−Θqz

q are matrix-valued
polynomials, I is the m×m- identity matrix and B denotes the backward shift operator
(like in (2.11)). Each component of the matrices Φ(z),Θ(z) is a polynomial with real
coefficients and degree less than or equal to p, q respectively.

We will look at a multivariate AR(1) process as an example. This process satisfies

X t = ΦX t−1 +Zt, Zt ∼ WN(0, Σ̃). (2.21)

By exactly the same argument as in the univariate case from (2.12) to (2.13), we can
express X t as

X t =
∞∑
j=0

ΦjZt−j, (2.22)

provided that all the eigenvalues of Φ are less than 1 in absolute value, i.e. provided

det(I − zΦ) 6= 0 for all z ∈ C such that |z| ≤ 1. (2.23)

If this condition is satisfied then the series (2.22) converges (componentwise) both in mean
square and absolutely with probability 1. Moreover it is the unique stationary solution
(2.21). The condition (2.23) is the multivariate analogue of the condition |φ| < 1, required
for the existence of the causal representation (2.22) in the univariate case (cf. (2.13)).

2.6 Copula

The concept of copulas is very useful. It is a good help to describe multivariate depen-
dencies and to separate them from marginal behavior. N.I. Fisher describes this in his
article in Encyclopedia of Statistical Sciences (Fisher (1997)):

Copulas [are] of interest to statisticians for two main reasons: Firstly, as a
way of studying scale-free measures of dependence; and secondly, as a starting
point for constructing families of bivariate distributions, sometimes with a
view to simulation.

A copula is a function which “couples” the multivariate distribution function to their
univariate marginal distribution functions. The basics of this theory were found indepen-
dently by Hoeffding in the 1940s (who only used the interval [−1/2, 1/2]2 and not the unit
square) and by Fréchet in the early 1950s. Abe Sklar was the first to use the term “cop-
ula” to describe these distributions with fixed marginals in his seminal paper “Fonctions
de répartition à n dimensions et leur marges” (Sklar (1959)). He also mentioned there
his famous theorem for the first time which is now known as “Sklar’s theorem” (2.31).
Although the term “copula” was not used very often, a lot of people made research in
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this topic, frequently called “distributions with fixed/given marginals”.

The presentation of this topic follows mainly Nelsen (2006).
At first some notation: the unit square I2 is the product I × I where I = [0, 1]. With
“copula” we always mean a 2-dimensional copula; of course, there are generalizations into
higher dimensions possible. Furthermore, all distribution functions considered here are
continuous unless otherwise stated.

Definition 2.29 (Copula) A Copula is a function C from I2 to I with the following
properties:

(i) For every u, v in I,

C(u, 0) = 0 = C(0, v)

(ii) For every u, v in I,

C(u, 1) = u and C(1, v) = v; (2.24)

(iii) For every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (2.25)

If a function has property (2.24), then it is called grounded. A function where (2.25)
holds, is called 2-increasing.

Copulas are bounded in both directions: there exists an upper bound and a lower
bound.

Theorem 2.30 Let C be a copula. Then for every (u, v) in I2,

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v).

Proof: Nelsen (2006, p. 11) 2

The bounds themselves are also copulas. As an honor for the contributions of these
scientists, they are called Fréchet-Hoeffding lower bound W (u, v) and Fréchet-Hoeffding
upper bound M(u, v), respectively. Another important copula is the product copula
Π(u, v) = u · v.

Now we will state the famous theorem of Sklar which shows the unique connection
between the marginal distributions functions and the joint bivariate distribution function.

Theorem 2.31 (Sklar’s theorem) Let H be a joint distribution function with margins
F and G. Then there exists a copula C such that for all x, y in R = R ∪ {−∞,∞},

H(x, y) = C(F (x), G(y)). (2.26)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on
the range of F times the range of G. Conversely, if C is a copula and F and G are
distribution functions, then the function H defined by (2.26) is a joint distribution function
with margins F and G.
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Proof: cf. Nelsen (2006, pp. 18 ff) 2

In fact, the copula C from (2.26) has the form

C(u, v) = H
(
F−1(u), G−1(v)

)
, u, v ∈ I.

We also get some properties concerning the partial derivatives of a copula. We use
the word “almost” in the sense of a Lebesgue measure, i.e. the points where a property
is not satisfied have Lebesgue measure zero.

Theorem 2.32 Let C be a copula. For any v in I, the partial derivative ∂C(u,v)
∂u

exists for
almost all u, and for such u and v,

0 ≤ ∂

∂u
C(u, v) ≤ 1.

Similarly, for any u in I, the partial derivative ∂C(u,v)
∂v

exists for almost all v, and for such
u and v,

0 ≤ ∂

∂v
C(u, v) ≤ 1.

Furthermore, the functions u 7→ ∂C(u,v)
∂v

and v 7→ ∂C(u,v)
∂u

are defined and non-decreasing
almost everywhere on I.

Proof: cf. Nelsen (2006, p. 14) 2

Theorem 2.33 Let C be a copula. If ∂C(u,v)
∂v

and ∂2C(u,v)
∂u∂v

are continuous on I2 and ∂C(u,v)
∂u

exists for all u ∈ (0, 1) when v = 0, then ∂C(u,v)
∂u

and ∂2C(u,v)
∂v∂u

exist in (0, 1)2 and ∂2C(u,v)
∂u∂v

=
∂2C(u,v)
∂v∂u

.

So we can define the density of a copula.

Definition 2.34 (Copula density) Let C be a copula which is twice partial differen-
tiable. Then the function c : I2 → I with

c(u, v) =
∂2C(u, v)

∂u∂v

is called the density of the copula C.

This helps to see a connection between the copula density function, the joint density
function and the marginal density functions using the chain rule for differentiation and
Sklar’s theorem 2.31. If f and g, h denote the nonzero density and the marginal densities
of (X, Y ) with joint distribution function F and marginal distribution functions G and H,
respectively, then

c(G(x), H(y)) =
f(x, y)

g(x) · h(y)
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is the copula density of C. Hence, we can rewrite the density in terms of the copula density
and the marginal densities as

f(x, y) = c(G(x), H(y)) · g(x) · h(y). (2.27)

Very remarkable is also the fact that copulas are invariant under increasing continuous
transformations of the marginals.

Theorem 2.35 If x, y have copula C and T1, T2 are increasing continuous functions, then
T1(x), T2(y) also have copula C.

Proof: cf. Embrechts, McNeil, and Straumann (2002) 2

Besides the already mentioned boundary copulas and the product copula, we can
define a lot of different ones. Very interesting in our context are the elliptical copulas -
Normal and Student t-copula - which are defined with the use of distribution functions.

Definition 2.36 (Bivariate Normal Copula) Let Φρ be the cumulative distribution
function of the bivariate Standard normal distribution and let Φ−1 be the inverse of the
univariate Standard normal cdf. Then we define the Normal or Gauss Copula by using
Sklar’s theorem as

Cρ(u, v) = Φρ

(
Φ−1(u),Φ−1(v)

)
for all (u, v) in I2.

The bivariate normal copula has the density

c(u, v) =
1√

1− ρ2
exp

(
−ρ

2(u2 + v2)− 2ρuv

2(1− ρ2)

)
.

Very important for our work is the Student t-Copula which we will use in the pair-
copula construction (cf. section 2.7) of a D-vine (cf section 2.8).

Definition 2.37 (Bivariate t-Copula) Let tν,ρ be the bivariate t distribution function
and let t−1

ν be the inverse of the standard univariate t distribution function. Then we
define the Student t-Copula (or t-Copula) by using Sklar’s theorem as

Ct
ν,ρ(u, v) = tν,ρ

[
t−1
ν (u), t−1

ν (v)
]

=

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π
√

1− ρ2

{
1 +

s2 − 2ρst+ t2

ν(1− ρ2)

}− ν+2
2

dt ds (2.28)

for all (u, v) in I2. If ν > 2, then ρ is the usual linear correlation coefficient of the
corresponding bivariate tν-distribution.
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The density of the bivariate t-Copula is given by

ctν,ρ(u, v) =
1√

1− ρ2

Γ(ν+2
2

)Γ(ν
2
)

Γ(ν+1
2

)2

{
1 + s2−2ρst+t2

ν(1−ρ2)

}− ν+2
2

(
1 + s2

ν

)− ν+1
2
(
1 + t2

ν

)− ν+1
2

(2.29)

where s = t−1
ν (u), t = t−1

ν (v).

If we want to model a distribution with more extremal event, it is reasonable to use
a t-Copula instead of the Normal Copula as the tails of the t-Copula are much heavier
than the ones of the Normal Copula. We see this easily by comparing the 3D surface and
the contour plot of a t-Copula and a Normal Copula density with the same correlation
coefficient (see Figures 2.1 - 2.3).

Furthermore, it is possible to create a meta-t-Copula with standard normal margins :
We take univariate standard normal r.v., utilize the probability-integral transform (2.2)
with the standard normal distribution function to get univariate r.v. and plug them into
a t-Copula:

Cmeta-t
ν,ρ (x, y) = Ct

ν,ρ(Φ
−1(x),Φ−1(y))

where x, y ∈ R are realizations of standard normal random variables.
The 3D surface and the contour plot of this Meta-t-Copula density for different correlation
parameters is shown in Figure 2.4
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Figure 2.1: Comparison of a t-Copula and a Normal Copula density with correlation 0
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Figure 2.2: Comparison of a t-Copula and a Normal Copula density with correlation 0.4
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Figure 2.3: Comparison of a t-Copula and a Normal Copula density with correlation 0.8
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Figure 2.4: Meta-t-Copula density with standard normal margins for correlation param-
eters 0, 0.4 and 0.9



CHAPTER 2. DEFINITIONS AND BASIC PROPERTIES 31

2.7 Pair-Copula Construction

The pair-copula construction is a useful tool to simplify the work with high dimensional
multivariate densities. It was first proposed by Bedford and Cooke (2002) inspired by
the work of Joe (1996). Using conditional densities, we can factorize each multivariate
density with bivariate copulas, to some extent with conditional densities, and univariate
marginal densities.
The presentation of this topic follows mainly the paper of Aas et al. (2007).

Suppose that the vector X = (X1, . . . Xd) of random variables has the joint density
function f(x1, . . . , xd). Now we can decompose this density using conditional densities

f(x1, . . . , xd) = fd(xd) · f(xd−1|xd) · f(xd−2|xd−1, xd) · · · f(x1|x2, . . . , xd). (2.30)

This factorization is unique up to a re-labelling of the variables.
Using the multivariate generalization of the copula density (2.27), we get

f(x1, . . . , xd) = c1···d(F1(x1), . . . , Fd(xd)) · f1(x1) · · · fd(xd). (2.31)

If we have the bivariate case, (2.31) can be written as

f(x1, x2) = c12(F1(x1), F2(x2)) · f1(x1) · f2(x2) (2.32)

where c12 is the appropriate pair-copula density for the transformed variables F1(x1) and
F2(x2).
This factorization is also possible for a conditional density, it follows easily that

f(x1|x2) = c12(F1(x1), F2(x2)) · f1(x1). (2.33)

If we have three variables X1, X2 and X3, we can decompose them as

f(x1, x2, x3) = f1(x1) · f(x2|x1) · f(x3|x1, x2). (2.34)

We can further factorize

f(x2|x1)
(2.33)
= c12(F1(x1), F2(x2)) · f2(x2)

and

f(x3|x1, x2) =
f(x2, x3|x1)

f(x2|x1)

=
c23|1(F (x2|x1), F (x3|x1))f(x2|x1)f(x3|x1)

f(x2|x1)

= c23|1(F (x2|x1), F (x3|x1))f(x3|x1)

(2.33)
= c23|1(F (x2|x1), F (x3|x1)) · c13(F1(x1), F3(x3)) · f3(x3).
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So, plugging all into (2.34), we get

f(x1, x2, x3) =c23|1(F (x2|x1), F (x3|x1))

· c12(F1(x1), F2(x2)) · c13(F1(x1), F3(x3))

· f1(x1) · f2(x2) · f3(x3). (2.35)

If we use another decomposition into conditional densities in (2.34), we get an alternative
pair-copula construction.

So, it is obvious that (2.30) can be decomposed under appropriate regularity conditions
into any pair-copula construction times its marginal densities using iteratively the general
formula

f(x|v) = cxv|v−j (F (x|v−j), F (vj|v−j)) · f(x|v−j)

for a n-dimensional vector v. vj means any completely arbitrary chosen element of v and
v−j is the (n− 1)-dimensional vector consisting of v without its j-th component.
For applying this pair-copula decomposition, we need to calculate marginal conditional
densities of the form F (x|v). Joe (1996) showed that

F (x|v) =
∂Cx,vj |v−j (F (x|v−j), F (vj|v−j))

∂F (vj|v−j)
, (2.36)

for every j, where Cij|k is a bivariate copula distribution function. We can further simplify
this if v is univariate:

F (x|v) =
∂Cx,v (F (x), F (v))

∂F (v)
.

As we will need this conditional density more often in the following parts of this diploma
thesis, we define it with a fixed notation:

h(x, v; θ) := F (x|v) =
∂Cx,v (F (x), F (v))

∂F (v)
(2.37)

where θ denotes the appropriate parameters of the joint copula and the second parameter
of h(·) is the one on which the conditional distribution function is conditioned on.

We can now easily deduce the concrete value of this h(·)-function for the t-copula with
standard normal margins. The t-Copula with standard normal margins has the cdf (cf.
(2.28)):

Ct
ν,ρ(Φ(y1),Φ(y2)) = tν,ρ [t−1

ν (Φ(y1)), t−1
ν (Φ(y2))] .

Using the conditional distribution (2.5), its conditional cumulative density function (2.6)
and the definition of the h(·)-function (2.37) we get:

h(Φ(y1),Φ(y2); ν, ρ) = tν+1

 t−1
ν (Φ(y1))−ρt−1

ν (Φ(y2))√(
ν+(t−1

ν (Φ(y2)))
2
)
·(1−ρ2)

ν+1

 (2.38)
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and the inverse of the h(·)-function

h−1(Φ(y1),Φ(y2); ν, ρ) = tν

{
t−1
ν+1(Φ(y1))

√(
ν+(t−1

ν (Φ(y2)))
2
)
·(1−ρ2)

ν+1
+ ρt−1

ν (Φ(y2))

}
.(2.39)

2.8 D-Vines

For organizing the high number of possible pair-copula constructions, Bedford and Cooke
(2001, 2002) introduced a graphical model called the regular vine. As this class is still
very large, we will concentrate here on a special case, the D-vine introduced by Kurowicka
and Cooke (2004). The presentation of this chapter will follow mainly the paper of Aas
et al. (2007).
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Figure 2.5: A D-vine with 4 variables, 3 trees and 6 edges. Each edge may be associated
with a pair-copula. The corresponding copula parameters are denoted above the edges.

The D-vine is one special way of decomposing the joint density. It can be illustrated
e.g. in the form of a nested set of trees. Figure 2.5 shows a four-dimensional D-vine. It
has three trees Tj, j = 1, 2, 3 where tree Tj has 5 − j nodes and 4 − j edges. We can
identify each edge with a pair-copula density and the label of the edge corresponds to the
subscript of the pair-copula density, e.g. edge 13|2 corresponds to the pair-copula density
c13|2(·). The corresponding parameters are denoted above the edges, e.g. θ21 are the cor-
responding copula parameters for the pair-copula density c13|2(·), ν13|2 and ρ13|2. We only
need the n(n− 1)/2 edges and the marginal densities to specify the decomposition. The
nodes of one tree only help to determine the edges for the next tree. Only if two edges in
Tj which become nodes in Tj+1 share a common node, then they are joined by an edge
in Tj+1. No node in any tree of the D-vine is connected to more than two edges. Note
that the tree structure only helps to identify the necessary pair-copula decompositions, it
is however not strictly necessary for applying the pair-copula methodology.
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We specialize the density of a n-dimensional distribution in terms of a regular vine
given by Bedford and Cooke (2001) to a D-vine. So the density f(x1, . . . , xn) correspond-
ing to a D-vine can be written as

n∏
k=1

f(xk)
n−1∏
j=1

n−j∏
i=1

ci,i+j|i+1,...,i+j−1 {F (xi|xi+1, . . . , xi+j−1), F (xi+j|xi+1, . . . , xi+j−1)} ,(2.40)

where index j identifies the trees while i runs over the edges in each tree.

As we will work in 4 dimensions, we want to show as an example the 4-dimensional
D-vine. Its structure is

f(x1, x2, x3, x4) =f1(x1) · f2(x2) · f3(x3) · f4(x4)·
· c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3)) · c34(F3(x3), F4(x4))·
· c13|2(F (x1|x2), F (x3|x2)) · c24|3(F (x2|x3), F (x4|x3))·
· c14|23(F (x1|x2, x3), F (x4|x2, x3)). (2.41)

We can see this by decomposing the joint density in the following way:

f(x1, x2, x3, x4) = f2(x2) · f(x3|x2) · f(x1|x2, x3) · f(x4|x1, x2, x3). (2.42)

We can further factorize

f(x3|x2) = c23(F2(x2), F3(x3)) · f3(x3)

and

f(x1|x2, x3) =
f(x1, x3|x2)

f(x3|x2)

=
c13|2(F (x1|x2), F (x3|x2)) · f(x1|x2) · f(x3|x2)

f(x3|x2)

= c13|2(F (x1|x2), F (x3|x2)) · c12(F1(x1), F2(x2)) · f1(x1)

and

f(x4|x1, x2, x3) =
f(x1, x4|x2, x3)

f(x1|x2, x3)

=
c14|23(F (x1|x2, x3), F (x4|x2, x3)) · f(x1|x2, x3) · f(x4|x2, x3)

f(x1|x2, x3)

= c14|23(F (x1|x2, x3), F (x4|x2, x3)) · f(x2, x4|x3)

f(x2|x3)

= c14|23(F (x1|x2, x3), F (x4|x2, x3))·

·
c24|3(F (x2|x3), F (x4|x3)) · f(x2|x3) · f(x4|x3)

f(x2|x3)

= c14|23(F (x1|x2, x3), F (x4|x2, x3)) · c24|3(F (x2|x3), F (x4|x3))·
· c34(F3(x3), F4(x4)) · f4(x4).
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So plugging all in we get

f(x1, x2, x3, x4) =f1(x1) · f2(x2) · f3(x3) · f4(x4)·
· c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3)) · c34(F3(x3), F4(x4))·
· c13|2(F (x1|x2), F (x3|x2)) · c24|3(F (x2|x3), F (x4|x3))·
· c14|23(F (x1|x2, x3), F (x4|x2, x3)).

We calculate easily that there are in total 12 different four dimensional D-vine decom-
positions. If we generalize this result, we can prove that number of distinct D-vines on
n nodes is given by n!/2. We can order the variables in the first tree on n! possible way.
Since the edges are undirected - the order of the conditioned values does not matter - the
reversed first tree does not change the corresponding vine. So it remains n!/2 different
first trees. Since the first tree totally determines the whole D-vine, there are n!/2 different
decompositions.

Using the definition of the h(·)-function (2.37) and the relationship in (2.36), we can
further simplify the calculations for the four dimensional D-vine, in detail the conditional
distribution functions. To simplify the notation in this example, we omit the correspond-
ing parameters of the copula.

F (x1|x2, x3) =

∫ x1

−∞
c13|2(F (u1|x2), F (x3|x2)) · f(u1|x2)du1

=

∫ x1

−∞

∂2C13|2(F (u1|x2), F (x3|x2))

∂F (u1|x2)∂F (x3|x2)
· ∂F (u1|x2)

∂u1

du1

=
∂

∂F (x3|x2)

∫ x1

−∞

∂C13|2(F (u1|x2), F (x3|x2))

∂F (u1|x2)
· ∂F (u1|x2)

∂u1

du1

=
∂

∂F (x3|x2)

∫ x1

−∞

∂C13|2(F (u1|x2), F (x3|x2))

∂u1

du1

=
∂

∂F (x3|x2)
C13|2(F (x1|x2), F (x3|x2))

=
∂

∂η
C13|2(F (x1|x2), η)|η=F (x3|x2)

(2.37)
= h(F (x1|x2), F (x3|x2))

and recursively

= h(h(F (x1), F (x2)), h(F (x3), F (x2))). (2.43)

So we get for example

c14|23(F (x1|x2, x3), F (x4|x2, x3)) = c14|23(h(h(F (x1), F (x2)), h(F (x3), F (x2))),

h(h(F (x4), F (x3)), h(F (x2), F (x3))).
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2.9 Sampling and Inference from a D-Vine

This section will follow the exposition of Aas et al. (2007) very closely. At first, we
will denote the general algorithm for sampling n dependent variables from a D-vine with
a marginal standard normal distribution using probability integral transform 2.2. We
sample first w1, . . . , wn independent uniform variables on [0, 1].Then, we have to set

a1 = w1

a2 = F−1(w2|a1)

a3 = F−1(w3|a2, a1)

. . . = . . .

an = F−1(wn|an−1, . . . , a1).

To get the marginal standard normal distribution, we have to calculate

yi = Φ−1(ai), i = 1, . . . , n

where Φ−1(·) is the inverse of the standard normal distribution function.
To calculate the conditional distribution function F (xj|x1, . . . , xj−1) for each j, we use
the definition of the h(·)-function in (2.37) and the relationship in (2.36) recursively. We
always choose for the D-vine

F (xj|x1, . . . , xj−1) =
∂Cj,1|2,...,j−1(F (xj|x2, . . . , xj−1), F (x1|x2, . . . , xj−1))

∂F (x1|x2, . . . , xj−1)
.

In total, we have to compute (n − 2)2 conditional distribution functions for simulat-
ing n variables of a D-vine. θj,i denotes the set of parameters of the copula density
ci,i+j|i+1,...,i+j−1(·, ·) (cf. Figure 2.5).

The simulation algorithm for a 4-dimensional D-vine with standard normal margins
follows the D-vine decomposition described in (2.42):

f(x1, x2, x3, x4) = f2(x2) · f(x3|x2) · f(x1|x2, x3) · f(x4|x1, x2, x3).

So we can simulate the four random variables in the following way using the probability
integral transform 2.2 and the iterative application of the h(·)-function like in (2.43):
Sample four random variables w1, . . . , w4 independent uniform on [0, 1]. Then set

v0,2 := w2

and it follows

F (v0,3|v0,2) = h(v0,3, v0,2; ν23, ρ23︸ ︷︷ ︸
=:θ12

)

⇒ v0,3 := h−1(w3, v0,2; θ12)
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and

F (v0,1|v0,2, v0,3) = h
[
h(v0,1, v0,2; ν12, ρ12︸ ︷︷ ︸

=:θ11

), h(v0,3, v0,2; θ12)︸ ︷︷ ︸
=:v1,2

, ν13|2, ρ13|2︸ ︷︷ ︸
=:θ21

]
⇒ h(v0,1, v0,2; θ11) = h−1(w1, v1,2; θ21)︸ ︷︷ ︸

=:vhelp
0,1

⇒ v0,1 := h−1(vhelp
0,1 , v0,2; θ11)

and

F (v0,4|v0,1, v0,2, v0,3) = h(F (v0,4|v0,2, v0,3), F (v0,1|v0,2, v0,3); ν14|23, ρ14|23︸ ︷︷ ︸
=:θ31

) =

= h
{
h
[
h(v0,4, v0,3; ν34, ρ34︸ ︷︷ ︸

θ13

), h(v0,2, v0,3; θ12)︸ ︷︷ ︸
=:v1,3

; ν24|3, ρ24|3︸ ︷︷ ︸
θ22

]
,

h
[
h(v0,1, v0,2; θ11)︸ ︷︷ ︸

=:v1,1

, h(v0,3; v0,2, θ12)︸ ︷︷ ︸
=v1,2

; θ21

]
; θ31

}
⇒ h

[
h(v0,4, v0,3; θ13), v1,3; θ22

]
= h−1

[
w4, h(v1,1, v1,2; θ21)︸ ︷︷ ︸

=:v2,1

; θ31

]
⇒ v0,4 = h−1

{
h−1
[
h−1(w4, v2,1; θ31)︸ ︷︷ ︸

=:v
help1
0,4

, v1,3; θ22

]
, v0,3; θ13

}
= h−1

[
h−1(v

help1
0,4 , v1,3; θ22)︸ ︷︷ ︸
=:v

help2
0,4

, v0,3; θ13

]
= h−1(v

help2
0,4 , v0,3; θ13)

and

xi = Φ−1(v0,i), i = 1, . . . , 4.

Now we can denote the sampling algorithm 2.2.

We are particularly interested in doing inference for the D-vine as we want to estimate
the parameters. We assume that we observe n variables at T time points. We denote the
dataset by xi = (xi1, . . . , xiT ), i = 1, . . . n. Then, we assume for simplicity, without loss
of generality, that the T observations of each variable are independent over time. In the
following chapters we will also apply univariate marginal time-series models and estimate
all parameters in one step. Furthermore we suppose, that all margins are standard normal.



CHAPTER 2. DEFINITIONS AND BASIC PROPERTIES 38

Algorithm 2.2 Simulation algorithm from four dimensional D-vine with standard normal
margins. Generates one sample x1, . . . , x4 from the D-vine.

Sample w1, . . . , w4 independent uniform on [0, 1].
v0,2 = w2

v0,3 = h−1(w3, v0,2; θ1,2)
v1,2 = h(v0,3, v0,2; θ1,2

vhelp
0,1 = h−1(w1, v1,2; θ2,1)

v0,1 = h−1
(
vhelp

0,1 , v0,2; θ1,1

)
v1,1 = h(v0,1, v0,2; θ1,1)
v1,3 = h(v0,2, v0,3; θ1,2)
v2,1 = h(v1,1, v1,2; θ2,1)

v
help1
0,4 = h−1(w4, v2,1; θ3,1)

v
help2
0,4 = h−1(v

help1
0,4 , v1,3; θ2,2)

v0,4 = h−1
(
v

help2
0,4 , v0,3; θ1,3

)
xi = Φ−1(v0,i), i = 1, . . . , 4.

The log-likelihood is given by

ll =
n∑
j=1

T∑
t=1

log[ϕ(xjt)]+

+
n−1∑
j=1

n−j∑
i=1

T∑
t=1

log
[
ci,i+j|i+1,...,i+j−1 {F (xi,t|xi+1,t, . . . xi+j−1,t), F (xi+j,t|xi+1,t, . . . xi+j−1,t)}

]
.

where ϕ(·) is the probability density function of the standard normal distribution.

When we apply the h(·)-function or a cumulative distribution function or a probability
density function to a vector (i.e. a bold-typed symbol) in the following algorithm, it is
meant that this is done component by component.
θj,i denotes the set of parameters of the copula density ci,i+j|i+1,...,i+j−1(·, ·) (cf. Figure 2.5).

So we can denote the log-likelihood for the four dimensional D-vine with standard
normal margins:

ll = log(ϕ(x1)) + log(ϕ(x2)) + log(ϕ(x3)) + log(ϕ(x4))+

+ log(c12(Φ(x1),Φ(x2))) + log(c23(Φ(x2),Φ(x3))) + log(c34(Φ(x3),Φ(x4)))+

+ log(c13|2(h(Φ(x1),Φ(x2); θ11), h(Φ(x3),Φ(x2); θ12)))+

+ log(c24|3(h(Φ(x2),Φ(x3); θ12), h(Φ(x4),Φ(x3); θ13)))+

+ log(c14|23(h(h(Φ(x1),Φ(x2); θ11), h(Φ(x3),Φ(x2); θ12); θ21),

h(h(Φ(x4),Φ(x3); θ13), h(Φ(x2),Φ(x3); θ12); θ31))). (2.44)
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To simplify the notation, we denote

L(y, z, θ) =
T∑
t=1

log[c(yt, zt, θ)]

where c(u, v, θ) is the density of the bivariate copula with parameters θ.
This yields the following algorithm 2.3.

Algorithm 2.3 Calculation of Log-Likelihood for 4-dim. D-Vine

1: ll = 0
2: FOR i = 1, . . . , 4 DO
3: ll = ll + ϕ(xi) {Log-Likelihood of the marginal densities}
4: v0,i = Φ(xi) {Preparation of the values for the D-vine}
5: END FOR
6: FOR i = 1, . . . , 3 DO
7: ll = ll + L(v0,i,v0,i+1, θ1i) {Log-Likelihood of the first tree}
8: END FOR
9: v1,1 = h(v0,1,v0,2; θ1,1) {Preparing the data for the second tree}

10: v1,2 = h(v0,3,v0,2; θ1,2)
11: v1,3 = h(v0,2,v0,3; θ1,2)
12: v1,4 = h(v0,4,v0,3; θ1,3)
13: FOR i = 1, 2 DO
14: ll = ll + L(v1,2i−1,v1,2i, θ2i) {Log-Likelihood of the second tree}
15: END FOR
16: v2,1 = h(v1,1,v1,2; θ2,1) {Preparing the data for the third tree}
17: v2,2 = h(v1,4,v1,3; θ2,2)
18: ll = ll + L(v2,1,v2,2, θ31) {Log-Likelihood of the third tree}

For inference, the D-vine log-likelihood must be numerically optimized. Starting values
needed in this maximization may be determined as follows (here for 4 dimensions):

(a) Estimate the parameters of the copulas in tree 1 from the original data.

(b) Compute observations (i.e. conditional distribution functions) for tree 2 using the
copula parameters from tree 1 and the h(·)-function (cf. Algorithmus 2.3 lines 9 -
12).

(c) Estimate the parameters of the copulas in tree 2 using the observations from (b).

(d) Compute observations for tree 3 using the copula parameters at level 2 and the
h(·)-function (cf. Algorithmus 2.3 lines 16/17).

(e) Estimate the parameters of the copulas in tree 3 using the observations from (d).

We can generalize this easily for higher dimensions. Each estimation is easy to perform
since the data set is only two dimensional.
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2.10 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methodology is a very useful tool to simplify dif-
ficult calculations. It was often very hard to determine the value of high-dimensional
integrals and we had to develop special software. MCMC helps to solve a big range of
complex problems with a quite simple approach.
MCMC uses mainly Monte Carlo integration with Markov Chains. As we will see in the
following, Monte Carlo integration calculates complicated integrals by simply averaging
over samples drawn from the required distribution. Following the law of large numbers,
this average converges to the real value. Markov Chain Monte Carlo uses a long running
cleverly constructed Markov chain for drawing these samples.
All algorithms of this technique with all its different characteristics, including the Gibbs
sampler, are based on the seminal works of Metropolis et al. (1953) and Hastings (1970).

The presentation in this chapter follows mainly Gilks, Richardson, and Spiegelhalter
(1996) and Gschlößl (2006).

As we have seen in Theorem 2.1, we can denote the posterior distribution of an un-
known parameter θ by

p(θ|x) =
p(x|θ)π(θ)∫
p(x|θ)π(θ)dθ

where x is the observed data and π(·) is the prior distribution of θ.
While doing Bayesian inference, we are interested in special features of the posterior
distribution like moments or quantiles. We can express all these quantities in terms of
posterior expectations of functions of θ. We can calculate this expectation of f(θ) as

E [f(θ)|x] =

∫
f(θ)π(θ)p(x|θ)dθ∫
p(x|θ)π(θ)dθ

but the normalizing constant in the denominator is often unknown and cannot be easily
evaluated.

In this context, we can apply Monte Carlo integration. We want to calculate the
expectation

E [f(X)] =

∫
f(x)π(x)dx∫
π(x)dx

(2.45)

where f(·) is the function of interest, X is a vector of random variables with distribution
π(·). Here it is also possible that the distribution of X is known only up to a normalizing
constant, i.e.

∫
π(x)dx is unknown.

We can evaluate (2.45) by drawing samples {Xt, t = 1, . . . , n} from π(·) and then approx-
imating

E [f(X)] ≈ 1

n

n∑
t=1

f(Xt).
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We can apply the law of large numbers when the samples {Xt} are independent and so
we ensure the convergence of the approximation by increasing the sample size n which is
manually chosen.
But in general, it is often impossible to draw samples {Xt} independently from π(·) since
π(·) can be quite non-standard.

In this setting we can make use of the Markov Chain Monte Carlo technique. We con-
struct a Markov chain having π(·) as its stationary distribution. After a sufficiently long
burn-in period we can suppose that the sample is drawn from the stationary distribution.
So we get the estimator

f̄ =
1

n−m

n∑
t=m+1

f(Xt) (2.46)

where the first m samples are discarded as burn-in. This estimator is called an ergodic
average and the necessary convergence is ensured by the ergodic theorem.

The construction of such a Markov chain with stationary distribution π(·) was first
introduced by Hastings (1970) generalizing the method of Metropolis et al. (1953). The
so-called Metropolis-Hastings algorithm works in the following way (after the description
of Gilks, Richardson, and Spiegelhalter (1996)): At each time t, the next state of the
Markov chain Xt+1 is determined by first sampling a candidate point Y from a proposal
density q(·|Xt). Y is then accepted with probability α(Xt, Y ) where

α(X, Y ) = min

(
1,
π(Y )q(X|Y )

π(X)q(Y |X)

)
. (2.47)

If the candidate is rejected, the chain stays in its former state, i.e. Xt+1 = Xt. Otherwise,
if Y is accepted, the candidate becomes the next state, i.e. Xt+1 = Y .

Algorithm 2.4 Metropolis Hastings-Algorithm with N steps

1: Initialize X0

2: FOR t = 0, . . . , N DO
3: Sample a point Y from q(·|Xt)
4: Sample a Uniform(0,1) random variable U
5: IF U ≤ α(Xt, Y ) THEN
6: Set Xt+1 = Y
7: ELSE
8: Set Xt+1 = Xt

9: END IF
10: END FOR

It is very remarkable that it does not matter which form the proposal density q(·|·)
has. The stationary distribution of the chain will always be π(·). For formal proof of this
statement and the convergence of the Markov chain, see Gilks, Richardson, and Spiegel-
halter (1996, p. 7f).
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Furthermore, it is also possible to do single-component Metropolis-Hastings steps. We do
not have to update all components of X en bloc but we can update each component in
a single step while keeping the others constant (regardless if they are already updated
or not). So, if X is d-dimensional, one complete Metropolis-Hastings step consists of d
separate single-components Metropolis-Hastings steps.

The proposal density is very important for a fast convergence of the MCMC. One
possibility to chose a good proposal density is the random-walk Metropolis algorithm for
which q(Y |X) = q(|X − Y |). So, the acceptance probability (2.47) reduces to

α(X, Y ) = min

(
1,
π(Y )

π(X)

)
.

It is a special case of the Metropolis algorithm introduced by Metropolis et al. (1953).
In this case you often choose a normal distribution centered around the current state X.
You have to tune its variance to achieve a reasonable acceptance rate.

Another possibility is the independence sampler introduced by Tierney in 1994 (cf.
Tierney (1994)). Its proposal density q(Y |X) = q(Y ) does not depend on X. Therefore,
the acceptance probability (2.47) can be written as

α(X, Y ) = min

(
1,
w(Y )

w(X)

)
, (2.48)

where

w(X) =
π(X)

q(X)
.

For an effective operation of the independence sampler, the proposal q(·) should be a
good approximation to the target density with slightly heavier tails. An independence
proposal which is often chosen and which we will choose in our simulation studies in the
following chapters is a normal distribution centered around the mode of π(·) and with its
covariance matrix somewhat greater than the inverse Hessian matrix[

−d
2 log π(x)

dx′dx

]−1

evaluated at the mode (for calculations cf. Gamerman and Lopes (2006, p. 83)). The
mode has to be calculated in each step using a numerical optimization routine like Newton-
Raphson.
So we get the following algorithm for the independence MH-Sampler. For simplicity, it is
written down for only one component, but we can generalize it easily.
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Algorithm 2.5 Independence Metropolis-Hastings sampler for N steps

1: Initialize X0

2: FOR t = 0, . . . , N DO
3: Calculate the mode θmode and the inverse Hessian at the mode −H(θmode)

−1 of

the target distribution π(·), where H(θ) := ∂2 log π(θ)
∂θ2

4: Sample a candidate value Y ∼ N (θmode,−H(θmode)
−1)

5: Sample a Uniform(0,1) random variable U

6: IF U ≤ α(Xt, Y ) = min
(

1, π(Y )q(Xt)
q(Y )π(Xt)

)
THEN

7: Set Xt+1 = Y
8: ELSE
9: Set Xt+1 = Xt

10: END IF
11: END FOR

After having performed a simulation, we are interested in its results. At first, we look
at the trace plot, i.e. a plot with each value of the chain connected to the next one, and at
the autocorrelation function of the chain. If the trace plot switches regularly around the
estimated value and the autocorrelation function tails off, the chain has a good mixing.
Then we subtract the burn-in period. To further increase the independence between the
single values of the Markov chain for one parameter, we rare the rest of the chain by
taking only every 20th value. We can evaluate the created Markov chain by calculating
the mean and the mode for each parameter. Furthermore, we can determine posterior
intervals by taking the respective value of the order statistic. We care about the 2.5%,
the 5%, the 50%, the 95% and the 97.5% quantile of the posterior density. Hence, we can
take as an estimator the appropriate value of the order statistics of the simulated Markov
chain. If, for example, we have simulated 10 000 steps, we assume a burn-in period of
1000 steps. So we disregard the first 1000 values of the chain. Then we rare the chain
by taking only every 20th value. So the remaining statistics consits of 450 values. The
estimator for the 2.5% quantile is the 11th value of the ordered remaining values. We
also estimate the density of each parameter with a Gaussian kernel density estimator and
generate a trace plot of the rared chain. Additionally, we plot the histogramm of the
observed loglikelihood for each step of the chain and we estimate its density.

2.11 Estimation Procedures

Since we use a lot of different methods for estimating the unknown parameters, we denote
and clarify these different procedures in the following table. Furthermore, we define the
corresponding abbreviations for a later use in the analysis and comparison of our results.
A parametric transformation means that we use the estimated time series parameter to
transform the observed time series to the unit cube using the transformation (4.1) and
the standard normal cumulative distribution function Φ(·) (cf. Section 2.2.2). In con-
trast, a nonparametric transformation to the unit cube is done by applying the empirical
cumulative distribution function on the residuals, i.e. the difference of the observed to
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the fitted values.

method estimation of the
marginal parameters

estimation of the copula parameters

joint MCMC
(JMCMC)

jointly estimated jointly estimated

two-step
parametric MLE

MLE

• parametric transformation of the
residuals to unit cube
• copula parameters estimated by

MLE using starting values deter-
mined by the algorithm denoted at
the end of Section 2.9

Notation:
TSP-MLE

Notation:
marg. MLE

Notation: start := starting values,
C-MLE := copula MLE estimation

marginal MLE,
nonparametric
MCMC copula

MLE

• nonparametric transformation of
the residuals to unit cube
• MCMC estimation of copula pa-

rameters

Notation:
MMLE-CMCMC

Notation:
marg. MLE

Notation:
C-MCMC: copula MCMC estimation

two-step
nonparametric
MLE

MLE

• nonparametric transformation of
the residuals to unit cube
• copula parameters estimated by

MLE using starting values start
(C-MLE)

Notation:
TSNP-MLE

Notation:
marg. MLE

Notation: start := starting values,
C-MLE := copula MLE estimation

Table 2.1: Overview of the different applied estimation methods

The algorithm for the C-MCMC method was implemented by Aleksey Min whereas
the C-MLE is calculated with the R-package ’copulaGOF’ of Daniel Berg and Henrik
Bakken. The marginal MLE is evaluated with the function ’arima’ implemented in the
’stats’-package of R.



Chapter 3

Electricity Load in Australia

3.1 Liberalization in Electricity Markets

The presentation of the theory of electricity markets follows mainly Weron (2006).
For a long time, electricity markets were seen as natural monopolies where no markets
could be established. Electricity was regarded as a vertically integrated monopoly struc-
ture consisting of generation, transport and distribution. But during the last two decades,
there has been a change in this way of thinking. According to the successful liberalization
in other industrial branches, different countries have started to liberalize their electricity
market and to establish electricity market exchanges. This has been possible due to the
technical evolution, especially in generation technique and transmission. These countries
hope to gain more efficiency, to stimulate the technical innovation and to lead to efficient
investment by opening their electricity markets. This process was started by Chile in 1982
and other countries like Great Britain and the Nordic European countries soon followed.
In Australia, power markets in Victoria and New South Wales opened in 1994 and the
Australian National Electricity Market (NEM) began operating in 1998.

The liberalization of the electricity markets is very controversial. One benefit often
noted is the decrease in electricity prices and a more efficient use of electricity assets. But
due to the reversal fact that many states increased their taxes on electricity, this trend is
not apparent to households and small-sized firms. In former times, during the monopoly,
the prices paid by these little customers were often subsidized. But during the monopoly,
there was a tendency to create substantial over-capacities. This trend has in fact now
been reduced.
Very controversial is also the question if the liberalization of the electricity markets cre-
ates enough incentives to invest substantially into the development of new generation
and transmission capacities and techniques. Although long-term capital-intensive invest-
ments with low marginal costs would be advisable, many market participants invest only
in generation plants realizable in short terms. This comes from the fact that investment
decisions are no longer centrally planed, but are an outcome of the market participants.
If the companies expect low electricity prices, they can further postpone necessary in-
vestments for supporting the infrastructure. So, it is questionable if these markets should
include capacity payments (payment for the reliability of the generator, i.e. its availabil-
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ity) like in some South American countries and in Spain, if they should organize capacity
markets (like in the northeastern part of the United States) or if its enough to keep these
“energy-only” markets (like in Australia or New Zealand).
In these energy-only or one-price-only markets, the compensation for both variable and
fix costs is included in the wholesale electricity price. A consequence of this market the-
ory are price spikes, i.e. abrupt and generally unanticipated large changes in spot prices
which should send signals to the companies that new generation facilities are needed.
But if these spikes are too rare, it is possible that further incentives like capacity pay-
ments are necessary as incentives for the companies to keep the electricity generation and
transmission in a good state.

3.2 Electricity Market in Australia

In former times, the Australian electricity supply was organized as a vertically integrated
monopoly with almost no trade or connection between different states. The liberalization
started with the opening of the National Electricity Market (NEM) in December 1998.
The first members were Victoria, Queensland, New South Wales, the Australian Capital
Territory and then South Australia and Tasmania joined in 2005. It is a wholesale market
for electricity to supply retailers and end-users.
The connection between the electricity producers and electricity consumers is facili-
tated by the establishment of the National Electricity Market Management Company
(NEMMCO). This company manages a pool where the output of all generators is aggre-
gated and scheduled to meet the forecasted demand.
Wholesale trading is done as a real-time market where supply and demand are instanta-
neously matched through a centrally dispatched process. As the offers are submitted by
the generators every five minutes, NEMMCO determines the necessary plants and they
are dispatched into production. So the market clearing price is determined every five
minutes and is averaged for each trading interval (30 minutes).
Since the Australian electricity market is an energy-only market, there are a lot of price
spikes. But the experience shows that these price spikes are enough incentives for the
electricity companies to build new generation plants, for example as seen in South Aus-
tralia in the period 1998 - 2003 where the generation capacities increased heavily after a
series of price spikes to meet these peak demands.

3.3 Modeling Daily Load Data

Electricity demand clearly shows seasonal fluctuations, mostly due to changing climate
conditions like temperature or the number of daylight hours.
We follow the classical technique of seasonal decomposition by thinking of a trend com-
ponent Tt, a seasonal component St and the remaining stochastic component Yt. This
method is known as Census I method. So we can write the observed daily load data
{x1, . . . , xn} as

xt = Tt + St + yt, t = 1, . . . , n.
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We can model this data by a broad range of different approaches (following Weron (2006)
who uses techniques of Brockwell and Davis (1991)).

3.3.1 Differencing

Differencing helps to remove seasonal components and trends. It eliminates some of the
autocorrelations and helps to make the time series stationary. The simple idea behind
it is to consider the differences between successive pairs of observations with appropriate
legs.
Since we have a clearly weekly seasonal component in daily load data, we remove it by
generating the transformed series

zt = xt − xt−7 = (1−B7)xt, t = 8, . . . , n, (3.1)

where B is the backward shift operator (2.11). All seasonal components of period 7 are
eliminated by this transformation, but it is possible that a mean-reverting relationship
(i.e. a negative autocorrelation at lag 7) can be observed. However, this can be an artifact
of differencing and therefore spurious since a white noise differenced at lag 7 exhibits a
similar ACF.

Another possibility is the use of differencing combined with a moving average-type
smoothing:

zt = xt −

(
1

N

N∑
i=1

xt−i·7 +
1

7

7∑
j=1

xt−j −
1

7N

N∑
i=1

7∑
j=1

xt−i·7−j

)
. (3.2)

3.3.2 Median Week

The idea is to calculate an ’average’ week of the data which is then subtracted. Therefore,
we calculate the median over all observations from one weekday ŵk, i.e. the median over
all observations on Mondays, the median over all observations on Tuesdays, etc.:

ŵk = Median({xk, xk+7, xk+14, . . . , xk+[n−k]}), k = 1, . . . , 7

where [·] is the floor function (aka as integral part) of the number and ŵk = ŵk−7 for
k > 7. We get the ’average’ week which we subtract from the observed data, i.e. the
’average’ Monday value is subtracted from a Monday observation etc.:

zt = xt − ŵt
So we remove the seasonal component and get the stochastic component.

3.3.3 Moving Average Technique

The moving average technique also helps to remove the weekly seasonality. To eliminate
the weekly component and to dampen the noise, we first estimate the trend by applying
a moving average filter:

m̂t :=
1

7
(xt−3 + . . .+ xt+3), t = 4, . . . , n− 3.
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Now, we can estimate the seasonal component. Hence, we calculate the average wk of the
deviations {(xk+7j − m̂k+7j), 3 < k + 7j ≤ n− 3} for each k = 1, . . . 7,

wk :=
1

[(n− 3− k)/7] + 1− i

[(n−3−k)/7]∑
j=i

(xk+7j − m̂k+7j), k = 1, . . . , 7; i :=

{
1 if k ≤ 3

0 if k > 3

where [·] denotes the floor function (aka as integral part) of the number. Then we estimate
the seasonal component sk as:

ŝk := wk −
1

7

7∑
i=1

wi, k = 1, . . . , 7,

where ŝk = ŝk−7 for k > 7.
The deseasonalized data is then defined as yt = xt − m̂t − ŝt for t = 3, . . . , n− 3.

3.3.4 Sinusoid Fitting

One possibility to remove the annual seasonality and a linear trend is the fitting of a
sinusoid of an one-year period and of a sinusoid with a weekly period to the data:

St = A1 sin

(
2π

365
(t+B1)

)
+ A2 sin

(
2π

7
(t+B2)

)
+ C · t.

The denominator 365 stands for the number of observations in one year whereas we have 7
observations per week. This technique comes from the spectral (or Fourier) decomposition
of a signal.

3.3.5 Rolling Volatility Technique

The rolling volatility technique was introduced by Weron as an alternative to estimate
the annual seasonality. First, we have to calculate a vector {r1, . . . , rn} of returns, i.e.
log-changes of the observed time series, of length n = m ·T being a multiple of the annual
period T = 365 days. Then we have to do the following steps:

(i) calculate a 25-day rolling volatility:

vt =

√√√√ 1

25

24∑
i=0

(Rt+i − R̄t)2, where R̄t =
1

25

24∑
i=0

Rt+i,

for t = 1, . . . , n and a vector of returns {Rt} such that R1 = . . . = R12 = r1, R12+t =
rt for t = 1, . . . , n, and Rn+12 = . . . = Rn+24 = rn;

(ii) rescale the returns by dividing them by the 25-day rolling volatility,

(iii) subtract the estimated mean.
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3.4 Observed Data

The used load data consists of four time series of daily observations dating from May 16th,
2005 to June 30th, 2008, in total 1142 data points per time series. It describes the aver-
age daily load demand in Gigawatt (GW) for the regions Queensland, New South Wales,
Victoria and South Australia calculated by averaging the half-hourly observed data for
one day. This data is available at www.nemmco.com.au.

At first, we have a look at the time series plots.

Figure 3.1: Time series plots of the observed data in the four different states

Very interesting for remarking trends or seasonal behavior are plots of the sample
autocorrelation function, of the sample partial autocorrelation function and of the peri-
odogram (cf. (2.16)). The sample autocorrelation function (ACF) is defined analogously
to the autocorrelation function (2.8) as

ρ̂(h) =
γ̂(h)

γ̂(0)

where γ̂(·) is the sample autocovariance function given by

γ̂(h) =
1

n

n−h∑
t=1

(yt+h − ȳ)(yt − ȳ),
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and ȳ = 1/n
∑n

t=1 yt is the sample mean. The sample partial autocorrelation function
(PACF) is the function α(·) defined by

α̂(0) = 1 and α̂(h) = φ̂hh, h ≥ 1,

where φhh is the last component of

φ̂h = Γ̂−1
h γ̂h,

Γ̂h := [γ̂(i− j)]hi,j=1 is the covariance matrix, and γ̂h := (γ̂(1), . . . , γ̂(h))′.
We can remark dependencies by plotting the sample autocorrelation function and the
sample partial autocorrelation function against the time lags h = 0, 1, . . . n− 1.

Figure 3.2: Sample autocorrelation function for the four different states

We can clearly see in the plot of the sample autocorrelation function (Figure 3.2) that
there is a large dependency at lag 7 and its multiples (14, 21 etc). Additionally, we remark
in the plot of the sample partial autocorrelation function (Figure 3.3) that there is a large
dependency of lag one (besides other dependencies).

The plot of the periodogram (Figure 3.4) supports the theory of a weekly cycle
since there is an obvious peak at the frequency 0.14 which stands for a cycle of 7 days
(T = 1/0.1428 ≈ 7). The smaller spikes at 0.28 and 0.43 indicate periods of 7/2 and 7/3,
respectively, and they are called the harmonics (i.e. multiples of the 7 day frequency).
They are a hint that the 7 day periodicity is not sinusoidal (following Weron (2006)).
Furthermore, we can see a large spike at about 0.0027 which is a sign for a yearly cycle
(T = 1/0.0027 ≈ 365). This peak is the maximum in the plots of the periodogram for
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Figure 3.3: Sample partial autocorrelation function for the four different states

Figure 3.4: Periodogram for the four different states
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Queensland and New South Wales whereas the maximum for Victoria and South Aus-
tralia is at the frequency 0.14.

3.5 Preprocessing of the Observed Data

Now we want to ’preprocess’ the data to remove the trend and the weekly and annual
seasonality. Therefore, we use the methods described in Section 3.3.
Since we want to fit an AR(p), MA(q) or ARMA(p,q)-process to the preprocessed data,
we have to know how the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) of these processes behave. Following the calculations in Brockwell and
Davis (1991), we get the Table 3.1.

AR(p) MA(q) ARMA(p, q), p, q > 0

ACF Tails off Cuts off after lag q Tails off
PACF Cuts off after lag p Tails off Tails off

Table 3.1: General Behavior of the ACF and PACF for ARMA-models

As an example, we show in Figure 3.5 a plot of the time series, of the sample autocor-
relation function, of the sample partial autocorrelation function and of the periodogram
of a simulated AR(1) time series with 1135 values where the autoregressive coefficient is
0.65 and the variance of the Gaussian white noise is 0.5.

We try the following methods to preprocess the data:

Nr. Description of the Method

1 Difference the data at lag 7 (cf. (3.1))
2 Differencing at lag 7 with moving average-type smoothing (cf. (3.2))
3 Subtracting the median week (cf. Section 3.3.2)
4 Applying the moving average technique (cf. Section 3.3.3)
5 Fitting a Sinusoid for the yearly and weekly cycle with a linear trend

(cf. Section 3.3.4)
6 Applying the rolling volatility technique (cf. Section 3.3.5)
7 Applying first the rolling volatility technique and afterwards fitting a sinusoid
8 Applying first the rolling volatility technique and afterwards fitting a MA(7)

where only the seventh moving average coefficient is not equal to zero, i.e.
Xt = εt + θ7εt−7, θ7 6= 0, {εt} ∼ WN(0, σ2).

Table 3.2: 8 Methods for Preprocessing the Data

After performing all these 8 methods for preprocessing, we get the plots of the residual
time series (cf. Figures 3.6 and 3.7), of the sample autocorrelation function (cf. Figures



CHAPTER 3. ELECTRICITY LOAD IN AUSTRALIA 53

Figure 3.5: Plot of the time series, of the sample ACF, of the sample PACF and of the
periodogram of a simulated AR(1)
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3.8 and 3.9), of the sample partial autocorrelation function (cf. Figures 3.10 and 3.11)
and of the periodogram (cf. Figures 3.12 and 3.13) of the residuals.

The results of the first two methods look quite good. However, the plotted time series
has some clusters with bigger volatility and can therefore not be modeled with an AR(1)
process. The ACF of the third method hardly tails off and this method will hence be
disregarded. In the periodogram of the fourth method, we remark a heavy spike at 0.28
which is a clear hint for a hidden cycle of 3.5 days. The ACF of the fifth method does
not tail off as well as its PACF does not cut off after the first lag. The time series plots
of the sixth and the seventh method look good, but the ACF does not tail off and the
PACF does not cut off. Comparing the plots of the simulated AR(1) (cf. Figure 3.5), we
see that the plots of the eighth method fit best. The ACF tails off in the right way and
the PACF cuts off after the first lag. The periodogram also looks very well.
So finally, we choose the preprocessing with the eighth method.

Furthermore, we want to test this data for stationarity or if there is a unit root. We
use the augmented Dickey-Fuller test (ADF) with lag order 1, a Phillips-Perron test (PP)
(both test for a unit root) and the KPSS test for stationarity (for details cf. Banerjee et al.
(1993) and Kwiatkowski et al. (1992)). The KPSS test has the null hypothesis ’K0: The
time series is stationary.’ versus the alternative ’K1: The time series is not stationary.’
and ADF and PP test have the null hypothesis ’H0: The time series has a unit root,
i.e. the autoregressive coefficient has an absolute value of 1.’ against the alternative ’H1:
The absolute value of the autoregressive coefficient is smaller than 1.’ The tests show the
results described in Table 3.3.

QLD NSW VIC SA

stat. p-value stat. p-value stat. p-value stat. p-value

0.0671 > 0.1 0.126 > 0.1 0.099 > 0.1 0.065 > 0.1
KPSS

accept K0 accept K0 accept K0 accept K0

-12.74 < 0.01 -13.70 < 0.01 -15.11 < 0.01 -15.04 < 0.01
ADF

reject H0 reject H0 reject H0 reject H0

-334.31 < 0.01 -347.94 < 0.01 -413.37 < 0.01 -421.71 < 0.01
PP

reject H0 reject H0 reject H0 reject H0

Table 3.3: Tests for Stationarity and Unit Root for the preprocessed time series using
Method 8

For each of the preprocessed time series, we cannot reject the KPSS test for station-
arity. In addition, we have to reject the ADF and PP test for unit roots. So, we assume
stationarity for all four time series. Therefore, we will model them marginally with an
AR(1) process.
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Figure 3.6: Time series plots of the residuals for the methods 1 - 4
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Figure 3.7: Time series plots of the residuals for the methods 5 - 8
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Figure 3.8: Plots of the sample ACF of the residuals for the methods 1 - 4
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Figure 3.9: Plots of the sample ACF of the residuals for the methods 5 - 8
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Figure 3.10: Plots of the sample PACF of the residuals for the methods 1 - 4
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Figure 3.11: Plots of the sample PACF of the residuals for the methods 5 - 8
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Figure 3.12: Plots of the Periodogram of the residuals for the methods 1 - 4
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Figure 3.13: Plots of the Periodogram of the residuals for the methods 5 - 8



Chapter 4

Two-Dimensional Modeling

4.1 Basic Procedure

In this first step, we want to concentrate on only two dimensions. We estimate jointly
the marginal time series and the copula parameters in one MCMC procedure. Since we
have seen that there is a good fit after the preprocessing in Section 3.4, we want to model
the marginal time series with an AR(1)-model (cf. (2.12)). Additionally, we describe the
dependency with a t-Copula. So, we want to estimate jointly 6 parameters, two for each
AR(1)-model and two for the t-Copula.

Let us first denote the marginal time series model. We have two AR(1)-processes with
a Gaussian white noise error term denoted by

Y1t = γ1 · Y1(t−1) + ε1t t = 1, . . . , T, ε1t ∼ N (0, σ2
1) i.i.d.

Y10 ∼ N
(

0,
σ2

1

1− γ2
1

)
,
∣∣γ1

∣∣ < 1

and

Y2t = γ2 · Y2(t−1) + ε2t t = 1, . . . , T, ε2t ∼ N (0, σ2
2) i.i.d.

Y20 ∼ N
(

0,
σ2

2

1− γ2
2

)
,
∣∣γ2

∣∣ < 1.

The condition |γi| < 1, i = 1, 2 ensures the stationarity of the time series which has a

stationary Gaussian distribution with mean 0 and variance
σ2
i

1−γ2
i
, i = 1, 2 (cf. (2.14) and

(2.15)). So, we have chosen the distribution of the starting values Yi0, i = 1, 2 in this way.

To simplify the notation, we define:

Y t :=
(
Y1t Y2t

)
, t = 1, . . . , T Yi :=

Yi1...
YiT

 , i = 1, 2.

63
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Now we can denote the joint distribution of the marginal time series using the calcu-
lations in (2.14) and (2.15):

Yi ∼ NT (0,Σi) with Σi =
σ2
i

1− γ2
i


1 γi γ2

i . . . γT−1
i

γi 1 γi γT−2
i

γ2
i γi

. . . . . .
...

...
. . . . . . γi

γT−1
i . . . γi 1

 , i = 1, 2.

The different marginal time series Yi are dependent. For getting marginal indepen-
dent observations, say Zi = (Zi1, . . . , ZiT )′, we transform Yi by multiplying with Σ

−1/2
i .

Therefore

Zi := Σ
−1/2
i Yi ∼ NT (0, IT ),

where IT is the identity matrix of size T.

Wise (1955) shows that Σ−1
i is a tridiagonal matrix of the following form

Σ−1
i = σ−2

i



1 −γi 0 . . . . . . 0
−γi 1 + γ2

i −γi 0

0 −γi 1 + γ2
i −γi

. . .
...

... 0
. . . . . . . . . 0

...
. . . −γi 1 + γ2

i −γi
0 . . . . . . 0 −γi 1


and

det Σ−1
i = σ−2T

i (1− γ2
i ).

Now we have to find the square root Σ
−1/2
i . We can do this by applying the Cholesky

Decomposition for positive definite matrices (cf. Algorithm 2.1) yielding

Σ
−1/2
i = σ−1

i



1 0 . . . . . . 0

−γi 1 0
...

0 −γi 1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 −γi
√

1− γ2
i


and

det Σ
−1/2
i = σ−Ti

√
1− γ2

i .
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So we have all necessary utilities for the transformation of Yi to Zi and vice versa
using the transformation theorem 2.4:

Yi = g(Zi) = Σ
1/2
i Zi

⇒ g−1(Yi) = Zi = Σ
−1/2
i Yi (4.1)

Dg−1(Yi) = Σ
−1/2
i

where Df is the Jacobian of f and

| detDg−1(Yi)| = | det Σ
−1/2
i | = σ−Ti

√
1− γ2

i .

We can denote the relationship between zit and yit for each single t:

zi1 =
1

σi
yi1

zi2 =
1

σi
(−γiyi1 + yi2)

zi3 =
1

σi
(−γiyi2 + yi3)

...

zi(T−1) =
1

σi
(−γiyi(T−2) + yi(T−1))

ziT =
1

σi
(−γiyi(T−1) +

√
1− γ2

i yiT ).

Our next step is the calculation of the joint likelihood of Y1 and Y2. Since each of
these time series is marginally dependent on t, we start with Z1 and Z2 and use the
marginal independence of these values to simplify the likelihood:

f(z1, z2|σ2
1, γ1, σ

2
2, γ2, ρ, ν) =

zt ind.
=

T∏
t=1

ft(z1t, z2t|σ2
1, γ1, σ

2
2, γ2, ρ, ν) =

T∏
t=1

ctν,ρ(Φ(z1t),Φ(z2t)) · ϕ(z1t) · ϕ(z2t).

Hereby denotes Φ the cumulative distribution function and ϕ is the probability density
function of the standard normal distribution. The dependency in-between both time se-
ries is modeled using the t-Copula (2.37).

We now transform these values to the observed ones by the transformation mentioned
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above (cf. (4.1)):

f(y1,y2|σ2
1, γ1, σ

2
2, γ2, ρ, ν) = (4.2)

(4.1)
= ctν,ρ(Φ(

1

σ1

y11),Φ(
1

σ2

y21)) · ϕ(
1

σ1

y11) · ϕ(
1

σ2

y21)·

· ctν,ρ(Φ(
1

σ1

(y12 − γ1y11)),Φ(
1

σ2

(y22 − γ2y21))) · ϕ(
1

σ1

(y12 − γ1y11)) · ϕ(
1

σ2

(y22 − γ2y21))·

· ctν,ρ(Φ(
1

σ1

(y13 − γ1y12)),Φ(
1

σ2

(y23 − γ2y22))) · ϕ(
1

σ1

(y13 − γ1y12)) · ϕ(
1

σ2

(y23 − γ2y22))·

· . . . ·

· ctν,ρ(Φ(
1

σ1

(
√

1− γ2
1y1T − γ1y1(T−1))),Φ(

1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1))))·

· ϕ(
1

σ1

(
√

1− γ2
1y1T − γ1y1(T−1))) · ϕ(

1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1)))·

· σ−T1

√
1− γ2

1 · σ−T2

√
1− γ2

2 .

For calculating the posterior distributions of the parameters (up to constants), we
need their prior distributions since

f(θ|x) ∝ f(x|θ)π(θ).

We want to do the update of the parameters during one MH-step sequentially. Therefore
we will use the independence proposal MH-algorithm (cf. (2.48) and Algorithm 2.5):
we will sample the values from a normal distribution with mean θmode of the posterior

distribution and with the inverse Hessian matrix [−∂2logf(x)
∂x2 ]−1 evaluated at the mode,

where f(θ) is the posterior distribution of the unknown parameter. We will determine
these values by an optimization routine by maximizing the posterior density.

To ease the simulation and the optimization for finding the mode of the time series
parameters, we transform them to (−∞,∞) by applying the logarithm transformation
for σ2

i and the Fisher-z-transformation for γi and ρ using the transformation theorem 2.4,
respectively.

si := log(σ2
i ) = 2 log σi (4.3)

⇒ σ2
i = exp(si) σi =

√
exp(si) = exp

(
1

2
si

)
∂σ2

i

∂si
= exp(si)

and

ai :=
1

2
log

(
1 + γi
1− γi

)
(4.4)

⇒ γi = tanh(ai)

∂γi
∂ai

=
1

cosh2(ai)
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and

r :=
1

2
log

(
1 + ρ

1− ρ

)
(4.5)

⇒ ρ = tanh(r)

∂ρ

∂r
=

1

cosh2(r)
.

All in all, we develop the posterior density (up to constants) first on the untransformed
level. The optimization of the posterior distribution of ρ, σi, i = 1, 2 and γi, i = 1, 2 for
finding the mode and the Hessian is performed on the transformed scale of (−∞,∞).
The optimization for µ is done on the original scale. Then, if necessary, we transform
back to the original scale. Now, we know the mode and the Hessian and we can run the
MH-algorithm on the untransformed level.

Using the results of Lewandowski, Kurowicka, and Joe (2007) and the calculations of
Joe (2006), if we suppose a Beta(1, 1) distribution on (-1,1) (cf. (2.2)) for ρ, the resulting
matrix of partial correlation is uniformly distributed over the space of correlation matrices.
Regarding ν, we suppose a half Cauchy (1,2)-prior (cf (2.3) and Ausin and Lopes (2008))
since Bauwens and Lubrano (1998) showed that the usual flat prior would lead to an
improper posterior distribution. For σ2

i we assume an Inverse Gamma prior with shape
parameter 1 and scale parameter 0.001 (cf. Congdon (2003) and (2.1)). We transform
the loglikelihood of γi first to ai using (4.4) and then, we assume a Normal(0,10) prior on
(−∞,∞). So:

• Prior for ρ: Beta(1, 1) on (-1,1) = Unif(1,1)
π(ρ) ∝ 1
then Fisher-z-transformation (4.5) of the posterior distribution to r on (−∞,∞)

• Prior for ν: half Cauchy(1,2)
π(ν) ∝ 1

1+( ν−1
2

)2 , ν ∈ (1,∞)

• Prior for γi: Fisher-z-transformation (4.4) of the loglikelihood to ai on (−∞,∞),
then N (0, 10)

π(ai) ∝ exp(− a2
i

200
)

• Prior for σ2
i : Inverse Gamma(1, 0.001)

then Logarithm-transformation (4.3) of the posterior distribution to si on (−∞,∞)

π(u) =
0.001

Γ(1)
u−2 exp

(
−0.001

u

)
(Congdon (2003, p. 15))

π(si)
(4.3)
=

0.001

Γ(1)
exp(−2si) exp

(
− 0.001

exp(si)

)
exp(si)

=
0.001

Γ(1)
exp(−si) exp(−0.001 exp(−si))

log π(si) ∝ −si − 0.001 exp(−si)
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These are all necessary prerequisites for applying the independence MH-algorithm. We

just have to calculate the mode θmode and the inverse of the Hessian [−∂2logf(x)
∂x2 ]−1 for each

posterior density using

f(θ|x) ∝ f(x|θ)π(θ). (4.6)

So, we get the following posterior densities on the transformed level up to proportion-
ality constants (included the corresponding Jacobians of the transformations) with the
likelihood f(y1,y2|ν, ρ, σ2

1, γ1, σ
2
2, γ2) denoted in (4.2):

f(ν|y1,y2, ρ, σ
2
1, γ1, σ

2
2, γ2) ∝ f(y1,y2|ν, ρ, σ2

1, γ1, σ
2
2, γ2) · 1

1 + (ν−1
2

)2
(4.7)

f(r|y1,y2, ν, σ
2
1, γ1, σ

2
2, γ2) ∝ f(y1,y2|ν, tanh(r), σ2

1, γ1, σ
2
2, γ2) · 1 · 1

cosh2(r)
(4.8)

f(si|y1,y2, ν, ρ, γi, σ
2
j , γj) ∝ f(y1,y2|ν, ρ, exp(si), γi, σ

2
j , γj) · exp(−si)·

· exp(−0.001 · exp(−si)) · exp(si) (4.9)

f(ai|y1,y2, ν, ρ, σ
2
i , σ

2
j , γj) ∝ f(y1,y2|ν, ρ, σ2

i , tanh(ai), σ
2
j , γj)·

· exp(− a2
i

200
) · 1

cosh2(ai)
(4.10)

We optimize the right-hand side of the above formula because the knowledge of the
posterior density up to constants is enough for finding the necessary mode and Hessian.
However, we have to notice another important point. Since we optimize the posterior
densities for ρ, γi and σ2

i on a transformed scale, we have to retransform the determined
mode and Hessian to the original scale using the Delta method (cf. Theorem 2.7). This
procedure holds only for univariate parameters and its estimator.
Following the central limit theorem, it holds for the univariate mode m and its estimator
m̂ of the posterior distribution that

√
n(m̂−m)

D→ N
(

0,
1

h

)
where h is the value of the Hessian evaluated at the mode. Using the univariate Delta
method, we get:

√
n(âi − ai)

D→ N
(

0,
1

h

)
√
n(g(âi)− g(ai))

D→ N
(

0, g′(âi)
2 1

h

)
√
n(tanh(âi)− tanh(ai))

D→ N

(
0,

(
1

cosh2(âi)

)2
1

h

)
√
n(γ̂i − γi)

D→ N

(
0,

(
1

cosh2(âi)

)2
1

h

)
(4.11)
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and

√
n(ρ̂− ρ)

D→ N

(
0,

(
1

cosh2(r̂)

)2
1

h

)
(4.12)

and

√
n(ŝi − si)

D→ N
(

0,
1

h

)
√
n(g(ŝi)− g(si))

D→ N
(

0, g′(ŝi)
2 1

h

)
√
n(exp(ŝi)− exp(si))

D→ N
(

0, (exp(ŝi))
2 1

h

)
√
n(σ̂2

i − σ2
i )

D→ N
(

0, (exp(ŝi))
2 1

h

)
. (4.13)

So, we have to multiply the calculated variance on the transformed scale by 1
cosh2(âi)

,
1

cosh2(r̂)
and exp(ŝi), respectively, to return to the original scale and to get the mode and

the Hessian there which we need for the independence proposal MH-algorithm.

At first, we denote the algorithms for one step for one single parameter (cf. Algorithms
4.1 - 4.4).

Algorithm 4.1 One step of independence MH-Algorithm for ν

1: Optimize logarithm of the posterior density f(ν|y1,y2, ρ, σ
2
1, γ1, σ

2
2, γ2) (cf. (4.7)) of

ν for finding mode νm and Hessian h(νm)
2: Draw a proposal value νprop from N (νm, 1/h(νm))
3: Calculate acceptance probability α(νold, νprop) (cf. (2.48))
4: Draw a Uniform (0,1) random variable u1

5: IF u1 < α(νold, νprop) THEN
6: νnew := νprop
7: ELSE
8: νnew := νold
9: END IF
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Algorithm 4.2 One step of independence MH-Algorithm for ρ

1: Transform ρ to r
2: Optimize the logarithm of the posterior density f(r|y1,y2, ν, σ

2
1, γ1, σ

2
2, γ2) (cf. (4.8))

of r for finding mode rm and Hessian h(rm)
3: Transform mode and Hessian back to ρm and h(ρm) using (4.12)
4: Draw a proposal value ρprop from N (ρm, 1/h(ρm))
5: Calculate acceptance probability α(ρold, ρprop) (cf. (2.48))
6: Draw a Uniform (0,1) random variable u2

7: IF u2 < α(ρold, ρprop) THEN
8: ρnew := ρprop
9: ELSE

10: ρnew := ρold
11: END IF

Algorithm 4.3 One step of independence MH-Algorithm for σ2
i , i = 1, 2

1: Transform σ2
i to si

2: Optimize the logarithm of the posterior density f(si|y1,y2, ν, ρ, γi, σ
2
j , γj) (cf. (4.9))

of si for finding mode si,m and Hessian h(si,m)
3: Transform mode and Hessian back to σ2

i,m and h(σ2
i,m) using (4.13)

4: Draw a proposal value σ2
i,prop from N (σ2

i,m, 1/h(σ2
i,m))

5: Calculate acceptance probability α(σ2
i,old, σ

2
i,prop) (cf. (2.48))

6: Draw a Uniform (0,1) random variable u3

7: IF u3 < α(σ2
i,old, σ

2
i,prop) THEN

8: σ2
i,new := σ2

i,prop

9: ELSE
10: σ2

i,new := σ2
i,old

11: END IF

Algorithm 4.4 One step of independence MH-Algorithm for γi, i = 1, 2

1: Transform γi to ai
2: Optimize the logarithm of the posterior density f(ai|y1,y2, ν, ρ, σ

2
i , σ

2
j , γj) (cf. (4.10))

of ai for finding mode ai,m and Hessian h(ai,m)
3: Transform mode and Hessian back to γi,m and h(γi,m) using (4.11)
4: Draw a proposal value γi,prop from N (γi,m, 1/h(γi,m))
5: Calculate acceptance probability α(γi,old, γi,prop) (cf. (2.48))
6: Draw a Uniform (0,1) random variable u4

7: IF u4 < α(γi,old, γi,prop) THEN
8: γi,new := γi,prop
9: ELSE

10: γi,new := γi,old
11: END IF
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Then we can denote the algorithm for the joint estimation of time series and copula
parameters using the independence Metropolis-Hastings sampler (cf. Algorithm 4.5).

Algorithm 4.5 Algorithm for the Joint Estimation of Time Series and Copula Parameters
with N Steps in 2 Dimensions
1: FOR t = 1, . . . , N DO
2: Calculate new value for ν using Algorithm 4.1
3: Calculate new value for ρ using Algorithm 4.2
4: Calculate new value for σ2

1 using Algorithm 4.3
5: Calculate new value for γ1 using Algorithm 4.4
6: Calculate new value for σ2

2 using Algorithm 4.3
7: Calculate new value for γ2 using Algorithm 4.4
8: END FOR

4.2 Simulation Study

To assess the power of the implemented algorithm, we perform a simulation study. We
choose 12 scenarios, create the corresponding data and estimate the parameters using
marginal MLE and C-MLE (TSP-MLE, cf. Table 2.1) and using our algorithm 4.5.
Therefore, we draw the data on the z-level from a t-Copula with standard normal margins
and transform them to the y-Level using the transformation (4.1). Each sample consists of
2000 simulated values, 1000 for each marginal time series. Then we estimate the time se-
ries parameters first by a Maximum Likelihood estimation (marginal MLE). We transform
the observed values parametricly to the unit cube and perform a Maximum Likelihood
estimation of the copula parameters (TSP-MLE). We use these values as starting values
for our MCMC estimation with the independence MH-algorithm (JMCMC).
We repeat all 12 scenarios four times and calculate then the mean and the standard de-
viation over all four replications for each parameter.

We choose the possible values 3 and 10 for ν and the possible values 0.4 and 0.9 for

ρ. We keep the variance
σ2
i

1−γ2
i

of the stationary distribution of the marginal time series

constant to 5 and we calculate corresponding parameter values for γi and σ2
i . This yields

the following 12 scenarios:
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ν ρ γ1 σ2
1 γ2 σ2

2

1 3 0.40 0.90 0.95 0.90 0.95
2 3 0.40 0.40 4.20 0.40 4.20
3 3 0.40 0.40 4.20 0.90 0.95
4 3 0.90 0.90 0.95 0.90 0.95
5 3 0.90 0.40 4.20 0.40 4.20
6 3 0.90 0.40 4.20 0.90 0.95
7 10 0.40 0.90 0.95 0.90 0.95
8 10 0.40 0.40 4.20 0.40 4.20
9 10 0.40 0.40 4.20 0.90 0.95

10 10 0.90 0.90 0.95 0.90 0.95
11 10 0.90 0.40 4.20 0.40 4.20
12 10 0.90 0.40 4.20 0.90 0.95

Table 4.1: Overview of the 12 investigated simulation scenarios

The simulation study shows the results for the average values and the standard devi-
ations based on 4 replications printed in Tables 4.2 - 4.5.
For the low degrees of freedom of 3, we can see that the mean determined by the MCMC
mostly estimates better than the value determined by TSP-MLE while the standard de-
viation has a tendency to be smaller than that of the TSP-MLE values. For ν = 10,
TSP-MLE is considerably better than the posterior mean only in the case that the cor-
relation is high with a high variance for both marginal time series. In all other cases, the
posterior mean performs as well as the TSP-MLE value with an often smaller standard
deviation. The correlation parameter ρ is very well estimated by the posterior mean as
well as by the TSP-MLE values. The standard deviation of the posterior mean appears
to be slightly smaller. Only the estimated correlation in the seventh scenario has a bigger
difference to the real value for both estimators. The values of σ2 and γ are overall esti-
mated well with no clear advantage for any of the estimators.
So generally, both estimation methods are very close to each other.
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true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
value 3.000 2.245 2.320 2.947 3.810 3.940 2.987 2.873 2.9351 ν
sd 0.255 0.283 0.416 0.619 0.637 0.422 0.403 0.430

value 0.400 0.353 0.362 0.415 0.465 0.475 0.415 0.425 0.417
ρ

sd 0.022 0.021 0.021 0.021 0.021 0.021 0.021 0.025
value 0.950 0.873 0.885 0.950 1.025 1.040 0.953 0.950 0.948

σ2
1 sd 0.056 0.059 0.065 0.064 0.065 0.061 0.065 0.067

value 0.900 0.880 0.880 0.903 0.920 0.922 0.903 0.903 0.903
γ1 sd 0.018 0.018 0.015 0.012 0.015 0.015 0.015 0.015

value 0.950 0.843 0.853 0.922 0.990 1.005 0.922 0.917 0.915
σ2

2 sd 0.031 0.031 0.031 0.036 0.040 0.031 0.030 0.033
value 0.900 0.883 0.887 0.903 0.923 0.927 0.903 0.903 0.910

γ2 sd 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.014
true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE

value 3.000 2.223 2.302 2.880 3.715 3.958 2.938 2.810 2.8772 ν
sd 0.250 0.259 0.406 0.696 0.817 0.448 0.373 0.422

value 0.400 0.320 0.330 0.390 0.443 0.450 0.388 0.393 0.388
ρ

sd 0.037 0.033 0.033 0.033 0.037 0.029 0.033 0.029
value 4.200 3.893 3.940 4.230 4.553 4.620 4.235 4.225 4.210

σ2
1 sd 0.158 0.161 0.174 0.193 0.197 0.177 0.171 0.203

value 0.400 0.362 0.370 0.410 0.450 0.458 0.410 0.410 0.417
γ1 sd 0.019 0.014 0.014 0.014 0.017 0.014 0.014 0.033

value 4.200 3.922 3.975 4.272 4.600 4.668 4.282 4.255 4.225
σ2

2 sd 0.162 0.169 0.182 0.188 0.203 0.186 0.187 0.201
value 0.400 0.348 0.357 0.395 0.435 0.443 0.395 0.395 0.405

γ2 sd 0.017 0.017 0.019 0.019 0.015 0.019 0.019 0.010
true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE

value 3.000 2.308 2.417 3.005 3.812 4.010 3.042 2.950 3.0273 ν
sd 0.335 0.369 0.519 0.757 0.823 0.530 0.502 0.519

value 0.400 0.315 0.328 0.380 0.432 0.438 0.380 0.380 0.383
ρ

sd 0.010 0.013 0.014 0.017 0.013 0.014 0.014 0.017
value 4.200 3.990 4.045 4.370 4.688 4.758 4.367 4.367 4.298

σ2
1 sd 0.130 0.136 0.161 0.181 0.190 0.152 0.164 0.174

value 0.400 0.375 0.383 0.420 0.465 0.470 0.420 0.422 0.410
γ1 sd 0.021 0.021 0.016 0.021 0.016 0.016 0.017 0.024

value 0.950 0.875 0.883 0.953 1.025 1.040 0.953 0.950 0.945
σ2

2 sd 0.026 0.022 0.026 0.031 0.027 0.026 0.029 0.024
value 0.900 0.880 0.883 0.900 0.920 0.925 0.900 0.900 0.893

γ2 sd 0.000 0.005 0.000 0.000 0.006 0.000 0.000 0.010

Table 4.2: Estimated posterior mean, mode and quantiles of JMCMC as well as TSP-MLE
values for all parameters in scenario 1 - 3 averaged over 4 replications with its empirical
standard deviation
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true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
value 3.000 2.175 2.243 2.917 3.788 3.958 2.958 2.862 3.0374 ν
sd 0.511 0.554 0.828 1.191 1.235 0.849 0.812 0.917

value 0.900 0.885 0.885 0.900 0.913 0.915 0.900 0.900 0.900
ρ

sd 0.010 0.010 0.008 0.005 0.010 0.008 0.008 0.008
value 0.950 0.900 0.907 0.970 1.045 1.058 0.973 0.970 0.945

σ2
1 sd 0.022 0.029 0.029 0.029 0.029 0.030 0.029 0.021

value 0.900 0.887 0.887 0.903 0.917 0.920 0.903 0.905 0.900
γ1 sd 0.010 0.010 0.010 0.010 0.012 0.010 0.013 0.008

value 0.950 0.910 0.920 0.980 1.058 1.073 0.988 0.980 0.955
σ2

2 sd 0.014 0.022 0.022 0.022 0.021 0.024 0.022 0.017
value 0.900 0.887 0.890 0.905 0.917 0.920 0.907 0.903 0.900

γ2 sd 0.005 0.000 0.006 0.005 0.008 0.005 0.005 0.008
true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE

value 3.000 2.212 2.317 2.980 3.810 3.995 3.015 2.945 3.0455 ν
sd 0.147 0.171 0.256 0.436 0.482 0.275 0.258 0.307

value 0.900 0.880 0.885 0.900 0.910 0.913 0.900 0.900 0.897
ρ

sd 0.008 0.013 0.008 0.008 0.010 0.008 0.008 0.010
value 4.200 3.905 3.955 4.223 4.527 4.588 4.228 4.220 4.085

σ2
1 sd 0.155 0.168 0.207 0.223 0.216 0.202 0.225 0.201

value 0.400 0.380 0.385 0.415 0.450 0.455 0.415 0.415 0.420
γ1 sd 0.027 0.024 0.024 0.027 0.024 0.024 0.024 0.029

value 4.200 3.917 3.960 4.225 4.530 4.598 4.232 4.225 4.088
σ2

2 sd 0.187 0.191 0.218 0.233 0.226 0.214 0.225 0.165
value 0.400 0.385 0.390 0.422 0.455 0.460 0.422 0.422 0.422

γ2 sd 0.019 0.022 0.017 0.019 0.022 0.017 0.017 0.036
true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE

value 3.000 2.175 2.315 2.965 3.845 4.003 3.018 2.862 3.1006 ν
sd 0.455 0.521 0.712 1.025 1.089 0.728 0.656 0.715

value 0.900 0.877 0.877 0.897 0.910 0.910 0.897 0.897 0.893
ρ

sd 0.013 0.013 0.013 0.008 0.008 0.013 0.013 0.010
value 4.200 3.955 3.998 4.237 4.570 4.627 4.255 4.210 4.157

σ2
1 sd 0.247 0.251 0.213 0.234 0.227 0.223 0.199 0.212

value 0.400 0.388 0.388 0.412 0.435 0.438 0.412 0.412 0.420
γ1 sd 0.019 0.019 0.017 0.017 0.013 0.017 0.017 0.008

value 0.950 0.897 0.912 0.958 1.035 1.050 0.963 0.953 0.948
σ2

2 sd 0.068 0.068 0.050 0.058 0.059 0.055 0.056 0.085
value 0.900 0.895 0.897 0.907 0.917 0.920 0.907 0.907 0.900

γ2 sd 0.006 0.005 0.005 0.005 0.000 0.005 0.005 0.014

Table 4.3: Estimated posterior mean, mode and quantiles of JMCMC as well as TSP-MLE
values for all parameters in scenario 4 - 6 averaged over 4 replications with its empirical
standard deviation
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true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
value 10.000 5.745 6.180 9.992 18.265 18.855 10.875 9.025 10.9907 ν
sd 0.640 0.784 1.882 3.723 3.637 2.047 1.577 2.671

value 0.400 0.305 0.318 0.367 0.412 0.422 0.367 0.367 0.370
ρ

sd 0.017 0.019 0.019 0.015 0.017 0.019 0.019 0.014
value 0.950 0.865 0.880 0.948 1.015 1.025 0.948 0.945 0.940

σ2
1 sd 0.017 0.020 0.019 0.017 0.017 0.019 0.017 0.027

value 0.900 0.867 0.873 0.893 0.915 0.917 0.893 0.893 0.883
γ1 sd 0.029 0.024 0.024 0.019 0.022 0.024 0.024 0.039

value 0.950 0.840 0.853 0.922 0.992 1.008 0.925 0.922 0.917
σ2

2 sd 0.014 0.015 0.019 0.022 0.021 0.019 0.019 0.021
value 0.900 0.873 0.875 0.897 0.917 0.920 0.897 0.897 0.893

γ2 sd 0.015 0.017 0.015 0.015 0.012 0.015 0.015 0.021
true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE

value 10.000 5.135 5.468 8.848 16.008 16.803 9.558 7.970 9.3678 ν
sd 0.501 0.500 1.149 2.923 2.614 1.516 0.915 1.265

value 0.400 0.338 0.343 0.390 0.440 0.450 0.390 0.392 0.392
ρ

sd 0.022 0.021 0.018 0.018 0.018 0.018 0.021 0.021
value 4.200 3.912 3.953 4.245 4.595 4.657 4.252 4.235 4.207

σ2
1 sd 0.086 0.087 0.097 0.076 0.056 0.088 0.103 0.091

value 0.400 0.352 0.362 0.407 0.453 0.458 0.407 0.407 0.407
γ1 sd 0.024 0.024 0.022 0.024 0.022 0.022 0.022 0.017

value 4.200 3.900 3.955 4.263 4.610 4.672 4.265 4.258 4.205
σ2

2 sd 0.113 0.114 0.116 0.118 0.128 0.115 0.114 0.106
value 0.400 0.357 0.360 0.410 0.453 0.463 0.410 0.410 0.410

γ2 sd 0.022 0.018 0.018 0.015 0.021 0.018 0.018 0.029
true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE

value 10.000 5.635 5.978 9.060 15.545 17.303 9.710 8.380 10.1729 ν
sd 0.932 0.982 1.968 4.839 5.851 2.303 1.761 2.564

value 0.400 0.360 0.367 0.417 0.465 0.470 0.417 0.422 0.422
ρ

sd 0.048 0.043 0.043 0.039 0.041 0.043 0.046 0.047
value 4.200 3.917 3.968 4.285 4.598 4.655 4.282 4.293 4.242

σ2
1 sd 0.177 0.181 0.197 0.206 0.216 0.197 0.187 0.177

value 0.400 0.338 0.348 0.390 0.432 0.443 0.390 0.390 0.385
γ1 sd 0.013 0.010 0.008 0.005 0.010 0.008 0.008 0.006

value 0.950 0.897 0.907 0.972 1.045 1.058 0.972 0.970 0.978
σ2

2 sd 0.019 0.022 0.024 0.026 0.029 0.024 0.022 0.030
value 0.900 0.865 0.870 0.890 0.910 0.915 0.887 0.890 0.893

γ2 sd 0.010 0.008 0.008 0.008 0.010 0.005 0.008 0.010

Table 4.4: Estimated posterior mean, mode and quantiles of JMCMC as well as TSP-MLE
values for all parameters in scenarios 7 - 9 averaged over 4 replications with its empirical
standard deviation
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true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
value 10.000 5.578 6.150 9.595 16.430 18.803 10.200 8.835 9.43810 ν
sd 0.579 0.921 1.803 4.082 4.273 2.033 1.581 0.651

value 0.900 0.890 0.893 0.903 0.915 0.915 0.903 0.903 0.905
ρ

sd 0.012 0.010 0.010 0.006 0.006 0.010 0.010 0.013
value 0.950 0.885 0.897 0.963 1.035 1.048 0.963 0.958 0.953

σ2
1 sd 0.042 0.044 0.050 0.048 0.044 0.050 0.056 0.043

value 0.900 0.877 0.883 0.903 0.913 0.923 0.903 0.903 0.900
γ1 sd 0.010 0.005 0.005 0.005 0.005 0.005 0.005 0.008

value 0.950 0.880 0.895 0.955 1.030 1.042 0.958 0.955 0.955
σ2

2 sd 0.055 0.060 0.062 0.065 0.063 0.061 0.062 0.057
value 0.900 0.883 0.885 0.903 0.923 0.923 0.903 0.903 0.905

γ2 sd 0.005 0.006 0.005 0.005 0.005 0.005 0.005 0.006
true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE

value 10.000 4.918 5.210 8.175 13.877 14.807 8.785 7.495 10.18211 ν
sd 0.759 0.927 2.725 7.057 6.537 3.381 2.075 2.804

value 0.900 0.877 0.883 0.897 0.907 0.907 0.897 0.897 0.897
ρ

sd 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005
value 4.200 3.920 3.978 4.272 4.593 4.658 4.277 4.258 4.160

σ2
1 sd 0.065 0.067 0.061 0.046 0.066 0.064 0.056 0.060

value 0.400 0.338 0.345 0.385 0.420 0.425 0.385 0.380 0.388
γ1 sd 0.022 0.024 0.024 0.024 0.024 0.024 0.018 0.022

value 4.200 3.853 3.902 4.192 4.502 4.572 4.195 4.190 4.088
σ2

2 sd 0.132 0.133 0.116 0.130 0.121 0.121 0.116 0.132
value 0.400 0.343 0.353 0.390 0.425 0.430 0.390 0.390 0.388

γ2 sd 0.022 0.022 0.022 0.021 0.022 0.022 0.022 0.015
true 2.5% 5% 50% 95% 97.5% mean mode TSP-MLE

value 10.000 6.280 6.713 10.520 19.372 20.440 11.320 9.555 12.11012 ν
sd 1.150 1.499 2.861 8.386 8.455 3.373 2.394 4.425

value 0.900 0.893 0.895 0.905 0.915 0.917 0.905 0.907 0.903
ρ

sd 0.005 0.006 0.006 0.006 0.005 0.006 0.005 0.005
value 4.200 4.062 4.125 4.447 4.785 4.837 4.452 4.438 4.338

σ2
1 sd 0.190 0.187 0.199 0.219 0.226 0.201 0.191 0.207

value 0.400 0.360 0.365 0.390 0.412 0.420 0.390 0.390 0.375
γ1 sd 0.023 0.024 0.023 0.026 0.023 0.023 0.023 0.035

value 0.950 0.907 0.922 0.995 1.068 1.083 0.995 0.995 0.972
σ2

2 sd 0.010 0.015 0.013 0.015 0.017 0.013 0.013 0.017
value 0.900 0.880 0.883 0.893 0.905 0.907 0.893 0.895 0.890

γ2 sd 0.008 0.005 0.005 0.010 0.010 0.005 0.010 0.008

Table 4.5: Estimated posterior mean, mode and quantiles of JMCMC as well as TSP-
MLE values for all parameters in scenarios 10 - 12 averaged over 4 replications with its
empirical standard deviation
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4.3 Estimation of Real Data

Now we want to apply our algorithm for estimating the parameters of real data in a
bivariate setting. We choose the Australian load data (cf. Section 3.4) which we have
preprocessed as described there. The resulting time series consist all of 1135 observations
and we have these time series for the states Queensland (QLD), New South Wales (NSW),
Victoria (VIC) and South Australia (SA). We form all possible pairs of these four time
series and get six different scenarios.
The estimation of the parameters of these pairs yield the results shown in Table 4.6.

We can see that the posterior mode, the posterior mean, the posterior median and the
TSP-MLE value are very close together, especially for the correlation and the time series
parameters. Since we are interested in the four-dimensional modeling using a D-vine to
describe the dependency, we have to determine a certain order of the time series. The
geographical position as well as the Australian infrastructure which is concentrated on the
territories next to the coast suggests the order ’Queensland, New South Wales, Victoria
and South Australia’. This proposal is supported by the results of our estimation since
the estimated correlations between these time series are the highest and the estimated
degrees of freedom for these copulas are the lowest (i.e. between Queensland and New
South Wales, between New South Wales and Victoria and between Victoria and South
Australia). So, we choose this order for the parameter estimation of the real data (cf.
Section 5.3).
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2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
QLD NSW ν 4.92 5.08 7.03 9.89 10.48 7.16 6.80 7.03

ρ 0.27 0.28 0.33 0.38 0.39 0.33 0.33 0.33
σ2

1 0.41 0.42 0.44 0.48 0.48 0.45 0.44 0.44
γ1 0.67 0.68 0.71 0.74 0.75 0.71 0.71 0.71
σ2

2 0.47 0.48 0.51 0.55 0.55 0.51 0.51 0.52
γ2 0.64 0.64 0.68 0.71 0.71 0.68 0.68 0.70

2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
QLD VIC ν 5.39 5.66 7.62 11.43 12.19 7.95 7.36 7.75

ρ 0.08 0.09 0.15 0.21 0.22 0.15 0.16 0.16
σ2

1 0.41 0.41 0.44 0.47 0.47 0.44 0.44 0.44
γ1 0.67 0.67 0.71 0.74 0.74 0.71 0.71 0.71
σ2

2 0.45 0.45 0.49 0.52 0.53 0.49 0.49 0.49
γ2 0.60 0.60 0.64 0.68 0.69 0.64 0.64 0.63

2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
QLD SA ν 6.83 7.26 10.54 18.91 20.80 11.38 9.67 11.41

ρ 0.05 0.07 0.12 0.18 0.19 0.12 0.13 0.13
σ2

1 0.41 0.42 0.45 0.48 0.48 0.45 0.44 0.44
γ1 0.67 0.67 0.71 0.74 0.75 0.71 0.71 0.71
σ2

2 0.46 0.46 0.50 0.53 0.54 0.50 0.50 0.50
γ2 0.58 0.59 0.63 0.67 0.68 0.63 0.63 0.63

2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
NSW VIC ν 3.61 3.91 5.28 7.26 7.51 5.38 5.11 5.16

ρ 0.33 0.34 0.39 0.45 0.46 0.39 0.40 0.38
σ2

1 0.48 0.49 0.52 0.55 0.56 0.52 0.52 0.52
γ1 0.63 0.64 0.67 0.70 0.71 0.67 0.67 0.70
σ2

2 0.46 0.46 0.50 0.53 0.54 0.50 0.50 0.49
γ2 0.53 0.53 0.57 0.60 0.61 0.57 0.57 0.63

2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
NSW SA ν 3.78 3.98 5.21 7.14 7.75 5.35 5.04 5.23

ρ 0.18 0.18 0.25 0.30 0.31 0.24 0.25 0.24
σ2

1 0.48 0.49 0.52 0.56 0.57 0.52 0.52 0.52
γ1 0.64 0.65 0.68 0.71 0.72 0.68 0.68 0.70
σ2

2 0.45 0.46 0.50 0.53 0.54 0.50 0.50 0.50
γ2 0.55 0.55 0.59 0.63 0.64 0.59 0.59 0.63

2.5% 5% 50% 95% 97.5% mean mode TSP-MLE
VIC SA ν 6.07 6.61 9.89 15.65 16.18 10.26 9.34 9.94

ρ 0.56 0.56 0.60 0.64 0.64 0.60 0.60 0.59
σ2

1 0.62 0.63 0.68 0.73 0.74 0.68 0.68 0.67
γ1 0.53 0.54 0.57 0.61 0.62 0.57 0.57 0.59
σ2

2 0.65 0.66 0.71 0.76 0.78 0.71 0.71 0.70
γ2 0.44 0.45 0.48 0.52 0.53 0.48 0.48 0.57

Table 4.6: Estimated Parameters with JMCMC and TSP-MLE for all possible pairs of
the four states Queensland, New South Wales, Victoria and South Australia
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Four-Dimensional Modeling

5.1 Basic Procedure

Now we will look at four dimensional data. The marginal model stays the same, we choose
again an AR(1)-process for all four margins. The dependency in this case is modeled via
a D-vine consisting of bivariate t-Copulas as building blocks (cf. Section 2.8). This is new
compared to the last section since in two dimensions, the D-vine is identical to a ’normal’
t-Copula.

So we have 4 marginal AR(1) time series

Yit = γi · Yi(t−1) + εit t = 1, . . . , T, εit ∼ N (0, σ2
i ) i.i.d., i = 1, . . . , 4

Yi0 ∼ N (0,
σ2
i

1− γ2
i

),
∣∣γi∣∣ < 1.

Again, we define the notation

Y t :=
(
Y1t Y2t Y3t Y4t

)
, t = 1, . . . , T Yi :=

Yi1...
YiT

 , i = 1, 2, 3, 4.

Therefore, it follows

⇒Yi ∼ NT (0,Σi) with Σi =
σ2
i

1− γ2
i


1 γi γ2

i . . . γT−1
i

γi 1 γi γT−2
i

γ2
i γi

. . . . . .
...

...
. . . . . . γi

γT−1
i . . . γi 1

 , i = 1, 2, 3, 4.

We use the same transformation as in the two dimensional case (cf. (4.1)) and define

Zi := Σ
−1/2
i Yi ∼ NT (0, IT ), i = 1, . . . , 4

79
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with

Σ
−1/2
i = σ−1

i



1 0 . . . . . . 0

−γi 1 0
...

0 −γi 1
. . .

...
...

. . . . . . . . . 0

0 . . . 0 −γi
√

1− γ2
i


and

det Σ
−1/2
i = σ−Ti

√
1− γ2

i .

At first some notation issues (cf. Figure 2.5):

ν := (ν12, ν23, ν34, ν13|2, ν24|3, ν14|23)′ ρ := (ρ12, ρ23, ρ34, ρ13|2, ρ24|3, ρ14|23)′

θ11 := (ν12, ρ12)′, θ12 := (ν23, ρ24)′, θ13 := (ν34, ρ34)′,

θ21 := (ν13|2, ρ13|2)′, θ22 := (ν24|3, ρ24|3)′, θ31 := (ν14|23, ρ14|23)′

We model now the dependence between the time series with a D-Vine consisting of
bivariate t-Copulas as building blocks. Therefore we start on the Z-Level as the observa-
tions are marginal independent there and we can write the likelihood as a product. So
the likelihood is given as:

f(z1, z2, z3, z4|ρ,ν)
zt ind

=
T∏
t=1

ft(z1t, z2t, z3t, z4t|ρ,ν).

Using the calculations of the D-vine in Section 2.8 and especially (2.41), we can de-
compose the likelihood as

f(z1,z2, z3, z4|ρ,ν) =

=
T∏
t=1

[
f1(z1t) · f2(z2t) · f3(z3t) · f4(z4t)·

·c12(F1t(z1t), F2t(z2t)) · c23(F2t(z2t), F3t(z3t)) · c34(F3t(z3t), F4t(z4t))·
·c13|2(Ft(z1t|z2t), Ft(z3t|z2t)) · c24|3(Ft(z2t|z3t), Ft(z4t|z3t))·

·c14|23(Ft(z1t|z2t, z3t), Ft(z4t|z2t, z3t))
]
.

We model the marginal distribution with a standard normal distribution. Further-
more, we use the definition of the h(·)-function for the t-Copula (2.38) to calculate the
conditional cumulative density functions and we take the logarithm to get the loglikeli-
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hood. This yields (cf. (2.44))

log(f(z1,z2, z3, z4|ρ,ν)) =

=
T∑
t=1

[
log(ϕ(z1t)) + log(ϕ(z2t)) + log(ϕ(z3t)) + log(ϕ(z4t))+

+ log(c12(Φ(z1t),Φ(z2t))) + log(c23(Φ(z2t),Φ(z3t))) + log(c34(Φ(z3t),Φ(z4t)))+

+ log(c13|2(h(Φ(z1t),Φ(z2t); θ11), h(Φ(z3t),Φ(z2t); θ12)))+

+ log(c24|3(h(Φ(z2t),Φ(z3t); θ12), h(Φ(z4t),Φ(z3t); θ13)))+

+ log(c14|23(h(h(Φ(z1t),Φ(z2t); θ11), h(Φ(z3t),Φ(z2t); θ12); θ21),

h(h(Φ(z4t),Φ(z3t); θ13), h(Φ(z2t),Φ(z3t); θ12); θ31))).

As mentioned above, we also use the transformation (4.1) to the observed data like in
the two dimensional case :

log(f(y1,y2,y3,y4|σ2
i , γi, i = 1, . . . , 4,ρ,ν)) =

= log(ϕ(
1

σ1

y11)) + log(ϕ(
1

σ2

y21)) + + log(ϕ(
1

σ3

y31)) + log(ϕ(
1

σ4

y41))+

+ log(c12(Φ(
1

σ1

y11),Φ(
1

σ2

y21))) + log(c23(Φ(
1

σ2

y21),Φ(
1

σ3

y31)))+

+ log(c34(Φ(
1

σ3

y31),Φ(
1

σ4

y41)))+

+ log(c13|2(h(Φ(
1

σ1

y11),Φ(
1

σ2

y21); θ11), h(Φ(
1

σ3

y31),Φ(
1

σ2

y21); θ12)))+

+ log(c24|3(h(Φ(
1

σ2

y21),Φ(
1

σ3

y31); θ12), h(Φ(
1

σ4

y41),Φ(
1

σ3

y31); θ13)))+

+ log(c14|23(h(h(Φ(
1

σ1

y11),Φ(
1

σ2

y21); θ11), h(Φ(
1

σ3

y31),Φ(
1

σ2

y21); θ12); θ21),

h(h(Φ(
1

σ4

y41),Φ(
1

σ3

y31); θ13), h(Φ(
1

σ2

y21),Φ(
1

σ3

y31); θ12); θ31)))+

+
T−1∑
t=2

[
log(ϕ(

1

σ1

(y1t − γ1y1(t−1)))) + log(ϕ(
1

σ2

(y2t − γ2y2(t−1))))+

+ log(ϕ(
1

σ3

(y3t − γ3y3(t−1)))) + log(ϕ(
1

σ4

(y4t − γ4y4(t−1))))+

+ log(c12(Φ(
1

σ1

(y1t − γ1y1(t−1))),Φ(
1

σ2

(y2t − γ2y2(t−1)))))+

+ log(c23(Φ(
1

σ2

(y2t − γ2y2(t−1))),Φ(
1

σ3

(y3t − γ3y3(t−1)))))+

+ log(c34(Φ(
1

σ3

(y3t − γ3y3(t−1))),Φ(
1

σ4

(y4t − γ4y4(t−1)))))+



CHAPTER 5. FOUR-DIMENSIONAL MODELING 82

+ log(c13|2(h(Φ(
1

σ1

(y1t − γ1y1(t−1))),Φ(
1

σ2

(y2t − γ2y2(t−1))); θ11),

h(Φ(
1

σ3

(y3t − γ3y3(t−1))),Φ(
1

σ2

(y2t − γ2y2(t−1))); θ12)))+

+ log(c24|3(h(Φ(
1

σ2

(y2t − γ2y2(t−1))),Φ(
1

σ3

(y3t − γ3y3(t−1))); θ12),

h(Φ(
1

σ4

(y4t − γ4y4(t−1))),Φ(
1

σ3

(y3t − γ3y3(t−1))); θ13)))+

+ log(c14|23(h(h(Φ(
1

σ1

(y1t − γ1y1(t−1))),Φ(
1

σ2

(y2t − γ2y2(t−1))); θ11),

h(Φ(
1

σ3

(y3t − γ3y3(t−1))),Φ(
1

σ2

(y2t − γ2y2(t−1))); θ12); θ21),

h(h(Φ(
1

σ4

(y4t − γ4y4(t−1))),Φ(
1

σ3

(y3t − γ3y3(t−1))); θ13),

h(Φ(
1

σ2

(y2t − γ2y2(t−1))),Φ(
1

σ3

(y3t − γ3y3(t−1))); θ12); θ31)))
]
+

+ log(ϕ(
1

σ1

(
√

1− γ2
1y1T − γ1y1(T−1)))) + log(ϕ(

1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1))))+

+ log(ϕ(
1

σ3

(
√

1− γ2
3y3T − γ3y3(T−1)))) + log(ϕ(

1

σ4

(
√

1− γ2
4y4T − γ4y4(T−1))))+

+ log(c12(Φ(
1

σ1

(
√

1− γ2
1y1T − γ1y1(T−1))),Φ(

1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1)))))+

+ log(c23(Φ(
1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1))),Φ(

1

σ3

(
√

1− γ2
3y3T − γ3y3(T−1)))))+

+ log(c34(Φ(
1

σ3

(
√

1− γ2
3y3T − γ3y3(T−1))),Φ(

1

σ4

(
√

1− γ2
4y4T − γ4y4(T−1)))))+

+ log(c13|2(h(Φ(
1

σ1

(
√

1− γ2
1y1T − γ1y1(T−1))),Φ(

1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1))); θ11),

h(Φ(
1

σ3

(
√

1− γ2
3y3T − γ3y3(T−1))),Φ(

1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1))); θ12)))+

+ log(c24|3(h(Φ(
1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1))),Φ(

1

σ3

(
√

1− γ2
3y3T − γ3y3(T−1))); θ12),

h(Φ(
1

σ4

(
√

1− γ2
4y4T − γ4y4(T−1))),Φ(

1

σ3

(
√

1− γ2
3y3T − γ3y3(T−1))); θ13)))+

+ log(c14|23(h(h(Φ(
1

σ1

(
√

1− γ2
1y1T − γ1y1(T−1))),Φ(

1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1))); θ11),

h(Φ(
1

σ3

(
√

1− γ2
3y3T − γ3y3(T−1))),Φ(

1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1))); θ12); θ21),

h(h(Φ(
1

σ4

(
√

1− γ2
4y4T − γ4y4(T−1))),Φ(

1

σ3

(
√

1− γ2
3y3T − γ3y3(T−1))); θ13),

h(Φ(
1

σ2

(
√

1− γ2
2y2T − γ2y2(T−1))),Φ(

1

σ3

(
√

1− γ2
3y3T − γ3y3(T−1))); θ12); θ31)))+

+
4∑
i=1

[
log(σ−Ti ) + log(

√
1− γ2

i )

]
. (5.1)
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For the calculation of the posterior distribution (up to constants), we need to know the
priors. Using the results of Lewandowski, Kurowicka, and Joe (2007) and the calculations
of Joe (2006), we suppose a Beta((4−k)/2, (4−k)/2) distribution on (−1, 1) for ρj, where
k is the cardinality of the set of conditioning variables. The resulting correlation matrix
of partial correlations is uniformly distributed over the space of correlation matrices. So
we choose:

• Prior for ρ12, ρ23 and ρ34: Beta(2, 2) on (−1, 1)
π(ρj) ∝ (1− ρ2

j), j = 12, 23, 34

• Prior for ρ13|2 and ρ24|3: Beta(3/2, 3/2) on (−1, 1)
π(ρj) ∝ (1− ρ2

j)
1/2, j = 13|2, 24|3

• Prior for ρ14|23: Beta(1, 1) on (−1, 1) = Unif(1,1)
π(ρ14|23) ∝ 1.

• Prior for each ν: half Cauchy (1,2) (cf. (2.3))
π(ν) ∝ 1

1+( ν−1
2

)2 , ν ∈ (1,∞)

• Prior for σ2
i , i = 1, . . . , 4: Inverse Gamma(1,0.001) (cf. (2.1))

π(u) = 0.001
Γ(1)

u−2 exp
(
−0.001

u

)
(Congdon (2003, p. 15))

• Prior for ai: Normal (0,10) on transformed scale (−∞,∞)

π(ai) ∝ exp(− a2
i

200
).

Additionally, we use again Metropolis-Hastings algorithm with independence proposal
(cf. Algorithm 2.5). We develop the posterior density (up to constants) first on the
untransformed level. For finding the necessary mode and the Hessian, we transform
the posterior density for ρj, σ

2
i , i = 1, . . . , 4 and γi, i = 1, . . . , 4 to (−∞,∞) using

Fisher-z-transformation (4.5) to rj, logarithm transformation (4.3) to si and Fisher-z-
transformation (4.4) to ai, respectively. For γi, we choose the prior on the transformed
scale. After having determined the mode and the Hessian we transform back to the orig-
inal scale, if necessary, to perform the MH-algorithm using again the Delta method for
ρ like in (4.12), for σ2

i like in (4.13) and for γi like in (4.11). The only modification in
the algorithm compared to the two dimensional case (cf. Algorithms 4.1 - 4.4) is that
we just optimize in every 20th step to find the mode and the Hessian in order to reduce
the calculation time of the computer. During the other steps, we use the most recently
determined mode and Hessian to draw a proposal value.
We perform the updates in the following order:

ν12 → ρ12 → σ2
1 → γ1 → σ2

2 → γ2 → ν23 → ρ23 → σ2
3 → γ3 → ν34 →

→ρ34 → σ2
4 → γ4 → ν13|2 → ρ13|2 → ν24|3 → ρ24|3 → ν14|23 → ρ14|23.

5.2 Simulation Study

For the four-dimensional case, we also performed a simulation study to assess the power
of the algorithm. We created three scenarios and repeated the data creation and the
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parameter estimation seven times in each scenario. Then we calculated the average for
each parameter over these seven replications and we compute the standard deviation over
these replications. We chose the three scenarios described in Table 5.1.

ν12 ν23 ν34 ν13|2 ν24|3 ν14|23 σ2
1 γ1 σ2

2 γ2

7 5.5 13 10 25 10 0.15 0.65 0.05 0.7
1

ρ12 ρ23 ρ34 ρ13|2 ρ24|3 ρ14|23 σ2
3 γ3 σ2

4 γ4

0.4 0.2 0.7 0.3 -0.05 -0.1 0.1 0.65 0.05 0.7

ν12 ν23 ν34 ν13|2 ν24|3 ν14|23 σ2
1 γ1 σ2

2 γ2

4 4 4 3 3 6 0.8 0.2 0.4 0.4
2

ρ12 ρ23 ρ34 ρ13|2 ρ24|3 ρ14|23 σ2
3 γ3 σ2

4 γ4

0 0.8 0.4 0.8 0.6 0.4 1.5 0.6 1 0.1

ν12 ν23 ν34 ν13|2 ν24|3 ν14|23 σ2
1 γ1 σ2

2 γ2

10 3 7 6 4 3 2 0.4 1 0.7
3

ρ12 ρ23 ρ34 ρ13|2 ρ24|3 ρ14|23 σ2
3 γ3 σ2

4 γ4

0.8 0.1 0.5 0.8 0.2 0.8 0.7 0.8 0.2 0.2

Table 5.1: Simulation Scenarios

We compare the results of the Bayesian estimation to TSP-MLE values (cf. Table
2.1). The marginal time series parameters are determined by using the calculation rou-
tine ’arima’ univariately with order (1,0,0) which is already implemented in the statistic
program ’R’. It is a Maximum Likelihood Estimation. Then we transform the data para-
metricly to the unit cube using the inverse transformation to the described one in (4.1)
and the cumulative distribution function of the standard normal distribution in order to
estimate the copula parameters. The first estimation values of the copula parameters,
denoted by ’start’ in the results, are calculated by using the algorithm for starting values
described at the end of Section 2.9 with estimating the parameters by a separate Maxi-
mum Likelihood Estimation for each copula. The second method, denoted by ’C-MLE’ in
the results, is a Maximum Likelihood estimation of all D-vine t-copula parameters. For
this second estimation method for the copula parameters, we used the implementation in
’R’ of Daniel Berg and Henrik Bakken.

Analyzing the results, we can say that in general all estimation methods are close to
each other. We get the impression that the Bayes estimation values have a smaller stan-
dard deviation than the marginal MLE / C-MLE and the start values. The marginal time
series parameters are estimated more exactly than the copula parameters. Considering
the MCMC values, for some parameters the posterior mode is closer to the true values,
for others the posterior mean or the posterior median.
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true 2.5% 5% 50% 95% 97.5% mean mode start C-MLE

value 7.000 4.529 4.800 6.889 11.411 12.929 7.346 6.460 7.094 7.101
ν12

sd 0.624 0.627 1.256 3.049 3.882 1.443 1.079 1.327 1.304
value 5.500 3.673 3.890 5.333 8.503 9.791 5.676 5.074 5.339 5.474

ν23
sd 0.634 0.707 1.444 3.939 5.505 1.818 1.269 1.848 1.584

value 13.000 7.150 7.839 14.657 36.530 42.706 17.366 12.770 19.890 19.253
ν34

sd 1.685 1.925 6.473 19.604 23.122 7.932 4.905 15.147 15.027
value 10.000 5.513 5.847 9.221 18.816 21.797 10.419 8.401 9.919 9.596

ν13|2 sd 0.961 1.105 2.131 7.239 8.135 2.908 1.770 2.692 2.457
value 25.000 6.337 7.299 23.963 76.896 87.754 30.400 17.933 30.627 59.414

ν24|3 sd 1.336 1.470 8.980 16.914 10.649 8.626 5.407 31.952 106.541
value 10.000 5.841 6.297 10.589 24.116 27.854 12.266 9.427 11.737 11.693

ν14|23 sd 0.964 1.099 2.610 9.169 10.308 3.540 2.067 3.658 3.642
value 0.400 0.311 0.323 0.370 0.419 0.431 0.371 0.370 0.373 0.374

ρ12
sd 0.030 0.030 0.028 0.028 0.029 0.030 0.030 0.028 0.030

value 0.200 0.129 0.139 0.194 0.250 0.260 0.196 0.194 0.196 0.199
ρ23

sd 0.043 0.046 0.044 0.043 0.043 0.046 0.046 0.046 0.046
value 0.700 0.667 0.673 0.704 0.729 0.734 0.704 0.703 0.707 0.707

ρ34
sd 0.021 0.021 0.019 0.018 0.019 0.019 0.017 0.021 0.021

value 0.300 0.236 0.244 0.301 0.349 0.357 0.301 0.301 0.301 0.303
ρ13|2 sd 0.024 0.023 0.023 0.025 0.023 0.023 0.023 0.025 0.023

value −0.050 −0.117 −0.109 −0.053 0.004 0.010 −0.051 −0.053 −0.051 −0.054
ρ24|3 sd 0.037 0.036 0.042 0.041 0.043 0.038 0.042 0.043 0.043

value −0.100 −0.157 −0.149 −0.096 −0.039 −0.030 −0.096 −0.096 −0.094 −0.094
ρ14|23 sd 0.024 0.023 0.026 0.025 0.023 0.026 0.026 0.025 0.025

true 2.5% 5% 50% 95% 97.5% mean mode marg. MLE

value 0.150 0.139 0.139 0.150 0.160 0.164 0.150 0.149 0.149
σ2

1 sd 0.007 0.007 0.006 0.006 0.008 0.006 0.007 0.007
value 0.650 0.600 0.607 0.643 0.676 0.683 0.643 0.643 0.641

γ1
sd 0.019 0.020 0.021 0.023 0.019 0.021 0.019 0.018

value 0.050 0.049 0.049 0.050 0.056 0.057 0.050 0.050 0.050
σ2

2 sd 0.004 0.004 0.000 0.005 0.005 0.000 0.000 0.000
value 0.700 0.657 0.664 0.699 0.731 0.739 0.696 0.699 0.694

γ2
sd 0.028 0.026 0.030 0.023 0.024 0.027 0.027 0.025

value 0.100 0.091 0.093 0.101 0.111 0.111 0.101 0.101 0.101
σ2

3 sd 0.004 0.005 0.004 0.004 0.004 0.004 0.004 0.004
value 0.650 0.623 0.627 0.657 0.684 0.690 0.657 0.657 0.654

γ3
sd 0.028 0.027 0.027 0.026 0.026 0.027 0.027 0.036

value 0.050 0.047 0.047 0.051 0.054 0.056 0.051 0.051 0.053
σ2

4 sd 0.005 0.005 0.004 0.005 0.005 0.004 0.004 0.005
value 0.700 0.669 0.674 0.701 0.730 0.733 0.701 0.701 0.690

γ4
sd 0.023 0.023 0.024 0.022 0.020 0.024 0.024 0.028

Table 5.2: Estimated posterior mean, mode and quantiles of JMCMC as well as marginal
MLE, starting values and TSP-MLE for all parameters in scenario 1 averaged over 7
replications with its empirical standard deviation
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true 2.5% 5% 50% 95% 97.5% mean mode start C-MLE

value 4.000 3.094 3.191 3.770 4.533 4.707 3.809 3.720 3.814 3.744
ν12

sd 0.286 0.279 0.390 0.522 0.575 0.394 0.374 0.447 0.339
value 4.000 3.381 3.481 4.087 4.859 5.024 4.114 4.053 4.454 4.101

ν23
sd 0.320 0.340 0.395 0.501 0.536 0.405 0.369 0.967 0.379

value 4.000 3.066 3.174 3.874 4.849 5.137 3.926 3.820 3.840 3.899
ν34

sd 0.220 0.236 0.337 0.498 0.588 0.348 0.336 0.410 0.350
value 3.000 2.273 2.357 2.901 3.650 3.814 2.940 2.856 3.006 2.981

ν13|2 sd 0.367 0.389 0.516 0.725 0.775 0.529 0.502 0.397 0.516
value 3.000 2.041 2.203 3.557 5.647 6.304 3.704 3.433 3.007 3.041

ν24|3 sd 0.305 0.336 0.316 0.810 0.875 0.344 0.298 0.413 0.426
value 6.000 3.901 4.111 5.797 9.369 10.509 6.164 5.494 6.159 5.983

ν14|23 sd 0.724 0.772 1.401 3.581 4.220 1.672 1.233 1.543 1.504
value 0.000 −0.069 −0.061 −0.011 0.043 0.054 −0.011 −0.013 −0.016 −0.001

ρ12
sd 0.028 0.030 0.030 0.029 0.028 0.030 0.029 0.030 0.032

value 0.800 0.776 0.781 0.799 0.819 0.820 0.799 0.799 0.800 0.804
ρ23

sd 0.018 0.020 0.017 0.017 0.015 0.017 0.017 0.021 0.018
value 0.400 0.327 0.336 0.381 0.427 0.436 0.383 0.381 0.387 0.389

ρ34
sd 0.030 0.030 0.034 0.030 0.033 0.033 0.034 0.048 0.035

value 0.800 0.754 0.760 0.784 0.807 0.813 0.784 0.784 0.787 0.786
ρ13|2 sd 0.022 0.019 0.017 0.015 0.016 0.017 0.017 0.016 0.020

value 0.600 0.539 0.551 0.599 0.639 0.647 0.597 0.600 0.593 0.594
ρ24|3 sd 0.045 0.040 0.034 0.031 0.030 0.034 0.033 0.035 0.035

value 0.400 0.351 0.363 0.411 0.459 0.469 0.410 0.413 0.401 0.407
ρ14|23 sd 0.032 0.030 0.026 0.027 0.027 0.027 0.028 0.030 0.024

true 2.5% 5% 50% 95% 97.5% mean mode marg. MLE

value 0.800 0.749 0.757 0.809 0.867 0.877 0.810 0.806 0.803
σ2

1 sd 0.020 0.022 0.021 0.022 0.025 0.022 0.020 0.025
value 0.200 0.166 0.173 0.200 0.223 0.229 0.200 0.199 0.209

γ1
sd 0.017 0.018 0.019 0.018 0.020 0.019 0.018 0.030

value 0.400 0.377 0.379 0.401 0.430 0.433 0.401 0.400 0.404
σ2

2 sd 0.014 0.012 0.016 0.014 0.015 0.016 0.014 0.015
value 0.400 0.377 0.377 0.397 0.416 0.420 0.397 0.397 0.396

γ2
sd 0.025 0.025 0.025 0.022 0.024 0.025 0.025 0.043

value 1.500 1.414 1.429 1.519 1.623 1.643 1.521 1.516 1.531
σ2

3 sd 0.042 0.045 0.047 0.050 0.052 0.047 0.049 0.044
value 0.600 0.579 0.581 0.599 0.614 0.619 0.599 0.599 0.597

γ3
sd 0.017 0.018 0.017 0.016 0.013 0.017 0.017 0.026

value 1.000 0.919 0.927 0.994 1.067 1.081 0.994 0.994 0.989
σ2

4 sd 0.037 0.034 0.039 0.039 0.038 0.039 0.039 0.034
value 0.100 0.054 0.060 0.091 0.120 0.127 0.091 0.093 0.083

γ4
sd 0.035 0.037 0.038 0.037 0.035 0.038 0.035 0.043

Table 5.3: Estimated posterior mean, mode and quantiles of JMCMC as well as marginal
MLE, starting values and TSP-MLE for all parameters in scenario 2 averaged over 7
replications with its empirical standard deviation
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true 2.5% 5% 50% 95% 97.5% mean mode start C-MLE

value 10.000 8.073 8.499 11.083 16.013 17.224 11.489 10.684 16.766 10.851
ν12

sd 1.400 1.545 2.444 5.656 6.845 2.849 2.148 10.862 2.181
value 3.000 2.707 2.769 3.153 3.617 3.696 3.169 3.129 3.306 3.217

ν23
sd 0.157 0.173 0.212 0.255 0.259 0.215 0.212 0.283 0.204

value 7.000 4.971 5.257 6.923 9.921 10.726 7.207 6.681 8.363 7.267
ν34

sd 0.506 0.545 0.888 1.805 2.156 0.984 0.833 2.124 1.008
value 6.000 4.323 4.524 5.880 8.034 8.536 6.040 5.693 6.771 6.261

ν13|2 sd 0.398 0.442 0.636 1.144 1.203 0.686 0.581 1.526 0.782
value 4.000 2.744 3.016 5.144 8.593 9.759 5.404 4.879 4.969 4.219

ν24|3 sd 0.359 0.373 0.427 0.737 1.558 0.367 0.463 1.819 0.391
value 3.000 2.493 2.607 3.391 4.567 4.920 3.460 3.313 3.640 3.527

ν14|23 sd 0.392 0.417 0.661 1.015 1.108 0.674 0.625 0.780 0.722
value 0.800 0.779 0.780 0.799 0.814 0.816 0.797 0.799 0.800 0.800

ρ12
sd 0.009 0.008 0.007 0.008 0.005 0.008 0.007 0.008 0.008

value 0.100 0.024 0.033 0.084 0.134 0.140 0.084 0.084 0.089 0.096
ρ23

sd 0.032 0.029 0.028 0.032 0.033 0.028 0.028 0.034 0.034
value 0.500 0.444 0.451 0.493 0.530 0.540 0.491 0.493 0.506 0.500

ρ34
sd 0.022 0.022 0.022 0.020 0.020 0.021 0.022 0.029 0.024

value 0.800 0.773 0.776 0.799 0.819 0.819 0.799 0.799 0.800 0.800
ρ13|2 sd 0.020 0.019 0.016 0.016 0.016 0.016 0.016 0.017 0.018

value 0.200 0.144 0.151 0.203 0.253 0.263 0.204 0.203 0.206 0.209
ρ24|3 sd 0.021 0.020 0.023 0.023 0.025 0.020 0.023 0.018 0.024

value 0.800 0.770 0.779 0.804 0.823 0.827 0.803 0.804 0.800 0.801
ρ14|23 sd 0.017 0.017 0.013 0.014 0.010 0.014 0.013 0.015 0.013

true 2.5% 5% 50% 95% 97.5% mean mode marg. MLE

value 2.000 1.869 1.884 1.999 2.120 2.147 2.001 1.993 2.014
σ2

1 sd 0.077 0.077 0.084 0.084 0.077 0.083 0.085 0.066
value 0.400 0.381 0.386 0.400 0.417 0.419 0.400 0.401 0.397

γ1
sd 0.011 0.013 0.010 0.013 0.012 0.010 0.011 0.031

value 1.000 0.930 0.940 1.001 1.069 1.084 1.001 1.001 0.997
σ2

2 sd 0.048 0.051 0.051 0.055 0.056 0.051 0.051 0.051
value 0.700 0.684 0.686 0.699 0.716 0.719 0.699 0.699 0.691

γ2
sd 0.011 0.010 0.007 0.010 0.007 0.007 0.007 0.030

value 0.700 0.646 0.654 0.700 0.746 0.754 0.700 0.699 0.703
σ2

3 sd 0.023 0.024 0.024 0.028 0.026 0.024 0.023 0.022
value 0.800 0.781 0.787 0.801 0.817 0.819 0.801 0.801 0.800

γ3
sd 0.004 0.008 0.004 0.005 0.007 0.004 0.004 0.021

value 0.200 0.187 0.189 0.200 0.216 0.217 0.200 0.200 0.200
σ2

4 sd 0.013 0.012 0.012 0.014 0.013 0.012 0.012 0.012
value 0.200 0.167 0.171 0.199 0.220 0.226 0.199 0.197 0.203

γ4
sd 0.018 0.016 0.017 0.017 0.015 0.017 0.018 0.036

Table 5.4: Estimated posterior mean, mode and quantiles of JMCMC as well as marginal
MLE, starting values and TSP-MLE for all parameters in scenario 3 averaged over 7
replications with its empirical standard deviation
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5.3 Estimation of Real Data

As in the two-dimensional case, we also want to perform an estimation for the observed
Australian load data. We use the data preprocessed for stationarity with method 8 as de-
scribed in Section 3.5. Therefore, we have the four time series for Queensland, New South
Wales, Victoria and South Australia, each consisting of 1134 observations. We chose this
order because of geographical reasons as already described in Section 4.3. These states
are neighbored and connected with all its infrastructure in this way along the Eastern
Coast of Australia beginning with Queensland in the North, then New South Wales, then
Victoria and South Australia following in the South West. We show again the time series
plot in Figure 5.1.

Figure 5.1: Australian Load Data preprocessed for Stationarity with Method 8

For this estimation of the real data, we want to show the whole analysis that we have
performed for all performed estimation procedures. At first, we have a look at the trace
plots of the estimation, i.e. the plot of all states of the Markov chain with each value
connected to the next. The solid line marks the estimated posterior mode of JMCMC
whereas the dashed line shows the C-MLE value and the marginal MLE for the time series
parameters, respectively (cf. comment after Table 5.1).

We can see that the chain has a good mixing for each parameter and it oscillates nicely
and fairly concentrated around the estimated mode. Only for the degrees of freedom for



CHAPTER 5. FOUR-DIMENSIONAL MODELING 89

Figure 5.2: Trace Plots for all ν estimated of the observed Real Data

Figure 5.3: Trace Plots for all ρ estimated of the observed Real Data
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Figure 5.4: Trace Plots for all σ2 estimated of the observed Real Data

Figure 5.5: Trace Plots for all γ estimated of the observed Real Data
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the conditional copulas ν13|2, ν24|3 and ν14|23, we have values on the whole admissible range
between 1 and 100. For ν14|23, we remark some problems of the mixing in the first 3000
iterations. So, we increase the burn-in period for ν14|23 up to 3000. For all the other pa-
rameters, we choose a burn-in period of 1000 which we will disregard after having looked
at the plots of the autocorrelation functions. Especially for γ2, γ3 and γ4, we remark a
different phenomena: the estimated posterior mode and all states of the Markov chain
are completely different to the parameter values estimated marginally by MLE.

The autocorrelation functions of all parameters decay very quickly (cf. Figures 5.6
- 5.9). Only for the conditional degrees of freedom ν24|3 and ν14|23, the autocorrelation
function tails off more slowly. So, if we thin out the chain by taking only every 20th value,
we can suppose independence between the different sampled values.

After having discarded the burn-in period of the first 1000 values (for ν14|23 the first
3000 values) and having thinned out the chain by taking every 20th value, the remaining
sample for each parameter consist of 500 values (350 values for ν14|23, respectively). Then
we have a look at the remaining trace plots (cf. Figures 5.10 - 5.13). We see that the
trace plots for the thinned out sample looks good. It fluctuates regularly around the
estimated posterior mode and the Markov chain does not get stuck. Furthermore, we
estimate the kernel density of the remaining sample with a Gaussian kernel (cf. Figures
5.14 - 5.17). We remark there, consistently to the observations in the trace plots of the
whole chain, that the parameter values for γ2, γ3 and γ4 are located where, according to
the kernel estimation of the MCMC sample, no or nearly no probability mass is located.
For all other parameter estimates, the C-MLE and the MCMC value are located closely
together. When we have a look at the plot of the estimated kernel density for degrees of
freedom of the conditional copulas ν13|2, ν24|3 and ν14|23, we remark that they have quite
heavy tails on the right hand versus 100. The other estimated kernel densities of the
parameters are quite concentrated.

Finally, we show the results of the estimation in a table (cf. Table 5.5). We notice that
the marginal MLE values for the parameters γ2, γ3 and γ4 lie even outside of the estimated
posterior 95% credibility interval. The other time series and the correlation parameter
estimates with MH algorithm and with marginal MLE / C-MLE are very closely together.
The estimators for the degrees of freedom for the unconditioned copulas are also adjacent.
Only the estimates for the degrees of freedom of the conditional copulas ν13|2, ν24|3 and
ν14|23 have a larger difference and their absolute value is quite high.
We further remark that for the corresponding correlation parameters ρ13|2, ρ24|3 and ρ14|23,
zero belongs to the 90% credibility interval and it therefore cannot be rejected that these
parameters are zero. Since it is possible that there is no dependency for the conditional
copulas, we try to fit a normal copula or as an approximation, we fix the degrees of
freedom for the conditional copulas to 100. So, to recapitulate, we try to estimate all
parameters with another MCMC algorithm where we keep ρ13|2, ρ24|3 and ρ14|23 fixed to 0
and ν13|2, ν24|3 and ν14|23 fixed at 100. For the C-MLE values, we estimate the conditional
copulas as a normal copula with correlation 0. The results of the C-MLE and the MCMC
are shown in Table 5.6
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Figure 5.6: Plots of the empirical autocorrelation for MCMC iterations of ν estimated of
the observed real data based on all iterations

Figure 5.7: Plots of the empirical autocorrelation for MCMC iterations of ρ estimated of
the observed real data based on all iterations
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Figure 5.8: Plots of the empirical autocorrelation for MCMC iterations of σ2 estimated
of the observed real data based on all iterations

Figure 5.9: Plots of the empirical autocorrelation for MCMC iterations of γ estimated of
the observed real data based on all iterations
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Figure 5.10: Trace Plots of the thinned out Chain of ν estimated of the observed real
data

Figure 5.11: Trace Plots of the thinned out Chain of ρ estimated of the observed real data
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Figure 5.12: Trace Plots of the thinned out Chain of σ2 estimated of the observed real
data

Figure 5.13: Trace Plots of the thinned out Chain of γ estimated of the observed real
data
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Figure 5.14: Plots of the estimated kernel density of ν estimated of the observed real data
based on the thinned out MCMC chain

Figure 5.15: Plots of the estimated kernel density of ρ estimated of the observed real data
based on the thinned out MCMC chain



CHAPTER 5. FOUR-DIMENSIONAL MODELING 97

Figure 5.16: Plots of the estimated kernel density of σ2 estimated of the observed Real
Data based on the thinned out MCMC chain

Figure 5.17: Plots of the estimated kernel density of γ estimated of the observed real data
based on the thinned out MCMC chain
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2.5% 5% 50% 95% 97.5% mean mode start C-MLE
ν12 5.17 5.45 7.37 11.72 12.71 7.80 6.92 7.03 7.32
ν23 4.11 4.26 5.57 7.65 8.60 5.76 5.36 5.16 5.52
ν34 7.08 7.69 11.45 24.29 29.68 12.89 10.23 10.47 11.17
ν13|2 15.01 16.28 36.89 84.56 91.77 41.44 29.80 46.77 38.55
ν24|3 4.20 4.73 14.25 78.22 93.44 22.84 11.60 8.56 8.34
ν14|23 12.32 14.58 34.43 78.22 86.81 38.94 29.00 54.71 58.07
ρ12 0.27 0.28 0.34 0.38 0.39 0.34 0.34 0.33 0.33
ρ23 0.33 0.35 0.40 0.45 0.45 0.40 0.40 0.38 0.39
ρ34 0.54 0.55 0.59 0.62 0.63 0.59 0.59 0.58 0.57
ρ13|2 −0.01 −0.00 0.05 0.10 0.11 0.05 0.05 0.06 0.06
ρ24|3 −0.01 0.00 0.05 0.11 0.12 0.06 0.05 0.04 0.04
ρ14|23 −0.04 −0.03 0.02 0.07 0.08 0.02 0.03 0.03 0.03

2.5% 5% 50% 95% 97.5% mean mode marg. MLE
σ2

1 0.41 0.41 0.44 0.48 0.48 0.45 0.44 0.44
γ1 0.67 0.67 0.70 0.74 0.74 0.70 0.70 0.71
σ2

2 0.47 0.48 0.51 0.55 0.56 0.51 0.51 0.52
γ2 0.62 0.62 0.66 0.69 0.69 0.66 0.66 0.70
σ2

3 0.45 0.46 0.49 0.52 0.53 0.49 0.49 0.49
γ3 0.53 0.54 0.57 0.60 0.61 0.57 0.57 0.63
σ2

4 0.47 0.47 0.51 0.54 0.55 0.51 0.51 0.50
γ4 0.50 0.51 0.54 0.57 0.58 0.54 0.54 0.63

Table 5.5: Estimated posterior mean, mode and quantiles of JMCMC as well as marginal
MLE, starting values and C-MLE for the Observed Australian Load Data preprocessed
for Stationarity with Method 8 (cf. Section 3.5)

2.5% 5% 50% 95% 97.5% mean mode start C-MLE
ν12 5.02 5.29 7.32 10.87 11.65 7.56 6.90 7.03 7.19
ν23 3.87 4.07 5.34 7.28 7.86 5.47 5.17 5.16 5.26
ν34 6.91 7.38 11.34 20.23 22.48 12.11 10.51 10.47 10.61
ρ12 0.27 0.27 0.33 0.38 0.39 0.33 0.34 0.33 0.33
ρ23 0.32 0.34 0.39 0.44 0.45 0.39 0.39 0.38 0.38
ρ34 0.54 0.55 0.59 0.62 0.63 0.59 0.59 0.58 0.58

2.5% 5% 50% 95% 97.5% mean mode marg. MLE
σ2

1 0.41 0.41 0.44 0.47 0.48 0.44 0.44 0.44
γ1 0.67 0.67 0.71 0.74 0.74 0.71 0.71 0.71
σ2

2 0.47 0.47 0.51 0.54 0.55 0.51 0.51 0.52
γ2 0.62 0.62 0.66 0.69 0.69 0.66 0.66 0.70
σ2

3 0.45 0.46 0.49 0.53 0.53 0.49 0.49 0.49
γ3 0.53 0.53 0.56 0.60 0.61 0.57 0.56 0.63
σ2

4 0.47 0.48 0.51 0.55 0.55 0.51 0.50 0.50
γ4 0.50 0.50 0.54 0.57 0.58 0.54 0.54 0.63

Table 5.6: Estimated posterior mean, mode and quantiles of JMCMC as well as marginal
MLE and C-MLE in the reduced model (all conditional correlation parameters are fixed
to 0 and the corresponding degrees of freedom fixed to 100) for the Observed Australian
Load Data preprocessed for Stationarity with Method 8 (cf. Section 3.5)
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5.4 Comparison to Two-Step Estimation Simulation

We are also interested in the differences between the joint Bayesian estimation of all copula
and time series parameters and the two step estimation consisting of a marginal Max-
imum Likelihood estimation of the time series parameters, an enclosing non-parametric
transformation of the residuals using the empirical cumulative distribution function and
the following Bayesian estimation of the D-vine parameters (MMLE-CMCMC, cf. Table
2.1). In both MH algorithms, we use the same prior densities for νj and ρj as described
in this Chapter after equation (5.1).
For this comparison study, we chose a scenario adopted to the with marginal MLE and
C-MLE estimated parameter values of the observed Australian load data. So, we take:

ν12 ν23 ν34 ν13|2 ν24|3 ν14|23 σ2
1 γ1 σ2

2 γ2

7.3 5.5 11 30 8.3 50 0.44 0.71 0.52 0.70

ρ12 ρ23 ρ34 ρ13|2 ρ24|3 ρ14|23 σ2
3 γ3 σ2

4 γ4

0.33 0.38 0.57 0.06 0.04 0.03 0.49 0.63 0.50 0.63

We draw a sample from a D-vine with marginal AR(1) model with the above denoted
parameters. Then we estimate the parameters using JMCMC, MMLE-CMCMC, TSP-
MLE and TSNP-MLE (cf. Table 2.1). We redo these steps until we have four replications.
We can interpret the results with regard to the marginal time series parameters that the
Bayesian estimation is better than the marginal MLE while the standard deviation is
quite equal. The D-vine copula parameters are quite similar with no obvious advantage
for any of the two estimation methods.
An additional and very interesting comparison is to check the joint Bayesian estimation
against a completely Bayesian two step estimation where the marginal time series pa-
rameters are also estimated using a MCMC method. Perhaps, it is possible to take the
posterior density calculated in the first step Bayes estimation as a starting point for the
determination of a prior distribution for the second MCMC algorithm.
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true 2.5% 5% 50% 95% 97.5% mean mode start C-MLE
value 7.300 4.468 4.777 6.920 12.040 13.372 7.485 6.463 7.160 7.120

ν12 sd 0.350 0.440 0.913 2.717 3.135 1.173 0.846 0.839 0.878
value 5.500 3.743 3.922 5.348 8.178 8.982 5.610 5.178 5.422 5.513

ν23 sd 0.357 0.378 0.514 1.664 1.932 0.689 0.429 0.593 0.577
value 11.000 7.317 8.365 16.348 38.847 46.040 18.965 13.963 22.820 22.745

ν34 sd 2.386 3.352 9.405 25.522 30.689 11.252 7.223 19.887 20.229
value 30.000 10.572 11.820 28.968 72.155 78.565 34.258 23.032 79.250 217.925

ν13|2 sd 2.421 2.728 10.190 23.661 23.224 11.538 7.240 41.500 135.653
value 8.300 4.138 4.735 15.367 60.807 73.445 22.200 12.062 8.578 8.630

ν24|3 sd 0.999 1.065 4.286 27.365 27.753 7.313 3.032 2.944 3.045
value 50.000 10.235 11.078 28.793 70.442 76.175 34.500 22.082 62.822 129.328

ν14|23 sd 2.745 2.874 16.240 25.509 22.979 17.725 9.561 42.929 131.982
value 0.330 0.270 0.280 0.333 0.383 0.390 0.333 0.335 0.338 0.338

ρ12 sd 0.022 0.022 0.022 0.019 0.014 0.022 0.019 0.017 0.017
value 0.380 0.315 0.323 0.375 0.425 0.435 0.375 0.378 0.380 0.380

ρ23 sd 0.024 0.026 0.024 0.024 0.024 0.024 0.022 0.027 0.027
value 0.570 0.520 0.527 0.568 0.605 0.607 0.565 0.568 0.568 0.570

ρ34 sd 0.032 0.033 0.033 0.026 0.025 0.029 0.033 0.025 0.029
value 0.060 0.018 0.028 0.085 0.140 0.148 0.087 0.085 0.087 0.087

ρ13|2 sd 0.017 0.017 0.021 0.018 0.017 0.017 0.021 0.017 0.017
value 0.040 −0.037 −0.030 0.028 0.083 0.092 0.028 0.028 0.030 0.030

ρ24|3 sd 0.049 0.045 0.050 0.046 0.046 0.050 0.050 0.045 0.045
value 0.030 −0.020 −0.007 0.048 0.100 0.110 0.048 0.048 0.048 0.048

ρ14|23 sd 0.018 0.017 0.015 0.018 0.018 0.015 0.015 0.017 0.017
true 2.5% 5% 50% 95% 97.5% mean mode marg. MLE

value 0.440 0.395 0.402 0.438 0.468 0.478 0.438 0.438 0.427
σ2

1 sd 0.034 0.030 0.035 0.035 0.035 0.035 0.035 0.035
value 0.710 0.670 0.675 0.712 0.740 0.748 0.710 0.712 0.705

γ1 sd 0.016 0.017 0.017 0.016 0.021 0.016 0.017 0.024
value 0.520 0.468 0.473 0.512 0.550 0.557 0.512 0.510 0.505

σ2
2 sd 0.021 0.021 0.021 0.023 0.021 0.021 0.023 0.024

value 0.700 0.645 0.653 0.682 0.712 0.720 0.682 0.682 0.680
γ2 sd 0.010 0.010 0.010 0.010 0.008 0.010 0.010 0.000

value 0.490 0.435 0.443 0.475 0.512 0.520 0.475 0.470 0.470
σ2

3 sd 0.013 0.015 0.013 0.015 0.014 0.013 0.014 0.014
value 0.630 0.568 0.573 0.605 0.637 0.645 0.605 0.605 0.598

γ3 sd 0.022 0.017 0.021 0.022 0.021 0.021 0.021 0.030
value 0.500 0.455 0.458 0.495 0.530 0.540 0.495 0.495 0.487

σ2
4 sd 0.021 0.022 0.021 0.026 0.026 0.021 0.021 0.025

value 0.630 0.580 0.585 0.617 0.653 0.657 0.617 0.617 0.620
γ4 sd 0.014 0.010 0.015 0.013 0.015 0.015 0.015 0.014

Table 5.7: Estimated posterior mean, mode and quantiles of JMCMC as well as marginal
MLE, starting values and C-MLE (TSP-MLE) for the scenario described in Section 5.4
averaged over 4 replications with its empirical standard deviation
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true 2.5% 5% 50% 95% 97.5% mean mode C-MLE
value 7.300 4.362 4.630 6.565 11.842 14.147 7.205 6.060 6.822

ν12 sd 0.410 0.451 0.930 3.176 4.897 1.260 0.785 1.048
value 5.500 3.825 4.067 5.418 8.140 8.812 5.633 5.133 5.450

ν23 sd 0.307 0.431 0.665 1.695 1.870 0.778 0.545 0.644
value 11.000 8.075 8.720 17.023 50.345 58.475 21.070 13.260 24.497

ν34 sd 2.614 2.874 9.074 31.998 35.701 11.114 5.866 22.844
value 30.000 10.915 12.100 29.688 73.138 80.500 34.517 20.415 186.493

ν13|2 sd 2.586 3.046 11.321 23.122 21.123 11.693 6.254 139.359
value 8.300 4.878 5.240 7.935 14.912 17.387 8.720 6.975 8.158

ν24|3 sd 0.685 0.869 2.072 6.312 7.201 2.516 1.323 2.407
value 50.000 10.143 11.183 25.828 76.392 84.508 31.947 17.922 100.532

ν14|23 sd 2.125 2.501 6.469 4.044 4.044 5.246 4.238 133.786
value 0.330 0.270 0.283 0.330 0.380 0.388 0.330 0.333 0.338

ρ12 sd 0.026 0.021 0.022 0.014 0.010 0.022 0.021 0.017
value 0.380 0.320 0.330 0.378 0.422 0.430 0.378 0.380 0.383

ρ23 sd 0.027 0.027 0.029 0.026 0.028 0.029 0.022 0.026
value 0.570 0.525 0.532 0.568 0.597 0.605 0.568 0.568 0.570

ρ34 sd 0.034 0.030 0.025 0.025 0.026 0.025 0.025 0.029
value 0.060 0.022 0.033 0.090 0.138 0.148 0.090 0.088 0.087

ρ13|2 sd 0.017 0.017 0.018 0.022 0.017 0.018 0.015 0.022
value 0.040 −0.035 −0.028 0.028 0.087 0.098 0.030 0.030 0.028

ρ24|3 sd 0.047 0.046 0.042 0.042 0.042 0.045 0.045 0.042
value 0.030 −0.020 −0.007 0.045 0.103 0.117 0.048 0.048 0.048

ρ14|23 sd 0.018 0.015 0.013 0.013 0.010 0.017 0.017 0.017
true 2.5% 5% 50% 95% 97.5% mean mode marg. MLE

value 0.440 0.427
σ2

1 sd 0.035
value 0.710 0.705

γ1 sd 0.024
value 0.520 0.505

σ2
2 sd 0.024

value 0.700 0.680
γ2 sd 0.000

value 0.490 0.470
σ2

3 sd 0.014
value 0.630 0.598

γ3 sd 0.030
value 0.500 0.487

σ2
4 sd 0.014

value 0.630 0.620
γ4 sd 0.014

Table 5.8: Estimated posterior mean, mode and quantiles of MMLE-CMCMC as well
as marginal MLE and C-MLE (TSNP-MLE) for the scenario described in Section 5.4
averaged over 4 replications with its empirical standard deviation
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5.5 Internal Validation of Different Models

We have already seen that we can fit a model to the observed Australian load data by using
a D-vine pair copula construction with t-copulas and marginal AR(1) models. Further-
more, we have fitted a reduced model where the correlation parameters of the conditional
copulas of the D-vine ρ13|2, ρ24|3 and ρ14|23 are fixed to zero and the corresponding de-
grees of freedom ν13|2, ν24|3 and ν14|23 are fixed to 100. For these two cases, we take the
estimated posterior mode as the estimator for the parameters.
Now we want to suggest two further models to fit to the data. Firstly, we try to fit with
Maximum Likelihood estimation a four-dimensional t-copula with a single parameter for
the degrees of freedom and marginal AR(1) models. Therefore, we use the marginally
estimated time series parameters with the transformation (4.1) and the cdf of the stan-
dard normal distribution to transform the observed data parametricly to uniformly dis-
tributed data. Then we try to fit the four-dimensional t-copula and to estimate the
copula parameters. On the other hand, we include a vector autoregressive model of order
1, X t = ΦX t−1 +Zt,Zt ∼ WN(0, Σ̃),Φ ∈ Rm×m (cf. Equation (2.21)). We fit this model
to the data using stepwise least-square estimation and calculate the residuals. Then we
transform these residuals non-parametricly by its empirical cumulative distribution func-
tion to uniformly distributed data.
So, we consider the following four models:

Nr. Description of the Estimation Method Nr. of Parameters

1 marginal AR(1) and four dimensional t-Copula 6 + 1 + 8 = 15
2 Vector Autoregressive Process of Order 1 16 + 16 + 4 = 36
3 Joint Bayesian Estimation with marginal AR(1) 6 + 6 + 8 = 20

and D-Vine of t-Copulas (JMCMC)
4 Joint Bayesian Estimation of the reduced model: 3 + 3 + 8 = 14

marginal AR(1), unconditional Copulas as t-Copulas,
conditional Copulas with correlation 0 and degrees
of freedom = 100

We get the following results for the four methods:

(1)

σ2
1 γ1 σ2

2 γ2 σ2
3 γ3 σ2

4 γ4marginal MLE:
0.71 0.44 0.70 0.52 0.63 0.49 0.63 0.50

ν ρ12 ρ13 ρ14 ρ23 ρ24 ρ344-dim t-copula parameter:
9.59 0.30 0.11 0.09 0.34 0.21 0.58

(2) Φ =


0.66 0.14 -0.09 -0.00
-0.02 0.54 0.19 0.16
0.00 -0.05 0.50 0.25
-0.03 0.01 -0.05 0.66

, Σ̃ =


0.43 0.18 0.10 0.08
0.18 0.46 0.18 0.13
0.10 0.18 0.47 0.28
0.08 0.13 0.28 0.50


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(3)

ν12 ν23 ν34 ν13|2 ν24|3 ν14|23 σ2
1 γ1 σ2

2 γ2

6.92 5.36 10.23 29.80 11.60 29.00 0.44 0.70 0.51 0.66

ρ12 ρ23 ρ34 ρ13|2 ρ24|3 ρ14|23 σ2
3 γ3 σ2

4 γ4

0.34 0.40 0.59 0.05 0.05 0.03 0.49 0.57 0.51 0.54
(cf. estimated posterior mode in Table 5.5)

(4)

ν12 ν23 ν34 ρ12 ρ23 ρ34

6.90 5.17 10.51 0.34 0.39 0.59
σ2

1 γ1 σ2
2 γ2 σ2

3 γ3 σ2
4 γ4

0.44 0.71 0.51 0.66 0.49 0.56 0.50 0.54
(while the df parameters of the conditional copulas are fixed at 100 and the cor-
responding correlation parameters are fixed at 0, cf. estimated posterior mode in
Table 5.6)

Hereby we have to remark that the correlation parameters determined with method 1
are ’standard’ product moment correlations and not the conditional correlation parameters
as determined with the D-vine pair copula construction. To have a quick check, we want to
transform them to the corresponding conditional correlations using the relation (2.7) and
the fact that for the elliptical distributions, partial correlations and conditional correlation
coincide (cf. the end of Section 2.4). Then we want to compare them to the results of
method 3, the JMCMC. Normally, we had to compare them to the confidence intervals,
but since we do not know them, we take the comparison to the credible intervals of method
3 (described in Table 5.5) as an approximation. So we get:

ρ13|2 =
ρ13 − ρ12ρ23√

1− ρ2
12

√
1− ρ2

23

= 0.0053

ρ24|3 =
ρ24 − ρ23ρ34√

1− ρ2
23

√
1− ρ2

34

= 0.0183

ρ14|23 =
ρ14|2 − ρ13|2ρ34|2√
1− ρ2

13|2

√
1− ρ2

34|2

= 0.0292

Analyzing the h(·)-function, we recognize that the degrees of freedom increase by one for
the conditional copula in the second tree and by 2 in the third tree (cf. Figure 2.5). So we
can deduce that ν12 = ν23 = ν34 = 9.59, ν13|2 = ν24|3 = 10.59 and ν14|23 = 11.59. Check-
ing these values with the credible intervals resulting from the JMCMC, we remark that
the calculated values for ρ13|2, ρ24|3, ρ14|23 and ν12, ν34 and ν24|3 are inside these bounds.
However, the calculated values for ν23, ν13|2 and ν14|23 lie outside the corresponding 95%
credible interval of JMCMC. This is a clear hint that the fit of the four-dimensional copula
is not as good as the fit of the D-vine with t-copulas as building blocks.

For creating a meaningful comparison of the four different methods, we encountered
a lot of difficulties. How can you compare a vector autoregressive model with a combined
autoregressive and copula model? Which statistic can you look at? Is there any test for
this multivariate data? How can you compare these models with a test when you also
have to consider the order of the values?



CHAPTER 5. FOUR-DIMENSIONAL MODELING 104

Therefore, we have decided to perform an internal validation of the different estimation
procedures. We have chosen a multivariate Cramér test introduced by Baringhaus and
Franz (2004). This test is implemented in R with the package ’cramer’. Its two-sample
test statistic is

Tm,n =
mn

m+ n

(
2

mn

m,n∑
s,t=1

‖Xs − Y t‖
2

− 1

m2

m∑
s,t=1

‖Xs −Xt‖
2

− 1

n2

n∑
s,t=1

‖Y s − Y t‖
2

)
,

where Xs, s = 1, . . .m and Y t, t = 1, . . . n are the two multivariate samples to be com-
pared. The critical value is determined by the bootstrap method with 1000 replicates and
a confidence level of 90%. We repeat the test in each method 100 times.

For the first method, the four-dimensional t-copula with AR(1) margins, we use the
estimated time series parameters of the marginal MLE, the transformation (4.1) and the
cdf of the standard normal distribution to transform the observed data parametricly to
the unit cube. This is our basis point for the comparison. Then we estimate the copula
parameters (one parameter for the degrees of freedom and 6 parameters for the corre-
lations) out of these 1135 values. Afterwards, we simulate from the four-dimensional
t-copula with the just estimated parameter values 1135 data points. We compare this
sample to our basis point with the Cramér test.
The second method consists of the vector autoregressive process of order 1. Our basis
points for the internal validation in this case are the residuals of the observed time se-
ries and the fitted values which we transform non-parametricly with the empirical cdf to
the unit cube. We simulate now 1135 values from the estimated vector autoregressive
para-meters and we calculate the residuals of the observed data and our simulated values.
Then we transform them non-parametricly to the unit cube and apply the Cramér test
with our basis points.
For the internal validation of the JMCMC, we transform the observed data parametricly to
the unit cube using the estimated posterior mode of the marginal time series parameters,
the transformation 4.1 and the cdf of the standard normal distribution. This constitutes
our point of comparison for this third method. We simulate then 1135 data points from a
D-vine consisting of pairs of t-copulas with the estimated posterior modes of the JMCMC
and test them against our point of comparison with the Cramér test.
For the fourth method, we transform the observed values to the unit cube like in the pre-
vious method and this is also our basis point. Then we sample 1135 data points from a
D-vine with the estimated parameters where the df parameters of the conditional copulas
are fixed to 100 and the corresponding correlation parameters are fixed to 0. We perform
then the Cramér test against the basis point.
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After 100 replications, we get the following results:

Nr. Description of the Estimation Method Nr. of rejections

1 marginal AR(1) and four dimensional t-Copula 58
2 Vector Autoregressive Process of Order 1 64
3 Joint Bayesian Estimation with marginal AR(1) 43

and D-Vine of t-Copulas (JMCMC)
4 Joint Bayesian Estimation of the reduced model: 34

marginal AR(1), unconditional Copulas as t-Copulas,
conditional Copulas with correlation 0 and degrees
of freedom = 100

This indicates that the fit of the D-vine with bivariate t-copulas as building blocks
is better than the one of the four-dimensional t-copula and of the vector autoregressive
process of order 1. This observation is in line with the results of the quick check denoted
above. However, we remark here that the reduced model has a better validation and it
seems that this reduced model is enough for a good fit to the data.

5.6 Bayesian Model Selection

Another very interesting aspect is the Bayesian model selection. We have fitted 6 different
models M1, . . . ,M6 with a MCMC method where model Mk has parameters θk. Now, we
want to compare them on the basis of posterior model probabilities which are given by

P (Model Mk|data), k = 1, . . . , 6.

Since we have already fitted all models in a Bayesian setup, we will use the method
of Congdon (2006). Our approach follows the presentation of Czado and Min (2007).
Congdon makes the assumptions that the distribution of the data is independent of {θj 6=k}
given Mk. Furthermore, he assumes independence among all θk given Model M . Then he
shows that the posterior distributions are independent and can be sampled individually.
He uses the relation

P (M = Mk|data,θ) ∝ P (data|θ,M = Mk)P (θ|M = Mk)P (M = Mk). (5.2)

So if we assume that the 6 independent MCMC runs result in

M1 : θ
(t)
1 , r = 1, . . . R p(θ1|data)

... which approximate
...

M6 : θ
(t)
6 , r = 1, . . . R p(θ6|data)

we get an estimator. We use {θ(r) := (θ
(r)
1 , . . . ,θ

(r)
6 ), r = 1, . . . R} and hence, we can

approximate

P (M |data) =

∫
P (M |θ, data)p(θ|data)dθ
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by

P ( ˆM |data) :=
1

R

R∑
r=1

P (M |θ(r), data).

Using the equation (5.2), we can estimate P (M = Mk|data,θ(r)) by

w
(r)
k :=

G
(r)
k∑6

j=1G
(r)
k

,

where

G
(r)
k := exp(L

(r)
k − L

(r)
max)

L
(r)
k := log(P (data|θ(r),M = Mk)P (θ(r)|M = Mk)P (M = Mk))

L(r)
max := max

k=1,...,6
L

(r)
k .

Therefore, we get

T̂k :=
1

R

R∑
r=1

w
(r)
k

as the estimator for P (M = Mk|data).

We have performed a Bayesian estimation for the following six methods:

Nr. Description of the Estimation Method

1 Joint Bayesian Estimation with marginal AR(1) and D-Vine of
t-Copulas (JMCMC)

2 Joint Bayesian Estimation of the reduced model of 1: marginal
AR(1), unconditional copulas as t-copulas, conditional copulas with
correlation 0 and degrees of freedom = 100

3 Joint Bayesian Estimation with marginal AR(1) and D-Vine of
normal copulas (approximated by t-copula with df=100)

4 Joint Bayesian Estimation of the reduced model of 4: marginal
AR(1), unconditional Copulas as gauss copulas (approximated by
t-copula df=100), conditional copulas with correlation 0

5 marginal AR(1) and four-dimensional t-Copula
6 marginal AR(1) and four-dimensional t-Copula with the conditional

correlation parameters fixed to 0

After the MCMC simulation, we got the following results:

(1) cf. Table 5.5
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(2) cf. Table 5.6

(3)

2.5% 5% 50% 95% 97.5% mean mode C-MLE

ρ12 0.30 0.31 0.35 0.40 0.41 0.35 0.35 0.35
ρ23 0.36 0.36 0.41 0.45 0.46 0.41 0.41 0.39
ρ34 0.55 0.56 0.59 0.62 0.63 0.59 0.59 0.57
ρ13|2 0.01 0.02 0.07 0.12 0.13 0.07 0.07 0.09
ρ24|3 −0.01 0.01 0.06 0.10 0.11 0.05 0.05 0.04
ρ14|23 −0.03 −0.03 0.03 0.08 0.09 0.03 0.03 0.04

2.5% 5% 50% 95% 97.5% mean mode marg. MLE

σ2
1 0.41 0.41 0.44 0.47 0.48 0.44 0.44 0.44
γ1 0.68 0.68 0.71 0.74 0.75 0.71 0.71 0.71
σ2

2 0.47 0.48 0.51 0.55 0.56 0.51 0.51 0.52
γ2 0.63 0.63 0.66 0.69 0.70 0.66 0.66 0.70
σ2

3 0.45 0.46 0.49 0.53 0.54 0.49 0.49 0.49
γ3 0.52 0.52 0.56 0.59 0.59 0.56 0.56 0.63
σ2

4 0.47 0.47 0.51 0.55 0.55 0.51 0.51 0.50
γ4 0.48 0.48 0.52 0.55 0.56 0.52 0.52 0.63

Estimated posterior mean, mode and quantiles of the joint MCMC as well as
marginal MLE and C-MLE (TSP-MLE) for marginal AR(1) and D-Vine of nor-
mal copulas (approximated by t-copula with df=100)

(4)

2.5% 5% 50% 95% 97.5% mean mode C-MLE

ρ12 0.30 0.31 0.35 0.39 0.40 0.35 0.35 0.35
ρ23 0.36 0.37 0.41 0.45 0.46 0.41 0.41 0.39
ρ34 0.55 0.55 0.59 0.62 0.63 0.59 0.59 0.57

2.5% 5% 50% 95% 97.5% mean mode marg. MLE

σ2
1 0.40 0.41 0.44 0.47 0.48 0.44 0.44 0.44
γ1 0.67 0.68 0.71 0.74 0.75 0.71 0.72 0.71
σ2

2 0.48 0.48 0.51 0.55 0.56 0.51 0.51 0.52
γ2 0.62 0.63 0.66 0.69 0.70 0.66 0.66 0.70
σ2

3 0.45 0.46 0.49 0.53 0.54 0.49 0.49 0.49
γ3 0.51 0.52 0.55 0.58 0.59 0.55 0.55 0.63
σ2

4 0.47 0.48 0.51 0.55 0.56 0.51 0.50 0.50
γ4 0.49 0.49 0.52 0.55 0.56 0.52 0.52 0.63

Estimated posterior mean, mode and quantiles of the joint MCMC as well as
marginal MLE and C-MLE (TSP-MLE) of the reduced model of 4: marginal AR(1),
unconditional Copulas as gauss copulas (approximated by t-copula df=100), condi-
tional copulas with correlation 0
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(5)

2.5% 5% 50% 95% 97.5% mean mode C-MLE

ν 8.17 8.42 10.25 12.64 13.35 10.39 10.03 9.59
ρ12 0.28 0.29 0.33 0.38 0.39 0.33 0.33 0.30
ρ23 0.34 0.35 0.40 0.45 0.45 0.40 0.39 0.34
ρ34 0.54 0.55 0.58 0.62 0.62 0.58 0.59 0.58
ρ13|2 −0.01 0.00 0.05 0.10 0.12 0.05 0.05 0.01
ρ24|3 −0.02 −0.01 0.05 0.10 0.11 0.05 0.05 0.02
ρ14|23 −0.05 −0.03 0.02 0.07 0.08 0.02 0.02 0.03

2.5% 5% 50% 95% 97.5% mean mode marg. MLE

σ2
1 0.41 0.41 0.44 0.48 0.49 0.45 0.44 0.44
γ1 0.67 0.67 0.71 0.74 0.74 0.70 0.71 0.71
σ2

2 0.46 0.47 0.50 0.54 0.55 0.50 0.50 0.52
γ2 0.62 0.63 0.66 0.69 0.70 0.66 0.66 0.70
σ2

3 0.45 0.45 0.49 0.52 0.53 0.49 0.49 0.49
γ3 0.53 0.53 0.57 0.60 0.60 0.57 0.57 0.63
σ2

4 0.47 0.47 0.51 0.55 0.55 0.51 0.51 0.50
γ4 0.49 0.50 0.54 0.57 0.58 0.54 0.54 0.63

Estimated posterior mean, mode and quantiles of the joint MCMC as well as
marginal MLE and C-MLE (TSP-MLE) for marginal AR(1) and four-dimensional
t-Copula

(6)

2.5% 5% 50% 95% 97.5% mean mode C-MLE

ν 5.80 6.08 7.44 9.30 9.79 7.54 7.32 9.59
ρ12 0.27 0.28 0.33 0.38 0.39 0.33 0.33 0.30
ρ23 0.34 0.35 0.40 0.45 0.46 0.40 0.40 0.34
ρ34 0.54 0.55 0.59 0.62 0.63 0.59 0.59 0.58

2.5% 5% 50% 95% 97.5% mean mode marg. MLE

σ2
1 0.40 0.41 0.44 0.48 0.48 0.44 0.44 0.44
γ1 0.67 0.67 0.71 0.74 0.74 0.71 0.71 0.71
σ2

2 0.46 0.47 0.50 0.54 0.54 0.50 0.50 0.52
γ2 0.62 0.63 0.66 0.69 0.70 0.66 0.66 0.70
σ2

3 0.45 0.46 0.49 0.52 0.53 0.49 0.49 0.49
γ3 0.52 0.53 0.56 0.59 0.60 0.56 0.56 0.63
σ2

4 0.47 0.48 0.51 0.55 0.56 0.51 0.51 0.50
γ4 0.50 0.50 0.54 0.57 0.57 0.54 0.54 0.63

Estimated posterior mean, mode and quantiles of the joint MCMC as well as
marginal MLE and C-MLE (TSP-MLE) for marginal AR(1) and four-dimensional
t-Copula with the conditional correlation parameters fixed to 0
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Now we can calculate the posterior model probabilities calculated with the method of
Congdon as described above. This yields the following results:

Nr. Description of the Estimation Method T̂k

1 Joint Bayesian Estimation with marginal AR(1) and D-Vine of 4.2689 · 10−06

t-Copulas (JMCMC)
2 Joint Bayesian Estimation of the reduced model of 1: marginal 0.0351

AR(1), unconditional copulas as t-copulas, conditional copulas with
correlation 0 and degrees of freedom = 100

3 Joint Bayesian Estimation with marginal AR(1) and D-Vine of 4.5999 · 10−13

normal copulas (approximated by t-copula with df=100)
4 Joint Bayesian Estimation of the reduced model of 4: marginal 3.2536 · 10−14

AR(1), unconditional Copulas as gauss copulas (approximated by
t-copula df=100), conditional copulas with correlation 0

5 marginal AR(1) and four-dimensional t-Copula 0.3245
6 marginal AR(1) and four-dimensional t-Copula with the conditional 0.6404

correlation parameters fixed to 0

These results indicate clearly that the model with a marginal AR(1) structure and
a four-dimensional t-copula where the conditional correlation parameters are fixed to 0
gives the best fit to the observed data. This is quite in contrast to the results of the
internal validation of the different estimation methods where the JMCMC showed the
lowest rejection rate.



Chapter 6

Conclusion

We have seen in the simulation studies in the previous chapters that the joint Bayesian es-
timation of marginal AR(1) time series parameters and D-vine t-copula parameters works
very well in two dimensions as well as in four dimensions, especially for the time series
and correlation parameters. We used a Metropolis-Hastings algorithm with independence
proposal density. Therefore, we had to optimize the posterior density (up to constants)
to find the mode and the Hessian at the mode. This took us most of the calculation time
so that the operation of this algorithm required a long calculation period. Additionally,
the ML estimators are very close to these estimated values so that you cannot recognize
a significant advantage of the MCMC method with regard to the preciseness of the esti-
mates. Only when we have estimated real Australian load data in the four-dimensional
case, the autoregressive dependency parameters differed substantially. The MLE values
even lie outside the 95 % credible interval.

Furthermore, we performed a comparison study between the joint Bayesian estimation
of all parameters and a two-step approach. We hereby estimated the time series parame-
ters first and transformed then the observed time series with these estimates and the cdf
of the standard normal distribution to the unit cube to estimate the copula parameters.
Our study shows that both estimation methods are very close to each other. To get an
even better comparison, it is desirable that the marginal time series parameters are also
estimated in a Bayesian setting. Perhaps, you could use the posterior estimates of the
time series parameters to calculate a prior distribution for the copula parameters. There
is still further research to do.

We also performed an internal validation of different models. At first, we encoun-
tered big difficulties in comparing the different models. How can you compare a vector
autoregressive model to a four-dimensional t-copula with AR(1) margins to a D-vine of
bivariate t-copulas with AR(1) margins. How can we give consideration to the sequence
of the observations since this is an important point for time series models. Finally, we
decided to use a multivariate two-sample test on the transformed data on the unit cube
to assess the fit of the model. In this area, further proceedings are possible. A test for
comparing these different models with considering the marginal situation is very desirable.
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Finally, we conducted a Bayesian Model choice between 6 different models. Hereby,
we used the method of Congdon (2006). It yields the result that the reduced model of a
four-dimensional t-copula with all conditional correlation parameters fixed to zero has the
best fit of all considered methods. This result is quite in contrast to the prior ones. Since
we do not only estimate the dependency parameters, but also the marginal time series
parameters, the power of this method of Congdon is not assured. There remains a lot of
work to do with regard to a good model selection criteria for frequentist and Bayesian
models.

Our implemented algorithm only deals with marginal AR(1) models. It would be very
desirable to extend this work to general ARMA and/or GARCH models to be able to
model a wide variety of different data.
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Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statis-
tics 22 (4), 1701 – 1762.

Weron, R. (2006). Modeling and Forecasting Electricity Loads and Prices. Chichester,
GB: Wiley & Sons.

Wise, J. (1955). The Autocorrelation Function and the Spectral Density Function.
Biometrika 42 (1/2), 151 – 159.

Yule, G. U. and M. G. Kendall (1965). An Introduction to the Theory of Statistics. Charles
Griffin & Company.

Zellner, A. (1971). An introduction to Bayesian inference in econometrics. Wiley & Sons.


