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2.2 Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Non-parametric projection estimation . . . . . . . . . . . . . . . . . 8

3 Penalised projection estimation in the continuous time framework 15
3.1 Penalisation and projection space selection . . . . . . . . . . . . . . 15
3.2 Oracle inequality for penalised projection estimation . . . . . . . . . 20
3.3 Estimation of smooth univariate Lévy densities . . . . . . . . . . . 21
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1 Introduction
The past months, in particular since July 2007, are more or less characterised by
the worst worldwide financial and economic crisis since 1929. Comments on the
causes and backgrounds were made from many different kind of people – politicians,
economists and mathematicians – to just name a few. Headlines like “Did math
formula cause financial crisis?” and “The formula that killed Wall Street” are found
frequently. All these headlines refer to the Gaussian copula introduced in Li [27].

In a press release from 1st April 2009, the Deutsche Mathematiker-Vereinigung
(DMV) represented by Bargel and Wenzel retorted the blame. In particular, Bargel
and Wenzel [1] claims that many mathematical terms are misunderstood and that
it is not enough to employ a qualified mathematician in a bank if he (or she) is
ignored in the decision process of the management. ([1] [. . . ], dass viele mathematis-
che Begriffe falsch verstanden werden. Und es hilft [. . . ] nicht, einen kompetenten
Mathematiker in einer Bank zu beschäftigen [. . . ], ihn bei wichtigen Vorstand-
sentscheidungen aber außen vor zu lassen.”) However, Bargel and Wenzel [1] also
explains that new models are formed using Lévy processes but that these are not
established as a business standard yet. ([1] “Neue Modelle werden mittels sogenan-
nter Lévy-Prozesse gestaltet, [. . . ] Allerdings haben sie sich noch nicht als Standard
in der Praxis etabliert.”)

A more vigourous appeal can be found in Szpiro [38] published two weeks
earlier. On the one hand, Szpiro [38] explains the mechanism of the incorrect
usage of Li’s formula in simple words. On the other hand, Paul Embrechts is
recited who warned already in 2001 that the guileless usage of simple risk valuation
could cause a crisis and even destabilize an economy . ([38] “[. . . ], dass die arglose
Verwendung simpler Risikobeurteilungen eine Krise heraufbeschwören und sogar
eine Wirtschaft destabilisieren könne [. . . ].”)

Naturally, the howl for regulation of the financial markets is strong in these
times and many discussions are held on the question of how to prevent the financial
industry from repeating their mistakes. However, it is evident from the simple call
for “better” models that many business men in the banking and finance sector and
also politicians are still likely to confuse mathematical models and reality. Thus,
the claim for worst-case methods (cf. Föllmer [21]), where one compares multiple
types of models and acts in compliance with the worst case, should strengthen.

Stable models were first proposed by Mandelbrot [30]. However, these models
are extreme in the sense that stable distributions (excluding the Gaussian) do not
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1 Introduction

have a finite variance. The use of more general Lévy processes in mathematical
finance goes back to Eberlein and Keller [13]. In the last decade, many subclasses of
Lévy processes were introduced and investigated, e. g. the normal inverse Gaussian
(cf. Barndorff-Nielsen [2]), the CGMY (cf. Carr, Geman, Madan and Yor [9]) and
the variance Gamma model (cf. Carr, Madan and Chang [10]). Recently, Cariboni
and Schoutens [8] investigated Lévy processes in credit risk.

Clearly, the models to be used can be quite versatile. However, we recall that,
despite model risk, there is also calibration risk, which cannot be neglected. Taking
different parametric models into account (like the ones mentioned above) and mak-
ing decision in compliance with all of them, is certainly a huge leap forward. Nev-
ertheless, including non-parametric (Lévy) models allows for additional so-called
stylised effects. Taking such models into account as well, we diversify some of
the risk of relying on a collection of models neglecting some effects all together.
Figueroa-López and Houdré [18, 19] proposed a non-parametric estimation method
for the Lévy density of a Lévy process based on the observation of the correspond-
ing Poisson random measure. Figueroa-López [17] started to enhance this method
to the case, where the Lévy process is observed on a discrete time grid only. Since
high-frequency data is commonly available for most (liquid) assets, the approach
seems to be promising to be used in mathematical finance. However, the frequency
of observations to be made remains vague, and so does the effect of the presence
of a Brownian motion on the quality of the estimate in a neighbourhood of the
origin.

In the following, we investigate these issues. Let us describe the outline of
the thesis. Chapter 2 is dedicated to recall the fundamentals of Lévy processes
and to give a brief introduction into the (Hilbert space theory based) projection
estimation method for Lévy densities. In Chapter 3 thereafter, we develop further
methodology for the estimation in the continuous time (CT) framework, where we
explicitly assume that we observe the Poisson random measure associated with a
concerning Lévy process. Upon this assumption we describe a penalisation method
used as a data-driven criterion to select an appropriate projection space for the
estimation method introduced in Section 2.3. Moreover, we give convergence rates
for the (combined) penalised projection estimation method in the case of estimating
so-called Besov-type smooth Lévy densities.

In Chapter 4, we adapt the methods of projection estimation to the discrete
time (DT) framework, where we assume that we observe the Lévy process at
equidistant points in time only. Furthermore, we connect the mean squared errors
of projection estimation in CT and DT and impose conditions on the observation
grid such that the additional error from discretisation becomes asymptotically
negligible. Then in Chapter 5, we analyse the validity of the conditions mentioned
above in the case of estimating the restriction of the Lévy density to a Borel
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set away from the origin. Firstly, we deal with the case of the composition of
a Brownian motion with drift and compound Poisson jumps. Secondly, we deal
with the case of the composition of a Brownian motion with drift and an α-stable
jump component. Lastly, we analyse the general case of uni- and multivariate Lévy
processes.

Chapter 6 is dedicated to the penalisation method in the discrete time frame-
work. We develop an oracle inequality for the mean squared error of penalised
projection estimation in DT and connect this with an approximation result for
multivariate Lévy densities belonging to some Sobolev space. Thereupon, we come
up with a similar result for the convergence rates as shown for the continuous time
framework. Finally, Chapter 7 provides an explicit numerical study of the different
cases, analysed theoretically before.
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2 Preliminaries
In the following, we introduce briefly some general notation used throughout this
thesis and recall the fundamentals of Lévy processes. Thereafter, we present the
non-parametric estimation method for Lévy densities based on Figueroa-López
and Houdré [18, 19].

2.1 General notation
Throughout this thesis, let (Ω,F , (Ft)t∈R+

0
, P ) be a filtered probability space upon

which all random variables and stochastic processes are assumed to be defined
on. The filtration (Ft)t∈R+

0
is assumed to satisfy the usual conditions, i. e. it is

right-continuous and complete.
For an arbitrary (in our case normed) space X, we denote its Borel σ-field

by B(X) and write λX for the Lebesgue measure on (X,B(X)). The corresponding
Lebesgue spaces of (equivalence classes of) functions that are q-th power integrable
for some q ∈ [1,∞[ or essentially bounded in the case of q = ∞, we denote
by Lq(X). We denote the norm in an Lq-space by ‖·‖q. Additionally, in a finite
dimensional real space, e. g. Rd, we denote the Euclidean norm by ‖·‖2 and the
maximum norm by ‖·‖∞ := maxk=1,...,d|·k| as well. Moreover, we abbreviate the
Borel σ-field of the Euclidean space by Bd := B(Rd). Moreover, for a left-hand
limit, or limit from below, we write lims↗t := lims→t;s<t and for a right-hand limit,
or limit from above, we write lims↘t := lims→t;s>t.

For a random variable X : Ω→ Rd, we denote its law under P by PX := L (X),
its (cumulative) distribution function by FX := FPX , its tail distribution func-
tion by F̄X := 1 − FX and its characteristic function by F̂X := F̂PX . If PX has
a (probability) density, we denote it accordingly by F ′X := F ′PX . If two random
variables X1, X2 have the same distribution, we write X1

d= X2. Due to its re-
markably importance, we use special identifiers for the univariate standard normal
distribution N (0, 1). In particular, ϕ denotes the standard normal density, Φ its
(cumulative) distribution function and Φ̄ its tail distribution function.

We denote the set of positive integers by N and the set of non-negative integers
by N0. Analoguously, we set R+ :=]0,∞[, R− :=]−∞, 0[ and R+

0 := [0,∞[. We
refer to the List of Notation and the List of Abbreviations at the end of this thesis
for further notation and abbreviations.
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2 Preliminaries

2.2 Lévy processes
The class of Lévy processes is central to the theory of stochastic processes. Below,
we give a definition of Lévy processes that fits best into our framework and re-
call the close connection between the former and infinitely divisible distributions.
Then we give expositions of the Lévy-Khintchine representation and the Lévy-Itô
decomposition. We refer to the monographs Sato [35] and Bertoin [4] for further
reading. An introduction to the use of Lévy processes in Finance is provided in
Schoutens [37]. Additionally, the latter gives an at length illustration using real
market data.

Definition 2.2.1 (Càdlàg paths) A stochastic processes

X : R+
0 × Ω→ Rd; (t, ω) 7→ Xt(ω) = (X1,t(ω), . . . , Xd,t(ω)) (2.1)

is said to have càdlàg paths if

(i) ∀t ∈ R+
0 : lims↘tXs = Xt (continue à droite),

(ii) ∀t ∈ R+
0 : ∃Xt− := lims↗tXs (limitée à gauche).

For every stochastic process X with càdlàg paths, we denote ∆Xt := Xt −Xt− .

Definition 2.2.2 (Lévy process) An Rd-valued stochastic process X adapted to
the filtration (Ft)t∈R+

0
is called a Lévy process w. r. t. (Ft)t∈R+

0
if

(i) X0 = 0 a. s.,

(ii) ∀s, t ∈ R+
0 : s ≤ t⇒ Xt −Xs is independent of Fs,

(iii) ∀r ∈ R+
0 ∀s, t ∈ R+

0 : Xt+r −Xt
d= Xs+r −Xs,

(iv) X has càdlàg paths.

Definition 2.2.3 (Infinitely divisibile distributions) Let Q be a probability
measure on (Rd,Bd), then Q is called infinitely divisible if

∀n ∈ N : ∃Qn : Q = Q∗nn , (2.2)

where Qn is a probability measure on (Rd,Bd) and ∗ denotes the convolution
operator, i. e.

∀B ∈ Bd : Q1 ∗Q2(B) =
∫
Rd

Q1(B − x)Q2(dx) (2.3)

for probability measures Q1, Q2 on (Rd,Bd).
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2.2 Lévy processes

The correspondence of Lévy processes and infinitely divisible distributions was
one of the essential results of Paul Lévy (cf. Sato [35, Theorem 7.10]). On the
one hand, let X be a Lévy process, then Qt := L (Xt) is infinitely divisible for
all t ∈ R+

0 . On the other hand, let Q̃ be an infinitely divisible distribution, then
there is a Lévy process X̃ with L (X̃1) = Q̃.

Lévy-Khintchine representation
In addition to the concept described above, an analysis of the infinitely divisible
distributions’ characteristic functions discloses another useful representation of all
Lévy processes. We define the punctured Euclidean space by

(Rd
◦, ‖·‖) := (Rd \ {0}, ‖·‖2),

and denote its Borel σ-field by Bd
◦ .

Definition 2.2.4 (Lévy measure) A measure ν on (Rd
◦,B

d
◦) is called a Lévy

measure if ∫
Rd◦

(
‖x‖2 ∧ 1

)
ν(dx) <∞. (2.4)

Let Q be an infinitely divisible distribution on (Rd,Bd). Then, by a well-known
result from Lévy and Khintchine (cf. Sato [35, Theorem 8.1]), there exist unique
parameters γ ∈ Rd, Σ ∈ Rd×d symmetric positive semi-definite and a unique Lévy
measure ν on (Rd

◦,B
d
◦) such that for all z ∈ R

F̂Q(z) = exp

i〈γ, z〉 − 〈z,Σz〉2 +
∫
Rd◦

(
ei〈z,x〉 − 1− i〈z, x〉1[0,1](‖x‖)

)
ν(dx)

 (2.5)

is the characteristic function of Q. Let (γ,Σ, ν) be as before, then there is a unique
Lévy process X such that E[ei〈z,X1〉] is given by (2.5). The triplet is called Lévy-
Khintchine (or generating) triplet of X. The truncation point of the small jumps
is chosen arbitrarily as equal to one.

Lévy-Itô decomposition
The so-called Lévy-Itô decomposition provides another insight into the interre-
lation between an infinitely divisible distribution, its generating triplet and the
corresponding Lévy process.
Definition 2.2.5 (Poisson random measure) Let χ be a σ-finite measure on
the space (R+

0 ×Rd
◦,B(R+

0 ×Rd
◦)). A mapping J : B(R+

0 ×Rd
◦)×Ω→ N0∪{∞} is

called Poisson random measure (PRM) on (R+
0 ×Rd

◦,B(R+
0 ×Rd

◦)) with intensity
measure χ if

7



2 Preliminaries

(i) J(B, ·) ∼ Poi(χ(B)) for all B ∈ B(R+
0 × Rd

◦),

(ii) the random variables J(B1, ·), . . . , J(Bn, ·) are independent for pairwise dis-
joint sets B1, . . . , Bn ∈ B(R+

0 × Rd
◦),

(iii) J(·, ω) is a measure on (R+
0 × Rd

◦,B(R+
0 × Rd

◦)) for every ω ∈ Ω.

Let X be a Lévy process with generating triplet (γ,Σ, ν) and Σ1/2 ∈ Rd×d be the
Cholesky triangle of Σ. Then, by a result from Lévy and Itô (cf. Sato [35, Theo-
rem 19.2]), there exist an Ω′ ⊆ Ω with P (Ω′) = 1, a standard Brownian motion

W : R+
0 × Ω′ → Rd; (t, ω) 7→ Wt(ω) (2.6)

and a Poisson random measure

J : B(R+
0 × Rd

◦)× Ω′ → R; (B,ω) 7→ #{t ∈ R+
0 : (t,∆Xt(ω)) ∈ B} (2.7)

on (R+
0 ×Rd

◦,B(R+
0 ×Rd

◦)) with intensity measure λR+
0
×ν such that almost surely

Xt = γt+ Σ1/2Wt

+
∫∫

[0,t]×{x:‖x‖>1}

xJ(ds, dx) + lim
ε↘0

∫∫
[0,t]×{x:ε<‖x‖≤1}

x (J(ds, dx)− dsν(dx)) ,


(2.8)

where W is independent from X −W .

2.3 Non-parametric projection estimation
This section is dedicated to introduce the non-parametric estimation method for
Lévy densities based on Figueroa-López [15] and Figueroa-López and Houdré [18].
The main background ideas come from Reynaud-Bouret [33] and Kutoyants [26],
who considered the problem of estimating the intensity measure of Poisson ran-
dom measures with finite activity and Barron, Birgé and Massart [3], Birgé and
Massart [5] and Ibragimov and Hasminskii [22], who dealt with the problem of
density estimation based on i. i. d. random variables.

Continuous time framework and assumptions
Let X be a Lévy process with generating triplet (γ,Σ, ν). In the continuous time
framework (CT), we always assume that we explicitly observe the PRM J given
by (2.7).
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2.3 Non-parametric projection estimation

Assumption 2.3.1 (Existence of a Lebesgue density)
Throughout, the Lévy measure ν is assumed to be absolutely continuous with respect
to the Lebesgue measure on (Rd

◦,B
d
◦). We denote its Radon-Nikodym derivative

by ν ′ : Rd
◦ → R+

0 .

Below, we present the projection estimation approach from [18] for the Lévy den-
sity ν ′ restricted to a Borel set D ∈ Bd

◦ called domain of estimation. The results
shall be our motivation for transferring the methods from the continuous time
framework, where estimation is based on the observation of the PRM J , to a
framework, where we base our estimators solely on the observation of the incre-
ments of X on a discrete time grid. This will be done in Chapter 4. We start with
a simple explicit example.
Example 2.3.2 (Brownian motion with compound Poisson jumps)
Let X be the composition of a standard Brownian motion W and a fully compen-
sated compound Poisson process (independent of W ) with rate λ = 10 and jump
sizes Zk ∼ χ2

4. The Lévy-Itô decomposition simplifies to

Xt = Wt +
Nt∑
k=1

Zk − E[Nt] E[Z1],

where the Poisson process N , the Brownian motion W and the family {Zk}k∈N
are independent. A sample path X(ω) on the time horizon [0, 100] is shown on the
left-hand side of Figure 2.1. Assume, we choose D =]0, 20]. Then we construct an
estimator for the restriction of ν ′ to D using the information provided by

{J(B) : B ∈ B([0, 100]× D)}.

The right-hand side of Figure 2.1 shows the corresponding jumps (t,∆Xt(ω)).The
expected value for the number of jumps was E[N100] = 1000, whereas in this sam-
ple, N100(ω) = 1006 jumps occurred.

Apparently, the Lévy density may have a singularity at the origin in the light
of Definition 2.2.4. Therefore, we have to find an appropriate but general enough
space to allow estimation in a neighbourhood of the origin as well as away from it.
In the following, estimation of the Lévy density is based on Hilbert space theory.
Let µ be a known measure on (Rd

◦,B
d
◦) equivalent to the Lebesgue measure on this

space. Under Assumption 2.3.1, the Lévy measure is, again, absolutely continuous
w. r. t. µ. We denote the corresponding Radon-Nikodym derivative by p := pµ.
Assumption 2.3.3 (Square-integrability of p) The density p is assumed to
be bounded on the domain of estimation D and to belong to L2(D, µ), i. e.

‖p‖2
µ :=

∫
D

p2(x)µ(dx) <∞. (2.9)

9



2 Preliminaries

Brownian motion with compound Poisson χ2
4-jumps

Figure 2.1: We present the sample path X(ω) of a Brownian motion plus fully compen-
sated compound Poisson jumps coming from a χ2

4 distribution (left) and the corresponding
jumps (t,∆Xt(ω)) (right).

In the case we choose D away from zero, we let µ be the Lebesgue measure,
in general. In this case, once the density is bounded on D, Assumption 2.3.1 is
sufficient for Assumption 2.3.3 in the light of Definition 2.2.4. Nevertheless, if we
choose a different reference measure µ rather than the Lebesgue measure, then
the appearing densities have a close interrelation. In particular, we have ν ′ = pµ′,
where µ′ denotes the Lebesgue density of µ. In the following, we make use of this
density relation to derive an estimator for the Lebesgue density ν ′. More precisely,
given an estimator p̂ for the µ-density of ν, a natural estimator for the Lévy density
is given by ν̂ ′ = p̂µ′.

First, let us illustrate the effects of a non-Lebesgue reference measure using the
instance of a univariate α-stable Lévy process.

Example 2.3.4 (Non-Lebesgue reference measure) Let X be an R-valued
Lévy process with generating triplet (γ, σ2, ν) and

ν(dx) = C1

x1+α1R+(x)dx+ C2

|x|1+α1R−(x)dx

with α ∈]0, 2[ and C1, C2 ∈ R+
0 with C1 + C2 > 0. Further, let D ∈ B◦ be bounded

and µ(dx) = |x|−2α−2dx. Then the Lévy density w. r. t. the reference measure µ
satisfies

p(x) = C1x
α+1

1R+(x) + C2|x|α+1
1R−(x)

10



2.3 Non-parametric projection estimation

by virtue of the density identity ν ′ = pµ′. We conclude that∫
D

p2(x)µ(dx) =
∫
D

(
C2

11R+(x) + C2
21R−(x)

)
dx <∞.

Hilbert space projection
In the following, let D ∈ Bd

◦ be a domain of estimation and µ a reference measure
such that Assumption 2.3.3 holds. We recall that L2(D, µ) is a Hilbert space w. r. t.
the inner product 〈·, ·〉µ derived from the norm ‖·‖µ defined in (2.9). This is done
by using the polarisation identity 2〈u, v〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2, which defines
a scalar product for every norm that satisfies the parallelogram law.

Definition 2.3.5 (µ-orthogonal projection) Let S ⊆ L2(D, µ) be a finite di-
mensional linear subspace. Then

PSp := arg min
q∈S

‖q − p‖µ. (2.10)

is called the (µ-orthogonal) projection of p on S.

The µ-orthogonal projection is the best approximation in S. Another representa-
tion of the µ-orthogonal projection is derived from standard Hilbert space algebra.
Let {fk : k = 1, . . . , dS} be a µ-orthonormal basis of S. Then,

PSp =
dS∑
k=1
〈p, fk〉µfk. (2.11)

In general, it is necessary to know the µ-density p in order to calculate its projec-
tion. Hence, a good estimator for PSp is the most we can expect.

We denote the integral of a function f ∈ L1(D, ν) w. r. t. the Lévy measure ν
by

ν(f) :=
∫
D

f(x)ν(dx). (2.12)

We note that, by virtue of Definition 2.2.4, a sufficient condition for the inte-
grability is, for instance, f being bounded, Borel measurable and vanishing in a
neighbourhood of the origin.

Lemma 2.3.6 (Integral representation of “〈·, p〉µ”) The inner product of a
function f and the µ-density p appearing in (2.11) is in fact an integral w. r. t. the
Lévy measure ν, i. e. 〈f, p〉µ = ν (f).

11



2 Preliminaries

Proof:
Clearly, we see that

〈f, p〉µ =
∫
D

f(x)p(x)µ(dx) =
∫
D

f(x)ν(dx) = ν (f)

holds for every f ∈ L2(D, µ). 2

By virtue of Lemma 2.3.6, we rewrite (2.11). In particular, we see that

PSp =
dS∑
k=1

ν(fk)fk (2.13)

holds for every µ-orthonormal basis (µ-ONB) {fk : k = 1, . . . , dS}. Further, we
recall that λRd◦×ν is the intensity measure of the PRM J , motivating the following
definition.

Definition 2.3.7 (Projection estimator in the CT framework)
Let S ⊆ L2(D, µ) be a finite dimensional linear projection space and T > 0. Fur-
thermore, let {fk : k = 1, . . . , dS} be a µ-ONB of S, then for every k = 1, . . . , dS

ν̂(fk) := ν̂(fk;T ) := 1
T

∫∫
[0,T ]×D

fk(x)J(dt, dx) (2.14)

is called the integral estimator (in CT) for ν(fk), and

p̂S := p̂(·;T,S) :=
dS∑
k=1

ν̂(fk)fk(·) (2.15)

is called the projection estimator (in CT) for p on S based on the observation of
the Lévy process X – and the PRM J – on the time horizon [0, T ].

Remark 2.3.8 (Well-definedness of the projection estimator)
Figueroa-López and Houdré [18, Remark 2.2] shows that (2.15) does not depend
on the choice of a particular µ-ONB of S. This is proved by showing that the
projection estimator is equivalent to a minimum contrast estimator. The concept
is used equivalently in Birgé and Massart [5] and is based on classical Hilbert space
theory only.

Proposition 2.3.9 (Unbiased integral estimation) The integral estimator in
CT ν̂(·) for ν(·) defined in (2.14) is unbiased.

12



2.3 Non-parametric projection estimation

Proof:
By definition of the PRM J in (2.7), we conclude that

E [ν̂(f)] = E

T−1
∫∫

[0,T ]×D

f(x)J(dt, dx)

 =
∫
D

f(x)p(x)µ(dx) = ν(f) (2.16)

holds for every f ∈ S. 2

Example 2.3.10 (Continuation of Example 2.3.2)
Figure 2.2 shows the empirical histogram of the jumps of the sample path X(ω)
from Example 2.3.2. The bars are scaled such that the area underneath equals the
empirical intensity of the Poisson random measure, i. e. J([0, T ]×Rd

◦, ω)/T = 10.06
in our sample.

Histogram of jumps ∆XtHistogram of Jumps !Xt

0 5 10 15 20

0
.0

0
.5

1
.0

1
.5

2
.0 Empirical histogram

Lévy density

Figure 2.2: An empirical histogram of the jumps ∆Xt(ω) occurred on the time horizon [0, 100]
as shown on the right-hand side of Figure 2.1 is presented. The bars are scaled such that the area
underneath equals the empirical intensity NT (ω)/T = 10.06 (solid). Moreover, we present the
Lévy density of ν(·) = 10χ2

4(·) of X (dashed).

We consider projection spaces S1, S2 ⊆ L2(D, µ) to illustrate the procedure of
projection estimation. We recall that we have chosen D =]0, 20] as domain of es-
timation. We choose µ to be identical to the Lebesgue measure on D. Since the
density of the χ2

4 distribution is bounded, finite and square-integrable, we observe
that Assumption 2.3.3 is satisfied. Moreover, we choose S1 and S2 such that they
have same dimension, e. g. d1 = d2 = 10. To construct S1, let Dl :=]2(l − 1), 2l]
for all l = 1, . . . , 10. Then let S1 be the projection space consisting of all func-
tions f : D→ R, where the restriction f|Dl of f to every Dl is constant. An ONB

13



2 Preliminaries

of S1 is given by {1/
√

21Dl(·) : l = 1, . . . , 10}. Additionally, let S2 be the projection
space consisting of all polynomials f : D → R with maximum degree 9. An ONB
for S2 is given by the translated and scaled Legendre polynomials on D.

Projection estimation in continuous time framework
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Lévy density

PE w.r.t S2
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Figure 2.3: We present the projection estimate (dashed) w. r. t. the projection space S1 consisting
of all piecewise constant functions on the partion (Dl)l=1,...,10 of D (left) and w. r. t. S2 consisting
of all polynomials on D with maximum degree 9 (right) for the restriction of the Lévy density ν′
of X to D =]0, 20], where ν = 10χ2

4 (solid). The estimates are based on the jumps ∆Xt(ω)
occurred on the time horizon [0, 100] as shown in Figure 2.2.

The results for our sample are shown in Figure 2.3 and Table 2.1. An advantage
of p̂S2 is its intrinsically given smoothness compared to the discontinuous step func-
tion estimator p̂S1. Additionally, Table 2.1 shows that its squared error ‖p− p̂S2‖2

µ

is much smaller than ‖p − p̂S1‖2
µ. However, a major structural disadvantage is

that p̂S2(x) becomes negative for some x ∈ D.

SE AE
S1 0.8008 2.087
S2 0.04279 0.673

Table 2.1: We present the empirical squared error ‖p − p̂S‖2µ (SE) and the empirical absolute
error ‖p− p̂S‖L1(D,µ) (AE) for the projection estimators based on S1 and S2 from Example 2.3.10.

In summary, we suggested a projection estimator for the restriction p|D of the
µ-density p to D. From Table 2.1, we also see that an adequate choice for the
projection space S ⊆ L2(D, µ) is crucial for this method.

14



3 Penalised projection estimation in
the continuous time framework

In this chapter, we develop further methodology for the projection estimation
method introduced in Section 2.3. In Section 3.1, we decompose the mean squared
error of projection estimation using Hilbert space theory to derive a data-driven
criterion to select a projection space from a family of finite dimensional linear
subspaces of L2(D, µ). In Section 3.2, we analyse the quality of this method using
results from Reynaud-Bouret [33] and Figueroa-López and Houdré [19, Chapter 4].
Finally, Section 3.3 is dedicated to the approximation properties of certain families
of projection spaces using results from DeVore and Lorentz [12].

Throughout, let X be a Lévy process with generating triplet (γ,Σ, ν) satisfying
Assumption 2.3.1. Further, let D ∈ Bd

◦ be a domain of estimation and µ a reference
measure such that Assumption 2.3.3 holds. We remain in the framework of esti-
mating the restriction p|D of the µ-density p to D based on the explicit observation
of the PRM J .

3.1 Penalisation and projection space selection
So far, we did not address the issue of how to select an appropriate projection
space S ⊆ L2(D, µ). Example 2.3.10 showed that the quality of the projection
estimator is directly connected to the choice of S. By Definition 2.3.5, from the
Pythagoras identity follows that the mean squared error satisfies

E ‖p− p̂‖2
µ = ‖p− PSp‖2

µ + E ‖PSp− p̂‖2
µ . (3.1)

We call the first term on the right-hand side of (3.1) squared µ-bias and the
second term µ-variance of projection estimation. Certainly, with respect to another
projection space S′ ⊆ L2(D, µ) such that S ⊆ S′, we observe a decrease in the µ-
bias, i. e.

‖p− PS′p‖µ ≤ ‖p− PSp‖µ.

However, we will see that, simultaneously, the µ-variance increases.

15



3 Penalised projection estimation in the continuous time framework

Families of projection spaces
In the following, we use the auxiliary set M as a way to enumerate our projection
spaces. Let {Sm : m ∈M} be a collection of finite dimensional linear subspaces of
the Hilbert space L2(D, µ). For m ∈M , we set

Dm := sup{‖f‖2
∞ : f ∈ Sm, ‖f‖2

µ = 1} (3.2)

and
dm := dim Sm (3.3)

and let {fm,k : k = 1, . . . , dm} be a µ-ONB of Sm. Figueroa-López and Houdré [18,
Remark 3.2] proves that Dm = ‖∑dm

k=1 f
2
m,k‖∞ holds for every µ-ONB of Sm. To

avoid tedious notation, we set

p̂m := p̂(·;T,Sm) and Pmp := PSmp.

Assumption 3.1.1 (Polynomial family of projection spaces)
For the sake of simplicity, we assume throughout that our collection of projection
spaces {Sm : m ∈M} is polynomial, i. e. there exist a > 0 and b ≥ 0 such that

∀n ∈ N : #{m ∈M : dm = n} ≤ anb. (3.4)

Example 3.1.2 (Piecewise polynomials) Let D ⊆ R+ be a compact interval
and M = N. For k ∈ N, a possible collection of projection spaces is given by
the family {Sm : m ∈ M}, where Sm denotes the space of piecewise polynomials
of maximum degree k based on the partition of D into pairwise disjoint inter-
vals D1, . . . , Dm, where µ(Dl) = µ(D)/m for all l = 1, . . . ,m. In the following, we
call the partition Dm = {Dl : l = 1, . . . ,m} the regular partion of D into m classes.

Moreover, since dm = m(k + 1), we observe that for every n ∈ N there is at
most one m ∈M with dm = n. Hence, the described collection is polynomial.

Mean squared error of projection estimation
In an optimal way, we aim for selecting that space out of our collection such that
the projection estimator w. r. t. the chosen space minimizes the mean squared error
(MSE). For T > 0, we restrict ourselves to the subfamily {Sm : m ∈MT}, where

MT := {m ∈M : Dm ≤ T}.

16



3.1 Penalisation and projection space selection

Definition 3.1.3 (Oracle space and estimator) Let T > 0 and MT as above.
Then the space S? := Sm?T is called oracle space, where

m?
T := arg min

m∈MT

E‖p− p̂m‖2
µ, (3.5)

and p̂? := p̂(·;T,S?) is called oracle.

It is obviously not feasible to determine m?
T without prior knowledge of the

density p. Therefore, we aim for establishing a method to dynamically select
a “good” projection space using no more than the observation of the sample
path {Xt(ω) : t ∈ [0, T ]} – and explicitly {J(B,ω) : B ∈ B([0, T ] × D)} – on
the time horizon [0, T ]. Therein, we estimate the µ-density p using the projection
estimator from Definition 2.3.7. In a first step, we give a deeper analysis of (3.1)
and derive an observable statistic that is an unbiased estimator for the MSE.

Proposition 3.1.4 (Mean squared error of integral estimation)
The mean squared error of the integral estimator in CT ν̂(·) for ν(·) defined
in (2.14) is given by

m. s. e. [ν̂(f)] = 1
T
ν(f 2). (3.6)

Proof:
We showed in Proposition 2.3.9 that ν̂(f) is unbiased. Hence, the MSE is deter-
mined by its variance only. From Sato [35, Proposition 19.5] follows (3.6). 2

Proposition 3.1.5 (Mean squared error of projection estimation)
The mean squared error of the projection estimator in CT p̂m for the µ-density p
is given by

m. s. e. [p̂m] = ‖p‖2
µ − E ‖p̂m‖2

µ + 2
T

dm∑
k=1

ν(f 2
m,k). (3.7)

Proof:
First, we recall decomposition (3.1) of the MSE into squared µ-bias and µ-variance.
By the Phytagoras identity, again, we conclude

‖p− Pmp‖2
µ = ‖p‖2

µ − ‖Pmp‖
2
µ (3.8)

for the µ-bias term. Finally, since E[p̂m] = Pmp, we find that

− ‖Pmp‖2
µ = E ‖p̂m − Pmp‖2

µ − E ‖p̂m‖2
µ . (3.9)

Thus, (3.7) follows directly from the combination of (3.1), (3.8) and (3.9), since
Proposition 3.1.4 implies E ‖PSmp− p̂‖

2
µ = T−1∑dm

k=1 ν(f 2
m,k). 2
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3 Penalised projection estimation in the continuous time framework

Corollary 3.1.6 (Mean squared error of integral estimation)
The mean squared error of the projection estimator in CT p̂m for the µ-density p
is given by

m. s. e.[p̂m] = ‖p‖2
µ + E

−‖p̂m‖2
µ + 2

T

dm∑
k=1

ν̂(f 2
k )
 . (3.10)

Proof:
The identity E[ν̂(f)] = ν(f) from Proposition 2.3.9, valid for all f ∈ L1(D, µ),
connects (3.10) directly to (3.7). 2

Penalised projection estimation
We see that the mean squared error of projection estimation is an affine function
of the expectation of the observable statistic

− ‖p̂m‖2
µ + 2

T

dm∑
k=1

ν̂(f 2
k ). (3.11)

This enables us to set up a data-driven criterion, commonly known as model se-
lection via penalisation, to select a projection space. Figueroa-López adapted this
methodology mainly from Barron et al. [3] and Reynaud-Bouret [33]. However,
from the point of view of a statistician, it is favourable to keep the complexity of a
selected model small. It will turn out to be useful, to explicitly include Dm and dm
into the penalty for this purpose, motivating us to use general penalties instead of
restricting ourselves to (3.11).

Definition 3.1.7 (Penalty) A random variable

pen : R+
0 × Ω→ (R+

0 )M ; (T, ω) 7→ (penT (m,ω))m∈M

is called penalty on {Sm : m ∈ M} if it is adapted to the filtration generated by
the Lévy process X.

In the continuous time framework, the penalties used are always of form

penT (m) = c1

T

dm∑
k=1

ν̂(f 2
m,k) + c2Dm

T
+ c3dm

T
(3.12)

for some finite constants c1 > 1 and c2, c3 ≥ 0. The case of c1 = 2 and c2 = c3 = 0
corresponds to (3.11). However, as mentioned before, in some settings it is favour-
able to impose c2, c3 > 0.
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3.1 Penalisation and projection space selection

Definition 3.1.8 (Penalised projection estimator in CT) Let pen be a pe-
nalty on {Sm : m ∈ M}. Then Spen := Smpen

T
is called penalised projection space,

where
mpen
T := arg min

m∈MT

{
−‖p̂m‖2

µ + penT (m)
}
, (3.13)

and p̂pen := p̂(·;T,Spen) is called penalised projection estimator (PPE) w. r. t. pen.

Example 3.1.9 (Continuation of Example 2.3.10)
We illustrate the effect of penalisation for our sample path X(ω) from Exam-
ples 2.3.2 and 2.3.10. Let {Sm : m ∈ M} be the family of piecewise constant
functions on D = ]0, 20] as introduced in Example 3.1.2, and pen(1) and pen(2)

Penalised projection estimation in continuous time framework
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Figure 3.1: We present the PPE (dashed) p̂pen(1) w. r. t. pen(1) yielding S43 as penalised projection
space (left) and p̂pen(2) w. r. t. pen(2) yielding S23 as penalised projection space (right) for the
restriction of the Lévy density ν′ of X to D =]0, 20], where ν = 10χ2

4 (solid). The estimates are
based on the jumps ∆Xt(ω) occurred on the time horizon [0, 100] as shown in Figure 2.2.

be of form (3.12) with c
(1)
1 = 2, c(1)

2 = c
(1)
3 = 0 and c

(2)
1 = 2, c(2)

2 = c
(2)
3 = 1.

Figure 3.1 shows the PPE with respect to the penalties pen(1) and pen(2), while
Table 3.1 compares the complexity of the (penalised) projection spaces, the squared
and the absolute errors. Moreover, the squared error is decomposed into squared
µ-bias and µ-variance. Again, from the statisticians’ point of view, the estimator
with less complexity, i. e. p̂pen(2), is favourable and more visually pleasing. Never-
theless, Table 3.1 shows that the squared error of p̂pen(1) is less than the squared
error of p̂pen(2) for this sample. Moreover, Table 3.1 shows that the error reduction
is due to a high decrease in the squared µ-bias that is not compensated by the small
increase in µ-variance.
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3 Penalised projection estimation in the continuous time framework

mpen
T SE AE SB MVar

pen(1) 43 0.1936 1.267 0.05503 0.1386
pen(2) 23 0.3130 1.380 0.1816 0.1314

Table 3.1: We present the empirical best penalised projection space (mpen
T ), the squared er-

ror ‖p− p̂pen‖2µ (SE) and the absolute error ‖p− p̂pen‖L1(D,µ) (AE) for the penalised projection
estimators based on the penalties from Example 3.1.9. We further decompose the squared error
into squared µ-bias (SB) and empirical µ-variance (MVar).

Recapitulating, we derived a criterion to dynamically select an estimator p̂pen
out of the collection of projection estimators {p̂m : m ∈ MT}. Nevertheless, we
still have to analyse how effective this criterion is in practice.

3.2 Oracle inequality for penalised projection
estimation

Figueroa-López and Houdré [18, 19] explicitly analyse the variance of the PPE
(in CT) p̂pen in comparison with all estimators {p̂m : m ∈ MT}. They derive a
so-called oracle inequality linking the mean squared error of the PPE to the MSE
of the oracle p̂? from Definition 3.1.3.

Figueroa-López and Houdré [19, Chapter 4] gives a full overview of oracle in-
equalities depending on different forms of penalities and proves the corresponding
theorem in detail. We note that these results are one-to-one correspondent to
Reynaud-Bouret [33, Theorem 1].

Theorem 3.2.1 (Figueroa-López and Houdré [19, Theorem 4.1 b / c)])
Let pen be a penalty on {Sm : m ∈ M} such that there are c1 > 1 and c2, c3 > 0,
with either

(i) penT (m) ≥ c1T
−1∑dm

k=1 ν̂(f 2
m,k) + c2T

−1Dm + c3T
−1dm or

(ii) penT (m) ≥ c1T
−1∑dm

k=1 ν̂(f 2
m,k) and both

(a) infm∈M D−1
m

∑dm
k=1 ν(f 2

m,k) > 0 and
(b) infm∈M d−1

m Dm > 0

being satisfied for all m ∈ MT = {m ∈ M : Dm ≤ T}. Then the mean squared
error of the penalised projection estimator from Definition 3.1.8 satisfies

E‖p− p̂pen‖2
µ ≤ C1 inf

m∈MT

(
‖p− Pmp‖2

µ + E[penT (m)]
)

+ C2

T
(3.14)

for some finite constants C1, C2 > 0.
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3.3 Estimation of smooth univariate Lévy densities

Corollary 3.2.2 (Oracle inequality for PPE in CT) Let pen be a penalty on
the family {Sm : m ∈M} of projection spaces such that

penT (m) = c1T
−1

dm∑
k=1

ν̂(f 2
m,k),

for c1 > 1 and conditions (iia) and (iib) of Theorem 3.2.1 hold. Then the PPE p̂pen
from Definition 3.1.8 satisfies

E‖p− p̂pen‖2
µ ≤ C1 E‖p− p̂?‖2

µ + C2

T
(3.15)

for some finite constants C1, C2 > 0, where p̂? is the oracle from Definition 3.1.3.

Proof:
We connect (3.15) with (3.14) in the light of Corollary 3.1.6. 2

For some classes of µ-densities we are able to explicitly determine the oracle
space for each density p and time horizon [0, T ]. Moreover, in these cases it is
possible to determine the rate of convergence in p̂? → p for T → ∞. Then The-
orem 3.2.1 enables us to show that the PPE adapts the properties of the oracle,
despite neither the real density p nor the oracle spaces (m?

T )T>0 are known.

3.3 Estimation of smooth univariate Lévy densities
In this section, we combine our results from Sections 3.1 and 3.2 for the case of
estimating a smooth Lévy density in the continuous time framework. We recall
decomposition (3.1) of the MSE of the projection estimator in squared µ-bias
and µ-variance. We assume that D ∈ B◦ is compact and set

‖p‖D,∞ := sup
x∈D
|p(x)| <∞,

which is finite by virtue of Assumption 2.3.3. Then Proposition 3.1.4 implies that

E‖Pmp− p̂‖2
µ = 1

T

dm∑
k=1

∫
D

f 2
m,k(x)p(x)µ(dx) ≤ dm‖p‖D,∞

T
(3.16)

holds true for every projection space Sm ⊆ L2(D, µ). It remains to analyse the bias
term ‖p−Pmp‖µ. However, this requires additional assumptions. Below, we follow
the concept Figueroa-López [15] adapted from Reynaud-Bouret [33] and Barron
et al. [3]. Nevertheless, we emphasise that the main ideas are adapted from DeVore
and Lorentz [12].
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3 Penalised projection estimation in the continuous time framework

Definition 3.3.1 (Forward difference) The k-th forward difference ∆k
h(f, ·) of

a function f is recursively defined by

∆k
h(f, x) := ∆k−1

h (∆h(f, ·), x)

and
∆h(f, x) := f(x+ h)− f(x).

Definition 3.3.2 (Besov space over Lq) Let r ∈ R+ and q ≥ 2. Then the
space Br,q∞ (D, µ) of all functions f ∈ Lq(D, µ) such that

|f |Br,q∞ := sup
δ>0

1
δr

sup
h∈]0,δ]

‖∆k+1
h (f, ·)‖q <∞, (3.17)

where k = brc, is called Besov space over Lq(D, µ) with degree of smoothness r.

The subscript “infinity” indicates the use of the supremum over δ > 0. DeVore and
Lorentz [12] define Besov spaces Br,qq′ w. r. t. arbitrary q′-norms. However, this is
not necessary for our purposes.

For the class of Besov-type smooth functions, however, we obtain bounds for
the approximation error, when using piecewise polynomials as described in Exam-
ple 3.1.2. The following proposition is directly derived from DeVore and Lorentz [12,
Chapter 2 (10.1)].

Proposition 3.3.3 (Approximation error for Besov-type functions)
Let D ∈ B◦ be a compact interval such that µ(D) < ∞ and assume that the
restriction p|D of the Lévy density p to D satisfies p ∈ Br,q∞ (D, µ) for some r ∈ R+

and q ≥ 2. Further, let k = brc and Sm ⊆ Lq(D, µ) be the space of piecewise
polynomials of maximum degree k based on a partition Dm of D such that

∀D ∈ Dm : µ(D) ≤ m−1µ(D).

Then there is a finite constant c(r) <∞ such that

inf
f∈Sm
‖p− f‖q ≤ c(r)|p|Br,q∞ µ(D)rm−r <∞. (3.18)

Corollary 3.3.4 (Bias of projection estimation) The µ-bias of projection es-
timation is bounded above by

‖p− Pmp‖µ ≤ c(r)|p|Br,q∞ µ(D)1/2−1/q+rm−r <∞, (3.19)

in the setting of Proposition 3.3.3.
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3.3 Estimation of smooth univariate Lévy densities

Proof:
Hölder’s inequality, i. e. ‖f‖2 ≤ ‖f‖q‖1‖q′ for 1/q + 1/q′ = 1/2, links (3.19) to (3.18),
since ‖1‖q′ = (

∫
D µ(dx))1/q′ in our case. 2

Although the Besov spaces seem to be of a rather abstract nature, they appear
to be one of the most general classes of functions, for which (3.19) holds. For
instance, every Lipschitz (or Hölder) continuous function belongs to a particular
Besov space.

Example 3.3.5 (Hölder continuous functions) Let D ∈ B◦ and f ∈ Lq(D, µ)
for some q ≥ 2. Assume there exist k ∈ N and η ∈]0, 1] such that f is k-times
differentiable with

∀h > 0 :
∥∥∥∆h

(
f (k), ·

)∥∥∥
q
≤ Khη

for some finite constant K < ∞. The k-th derivative is said to be Hölder contin-
uous (or Lipschitz continuous if η = 1). Then we have f ∈ Bk+η,q

∞ (D, µ) by virtue
of the Taylor argument f (k)(x) = ∆k

h(f, x)h−k +O(h).

In view of (3.16) and (3.19), we are now able to distinguish the oracle space for
the non-parametric projection estimation of Besov-type smooth Lévy densities and
calculate its rate of convergence in terms of the degree of smoothness r as T tends
to infinity. Thereafter, with Theorem 3.2.1, we show that the penalised projection
estimator is self-adapting to the degree of smoothness, achieving the same rate of
convergence without prior knowledge of r.

Theorem 3.3.6 (Rate of convergence of the oracle) Let X be a univariate
Lévy process with generating triplet (γ, σ2, ν). Further, let D ∈ B◦ be a compact
interval, µ be a reference measure such that µ(D) <∞ and the restriction p|D of p
to D belongs to the Besov space Br,q∞ (D, µ) for some r > 0 and q ≥ 2. Let M = N
and, for each m ∈ M , let Sm ⊆ L2(D, µ) be the space of piecewise polynomials of
maximum degree k = brc based on the regular partition of D into m classes (see
Example 3.1.2). Then the oracle space satisfies m?

T ∼ T 1/(2r+1) as T →∞ and the
projection estimator satisfies

sup
T>0

T
2r

2r+1 E‖p− p̂?‖2
µ <∞.

Proof:
As the preliminaries of Corollary 3.3.4 are met, there exists a finite positive con-
stant K1 <∞ such that

‖p− Pmp‖2
µ ≤ K1m

−2r,

and, since dm = (k + 1)m, there exists another finite constant K2 < ∞ such
that (3.16) implies

E‖Pmp− p̂m‖2
µ ≤ K2

m

T
.
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3 Penalised projection estimation in the continuous time framework

Therefore, we have m. s. e.[p̂m] ≤ K3(m−2r +mT−1) for a finite constant K3 <∞,
where the right-hand side is clearly minimized for mT ∼ T 1/(2r+1) as T → ∞.
Thus, we have

E‖p− p̂?‖2
µ ≤ K3

(⌊
T

1
2r+1

⌋−2r
+
⌊
T

1
2r+1

⌋
T−1

)
= O

(
T
−2r
2r+1

)
completing the proof. 2

Theorem 3.3.7 (Rate of convergence of the PPE) Given the setup of The-
orem 3.3.6, let pen be a penalty on {Sm : m ∈M} with

penT (m) = c1

T

dm∑
k=1

ν̂(f 2
m,k) + c2Dm

T
+ c3dm

T

for some finite constants c1 > 1, c2, c3 ≥ 0. Then

sup
T>0

T
2r

2r+1 E‖p− p̂pen‖2
µ <∞ (3.20)

holds true for the penalised projection estimator from Definition 3.1.8.
Moreover, let a1, a2 > 0 be finite constants and denote by

B(a1, a2) :=
{
f ∈ Br,q∞ (D, µ) : ‖f‖D,∞ ≤ a1 and |f |Br,q∞ ≤ a2

}
the space of all Besov-type smooth functions with supremum and Besov-quasi-norm
bounded by a1 and a2, respectively. Then, additionally,

sup
T>0

T
2r

2r+1 sup
p∈B(a1,a2)

E‖p− p̂pen‖2
µ <∞ (3.21)

holds true for the PPE w. r. t. the penalty pen.

Proof:
As we explicitly allow for c2 = c3 = 0, we show first that the conditions (iia)
and (iib) of Theorem 3.2.1 are met. We recall that D is assumed to be a compact
interval. W. l. o. g., let D = [Dmin, Dmax] ⊆ R+ and µ be the Lebesgue measure.
Then, for fixed m ∈M , we have√

m

Dmax −Dmin
1[Dmin,Dmin+Dmax−Dmin

m [(·) ∈ {f ∈ Sm : ‖f‖µ = 1},

hence Dm ≥ m/(Dmax −Dmin). Thus

inf
m∈M

Dm

dm
≥ inf

m∈M

1
(Dmax −Dmin)(k + 1) > 0,
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3.3 Estimation of smooth univariate Lévy densities

showing that condition (iib) holds true. Additionally,

Dm ≤
(k + 1)2m

Dmax −Dmin

holds. Finally, as
dm∑
l=1

f 2
m,l(·) ≥

m

Dmax −Dmin
1D(·),

we deduce that
inf
m∈M

∑dm
l=1 ν(f 2

m,l)
Dm

≥ ν(D)
(k + 1)2 > 0,

showing that condition (iia) holds true.
Thus, there exist finite constants C1, C2 <∞ such that

E‖p− p̂pen‖2
µ ≤ C1 inf

m∈MT

{
‖p− Pmp‖2

µ + E[penT (m)]
}

+ C2

T
.

Similarly as in the proof of Theorem 3.3.6, we deduce from Corollary 3.3.4 that
there is another finite constant K1 = K1(|p|Br,q∞ ) <∞ such that

‖p− Pmp‖2
µ ≤ K1m

−2r.

Moreover, since dm = (k + 1)m and Dm ≤ µ(D)−1(k + 1)2m hold, we derive
from (3.16) that we have

E[penT (m)] ≤ K2
m

T
for a finite constant K2 = K2(‖p‖D,∞) < ∞. Therefore, the rate of conver-
gence T 2r/(2r+1) in (3.20) follows equivalently to the proof of Theorem 3.3.6.

Moreover, since B(a1, a2) is a compact subspace of Br,q∞ (D, µ), therefore there
exists a uniform bound K ′ <∞ for supf∈B(a1,a2){K1(f), K2(f)}. Hence, the finite-
ness in (3.21) is clear by virtue of (3.20). 2

Remark 3.3.8 We prove Theorem 3.3.7 under weaker assumptions than Figueroa-
López and Houdré [19, Corollary 5.1]. In particular, we explicitly allow for c2 = 0
and c3 = 0. Therefore, we have validated property (3.20) for the penalty

penT (m) = 2
T

dm∑
k=1

ν̂(f 2
m,k), (3.22)

when used for penalised projection estimation of Besov-type smooth Lévy densities.
We recall that Corollary 3.1.6 shows that the mean squared error of projection
estimation is an affine function of the expected value of −‖p̂m‖2

µ+penT (m), in the
case of penalty (3.22). In this sense, (3.22) is unbiased.

Again, from the statisticians’ point of view, it can be favourable to use higher
penalties, in order to keep the complexity of the estimate small. Theorem 3.3.7
shows that we can do so without decreasing the rate of convergence of our estimator.
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4 Projection estimation in the
discrete time framework

The aim of this chapter is to base the method of projection estimation on obser-
vations on a discrete time grid. First, we introduce our observation scheme. Then
we analyse the mean squared error of the resulting estimators. In comparison to
the MSE derived in Section 3.1, we give conditions on the observation grid such
that the additional error from discretisation becomes asymptotically negligible.

Let X be an Rd-valued Lévy process with Lévy-Khintchine triplet (γ,Σ, ν)
and S ⊆ L2(D, µ). Throughout this chapter, we assume that every f ∈ S is inte-
grable and square integrable w. r. t. the Lévy measure ν.

4.1 Observation of Lévy processes on discrete grids
First, let us introduce the observation scheme on a discrete time grid.

Definition 4.1.1 (Discretely observed Lévy process) Let τ > 0. We call the
grid τN0 := {kτ : k ∈ N0} the regular grid with mesh size τ . The k-th observed
increment on the regular grid τN0 of X is given by

X∆τ
k

:= Xkτ −X(k−1)τ . (4.1)

Moreover, we call the observed process

Xτ : R+
0 × Ω; (t, ω) 7→ Xτ

t (ω) = Xτbt/τc(ω) = X0(ω) +
bt/τc∑
k=1

X∆τ
k
(ω) (4.2)

discretisation of X w. r. t the mesh size τ .

Figure 4.1 illustrates the effect of discretisation. Although the Lévy-Itô decom-
position (2.8) gives an insight into the components of a Lévy process, separate
observation of its continuous and its jump part remains theoretical. In particular,
the Poisson integrals related to the PRM J are impossible to observe and jumps
cannot be foreseen. We conclude that the proposed estimators from Section 2.3 and
Chapter 3 remain theoretical as well. Below, we replace them by their pendents
based on the discretisation Xτ .
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4 Projection estimation in the discrete time framework

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

Discretisation of X

t

Lévy process
Discretisation

Figure 4.1: We present the sample path X(ω) from Example 2.3.2 on the time horizon [0, 1] and
the discretisation Xτ (ω) of X w. r. t. the mesh size τ = 0.05.

Definition 4.1.2 (Projection estimator in DT framework)
Let S ⊆ L2(D, µ) be a finite dimensional linear projection space, τ > 0 and T ≥ τ .
Furthermore, let {fk : k = 1, . . . , dS} be a µ-ONB of S and denote T ′τ := τ bT/τc.
Then, for every k = 1, . . . , dS,

ν̃(fk) := ν̃(fk; τ, T ) := 1
T ′τ

bT/τc∑
l=1

fk
(
X∆τ

l

)
, (4.3)

is called the integral estimator (in DT) for ν(fk), and

p̃S := p̃(·; τ, T,S) :=
dS∑
k=1

ν̃(fk)fk(·) = 1
T ′τ

dS∑
k=1

bT/τc∑
l=1

fk(X∆τ
l
)fk(·). (4.4)

is called the projection estimator (in DT) for p on S based on the observation of
the discretisation Xτ on the time horizon [0, T ].

In Chapter 3, the rate of convergence of the penalised projection estimator
over a set of projection spaces {Sm : m ∈ M} was analysed in four steps. Firstly,
given m ∈M , the proof of Proposition 3.1.5 shows that the µ-variance of the pro-
jection estimator w. r. t. the µ-orthogonal projection Pmp of the µ-density p is of
order O(dmT−1). Secondly, for Besov-type smooth Lévy densities, Corollary 3.3.4
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4.2 The critical mesh

verifies that the µ-bias is of order O(d−rm ), where r stands for the degree of smooth-
ness. Thirdly, combining the two results, Theorem 3.3.6 made the oracle and its
rate of convergence in mean squared sense readily available. Lastly, for an adequate
choice of a penalty, Theorem 3.3.7 transfers the result for the oracle to the PPE by
virtue of the oracle inequality from Theorem 3.2.1. In the discrete time framework,
steps 1 and 4 have to be revised. The former is done in Section 4.2 and Chapter 5,
the latter is done in Chapter 6.

4.2 The critical mesh
In the following, we focus on deriving conditions such that the µ-variance term of
projection estimation in DT is of same order as in CT, i. e.

E‖PSp− p̃S‖2
µ = O(dmT−1).

Mean squared error of integral estimation
Definition 4.2.1 (Discretisation bias) Let f ∈ L1(D, ν), then

∆τf := 1
τ

E[f(Xτ )]− ν(f) (4.5)

is called its discretisation bias w. r. t. Xτ .

Since increments of a Lévy process are, by definition, stationary and indepen-
dent, we deduce that

∆τf = Bias [ν̃(f)] = E[ν̃(f)− ν(f)] (4.6)

holds true for all T > 0.
Making use of our notation, the following proposition (cf. Figueroa-López and

Houdré [20, p. 6]) shows the close relation between the MSEs of ν̃(f) and ν̂(f) on
the one hand, and ∆τf on the other hand.

Proposition 4.2.2 (Mean squared error of integral estimation)
The mean squared error of the integral estimator in DT ν̃(·) for ν(·) defined in (4.3)
is bounded by

m. s. e. [ν̃(f)] ≤ (∆τf)2 + 1
T ′τ

∆τf
2 + 1

T ′τ
ν(f 2), (4.7)

where T ′τ = τbT/τc.
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4 Projection estimation in the discrete time framework

Proof:
Figueroa-López [17, p. 5] claims

Var [ν̃(f)] = 1
T ′τ

(1
τ

E
[
f 2(Xτ )

])
− 1
bT/τc

(1
τ

E [f(Xτ )]
)2
.

This can be validated using the standard formula VarX = E[X2]−EX2. Moreover,
we conclude that

m. s. e. [ν̃(f)] = Bias [ν̃(f)]2 + Var [ν̃(f)]

≤ (∆τf)2 + 1
T ′τ

(1
τ

E
[
f 2(Xτ )

]
− ν(f 2) + ν(f 2)

)
holds. Then (4.7) is a direct consequence. 2

The last term in (4.7) is in principal the MSE of ν̂(f), whereas the additional
risk of estimation is incorporated in the discretisation bias of the function f and
its squared pendant f 2.

Bias conditions and conclusion
There are various papers dealing more or less directly with the limiting behaviour
of ∆τf . [. . . ] In our case, it is sufficient to note that

lim
τ→0

1
τ

E[f(Xτ )] = ν(f),

i. e. limτ→0 ∆τf = 0, holds for every function f that is ν-a. e. continuous, bounded
and vanishing in a neighbourhood of the origin (cf. Sato [35, Corollary 8.9]).

For simplicity, we always assume in the following that the mesh size τ is dividing
the time span T , i. e. T ′τ = T .

Condition 4.2.3 (Bias condition BCϑ / BCϑ) Let ϑ > 0 and f ∈ L2(D, µ).
We say that f satisfies the (exclusive) bias condition BCϑ if

∆τf = O(τϑ′) and ∆τf
2 = O(τϑ′) as τ → 0 (4.8)

for every ϑ′ ∈ [0, ϑ[. Moreover, we say that f satisfies the (inclusive) bias condi-
tion BCϑ if (4.8) holds for ϑ′ = ϑ, additionally. Finally, for a finite dimensional
projection space S ⊆ L2(D, µ), we say that S satisfies BCϑ or BCϑ if the respective
bias condition is satisfied for all f ∈ S.

To simplify notation, we consider the case of an inclusive bias condition being
valid in the following two theorems only. We can do this without loss of gener-
ality. Assume f satisfies an exclusive bias condition BCϑ, thus the inclusive bias
condition BCϑ′ is valid for all ϑ′ < ϑ.
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4.2 The critical mesh

Theorem 4.2.4 (Critical mesh (variant 1)) Let S ⊆ L2(D, µ) be a projection
space that satisfies the inclusive bias condition BCϑ for ϑ > 0. Then a mesh size
of τT = O(T−1/(2ϑ)) as T →∞ is sufficient for

sup
T>0

m. s. e. [ν̃(f)]
m. s. e. [ν̂(f)] <∞

for all f ∈ S.

Proof:
We deduce from Proposition 3.1.4 and Proposition 4.2.2 that it is sufficient to
prove supT>0 T (∆τT f)2 <∞ and supT>0 ∆τT f

2 <∞. As the inclusive bias con-
dition BCϑ holds true, (4.8) is equivalent to supτ>0 τ

−ϑ∆τf <∞. Over and above,
the required rate of convergence for the mesh size τT implies supT>0 Tτ

2ϑ
T < ∞.

Hence, we deduce

sup
T>0

T (∆τT f)2 = sup
T>0

Tτ 2ϑ
T (τ−ϑT ∆τT f)2 ≤ sup

T>0
Tτ 2ϑ

T

(
sup
τ>0

τ−ϑ∆τf

)2

<∞.

Moreover, (4.8) for ϑ > 0 implies limT→∞∆τT f
2 = 0, by definition. 2

Theorem 4.2.5 (Critical mesh (variant 2)) Let S ⊆ L2(D, µ) be a projection
space that satisfies the inclusive bias condition BCϑ for ϑ > 0. Then a mesh size
of τT = o(T−1/(2ϑ)) as T →∞ is sufficient that

m. s. e. [ν̃(f)] = m. s. e. [ν̂(f)] + o(T−1)

as T →∞ holds for all f ∈ S.

Proof:
Analogously to Theorem 4.2.4, it is sufficient to prove limT→∞ T (∆τT f)2 = 0
and limT→∞∆τT f

2 = 0. Since the inclusive bias condition BCϑ holds true, (4.8) is
equivalent to supτ>0 τ

−ϑ∆τf < ∞. Additionally, the required rate of convergence
for the mesh size τT implies limT→∞ Tτ

2ϑ
T = 0. Hence, we deduce

lim
T→∞

T (∆τT f)2 = lim
T→∞

Tτ 2ϑ
T (τ−ϑT ∆τT f)2 ≤ lim

T→∞
Tτ 2ϑ

T

(
sup
τ>0

τ−ϑ∆τf

)2

= 0.

Again, (4.8) for ϑ > 0 is sufficient for limT→∞∆τT f
2 = 0, by definition. 2

By virtue of Theorem 4.2.5, we are able to adapt Theorem 3.3.6 to the discrete
time framework.
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4 Projection estimation in the discrete time framework

Theorem 4.2.6 (Estimation of smooth Lévy densities in DT) Let X be a
univariate Lévy process with generating triplet (γ, σ2, ν). Further, let D ∈ B◦ be a
compact interval, µ be a reference measure such that µ(D) < ∞ and the restric-
tion p|D of the µ-density p to D belongs to the Besov space Br,q∞ (D, µ) for some r > 0
and q ≥ 2. Let M = N and, for each m ∈ M , let Sm ⊆ L2(D, µ) be the space of
piecewise polynomials of maximum degree k = brc based on the regular partition
of D into m classes (see Example 3.1.2). We assume that all f ∈ Sm satisfy the
inclusive bias condition BCϑ for a ϑ > 0. Then a mesh size of τT = o(T−1/(2ϑ)) as
T → ∞ is sufficient to ensure that the oracle space satisfies m?

T ∼ T 1/(2r+1) and
that the projection estimator in the discrete time framework satisfies

sup
T>0

T
2r

2r+1 E‖p− p̃?‖2
µ <∞.

Proof:
Equivalently to the proof of Theorem 3.3.6, there is a finite constant K1 <∞ such
that

‖p− Pmp‖2
µ ≤ K1m

−2r.

Since Theorem 4.2.5 implies m. s. e.[ν̃(f)] = m. s. e.[ν̂(f)] + o(T−1), there exists a
finite constant K̃2 <∞ such that

E‖Pmp− p̂m‖2
µ ≤ K̃2

m

T
.

The remainder of the proof of Theorem 3.3.6 can be adapted one-to-one. Firstly,
we have m. s. e.[p̂m] ≤ K̃3(m−2r +mT−1) for some finite constant K̃3 <∞, where
the right-hand side is clearly minimized for mT ∼ T 1/(2r+1) as T → ∞. Thus, we
have

E‖p− p̂?‖2
µ ≤ K̃3(bT 1/(2r+1)c−2r + bT 1/(2r+1)cT−1) = O

(
T
−2r
2r+1

)
completing the proof. 2

Remark 4.2.7 In Chapter 6, we further analyse the penalisation method in the
discrete time framework, in order to adapt Theorem 3.3.7, additionally. So far,
prior knowledge of the degree of smoothness r in Theorem 4.2.6 is necessary to
distinguish the oracle space S? ∈ {Sm : m ∈MT} and to achieve the proposed rate
of convergence.
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5 Projection estimation away from
zero

In this chapter, we analyse the validity of bias conditions BCϑ in the case of
selected Lévy processes. Throughout, let X be a Lévy process with generating
triplet (γ,Σ, ν). We choose D ∈ Bd

◦ bounded and away from the coordinate axes
and let µ be the Lebesgue measure on D.

5.1 A uniform bound for ∆τf (technical result)
To analyse the discretisation bias for arbitrary functions f can become quite te-
dious. Without loss of generality, we can restrict our further analysis to the case
of indicator functions due to the following technical results.

Univariate framework
Let d = 1. In the framework of Definition 4.2.1, let y ∈ R◦ and set

f =
{

1[y,∞[ ∀y > 0,
1]−∞,y[ ∀y < 0.

Then ∆τf as defined in (4.5) is equal to

∆τy := ∆τf =
{

τ−1P (Xτ ≥ y)− ν([y,∞[) ∀y > 0,
τ−1P (Xτ < y)− ν(]−∞, y[) ∀y < 0.

}
(5.1)

Definition 5.1.1 (Discrete transition deviation) The discrete transition de-
viation on the regular grid with mesh size τ > 0 is defined by ∆∗τ := supy∈D |∆τy|.

Lemma 5.1.2 (Uniformly bounded bias) Let D ∈ B◦ be compact, away from
zero and assume there are finitely many disjoint intervals D1, . . . , Dn ⊆ D such
that D = ∪nk=1Dk holds. Then there exists a finite constant K <∞ such that, for
all τ > 0 and for every bounded function f , we have

|∆τf | ≤ K

(
‖f‖∞ +

n∑
k=1
‖f ′|Dk‖1

)
∆∗τ , (5.2)
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5 Projection estimation away from zero

where we assume that the restriction f|Dk of f to Dk is absolutely continuous for
all k = 1, . . . , n.

Example 5.1.3 (Disconnected domain of estimation) An example for a dis-
connected domain of estimation in the univariate case is the union of an interval
on the positive and another interval on the negative half-line, i. e.

D = [−Dmax,−Dmin] ∪ [Dmin, Dmax]

for 0 < Dmin < Dmax <∞.

Proof of Lemma 5.1.2:
For k ∈ {1, . . . , n}, there are ck, Ck ∈ R with ]ck, Ck[⊆ Dk ⊆ [ck, Ck]. W. l. o. g.
assume ∀k : Dk ⊆ R+. The Fubini argument from Figueroa-López [17, Lemma 3.2]
remains valid. Specifically, for any measure Q,

∫
f(x)1DkQ(dx) =

∫
Dk

f(ck) +
x∫

ck

f ′|Dk(u)du
Q(dx)

= f(ck)Q(Dk) +
∫∫

[ck,Ck]×[u,Ck]

f ′|Dk(u)Q(dx)du

= f(ck)Q(Dk) +
Ck∫
ck

f ′|Dk(u)Q([u,Ck[)du.

In particular, for the measures PXτ := P (Xτ ∈ ·) and ν we have

|∆τf1Dk | =
∣∣∣∣∣E [f(Xτ )1Dk ]

τ
− ν(f1Dk)

∣∣∣∣∣
=

∣∣∣∣∣∣∣f(ck)
(
PXτ (Dk)

τ
− ν(Dk)

)
+
∫
Dk

f ′|Dk(u)
(
PXτ ([u,Ck[)

τ
− ν([u,Ck[)

)
du

∣∣∣∣∣∣∣ .
Since

∀u ∈ Dk :
∣∣∣∣∣PXτ ([u,Ck[)τ

− ν([u,Ck[)
∣∣∣∣∣ = |∆τu−∆τCk| ≤ 2∆∗τ ,

we have |∆τf1Dk | ≤ 2(‖f‖∞ + ‖f ′|Dk‖1)∆∗τ . Consequently,

|∆τf | ≤
n∑
k=1
|∆τf1Dk | ≤ 2n(‖f‖∞ +

n∑
k=1
‖f ′|Dk‖1)∆∗τ .

2
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5.1 A uniform bound for ∆τf (technical result)

Sobolev spaces
Before we give a multivariate analogue for Lemma 5.1.2, we adapt some notation
for partial derivative calculus as presented in Brenner and Scott [7, p. 24 – 26]. For
the sake of easier comprehension, we write vectors in bold font throughout this
and the following subsection.

Definition 5.1.4 (Multi-index notation and partial derivatives)
A d-tupel k ∈ Nd

0 is called multi-index. The length of a multi-index k is given
by |k| := ∑d

j=1 kj. For every sufficiently smooth function f , we abbreviate its usual
(pointwise) partial derivative by

∂kf := ∂k1
1 · · · ∂

kd
d f.

Making use of this notation, we define the notion of weak derivatives for locally
integrable functions, i. e. all functions f : D → R defined on a domain D ∈ Bd

such that f ∈ L1(K) for every compact subset K ⊆ D.

Definition 5.1.5 (Weak derivation) Let f : D→ R be a locally integrable func-
tion and k ∈ Nd

0 be a multi-index. Assume, there exists a locally integrable func-
tion g : D→ R such that∫

D

g(x)φ(x)dx = (−1)|k|
∫
D

f(x)∂kφ(x)dx

holds for every function φ ∈ C∞(D) with compact support. Then ∂k
wf := g is called

weak (k-)derivative of f .

Remark 5.1.6 (Weak derivation of sufficiently smooth functions)
Brenner and Scott [7, Proposition 1.2.7] proves that the weak k-derivative of ev-
ery C |k|-function coincides with the usual (partial) derivative. In the following, we
use the same differentiation symbol (dropping the “w”) referring to both concepts,
as appropriate.

Moreover, we define the notion of Sobolev spaces as presented in Brenner and
Scott [7, Definition 1.3.1].

Definition 5.1.7 (Sobolev space over Lq) Let r ∈ N0 and q ≥ 1. Then the
space Wr,q(D, µ) of all functions f ∈ Lq(D, µ) such that

‖f‖Wr,q :=
∑
|k|≤r
‖∂kf‖qLq(D,µ)

1/q

<∞
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5 Projection estimation away from zero

is called Sobolev space over Lq(D, µ) with degree of smoothness r. Furthermore,
we define the Sobolev semi-norm by

|f |Wr,q :=
∑
|k|=r
‖∂kf‖qLq(D,µ)

1/q

.

For our purposes, the following Lemma (cf. Mazja [31, § 3.1. Korollar 1.1] gives a
parsimonious criterion for the absolute continuity on lines of functions f : D→ R.

Lemma 5.1.8 (Absolute continuity on lines for Sobolev functions)
Let D ⊆ Rd and f ∈ W1,q(D) for a q ≥ 1. Then for almost every line

l(x, i) := {x+ hei : h ∈ R},

where ei denotes the i-th standard basis vector, we have that the (univariate) func-
tion

g : {h ∈ R : x+ hei ∈ l(x, i) ∩ D} → R; h 7→ g(h) := f(x+ hei)

is absolutely continuous and ∂if(x+ hei) = g′(h) almost everywhere.

Multivariate framework
In the multivariate version, we adapt notation from Kallsen and Tankov [24].
For a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ (R ∪ {±∞})d, we write a ≤ b if ak ≤ bk
for all k = 1, . . . , d. In this case, let ]a, b[ denote an open d-dimensional interval
of (R ∪ {±∞})d defined by

]a, b[:=]a1, b1[× · · ·×]ad, bd[.

Similarly, we define [a, b], ]a, b] and [a, b[. Furthermore, we make use of a spe-
cific interval. In particular, let y = (y1, . . . , yd) ∈ (R \ {0})d then we denote
the d-dimensional tail interval by

T (y) := {x ∈ Rd : |xk| ≥ |yk| and sgn(xk) = sgn(yk)∀k = 1, . . . , d}.

Set f := 1T (y), then ∆τf as defined in (4.5) is equal to

∆τy := ∆τf = τ−1P (Xτ ∈ T (y))− ν(T (y)). (5.3)

Definition 5.1.9 (Discrete transition deviation) The discrete transition de-
viation on the regular grid with mesh size τ > 0 is defined by ∆∗τ := supy∈D |∆τy|.
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5.1 A uniform bound for ∆τf (technical result)

Lemma 5.1.10 (Uniformly bounded bias) Let D ∈ B((R\{0})d) be compact
and away from the origin and assume there are finitely many disjoint d-dimensional
intervals D1, . . . , Dn ⊆ D such that D = ⋃n

i=1Di holds. Then, for all τ > 0 and
for every bounded function f such that the restriction f|Di of f to Di belongs
to W1,q(Di) for every i = 1, . . . , n, where q ≥ 1 independent of i, there exists a
finite constant K such that

|∆τf | ≤ K

(
‖f‖∞ +

d∑
k=1

n∑
i=1
‖∂kf|Di‖∞

)
∆∗τ . (5.4)

Proof:
W. l. o. g. assume for all i = 1, . . . , n that Di ⊆ (R+)d.
There exist c,C ∈ (R+)d with ]c,C[⊆ Di ⊆ [c,C]. The Fubini argument from
Figueroa-López [17, Lemma 3.2] remains valid. By virtue of Lemma 5.1.8, it holds
that

∀x ∈ [c,C] : f(x) = f(c) +
d∑

k=1

xk∫
ck

∂kf|Di(x<k, uk, c>k)duk,

where x<k = (x1, . . . , xk−1) and c>k = (ck+1, . . . , cd). Specifically, letQ be a σ-finite
measure on (Rd,Bd), then

∫
f(x)1Di(x)Q(dx)

=
∫
Di

f(c) +
d∑

k=1

xk∫
ck

∂kf|Di(x<k, uk, c>k)duk

Q(dx)

= f(c)Q([c,C[)

+
d∑

k=1

Ck∫
ck

C1∫
c1

· · ·
Ck−1∫
ck−1

∂kf|Di(x<k, uk, c>k)Q(dx<k, [uk, Ck[×[c>k,C>k[)duk.

Although we deal with tail distributions rather than distribution functions in
the sequel, we have an equation similar to Kallsen and Tankov [24, Definition 2.1].
In due form, we have

Q([a, b[) =
∑

v∈{a1,b1}×...×{ad,bd}
(−1)n(v)Q(T (v)),

where n(v) := #{k : vk = bk}.
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5 Projection estimation away from zero

In particular, for the measures PXτ
:= P (Xτ ∈ ·) and ν, we have

|∆τf1Di |
=
∣∣∣τ−1 E [f(Xτ )1Di ]− ν(f1Di)

∣∣∣
≤ f(c)

∣∣∣τ−1PXτ ([c,C[)− ν([c,C[)
∣∣∣

+
d∑

k=1

Ck∫
ck

∂kf|Di(ξ<k(uk), uk, c>k)
∣∣∣τ−1PXτ ([ck̂(uk),C[)− ν([ck̂(uk)

∣∣∣ duk,
where ck̂(uk) := (c<k, uk, c>k) and ξ<k(uk) ∈ [c<k,C<k[ by virtue of the mean
value theorem.

On the one hand, for all ck̂(uk) ∈ Di, we have∣∣∣τ−1PXτ ([ck̂(uk),C[)− ν([ck̂(uk),C[)
∣∣∣

=

∣∣∣∣∣∣
∑

v∈{c1,C1}×...×{uk,Ck}×...×{cd,Cd}
(−1)n(v)∆τv

∣∣∣∣∣∣
≤ 2d∆∗τ ,

on the other hand, we have

Ck∫
ck

∂kf|Di(ξ<k(uk), uk, c>k)duk ≤
(

sup
x,y∈Di

‖y − x‖
)
‖∂kf|Di‖∞,

where the supremum is clearly finite, since D is bounded.
Therefore, we conclude

|∆τf1Di | ≤ 2d(1 ∨ sup
x,y∈Di

‖y − x‖)(‖f‖∞ +
d∑

k=1
‖∂kf|Di‖∞)∆∗τ

and, consequently,

|∆τf | ≤ 2dn
(

sup
i=1,...,n

(
1 ∨ sup

x,y∈Di
‖y − x‖

))(
‖f‖∞ +

d∑
k=1

n∑
i=1
‖∂kf|Di‖∞

)
∆∗τ .

2
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5.2 Brownian motion with compound Poisson jumps

5.2 Brownian motion with compound Poisson jumps
This section is dedicated to the composition of a univariate Brownian motion with
drift and compound Poisson jumps.

Assumption 5.2.1 (Finite Lévy measure) Let ν be a finite measure.

Let D = [Dmin, Dmax] ⊆ R+ be a compact interval away from zero. We denote by

Nt := J([0, t]× R◦) for t ∈ R+
0

the number of jumps up to time t. Then (Nt)t∈R+
0

is a Poisson process with in-
tensity λ := ν(R◦) < ∞. Under Assumption 5.2.1, X is called Brownian motion
with compound Poisson jumps and drift. Recalling the Lévy-Khintchine represen-
tation (2.5), where the cut-off point for the small jumps was chosen arbitrary, the
Lévy-Itô decomposition (2.8) simplifies to

Xt = γ0t+ σWt +
Nt∑
k=1

Zk for t ∈ R+
0 , (5.5)

where {Zk}k∈N ∼ λ−1ν i. i. d. and γ0 := γ−
∫
{x: |x|∈]0,1]} ν(dx). Moreover, the Brow-

nian motion W , the Poisson process N and the family {Zk}k∈N are independent.

Theorem 5.2.2 (Bias condition for (5.5)) Let X be a Lévy process as in (5.5)
such that p ∈ C 1(R◦) with derivative p′ that is bounded on D. Then all R-valued
functions that meet the assumptions of Lemma 5.1.2 satisfy the (inclusive) bias
condition BC1.

Proof:
In the light of Lemma 5.1.2, it is sufficient to show that ∆∗t = O(t) as t → 0.
Let y ∈ D and η ∈]0, y[, then by (5.1)

|∆ty| =
∣∣∣∣∣1t P

(
γ0t+ σWt +

Nt∑
i=1

Zi ≥ y

)
− λP (Z1 ≥ y)

∣∣∣∣∣
≤ 1
t
P (σWt ≥ y − γ0t)e−λt + λ

∣∣∣P (σWt + Z1 ≥ y − γ0t)e−λt − P (Z1 ≥ y)
∣∣∣

+ 1
t

∞∑
n=2

e−λt
(λt)n
n! P

(
σWt +

n∑
i=1

Zi ≥ y − γ0t

)
=: A0 + A1 + A2.

Firstly, note that A2 ≤ t−1|eλt − 1− λt| ≤ λ2t. Secondly, setting y′t := y − γ0t,
we find

A0 ≤
1
t
Φ̄
(
y′t
σ
√
t

)
≤ 1
t
Φ̄
(
Dmin − γ0t

σ
√
t

)
= o(tq) as t→ 0 (5.6)
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5 Projection estimation away from zero

for every q > 0. Finally,

A1 ≤ λ |P (σWt + Y1 ≥ y′t)− P (Y1 ≥ y′t)|+ |P (Y1 ≥ y′t)− P (Y1 ≥ y)|

≤
∞∫
0

ϕ(u)


y′t∫

y′t−σ
√
tu

p(x)dx−
y′t+σ

√
tu∫

y′t

p(x)dx

 du+

∣∣∣∣∣∣∣
y∫

y−γ0t

p(x)dx

∣∣∣∣∣∣∣
=
∞∫
0

ϕ(u)I(1)
t (u)du+

∣∣∣I(2)
t (u)

∣∣∣ .
Clearly, |I(2)

t (u)| ≤ |γ0|‖p‖∞t. Since p ∈ C 1 is assumed to have a bounded deriva-
tive on D, by a Taylor expansion, we conclude

I
(1)
t (u) =

y′t∫
y′t−σ

√
tu

p(y′t) + (x− y′t)p′(ξx)dx−
y′t+σ

√
tu∫

y′t

p(y′t) + (x− y′t)p′(ξx)dx

=
y′t∫

y′t−σ
√
tu

(x− y′t)p′(ξx)dx−
y′t+σ

√
tu∫

y′t

(x− y′t)p′(ξx)dx

≤ 2‖p′‖D,∞σ2u2t

for some ξx ∈]x− y′t ∧ y′t, x− y′t ∨ y′t[ for all x ∈ [y′t − σ
√
tu, y′t + σ

√
tu].

Therefore,

A1 ≤ 2‖p′‖D,∞σ
2t

∞∫
0

ϕ(u)u2du+ |γ0|‖p‖∞t = O(t) as t→ 0.

The bounds given for A0, A1 and A2 are independent of y ∈ D. Consequently, for
the supremum over all y ∈ D, we get

sup
t>0

t−1∆∗t = sup
t>0

t−1A0 + sup
t>0

t−1A1 + sup
t>0

t−1A2 <∞

or, equivalently, ∆∗t = O(t) as t→ 0. Finally, Lemma 5.1.2 shows the validity of
the inclusive bias condition BC1. 2

Remark 5.2.3 The result holds true if we choose

D = [−Dmax,−Dmin] ∪ [Dmin, Dmax],

as the proof can be readily adapted for y < 0.
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5.3 Brownian motion with α-stable jumps

5.3 Brownian motion with α-stable jumps
This section is dedicated to the composition of a univariate Brownian motion with
drift and an α-stable jump process.

Assumption 5.3.1 (α-stable Lévy density) We assume there exist α ∈]0, 2[
and C1, C2 ∈ R+

0 with C1 + C2 > 0 such that

ν(dx) = C1

x1+α1R+(x)dx+ C2

|x|1+α1R−(x)dx.

Let D = [Dmin, Dmax] ⊆ R+ be a compact interval away from zero. Zolotarev [40,
Theorem A, p. 4] uses the “Lévy canonical representation” for his parametrisations.
Thus instead of the Lévy density p, the “Lévy spectral function” H is considered,
where

H(x) =
{
−ν([x,∞[) ∀x > 0,
ν(]−∞, x]) ∀x < 0.

}
(5.7)

Under Assumption 5.3.1, the parameters CZ
1 , C

Z
2 used in Zolotarev [40, Theorem C,

p. 7] satisfy CZ
i = α−1Ci for i ∈ {1, 2}. (The parameters in [40] are denoted

as C1, C2 there. The additional “Z” stands for Zolotarev.)
In addition, Zolotarev uses 5 different parametrizations for the characteristic

function. In order to clarify which form (namely ‘A’, ‘B’, ‘C’, ‘M’ or ‘E’) a set
of parameters is based on, we denote the form together with the parameter set,
e. g. S(α, β, δ, ς;A) with shape α, skewness β, location δ and scale ς.

Under Assumption 5.3.1, X is the composition of a Brownian motion with drift
and an α-stable jump process. Using Zolotarev [40, Theorem C.2, C.3 and Prop-
erty 2.3], the Lévy-Itô decomposition (2.8) reduces to

Xt = γt+ σWt + St for t ∈ R+
0 , (5.8)

where (St)t∈R+
0
∼ S(α, β, δ, ςt;B) is an α-stable process (independent of W ) with

parameters (β, δ, ς) depending on C1, C2 and α only. In the case of α 6= 1, we have

β =
2 arctan

(
C1−C2
C1+C2

tan
(
πα
2

))
πK(α) , (5.9)

ς = C1 + C2

α
Γ(1− α)

sin
(
π(1−α)

2

)
cos

(
π
2βK(α)

) , (5.10)

δ = −C1 − C2

C1 + C2
tan

(
π

2α
)

cos
(
π

2βK(α)
)
, (5.11)

where K(α) = α− 1 + sgn(1− α). In the case of α = 1, the parameters are given
by β = (C1 − C2)/(C1 + C2), ς = C1 + C2 and δ = 0.
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5 Projection estimation away from zero

Theorem 5.3.2 (Bias condition for (5.8)) Let X be as in (5.8), then all func-
tions f : D→ R that meet the assumptions of Lemma 5.1.2 satisfy

(i) the (exclusive) bias condition BC 1 in the case of α = 1 and β 6= 0,

(ii) the (inclusive) bias condition BC1 in all other cases.

Proof:
Depending on the parameters α and β, we have to distinguish four cases regarding
different asymptotic behaviour, particularly

(I) α < 1,

(II) α > 1 and β 6= −1,

(III) α = 1 and β 6= −1,

(IV) α ≥ 1 and β = −1.

Similar to the proof of Theorem 5.2.2, it is sufficient to show, as t→ 0, that

∆∗t =
{
O(tϑ) ∀ϑ < 1 in Case III and β 6= 0,
O(t) in all other cases.

Step 1: “About decomposing the Lévy process”
At first, let Y ∼ S(α, β, 0, 1;B). From Zolotarev [40, Property 2.1, p. 60], we know
that for all t ∈ R+

0

St
d=
{

(ςt)1/αY + ςδt for α 6= 1,
(ςt)Y + ςβ log((πςt)/2)t for α = 1.

Subsequently, let ηt > 0 with ηt →∞ and η3
t

√
t→ 0 as t→ 0. We need the former

in Steps 2 and 3 and the latter condition on ηt in Step 5. Conditioning on the value
of the Wiener part, we deduce

P (Xt ≥ y) = P (γt+ σWt + St ≥ y)

≤
ηt∫
−ηt

ϕ(u)P (Y ≥ z(t, u)) du+ 2Φ̄
(
ηt − γt
σ
√
t

)
,

where

z(t, u) :=


(
y − uσ

√
t− (γ + ςδ)t

)
(ςt)−1/α for α 6= 1,(

y − uσ
√
t− γt+ ςβt log (2/(πςt))

)
(ςt)−1 for α = 1.
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5.3 Brownian motion with α-stable jumps

Step 2: “About the asymptotic expansion of the stable tail distribution”
Since η3

t

√
t → 0, we ensure that z(t, u) → +∞ as t → 0 for all u ∈ [−ηt, ηt].

Clearly, there exists t′ > 0 such that for all t < t′ we have for every u ∈ Bηt(0)

y − uσ
√
t− (γ + ςδ)t > 0 for α 6= 1,

y − uσ
√
t− γt+ ςβt log (2/(πςt)) > 0 for α = 1.

Even if β < 0, the latter holds true as limt→0 t log(1/t) = 0. Hence, z diverges
to “+∞” for every combination of parameters α, β, ς, δ, γ and σ.

Nevertheless, the tail probability F̄Y (z) := P (Y > z) shows specific asymptotic
behaviour for z →∞ depending on shape α and skewness β.

In detail,

F̄Y (z) ∼



∞∑
k=1

ckz
−kα in Cases I and II,

1
π

∞∑
k=1

1
n!gk(log z)z−k in Case III,

1√
2παζ

e−ζ
(

1 +
∞∑
k=1

gk(1/α)(α
ζ
)k
)

in Case IV,

where

gk(x) :=
{ ∑k−1

l=0 clkx
l is a polynomial of degree k − 1 in Case III,∑2k

l=0 clkx
l is a polynomial of degree 2k in Case IV,

and
ζ = ζ(z, α) :=

{
|1− α|(z/α)α/(α−1) for α > 1,
exp(z − 1) for α = 1.

Firstly, in Case I, we have from Zolotarev [40, p. 89, Theorem 2.4.2] that the
coefficients are given by

ck = (−1)k−1

πα

Γ(kα + 1)
kΓ(k + 1) sin

(
π

2k(α + βK(α))
)
.

Secondly, in Case II, we have

ck = Γ(αk)
πΓ(k + 1) sin

(
π

2k(2− α)(1 + β)
)

is shown by Zolotarev [40, p. 95]. Finally, in Case III, we have

clk =
k∑

m=l

(
k
m

)(
m
l

)
(−1)m−lΓ(m−l)(k)βm

(
π

2 (1 + β)
)k−m

sin
(
π

2 (k −m)
)
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5 Projection estimation away from zero

from Zolotarev [40, Theorem 2.5.4]. The exact formula for clk in Case IV can be
derived from Zolotarev [40, Theorem 2.5.3]. We omit them, as they are dispensable
for this proof. In the following, for fixed α ∈ [1, 2], we deal with gk(1/α) as if it
was a finite constant.

Step 3a: “About the summands of the asymptotic series in Cases I – III”
For every k ∈ N, we conclude

z(t, u)−kα = ςk

ykα
tk (1− ht(u))−kα ,

where
ht(u) :=

{
(uσ
√
t+ (γ + ςδ)t)y−1 for α 6= 1,

(uσ
√
t+ γt+ ςtβ log(2/(πςt))y−1 for α = 1.

Furthermore, by Taylor expansion of second order, we have

(1− ht(u))−kα = 1 + kαht(u) + kα(kα + 1)h
2
t (u)
2 +R3(ht(u); k).

Set κt := supu∈Bηt (0)|ht(u)|. Since η3
t

√
t → 0, we have κt → 0. Hence, we consider

the Lagrange form of the remainder term, i. e.

R3(ht(u); k) = h3
t (u)
6 kα(kα + 1)(kα + 2)

(
ξht(u)

)−kα−3

for some ξht(u) ∈ Bht(u)(1). Further, we can bound the remainder term above by

|R3(ht(u); k)| ≤ κ3
t

6 kα(kα + 1)(kα + 2) (1− κt)−kα−3

uniformly on Bηt(0).
Moreover, in all cases, we have (1 − κt)−kα−3 = 1. Besides, in Cases I and II,

we conclude that

lim
t→0

t−1κ3
t (k)

≤ lim
t→0

{
σ3η3

t

√
t+ 3σ2|γ + ςδ|η2

t t+ 3σ|γ + ςδ|2ηtt3/2 + |γ + ςδ|3t2
}

= 0

and, equivalently, in Case III

lim
t→0

t−1κ3
t

≤ lim
t→0

(η3
t ς

3√t+ 3η2
t ς

2γt+ 3η2
t ς

3tβ log(2/(πςt)) + 3ηtςγ2t3/2)

+ lim
t→0

(6ηtς2t3/2γβ log(2/(πςt)) + 3ηtς3t3/2β2 log2(2/(πςt)) + γ3t2)

+ lim
t→0

(γ2t2ςβ log(2/(πςt)) + 3γς2t2β2 log2(2/(πςt)) + ς3t2β3 log3(2/(πςt)))

= 0,
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5.3 Brownian motion with α-stable jumps

since log(1/t) = o(t−q) as t→ 0 for all q > 0. Hence, we have R3(ht(u); k) = o(t)
as t→ 0 in all three cases.

Additionally, in Case III, we deduce

log z(t, u) = log
(
y

ςt

)
log(1− ht(u)) ≤ κ∗t log

(
y

ςt

)
uniformly on Bηt(0), where κ∗t := supu∈Bηt (0)|log(1−ht(u))| <∞. Equivalently, we
observe that gk(log z(t, u)) is uniformly bounded above by

g∗k

(
y

ςt

)
:=

k−1∑
l=0

clk

(
κ∗t log

(
y

ςt

))l
.

Step 3b: “About the asymptotic series in Case IV’
Rewriting ζ as a function of u and t, we get

ζ(u, t) =
{
|1− α| (y/α)α/(α−1) (ςt)−1/(α−1)(1− ht(u))α/(α−1) for α > 1,
exp{y(ςt)−1 (1− ht(u))− 1} for α = 1,

with ht(u) defined as in Step 3a. Recalling κt = supu∈Bηt (0)|ht(u)| → 0 as t→ 0,
we can uniformly bound ζ above and below on Bηt(0). In particular, we have

ζ(t) ≤ ζ(u, t) ≤ ζ(t),

where
ζ(t) :=

{
|1− α| (y/α)α/(α−1) (ςt)−1/(α−1)κt for α > 1,
exp{y(ςt)−1(1− κt)− 1} for α = 1,

and
ζ(t) :=

{
|1− α| (y/α)α/(α−1) (ςt)−1/(α−1)κt for α > 1,
exp{y(ςt)−1(1 + κt)− 1} for α = 1,

with κt := (1 − κt)α/(α−1) and κt := (1 + κt)α/(α−1). Consequently, since ζ and ζ

share the same asymptotic, for every ζ∗ ∈ {ζ, ζ, ζ}, we see

ζ−1
∗ =

{
O(t1/(α−1)) for α > 1,
O(tq) ∀q > 0 for α = 1,

as t→ 0.

Step 4a: “About the convergence of ∆ty in Cases I and II”
According to Step 3, limt→0 t

−1P (Xt ≥ y) = ν([y,∞[) is equivalent to c1ς = C1/α.
With the notation given above, in Case I, it holds that

c1 = Γ(α + 1)
πα

sin
(
π

2 (1 + β)α
)

= +π−1Γ(α) sin
(
π

2 (1 + β)K(α)
)
, (5.12)
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5 Projection estimation away from zero

and, similarly, in Case II, we have

c1 = π−1Γ(α) sin
(
π

2 (1 + β)(2− α)
)

= −π−1Γ(α) sin
(
π

2 (1 + β)K(α)
)
. (5.13)

Combining (5.12) and (5.13) with (5.10), we conclude that

c1ς = ±C1 + C2

α
π−1Γ(α)Γ(1− α) sin

(
π(1− α)

2

) sin
(
π
2 (1 + β)K(α)

)
cos

(
π
2βK(α)

) .

With π−1Γ(α)Γ(1− α) = (sin(πα))−1 and sin(π(1− α)/2) = cos(πα/2), we get

c1ς = ±C1 + C2

α

cos
(
πα
2

)
sin(πα)

[
sin

(
π

2K(α)
)

+ cos
(
π

2K(α)
)

tan
(
π

2βK(α)
)]
,

where (5.9) implies that

tan
(
π

2βK(α)
)

= C1 − C2

C1 + C2
tan

(
πα

2

)
.

As K(α) = α − 1 + sgn(1− α) ∈ {α, α − 2}, we get ± sin
(
π
2K(α)

)
= + sin

(
π
2α
)

and ± cos
(
π
2K(α)

)
= + cos

(
π
2α
)
. Finally, we the validity of

c1ς = C1 + C2

α

cos
(
π
2α
)

sin
(
π
2α
)

sin(πα) + C1 − C2

C1 + C2

cos2
(
π
2α
)

tan
(
π
2α
)

sin(πα)


= C1 + C2

α

[
1
2 + C1 − C2

2(C1 + C2)

]
= C1

α
.

Step 4b: “About the convergence of ∆ty in Case III”
Similarly to Step 4a, we need to show c01ς = πC1. By definition, c01 = π(1 + β)/2.
Hence,

c01 = π
C1

C1 + C2

by virtue of Zolotarev [40, Theorem C.2 and C.3]. Since ς = C1 + C2, we deduce
that c01ς = πC1 holds.

Step 4c: “About the convergence of ∆ty in Case IV”
In Case IV, the Lévy measure has no mass on the positive half-line, as Zolotarev [40,
Theorem C.2 and C.3] implies β = −1 ⇔ C1 = 0. Hence, it is sufficient to
show ∆ty → 0 as t→ 0. Considering the asymptotic expansion from Step 2 as
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5.3 Brownian motion with α-stable jumps

a series in ζ, we observe that the dominating term is e−ζ , where we deduce from
Step 3b that ζ →∞ as t→ 0. Therefore, the convergence follows directly from the
well-known asymptotic behaviour of the exponential function at “−∞”.

Step 5a: “About the rate of convergence of ∆ty in Cases I – III”
To simplify notation, for k ∈ N and t > 0, we set

c′k(t) :=
{
ck in Cases I and II,
g∗k(y/(ςt))(kπ)−1 in Case III,

and note that c′1 is independent of t. Let y ∈ D, then

|∆ty| =
∣∣∣∣1t P (Xt ≥ y)− ν([y,∞[)

∣∣∣∣
≤

∣∣∣∣∣∣∣
1
t

ηt∫
−ηt

ϕ(u)F̄Y (z(t, u)) du+ 2
t
Φ̄
(
ηt − γt
σ
√
t

)
− C1

αyα

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
2
t
Φ̄
(
ηt − γt
σ
√
t

)∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
1
t

ηt∫
−ηt

ϕ(u)F̄Y (z) du− c′1ς

αyα

∣∣∣∣∣∣∣ =: I(1)
t + I

(2)
t ,

where, I(1)
t = o(tq) as t→ 0 for all q > 0, equivalently to (5.6). Using the results

from Step 2, 3 and 4a/b, we get

I
(2)
t ≤

ηt∫
−ηt

ϕ(u)
(
c′1ς

yα
(αht(u) + α(α + 1)h

2
t (u)
2 +R3(ht(u); 1))

)
du

+
∞∑
k=2

c′k(t)ςk
ykα

tk−1
ηt∫
−ηt

ϕ(u)
(

1 + kαht(u) + kα(kα + 1)h
2
t (u)
2 +R3(ht(u); k)

)
du

+ 2c′1ς
yα

Φ̄(ηt)
(5.6)
=: I(21)

t +
∞∑
k=2

I
(2k)
t + o(tq).

In Case III, let ϑ < 1 if β 6= 0 and ϑ = 1 if β = 0. Note that β = 0 ⇔ C1 = C2.
Then, in Cases I and II,

ηt∫
−ηt

ϕ(u)ht(u)du = σ
√
ty−1

ηt∫
−ηt

uϕ(u)du+ (γ + ςδ)ty−1
ηt∫
−ηt

ϕ(u)du

≤ y−1(γ + ςδ)t
= y−1O(t) as t→ 0,
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5 Projection estimation away from zero

and, in Case III,

ηt∫
−ηt

ϕ(u)ht(u)du = σ
√
ty−1

ηt∫
−ηt

uϕ(u)du+ (γ + ςβ log(2/(πςt)))ty−1
ηt∫
−ηt

ϕ(u)du

≤ y−1(γ + (C2 − C1) log(C1 + C2))t+ y−1(C2 − C1)t log(t)
= y−1O(tϑ) as t→ 0,

since the normal density is an even function and all moments exist. Equivalently,

ηt∫
−ηt

ϕ(u)h2
t (u)du

= σ2t

y2

ηt∫
−ηt

u2ϕ(u)du+
{
σ(γ + ςδ)
σ(γ + ςβ log(2/(πςt)))

}
t3/2

y2

ηt∫
−ηt

uϕ(u)du

+
{

(γ + ςδ)2

(γ + ςβ log(2/(πςt)))2

}
t2

y2

ηt∫
−ηt

ϕ(u)du

≤
{
y−2σ2t+ y−2(γ + ςδ)2t2

y−2σ2t+ y−2(γ + ςβ log(2/(πςt)))2t2

}
= y−2O(t)

as t→ 0. Thereby,

I
(21)
t ≤

{
|y|−α−2O(tϑ) ∀ϑ < 1 in Case III and β 6= 0
|y|−α−2O(t) in all other cases.

Similarly, for all k > 2, we have

I
(2k)
t =

{
|y|−α−2O(tk−2+ϑ) ∀ϑ < 1 in Case III and β 6= 0,
|y|−α−2O(tk−1) in all other cases.

Consequently,

I
(2)
t =

{
|y|−α−2O(tϑ) ∀ϑ < 1 in Case III and β 6= 0,
|y|−α−2O(t) in all other cases.

Hence,

|∆ty| =
{
|y|−α−2O(tϑ) ∀ϑ < 1 in Case III and β 6= 0.
|y|−α−2O(t) in all other cases,

as t→ 0.
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5.3 Brownian motion with α-stable jumps

Step 5b: “About the rate of convergence of ∆ty in Case IV”
Let y ∈ D, then

|∆ty| =
∣∣∣∣1t P (Xt ≥ y)− ν([y,∞[)

∣∣∣∣
≤

∣∣∣∣∣∣∣
2
t
Φ̄
(
ηt − γt
σ
√
t

)∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
1
t

ηt∫
−ηt

ϕ(u)F̄Y (z(u, t)) du

∣∣∣∣∣∣∣ =: I(1)
t + I

(2)
t ,

where I(1)
t = o(tq) as t→ 0 for all q > 0, equivalently to (5.6). Moreover, from

Step 3b, we deduce that
∣∣∣Ψ̄(z)

∣∣∣ ≤ 1√
2παζ(t)

e−ζ(t)
(

1 +
∞∑
k=1

gk(1/α)αkζ−k(t)
)
.

As the right-hand side is independent of u, we integrate I(2)
t independent of Ψ̄(z).

Hence,

tI
(2)
t ≤

1√
2παζ(t)

e−ζ(t)
(

1 +
∞∑
k=1

gk(1/α)αkζ−k(t)
)
.

Similarly to I(1)
t , we conclude that tI(2)

t = o(ζ−q) for every q > 0. Recalling from
Step 3b that

ζ−1 =
{
O(t1/(α−1)) for α > 1,
O(tq) ∀q > 0 for α = 1,

as t→ 0, we conclude, finally, that I(2)
t = O(tq) for every q > 0. In summary, we

have |∆ty| = O(tq) for every q > 0 as t→ 0.

Step 6: “Rate of convergence for the supremum ∆∗t”
Since the domain of estimation D = [Dmin, Dmax] is separated from the origin, we
conclude that supy∈D|y|−α−2 = D−α−2

min <∞. Finally

∆∗t = sup
y∈D
|∆ty| =


O(tϑ) ∀ϑ < 1 in Case III and β 6= 0,
O(tq) ∀q > 0 in Case IV (as y > 0),
O(t) in all other cases,

as t→ 0. 2

Remark 5.3.3 The result holds true if we choose

D = [−Dmax,−Dmin] ∪ [Dmin, Dmax].

Cleary, let Y1 ∼ S(α, β) and Y2 ∼ S(α,−β), then Zolotarev [40, Property 2.3]
implies P (Y1 < y) = P (Y2 ≥ |y|) for all y < 0.
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5 Projection estimation away from zero

5.4 General Lévy processes
The two previous sections were dealing with Lévy processes with two specific and
well-known jump parts. For general Lévy processes, we derive a bias condition
depending on the variation of its sample paths. The following definition is adapted
from Blumenthal and Getoor [6].

Definition 5.4.1 (Blumenthal-Getoor index) Let X be a Lévy process with
generating triplet (γ,Σ, ν). Set

IX :=

r ∈ R :
∫
Rd◦

(‖x‖r ∧ 1) ν(dx) <∞

 , (5.14)

then βX := inf IX is called its Blumenthal-Getoor index.

The set IX is an interval of form ]βX ,∞[ or [βX ,∞[. From Definition 2.2.4, we
deduce that 2 ∈ IX holds for every Lévy process X.

Example 5.4.2 (Blumenthal-Getoor index) The Lévy processes, introduced
and analysed in Sections 5.2 and 5.3, are very distinctive. In particular, let X be a
compound Poisson process, then βX = 0. Conversely, let X be an α-stable process
with α ∈]0, 2[, then βX = α.

Let us remark the following. By definition, a Brownian component has no impact
on the Blumenthal-Getoor index. Nevertheless, the path behaviour of a Brownian
motion (seen as a 2-stable process) is similar to the path behaviour of a pure jump
Lévy process X with βX = 2.

Univariate framework
Theorem 5.4.3 (Bias condition for integral estimation in DT)
Let X be a univariate Lévy process with generating triplet (γ, σ2, ν) and assume that
Assumption 2.3.1 holds. In addition, let D ∈ B◦ be bounded and the union of finitely
many intervals away from zero. Moreover, let S ⊆ L2(D, λD) be a finite dimensional
projection space such that all f ∈ S meet the assumptions of Lemma 5.1.2. Then
all functions f ∈ S satisfy

(i) the bias condition (4.8) BC 1/2 in general,

(ii) the bias condition (4.8) BC1 if σ = 0 and βX < 1,

(iii) the bias condition (4.8) BC 1/βX if σ = 0 and 1 ≤ βX ≤ 2.

50



5.4 General Lévy processes

To prove Theorem 5.4.3, we need the following results that play an important
role in the proof afterwards. Firstly, the following Lemma is essentially Rüschendorf
and Woerner [34, Corollary 3.2].

Lemma 5.4.4 (Small-jumps tail estimate) Let X be a univariate Lévy pro-
cess with generating triplet (γ, σ2, ν). Further, let δ be the smallest non-negative
number such that {x : |x| ≤ δ} contains the support of its Lévy measure, which
should not be identically zero. Then, for all n ≥ 1 and ε > nδ, we have

sup
y≥ε

P (|Xt| ≥ y) = Oε,δ(tn) (5.15)

as t→ 0.

Secondly, we confer Millar [32, Theorem 2.1] for the following Lemma.

Lemma 5.4.5 (Truncated Lévy r-moment estimate) Let X be an Rd-valued
Lévy process with generating triplet (γ, 0, ν). The Lévy measure ν is assumed to
have bounded support. Further, let r ∈ IX∩]0, 2], then there is a constant C(r) <∞
depending on the Lévy measure ν and r only such that

∀t ∈ [0, 1] : E ‖Xt‖r ≤ C(r)t. (5.16)

Millar [32] proves in a remark following Theorem 2.1 that (5.16) remains valid if ν
has unbounded support as long as E‖Xt‖r exists, i. e.∫

Rd◦

‖x‖rν(dx) <∞.

The condition t ∈ [0, 1] can be relaxed to t ∈ R+
0 as long as either r ≤ 1 or EX1 = 0.

Invoking Lemma 5.4.4 and 5.4.5, we prove Theorem 5.4.3.

Proof of Theorem 5.4.3:
By choice of D, there is an ε > 0 such that |y| > ε for all y ∈ D. W. l. o. g.
assume y > 0.

Step 1: “About decomposing the Lévy process”
Let η ∈]0, ε/2[ and, for t ∈ R+

0 , we set

Y η
t :=

∫∫
[0,t]×R◦\[−η,η]

xJ(ds, dx) =
∑
s≤t

∆Xs1|∆Xs|>η,

Xη
t := Xt − Y η

t ,

 (5.17)

then Y η in (5.17) is referred to as big-jumps process of X (w. r. t. the threshold η)
and Xη in (5.17) is referred to as truncated Lévy process of X. Both, Xη and Y η,
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5 Projection estimation away from zero

are Lévy processes with Lévy measures νXη := 1[−η,η]ν and νY η := 1R◦\[−η,η]ν,
respectively. Moreover, let Nη

t := J([0, t]× R◦ \ [−η, η]) count the number of “big
jumps” up to time t. Then there is a family (Zη

k )k∈N ∼ νY η
νY η (R◦) of i. i. d. random

variables independent of Nη such that

Y η
t =

Nη
t∑

k=1
Zk for t ∈ R+

0 .

We observe that Y η is a compound Poisson process with rate

λη := νY η(R◦) = ν(R◦ \ [−η, η]).

Step 2: “Conditioning on the number of big jumps”
Similarly to our approach in Section 5.2, we condition on Nη and conclude that

|∆τy| =
∣∣∣∣1t P (Xη

t + Y η
t ≥ y)− ν([y,∞[)

∣∣∣∣
≤ 1
t
P (Xη

t ≥ y)e−ληt

+ λη
∣∣∣P (Xη

t + Zη
1 ≥ y)e−ληt − P (Zη

1 ≥ y)
∣∣∣

+ 1
t

∞∑
n=2

e−ληt
(ληt)n
n! P

(
Xη
t +

n∑
k=1

Zη
k ≥ y

)
=: A0 + A1 + A2



(5.18)

Step 3: “Upper bounds for A0 and A2”
Firstly, note that

A2 ≤ t−1|eληt − 1− ληt| ≤ λ2
ηt = Oη(t). (5.19)

Secondly, since ε > 2η, we get

A0 ≤ t−1P (Xη
t ≥ y) + oη(t) = t−1Oε,η(t2) = Oε,η(t) (5.20)

by virtue of Lemma 5.4.4.

Step 4: “General upper bound for A1”
We obviously get

A1 = λη
∣∣∣P (Xη

t + Zη
1 ≥ y)e−ληt − P (Zη

1 ≥ y)
∣∣∣

≤
∣∣∣∣∫ P (Xη

t ≥ y − u)νY η(du)− νY η([y,∞[)
∣∣∣∣+ oη(t)

=

∣∣∣∣∣∣
y∫

−∞

P (Xη
t ≥ y − u)νY η(du)−

∞∫
y

P (Xη
t < y − u)νY η(du)

∣∣∣∣∣∣+ oη(t).
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Furthermore, we see that

sup
y≥ε

∣∣∣∣∣∣
−η∫
−∞

P (Xη
t ≥ y − u)νY η(du)

∣∣∣∣∣∣ ≤ ληP (|Xη
t | > η) = oη(t) as t→ 0

by Sato [35, Corollary 8.9]. Likewise, we have

sup
y≥ε

∣∣∣∣∣∣
y−η∫
η

P (Xη
t ≥ y − u)νY η(du)

∣∣∣∣∣∣ ≤ ληP (|Xη
t | > η) = oη(t),

sup
y≥ε

∣∣∣∣∣∣∣
∞∫

y+η

P (Xη
t < y − u)νY η(du)

∣∣∣∣∣∣∣ ≤ ληP (|Xη
t | > η) = oη(t),

since νXη([η,∞[) = 0. Accordingly, since νY η does not charge Bη(0), A1 is bounded
above by

A1 ≤

∣∣∣∣∣∣∣
y∫

y−η

P (Xη
t ≥ y − u) νY η(du)−

y+η∫
y

P (Xη
t < y − u) νY η(du)

∣∣∣∣∣∣∣+ oη(t)

or, equivalently, by change of variable z = y − u and making use of the finiteness
of νY η , we have

A1 ≤ λη

∣∣∣∣∣∣∣
0∫
−η

P (Xη
t < z) dz −

η∫
0

P (Xη
t ≥ z) dz

∣∣∣∣∣∣∣+ oη(t).

as t→ 0.
Moreover, since the Lévy measure νXη of the truncated Lévy process Xη has

no mass outside a (specific) compact set, all its moments are known to exist by
virtue of Sato [35, Theorem 25.3]. Let r > 0. Then using Markov’s inequality, i. e.

P (|Xt| ≥ z) ≤ E[g(|Xt|)]
g(z)

for all monotonically increasing functions g : R+
0 → R+

0 with g(z) > 0 for all z > 0,
we conclude with g(z) = |z|r that A1 is once more bounded above by

A1 ≤ λη E|Xη
t |r

η∫
−η

|z|−rdz + oη(t).

Clearly, there is a finite constant C1(r) <∞ such that
η∫
−η

|z|−rdz < C1(r),

53



5 Projection estimation away from zero

if and only if r < 1. Thereby, we have A1 ≤ ληC1(r) E|Xη
t |r + oη(t).

Step 5: “Proof of Theorem 5.4.3”
Let ϑ ∈ [0, 1/βX ∧ 1[. Then there is an r ∈ [0, 1[ such that βX < r/ϑ < 2. Firstly,
since |·|r is submultiplicative, secondly, by Jensen’s inequality for the concave func-
tion |·|ϑ and, finally, due to Lemma 5.4.5, we have

E|Xη
t |r ≤ E [(|σWt|+ |Xη

t − σWt|)r] ≤ E|σWt|r + E|Xη
t − σWt|r

≤
(
E|σWt|2

)r/2
+
(
E|Xη

t − σWt|r/ϑ
)ϑ
≤ σrt

r/2 + C2t
ϑ

for a finite positive constant C2 < ∞ depending only on r and ϑ. Consequently,
for all t ∈ [0, 1], we get

A1 ≤ ληC1(r)
(
σrt

r/2 + C2t
ϑ
)

+ oη(t)

=
{
Oη,βX (tϑ) if σ = 0,
Oη,σ(tr/2) ∀r ∈ [0, 1[ if σ > 0,

 (5.21)

as t→ 0. The preliminaries of Lemma 5.4.5 in the case of βX < 1 and σ = 0 are
also met if ϑ = 1.

As the bounds (5.19), (5.20) and (5.21) for the terms on the right-hand side
of (5.18) are uniform in y, we get in case of βX < 1 and σ = 0 that ∆∗t = Oε,η(t),
in case of 1 ≤ βX ≤ 2 and σ = 0 that ∆∗t = Oε,η,βX (tϑ) for all ϑ ∈ [0, 1/βX [
and in case of σ > 0 that ∆∗t = Oε,η,σ(tr/2) for all r ∈ [0, 1[. This is sufficient for
Theorem 5.4.3 by virtue of Lemma 5.1.2. 2

Multivariate framework
In this subsection, we make use of the notation from Kallsen and Tankov [24] as
introduced in Section 5.1. Similarly, we write vectors in bold font again.

Theorem 5.4.6 (BC for integral estimation in DT) Let X be an Rd-valued
Lévy process with generating triplet (γ,Σ, ν) and assume that Assumption 2.3.1
holds. In addition, let D ∈ B((R \ {0})d) be bounded and the union of finitely
many d-dimensional intervals away from the origin. Moreover, let S ⊆ L2(D, λD)
be a finite dimensional projection space such that all f ∈ S meet the assumptions
of Lemma 5.1.10. Then all functions f ∈ S satisfy

(i) the bias condition (4.8) BC 1/2 in general,

(ii) the bias condition (4.8) BC1 if Σ = 0 and βX < 1,

(iii) the bias condition (4.8) BC 1/βX if Σ = 0 and 1 ≤ βX ≤ 2.
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5.4 General Lévy processes

Proof:
Since all norms in a finite dimensional space (like Rd) are equivalent, we use
the supremum norm in the following unless explicitly stated otherwise. For in-
stance, Bη(0) = {x ∈ Rd : ‖x‖∞ < η} is the η-ball w. r. t. the supremum norm.
The domain of estimation D is away from the origin. Thus, there is an ε > 0 such
that ‖y‖∞ > ε for all y ∈ D. W. l. o. g. assume y ∈ (R+)d.

Step 1: “About decomposing the Lévy process”
Let η ∈]0, ε/2[ and, for t ∈ R+

0 , we set

Y η
t :=

∫∫
[0,t]×Rd◦\Bη(0)

xJ(ds, dx),

Xη
t := Xt − Y η

t ,

 (5.22)

equivalently to the univariate case. Both, Xη and Y η, are Lévy processes, with
Lévy measures νXη := 1Bη(0)ν and νY η := 1Rd◦\Bη(0)ν, respectively. Moreover,
let Nη

t := J([0, t]×Rd
◦ \Bη(0)) count the number of jumps with at least one “big”

component up to time t. Then there is a family (Zη
k )k∈N ∼ νY η

νY η (Rd◦)
of i. i. d. random

vectors independent of Nη such that

Y η
t =

Nη
t∑

k=1
Zk for t ∈ R+

0 .

We observe that Y η is a compound Poisson process with rate

λη := νY η(Rd
◦) = ν(Rd

◦ \Bη(0)).

Step 2: “Conditioning on the number of big jumps”
Similarly to the univariate case, we condition on the number of big jumps Nη and
conclude that

|∆τy| =
∣∣∣∣1t P (Xη

t + Y η
t ≥ y)− ν([y,∞[)

∣∣∣∣
≤ 1
t
P (Xη

t ≥ y)e−ληt

+ λη
∣∣∣P (Xη

t +Zη
1 ≥ y)e−ληt − P (Zη

1 ≥ y)
∣∣∣

+ 1
t

∞∑
n=2

e−ληt
(ληt)n
n! P

(
Xη

t +
n∑
k=1
Zη
k ≥ y

)
=: A0 + A1 + A2



(5.23)
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Step 3: “Upper bounds for A0 and A2”
Firstly, note that

A2 ≤ t−1|eληt − 1− ληt| ≤ λ2
ηt = Oη(t). (5.24)

Secondly, since ε > 2η, there exists an index k = k(y) for all y ∈ D such
that yk > η. Hence, we get

A0 ≤
1
t
P
(
Xη

1,t ≥ y1, . . . , X
η
d,t ≥ yd

)
+ oη(t)

≤ 1
t
P
(∣∣∣Xη

k,t

∣∣∣ ≥ η
)

+ oη(t) = t−1Oε,η(t2) + oη(t) = Oε,η(t)

 (5.25)

by virtue of Lemma 5.4.4.

Step 4: “General upper bound for A1”
Analogously to the univariate case, we get

A1 = λη
∣∣∣P (Xη

t +Zη
1 ≥ y)e−ληt − P (Zη

1 ≥ y)
∣∣∣

≤
∣∣∣∣∫ P (Xη

t ≥ y − u)νY η(du)− νY η([y,∞[)
∣∣∣∣+ oη(t)

=

∣∣∣∣∣∣∣
∫

Rd◦\[y,∞[

P (Xη
t ≥ y − u)νY η(du)−

∫
[y,∞[

P (∃k : Xη
k,t < yk − uk)νY η(du)

∣∣∣∣∣∣∣
+ oη(t).

We split Rd
◦ \ [y,∞[ into E0 := [y − η1,∞[\[y,∞[ and a partition E1, . . . , Ed

of Rd
◦ \ [y − η1,∞[, defined through E1 := {u ∈ Rd

◦ : y1 − u1 > η} and

Ek :=
{
u ∈ Rd

◦ \
k−1⋃
l=1

El : yk − uk > η

}
, k = 2, . . . , d.

Then we have P (Xη
t ≥ y−u) ≤ P (|Xη

k,t| > η) for all u ∈ Ek. Moreover, since νY η

is a finite measure, we conclude for each k = 1, . . . , d that

sup
y∈D

∣∣∣∣∣∣∣
∫

Ek(y)

P (Xη
t ≥ y − u)νY η(du)

∣∣∣∣∣∣∣ ≤ ληP (|Xη
k,t| > η) = oη(t),

since limt→0 t
−1P (|Xη

k,t| ≥ η) = νXη({x ∈ Rd : |xk| > η}) = 0 in coherence with
Sato [35, Corollary 8.9].
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5.4 General Lévy processes

Furthermore, since P (∃k : Xη
k,t < yk − uk) ≤

∑d
k=1 P (Xη

k,t < yk − uk) is valid
in general, we get

A1 ≤

∣∣∣∣∣∣∣
∫
E0

P (Xη
t ≥ y − u)νY η(du)

∣∣∣∣∣∣∣+
d∑

k=1

∣∣∣∣∣∣∣
∫

[y,∞[

P (Xη
k,t < yk − uk)νY η(du)

∣∣∣∣∣∣∣+ oη(t).

We split E0 into E ′1, . . . , E ′d defined through E ′1 := {u ∈ E0 : u1 < y1} and

E ′k :=
{
u ∈ E0 \

k−1⋃
l=1

E ′l : uk < yk

}
, k = 2, . . . , d.

Therefore, we conclude that∣∣∣∣∣∣∣
∫
E′
k

P (Xη
t ≥ y − u)νY η(du)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
yk∫

yk−η

P (Xη
k,t ≥ yk − uk)νY η(duk, T (y<k − η1)× T (y>k − η1))

∣∣∣∣∣∣∣
≤ λη

∣∣∣∣∣∣
η∫

0

P (Xη
k,t ≥ z)dz

∣∣∣∣∣∣
for all k = 1, . . . , d, where we observe

λη

η∫
0

P (Xη
k,t ≥ z)dz ≤ λη E|Xη

k,t|r
η∫

0

|z|−rdz

using Markov’s inequality, similar to the univariate case. Additionally, we conclude
that∣∣∣∣∣∣∣

∫
[y,∞[

P (Xη
k,t < yk − uk)νY η(du)

∣∣∣∣∣∣∣ ≤ λη

0∫
−η

P (Xη
k,t < z)dz + ληP (Xη

k,t < −η)

is valid for all k = 1, . . . , d, where equivalently

λη

0∫
−η

P (Xη
k,t < z)dz + ληP (Xη

k,t < −η) ≤ λη E|Xη
k,t|r

η∫
0

|z|−rdz + oη(t)

follows. Finally, since |Xη
k,t| ≤ ‖X

η
t ‖∞ by definition, we deduce that A1 is bounded

above by

A1 ≤ λη E‖Xη
t ‖r∞

η∫
−η

|z|−rdz + oη(t)

57



5 Projection estimation away from zero

where the integral is bounded above by a finite constant C1(r) < ∞ if and only
if r < 1.

Step 5: “Proof of Theorem 5.4.6”
Let ϑ ∈ [0, 1/βX ∧ 1[. Then there is an r ∈ [0, 1[ such that βX < r/ϑ < 2. Firstly,
since |·|r is submultiplicative, secondly, by Jensen’s inequality for the concave func-
tion ‖·‖ϑ and, finally, due to Lemma 5.4.5, we have

E‖Xη
t ‖r ≤ E

[(
‖Σ1/2Wt‖+ ‖Xη

t − Σ1/2Wt‖
)r]

≤ E‖Σ1/2Wt‖r + E‖Xη
t − Σ1/2Wt‖r

≤
(
E‖Σ1/2Wt‖2

)r/2
+
(
E‖Xη

t − Σr/2Wt‖r/ϑ
)ϑ

≤ ‖Σ‖r/2tr/2 + C2t
ϑ

for a finite positive constant C2 < ∞ depending only on r and ϑ. Consequently,
for all t ∈ [0, 1], we get

A1 ≤ ληC1(r)
(
‖Σ‖r/2tr/2 + C2t

ϑ
)

+ oη(t)

=
{
Oη,βX

(tϑ) if Σ = 0,
Oη,Σ(tr/2) ∀r ∈ [0, 1[ if Σ 6= 0,

 (5.26)

as t→ 0. The preliminaries of Lemma 5.4.5 in the case of βX < 1 and Σ = 0 are
also met if ϑ = 1.

As the bounds (5.24), (5.25) and (5.26) for the terms on the right-hand side
of (5.23) are uniform in y, we get in case of βX < 1 and Σ = 0 that ∆∗t = Oε,η(t),
in case of 1 ≤ βX ≤ 2 and Σ = 0 that ∆∗t = Oε,η,βX

(tϑ) for all ϑ ∈ [0, 1/βX [
and in case of Σ 6= 0 that ∆∗t = Oε,η,σ(tr/2) for all r ∈ [0, 1[. This is sufficient for
Theorem 5.4.6 by virtue of Lemma 5.1.10. 2
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6 Penalisation in the discrete time
framework

This chapter is dedicated to the penalisation method in the discrete time frame-
work. So far, we have proved Theorem 4.2.6 implying an explicit rate of convergence
for the projection estimator of a Besov-type smooth Lévy density p if and only if
the smoothness of p is known. In Section 6.1, we introduce penalties based on the
observation of the discretisation Xτ of a Lévy process X on the regular grid τN0
with mesh size τ > 0. Moreover, we define a penalised projection estimator in
the discrete time framework. In Section 6.2, we first adapt Theorem 3.2.1 from the
continuous time framework. Secondly, we refine Theorem 3.3.7.

In this chapter, we write vectors in bold font again and let X be an Rd-valued
Lévy process with Lévy-Khintchine triplet (γ,Σ, ν) for a d ∈ N. Since all norms
in the finite dimensional space Rd are equivalent, we use the supremum norm in
the following again, unless explicitly stated otherwise. We recall that for η > 0, we
denote the open η-ball around x ∈ Rd w. r. t. the supremum norm by

Bη(x) = {y ∈ Rd : ‖y − x‖∞ < η}.

6.1 Penalised projection estimation in DT
This section is dedicated to the definition of a penalised projection estimator
in the discrete time framework. Let D ∈ Bd

◦ such that there exists an ε > 0
with D ∩Bε(0) = ∅. Furthermore, let {Sm : m ∈ M} be a polynomial collection
of finite dimensional linear projection spaces. Analogously to the continuous time
framework, we restrict ourselves to the subfamily {Sm : m ∈ MT} for T > 0,
where MT := {m ∈M : Dm ≤ T}.
Assumption 6.1.1 (Regularity on finitely many subsets) For all m ∈ M ,
assume there exists an n ∈ N and a family Em,1, . . . , Em,n of disjoint d-dimensional
intervals away from zero such that

i)
n⋃
i=1

Em,i = D,

ii) the restriction f|Em,i of all f ∈ Sm to every Em,i belongs to the Sobolev
space W1,q(Em,i) for a q ≥ 1 independent of i = 1, . . . , n.
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6 Penalisation in the discrete time framework

To avoid tedious notation, we write

‖f ′‖D,∞ :=


sup

i∈{1,...,n}
‖f ′|Em,i‖L∞(Em,i) in the case of d = 1,

sup
i∈{1,...,n}

sup
j∈{1,...,d}

‖∂jf|Em,i‖L∞(Em,i) in the case of d ≥ 2,

and for m ∈M , we introduce as an additional constant

D′m := sup{‖f ′‖2
D,∞ : f ∈ Sm, ‖f‖2

µ = 1}.

In our case, we always have D′m <∞.

Definition 6.1.2 (Penalised projection estimation) Let τ : R+
0 → R+

0 be a
strictly decreasing function and XτT denote the discretisation of X w. r. t. the
mesh size τT from (4.2). Furthermore, let pen be a penalty on {Sm : m ∈M} such
that penT is σ(XτT

t : t ∈ [0, T ])-measurable for every T > 0. Then Spen := Smpen
T

is called penalised projection space in DT, where

mpen
T := arg min

m∈MT

{
−‖p̃m‖2

µ + penT (m)
}
, (6.1)

and p̃pen := p̃(·; τ, T,Spen) is called penalised projection estimator in DT.

6.2 Oracle inequality for penalised projection
estimation

This section is dedicated to the adaption of the oracle inequality (Theorem 3.2.1).
[. . . ]

Theorem 6.2.1 (Asymptotic oracle inequality in DT) Let pen be a penalty
on {Sm : m ∈M} such that there exist c1 > 1 and c2, . . . , c7 > 0 with

penT (m) = c1

T

dm∑
k=1

ν̃(f 2
m,k) + c2Dm

T
+ c3dm

T

+ c4D
′
m

T
+ c5D

4
m

T 3 + c6(D′m)4

T 3 + c7d
4
m

T 3 .

 (6.2)

Assume the mesh size satisfies τ = o(T−2), then there exist finite positive con-
stants C1, C2 <∞ with

E‖p− p̃pen‖2
µ ≤ C1 inf

m∈MT

(
‖p− Pmp‖2

µ + E[penT (m)]
)

+ C2

T
. (6.3)
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6.2 Oracle inequality for penalised projection estimation

Proof:
We essentially follow Figueroa-López and Houdré [18, Chapter 9].

Step 1: “General notation and fundamental relations”
We denote the set of observation intervals on the grid τTN0 up to time T > 0 by

GT = {g = ∆τ
k : k = 1, . . . , bT/τc}.

With this notation, we define for every function f ∈ L2(D, µ)

Ξ(f) := − 2
T

∑
g∈GT

f(Xg) + ‖f‖2
µ (6.4)

and
Υ(f) := 1

T

∑
g∈GT

f(Xg)− ν(f) = ν̃(f)− ν(f). (6.5)

From classical Hilbert space theory, we deduce that the projection estimator p̃m
w. r. t. a projection space Sm is the unique minimiser of Ξ over Sm and

Ξ(p̃m) = −‖p̃m‖2
µ (6.6)

holds for all m ∈M . Combining (6.1) and (6.6), we conclude that for all m ∈M

Ξ(p̃pen) + penT (mpen
T ) ≤ Ξ(p̃m) + penT (m) ≤ Ξ(Pmp) + penT (m) (6.7)

is satisfied. Obviously, we can express Ξ in terms of Υ. In particular, we observe
that

Ξ(f) = ‖f‖2
µ − 2ν(f)− 2Υ(f) = ‖f − p‖2

µ − ‖p‖2
µ − 2Υ(f), (6.8)

where the second equality follows directly with Lemma 2.3.6.
For the sake of simplicity, for all f ∈ L2(D, µ), we define f(x) = 0 for all x 6∈ D.

Let η ∈]0, ε/3 ∧ 1[, then we decompose the Lévy process X for t ∈ R+
0 as follows.

Vt := γηt+ Σ1/2Wt with γη = γ −
∫

B1(0)\Bη(0)

xν(dx),

Yt :=
Nt∑
k=1
Zk :=

∫∫
[0,t]×(Rd◦\Bη(0))

xJ(ds, dx),

Rt := Xt − Vt − Yt,


(6.9)

where V , Y and R are independent. In the definition of Y in (6.9), N is a Poisson
process with rate λη := ν(Rd

◦ \Bη(0)) <∞ and the family of jumps {Zk}k∈N is an
i. i. d. family of random variables (independent of N) with law PZ1 given by

PZ1(dx) = λ−1
η p(x)1Rd◦\Bη(0)(x)dx for x ∈ Rd.

61



6 Penalisation in the discrete time framework

Step 2: “Excursus: About the number of jumps per observation interval”
If τ = o(T−1), then supg∈GT Ng tends to one in probability as T →∞.

Proof: In particular, we observe that

P (∀g ∈ GT : Ng ≤ 1) =
(
e−λητ (1 + λητ)

)T/τ
= exp

(
−ληT + T

τ
log(1 + λητ)

)

holds for every T > 0. Let T be big enough such that τ < 1/λη, then we have

log(1 + λητ) =
∞∑
k=1

(−1)k+1 (λητ)k
k

implying that

lim
T→∞

exp
(
−ληT + T

τ
log(1 + λητ)

)
= lim

T→∞
exp

( ∞∑
k=2

λkηTτ
k−1

k

)
= e0 = 1

since Tτ → 0 by assumption. Finally, since P (∀g ∈ GT : Ng = 0) = e−ληT → 0,
we have proved that

sup
g∈GT

Ng
P→ 1 (6.10)

as T →∞. �

Step 3: “Excursus: Implications from Mancini [29, Theorem 3.1]”
The integral estimator ν̃(f) tends to T−1∑

g∈GT f(Xg)1{Ng=1}(·) in probability.

Proof: Let r : [0, 1[→ R+
0 be such that r(0) = 0,

lim
τ→0

τ log(1/τ)
r(τ) = 0 and lim

τ→0

τ

r(τ) = 0.

Then we deduce from (6.10) and from Mancini [29, Theorem 3.1] that for P -almost
all ω ∈ Ω exists a Tmin(ω) <∞ such that

(i)
√
r(τT ) < ε,

(ii) supg∈GT Ng(ω) = 1,

(iii) for all g ∈ GT : Ng(ω) = 1⇔ ‖Vg(ω) + Yg(ω)‖2
∞ ≥ r(τT )

hold for all T > Tmin(ω).
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6.2 Oracle inequality for penalised projection estimation

For the sake of the argument, let us outline that (iii) is valid in the multivariate
case, too. With the abbreviation CΣ = ‖diag(Σ)‖∞, we have to prove that

sup
g∈GT

‖Vg‖∞√
2τ log(1/τ)

< ‖γη‖∞ +
√
CΣ <∞ (6.11)

is bounded almost surely for large T . For every j = 1, . . . , d, we deduce that there
is a Wiener process W ′

j (possibly correlated to W ′
j′ for j′ 6= j) such that

Vj,∆τ
h

= γη,jτ +W ′
j,hσjjτ

−W ′
j,(h−1)σjjτ ,

where σjj denotes the j-th diagonal element of Σ. We conclude that for large T
(hence, small τ)

sup
g∈GT

|Vj,g|√
2τ log(1/τ)

≤ γη,jτ√
2τ log(1/τ)

+ sup
h

W ′
j,hσjjτ

−W ′
j,(h−1)σjjτ√

2σjjτ log( 1
σjjτ

)
sup
h

√
2σjjτ log( 1

σjjτ
)√

2CΣτ log( 1
CΣτ

)
×

× sup
h

√
2CΣτ log( 1

CΣτ
)√

2τ log(1/τ)
< ‖γη‖∞ +

√
CΣ a. s. as T →∞.

The first summand on the right-hand side is seen to be bounded by ‖γη‖∞ for
large T , since

√
τ/ log(1/τ) → 0 as τ → 0. The third term in the product on the

right-hand side tends to
√
CΣ, and the second term is seen to be bounded by 1,

as τ 7→ τ log(1/τ) is an increasing function. Finally, the a. s. limit, as T → ∞
(hence τ → 0) of the first factor is almost surely bounded by 1 due to Lévy’s
modulus of continuity theorem (cf. Lévy [28] or Sato [36, p. 10]).

Hence we proved (6.11), as the right-hand side of the inequality is independent
of the component j. As we ensured mink∈N‖Zk‖∞ ≥ η by definition of Y , the
remaining of the (univariate) proof of Mancini [29, Theorem 3.1] can be adapted
one-to-one to our multivariate setup.
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6 Penalisation in the discrete time framework

Therefore,

ν̃(f)− 1
T

∑
g∈GT

f(Xg)1{Ng=1}(·)

= 1
T

∑
g∈GT

f(Xg)1{‖Xg‖≥ε}(·)−
1
T

∑
g∈GT

f(Xg)1{Ng=1}(·)

= 1
T

∑
g∈GT

f(Xg)
(
1{‖Xg‖≥ε,‖Vg+Yg‖2<r(τ)}(·)− 1{‖Xg‖<ε,‖Vg+Yg‖2≥r(τ)}(·)

)
= 1
T

∑
g∈GT

f(Xg)1{‖Vg+Rg‖≥ε}(·)
P→ 0


(6.12)

tends to zero in probablity, since for a finite constant Kε,η <∞, we conclude that

E

∣∣∣∣∣∣
∑
g∈GT

f(Xg)1{‖Vg+Rg‖≥ε}

∣∣∣∣∣∣ ≤ ‖f‖D,∞
T

τ
P (‖Vg +Rg‖ ≥ ε)

≤ Kε,η‖f‖D,∞Tτ 2 → 0

by virtue of Lemma 5.4.4, the choice of η and the same argument as in Step 3 of
the proof of Theorem 5.4.6. �

For the sake of simplicity, let us introduce an abbreviation for the stochastic
process appearing last in (6.12). We denote for all f ∈ L2(D, µ)

Ψ(f) : R+
0 × Ω→ R; (t, ω) 7→

∑
g∈Gt

f(Xg)1{‖Vg+Rg‖≥ε}(ω),

Ψ : R+
0 × Ω→ N; (t, ω) 7→

∑
g∈Gt

1{‖Vg+Rg‖≥ε}(ω).

Then, for all T > 0, we observe

ν̃(f)− 1
T

∑
g∈GT

f(Xg)1{Ng=1} = 1
T

Ψ(f)T ≤
‖f‖D,∞ΨT

T
. (6.13)

Moreover, for every T > 0, we conclude that ΨT has binomial distribution Bñ,ρ

with parameters ñ = bT/τc and ρ ≤ Kε,ητ
3.

Step 4: “Decomposing the squared error”
For every m ∈M , we have

‖p− p̃pen‖2
µ ≤ ‖p− Pmp‖2

µ + 2‖Ppenp− p̃pen‖2
µ

+ 2Υ(Ppenp− Pmp) + penT (m)− penT (mpen
T ).

}
(6.14)

64



6.2 Oracle inequality for penalised projection estimation

Proof: First, we use the fundamental relations from Step 1 to show that for arbi-
trary m ∈M

‖p− p̃pen‖2
µ

(6.8)= Ξ(p̃pen) + ‖p‖2
µ + 2Υ(p̃pen)

(6.7)
≤ Ξ(Pmp) + ‖p‖2

µ + 2Υ(p̃pen) + penT (m)− penT (mpen
T )

(6.8)= ‖p− Pmp‖2
µ + 2Υ(p̃pen − Pmp) + penT (m)− penT (mpen

T )


(6.15)

holds. Moreover, the representation p̃m − Pmp = ∑dm
k=1 Υ(fm,k)fm,k(·) follows di-

rectly from the definition of the projection estimator and from (6.5). Let us recall
that {fm,k : k = 1, . . . , dm} denotes a µ-ONB of Sm. Hence, we conclude that

Υ(p̃m − Pmp) = ‖p̃m − Pmp‖2
µ

holds for every m ∈M . Thus,

Υ(p̃pen − Pmp) = Υ(p̃pen − Ppenp) + Υ(Ppenp− Pmp)
= ‖p̃pen − Ppenp‖2

µ + Υ(Ppenp− Pmp).

}
(6.16)

The validity of (6.14) follows directly from (6.15) and (6.16). �

Step 5: “Decomposing Υ”
For every T large enough, there exist a Poisson random measure J̆ with mean
measure having µ-density p̆ and a finite constant K ′η <∞ such that

Υ(f) ≤

∣∣∣∣∣∣∣
∫∫

[0,T ]×D

f(x)
T

(J̆(dt, dx)− p̆(x)dtµ(dx)

∣∣∣∣∣∣∣
+ 1
T
K ′η

‖f‖D,∞ +
n∑
i=1

d∑
j=1
‖∂jf|Em,i‖L∞(Em,i)

+ 1
T

ΨT‖f‖D,∞.


(6.17)

Proof: We deduce from (6.13) that for T > Tmin

Υ(f) = 1
T

∑
g∈GT

f(Xg)− ν(f)

≤

∣∣∣∣∣∣ 1T
∑
g∈GT

f(Xg)1{Ng=1} − ν(f)

∣∣∣∣∣∣+ 1
T

ΨT‖f‖D,∞


(6.18)
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6 Penalisation in the discrete time framework

holds. Moreover, ∑g∈GT f(Xg)1{Ng=1} is a compound Poisson process with finite
intensity λη. Hence, for every T > Tmin, there exists a Poisson random mea-
sure J̆ on the space ([0, T ]× D,B([0, T ]× D)) with intensity measure having den-
sity (t,x) 7→ p̆(x) such that

1
T

∑
g∈GT

f(Xg)1{Ng=1} =
∫∫

[0,T ]×D

f(x)
T

J̆(dt, dx).

Therefore, we conclude that∣∣∣∣∣∣ 1T
∑
g∈GT

f(Xg)1{Ng=1} − ν(f)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

∫∫
[0,T ]×D

f(x)
T

(J̆(dt, dx)− p̆(x)dtµ(dx)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1T E
 ∑
g∈GT

f(Xg)1{Ng=1}

− ν(f)

∣∣∣∣∣∣


(6.19)

holds, where we observe that∣∣∣∣∣∣ 1T E
 ∑
g∈GT

f(Xg)1{Ng=1}

− ν(f)

∣∣∣∣∣∣ =
∣∣∣∣1τ E[f(Xτ );Nτ = 1]− ν(f)

∣∣∣∣
=
∣∣∣∆τ

(
f1{Nτ=1}

)∣∣∣ .
Then in the light of Theorem 5.4.3 (Theorem 5.4.6 in the case of d ≥ 2) and
Lemma 5.1.2 (Lemma 5.1.10, respectively), there is a finite constant K ′η <∞ such
that for every ϑ < 1/2 (or ϑ < 1/βX ∧ 1 in the case of σ = 0)

sup
{τ :T>Tmin}

τ−ϑ
∣∣∣∆τ (f1{Nτ=1})

∣∣∣ ≤
‖f‖D,∞ +

n∑
i=1

d∑
j=1
‖∂jf|Em,i‖L∞(Em,i)

K ′η
holds. By the choice of τ = o(1/T 2), we ensured that

sup
T>Tmin

T
∣∣∣∆τ (f1{Nτ=1})

∣∣∣ ≤
‖f‖D,∞ +

n∑
i=1

d∑
j=1
‖∂jf|Em,i‖L∞(Em,i)

K ′η. (6.20)

holds, additionally. Finally, the validity of (6.17) follows directly from (6.18), (6.19)
and (6.20). �

In the following, we repeatedly invoke the inequalities below. For all x1, x2 ∈ R
and every arbitrary constant a > 0, we have

2x1x2 ≤ ax2
1 + 1

a
x2

2, (6.21)

(x1 + x2)2 ≤ (1 + a)x2
1 +

(
1 + 1

a

)
x2

2. (6.22)
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Further, let B1, B2 ∈ F , then

(P (B1) ≥ 1− b1 and P (B2) ≥ 1− b2)⇒ P (B1 ∩B2) ≥ 1− b1 − b2. (6.23)

Step 6: “Concentration inequality for Υ”
For arbitrary a2, . . . , a7 > 0, there exist a positive number k1, a quadratic func-
tion f1 : ξ 7→ f1(ξ) increasing on [0,∞[ (independent of {Sm : m ∈ M} and T )
and finite constants K̄1, K̄2 such that with probability larger than 1− k1e

−ξ

‖p− p̃pen‖2
µ ≤ ‖p− Pmp‖2

µ + 2‖Ppenp− p̃pen‖2
µ + 2a2‖Ppenp− Pmp‖2

µ

+
a3Dmpen

T

T
+ a4Dm

T
+
a5D

′
mpen
T

T
+ a6D

′
m

T
+
a7dmpen

T

T

+ penT (m)− penT (mpen
T ) + f1(ξ)

T
+ K̄1

T
+ K̄2Ψ2

T

T
.


(6.24)

Proof: First, let us recall representation (6.17) for Υ(Pm′ − Pm) and denote the
summands therein by A1, A2 and A3. Then Figueroa-López and Houdré [18, Propo-
sition 9.2] implies that for m′ ∈M and arbitrary am′ > 0

A1 ≤
∥∥∥∥Pm′p− PmpT

∥∥∥∥
L2(D,p̆dtdµ)

√
2am′ +

‖Pm′p− Pmp‖D,∞am′

3T (6.25)

holds with probability larger than 1 − e−am′ . By virtue of (6.23), we deduce
that (6.25) holds for all m′ ∈M with probability greater than 1−∑m′∈M e−am′ .

We recall that p̆/λη is the density of PVτ+Rτ ∗ PZ1 . Hence,

|p̆(x)| =

∣∣∣∣∣∣
d∫

R

(
p(u)1Rd◦\Bη(0)(u)

)
F ′Vτ+Rτ

(x− u)µ(du)

∣∣∣∣∣∣ ≤ ‖p‖Rd◦\Bη(0),∞ <∞

holds for every x ∈ D. Therefore, we see that
∥∥∥∥Pm′p− PmpT

∥∥∥∥2

L2(D,p̆dtdµ)
≤ ‖p‖Rd◦\Bη(0),∞

‖Pm′p− Pmp‖2
µ

T

is valid. Thus, invoking (6.21) for an arbitrary a2 > 0, we conclude
∥∥∥∥Pm′p− PmpT

∥∥∥∥
L2(D,p̆dtdµ)

√
2am′ ≤ a2‖Pm′p− Pmp‖2

µ +
‖p‖Rd◦\Bη(0),∞am′

2a2T

for the first term on the right-hand side in (6.25).
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Classical Hilbert space theory reveals that every orthonormal projection oper-
ator P satisfies ‖Pp‖2 ≤ ‖p‖2. Therefore, we conclude that

‖Pm′p− Pmp‖D,∞ ≤
√
Dm′‖Pm′p‖µ +

√
Dm‖Pmp‖µ ≤

√
Dm′‖p‖µ +

√
Dm‖p‖µ

holds. Again, invoking (6.21) for arbitrary a3 > 0 and a4 > 0, we have

‖Pm′p− Pmp‖D,∞am′

3T ≤ a3Dm′

2T + a4Dm

2T +
‖p‖2

µa
2
m′

36T

( 2
a3

+ 2
a4

)
for the second term on the right-hand side in (6.25).

From (6.17), we observe additionally that

A2 + A3 =
(K ′η + ΨT )‖Pm′p− Pmp‖D,∞

T

+ 1
T
K ′η

n∑
i=1

d∑
j=1
‖∂j(Pm′p− Pmp)|Em,i‖L∞(Em,i)

 (6.26)

is satisfied. Analogously to the previous argument, we have

(K ′η + ΨT )‖Pm′p− Pmp‖D,∞

T
≤ a3Dm′

2T + a4Dm

2T +
‖p‖2

µ(2(K ′η)2 + 2Ψ2
T )

4T

( 2
a3

+ 2
a4

)
for the first term on the right-hand side in (6.26). By definition, for all i = 1, . . . , n
and j = 1, . . . , d, we have

‖∂j(Pm′p− Pmp)|Em,i‖L∞(Em,i) ≤ ‖f ′‖D,∞.

Thus, analogously to the previous two arguments, for arbitrary a5 > 0 and a6 > 0,
we have

1
T
K ′η

n∑
i=1

d∑
j=1
‖∂j(Pm′p− Pmp)|Em,i‖L∞(Em,i)

≤ a5D
′
m′

T
+ a6D

′
m

T
+
‖p‖2

µ(nK ′η)2

4T

( 1
a5

+ 1
a6

)
for the second term in (6.26).

With the abbreviation

K̄1 :=
‖p‖2

µ

4

(
2(K ′η)2

( 2
a3

+ 2
a4

)
+ (nK ′η)2

( 1
a5

+ 1
a6

))
,

K̄2 :=
‖p‖2

µ

2

( 2
a3

+ 2
a4

)
,
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6.2 Oracle inequality for penalised projection estimation

we proved that

Υ(Pm′ − Pm) ≤ a2‖Pm′p− Pmp‖2
µ + a3Dm′

T
+ a4Dm

T

+ a5D
′
m′

T
+ a6D

′
m

T
+ K̄1

T
+ K̄2Ψ2

T

T

+
‖p‖Rd◦\Bη(0),∞am′

2a2T
+
‖p‖2

µa
2
m′

36T

( 2
a3

+ 2
a4

)
holds with probability greater than 1−∑m′∈M e−am′ . For arbitrary a′7 > 0, we take

am′ := a′7

√
dm′

(
1

‖p‖Rd◦\Bη(0),∞
∧ 1
‖p‖µ

)
+ ξ.

Then, invoking (6.22) with a = 1 and x1 + x2 = a2
m′ , we get

Υ(Pm′ − Pm) ≤ a2‖Pm′p− Pmp‖2
µ + a3Dm′

T
+ a4Dm

T

+ a5D
′
m′

T
+ a6D

′
m

T
+ K̄1

T
+ K̄2Ψ2

T

T

+
(

(a′7)2

18

( 2
a3

+ 2
a4

)
+ a′7

2a2

)
dm′

T
+ f1(ξ)

T
,


(6.27)

where
f1(ξ) =

‖p‖2
µ

18

( 2
a3

+ 2
a4

)
ξ2 +

‖p‖Rd◦\Bη(0),∞

2a2
ξ.

We recall that {Sm : m ∈ M} is assumed to be a polynomial family. Hence there
exist b1 > 0 and b2 ≥ 0 such that for all l ∈ N, we have #{m ∈M : dm = l} ≤ b1l

b2 .
We set

k1 := b1

∞∑
l=1

lb2 exp
(
−
√
la7

(
1

‖p‖Rd◦\Bη(0),∞
∧ 1
‖p‖µ

))

and deduce that (6.27) holds with probability greater than 1 − k1e
−ξ. Renaming

the coefficient of dm′/T and combining (6.27) with (6.14), we proved (6.24). �

Step 7: “Reshaping (6.24)”
For an arbitrary a8 > 0, there exist positive constants C < 1 and C ′ > 1 (inde-
pendent of {Sm : m ∈M} and T ) such that with probability larger than 1− k1e

−ξ

C‖p− p̃pen‖2
µ ≤ C ′‖p− Pmp‖2

µ + (1 + a8)‖Ppenp− p̃pen‖2
µ

+
a3Dmpen

T

T
+ a4Dm

T
+
a5D

′
mpen
T

T
+ a6D

′
m

T
+
a7dmpen

T

T

+ penT (m)− penT (mpen
T ) + f1(ξ)

T
+ K̄1

T
+ K̄2Ψ2

T

T
.


(6.28)
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Proof: Invoking (6.22), we conclude that

‖Ppenp− Pmp‖2
µ ≤ 2‖p− Pmp‖2

µ + 2‖p− Ppenp‖2
µ

≤ 2‖p− Pmp‖2
µ + 2‖p− p̃pen‖2

µ − 2‖Ppenp− p̃pen‖2
µ.

Hence,

‖p− Pmp‖2
µ + 2‖Ppenp− p̃pen‖2

µ + 2a2‖Ppenp− Pmp‖2
µ − ‖p− p̃pen‖2

µ

≤ (1 + 4a2)‖p− Pmp‖2
µ + (2− 4a2)‖Ppenp− p̃pen‖2

µ

+ (4a2 − 1)‖p− p̃pen‖2
µ.

For arbitrary a8 > 0, we choose a2 = (1−a8)/4 in the case of a8 < 1 and a2 ∈]0, 1/4[
in the case of a8 ≥ 1. Furthermore, we set

C :=
{

a8, if 0 < a8 < 1,
1− 4a2, if a8 ≥ 1,

C ′ :=
{

2− a8, if 0 < a8 < 1,
1 + 4a2, if a8 ≥ 1.

Finally, we observe

‖p− Pmp‖2
µ + 2‖Ppenp− p̃pen‖2

µ + 2a2‖Ppenp− Pmp‖2
µ − ‖p− p̃pen‖2

µ

≤ C ′‖p− Pmp‖2
µ + (1 + a8)‖Ppenp− p̃pen‖2

µ − C‖p− p̃pen‖2
µ,

where (6.28) follows directly with (6.24). �

Step 8: “Concentration inequality for the µ-variance”
For arbitrary a10, . . . , a15 > 0, there exist a finite constant k2 > 0, a quadratic
function f2 : ξ 7→ f2(ξ) increasing on [0,∞[ (independent of {Sm : m ∈M} and T )
and finite constants K̄3, K̄4 such that with probability larger than 1− k2e

−ξ

C‖p− p̃pen‖2
µ ≤ C ′‖p− Pmp‖2

µ + (1 + a10)
T

d
m

pen
T∑

k=1
〈f 2
m,k, p̆〉µ

+ a4Dm

T
+
a5D

′
mpen
T

T
+ a6D

′
m

T
+
a11Dmpen

T

T

+
a12dmpen

T

T
+
a13d

4
mpen
T

T 3 +
a14D

4
mpen
T

T 3 +
a15(D′mpen

T
)4

T 3

+ penT (m)− penT (mpen
T )

+ f2(ξ)
T

+ K̄3

T
+ K̄4(Ψ2

T + Ψ4
T )

T
.



(6.29)
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6.2 Oracle inequality for penalised projection estimation

Proof: Recalling (6.17) and invoking (6.22), we observe that

‖Pm′p− p̃m′‖2
µ =

dm′∑
k=1

(Υ(fm′,k))2

≤ 2
dm′∑
k=1

∣∣∣∣∣∣∣
∫∫

[0,T ]×D

fm′,k(x) J̆(dt, dx)− p̆(x)dtµ(dx)
T

∣∣∣∣∣∣∣
2

+ 4
dm′∑
k=1

(
K ′η(‖fm′,k‖D,∞ + nd‖f ′m′,k‖D,∞)

T

)2

+ 4
dm′∑
k=1

(
ΨT‖fm′,k‖D,∞

T

)2



(6.30)

holds for all m′ ∈ M . We denote the three sums on the right-hand side of (6.30)
by A4, A5 and A6. Furthermore, we set

D̆m′ := sup{〈f 2, p̆〉µ : f ∈ Sm′ , ‖f‖2
µ = 1}.

Then Figueroa-López and Houdré [18, Proposition 9.3] implies that for m′ ∈ M
and arbitrary a′m′ > 0 and a10 > 0

√
TA4 ≤ (1 + a10)

√√√√√dm′∑
k=1
〈f 2
m′,k, p̆〉µ +

√
12D̆m′a′m′ +

(
1.25 + 32

a10

)√
Dm′

T
a′m′ (6.31)

holds with probability larger than 1 − e−a
′
m′ . By virtue of (6.23), we deduce

that (6.31) holds for all m′ ∈ M with probability greater than 1 −∑m′∈M e−a
′
m′ .

We observe that D̆m′ is bounded above by ‖p̆‖µ
√
Dm′ . Thus, invoking (6.21), we

obtain √
12D̆m′a′m′ ≤ a11

√
Dm′ +

3‖p̆‖µ
a11

a′m′

for arbitrary a11 > 0.
By the choice of

a′m′ = a12
√
dm′

3‖p̆‖µ
a11

+
(
1.25 + 32

a10

) + ξ

for arbitrary a12 > 0 and, since Dm′ ≤ T for all m′ ∈MT , we obtain that

√
TA4 ≤ (1 + a10)

√√√√√dm′∑
k=1
〈f 2
m′,k, p̆〉µ + a11

√
Dm′ + a12

√
dm′ + f̃2(ξ) (6.32)
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holds with probability larger than 1− k′2e−ξ, where

f̃2(ξ) =
(

3‖p̆‖µ
a11

+
(

1.25 + 32
a10

))
ξ,

k′2 = b1

∞∑
l=1

lb2 exp
−√l a12

3‖p̆‖µ
a11

+
(
1.25 + 32

a10

)
 .

We square (6.32) and invoke (6.22) repeatedly. Then, after renaming the con-
stants, we obtain for a quadratic function f2 increasing on [0,∞[ that

(1 + a8)A4 + f1(ξ)
T
≤ (1 + a10)

T

dm′∑
k=1
〈f 2
m′,k, p̆〉µ + a11Dm′

T
+ a12dm′

T
+ f2(ξ)

T
(6.33)

holds for all m′ ∈MT with probability larger than 1− k′2e−ξ.
Furthermore, invoking (6.22), we observe

A5 ≤

2K ′η
√
Dm′ + 2ndK ′η

√
D′m′

T

2

dm′

=
4(K ′η)2Dm′dm′

T 2 +
4(ndK ′η)2D′m′dm′

T 2 .

Hence, invoking (6.21), we obtain

A5 ≤
2(K ′η)2D2

m′

T 2 +
2(K ′η)2n2d2(D′m′)2

T 2 +
2(K ′η)2(1 + n2d2)d2

m′

T 2 .

Therefore, invoking (6.21), we deduce that

A5 ≤
a′13d

4
m′

T 3 + a′14D
4
m′

T 3 + a′15(D′m′)4

T 3

+ 1
T

(
(K ′η)4(1 + n2d2)2

a′13
+

(K ′η)4

a′14
+

(K ′η)4n4d4

a′15

)
 (6.34)

holds true for arbitrary a′13, a
′
14, a

′
15 > 0. Analogously, for arbitrary a′′13, a

′′
14 > 0, we

observe

A6 ≤
4Ψ2

TDm′dm′

T 2 ≤ 2Ψ2
TD

2
m′

T 2 + 2Ψ2
Td

2
m′

T 2

≤ a′′13d
4
m′

T 3 + a′′14D
4
m′

T 3 + Ψ4
T

T

(
1
a′′13

+ 1
a′′14

)
.

 (6.35)
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We denote

K̄3 := K̄1 +
(

(K ′η)4(1 + n2d2)2

a′13
+

(K ′η)4

a′14
+

(K ′η)4n4d4

a′15

)
,

K̄4 := K̄2 ∨
(

1
a′′13

+ 1
a′′14

)
,

k2 := k1 + k′2.

Combining (6.33), (6.34) and (6.35) with (6.28), we observe directly that (6.29)
holds with probability larger than 1− k2e

−ξ. �

Step 9: “Proof of (6.3)”
As a consequence of Figueroa-López and Houdré [18, Proposition 9.3], we observe
that for arbitrary a′16 > 0 and for every a′′m′ > 0, we have that

(1 + a′16)

dm′∑
k=1

∫∫
[0,T ]×D

f 2
m′,k(x)
T

J̆(dt, dx) +
(

1
2a′16

+ 5
6

)
Dm′

T
a′′m′

 ≥ dm∑
k=1
〈f 2
m′,k, p̆〉µ

holds with probability larger than 1−∑m′∈MT
e−a

′′
m′ . We derive from (6.12) that∫∫

[0,T ]×D

 d′m∑
k=1

f 2
m′,k(x)
T

 J̆(dt, dx) = 1
T

∑
g∈GT

dm′∑
k=1

f 2
m′,k(x)1{Ng=1} ≤

dm′∑
k=1

ν̃(f 2
m′,k).

Let us recall that Dm′ ≤ T for all m′ ∈MT . Then by the choice of a′′m′ = a′17dm′+ξ
for an arbitrary a′17 > 0, we obtain

(1 + a′16)
dm′∑
k=1

ν̃(f 2
m′,k) +

(
1

2a′16
+ 5

6

)
a′17dm′ +

(
1

2a′16
+ 5

6

)
ξ ≥

dm′∑
k=1
〈f 2
m′,k, p̆〉µ

with probability larger than 1 − k′3e−ξ, where k′3 = b1
∑∞
l=1 l

b2 exp(−a′17l). There-
fore, for arbitrary a16 > 0 and a17 > 0, there exist k3 < ∞ and a quadratic
polynomial f3 : ξ 7→ f3(ξ) increasing on [0,∞[ such that

C‖p− p̃pen‖2
µ ≤ C ′‖p− Pmp‖2

µ + (1 + a16)
T

d
m

pen
T∑

k=1
ν̃(fmpen

T
)

+ a4Dm

T
+
a5D

′
mpen
T

T
+ a6D

′
m

T
+
a11Dmpen

T

T

+
a12dmpen

T

T
+
a13d

4
mpen
T

T 3 +
a14D

4
mpen
T

T 3 +
a15(D′mpen

T
)4

T 3

+ penT (m)− penT (mpen
T )

+ f3(ξ)
T

+ K̄3

T
+ K̄4(Ψ2

T + Ψ4
T )

T



(6.36)
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holds with probability larger than 1− k3e
−ξ. In particular,

f3(ξ) := f2(ξ) +
(

1
2a′16

+ 5
6

)
ξ,

k3 := k2 + k′3.

Next, we take a16 = 1 − c1, a11 = c2, a5 = c4, a12 = c3, a13 = c7, a14 = c5
and a15 = c6 to cancel “− penT (mpen

T )” on the right-hand side of (6.36). Hence, we
rewrite (6.36) and deduce that

A7 := C‖p− p̃pen‖2
µ − C ′‖p− Pmp‖2

µ −
a4Dm

T
− a6D

′
m

T

− penT (m) + K̄3

T
− K̄4(Ψ2

T + Ψ4
T )

T
≤ f3(ξ)

T

holds with probability greater than 1−k3e
−ξ. Using the idea from Figueroa-López

and Houdré [18, Lemma 9.4], we observe

E[A7] ≤ E[A+
7 ] ≤

∞∫
0

P (A7 ≥ x)dx ≤ k3

∞∫
0

e−f
−1
3 (x)dx = k3

∞∫
0

e−ξf ′3(ξ)dξ.

Since f3(0) = 0, integration by parts yields that

C E‖p− p̃pen‖2
µ ≤ C ′‖p− Pmp‖2

µ +
(

1 +
(
a4

c2
∨ a6

c4

))
EP2 [penT (m)] + C ′′

T
(6.37)

holds with

C ′′ = k3

∞∫
0

e−ξf3(ξ)dξ + K̄3 + K̄4
(
E
[
Ψ2
T

]
+ E

[
Ψ4
T

])
.

We recall that ΨT has binomial distribution Bñ,ρ with parameters ñ = bT/τc
and ρ ≤ Kε,ητ

3. Hence, we observe that the second and fourth moment of ΨT are
finite and converge to zero as T →∞ by choice of τ = o(T−2). In particular,

E
[
Ψ2
T

]
= ñρ(1− ρ) + (ñρ)2 ≤ Kε,ηTτ

2 +K2
ε,ηT

2τ 4 → 0,

E
[
Ψ4
T

]
= (ñ− 3)(ñ− 2)(ñ− 1)ñρ4 + 6(ñ− 2)(ñ− 1)ñρ3

+ 7(ñ− 1)ñρ2 + ñρ

= (ñρ)4 − 6ñ3ρ4 + 11ñ2ρ4 − 6ñρ4 + 6ñ3ρ3 − 18ñ2ρ3 + 12ñρ3

+ 7ñ2ρ2 − 7ñρ2 + ñρ

≤ K4
ε,η(T 4τ 8 + 11T 2τ 10) +K3

ε,η(6T 3τ 6 + 12Tτ 8)
+7K2

ε,ηT
2τ 4 +Kε,ηTτ

2 → 0.



(6.38)
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6.3 Estimation of smooth multivariate Lévy densities

Finally, we set

C1 = C ′

C
∨

1 +
(
a4
c2
∨ a6

c4

)
C

<∞ and C2 = C ′′

C
<∞

Then we deduce that the oracle inequality (6.3) holds by the combination of (6.37)
and (6.38), as m ∈MT is arbitrary. 2

6.3 Estimation of smooth multivariate Lévy densities
In the continuous time framework (cf. Theorem 3.3.7), we gave an explicit rate
of convergence for the PPE for univariate Besov-type smooth functions. We can
readily adapt this result to the discrete time framework, however, the multivariate
case turns out to be more complex. Probably, an equivalent approximation re-
sult as Proposition 3.3.3 holds in the case of multivariate Besov-smooth functions.
Nevertheless, we restrict ourselves to Sobolev spaces (recall Definition 5.1.7) in the
following, in order to use the theory of finite elements as introduced in Brenner
and Scott [7]. (It is noteworthy that every Sobolev space is a subspace of a cer-
tain Besov space.) Analogously, we obtain bounds for the approximation error of
Sobolev-type smooth functions when approximated by piecewise polynomials.

Finite elements
We adapt the concept of finite elements as introduced in Ciarlet [11] and adapted
in Brenner and Scott [7, Definition 3.1.1].

Definition 6.3.1 (Finite element) Let D ⊆ Rd be a domain with piecewise
smooth boundary (the element domain), Q be a finite-dimensional space of func-
tions on D (the shape functions) and N be a basis for the dual space Q̂ of Q (the
nodal varibales), then (D,Q,N ) is called finite element.

Example 6.3.2 (Orthotope Lagrange element) Let D = [0, 1]d be the d-di-
mensional unit orthotope and

Qk :=

x 7→∑
j

cj
d∏
i=1

fj,i(xi) : cj ∈ R, fj,i polynomials of maximum degree k

 .
Then dim(Qk) =

(
d+k
k

)
, and Brenner and Scott [7, Chapter 3.5 and 3.6] inductively

construct a set {vj : j = 1, . . . ,
(
d+k
k

)
} ⊆ D such that

N :=
{
gj : Qk → R; f 7→ gj(f) := f(vj) : j = 1, . . . ,

(
d+ k

k

)}
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6 Penalisation in the discrete time framework

is a basis for Q̂k. Moreover, we have N ⊆ Ĉ 0, i. e. every gj ∈ N does not involve
any derivative. The finite element (D,Qk,N ) is called Lagrange element over D.

For a connected set D ⊆ Rd, we denote the diameter of D by

diamD := max{‖x1 − x2‖∞ : x1, x2 ∈ D}.

Finally, we derive the following Proposition from Brenner and Scott [7, Theo-
rem 4.4.20].

Proposition 6.3.3 (Approximation error for Sobolev-type functions)
Let D ∈ Bd

◦ be a compact d-dimensional interval such that µ(D) <∞ and assume
that the restriction p|D of the Lévy density p to D satisfies p|D ∈ Wr,2(D, µ) for
some r ∈ N. Further, let Dm be a partition of D such that

max{diamD : D ∈ Dm} ≤ m−1 diam D

and every D ∈ Dm is a d-dimensional interval. Moreover, we assume that there
is a positive ρ > 0 independent of m such that for every D ∈ Dm, there exists a
ball BD ⊂ D with diamBD ≥ ρ diamD. Let Sm be the projection space consisting
of all functions f : D → R such that the restriction f|D of f to every D ∈ Dm
satisfies f|D ∈ Qr−1, where Q· is defined as in Example 6.3.2. Then there is a finite
positive constant c(r, ρ) <∞ such that

‖p− Pmp‖µ ≤ c(r, ρ)m−r|p|D|Wr,2 . (6.39)

Proof:
We note that every d-dimensional interval is (geometrically spoken) a polyhedron.
For every D ∈ Dm, there exists an affine mapping x 7→ Ax+ b for some A ∈ Rd×d

and b ∈ Rd such that (D,Qk(D),N (D)) is a finite element, affine-equivalent
(w. r. t. the affine mapping) to the Lagrange element from Example 6.3.2 (cf. Bren-
ner and Scott [7, Definition 3.4.1]). As the Lagrange element satisfies the conditions
of Brenner and Scott [7, Theorem 4.4.4], we invoke Brenner and Scott [7, Theo-
rem 4.4.20]. Hence, there is an f ∈ Sm (in particular the interpolant w. r. t. the
finite elements {(D,Qk(D),N (D)) : D ∈ D}) such that for every 0 ≤ r′ ≤ r,
there is a finite constant c(r, ρ) <∞ with

 ∑
D∈Dm

‖p− f|D‖2
Wr′,2(D,µ)

1/2

≤ c(r, ρ)mr′−r|p|D|Wr,2(D,µ).

For r′ = 0, the left-hand side reduces to ‖p− f‖µ for an f ∈ Sm. Therefore, (6.39)
follows directly by Definition 2.3.5. 2
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6.3 Estimation of smooth multivariate Lévy densities

Rate of convergence and remark
Theorem 6.3.4 (Rate of convergence of the PPE in DT)
Let X be an Rd-valued Lévy process with generating triplet (γ,Σ, ν). Further,
let D ∈ Bd

◦ be a compact d-dimensional interval such that µ(D) < ∞ and as-
sume that the restriction p|D of the Lévy density p to D satisfies p|D ∈ Wr,2(D, µ)
for some r ∈ N with r > d/4. Further, for m ∈ M := N, let Sm ⊆ L2(D, µ)
be the space of piecewise polynomials of maximum degree r − 1 as introduced in
Proposition 6.3.3. Moreover, let pen be a penalty on {Sm : m ∈M} of form (6.2).
Then a mesh size of τ = o(T−2) is sufficient to ensure that the penalised projection
estimator in DT from Definition 6.1.2 satisfies

sup
T>0

T
2r

2r+d E‖p− p̃pen‖2
µ <∞. (6.40)

Moreover, let a1, a2 > 0 be finite constants and denote by

B(a1, a2) :=
{
f ∈ Wr,2(D, µ) : ‖f‖Rd◦\Bη(0),∞ ≤ a1 and |f |Wr,2 ≤ a2

}
the space of all Sobolev-type smooth functions with supremum and Sobolev-semi-
norm bounded by a1 and a2, respectively. Then, additionally,

sup
T>0

T
2r

2r+d sup
p∈B(a1,a2)

E‖p− p̃pen‖2
µ <∞ (6.41)

holds true for the PPE in DT w. r. t. the penalty pen.

Proof:
From Theorem 6.2.1, with the notation given therein, we infer that there exist
finite constants C1, C2 <∞ such that

E‖p− p̃pen‖2
µ ≤ C1 inf

m∈MT

(
‖p− Ppenp‖2

µ + E[penT (m)]
)

+ C2

T
.

Similarly, as in the proof of Theorem 3.3.7, we deduce from Proposition 6.3.3 that
there is another finite constant K1 = K1(|p|Wr,2) <∞ such that

‖p− Pmp‖2
µ ≤ K1m

−2r.

Moreover, equivalently to the arguments used in the univariate case, we observe
that dm = O(md), Dm = O(md) and D′m = O(md). Thus, we derive from (6.2)
that

E[penT (m)] ≤ K2

(
md

T
+ m4d

T 3

)
holds for a finite constant K2 = K2(‖p‖Rd◦\Bη(0),∞).
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6 Penalisation in the discrete time framework

The rate of convergence T 2r/(2r+d) follows equivalently to the proof of The-
orem 3.3.6, since r > d/4 makes the term m4d/T 3 negligible compared to m−2r

and m/T . Moreover, we note that B(a1, a2) is a compact subspace of Wr,2(D, µ).
Therefore, there exists a uniform bound K ′ <∞ for supf∈B(a1,a2){K1(f), K2(f)}.
Hence, the finiteness in (6.41) is clear by virtue of (6.40). 2

Remark 6.3.5 (Critical mesh) We review the proof of Theorem 6.2.1 and ob-
serve that the requirement τ = o(T−2) is crucial for the rate in (6.20) only. In
particular, by choosing η > 0 in Step 1 small enough, we are able to relax the
requirement in (6.38) to arbitrary slow convergence of τ → 0.

In the case that Brownian motion is absent, i. e. Σ = 0, it is sufficient to
require τ = o(T−(1∨βX)) in the light of Theorem 5.4.3, where βX denotes the
Blumenthal-Getoor index of X, and (6.3) remains valid.

If we relax the mesh size requirement to τ = o(T−(1+δ)) (or τ = o(T−((1∨βX)+δ))
in the case of σ = 0) for some 0 < δ ≤ 1, then there is a finite constant C3 < ∞
such that (6.3) rewrites to

E‖p− p̃pen‖2
µ ≤ C1 inf

m∈MT

(
‖p− Ppenp‖2

µ + E[penT (m)]
)

+ C2

T
+ C3

T δ
.

Thus, the rate of convergence in (6.40) decreases to T
2r

2r+d∧δ.
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7 A simulation study

In this chapter, we simulate sample paths of Lévy processes and investigate our es-
timates in continuous and discrete time framework at work. In Section 7.1, we deal
with the case of a univariate Brownian motion with compound Poisson jumps, Sec-
tion 7.2 is dedicated to the univariate stable cases with finite and infinite variation
and the bivariate stable case.

7.1 Brownian motion with compound Poisson jumps
This section is dedicated to the case of the composition of a univariate Brownian
motion with compound Poisson jumps as introduced in Section 5.2. Let X be a
Lévy process with Lévy-Khintchine triplet (γ, σ2, ν) satisfying Assumption 5.2.1.
We recall that X can be decomposed as

Xt = γ0t+ σWt +
Nt∑
k=1

Zk for t ∈ R+
0 , (7.1)

where γ0 := γ−
∫
{x:|x|∈]0,1]} ν(dx), W is a standard Brownian motion, N is a Poisson

process with intensity λ := ν(R◦) independent of W and {Zk : k ∈ N} is a family
of i. i. d. random variables independent of W and N with distribution λ−1ν.

Chi-squared jumps

In our first example, we restrict ourselves to positive jumps only. In particular,
let Z1 ∼ χ2

4, N have intensity λ = 10 and σ = 1. In contrast to Example 2.3.2,
we assume that the compound Poisson jumps are not compensated, i. e. γ0 = 0.
Since (7.1) allows for separate simulation of W , N and Z, we take the opportunity
to investigate the penalised projection estimators in discrete and continuous time
framework. We base our analysis on the (discretely observed) sample path on the
time horizon [0, 100] shown in Figure 7.1. The magnified plot on the right-hand
side reveals the piecewise constant nature of the discretized Lévy process w. r. t.
the mesh size τ = 0.001 in coherence with Definition 4.1.1.
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7 A simulation study

Brownian motion with compound Poisson χ2
4-jumps
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Figure 7.1: We present a sample path X(ω) of form (7.1) with χ2
4 distributed jumps on the time

horizon [0, 100] (left) and a magnified version of X(ω) on the time horizon [0, 0.05] (right).

Projection estimation in the continuous time framework

In order to get a first impression of the influx of discretisation on penalised pro-
jection estimation, assume we are able to observe the PRM J(·, ω) = ∑

t≤T δ∆Xt ,
where δ· is the Dirac measure. We can directly use the methods from Section 2.3
to come up with a PPE for the Lévy measure ν. In our sample path, NT (ω) = 993
jumps occurred, where E[NT ] = 1000 jumps are expected. To illustrate the point,
we present an empirical histogram of the occurred jump sizes in Figure 7.2.

We choose D =]0, 20] as domain of estimation and µ identical to the Lebesgue
measure on D, as there is no additional issue with estimating the Lévy density in
a neighbourhood of the origin. This is due to the boundedness of the Lebesgue
density of the χ2 distribution family. In the following, we present penalised pro-
jection estimates based on two collections of projection spaces. In particular,
let {Sm : m ∈M} be the family of spaces consisting of piecewise constant functions
on D based on the regular partition into m classes (see Example (3.1.2)). Similarly,
let {S′m : m ∈M} be the family of spaces consisting of piecewise quadratic polyno-
mials based on the same partition. Additionally, we choose the penalty pen to be
of form (3.12) with c1 = 2 and c2 = c3 = 1. We recall that for T > 0 and m ∈MT

penT (m) = 2
T

dm∑
k=1

∑
t≤T

f 2
k (∆Xt) + Dm + dm

T
.

We show the results in Figure 7.3 and Table 7.1. We observe that the PPE based
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7.1 Brownian motion with compound Poisson jumps

Histogram of jumps ∆XtHistogram of jumps !Xt
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0
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0
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1
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.5

2
.0 Empirical histogram

Lévy density

Figure 7.2: An empirical histogram of the jump sizes ∆Xt(ω) occurred on the time hori-
zon [0, 100] is presented. The bars are scaled such that the area underneath equals the empirical
intensity NT (ω)/T = 9.93 (solid). For comparison, we show, additionally, the Lévy density
of ν(·) = 10χ2

4(·) of X (dashed).

on piecewise quadratic polynomials appears to have a lower squared error (0.11
compared to 0.28). Moreover, recalling that the dimension of a projection space
consisting of piecewise polynomials with maximum degree k on a partition of D
into m classes is equal to (k+1)m, we observe that the dimension of the underlying
projection space is lower in the case of piecewise quadratics as well (dim S′7 = 21
compared to dim S31 = 31).

mpen
T SE AE SB MVar

S 31 0.2811 1.417 0.1036 0.1775
S′ 7 0.1130 0.9625 0.008588 0.1044

Table 7.1: We present the estimated best projection space (mpen
T ), the corresponding squared

error ‖p − p̂pen‖2µ (SE) and the absolute error ‖p − p̂pen‖L1(D,µ) (AE) for the PPE based on
the families {Sm : m ∈ M} of piecewise constants and {S′m : m ∈ M} of piecewise quadratic
polynomials. Moreover, we decompose the squared error into the squared µ-bias (SB) and the
µ-variance (MVar).
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PPE based on piecewise constants
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PPE based on piecewise quadratics
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Figure 7.3: We present the µ-orthogonal projection Pmp (solid) and the penalised projection
estimator p̂pen (dashed) of the restriction of the Lévy density ν′ to D =]0, 20], i. e. the density
of ν(·) = λχ2

4(·) with λ = 10 (dotted). The projection and the PPE are presented for the family
of piecewise constants based on the partition of D into m = 31 classes (top) and for the family
of piecewise quadratic polynomials based on the partition of D into m = 7 classes (bottom).
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7.1 Brownian motion with compound Poisson jumps

Projection estimation in the discrete time framework

Let us focus on penalised projection estimation based on the observed increments
as shown in Figure 7.1. We choose D = [Dmin, 20] as domain of estimation and µ
identical to the Lebesgue measure on D. As threshold, we choose

Dmin(τ) = σ̂

√
2τ 0.9 log

(1
τ

)
for τ = τ(T ) > 0

derived from Mancini [29, Theorem 3.1], where

σ̂2 = 1
T

bT/τc∑
k=1

X2
∆τ
k
(ω)1[0,r(τ)](X2

∆τ
k
(ω)).

In our sample, we estimate the volatility to be σ̂2 = 0.9899, which is reliable
compared to the actual value of σ2 = 1. Coherently, we have Dmin = 0.1652
in this scenario. From the 100 000 observed increments, only 986 exceeding the

Histogram of increments X∆τ
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Figure 7.4: We present an empirical histogram of the observed increments X∆τ
k

on the time hori-
zon [0, 100] w. r. t. the mesh size τ = 0.001 (left), where we observe that the vast majority of
all 100 000 increments is small positive or small negative and caused solely by the Brownian mo-
tion. Additionally, we present an empirical histogram of the observed increments X∆τ

k
exceeding

the threshold of Dmin = 0.1652 (right), where the principal structure of the χ2
4-distribution is

observable.

threshold remain. We recall that NT (ω) = 993 jumps actually occurred. The effect
is illustrated in Figure 7.4.

In the following, we present PPEs w. r. t. piecewise constants and piecewise
quadratic polynomials, as we have done before in the continuous time framework.
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PPE based on piecewise constants
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PPE based on piecewise quadratics
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Figure 7.5: We present the µ-orthogonal projection Pmp (solid) and the penalised projection
estimator p̃pen (dashed) of the restriction of the Lévy density ν′ to D = [0.1652, 20], i. e. the
density of ν(·) = λχ2

4(·) with λ = 10 (dotted). The projection and the PPE are presented for
the family of piecewise constants based on the partition of D into m = 27 classes (top) and for
the family of piecewise quadratic polynomials based on the partition of D into m = 7 classes
(bottom).
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7.1 Brownian motion with compound Poisson jumps

We choose penalty pen of form (6.2) with c1 = 2 and c2 = . . . = c7 = 1. We show
the results in Figure 7.5 and Table 7.2. We observe that the PPE based on piece-
wise quadratic polynomials appears to have a lower squared error (0.12 cmpared
to 0.24), equivalently to the continuous time framework. Again the complexity
of the underlying projection space is lower in the latter case as well (dim S′7 = 21
compared to dim S27 = 27). The absolute values for the errors in Tables 7.1 and 7.2
are not directly comparable as the underlying domain of estimation D differs.

mpen
T SE AE SB MVar

S 27 0.2383 1.327 0.09512 0.1432
S′ 7 0.1248 0.9402 0.006486 0.1183

Table 7.2: We present the estimated best projection space (mpen
T ), the corresponding squared

error ‖p − p̃pen‖2µ (SE) and the absolute error ‖p − p̃pen‖L1(D,µ) (AE) for the PPE based on
the families {Sm : m ∈ M} of piecewise constants and {S′m : m ∈ M} of piecewise quadratic
polynomials on the domain of estimation D = [0.1652, 20]. Moreover, we decompose the squared
error into the squared µ-bias (SB) and the µ-variance (MVar).

Gaussian jumps
We remain in the framework of univariate Brownian motion with compound Pois-
son jumps, where the Lévy-Itô decomposition is of form (7.1). In this example,
let Z1 ∼ N (0, 1). We investigate the efficiency of penalised projection estimation
in DT at work for different parameters λ and σ and on different time horizons [0, T ].
Theorem 5.2.2 implies that the critical mesh is given by τ = o(1/

√
T ). In partic-

ular, we choose τ(T ) = 0.1/
√
T for our finitely many time horizons. Further, we

choose D = [−5,−Dmin(τ)] ∪ [Dmin(τ), 5] as domain of estimation and µ identical
to the Lebesgue measure. As threshold, we choose

Dmin(τ) = σ̂

√
2τ 0.9 log

(1
τ

)
for τ = τ(T ) > 0

derived from Mancini [29, Theorem 3.1], where

σ̂2 := 1
T

bT/τc∑
k=1

(X∆τ
k
)2
1((X∆τ

k
)2≤2τ0.9 log(1/τ)).

Throughout, we base our estimates on the family {Sm : m ∈ M} consisting of
piecewise quadratic polynomials based on the regular partition of D into m classes
and choose penalty pen to be of form (6.2) with c1 = 2 and c2 = . . . = c7 = 1.
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7 A simulation study

For each parameter set (λ, σ, T ), where we choose λ ∈ {10, 100}, σ ∈ {0.5, 1, 2}
and T ∈ {100, 200, 300, 500, 1000}, we simulate 100 trajectories. We present the
results in Tables 7.3 – 7.8.

At first, we notice that the estimates σ̂ for the volatility of the Brownian
component are much less biased in the cases of σ = 0.5 and σ = 1 compared
to σ = 2. This is due to the fact that the convergence in Mancini [29, Theorem 3.1]
takes place in probabilty and P ((σW∆τ

k
)2 ≥ ε) is, obviously, increasing in σ2.

Consequently, we take relatively low thresholds Dmin in the case of σ = 2. This
leads to a higher influx of Brownian increments, causing an overestimation close to
the origin. As a refined partition of D leads to stronger overestimation that is only
partially compensated by the penalty, we observe that the complexity of estimated
best projection spaces significantly increases in the case of σ = 2.

Secondly, let us compare the empirical mean squared errors in the different
cases. In all cases, we observe that the empirical mean squared errors decrease
with a rate close to the theoretical best rate of convergence achievable. As we
base our estimates on piecewise quadratic polynomials and the normal density
belongs to Br∞(L2) for all r > 0, we conclude from Theorem 6.3.4 that the PPE
converges at most like T−6/7. For illustration, we make a least square regression of
the logarithmic decrease of the MSE values from Table 7.3 against the log-increase
of the time horizon. In particular, we calibrate the linear model

log
M̂SEn+1

M̂SEn

 = a · log
(
Tn+1

Tn

)
+ Un (Un)n≥1 ∼ N (0, σ2

U),

and observe that the average rate of convergence â = −0.9092 for the time hori-
zons mentioned above is actually better than −6/7. However, the ultimate value,
i. e. log(M̂SE5/M̂SE4)/ log(T5/T4) = −0.7321 is worse than the theoretical best.

Additionally, we notice that the empirical MSEs in the high jump activity case
(see Tables 7.6 – 7.8) are higher than the – appropriately scaled – MSEs in the
low jump activity case (see Tables 7.3 – 7.5). In particular, we expect that scaling
the jump activity λ and, hence, the Lévy density p by factor 10 would scale the
empirical mean squared errors by the squared factor, i. e. 100. Since the observed
relative increase of the empirical MSEs is larger, we conclude that scaling the jump
activity induces additional effects on the estimator in the discrete time framework.

Naturally, we expect that a smaller mesh size τ is necessary in the higher jump
activity case to accurately disentangle the jumps from each other and from the
Brownian motion. Figure 7.6 illustrates the point. The PPE for λ = 10 (bottom-
left) shows neither significant over- nor underestimation. Contrarily, the PPE
for λ = 100 (bottom-right) shows significant underestimation for “medium sized”
jumps with absolute values approximately in ]Dmin, 2[. Apparently, τ = 0.0031 is
still too large compared to λ = 100 to detach all jumps from each other.
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7.1 Brownian motion with compound Poisson jumps

Brownian motion with Gaussian jumps

-4 -2 0 2 4

0
1

2
3

4

x

p
(x
)

Lévy density

PPE

±Dmin

-4 -2 0 2 4

0
1
0

2
0

3
0

4
0

x

p
(x
)

Lévy density

PPE

±Dmin

Figure 7.6: We present the sample paths X(ω) of the composition of a Brownian motion with
volatility σ = 1 and Gaussian jumps with activity λ = 10 (top-left) and of the composition
of a Brownian motion with volatility σ = 2 and Gaussian jumps with activity λ = 100 (top-
right). The observation is made on the time horizon [0, 1000] and on the grid τN0 with mesh
size τ = 0.0031. Furthermore, we present the corresponding penalised projection estimators
(dashed) based on the family of piecewise quadratic polynomials on D = {x : |x| ∈ [0.249, 5]}
(bottom-left) and D = {x : |x| ∈ [0.329, 5]} (bottom-right) for the restriction of the Lévy density,
i. e. the normal density scaled by the factor λ (solid). The estimator for the negative part is based
on the regular partition of D into 3 and 4 classes, respectively. The estimator for the positive
part is based on the regular partition of D into 4 and 7 classes, respectively.
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7 A simulation study

σ̂ m̂pen M̂SE M̂AE
T = 100 0.5235 3.9 0.2925 1.077
(τ = 0.01) (5.946× 10−3) (0.1583) (0.3662)
T = 200 0.5167 5.9 0.1333 0.6480
(τ = 0.007) (2.989× 10−3) (0.06364) (0.1335)
T = 300 0.5137 6.3 0.1001 0.5485
(τ = 0.0057) (2.024× 10−3) (0.04416) (0.1017)
T = 500 0.5104 6.4 0.06161 0.4280
(τ = 0.0044) (1.358× 10−3) (0.03090) (0.09110)
T = 1000 0.5070 7.0 0.03709 0.3311
(τ = 0.0031) (7.766× 10−4) (0.01396) (0.05223)

Table 7.3: Empirical volatility estimates (σ̂), model complexities (m̂pen), mean squared errors
(MSE) and mean absolute errors (MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE of the Lévy
density of Xt = σWt +

∑Nt
k=1 Zk, where Zk ∼ N (0, 1), N has intensity λ = 10 and σ = 0.5. The

values in brackets show the standard deviation of the estimates based on 100 trajectories each.

σ̂ m̂pen M̂SE M̂AE
T = 100 0.9469 4.1 0.3298 0.9504
(τ = 0.01) (7.608× 10−3) (0.8060) (0.3318)
T = 200 0.9618 5.9 0.1134 0.5753
(τ = 0.007) (3.670× 10−3) (0.06719) (0.1521)
T = 300 0.9697 6.2 0.08827 0.4988
(τ = 0.0057) (2.8450× 10−3) (0.04787) (0.1229)
T = 500 0.9766 6.4 0.06200 0.4188
(τ = 0.0044) (2.392× 10−3) (0.0308) (0.09151)
T = 1000 0.9841 6.6 0.03259 0.3034
(τ = 0.0031) (1.277× 10−3) (0.01420) (0.04996)

Table 7.4: Empirical volatility estimates (σ̂), model complexities (m̂pen), mean squared errors
(MSE) and mean absolute errors (MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE of the Lévy
density of Xt = σWt +

∑Nt
k=1 Zk, where Zk ∼ N (0, 1), N has intensity λ = 10 and σ = 1. The

values in brackets show the standard deviation of the estimates based on 100 trajectories each.
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7.1 Brownian motion with compound Poisson jumps

σ̂ m̂pen M̂SE M̂AE
T = 100 1.207 24.1 12.37 2.9396
(τ = 0.01) (8.279× 10−3) (2.757) (0.3322)
T = 200 1.288 31.3 7.136 2.1161
(τ = 0.007) (4.641× 10−3) (1.327) (0.1540)
T = 300 1.330 32.6 4.498 1.7261
(τ = 0.0057) (2.904× 10−3) (0.6939) (0.2625)
T = 500 1.382 35.4 2.386 1.2924
(τ = 0.0044) (2.662× 10−3) (0.4764) (0.09285)
T = 1000 1.449 35.1 0.7957 0.8369
(τ = 0.0031) (1.538× 10−3) (0.1984) (0.08431)

Table 7.5: Empirical volatility estimates (σ̂), model complexities (m̂pen), mean squared errors
(MSE) and mean absolute errors (MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE of the Lévy
density of Xt = σWt +

∑Nt
k=1 Zk, where Zk ∼ N (0, 1), N has intensity λ = 10 and σ = 2. The

values in brackets show the standard deviation of the estimates based on 100 trajectories each.

σ̂ m̂pen M̂SE M̂AE
T = 100 0.6099 7.6 367.5 32.96
(τ = 0.01) (9.022× 10−3) (13.13) (0.5716)
T = 200 0.5967 8.3 232.4 26.06
(τ = 0.007) (5.202× 10−3) (8.159) (0.4690)
T = 300 0.5855 9.9 172.1 22.42
(τ = 0.0057) (3.650× 10−3) (6.079) (0.3936)
T = 500 0.5716 12.6 116.1 18.46
(τ = 0.0044) (2.531× 10−3) (4.084) (0.3136)
T = 1000 0.5538 15.9 64.92 13.86
(τ = 0.0031) (1.388× 10−3) (2.298) (0.2460)

Table 7.6: Empirical volatility estimates (σ̂), model complexities (m̂pen), mean squared errors
(MSE) and mean absolute errors (MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE of the Lévy
density of Xt = σWt +

∑Nt
k=1 Zk, where Zk ∼ N (0, 1), N has intensity λ = 100 and σ = 0.5. The

values in brackets show the standard deviation of the estimates based on 100 trajectories each.
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σ̂ m̂pen M̂SE M̂AE
T = 100 0.7901 7.6 329.7 30.41
(τ = 0.01) (7.651× 10−3) (11.94) (0.5545)
T = 200 0.8394 8.1 201.7 23.73
(τ = 0.007) (4.903× 10−3) (8.811) (0.4805)
T = 300 0.8639 8.9 148.2 20.39
(τ = 0.0057) (3.738× 10−3) (5.721) (0.3910)
T = 500 0.8905 11.5 98.91 16.68
(τ = 0.0044) (2.284× 10−3) (4.254) (0.3350)
T = 1000 0.9190 15.1 56.19 12.60
(τ = 0.0031) (1.347× 10−3) (2.076) (0.2241)

Table 7.7: Empirical volatility estimates (σ̂), model complexities (m̂pen), mean squared errors
(MSE) and mean absolute errors (MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE of the Lévy
density of Xt = σWt +

∑Nt
k=1 Zk, where Zk ∼ N (0, 1), N has intensity λ = 100 and σ = 1. The

values in brackets show the standard deviation of the estimates based on 100 trajectories each.

σ̂ m̂pen M̂SE M̂AE
T = 100 0.9203 19.5 238.5 26.22
(τ = 0.01) (8.278× 10−3) (10.52) (0.5472)
T = 200 1.046 29.3 143.2 19.97
(τ = 0.007) (5.872× 10−3) (6.431) (0.4643)
T = 300 1.114 34.5 107.0 17.12
(τ = 0.0057) (3.890× 10−3) (4.965) (0.4014)
T = 500 1.199 38.5 73.82 14.16
(τ = 0.0044) (2.498× 10−3) (3.167) (0.3052)
T = 1000 1.304 35.7 42.54 10.77
(τ = 0.0031) (1.483× 10−3) (2.221) (0.2520)

Table 7.8: Empirical volatility estimates (σ̂), model complexities (m̂pen), mean squared errors
(MSE) and mean absolute errors (MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE of the Lévy
density of Xt = σWt +

∑Nt
k=1 Zk, where Zk ∼ N (0, 1), N has intensity λ = 100 and σ = 2. The

values in brackets show the standard deviation of the estimates based on 100 trajectories each.
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7.1 Brownian motion with compound Poisson jumps

We run another simulation study, to examine the effectiveness of penalisation
at work. In particular, for the parameter combinations λ = 10 and σ = 1 and,
additionally, λ = 100 and σ = 1, we simulate 100 trajectories each on the time
horizons [0, 100] and [0, 1000]. Then we compare the mean squared errors for the
projection estimators based on every projection space in {Sm : m = 2, . . . , 10}
and {Sm : m = 9, . . . , 17}, as appropriate. Still, Sm denotes the space of piecewise
quadratic polynomials based on the partition of D into m classes.

We illustrate the results in Tables 7.9 – 7.12. Let us state our findings for the low
jump activity case, i. e. λ = 10, first. We observe that penalisation works quite well.
In the case of T = 100, the empirical MSE is minimal for m = 5 (cf. Table 7.9),
while the empirical mean of the model, chosen via penalisation, is m̂pen = 4.1
(cf. Table 7.4). In the case of T = 1000, the empirical mean is minimal for m = 8
(cf. Table 7.10), while the empirical mean of the model, chosen via penalisation,
is m̂pen = 6.6 (cf. Table 7.4). However, the high jump activity case, i. e. λ = 100,
shows deviant behaviour. For T = 100, penalisation works well, as the empirical
MSE is minimal for m = 7 and m = 8 (cf. Table 7.11), while the empirical mean
of the model, chosen via penalisation, is m̂pen = 7.6 (cf. Table 7.7). Nevertheless,
efficiency of penalisation decreases in the case of T = 1000. The empirical MSE
is minimal for m = 10 (cf. Table 7.12), while the empirical mean of the model,
chosen via penalisation, is m̂pen = 15.1 (cf. Table 7.7). Apparently, we observe that
the MSEs for the model sizes differ by less than 1% and there is a local minimum
at m = 16. Since our optimisation algorithm searches for local minima only, it
appears pleasing to address this efficiency issue to the algorithm rather than the
penalisation method.

Finally, let us illustrate the projection estimators for the sample path shown
in Figure 7.6 (top-left) in comparison to the µ-orthogonal projection. In Figure 7.7,
we restrict ourselves to the part of the density on the positive half-line only. The
case of two classes corresponds to the case of three or four classes for the two-sided
estimators in Table 7.9. Analogously, three classes for the positive tail correspond
to five and six classes for the two-sided case and four classes to seven and eight
classes. An important observation is made for the discontinuities of the estimates.
In particular, we see that increasing the number of classes reduces the impact of
discontinuities for the µ-orthogonal projection (at least visually). However, there
is no significant enhancement observable for the projection estimator.
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m M̂SE SB M̂V ar
2 0.3712 (0.07977) 0.2685 0.1027 (0.07977)
3 0.3487 (0.08392) 0.1442 0.2045 (0.08392)
4 0.2431 (0.08406) 0.01988 0.2232 (0.08406)
5 0.1704 (0.09128) 0.01306 0.1573 (0.09128)
6 0.1852 (0.09163) 6.236×10−3 0.1790 (0.09163)
7 0.2030 (0.09469) 5.683×10−3 0.1974 (0.09469)
8 0.2248 (0.09801) 5.131×10−3 0.2196 (0.09801)
9 0.2448 (0.1002) 2.809× 10−3 0.2420 (0.1002)
10 0.2663 (0.1068) 4.875× 10−4 0.2658 (0.1068)

Table 7.9: Empirical mean squared errors (MSE), squared µ-biases (SB) and empirical µ-variance
(MVar) are presented for the projection estimators for the Lévy density of Xt = σWt+

∑Nt
k=1 Zk,

where Zk ∼ N (0, 1), N has intensity λ = 10 and σ = 1. The projection spaces Sm consist of all
piecewise quadratic polynomials based on the regular partition of D into m classes. The process
is observed on the grid τN0 with mesh size τ = 0.01 and on the time horizon [0, 100]. The values
in brackets show the standard deviation of the estimates based on 100 trajectories each.

m M̂SE SB M̂V ar
2 0.2828 (0.01147) 0.2694 0.01335 (0.01147)
3 0.1704 (0.01212) 0.1562 0.01412 (0.01212)
4 0.05750 (0.01230) 0.04306 0.01445 (0.01230)
5 0.04465 (0.01323) 0.02655 0.01810 (0.01323)
6 0.03155 (0.01333) 0.01004 0.02151 (0.01333)
7 0.03226 (0.01409) 8.849×10−3 0.02341 (0.01409)
8 0.03141 (0.01444) 4.732×10−3 0.02668 (0.01444)
9 0.03175 (0.01459) 1.180×10−3 0.03057 (0.01459)
10 0.03366 (0.01571) 5.494×10−4 0.03311 (0.01571)

Table 7.10: Empirical mean squared errors (MSE), squared µ-biases (SB) and empiri-
cal µ-variance (MVar) are presented for the projection estimators for the Lévy density
of Xt = σWt +

∑Nt
k=1 Zk, where Zk ∼ N (0, 1), N has intensity λ = 10 and σ = 1. The pro-

jection spaces Sm consist of all piecewise quadratic polynomials based on the regular partition
of D into m classes. The process is observed on the grid τN0 with mesh size τ = 0.0031 and on
the time horizon [0, 1000]. The values in brackets show the standard deviation of the estimates
based on 100 trajectories each.

92



7.1 Brownian motion with compound Poisson jumps

m M̂SE SB M̂V ar
2 343.8 (10.52) 26.85 317.9 (10.52)
3 337.5 (10.85) 14.42 323.1 (10.85)
4 331.2 (11.28) 1.988 329.1 (11.28)
5 330.5 (11.26) 1.306 329.1 (11.26)
6 329.8 (11.26) 0.6236 329.2 (11.26)
7 329.7 (11.26) 0.5683 329.2 (11.26)
8 329.7 (11.28) 0.5131 329.2 (11.28)
9 329.9 (11.28) 0.2809 329.6 (11.28)
10 330.1 (11.24) 0.04875 330.0 (11.24)

Table 7.11: Empirical mean squared errors (MSE), squared µ-biases (SB) and empiri-
cal µ-variance (MVar) are presented for the projection estimators for the Lévy density
of Xt = σWt +

∑Nt
k=1 Zk, where Zk ∼ N (0, 1), N has intensity λ = 100 and σ = 1. The pro-

jection spaces Sm consist of all piecewise quadratic polynomials based on the regular partition
of D into m classes. The process is observed on the grid τN0 with mesh size τ = 0.01 and on the
time horizon [0, 100]. The values in brackets show the standard deviation of the estimates based
on 100 trajectories each.

m M̂SE SB M̂V ar
9 55.94 (2.066) 0.1180 55.82 (2.066)
10 55.90 (2.072) 0.05494 55.85 (2.073)
11 56.36 (2.214) 0.02755 56.33 (2.214)
12 56.36 (2.214) 0.01335 56.35 (2.214)
13 56.37 (2.218) 9.418×10−3 56.36 (2.218)
14 56.67 (3.405) 5.482×10−3 56.65 (3.405)
15 56.69 (3.401) 3.984×10−3 56.68 (3.401)
16 56.45 (2.209) 2.487× 10−3 56.45 (2.209)
17 56.47 (2.218) 1.862× 10−3 56.46 (2.218)

Table 7.12: Empirical mean squared errors (MSE), squared µ-biases (SB) and empiri-
cal µ-variance (MVar) are presented for the projection estimators for the Lévy density
of Xt = σWt +

∑Nt
k=1 Zk, where Zk ∼ N (0, 1), N has intensity λ = 100 and σ = 1. The projec-

tion spaces Sm consist of all piecewise quadratic polynomials based on the regular partition of D
into m classes. The process is observed on the grid τN0 with mesh size τ = 0.0031 and on the
time horizon [0, 1000]. The values in brackets show the standard deviation of the estimates based
on 100 trajectories each.
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Projection estimation of the positive tail
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Figure 7.7: We present the µ-orthogonal projection Pmp (solid) and the projection estimator p̃m
based on the sample path shown top-left in Figure 7.6 (dashed) for the restriction of the Lévy
density ν′ to D = [0.249, 5], i. e. the density of ν(·) = λN0,1(·) with λ = 10 (dotted). The µ-or-
thogonal projection and the projection estimator are based on the regular partition of [0.249, 5]
into m = 2 (left), m = 3 (middle) and m = 4 (right) classes.
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7.2 Brownian motion with α-stable jumps

7.2 Brownian motion with α-stable jumps
This section is dedicated to the case of the composition of a Brownian motion
with α-stable jumps, where α ∈]0, 2[.

Univariate case
We introduced the univariate case in Section 5.3. Let X be a Lévy process with
Lévy-Khintchine triplet (γ, σ2, ν) satisfying Assumption 5.3.1. We recall that X
can be decomposed as

Xt = γt + σWt + St for t ∈ R+
0 ,

where S is a stable process with parameters (α, β, δ, ς) independent of W .
For illustration purposes, we restrict ourselves to the case of a one-sided stable

process, i. e. β = 1. Hence, we strive to estimate the Lévy density

ν(dx) = C1

x1+α1R+(x)dx+ C2

|x|1+α1R−(x)dx

for C1 = 1 and C2 = 0. Let us outline the simulation procedure for the discritised
process Sτ on the time horizon [0, T ] based on the grid τN0 with mesh size τ . For a
fixed set of parameters (α 6= 1, C1, C2), we set (β, δ, ς) and K(α) in coherence with
Section 5.3. Additionally, let g0 = −(πβK(α))/(2α). For each k = 1, . . . , bT/τc,
we draw, independently, a random variable wk ∼ exp(1) and a random variable gk
uniformly distributed on ]−π/2, π/2[. Then

S∆τ
k

:= (ςτ)1/α sin(α(gk − g0))
cos(gk)1/α

(
cos(gk − α(gk − g0))

wk

) 1−α
α

+ ςδτ

is S(α, β, δ, ςτ)-distributed. Finally, the discretised process is set to be equal to
the cumulated sum of the simulated increments.

In our study, we simulate 100 trajectories for each parameter set (α, σ, T ). From
Theorems 5.3.2 and 6.3.4, we deduce that the critical mesh is given by τ = o(1/T )
as T → ∞. We take τ = 1/T for the finitely many T ∈ {100, 250, 500, 1000}
and choose α ∈ {0.75, 1.25} and σ ∈ {0.5, 1}. We choose D = [0.1, 1] in the case
of σ = 0.5 and D = [0.15, 1] in the case of σ = 1 as domain of estimation. Moreover,
we choose the penalty pen to be of form 6.2 with c1 = 2 and c2 = . . . = c7 = 1.

Estimation based on piecewise quadratic polynomials

In this study, we base our estimates on the family {Sm : m ∈ M} of piecewise
quadratic polynomials on D (see Example 3.1.2). We present the results in Ta-
bles 7.13 – 7.16. In all four cases, we observe the expected decrease in the empirical
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mean squared error as a consequence of the decrease in the squared bias (as the
projection space complexity increases) and the decrease in the µ-variance. Compar-
ing the empirical mean squared errors from Table 7.13 and Table 7.15 to Table 7.14
to Table 7.16, respectively, we observe that increasing the volatility σ increases
the µ-variance and the mean squared error of the PPE, as well. Analogously, we
observe that the mean squared errors in the case of α = 0.75 are lower by trend
than the corresponding MSEs in the case of α = 1.25. Naturally, disentangling the
stable jumps from the Brownian motion works more efficiently for lower stability
indices α.

We show a sample path for each set of parameters (α, σ) on the time hori-
zon [0, 1000] and the corresponding penalised projection estimator for the Lévy
density in Figure 7.8. Especially in the cases of σ = 1, we observe an overestima-
tion of the Lévy density for small x ∈ D. Additionally, this effect is stronger in the
case of α = 1.25 compared to α = 0.75. A similar explanation as for the MSEs
is valid. In fact, the structural overestimation is measured by the MSE, yielding
a larger value for the latter as described in the previous paragraph. Additionally,
we see that the discontinuities observed on the common boundaries of partition
classes are more severe closer to the origin. Again, the effect is stronger in the case
of larger volatility σ. Naturally, the (mostly small) Brownian increments have a
relative high influence on small (α-stable) increments but a relative small influence
on big stable increments. Therefore, the influx of the Brownian motion on the PPE
on an interval closer to the origin is higher.

m̂pen M̂SE M̂AE ŜB M̂V ar
T = 100 3.8 4.860 1.161 0.9348 3.926

(τ = 0.01) (0.65) (2.459) (0.2003) (0.4859) (2.642)
T = 250 6.5 1.159 0.5897 0.1552 1.003

(τ = 0.004) (0.88) (0.6589) (0.1047) (0.1137) (0.7030)
T = 500 7.2 0.4639 0.3839 0.08939 0.3745

(τ = 0.002) (0.50) (0.2558) (0.06426) (0.02890) (0.2612)
T = 1000 8.1 0.2636 0.2924 0.0677 0.1959

(τ = 0.001) (1.8) (0.1258) (0.05201) (0.03261) (0.1419)

Table 7.13: Model complexities (m̂pen), mean squared errors (MSE) and mean absolute errors
(MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE (on the domain D = [0.1, 1]) of the Lévy
density of X = σW + S, where S ∼ S(α, 1, δ, ς;B) with α = 0.75 and σ = 0.5. The estimates
are based on the observation of the discretisation Xτ on the time horizon [0, T ]. Additionally,
the MSE is decomposed into the squared µ-bias (SB) and the µ-variance (MVar). The values in
brackets show the standard deviation of the estimates based on 100 trajectories each.
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7.2 Brownian motion with α-stable jumps

m̂pen M̂SE M̂AE ŜB M̂V ar
T = 100 3.9 159.5 4.341 0.0712 159.4

(τ = 0.01) (0.64) (22.62) (0.2480) (0.0452) (22.64)
T = 250 7.0 60.62 2.111 4.481×10−3 60.62

(τ = 0.004) (0.14) (7.525) (0.1284) (2.979×10−4) (7.525)
T = 500 7.0 2.789 0.6066 4.606×10−3 2.784

(τ = 0.002) (0.32) (0.7602) (0.06652) (1.629×10−3) (0.7604)
T = 1000 6.6 0.2904 0.2768 0.01177 0.2786

(τ = 0.001) (1.2) (0.1480) (0.05082) (0.02165) (0.1530)

Table 7.14: Model complexities (m̂pen), mean squared errors (MSE) and mean absolute errors
(MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE (on the domain D = [0.15, 1]) of the Lévy
density of X = σW + S, where S ∼ S(α, 1, δ, ς;B) with α = 0.75 and σ = 1. The estimates
are based on the observation of the discretisation Xτ on the time horizon [0, T ]. Additionally,
the MSE is decomposed into the squared µ-bias (SB) and the µ-variance (MVar). The values in
brackets show the standard deviation of the estimates based on 100 trajectories each.

m̂pen M̂SE M̂AE ŜB M̂V ar
T = 100 4.2 54.72 2.31 12.41 42.31

(τ = 0.01) (0.71) (14.63) (0.2873) (6.996) (11.79)
T = 250 7.3 3.09 0.8440 1.6968 1.397

(τ = 0.004) (0.5478) (0.8063) (0.1113) (0.3679) (0.8052)
T = 500 10.6 1.729 0.6473 0.4581 1.271

(τ = 0.002) (1.566) (0.7508) (0.08831) (0.3923) (0.7540)
T = 1000 14.6 0.9593 0.5000 0.0963 0.8630

(τ = 0.001) (1.386) (0.4690) (0.07067) (0.09008) (0.4806)

Table 7.15: Model complexities (m̂pen), mean squared errors (MSE) and mean absolute errors
(MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE (on the domain D = [0.1, 1]) of the Lévy
density of X = σW + S, where S ∼ S(α, 1, δ, ς;B) with α = 1.25 and σ = 0.5. The estimates
are based on the observation of the discretisation Xτ on the time horizon [0, T ]. Additionally,
the MSE is decomposed into the squared µ-bias (SB) and the µ-variance (MVar). The values in
brackets show the standard deviation of the estimates based on 100 trajectories each.
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7 A simulation study

Brownian motion with α-stable jumps

Figure 7.8: We present the sample paths X(ω) of the composition of a Brownian motion with
volatility σ and α-stable jumps (left column). The observation is made on the time hori-
zon [0, 1000] and on the grid τN0 with mesh size τ = 0.001. Moreover, we present the corre-
sponding Lévy density on the interval [0.1, 1] (solid) and the corresponding penalised projection
estimator p̃pen based on the family of piecewise quadratic polynomials on D = [0.1, 1] (for σ = 0.5)
and D = [0.15, 1] (for σ = 1) (dashed). The estimators are based on the partition of D into 7, 4, 15
and 7 classes, respectively (right column).
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m̂pen M̂SE M̂AE ŜB M̂V ar
T = 100 3.2 74.00 3.584 1.527 72.47

(τ = 0.01) (0.43) (14.93) (0.3055) (0.4364) (15.04)
T = 250 7.0 96.41 3.062 0.06652 96.35

(τ = 0.004) (0.17) (10.73) (0.1627) (5.278×10−3) (10.73)
T = 500 7.6 18.54 1.383 0.05262 18.49

(τ = 0.002) (0.97) (3.258) (0.1095) (0.01998) (3.262)
T = 1000 8.0 2.734 0.6150 0.04586 2.688

(τ = 0.001) (1.3) (0.8784) (0.0812) (0.02312) (0.8830)

Table 7.16: Model complexities (m̂pen), mean squared errors (MSE) and mean absolute errors
(MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE (on the domain D = [0.15, 1]) of the Lévy
density of X = σW + S, where S ∼ S(α, 1, δ, ς;B) with α = 1.25 and σ = 1. The estimates
are based on the observation of the discretisation Xτ on the time horizon [0, T ]. Additionally,
the MSE is decomposed into the squared µ-bias (SB) and the µ-variance (MVar). The values in
brackets show the standard deviation of the estimates based on 100 trajectories each.

Estimation based on a non-Lebesgue reference measure

In this study, we choose a non-Lebesgue reference measure µ. In particular, we
let µ be defined by µ(dx) = |x|−2α−2dx in coherence with Example 2.3.4. More-
over, we base our estimate on the family {S′m : m ∈ M} of piecewise constant
functions on D, where the partition Dm of D is chosen such that µ(D) = µ(D)/m
for all D ∈ Dm. From an estimate p̃pen for the µ-density p, we use the relation-
ship ν ′ = pµ′ to come up with an estimate ν̃ ′ := p̃penµ

′ for the Lévy density.
The empirical mean squared errors, absolute errors and the corresponding de-

composition of the MSEs into squared µ-bias and µ-variance for the same parame-
ter sets (α, σ, T ) as in the previous simulation study are shown in Tables 7.17 – 7.20.
At first glance, the most obvious observation, is that the mean squared errors in
the case of σ = 1 (Tables 7.18 and 7.20) are lower than the corresponding MSEs
in the case of σ = 0.5 (Tables 7.17 and 7.19). However, we have to be careful with
the interpretation. The decomposition into squared µ-bias and µ-variance reveals
that the latter increases as σ increases, while the decrease is totally due to the
decrease in the squared µ-bias. This decrease is due to the different domains of
estimations D we work with in the cases of σ = 1 and σ = 0.5. The penalised
projection estimators ν̃ ′ for the Lévy densities (based on the observation of the
sample paths shown in Figure 7.8) are shown in Figure 7.9. The high variability
of the estimates close to the lower boundary of D is due to the use of piecewise
constants and the change of measure. The latter induces the partition to be refined
closer to the origin. We still note the general overestimation, especially observed
in the case of α = 1.25 and σ = 1. The explanation given above remains valid.
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7 A simulation study

m̂pen M̂SE M̂AE ŜB M̂V ar
T = 100 4.6 0.4008 2.504 0.3959 4.910×10−3

(τ = 0.01) (1.5) (0.04664) (0.2523) (0.04693) (2.719×10−3)
T = 250 13.1 0.2438 1.5338 0.2408 2.981×10−3

(τ = 0.004) (2.9) (0.03429) (0.1372) (0.03477) (1.550×10−3)
T = 500 22.4 0.1714 1.150 0.1691 2.271×10−3

(τ = 0.002) (4.7) (0.02591) (0.08530) (0.02645) (1.126×10−3)
T = 1000 37.0 0.1125 0.8683 0.1106 1.917×10−3

(τ = 0.001) (5.4) (0.01412) (0.05339) (0.01449) (8.904×10−4)

Table 7.17: Model complexities (m̂pen), mean squared errors (MSE) and mean absolute errors
(MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE (on the domain D = [0.1, 1] w. r. t. the refer-
ence measure µ(dx) = |x|−2α−2dx) of the Lévy density of X = σW+S, where S ∼ S(α, 1, δ, ς;B)
with α = 0.75 and σ = 0.5. The estimates are based on the observation of the discretisation Xτ

on the time horizon [0, T ]. Additionally, the MSE is decomposed into the squared µ-bias (SB)
and the µ-variance (MVar). The values in brackets show the standard deviation of the estimates
based on 100 trajectories each.

m̂pen M̂SE M̂AE ŜB M̂V ar
T = 100 1.8 0.7529 5.190 0.3970 0.3559

(τ = 0.01) (1.0) (0.07264) (0.2670) (0.06823) (0.04752)
T = 250 9.9 0.2606 2.498 0.1458 0.1149

(τ = 0.004) (2.4) (0.03154) (0.1691) (0.02742) (0.01512)
T = 500 16.0 0.1020 0.9175 0.09413 7.913×10−3

(τ = 0.002) (2.7) (0.01537) (0.08277) (0.01593) (2.089×10−3)
T = 1000 27.4 0.05677 0.5548 0.05369 3.086×10−3

(τ = 0.001) (5.5) (0.01447) (0.05216) (0.01494) (1.197×10−4)

Table 7.18: Model complexities (m̂pen), mean squared errors (MSE) and mean absolute errors
(MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE (on the domain D = [0.15, 1] w. r. t. the refer-
ence measure µ(dx) = |x|−2α−2dx) of the Lévy density of X = σW+S, where S ∼ S(α, 1, δ, ς;B)
with α = 0.75 and σ = 1. The estimates are based on the observation of the discretisation Xτ

on the time horizon [0, T ]. Additionally, the MSE is decomposed into the squared µ-bias (SB)
and the µ-variance (MVar). The values in brackets show the standard deviation of the estimates
based on 100 trajectories each.
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7.2 Brownian motion with α-stable jumps

m̂pen M̂SE M̂AE ŜB M̂V ar
T = 100 3.2 0.6040 6.503 0.6000 3.992×10−3

(τ = 0.01) (0.5) (0.01676) (0.2449) (0.01634) (1.614×10−3)
T = 250 10.1 0.4794 3.971 0.4788 6.282×10−4

(τ = 0.004) (1.9) (0.02125) (0.2413) (0.02142) (5.060×10−4)
T = 500 21.9 0.3864 2.948 0.3858 5.912×10−4

(τ = 0.002) (3.6) (0.02067) (0.1647) (0.02077) (3.372×10−4)
T = 1000 47.1 0.2914 2.176 0.2906 7.216×10−4

(τ = 0.001) (6.9) (0.01741) (0.1017) (0.01757) (2.974×10−4)

Table 7.19: Model complexities (m̂pen), mean squared errors (MSE) and mean absolute errors
(MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE (on the domain D = [0.1, 1] w. r. t. the refer-
ence measure µ(dx) = |x|−2α−2dx) of the Lévy density of X = σW+S, where S ∼ S(α, 1, δ, ς;B)
with α = 1.25 and σ = 0.5. The estimates are based on the observation of the discretisation Xτ

on the time horizon [0, T ]. Additionally, the MSE is decomposed into the squared µ-bias (SB)
and the µ-variance (MVar). The values in brackets show the standard deviation of the estimates
based on 100 trajectories each.

m̂pen M̂SE M̂AE ŜB M̂V ar
T = 100 5.2 0.4564 5.245 0.3902 0.0663

(τ = 0.01) (1.4) (0.02873) (0.3098) (0.03199) (0.01265)
T = 250 11.5 0.3313 4.231 0.2915 0.0398

(τ = 0.004) (2.6) (0.02777) (0.2179) (0.02889) (4.594×10−3)
T = 500 21.9 0.2221 2.250 0.2134 8.646×10−3

(τ = 0.002) (4.9) (0.02447) (0.1658) (0.02523) (1.788×10−3)
T = 1000 37.2 0.1561 1.314 0.1536 2.511×10−3

(τ = 0.001) (5.6) (0.01448) (0.07206) (0.01481) (7.359×10−4)

Table 7.20: Model complexities (m̂pen), mean squared errors (MSE) and mean absolute errors
(MAE, w. r. t. ‖·‖L1(D,µ)) are presented for the PPE (on the domain D = [0.15, 1] w. r. t. the refer-
ence measure µ(dx) = |x|−2α−2dx) of the Lévy density of X = σW+S, where S ∼ S(α, 1, δ, ς;B)
with α = 1.25 and σ = 1. The estimates are based on the observation of the discretisation Xτ

on the time horizon [0, T ]. Additionally, the MSE is decomposed into the squared µ-bias (SB)
and the µ-variance (MVar). The values in brackets show the standard deviation of the estimates
based on 100 trajectories each.
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7 A simulation study

PPE based on a non-Lebesgue reference measure
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Figure 7.9: We present the penalised projection estimator p̃pen w. r. t. the reference measure µ
defined by µ(dx) = |x|−2α−2dx and based on the family of piecewise constants on D = [0.1, 1]
and D = [0.15, 1], respectively (dashed), for the Lévy density on the interval [0.1, 1] (solid) of
the composition of a Brownian motion with volatilty σ and α-stable jumps (left column). The
estimates are based on the sample paths shown in Figure 7.8 on the time horizon [0, 1000] and
on the grid τN0 with mesh size τ = 0.001. Moreover, we present a magnified plot of the PPE
(dashed) and the Lévy density (solid) on the subinterval [0.1, 0.2] and [0.15, 0.2], respectively
(right column).
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7.2 Brownian motion with α-stable jumps

Bivariate case
Last but not least, we investigate at work the behaviour of the penalised projection
estimator in the case of a bivariate α-stable process. We will use the simulation
algorithm introduced in Tankov [39, Theorem 4.3], which is based on the notion of
Lévy copulas as introduced in Kallsen and Tankov [24].

A prominent family of Lévy copulas is the two-parametric family of Clayton
Lévy copulas. In particular, for θ > 0 and η ∈ [0, 1], Kallsen and Tankov [24,
Chapter 5] shows that (in the bivariate case d = 2)

F (x1, x2) := (|x1|−θ + |x2|−θ)−1/θ(η1{x1x2≥0} + (1− η)1{x1x2<0}) (7.2)

defines a Lévy copula F . Since F is a homogenous function of order 1, i. e.

F (cx1, cx2) = cF (x1, x2)

for all c > 0 and (x1, x2) ∈ R2, we deduce from Kallsen and Tankov [24, Theo-
rem 4.8] that a Lévy processX = (X1, X2) with α-stable marginsX1 andX2 having
Lévy copula F (in the sense of Kallsen and Tankov [24, Theorem 3.6]) is a bivari-
ate α-stable Lévy process. For the simulation procedure, we refer to Tankov [39,
Example 4.1] for further details. As usual in these contexts, we approximate the
increments X∆τ

k
on the grid τN0 with mesh size τ > 0 (theoretically composed of

infinitely many jumps) by a deterministic finite number of jumps. In particular,
we simulate 2000 jumps per unit time interval.

A closed formula for the tail integrals ν(T (x1, x2)) of the Lévy measure is
provided in Eder and Klüppelberg [14, Example 4.3]. We take the second partial
derivative w. r. t. x1 and x2, to come up with a closed form of the Lévy density.

Lemma 7.2.1 (Bivariate Clayton α-stable Lévy density) Let X be a Lévy
process with α-stable margins X1 and X2 such that its marginal Lévy densities
satisfy Assumption 5.3.1 with parameters c+

1 , c
−
1 ≥ 0 and c+

2 , c
−
2 ≥ 0, respectively.

Further, let X have Lévy copula F of form (7.2) for θ > 0 and η ∈ [0, 1]. Then for
every (x1, x2) ∈ (R◦)2, we have

p(x1, x2) = α1+θ(1 + θ)
(
c

sgn(x1)
1 c

sgn(x2)
2

)−θ
|x1x2|αθ−1×

×
(
(csgn(x1)

1 )−θ|x1|αθ + (csgn(x1)
2 )−θ|x2|αθ

)− 1
θ
−2
×

× (η1{x1x2≥0} + (1− η)1{x1x2<0}),


(7.3)

where the constants are interpreted figuratively as csgn(xi)
i := c+

i 1{xi≥0}+ c−i 1{xi<0}.

For illustration purposes, we restrict ourselves to the case of pure α-stable processes
without Brownian motion or drift and present a weak and a strong dependent case.
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7 A simulation study

Let α = 0.75, θ = 0.5 and η = 0.5 and c+
1 = c−1 = c+

2 = c−2 = 1. These
parameters correspond to very weak dependence and a symmetric Lévy process.
We aim for estimating the Lévy density on the domain

D = {(x1, x2) = (r cos(φ), r sin(φ)) : r ∈ [0.1, 1], φ ∈]−π, π[)}.

We present a perspective, a contour and a grey-scale image plot of the Lévy density
in Figure 7.11. We observe the symmetry and concentration of the density close
to the coordinate axes. Nevertheless, we remark that the axes themselves are not
charged by the Clayton Lévy measure. Furthermore, we base our estimates on the
family {Sm : m ∈ M} of piecewise constant functions based on a partition of D,
where we separately part the radial and the angular coordinate into m classes.
In the light of Theorem 6.3.3, we interpret the annulus D (from the Latin word
for “little ring”) and the elements of its partitions as polyhedrons via the polar
coordinate transform. As the Lévy measure does not charge the coordinate axes,
we do not have any further issues with D. Finally, we choose the penalty to be
of form (6.2) with c1 = 2 and c2, . . . , c7 = 1. In our example, we take T = 1000
and τ = 0.001. A sample path is shown in Figure 7.10.

From this sample, the penalised projection space is estimated to m̂pen
T = 16.

The corresponding PPE for the Lévy measure restricted to D is illustrated next
to the Lévy density in Figure 7.11. Let us outline our observations step by step.
First, we observe a strong overestimation close to the inner boundary of the do-
main D in the perspective plot. The highest tick mark on the z-axis of the plot
of the true Lévy density is at the value 60, whereas the highest tick mark of the
plot of the PPE is at the value 300. Secondly, the contour plots reveal a strong
structural difference of the Lévy density and the PPE. However, we have to look
carefully. Let us note that the shown structure of the PPE is fully imposed by the
family {Sm : m ∈M} of projection spaces we use. Moreover, the level marks in the
contour plot reveals more of the true nature of the PPE. The grey-scale plot for
the sub-domain {x ∈ D : ‖x‖ ≤ 0.5} illustrates this point more obvious. As a mat-
ter of fact, the grey-scale image of the PPE does show a similar structure as the
grey-scale image of the Lévy density. Certainly, the PPE is coarser. Nevertheless,
the symmetry and the concentration of the density close to the coordinate axes is
clearly disclosed.

To come up with a more comprehensive study similar to the univariate cases,
bivariate numerical integration of the squared difference of the PPE and the Lévy
density is necessary. Standard algorithms do not provide a result in reasonable
computation time. Nevertheless, we use the Monte-Carlo integration method to
come up with an estimate of the squared error. In particular, we choose a reasonable
high number (2 000 000 in our case) of grid points, i. i. d. and uniform in D. Then
we use the law of large numbers for the sample mean of the function values scaled
by the Lebesgue measure of D. In our case, we get ‖p− p̃pen‖2

µ ≈ 7× 104.
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7.2 Brownian motion with α-stable jumps

Bivariate α-stable jumps process

Figure 7.10: We present the sample path X(ω) of a bivariate α-stable Lévy process with Lévy
density of form (7.3) with parameters α = 0.75, c+1 = c−1 = c+2 = c−2 = 1, θ = 0.5 and η = 0.5 on
the time horizon [0, 1000] (top-left) and a magnified version restricted to the time horizon [0, 1]
(bottom-left). Corresponding to the path shown bottom-left, we present the components X1(ω)
and X2(ω) separately on the time horizon [0, 1] (right column). The increments of the path are
simulated on the regular grid with mesh size τ = 0.001.
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7 A simulation study

Bivariate Clayton Lévy density Penalised projection estimator

Figure 7.11: We present a perspective, a contour and a grey-scale image plot for the bivariate
Clayton Lévy density of form (7.3) with parameters α = 0.75, c+1 = c−1 = c+2 = c−2 = 1, θ = 0.5
and η = 0.5 (left column) and the penalised projection estimator p̃16 based on the observation
of the sample path shown in Figure 7.10 (right column).
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7.2 Brownian motion with α-stable jumps

Let α = 0.75, θ = 3, η = 0.75, c+
1 = c−2 = 2 and c−1 = c+

2 = 1. These parameters
correspond to strong dependence and an asymmetric Lévy process. We aim for
estimating the Lévy density on the domain

D = {(x1, x2) = (r cos(φ), r sin(φ)) : r ∈ [0.1, 1], φ ∈]−π, π[)}.

We present a perspective, a contour and a grey-scale image plot of the restriction of
the Lévy density to D in Figure 7.13. We observe the asymmetry and concentration
of the density close to the negative x2 and the positive x1-axis in the first and third
quadrant. Again, we remark that the axes themselves are not charged by the Clay-
ton Lévy measure. As before, we base our estimates on the family {Sm : m ∈M}
of piecewise constant functions based on a partition of D, where we separately part
the radial and the angular coordinate into m classes. We choose the penalty pen to
be of form (6.2) with c1 = 2 and c2, . . . , c7 = 1. In our example, we take T = 1000
and τ = 0.001. A sample path is shown in Figure 7.12.

From this sample, the penalised projection space is estimated to m̂pen
T = 12. The

corresponding PPE for the Lévy measure restricted to D is illustrated next to the
Lévy density in Figure 7.13. Let us outline our observations step by step. First, in
the perspective plot we observe weaker overestimation close to the inner boundary
of the domain D in comparison to the previous example. The highest tick mark
on the z-axis of the plot of the true Lévy density is at the value 300, whereas the
highest tick mark on the z-axis of the plot of the PPE is at the value 400. Secondly,
the contour plots reveal weaker structural differences of the Lévy density and the
PPE as well. Again, we have to look carefully. The shown structure of the PPE is
fully imposed by the family {Sm : m ∈ M} of projection spaces, as it was in the
previous example. Nevertheless, the connection to the true Lévy density is more
obvious, especially when taking the level marks in the contour plot into account.
The grey-scale image plot for the sub-domain {x ∈ D : ‖x‖ ≤ 0.5} illustrates
this point more obvious. As a matter of fact, the grey-scale image of the PPE
is certainly coarser once more. Nevertheless, the strong asymmetry is satisfyingly
disclosed.

As in the previous example, standard adaptive algorithms for the bivariate
numerical integration of the squared difference of PPE and Lévy density do not
provide a reliable result in reasonable computation time. Nevertheless, using the
Monte-Carlo integration method to come up with an estimate, again with 2 000 000
grid points, we get ‖p− p̃pen‖2

µ ≈ 3×103. Comparing this to the approximate error
of ≈ 7 × 104 in the weak dependence case before, we find our visual observations
supported.
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7 A simulation study

Bivariate α-stable jumps process

Figure 7.12: We present the sample path X(ω) of a bivariate α-stable Lévy process with Lévy
density of form (7.3) with parameters α = 0.75, c+1 = c−2 = 2, c−1 = c+2 = 1, θ = 3 and η = 0.75
on the time horizon [0, 1000] (top-left) and a magnified version restricted to the time horizon [0, 1]
(bottom-left). Corresponding to the path shown bottom-left, we present the components X1(ω)
and X2(ω) separately on the time horizon [0, 1] (right column). The increments of the path are
simulated on the regular grid with mesh size τ = 0.001.
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7.2 Brownian motion with α-stable jumps

Bivariate Clayton Lévy density

x1

-1.0

-0.5

0.0

0.5

1.0

x
2

-1.0

-0.5

0.0

0.5

1.0

0

100

200

300

x1

x
2

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Penalised projection estimator

x1

-1.0

-0.5

0.0

0.5

1.0

x
2

-1.0

-0.5

0.0

0.5

1.0

0

100

200

300

400

x1

x
2

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

Figure 7.13: We present a perspective, a contour and a grey-scale image plot for the bivariate
Clayton Lévy density of form (7.3) with parameters α = 0.75, c+1 = c−2 = 2, c−1 = c+2 = 1, θ = 3
and η = 0.75 (left column) and the penalised projection estimator p̃12 based on the observation
of the sample path shown in Figure 7.12 (right column).
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[15] Figueroa-López, J. E. (2004) Non-parametric Estimation of Lévy Processes
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[18] Figueroa-López, J. E. and Houdré, C. (2004) Non-parametric estimation of
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