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Zusammenfassung

Das Thema dieser Diplomarbeit wurde von der Deutschen Borse initiiert, Technische
Universitdt Miinchen stellte notwendige theoretische Grundlagen und die Software dazu
bereit. Das Ziel dieser Arbeit ist, Renditen von zehn internationalen Europédischen Ak-
tienindizes multivariat zu modellieren.

Zur Modellierung von multivariaten Daten wird ein zweistufiges Verfahren eingesetzt,
das Zeitreihenmodelle mit Pair-Copula Zerlegungen kombiniert. Copula-Modelle benoti-
gen unabhingig identisch verteilte Daten als Input. In der Praxis erfiillen nur wenige
von beobachteten Daten diese Bedingung. Insbesondere werden diese Voraussetzungen
von Finanzzeitreihen, zu denen auch die Renditen gezidhlt werden, verletzt. Finanzzeitrei-
hen sind meistens nicht normalverteilt und zeichnen sich durch starke Wolbung, aus-
gepréigte Schiefe und nicht konstante Varianz aus. Im ersten Schritt des Verfahrens wer-
den marginale Verteilungen eines multivariaten Datensatzen mittels (ARMA-) GARCH
Zeitreihenmodellen modelliert. Dabei lassen sich besondere Eigenschaften von Finanzzeitrei-
hen durch eine einschligige Wahl von Fehlertermenverteilung komplett beschreiben. Sind
die Modellvoraussetzungen richtig formuliert, so erwartet man, dass standardisierte Residuen
unabhingig identisch verteilt sind. Durch eine passende Transformation lassen sie sich
dann auf das Einheitsintervall projizieren und kénnen nun als Input fiir Copula-Modelle
verwendet werden. Im zweiten Schritt werden die Abhéngigkeiten zwischen den univari-
aten Daten mittels Copulas modelliert. Es gibt zahlreiche parametrische Copula-Familien,
die zur Modellierung von unterschiedlichen Abhéngigkeitsstrukturen geeignet sind. Allerd-
ings funktioniert es sehr gut nur auf der bivariaten Ebene. Die Erweiterung von Copulas
auf hohere Dimensionen ist mit einigen Hindernissen verbunden und ist nicht immer
moglich. Die so genannten Pair-Copula Zerlegungen, die bei Aas, Czado, Frigessi, and
Bakken (2009) présentiert wurden, 1osen dieses Problem. Die Idee dieser Methode besteht
darin, die gemeinsame Dichte von Zufallsvariablen in deren Randdichten und bivariaten
Copuladichten zu zerlegen. Da solche Zerlegungen nicht eindeutig sind, werden sie durch
von Kurowicka and Cooke (2006) eingefiihrten Vine-Modellen bestimmt.

Das bedeutende Problem in der Pair-Copula Theorie stellt die Auswahl einer passenden
Copula-Familie fiir bestimmte Variablenparchen dar. Ein grosser Teil dieser Arbeit beschreibt
die Entwicklung eines Verfahrens fiir Goodness-Of-Fit Testing fiir Copulas. Zuerst wer-
den zwei nicht parametrische Verfahren, der Vuong (Vuong (1989)) und der Clarke Test
(Clarke (2007)) betrachtet, die zum Vergleich von nicht eingeschachtelten Modellen einge-

il



fiihrt wurden. Beide Tests basieren auf dem Kullback-Leibler Informationskriterium, das
den Abstand zwischen zwei Modellen misst. Weiter werden die Ergebnisse einer um-
fangreichen Simulationsstudie dargestellt und diskutiert. Das Ziel dieser Studie ist, her-
auszufinden, wie gut beide Tests zum bivariaten Vergleich von Copulas geeignet sind. Die
Berechnungen wurden fiir Daten aus verschiedenen Copula-Klassen und in Abhéngigkeit
von Stichprobenldnge und Abhéngigkeitsstarke durchgefiihrt. Als Néchstes werden diese
zwei Tests erweitert, dass sie zum Vergleich von mehr als Copulas einsetzbar sind. Dazu
wurde ebenfalls eine Simulationsstudie durchgefiihrt, deren Ergebnisse detailliert disku-
tiert werden. Letztendlich werden bivariate Vuong und Clarke Tests mit den géngigen
Goodness-Of-Fit Tests von Genest, Rémillard, and Beaudoin (2009) verglichen.
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Introduction

The procedure of modeling multivariate return series of financial indices has to take into
account two factors. The first one is making allowance for time-varying volatility. It traces
back to the fact that small values of a time series are followed by small values and vice versa
large values are followed by large values. The second one is an incorporating dependence
structure between the individual return sequences that is detected on the observed values
from the past. The aim of this thesis is to provide a framework for generating multivariate
returns that takes these two factors into consideration.

The traditional multivariate TIME SERIES APPROACH (TSA) with standard normal dis-
tributed error terms is based on calculation of the future volatility and future mean by
using the correlation structure of the past values. The usual linear correlation is not a
satisfactory measure of the dependence between financial time series. Firstly, two return
series might be uncorrelated but not independent. The uncorrelateness implies automati-
cally independence only for normal distributed random vectors. Generally, financial time
series do not follow normal distribution, they are mostly skewed and exhibit a high kur-
tosis and heavy tails. The problem of non-zero kurtosis and skewness can be handled by
using an appropriate distribution for error terms, for example skewed standard normal
or (skewed) standard Student distributions. Secondly, linear correlation measures only
linear dependence but does not discover non-linear dependence. Another drawback of the
TSA is that the correlation is assumed to be constant over the time period of interest.
Moreover, this methodology implies in multivariate return series the same dependence for
positive returns as well as for negative returns. In contrast, some empirical studies, for
example Longin and Solnik (1995, 2001), have found significantly stronger positive correla-
tions coefficients for negative returns than for positive returns. This phenomenon is called
asymmetric tail dependence. Hence, the classical multivariate TIME SERIES APPROACH
seems be unable to capture all the properties and co-movements of the multivariate fi-
nancial time series. An alternative way of modeling (asymmetric) dependence in stock
market indices returns which can cover the dynamics of the univariate time series will be
researched in this diploma thesis.

Copula theory provides a modern and more efficient approach to model the high-dimensional
dependency. A copula is a function that combines univariate margins into their joint dis-
tribution. In this way, the nature of dependence can be modeled more generally compared
to the techniques based on the linear correlation measure. Large numbers of parametric



bivariate copulas were developed for the modeling of various dependency forms. But only
a small set of these copulas can be extended to the higher dimensions. Another disad-
vantage of the multivariate copulas is that they allow only one copula type, for example
a Gaussian copula, for all marginal pairs. So called pair-copula constructions were devel-
oped to handle this problem. The advantage of this innovation lies in the ability to use
miscellaneous dependency structures, i.e varying copula families are allowed for different
marginal pairs. The idea of such a modeling scheme is based on a decomposition of a
multivariate density into a cascade of the pair-copulas, applied to the original variables
and to their conditional and unconditional distribution functions. The most appropriate
copula type for the pair-copulas can be detected by special inference methods, which will
be discussed in this thesis.

This thesis is based on an article “Pair-copula constructions of multiple dependence”
of Aas, Czado, Frigessi, and Bakken (2009). It surveys a framework for analyzing and
forecasting high-dimensional multivariate time series that we name TS-PAIR-COPULA
approach throughout this work. This method combines pair-copula constructions with
(ARMA-)GARCH methodology in an innovative way. At first, a set of (ARMA-)GARCH
models will be fitted to marginal distributions to predict expected returns and volatility.
Then the standardized residuals of these models will be used to create a joint distribution
via semi parametric multivariate copula based on the pair-copula constructions. In this
way, the vital factors mentioned at the beginning of this chapter can be captured: em-
ployment of the (ARMA-)GARCH models overcomes the problem of non-constant volatil-
ity; the appropriate innovations distribution captures the problem of high kurtosis and
non-zero skewness; finally, utilization of the copula concept handles the tail dependence
problem .

The TS-PAIR-COPULA approach will be applied to a FINANCIAL MARKET INDICES (FMI)
data set consisting of daily time series log-returns of 10 European stock market indices.
This data were provided by Deutsche Borse and cover the time period from January 3,
2006 to November 11, 2009.

This thesis is organized as follows:

v' Chapter 1 provides a description of the data set used in this thesis including some
of its descriptive statistics and time series properties.

v' Chapter 2 introduces briefly the basic foundations of the theory of time series such as
white noise, stationarity, autocorrelation and partial autocorrelation functions. The
most important processes such as AR, MA, ARMA, ARCH, GARCH and ARMA-
GARCH are also considered in this chapter. Further, useful tools for determining
an appropriate model order and some methods of model checking, that will be
demonstrated on an illustrative example, are given at the end of this chapter.

v The following Chapter 3 outlines the classical dependence measures like Pearson’s
and Kendall’s correlation coefficients. Two graphical non-parametric methods for



detecting dependence structure, Chi- and K-plot, are also presented. The next sec-
tion defines copulas and gives some of their basic properties. Various copula families,
which are common in multivariate modeling of the financial markets, will be intro-
duced in the following part. Further, pair-copula constructions are described at the
end of this chapter.

v' Chapter 4 provides an alternative methodology for goodness-of-fit testing for copulas
that is based on Vuong and Clarke tests.

v' Chapter 5 is dedicated to empirical results. The multivariate TS-PAIR-COPULA ap-
proach is applied to the financial data set introduced in Chapter 1. Goodness-of-
prediction will be judged by contrasting the forecasted values with the true future
observations.

v" The thesis concludes with a summary of the application results.

In this thesis we provide many illustrative examples that makes the theory chapters more
understandable. Furthermore, references to the R functions and packages are given to
facilitate the introduced statistical inference and modeling tools. All numerical calcula-
tions presented in this diploma thesis have been computed using free statistical software
R version 2.9.2, R Development Core Team (2009). Evaluation results obtained in R were
automatically converted into IXTEX tables by use the R package xtable, Dahl (2009), in
combination with a Sweave () function.



Chapter 1

Data description

The FINANCIAL MARKET INDICES data set consists of daily time series log-returns of 10
European stock market indices and contains a total of 955 observations for each index. The
sample covers the period of three years, from January 3, 2006 to November 11, 2009, due
to constraints on data availability. The data were obtained from the Bloomberg database.
The stock market indices of interest are AEX of Netherlands, ATX of Austria, BVLG of
Portugal, FCHI of France, FTMIB of Ttaly, GDAXI of Germany, OMXC20 of Denmark,
OMXSPT of Sweden, SMSI of Spain and STOXXER of Europe. Their short descriptions
are presented below. These indices come from the Eurozone and were traded in euro. The
problem of non-overlapping trading hours does not arise, because all exchanges, where
these indices are traded, operate in the same time zone. In order to reduce numerical
problems and to permit stable estimation results the returns are given in percentages.

The observed data were separated into a training and a testing set. The first one covers
the time frame from 2006-01-02 to 2009-06-18, a total of 855 observations. It will be used
for the estimating of model parameters. The test set contains 100 data points dating from
2009-06-19 to 2009-11-11. It is employed to compare predictions based on the estimated
model with true observed values and, afterwards, to assess the appropriateness of the
models studied and determine its correctness.

Some descriptive statistics of return sequences are given in Table 1.1. The sample means,
rounded to 2 positions after decimal point, of all 10 series are close to zero. Sample
standard deviations range between 1.31 and 2.13. According to the p-values of Shapiro
and Jack-Berra statistics, the return series are not normally distributed. Moreover, they
indicate a high positive kurtosis lying between 3.5 and 11.31 and a non-zero skewness. Both
features are typical for financial time series. The estimated skewness is positive for FCHI,
FTMIB, GDAXI and OMXSPT indices. For all other indices it is negative. Further, Ljung-
Box statistics provides a useful tool for examining the null hypothesis of independence or,
in other words, for testing a serial correlation in time series. Based on the p-values of the
Ljung-Box statistics at lag 15, the observed data series are autocorrelated except ATX,
GDAXI and OMXSPI. More details about Shapiro, Jack-Berra and Ljung-Box tests are
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INVESTIGATED STOCK MARKET INDICES
AEX Amsterdam Stock Index, Netherlands; Is composed of a maximum of 25 of the
most actively traded Netherlands securities, provides a fair representation of the
Dutch economy
ATX Austrian Traded Index, Austrian; Is a most important stock market index of
the Wiener Borse and is defined as a price index and currently consists of 20
stocks
BVLG Lisbon BVL General Index, Portugal; Is a market value-weighted index that tracks
the daily total return performance of all stocks traded on the official market of the
Lisbon Stock Exchange
FCHI CAC 40 Indez, France; Is a benchmark French stock market index, represents a
capitalization-weighted measure of the 40 most significant values among the 100
highest market caps on the Paris Bourse
FTMIB FTSE MIB Milan Indez, Italy; Is a benchmark stock market index for the Borsa
Ttaliana and measures the performance of the 40 most liquid and capitalized Italian
shares
GDAXI German Stock Index (DAX Index), Germany; Is a stock market index consisting
of the 30 major German companies trading on the Frankfurt Stock Exchange
OMXC20 OMX Copenhagen 20 Index, Denmark; Is a stock market index consisting of the
20 most actively traded shares on the Copenhagen Stock Exchange
OMXSPI OMX Stockholm Indez, Sweden; Is a stock market index of all shares that trade
on the Stockholm Stock Exchange
SMSI Madrid Stock FExchange General Index, Spain; Is a capitalization-weighted stock
market index that measures the performance of a selected number of continuous
market stocks
STOXXER Dow Jones EURO STOXX 50, Europe; Is a stock index of Eurozone stocks and
provides a blue-chip representation of 50 Supersector leaders in the Eurozone
Table 1.1: Descriptive statistics of return series: sample mean, sample kurtosis, sample
skewness, test statistics and p-values of Shapiro and Jarque-Bera tests for testing normality,
test statistic and p-value of Ljung-Box test for testing autocorrelation at lag 15
INDEX mean sd kurtosis skewness Shapiro Jarque-Bera Ljung-Box
stat. p-val. stat. p-val. stat. p-val.
AEX -0.03 1.77 7.14 -0.16  0.89 0 2031.87 0 41.72 0.00
ATX -0.04 2.13 4.28 -0.23  0.94 0 737.35 0 11.46 0.72
BVLG 0.01 1.31 11.31 -0.41  0.87 0 5120.15 0 36.22 0.00
FCHI -0.02 1.73 6.59 0.10 0.91 0 1727.08 0 51.59 0.00
FTMIB -0.05 1.70 6.35 0.02 0.91 0 1606.96 0 60.52 0.00
GDAXI 0.00 1.68 6.98 0.19 0.91 0 1941.62 0 21.15 0.13
OMXC20 -0.02 1.71 5.55 -0.24  0.93 0 1234.15 0 27.57 0.02
OMXSPI -0.01  2.02 3.50 0.10 0.95 0 488.48 0 16.69 0.34
SMSI 0.01 1.63 6.36 -0.08  0.92 0 1611.71 0 41.36 0.00
STOXXER | -0.01 1.62 5.71 -0.07  0.92 0 1300.27 0 30.90 0.01
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Figure 1.1: Time series plots of stock market returns on the same scale [—12,12]: the train
data is marked with black color and the test data with gray color
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Figure 1.2: Visualization of dependences in the FINANCIAL MARKET INDICES data set:
sample Kendall’s correlation coefficients are on the upper triangle, bivariate scatter plots are on
the lower triangle
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given in Chapter 2, Section “Model diagnostics for time series models”.

The time series plots of the 10 stock market returns are drawn in Figure 1.1, in black color
for the train data and in gray color for the test data. All time series were plotted on the
same scale. All data series exhibit a non-constant variance over the complete time period.
The observed returns are more volatile over some time periods and less volatile over some
other time periods. The most volatile period is observed at the end of 2008. Figure 1.2
exhibits pairwise scatter plots on the lower panel and sample Kendall’s 7 correlation
coefficients on the upper panel. As we can see, there are positive dependencies of varying
degree between the return series. The Kendall’s assosiation coefficients are all positive
and lie between 0.5 and 0.9.



Chapter 2

Common time series models

This chapter provides background on time series and introduces the notations that will be
used throughout this thesis. The time series theory described here follows description given
by Shumway and Stoffer (2006). The concept of the stationarity, white noise, mean, auto-
covariance and the autocorrelation functions are introduced in the first section. Next, the
definitions of moving average (MA), autoregressive models (AR) and their hybrid ARMA
models are given. In the next section, the ARCH and GARCH models for the time series
models with the heteroscedastic variance are discussed. After that, the ARMA-GARCH
models for simultaneous modeling of the conditional mean and conditional variance struc-
ture by combining an ARMA model with conditional heteroscedasticity are given. At the
end of this chapter, we discuss how the autocorrelation functions and the partial auto-
correlation functions (ACF and PACF) can be used for detecting an appropriate order of
time series models and for model diagnostics. The tools for checking model assumptions
are listed in the next section. Finally, we illustrate the techniques of residual analysis on
an ARMA-GARCH model that were fitted to the real data.

2.1 Basic concepts

Te basic notion of this chapter is a white noise process. An uncorrelated sequence {;} of
random variables is called white noise process, if it has a zero mean and a finite variance,
i.e

Ele,] =0

Var(g;) = o

E[€t1€t2] =0 th 7& to s

An independent white noise process is defined by a stronger condition that ¢, and ¢, are
independent Vi; # to. In case of ¢, ~ N(0, 02), the random process {e;} is called Gaussian
white noise process.
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A time series can be defined as a collection of random variables indexed according to
the order they were obtained in time. For example, we may consider a time series as a
sequence of random variables xq, xo, x3, ..., wherein the random variable x; denotes the
value taken by the series at the first time point ¢;, the variable x5 denotes the value for
the second time period t5, and so on. A time difference h = t, — t; between two time
points ¢y and ty, ty > tq, is called lag.

The multidimensional distribution function (2.1) describes the data completely and is a
natural tool for displaying and analyzing time series data.

F(xy,29,...,2,) = P(Xy, <21, Xy, <@9,..., Xy, <) (2.1)

Unfortunately, the multidimensional distribution function (2.1) can not usually be written
easily, unless the random variables are independent and identical distributed. In case of
independence, the joint distribution function can be expressed as a product of the marginal
distributions

F (21,29, 20) = [[Folw) = [ P(Xy < a0) (2.2)

t=1

with one-dimensional distribution functions
Fi(r) = P (X; <)

and corresponding one-dimensional density functions

fi(x) = 8};?) :

As it is usual in statistics, the complete description involves the multivariate distribution
function of the jointly sampled values z1, xs, . . . , x,,, whereas more economical descriptions
can be described in terms of the mean and autocorrelation functions. Because correlation
is an essential feature of the time series analysis, the most useful descriptive measures can
be expressed in terms of covariance and correlation functions.

Definition 2.1 (Mean function) The mean function is defined as

1y = B[X)] = /OO ofy(x)de | (2.3)

provided it exists, where E|-] denotes the usual expected value operator.

The lack of linear independence between two points z;, and x;, of the same time series
can be estimated numerically using the notions of covariance and correlation. Assuming
the variance of x is finite, we have the following definition.

Definition 2.2 (Autocovariance function) The autocovariance function is defined
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for all t1 and ty as a second moment product
7(t17t2) =F [(Xh - Mt1)(Xt2 - :th)] . (24)
Definition 2.3 (ACF) The autocorrelation function (ACF) is defined as

’7(t17t2> )
Vot t)y(ta, to)

p(ti,t2) = (2.5)

The autocovariance function measures the linear predictability of the series at time t
using only the values from time t;. The ACF presents the scaled value of autocovariance
function in the interval [—1, 1]. Equation |p(t1, t2)| = 1 means x;, can be perfectly predicted
by z;, with a linear relationship x;, = £y + S1x¢,.

To make statistical inference about the structure of a stochastic process on the basis of
the observed sample 1, xo, . . ., x, of that process, we must usually make some simplifying
(and presumably reasonable) assumptions about that structure. Such most important
assumption is that some sort of regularity exists over time in the behavior of a time
series. We introduce the notion of regularity using a concept called stationarity.

Definition 2.4 (Strictly stationary) A strictly stationary time series is one for

which the probabilistic behavior of every sequence of values xy,, ..., x;, s tdentical to that
of time shifted set x¢ +n, ..., Ty 4+n- That is,
P(th S Cly... ,th S Ck) = P(th+h S Ciy... ,th+h S Ck) (26)

for all k = 1,2,..., all time points ty,ts, ..., all numbers cyi,cs, ..., and all time shifts
h=0,+£1,£2,....

The version of stationarity in (2.6) is too strong for most applications. Moreover, it is
difficult to verify the stationarity from a single data set. Rather than assume conditions on
all subset distributions of a time series, we will use a milder version that requires conditions
only on the two first moments of the series. We now have the following definition.

Definition 2.5 (Weakly stationary) A weakly stationary time series, {x;}, is a fi-
nite variance process such that

(i) the mean value function, p, defined in (2.3) is constant and does not depend on
time t, and

(ii) the covariance function, y(t1,t3), defined in (2.4) depends on t; and ty only through
their difference |t; — to|.

From now on, we will use the term stationary to express the weak stationary. For the
stationary time series, we have an equality for the mean function

EX] = =p (2.7)
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and the covariance function can be simplified with ¢, = t; + h as

7(t17 t2> = ’7(t17t+h) =F {(Xtﬁ-h - M)(th - :u)]

(2.8)
= E[(Xp — p)(Xo — p)] = v(h,0) = ~(h) ,

since the covariance of a stationary time series, y(t1, t2), depends on t; and t5 only through
their difference |t; — t5].

Definition 2.6 The autocovariance function of a stationary time series will be
written as

Y(h) = E[(Xpsn — ) (Xe — p)] - (2.9)

Definition 2.7 The autocorrelation function (ACF) of a stationary time series

will be writlen as
v(t + h,h) _q(h)

plh) = A+ ht+h)y( ) v(0)

(2.10)

In practice, only the sample data are available for time series analyze. For such data, the
assumption of stationarity can not be verified and the observations are not i.i.d. copies
of the same random variable. Hence, only the average values can be used to estimate
the population means and covariance functions. If a time series is stationary, the mean
function is constant. So that we can estimate it by the sample mean in a following way

p=z== u. (2.11)
n t=1

And the theoretical autocovariance function in (2.9) is estimated by the sample autoco-
variance function.

Definition 2.8 The sample autocovariance function of observed time series {z:},_, ,
s defined as

1 n—h

(k) == (wen = ) (2, — ) (2.12)

with 4(—h) = 4(h) for all h=10,1,...,n — 1.

The sum in (2.12) is defined only till n— h because x,,, is not available for t+h > n. The
estimator in (2.12) is generally preferred to the one that would be obtained by dividing
by n — h since (2.12) is a non-negative definite function (for more details see Shumway
and Stoffer (2006, Section “Estimation of Correlation”, pp. 29-34)). Note, an unbiased
estimate of y(h) can not be obtained neither dividing by n nor n — h in (2.12).
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Definition 2.9 The sample autocorrelation function of observed time series {x,},_,
is defined, analogously to (2.10)

p(h) = . (2.13)

The sampling distribution of the sample autocorrelation function can be used to check
whether correlations at some lags are significant. Precise details are given by Shumway
and Stoffer (2006, Appendix A, pp. 513-521).

Property 2.10 (Large Sample Distribution of the ACF) Under general reqularity
conditions, if a sequence {x,},_, . of random variables is a white noise, then for n large,
the sample ACF, p(h), for h =1,2,... H, where H is fized but arbitrary, is approzimately
normally distributed with zero mean and standard deviation given by

1
Tph) = - (2.14)

Using this property, we can construct a confidence interval for empirical autocorrelation
coefficients and check whether a correlation at some lag is significant. Under certain
assumptions the interval i\% can be viewed as a 95% confidence interval. Empirical
autocorrelation coefficients which fall outside of this interval, are significantly different
from zero.

The sample ACF can be computed and plotted in R with function acf from the standard
package stats. The blue dashed lines on the pacf plot indicate the confidence interval
(95% by default) and allow a simple judgment about statistical significance of sample
correlation at some lag h. Note, the bars on the acf plot start at the lag 0, so that the
first bar is also significant and ist equal to one.

2.2 ARMA models

Classical regression was developed for the static case where dependent variable is in-
fluenced by current values of independent variables. Such classical regression is often
insufficient for modeling a time series and explaining all of their properties. Firstly, it
is reasonable to allow the dependent variable to be influenced by the past values of the
independent variables as well as by its own past values. Secondly, residuals of classical
regression applied to time series are often correlated. It causes a pattern in the corre-
sponding residuals plot. In this section we introduce alternative methods for the modeling
and forecasting univariate time series.

Autoregressive models are based on the idea that the current value of a time series {x,},
x¢, can be explained as a linear combination of p past values, x;_1,...,2:—,. Hence, p
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determines the number of steps into the past needed for sufficient prediction of the cur-
rent value x;. By contrast, the current value of the moving average model of order ¢,
abbreviated M A(q), will be explained by the linear combination of ¢ white noise values
E(t=1)s - - - s E(t—q) from the past.

Definition 2.11 An autoregressive model of order p, abbreviated AR(p), is of the
form

Ty = Q1T4—1 + Yoo+ ...+ QPpTi—p + &, (2.15)
where {x:} is a stationary random process, 1, ..., p, are constants (v, # 0). Moreover,
{e;} is assumed to be a Gaussian white noise series with mean zero and variance o2, Thus,

the mean of x; in (2.15) is also zero. If the mean, p, of x; is not zero, replace xy by xy — 1
in (2.15), i.e.,

Ty —p= 011 — @) + (T2 — p) + . A p(wp — ) + e,

or write
Ty = po+ P11 + Pl + ...+ OpTip + ¢,

where o = (1l — @1 — ... — ).
Definition 2.12 The moving average model of order q, or MA (q) model, is defined

as
Ty = &+ 918,5,1 + ...+ ant,q (216)

where there are q lags in the moving average and 0y, ...,60, (0, # 0) are parameters. The
noise €; 1s assumed to be a Gaussian white noise.

It is also possible to combine both AR and M A models to a general ARM A model, that
provides in some situations much more precise representation of the stochastic process.
Now, we introduce the general definition of autoregressive (AR), moving average (MA),
and mixed autoregressive moving average (ARMA) models for the stationary time series.

Definition 2.13 A time series {xi},_,, is ARMA(p,q) if it is stationary and
T =101+ ...+ oty + e+ b+ F Oy, (2.17)

with ¢ # 0, 0 # 0, and 02 > 0. The parameters p and q are called the autoregressive
and the moving average orders respectively. If x; has a non-zero mean u, we set py =
u(l— 1 — ... — ) and write a model as

Ty =@+ Q101+ ...+ OpTip + e+ OiE 1+ g

Unless stated otherwise, {e;} witht =0,1,2,..., is a Gaussian white noise sequence.
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Figure 2.1: Time series plot of an AR(1) (¢ = 0.9), MA(1) (# = 0.9) and ARMA(1,1)
(¢ =0.9, 8 = 0.9) processes sampled with a length of 1000
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For ¢ = 0, this model reduces to the autoregressive model of order p. And when p = 0,
the model simplifies to the moving average model of order ¢. Note, stationarity of the
time series poses a fundamental assumption for justification of the ARMA models. The
ARMA models have a vital advantage against non-mixed AR or MA models that it is able
to model an stationary time series process adequate involving fewer parameters as AR or
MA models. Chatfield (2004, p. 47) calls this phenomenon a Principe of Parsimony that
means, it is more effective to find a model with as few parameters as possible, but which
gives an adequate representation of the data at hand.

Three sampled processes AR(1), MA(1) and ARMA(1,1) are displayed in Figure 2.1. As
we can see, a time plot of time series alone gives us a little information about a type of
the observed process. Some techniques, such as ACF and PACF plots, for detecting the
kind of time series at hand are given in Section 2.6 “Identifying ARMA-GARCH models”.

There are numerous methods for estimating and forecasting of ARMA models. More
details for this subject may be found by Shumway and Stoffer (2006, chap. “ARIMA
Models”, pp. 110-140), Cryer and Chan (2008, chap. “ Parameter Estimation”, pp. 149-
170 and chap. “Forecasting”, pp. 191-213), Hamilton (1994) or Brockwell and Davis (1991,
chap. “Estimation for ARMA Models”, pp. 238-262 and chap. “ Prediction of Stationary
Processes”, pp. 166-191).

The ARMA models are implemented in the R functions arima and arma from packages
stats and tseries (Trapletti and Hornik (2009)) respectively.

2.3 ARCH and GARCH models

The ARMA models presented in the previous section were developed to model conditional
mean structure and require a constant variance. Most financial time series are character-
ized by changing variance in time plot of the data. In such cases, it is conventional to talk
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Figure 2.2: Time series with constant and variable volatility
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about the volatility of the time series rather than about the variance. Volatility in a time
series occurs in situations where the conditional variance of the time series varies over
time. Under volatility clustering we understand the observation, that large changes tend
to be followed by large changes and small changes tend to be followed by small changes.

Figure 2.2 displays plots of two time series with constant (left) and changing volatility
(right) over the time period of length 900. Gaussian white noise is displayed on the left-
hand side and DAX returns of the time period from 2006-01-03 to 2009-08-19 are displayed
on the right-hand side of the figure.

Engle (1982) proposed to use autoregressive conditional heteroscedasticity (ARCH) model
for modeling changing variance in the time series. The basic of his approach is that a
current variance o7 of a time series {y;} is described by a linear function of squared lagged
values of {y;}. These models were later extended by Bollerslev (1986) to the generalized
ARCH or the GARCH models. The advantage of GARCH models is that the current
variance o7 is described not only by a function of squared lagged values y; but also of

itself lagged values.

Definition 2.14 An autoregressive conditionally heteroscedastic model of order
m, abbreviated ARCH(m), is of the form

Yt = Ot&t

2

2.18
oy =w+ oqyf_l + ...+ ozmyf_m ( )

where {&,} is a standard Gaussian white noise, i.e. e, ~ N (0, 1).

Definition 2.15 An generalized autoregressive conditionally heteroscedastic model
of order (m,r), abbreviated GARCH (m,r), is defined as

Yt = Oty

" - 2.19
=wtY at,+ Y Bk, (2.19)
j=1 Jj=1
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where {e;} is a standard Gaussian white noise, i.e. ¢, ~ N(0,1).

Error terms ¢, are also known as innovation. Generally, the innovation is a sequence of
independently and identical distributed random variables with unit variance and zero
mean. It may be shown, that the unconditional kurtosis of y; is always larger that 3, see
Tsay (2005, p.105) or Shumway and Stoffer (2006, p.282), and tail distribution of y; is
heavier than that of (standard) normal distribution.

Schoffer (2003) analyzed the of GARCH models for modeling of capital market returns.
Such characteristics of financial time series as constant mean and volatility clustering
can be well reproduced. In contrast, a typical high kurtosis of the financial time series
can not be adequately simulated by this model type, although the kurtosis of conditional
distribution allowed by GARCH model is somewhat larger than the kurtosis of the un-
conditional normal distribution. Another disadvantage of the GARCH process with the
Gaussian white noise in modeling financial returns is that positive and negative returns
€1-1,E¢—2, . .. have the same importance. This follows, since the volatility in (2.19) depends
on the squared terms y,_;, 7 = 1,...,m. In practice, we observe so called leverage effect,
that is bad news tends to have a larger influence on volatility than good news (Duffee
(1995) and Black (1976)).

To handle the problems discussed above, non-Gaussian distributions for error terms ¢,
in GARCH models have been proposed. Bollerslev (1987) suggested a GARCH model
with Student’s t-distribution for the standardized residuals. To capture both features of
financial time series, skewness and kurtosis, Fernandez and Steel (1998) proposed the
standardized skewed Student’s t-distribution. (Quasi) Maximum Likelihood Estimation
methods for GARCH models were precisely discussed by Straumann (2005).

The GARCH models are implemented in R in functions garch and garchFit of packages
tseries and fGarch (Wuertz, with contribution from Michal Miklovic, Boudt, Chausse,
et al. (2009)), respectively. The optional parameter cond.dist of function fitGarch al-
lows several non-Gaussian conditional distributions for error terms ¢; such skewed normal
(dsnorm) and (skewed) Student’s t-distribution (dstd or dsstd). The default value is the
standard normal distribution.

2.4 ARMA-GARCH models

The ARMA-GARCH models were developed to combine an ARMA model for describing
the mean behavior and a GARCH model to reproduce the GARCH effect in the residuals
from the ARMA model. We refer here to Lai and Xing (2008, pp. 155-156)

Definition 2.16 The ARMA (p,q)-GARCH (m,r) model for (y;, ;) where {y;} follows
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an ARMA model with GARCH innovations is defined as

P q
Ye = p+ Z VilYi—; + € + Z i€
i=1 i=1

(2.20)
€ = O0t&y
where {0} satisfies the recurrent equation
ol =w+ Z e+ Z Bior_; . (2.21)
j=1 =1

Error terms {e;} are i.i.d. with zero mean and unit variance.

Equation (2.20) is called conditional mean equation and equation (2.21) is called condi-
tional variance equation.

As in the case of simple GARCH model it is allowed for ¢; to follow standard normal,
skewed standard normal, standard Student’s t or skewed standard Student’s t distribution.
More details about these distributions are given in Appendix C. By modeling price time
series, a GARCH model for volatility have to be combined with an ARMA model for mean,
because expected price values are non-constant over the time period. By contrast, expected
mean of return time series is (generally) constant and may be adequately estimated by
the constant term u of mean equation (2.20). So, the problem reduces to fitting a simple
GARCH model. More details about MLE estimation of ARMA-GARCH models see follow
references: Francq and Zakoian (2004), Ling and Li (1997), Ling and Li Ling and Li (1998)
or Ling and McAleer Ling and McAleer (2003).

The ARMA-GARCH models are implemented in R in function garchFit of the package
fGarch.

2.4.1 Forecasting future mean and volatility

Given estimated parameters and using formulas (2.20) and (2.21), the one-step-ahead
forecast for conditional mean and conditional volatility of y; can be calculated by

P q
Y1 = P+ Z Pilt+1—i + Z Oi€ry1-i (2.22)
i=1 i=1

and

7=1 7=1
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2.5 Partial autocorrelation function (PACF)

It may be shown, Shumway and Stoffer (2006, pp. 103-104), that autocorrelation function
of MA(q) models will be zero after lag ¢ and may not be zero till lag ¢ inclusively. Hence,
the ACF of some moving average process contains the whole information about its order.
But there is another one situation by handling with ARMA or AR models. Namely, it can
be evidenced, Shumway and Stoffer (2006, pp. 105-106), that ACF does not become zero
after a certain number of lags for this model types. It dies off rather it cuts off. So, we need
another function to help determine the order of an autoregressive model. Such a function
is the partial autocorrelation function (PACF). For more details, we refer to Shumway and
Stoffer (2006, pp. 106-108). This function has similar behavior for AR models as the ACF
for MA models. Namely, it will be zero after after lag p and is unequal to zero till lag p
inclusively. The partial autocorrelation function at lag k measures a correlation between
x; and x;_y after removing the effect of the variables x;_1,...,x;_ ;1 and will be denoted

by Gk

Definition 2.17 The partial autocorrelation function (PACF) of a stationary pro-
cess, xy, denoted ¢pr, for h=1,2,..., is

¢ = cor(z1, o) = p(1) (2.24)

and
Onn = cor(xp, — xZ_l,mo - xg_l), h>2. (2.25)

Directly calculation of sample PACF at any lag is not possible, it can only be estimated.
A detailed description of the estimation procedure based on the Yule-Walker equations is
given by Cryer and Chan (2008). The estimator is called sample partial autocorrelation
function (sample PACF) and will be denote it by dpy,.

Quenoulle (1949) has shown that, under the hypothesis that the order of an AR(p) model
is correctly defined, the sample partial autocorrelation at lags greater than p are approx-
imately normally distributed with zero mean and variances 1/n for large n. To decide
that the value of the PACF at lag h is zero, compare it with the standard deviation. If
|g§hh| > 1.96\% for h = p and |¢A5hh| < 1.96\% for h > p, then there is statistical evidence
that the AR model is of order p.

The sample PACF can be computed and plotted in R with function pacf from the standard
package stats. The blue dashed lines of PACF-plot indicates a confidence interval (95%
by default) and allows a simple judgment about the statistical significance of gghh at some
lag h. In contrast to the acf function, the bars of the pacf-function start at lag 1.
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2.6 Specification of ARMA-GARCH models

2.6.1 Order of ARMA models

The aim of this section is an investigation of some tools for choosing an appropriate
order of AR, MA or ARMA models. In the previous section, we discussed the behavior of
ACF and PACF functions on these time series processes. Following calculations given in
Brockwell and Davis (1991), we get Table 2.1. This table can be very helpful for detecting
a suitable order of pure AR or MA models. For an AR(p) process, the sample PACF
cuts off after the lag p and the sample ACF tails off, see Figure 2.3, (a) and (b). For an
MA(1) process, the sample ACF cuts off after the lag ¢ and the sample PACF tails off,
see panels (c) and (d) of Figure 2.3. The usage of ACF and PACF is not applicable for
mixed ARMA models. It amiss in order identification order of ARMA model. Theoretical
ACF and PACF have infinitely many non-zero values in this case, see panels (e) and
(f) of Figure 2.3. Method based on eztended autocorrelation function (EACF), described
by Cryer and Chan (2008, pp. 112-117), were developed for handling of this problem.
Discussion of this method goes beyond the scope of this thesis.

Table 2.1: General behavior of autocorrelation and partial autocorrelation functions in AR,
MA and ARMA processes

AR(p) MA (q) ARMA (p,q)
ACF Tails off Cuts off after lag ¢ Tails off
PACF | Cuts off after lag p Tails off Tails off

Figure 2.3: ACF and PACF of simulated AR(1) (¢ = 0.9), MA(1) (# = 0.9), ARMA(1,1)
(p =0.9, 0 = 0.9) processes of length 1000

(a) ACF of AR(1) process (c) ACF of MA(1) process (e) ACF of ARMA(1,1) process
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2.6.2 Order of GARCH models

Order specification of the GARCH models is generally not easy, since the volatility is not
directly observable. In most applications, only the GARCH models of lower order such as
GARCH(1,1), GARCH(2,1), and GARCH(1,2) are used. In many practical situation, the
GARCH models of first order (1,1) provide adequate data explanation.

2.7 Model diagnostics for time series models

After the model fitting, it is necessary to check whether the model was correctly specified.
Only when the model assumptions are fulfilled, it may be accepted and the results inter-
preted. Whether the assumptions of error terms such as distribution and independence
are fulfilled should be verified by residuals analysis. Raw residuals

ét,raw =Yt — :&t ) (226)

where 1, are the fitted values and y; are observed values, are not well suited to detect
models misspecifications by the reason of conditional variance inequality. Hence, the stan-
dardized residuals

~ ~ ét,raw
€t = Et,stand = ) (227)

A

Ot|t—1

where G, are estimated conditional volatilities from (2.21), have to be involved for
checking the model specifications. If the ARMA(p,q)-GARCH(m,r) model is correctly
specified, the standardized residuals {é;} should be approximately independently and
identical distributed with assumed innovation distribution. These statements can be checked
by following tools (that will be provided by functions summary and plot applied to an
garchFit object):

(i) QQ-plot of the standardized residuals to examine the reliability of as-
sumed distribution of error terms: Under correct assumption, points of the
QQ-plot should lie approximately on a straight line. If there is a significant devia-
tion from the normal QQ-line, the normality assumption may not be appropriate.
Symmetric anomalies in both tails could be corrected by choosing Student distri-
bution in place of Gaussian. Discrepancy only in one tail could be liquidated with
skewed normal or skewed t distributions.

(ii) Shapiro-Wilk or Jarque-Bera tests to validate normality of standardized
residuals (Shapiro and Wilk (1965), Jarque and Bera (1987)): Both tests suggest
normality of standardized residuals. Hence, if it holds, the p-values of test statistics
x? (Jarque-Bera test) and W (Shapiro-Wilk test) have to be larger as 0.05 for a
conventional significance level a = 5%.
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(i)

Time series plot of standardized residuals to verify the accuracy of es-
timated means and volatilities: If estimated regression model holds, the stan-
dardized residuals have zero mean and unit variance. Furthermore, the majority of
residuals lies between —2 and 2 and there is no pattern in the residual plot.

Ljung-Bozx test and ACF correlogramm of standardized residuals to vali-
date uncorrelateness: Firstly we define a lag-1 sample autocorrelation of &; as

EtEt—1
5 t:l—&-i 0<l<n-—1
>
t=1
As a test statistic for the null hypothesis
Hy: pp=...=pm

against the alternative hypothesis
Hy: p; #0 for some i € {1,...,m} ,

Box and Pierce (1970) suggested a Portmanteau statistic
Q*(m)=n Z :512 )
1=1

that is asymptotically Chi-squared distributed with m degrees of freedom under
assumption that &, is an i.i.d. sequence. Ljung and Box (1978) modified this Q*(m)
statistic to Q(m), defined as

= 2

Qm =nin+ 232

with the motivation that Q(m) is better approximated by x? than Q*(m). The
decision rule is to reject Hy, if Q(m) > x2, ., where x2, , denotes the 100(1 — )th
percentile of a Chi-squared distribution with m degrees of freedom, or the p-value
of the test statistic is less than accepted significance level o = 5%.

If the ARMA-GARCH model is successful at modeling the serial correlation struc-
ture in both terms, the conditional mean and the conditional variance, then there
should be no autocorrelation left in the sequences of standardized residuals and
squared standardized residuals.

Box-Pierce and Ljung-Box tests are implemented in R function Box.test from stan-
dard R package stats.
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(v)

Ljung-Box test and ACF correlogramm of squared standardized residuals
to verify independence: In the non-normality case, the uncorrelateness of residu-
als does not imply their independence. The idea of independence check is based on
the fact that, in case of independence, not only &; and &;,, are uncorrelated, but
also f(é;) and f(é;45) are uncorrelated for any function f (for example, f(z) = z?).
The TLjung-Box statistic for squared residuals will be denoted by Q*(m).

Engles’s LM ARCH test for existence of ARCH effects: The Lagrange mul-
tiplier test for ARCH effects was proposed by Engle (1982). It detects the remaining
ARCH effects in the sequences of standardized residuals. The test statistic is given
by TR?, where R is the sample multiple correlation coefficient computed from the
linear regression of &, on the squared &;_1,...,&_,, i.e.

g =an+ Y afl (2.28)
i=1

and T is the sample size. Under the null hypothesis, which states that there are no
ARCH effects of order m, i.e

Hy: aqo=a;_1=... = a4_p, ,

the test statistic is asymptotically Chi-square distributed with m degrees of freedom,
ie

TR? ~ 2, .
The decision rule is to reject the null hypothesis, if TR* > x7, ,, where x7, , is the
upper 100(1 — a)th percentile of x2 , or the p-value of the test statistic is less than
accepted significance level o = 5%.

The LM ARCH test provides a good tool for checking the presence of ARCH effects
in a time series of interest. On the other side, it can be used in residual analysis
for checking the model specification. If there are no ARCH effects in the sequence
of standardized residuals, the modeling of volatility, i.e. the order of ARCH model,
can be assumed as adequate.

LM ARCH test is implemented in R in function ArchTest of package FinTS (Graves
(2009)).

2.8 An illustrative example

We illustrate techniques mentioned in the previous section in an example. We analyze the
data set of daily log-returns of the DAX German index, dating from January 3rd, 2006
to August 19th, 2009, in total 900 data points. Figure 2.4 (a) presents this return series.
According to this graph, the volatility of the DAX returns is not constant over the time
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period. The most volatile period is observed at the end of 2008. Volatility clustering may
be more clearly seen by plotting the time sequence of squared returns or absolute returns,
see Figure 2.4 (b) and (c¢). Graphs of sample ACFs and PACFs, panels (d) and (e) of
Figure 2.4, do not exhibit significant peaks at any lags. In fact, they are close to zero. But
it is well-known, that generally uncorelateness does not imply independence. If time series
are truly independent, then non-linear, for example quadratic, transformation will also
provide an uncorrelated sequence. Furthermore, looking at graphs of sample ACFs and
PACFs of squared DAX returns, Figure 2.4 (g) and (h), we can detect some dependency
in the squared returns despite of uncorrelateness. Both ACF and PACF functions tail off.
The choice of an ARMA(1,1) model seems to be appropriate for modeling expected mean.
A GARCH model of the order (1,1) will be used for modeling conditional variance.

Figure 2.4: Time series plot with estimated mean and volatility, sample ACF and sample
PACF of DAX returns

(a) DAX returns (b) Squared DAX returns (c) Absolute DAX returns (d) Estimated mean and volatility
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Four ARMA(1,1)-GARCH(1,1) model of the form

Y = [+ QY1 + €+ Oepq, €t = O1&¢
2

ol =w+ae | + Bol
with different kinds of ¢; distribution (standard normal, skewed standard normal, stan-
dardized Student’t and skewed standardized t) were fitted. Table 2.2 contains:

e Set of estimated time series model parameters (i, o, 0, w, a, )

e Estimated parameters (A, v) of error terms distribution

e Results of model checking such as the test statistics of Shapiro-, Wilk-, Ljung-Box
and ML ARCH tests and the p-values of theses statistics

Graphical analysis of the standardized residuals as a QQ-plot, plot of standardized resid-
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Table 2.2: Summaries of estimated ARMA(1,1)-GARCH(1,1) models fitted to the daily log-returns of
German DAX index with four different kinds of error terms distribution: standard normal in model (a),
skewed standard normal in model (b), standard Student and standard skewed Student in models (c)
and (d), respectively. i, ¢ and 6 are the estimated parameters of the ARMA part; &, &, § are the
estimated parameters of the GARCH part; X and © are the estimated shape and skew distribution
parameters. Residual analysis is based on: Shapiro-Wilk 2 and Jarque-Berra W test statistics for
testing normality; Ljung-Box Q(15) statistics for standardized residuals and Ljung-Box Q?(15) statistic
for squared standardized residuals for testing uncorrelateness and independent; Engle’s ARCH test
statistic TR? for testing remaining ARCH effects

ARMA GARCH skew shape RESIDUALS ANALYSIS
MODEL . R A . N 5 i - 2 2 2
f 7] 0 @ & B A 1z X w Q(15) Q“(15) TR

stand. normal

(a) Est./Stat. 0.00 0.77 -0.82 0.00 0.13 0.86 250.86 0.97 18.61 11.78 12.81
p-value 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 0.70 0.62
skewed stand. normal

(b) Est./Stat. 0.00 0.72 -0.81 0.00 0.11 0.88 0.79 255.87 0.97 30.56 12.04 12.93
p-value 0.06 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.68 0.61
stand. Student’t

(<) Est./Stat. 0.00 -0.97 0.95 0.00 0.10 0.90 6.33 388.95 0.97 9.88 12.22 13.27
p-value 0.69 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.83 0.66 0.58
skewed stand. Student

(d) Est./Stat. 0.00 0.60 -0.66 0.00 0.10 0.90 0.85 6.90 367.75 0.97 18.08 12.07 12.82
p-value 0.17 0.02 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.67 0.62

uals and sample ACF of standardized residuals and squared standardized residuals are
displayed on Figure 2.5. The DAX returns with estimated mean and estimated volatility
are shown on the panel (d) of Figure 2.4. One can see, that ARMA(1,1)-GARCH(1,1)
model reproduce expected values and conditional volatilities quite well.

To sum up:

e Based on the p-values of Shapiro- and Wilk-test statistics obtained for the stan-
dardized residuals &;, one can reject the null hypothesis of its normality for each
significance level a. So, standardized residuals do not follow standard normal dis-
tribution. It holds for each of four models (a)-(d).

e Next, we identify an appropriate noise distribution. Only the QQ-plot of £; coming
from the model with skewed Student’s t innovations lie (approximately) on a straight
line, except of the several points in the lower tail. The points of the QQ-plots for
other models do not resemble a straight line. They indicate non-normal distribution
with fat tails. The shape and skew parameters, given in Table 2.2, are significant at
level o = 5%. Therefore, the skewed standard t distribution for error terms is the
most adequate distribution.

e Next, we test whether {&;} of model (d) follow a white noise process, i.e. it is a
i.i.d. sequence characterized by zero mean and unit variance. Based on the p-values
of Q(15) and Q?*(15) Ljung-Box test statistics, that are larger then the accepted
significance level a = 5%, the null hypothesis of independence in a sequence of
standardized residuals can not be rejected. It justifies the sample ACF function
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Sample Quantiles
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Figure 2.5: Residual analysis of the ARMA(1,1)-GARCH(1,1) models with four different
kinds of innovation distributions fitted to the DAX daily log-returns: QQ-plots in the left
column, time series plot of the standardized residuals in the second column, sample
autocorrelation functions of standardized residuals in the third column and sample
autocorrelation functions of squared standardized residuals in the last column
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of standardized residuals and squared standardized residuals, that lie not over the
critical value (dashed line). Moreover, the time series plot of standardized residuals
looks quite well: the majority of all observations lies between +2 and —2 and fluc-
tuates about zero. According to these facts, we can not reject the hypothesis that
standardized residuals {;} form a strong white noise.

e The p-values of T R? statistics are much more higher then o = 5% in all four models.
So, there are no remaining ARCH effects in the sequences of standardized residu-
als and the GARCH models of order (1,1) are suffucient by modeling conditional
volatility.

e The GARCH parameters o and f3, except of overall parameter w in models (¢) and
(d), are significant at level & = 5% in all four models. The ARMA parameters ¢
and 0, except of overall parameter pu, are also significant.



Chapter 3

Modeling multivariate dependence:
correlation coefficients, tail dependence,
copulas and pair-copula constructions

At the beginning of this chapter, we introduce several dependence coefficients and discuss
their benefits and disadvantages. Next, we present the notion of tail-dependence that is
of vital importance in financial analysis. We show how the presence of tail-dependence in
bivariate data can be detected using graphical tools or using non-parametric estimators.
Further, we introduce most common parametric copula families and their properties. In
addition, we study pair-copula constructions that are more suitable in modeling multi-
variate dependences in comparison to the multivariate copulas. Finally, we provide an
algorithm for modeling multivariate returns that combines time series and pair-copula
approaches.

3.1 Moments and their estimation

In this section we introduce moments, which are important characteristics of univariate
random variables.

Definition 3.1 (Moments) Let X be continuous random variable with distribution func-
tion F' and density f. Its moment of order k, if it exists, is given by

[e.e] o0

E[X" = /xde(x) = /xkf(x)dx . (3.1)

—00 —00

27
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The first moment -

p=FE[X]= /xf(x)dx
is called mean, expected value or expectation and will be denoted by u. It provides the

average value for the distribution of the random variable. If x4, ..., z, are observations of
X, then the £th moment of X can be estimated by

L ] —
E[X* = - > ak
=1

Definition 3.2 (Central Moments) The k-th central moment of a random variable
X, provided it exists, is defined as

o0 o0

= B[ =] = [ = aF@) = [ @- s (32)
The second central moment of X
Var(X) = 0% = /(x — )% f(x)dx

is called variance and will be denoted by o2 = Var(X). The variance gives information
about the dispersion of the distribution around the expected value. Lower value of variance
indicates that the distribution is concentrated close to the mean. In contrast, high value
indicates that the distribution is spread out over a wider range of possible values. Thus,
the variance is a scale parameter of the distribution. The square root of variance is called
standard deviation and will be denoted by o.

Another important distribution characteristics are based on the moments skewness and
kurtosis. The skewness of a distribution indicates its asymmetry relative to mean. It is

given by
_ M

==
o

Symmetric distributions have skewness equal to zero, for example Normal and Student’s t

distributions. Negative value indicates that the distribution is shifted to the left. Positive

value implies the opposite. The kurtosis of a distribution indicates its flatness with respect

to the normal distribution and is a measure for probability of extreme outcomes. It is given
by
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The normal distribution has a kurtosis of zero. Positive value of kurtosis indicates that the
distribution is flatter and has fatter tails compared to the normal distribution. A negative
kurtosis shows that extreme events are even less probable in comparison to the normal
case and the distribution has a higher peak around the mean value.

3.2 Correlation coeflicients

In this section, we discuss different types of correlation coefficients, their advantages and
drawbacks. References for this part are Kurowicka and Cooke (2006, pp. 26-32) and
Genest and Favre (2007).

Definition 3.3 (Independence) Let Fy, . x, be a joint cumulative distribution func-
tion (cdf) and fx,. x, a corresponding probability distribution function (pdf) of random

variables Xy, ..., X, with marginal distributions Fx,, ..., Fx, respectively. The random
variables X1, ..., X, are said to be independent if and only if
Fx, . .x,(Xi<z,...,X,, <) = HFX,L- (Xi <) (3.3)

=1

or equivalently

fX1---Xn (1’1, s 7xn) = Hsz (l’l) ) (34)

=1

Definition 3.4 (Pearson’s correlation) The Pearson’s correlation coefficient of
two random variables X and Y with finite expectations E [X|, E[Y] and finite variances
Var(X), Var(Y) is defined as

Co(X.Y) _ERXYI-BIXIENY] )y (a5

r(X,Y) =
( ) v/ Var (X) Var (Y) v Var (X) Var (Y)

The Pearson’s correlation is also called product moment correlation.

Given n realizations of X and Y, (z1,...,2,) and (y1,...,y,), the Pearson correlation
can be estimated by a sample correlation coefficient, i.e.

n

Z (xz — fix) (?Jz - ﬂY)
PXY) =2

ox0y

where jix and [iy are sample means, 6x and &y are sample standard deviations of X and
Y, respectively.

We summarize the properties of the Pearson’s correlation coefficient:
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X and Y independent = r =0

r=0 =% X and Y independent

Only if X and Y are bivariate normal r = 0, implies independence (see Appendix C)
r requires the existence of Var (X) and Var (V)

r measures only the linear dependence

r is not invariant under monotone transformations

Y =a+bX, then |r| = 1.

The Pearson’s correlation coefficient is a parametric statistic, it requires normality of the
data. Another one drawback of r is that it can capture only a linear relationship. In prac-
tice, however, sampled data do not fulfill these criteria. An alternative in such situations is
to use non-parametric techniques based on ranks. The notion non-parametric means that
the dependence measure does not depend on the marginal probability distributions. There
are two commonly used rank based methods, one due to Spearman, so called Spearman’s
p, and one due to Kendall, so called Kendall’s 7. The most important feature of the rank
based methods is their invariance under monotonic transformations. The Spearman’s p, is
exactly the same as the Pearson correlation r calculated on the ranks of the observations.
For a definition of Kendall’s 7, we need such notions as concordant and discordant pairs.
Two pairs (X7, Y1) and (X5, Y2) are said to be concordant when (X; — X») (Y1 — Y2) > 0,
and discordant when (X; — X3) (Y] — Y3) < 0.

Definition 3.5 (Kendall’s 7) Let (X1,Y1) and (Xo,Ys) be two independent pairs of
random variables with joint distribution F and marginal distributions Fx and Fy. The
Kendall’s T is given by

T(X,Y) = P((X1 = X2) (Y1 = Y2) > 0) = P (X1 = X3) (V1 = Y2) <0) € [-1,1] . (3.6)

For a bivariate sample (X, Y) of length n, 7 may be estimated using an unbiased estimator
7, see Nelsen (2006, pg. 158)
Pn - Qn

(3)

where P, and (), are the number of concordant and discordant pairs, respectively.

7(X,)Y) =

There are some properties of Spearman’s p and Kendall’s 7:

X and Y independent = 7 =0, p=0

7(X,Y)=1«Y =T(X) with T(-) any increasing map (the same for p)
7(X,)Y)=—-1<Y =T(X) with T(-) any decreasing map (the same for p)
T, p are invariant under monotone transformations

7, p measure the degree of monotonic dependence.

Figure 3.1 exhibits graphically some major disadvantages of correlation coefficients. Upper
panel presents four random vector pairs that are characterized by significant different
forms of the point clouds and same degree of association 7 = 0.6. On the basis of this
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Figure 3.1: Drawbacks of describing dependence structure using correlation coefficients

Dependence form 1 Dependence form 2 Dependence form 3 Dependence form 4

(a) Different dependence forms with the same Kendall’s correlation coefficient, 7 = 0.6
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Neither of correlation coefficients due to Kendall, Spearman and Pearson is constant over the time period

plots, it is clear that correlation measures only a degree of dependence but is unable to
reflect it’s structure. Lower panel shows a trend of correlation coefficients 7 (left plot), p
(middle plot) and r (right plot) of daily DAX and STOXXER returns over time period
from 2006-01-02 to 2009-06-18 calculated for the time windows of 100 days. These plots
illustrate a time-varying correlation phenomenon. In the next section we will examine
other qualities of financial time series that can not be captured by correlation coefficients.
Hence, another one measure is needed for complete description of dependency structure.

3.3 Tail dependence

Several empirical studies have shown that empirical joint distribution of return-pairs of
stock indices is not symmetric. For example, Longin and Solnik (1995, 2001) have shown
that correlation between stock return series tends to be higher in market downturns than
in market upturns. Rather, it arises in high tail dependence in the lower-quadrant and
lower tail dependence in the upper-quadrant of a bivariate distribution. This fact can not
account standard symmetric models of multivariate stock returns. In many applications
such as risk management, the presence of tail dependence is of vital importance. Below we
will study a phenomenon of tail dependence quite precisely according to Nelsen (2006).
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Definition 3.6 (Upper tail dependence) Let X and Y be conlinuous random vari-
ables with distribution functions Fx and Fy, respectively. The upper tail dependence
parameter \y is the limit (if it exists) of the conditional probability thatY is greater than
the 100t-th percentile of Fy, Fy'(t), given that X is grater than the 100t-th percentile of
Fx, Fx'(t), as t approaches 1, i.e.

Av = lim P(Y > F'(t) | X > F'(t)) . (3.7)

t—1—

Definition 3.7 (Lower tail dependence) Similarly, the lower tail dependence pa-
rameter \p is the limit (if it exists) of the conditional probability that Y is less than
or equal to the 100¢-th percentile of Fy, F;l(t), given that X s less than or equal to the
100¢-th percentile of Fx, Fx'(t), as t approaches 1, i.e.

Ar=1lim P (Y <F/'(t) | X < F¢'() - (3.8)

t—0t+

Let Fxy denote a joint distribution of random variables X and Y. Therefore the tail
dependence can be interpreted as a measure for extreme co-movements in the lower and
upper tails of Flxy, respectively. If Ay = 0, we say that there is no upper tail dependence,
and if Ay = 0 we say that there is no lower tail dependence. In case of A\y = A\, # 0, we
speak about tail dependence and denote it by A.

The upper and lower tail dependence can be estimated empirically using formulas given
by Cizek, Hardle, and Weron (2005, pp. 75-77)

. 1 <&
Ao =7 ; 1(R(X;) >n—k,R(Y;) >n—k) (3.9)
and
R 1 n
Ain =7 ; 1(R(X;) <k, R(Y;) <k) , (3.10)

where (X;,Y;) is an observed bivariate data of length n, R(x;) is a rank of X; in vector

X1,...,X,; k is chosen to satisfy following conditions
kE nsco
k=k(n), ———0. (3.11)
n

The trivial graphical tool for detecting lower and /or upper tail dependence is a classical
scatter plot. Figure 3.2 (a)-(d) demonstrates lower and upper tails of four bivariate data
sets with the same positive correlation 7 = 0.6. As we can see, the points clouds are
remarkable for significantly different patterns in the lower and upper quadrants. The
images (a) and (b) are symmetrical in contrast to the images (c¢) and (d). There are
distinguishable tail dependences on panel (b). The image (a) does not indicate any art
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Figure 3.2: Lower and upper tails of different dependence forms with the same coefficient of
association 7 = 0.6

(a) No tail-dependence (b) Symmetrical tail-dependencies (c) Upper tail-dependence (d) Lower tail-dependence

of dependence in both tails. Upper and lower tails on the map (c) as well as on the map
(d) are dissimilar. On the plot (c), clear upper tail but no lower tail dependence can be
recognized. And vice versa for the panel (d): there is a strong lower tail but no upper tail
dependence.

A scatter plot is not appropriate for small sample size or for weak pronounced lower and
upper tail dependences. In the next section, we introduce another one graphical method
for exploring lower or upper tail dependence.

3.4 Graphical tools for detecting (tail) dependence

Sometimes, dependence between two random variables is hard to detect using scatter
plot of observation points. In this section, two additional graphical tool for assessing
dependence will be described, Chi-plots and K-plots. Moreover, it will be shown how Chi-
plot can be employed for detecting a kind of tail dependence, upper or lower. The Chi-
and the K-plots will be later used to assess the (tail) dependence structure between pairs
of transformed return series and for choosing a most suitable copula building block in a
pair-copula construction.

3.4.1 Chi-plots

Chi-plots were first introduced by Fisher and Switzer (1985, 2001) and are based on the
chi-square statistic for independence in a two way table. By presenting this section, we

refer to the article “Everything you always wanted to know about copula modeling but were
afraid to ask” of Genest and Favre (2007).

Let (x1,%1), ..., (Zn, yn) be a random sample for a pair of random variables (X,Y") with a
joint distribution F'xy and marginal distributions F'x and Fy, respectively. We estimate
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Fxy, Fx and Fy by empirical cumulative distribution functions

CH# Ay <y Sk

FXY,i = FXY,i(xivyi) =P (j Fi: Xj < 13z‘aY}‘ < yz') = n __1 (3-12)
~ A~ ] ) N - < i
Fx;, = Fx(z;) = #A A S (3.13)
n—1
R N ] oy <y
’,’L J—

Under independence, it holds FXY,i S FXJ- . Fyﬂ' or FXY’Z- — FXJ- . Fyﬂ- ~ 0 for all 7+ =
1,...,n. The authors proposed to transform observed data (z1,y1),..., (Z,, yn) into pairs
(A, x1) 5+ (An, Xn) With

Fxyi— FxiFy;

Xi = - - ~ — (315)
VExi(l = Ex)Fra(l - Fy,)
A = 4sgn <F’X7i, F’yl> - max (F?“, Fél) , (3.16)

where FXJ- = FXJ — 0.5 and Fyﬂ- = Fyﬂ' —05fori=1,...,n.
Fisher and Switzer argued following statements:

Chi-plot depends only on the ranks of the data

A; and y; are scaled to the interval [—1,1] foralli=1,...,n

A; measures a distance of a data point (z;,y;) to the center of bivariate data set
X; accords to a correlation coefficient between dichotomized values of X and Y
xi ~N(0,1) and \; ~ U[—1, 1] under independence.

n

Further, values of y; close to zero indicate independence. For positively correlated margins,
the pairs of (\;, x;) will tend to be located above the upper band, and vice versa for
negatively correlated margins. To help identify whether the values y; lie close enough
to zero, Fisher and Switzer suggested to draw so called control bounds. Pairs (\;, x;) lie
beyond of the bound +¢,//n indicate a presence of dependence between X and Y. The
factor ¢, should be selected so that about 100p% of the pairs (\;, x;) lie between lower
and upper lines. For p = 0.05, Fisher and Switzer found the corresponding value ¢, = 1.78
through simulations.

3.4.2 Kendall’s process plots

The Kendall-process-plot (or K-plot) is another tool for detecting dependence in a bivari-
ate data and based on the ranks. It was recently introduced by Genest and Boies (2003),
we refer here to Genest and Favre (2007). Genest and Boies suggested to transform the

pairs of data (z;,y;) to those (Wm, ny,izn> for all 7 = 1,...,n, where FXY’i:n are the
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order statistics of the terms nyﬂ- introduced in (3.12). The W, are the expectations of
the " order statistics from the random sample of W; = Fxy(x;,y;) of size n under the
null hypothesis of independence between X and Y. The W;., can be calculated as follows

n—1 / i—1 n—i
Win = n(Z B 1) O/ujko(w) (Ko(w) (1 = Ko(w)" " dw (3.17)
where

Ko(w) = w — wlog(w)

and ko(-) is the corresponding density.

K-plot can be interpreted similar to the QQ-plots. If the points of a K-plot lie approx-
imately on the diagonal y = z, then independence between X and Y can be assumed.
Any deviation from the diagonal line points towards dependence. In case of the positive
dependence, the points of the K-plot should be located above the diagonal line, and vice
versa for negative association. The farther deviation from the diagonal, the greater is the

degree of dependency. There is a perfect positive dependence, if points (Wm, FXYJ;”)
lie on the bent curve Ky(w) that is located above the main diagonal. Positioning points

<I/Vi;n, ny,m) on the x-axis indicates a perfect negative dependence between X and Y.

3.4.3 Examples of Chi- and K-plots

Figure 3.3 displays Chi- and K-plots created for independent, positive dependent and
negative dependent data. Panel (a) is a scatter plot of an independent bivariate data set
of length n = 400 with standard normal distributed margins. Panel (d) shows a Chi-plot
and panel (g) a K-plot of this data. All points of the Chi-plot lie between control bounds
that indicates independence. This fact is confirmed by the K-plot where points are located
on a diagonal line. Next, panel (b) represents a scatter plot of a positive dependent data
coming from bivariate standard normal distribution with dependence parameter r = (.8.
Panels (e) and (h) illustrate corresponding Chi- and K-plots. Dots of the Chi-plot lie
above the upper control line and the points of the K-plot scatter above the diagonal line.
Both facts indicate a presence of positive dependence. At last, we look at data coming
from bivariate standard normal distribution with negative coefficient of linear dependence
r = —0.8. The scatter plot(c) of this data displays positive association between X and
Y that is confirmed by Chi-plot. Points of the K-plot follow a curve that deviates from
the main diagonal and are located below it. The points of a Chi-plot lie as well below the
lower control bound.
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Figure 3.3: Examples of Chi- and K-plots: panels (a), (d) and (g) displays scatter, Chi- and

K-plots for independent data respectively; panels (b), (e) and (h) displays scatter, Chi- and

K-plots for positive dependent data respectively; panels (c), (f) and (i) displays scatter, Chi-
and K-plots for negative dependent data respectively
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3.4.4 Chi-plots for detecting tail dependences

Fisher and Switzer introduced a graphical method for assessing dependence in a bivariate
data set that does not discuss a problem of tail dependence. This section is based on
the work of Abberger (2004). Abberger has shown how presence of tail dependence in a
bivariate data set and it’s kind, upper or lower, can be detected with the help of Chi-plots.

As noted in the previous section, \; measures a distance of a data point (z;,y;) to the
center of a bivariate data set. Data pairs (x;,y;) with A; close to —1 lie not far from a data
center. Further, data points characterized by large values of \; close to +1 are far away
from a data center. Hence, for assessing the presence of tail dependence we are interested
in observations with positive \;’s. According to Abberger, if there is no tail dependence,
the y; values have to return to the zero line at the right edge of Chi-plot, i.e. for the A
values close to +1. And vice versa, a presence of tail dependence causes a deviation of y
values from the zero line for the A\ values closed to +1.

To check for tail dependences Abberger suggested to compute Chi-plots only for obser-
vations with positive )\; values that lie separately in two quadrants, in the upper right
corner and in the lower left corner of a bivariate scatter plot. Such separation enables
us to recognize asymmetries in the tails dependences. If there is no upper or lower tail
dependence the x values rightmost of the Chi-plot have to return to the zero line.

Figure 3.4 illustrates the usefulness of Chi-plots for recognition of tail dependencies. Upper
panel (a) shows scatter plots of bivariate data sets characterizing by different forms of
dependency. Middle panel (b) contains corresponding Chi-plots of total data sets. Panel
(c) exhibits Chi-plots of observations from upper right corner of scatter plot and panel
(d) presents Chi-plots of observations from lower left corner of scatter plot. Chi-plots of
the column (i) converge to the zero horizontal line on the right hand side which indicates
no upper and no lower tail dependence. The column (ii) is the opposite to (i). Namely,
the Chi-plot points for positive \ values that are closed to 1 do not incline to the zero
line. That is an indication that of both tail dependences, upper and lower, are present.
The Chi-plots (iii) and (iv) of panel (b) have rotated bell-shaped forms on the right hand
side that points to a presence of tail dependence. The Chi-plots (iii) and (iv) make it
clear what kinds of tail dependence are on hand. We can identify asymmetrical forms of
dependence for upper and lower tails: there is an upper tail dependence for column (iii)
and a lower tail dependence for column (iv).

3.5 Copulas

In the previous section, several approaches for measuring dependence between two ran-
dom vectors based on ranks of observed data were explored. In this section, we introduce
a modern powerful technique, a copula concept, for modeling dependencies in the mul-



CHAPTER 3. MODELING MULTIVARIATE DEPENDENCE

38

Figure 3.4: Ilustration of detecting tail dependency and it kind, lower or upper, with the help
of the Chi-plots: (a) bivariate scatter plots with different dependency forms; (b) Chi-plots for

detecting tail dependency; (c¢) Chi-plots for detecting upper tail dependence; (d) Chi-plots
detecting lower tail dependence
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tivariate data. An important advantage of this approach is that copula allows to model
dependence structure independently of the marginal distributions.

3.5.1 Joint distributions

Definition 3.8 (Joint Distribution) The joint (cumulative) distribution func-
tion of bivariate random variable (X,Y) is given by

Fyy(z,y) =P (X <2,Y <y) . (3.18)

The distributions of X and of Y are called marginal distributions and are denoted by
Fx and Fy, respectively. The following conditions are necessary and sufficient for a right-
continuous function to be a bivariate cumulative distribution function:

(1) lim Fxy(z,y) =0and limy — —oco0 Fxy(z,y) =0

T—r—00

(2) lm Fxy(z,y)=1

,y—00
(3) For all 2y, 29, y1,y2 with z; < 2y, y1 < g
Fxy (x2,92) — Fxy(w2,y1) — Fxy(21,92) + Fxy(21,11) > 0.
Let a distribution function of (X,Y’) be continuous with a sufficiently smooth second
order mixed partial derivative. Then the density function can be evaluated as
2

fXY(ﬂf,?/) = axanyy(%y) .

The purpose of this section is to study how the distribution of (X,Y") is related to the
distributions of X and Y. The marginal distributions can be obtained from the joint
distribution in a following way

Fy(r) = l}l_g)lo Fxy(z,y) = Fxy(x,00) ,
Fy(y) = lim Fxy(z,y) = Fxy(c0,y) .
And for the marginal density functions it holds

fx(z) = / Fer(e,y)dy and fy(y) = / Fev ()

If the joint distribution is equal to the product of all the marginal distributions for every
(x,y), so that
Fxy(z,y) = Fx(x)Fy(y) ,
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then the random variables X and Y are said to be independent. However, if X and Y are
dependent, the joint distribution can not be determined from the marginal distributions.
A copula function provides a connection between bivariate distribution function and their
marginal distribution functions.

3.5.2 Definition and basic copula properties

The copula concept was developed by Sklar (1959), then extended and summarized to a
book by Nelsen (2006) to that we refer in this section. A copula function can be defined
generally for an arbitrary dimension d, but we focus our presentation only on a bivariate
case. We assume also all distribution functions considered in this section to be continuous
unless otherwise stated.

Definition 3.9 (Copula) A (bivariate) copula is a function C' from [0,1] x [0,1] to a
unit interval [0, 1] with the following properties:

(i) For every u,v € [0,1],
C(u,0) =0=C(0,v); (3.19)
(i1) For every u,v € [0,1],

Cu,1)=u and C(l,v)=wv; (3.20)

(11i) For every uy,us, vy, ve € [0,1] such that uy < uy and v; < vy,
C(ug,v2) — C(ug,v1) — C(ug,vy) + C(uy,vy) > 0. (3.21)

Looking at the copula properties (i)-(iii), one can recognize its identity with the properties
(1)-(3) of the bivariate joint distribution mentioned in the previous section. Hence, a
copula can be defined as a two-dimensional cdf with domain [0, 1]> whose one-dimensional
margins U and V' are uniformly distributed on the unit interval, i.e U,V ~ U[0, 1].

Next, we state a famous Sklar’s theorem. This theorem shows how copula can be used to
create a joint distribution when only marginal distributions are known.

Theorem 3.10 (Sklar’s theorem) Let Fixy be a joint distribution function of a bivari-
ate random vector (X,Y) with marginal distributions X ~ Fx andY ~ Fy. Then there
exists a copula C such that for all x,y € R = RU {00, 00},

Fyy(z,y) = C (Fx(z), Fy(y)) - (3.22)

If Fx and Fy are continuous, the C is unique. And vice versa, if C' is a copula and
Fx and Fy are distribution functions, then the function Fxy defined by (3.22) is a joint
distribution function with margins Fx and Fy.
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Theorem 3.11 (Probability Integral Transformation) Let X be a real valued ran-
dom wvariable and F(x) its continuous cumulative distribution function. Let U denote a
random variable that is uniformly distributed on [0,1]. Then a random variable F(X) is
uniformly distributed on [0, 1]. Furthermore, a random variable F~*(U) has cdf F where
F~1 is the inverse distribution function.

With help of the Probability Integral Transformation Theorem we can now connect the
copula definition above and equation (3.22). In fact, for X ~ Fx, Y ~ Fy and U,V ~
U0, 1] from

Fx(z)=u and Fy(y)=v

follows
Fi'(u)=2 and Fyl'(v) =y,

where F'y ! and Iy ! are the inverse distribution functions of the margins. Thus, the copula
from (3.22) has a form

C(u,v) = Fxy (F'(u), ' (v))  u,v€[0,1].

Note, a density function fxy of a bivariate distribution can be computed under smoothness
2

conditions by using a distribution function Fxy as fxy(z,y) = a%{m_%gp,y)' Similarly, we

define a copula density.

Definition 3.12 (Copula density) Let C be a twice partially differentiable copula. Then

the function c: [0,1] x [0,1] — [0, 1] with

0*C(u,v)

olu, v) = Oudv

s called the density of the copula.

Let fx(z) and fy(y) be marginal densities of bivariate distribution with joint density
fxv(x,y), respectively, then we have

~ O?Fxy(z,y) 320( x (), Fy(y))
Fav(w,y) = D0y D0y

_ 9*C (Fx(z), Fy(y)) 0Fx(x) 0Fy (y)
OF x(x)0Fy (y) Ox Ay

_ PCu,v)
= guge — W o)fx@)fr(y).

The last equation means that the joint density fxy(x,y) can be expressed in terms of the
copula density and marginal densities and vice versa.

fxv(z,y) = c(Fx(x), Fy (y)) fx(z) fr (y) (3.23)



CHAPTER 3. MODELING MULTIVARIATE DEPENDENCE 42

c(u, v) = Ixy (F)El(u)aF;I(U)) (3.24)

Fx (Fx'(w) fr (Fy' (v))
Very important is a fact that copula is invariant under increasing continuous transforma-
tions of margins. Proof of the following property can be found in Embrechts, Lindskog,
and McNeil (2001).

Proposition 3.13 Let C be a copula of (x,y) and Ty, Ty are increasing continuous func-
tions, then Ti(x) and Ty(y) also have copula C.

In the next section, we study copulas C' that are parameterized by a copula parameter 6.
If @ has a dimension greater than one, we call it multivariate copula parameter and note
it by a bold symbol 8, in the one-dimensional case by a non-bold symbol 6.

3.5.3 Copula and dependence measures

Following the calculations given in Kurowicka and Cooke (2006, pp. 71-72), the rank
based dependence measures introduced in the previous section can be expressed in terms
of the copula.

Proposition 3.14 Let Fxy be a joint distribution function of a bivariate continuous
random variable (X,Y') with margins Fx and Fy. Further, let C be a copula distribution
associated with Fxy that is Fxy(x,y) = C(Fx(x), Fy(y)). Then the rank based dependence
measures, Kendall’s T and Spearman’s p, can be linked to the copula C in the following
way

T(X,)Y) = 4//C(u,v)d0(u,v) -1, (3.25)

and

p(X,Y) = 12 / / Cu, v)dyds — 3 . (3.26)

Table 3.1 gives an overview about formulas for computing Kendall’s 7 for several copula
families that will be introduced in the next section.

In Section 3.3 we introduced a concept of tail dependence that means extreme market
movements are likely to occur together. Surprisingly, the lower and upper tail dependence
coefficients can be embraced within the copula theory (for proof see Nelsen (2006)).

Proposition 3.15 Let (X,Y) be a continuous bivariate random variable and let C be a
copula associated with their joint distribution function Fxy. Then the coefficients of lower
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Table 3.1: The different copula families, their parameters, Kendall’s 7 and coefficients of upper

and lower tail dependences

Class Copula Parameter Kendall’s 7 TE v AL
Gauss re[-1,1] T= % arcsin(r) [-1,1] 0 0
Elliptical
Student re[-1,1,v >0 T= %arcsin(r) [F1,1] | 2tu41 (—\/Z/ + 1,/ L‘_:) AU
Independent 0 0 0
Gumbel 0>1 r=1-1 [0,1] 227 0
Archimedean
1
Clayton 0>0 T= eoﬁ [0,1] 0 29
Frank ! 6 e R\ {0} =1+ 3(D1(0) — 1) [-1,1] 0 0
1 _ L1
BB1 6>0,6>1 Tzl—ﬁ [0,1] 2—2% 2738
. 1 _1
BB7 2 0>1,6>0 T:l—ﬁ—‘rﬁB(a,b) [0,1] 2 2% 273
Other Plackett 0>0 no closed form [-1,1] 0 0

! Here is Dy (z) with k = 1 a so called Debye function, defined as

. 1
2 Here are a = # +1,b=6+2and B(-,-) is a Beta-function given by B(z,y) = [t*T1(1 — t)¥~1dt.
0

and upper tail dependence defined in (3.8) and (3.7) can be calculated by using a copula
C in a following way

C(u,u)

AL(X,Y) =1i 3.27

L( ’ ) iﬁ)l U ’ ( )
1 =2u+C(u,u)

Ao (X,Y) = 15?11 T . (3.28)

3.5.4 Most common parametric copula families

In this section we introduce the most popular copula families. We restrict our presentation
to the bivariate case. We begin with a class of elliptical copulas, Normal and Student’s t.
They both do not have a simple closed form and are expressed through their distribution
functions. Hence, they belong to the class of implicit copulas. Another one importance
class of copulas are Archimedean copulas, Clayton, Gumbel and Frank. Archimedean cop-
ulas are also called explicit copulas because of their simple closed form. Some definitions of
this sections are based on the multivariate Gauss and Student’s t-distributions, for more
informations about these topics we refer to Appendix C. The presentation of the next
three subsections follows Jondeau, Poon, and Rockinger (2007), Joe (1997) and Cizek,
Hérdle, and Weron (2005).
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Elliptical copulas

Definition 3.16 (Gaussian (normal) copula) Let ®,(-,-) denote the cumulative dis-
tribution function of the bivariate standard normal distribution with correlation r €
[—1,1). Further, let ®~1 be the inverse of the univariate standard normal cumulative dis-
tribution function ®. Based on the Sklar’s theorem, the Gauss copula with dependence
parameter r € [—1,1] is defined as

Cr(u,v) = @, (7' (u), @ " (v)) (3.29)

for all (u,v) € [0, 1]

The copula parameter in this case is univariate and § = r. The expression (3.29) can be

written in form
% — 2rst + t2
— dtd 3.30
(u:0) / / 1—7’2( 2(1—1r?) ) ’ (3:30)

and the bivariate normal copula has a density

1 _r2(u2 +v?) — 2ruv
e (u,v) = mexp ( ) > . (3.31)

Definition 3.17 (Bivariate Student’s t Copula) Let t,.(-,-) denote the cumulative
distribution function of the bivariate standard t-distribution with degrees of freedom v > 0
and dependence parameter r € [—1,1]. Further, let t;' be the inverse of the cdf of the
standard univariate t-distribution with v degrees of freedom. By using Sklar’s theorem, the
Student’s t copula with parameter v and r s defined as

Cral.0) = by (85 (1), 15 (1) 3.32)
for all (u,v) € [0,1]%

The copula parameter is in this case bivariate and § = (0,605) = (v, 7). The expression
(3.32) can be also written as

to () () 1 s2 — Orst + 2 *VTH
Cro(u,v) = _— 14— dtds ,
#t) /oo /oo 21y 1 — 12 ( * v(l —1r2) ) s

and the density of this copula is given by (3.32) can be written as

v+2
vt v s2—orst+t? ) 2
c (u U) = 1 F( 22) r (5) <1 - v(1-r2) >
INACD 5 . —
V-2 T (2) 1+2) T (148)

v

(3.33)
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where s =t (u) and t = ¢, (v).

Archimedean copulas

In contrast to the previous two copula families, the Archimedean ones are not derived from
any multivariate distributions. The Archimedean copulas have a simple closed form, but
they are difficult to establish to higher dimensions. The general definition of Archimedean
family of copulas is based on the following theorem provided by Nelsen (2006, pg. 110).

Theorem 3.18 Let ¢ : [0,1] — [0,00) be a continuous, strictly decreasing function
such that (1) = 0. Further, let o' be the inverse function of ¢. Then, the function
C: [0,1]> — [0,1] given by

Clu,v) = o~ (p(u) + ¢(v)) (3.34)
15 a copula, if and only if p is conver.

The copula created from the expression (3.34) is called Archimedean copula. The function
@ is called a generator of the copula. The copula density can be written as

c(u,v) = (3.35)

eV (P (u) -7 (¢'(v))

if ! is twice continuously differentiable. The following expression for computing Kendall’s
T using the generator ¢ can be proved (see Kurowicka and Cooke (2006, pg. 75))

1

T:1+4/%dz. (3.36)

Definition 3.19 The product or independent copula is given by

C(u,v) =uv . (3.37)

This copula has no dependence between variates. Its density function is unity everywhere
and its generator is given as

p(t) = —logt.

Definition 3.20 The Clayton copula with dependence parameter 6 € (0,00) is given
by
1
Colu,v) = (v’ +0v 0 =1) 7. (3.38)
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The perfect dependence is observed at # — oo, while 8 — 0 implies independence. Note
that the Clayton copula can not be used for modeling negative dependence. This copula
has a generator

and density

=

co(u,v) = (1 +0)(uv) ™ +07 — 1)~

Definition 3.21 The Gumbel copula with dependence parameter 6 € [1,00) is given by
Co(u,v) = exp <— ((—log u)? + (—log 0)9)§> . (3.39)

The perfect dependence is observed at § — oo, while § = 1 implies independent. Similar
to the Clayton copula, the Gumbel copula captures only positive dependence. A generator
of this copula is

p(t) = (—logt)’
and a density function
Cy(u,v)(logu - logv)
uv ((—logv)? 4+ (—logu)?)

co(u,v) = {((—logu)9 + (—log U)G)% +60— 1} .

1
2-3

Definition 3.22 The Frank copula with real dependence parameter 6 € (—oo,00) \ {0}

has a form
—Ou __ —6v __
Cylu, v) = —%log <1+ (=1 (e U) . (3.40)

e —1

The values of § closed to Hoo relate to independence. In opposition to Gumbel and
Clayton copulas, Frank copula allows both positive and negative dependence structures.
The Frank copula is generated by

p(t) =log(e™” — 1) —log(e ™ — 1)
and has a density function

(u,0) = 0L — =) "0+)
Co\U, V) = (1—ef—(1—e0)(1— 6_9U))2 .

Next, we introduce 2-parameter Archimedean copulas that can be used to capture more
than one type of dependence.
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Definition 3.23 The BB1 copula with parameter @ = (6,0)", 6 > 0 and § > 1, is given
by

Cos(v) = {1+ (™ = 1) + (™" - 1)5)%} (3.41)

D=

and ils generator is
p(t) = (t" = 1)

Definition 3.24 The BB7 copula with parameter @ = (6,0)", 6 > 0 and 6 > 1, is given
by

Sl
S

Coslu,v) =1 — {1 A= —w) (1 - (1 =) —1] } (3.42)

and has a generator
5

pt)=(1-1-t")"—1.

The ability of dependence modeling of BB1 and BB7 copula is restricted to positive case.
Modeling of negative dependence is not possible. The Gumbel copula is the limiting case
of BB1 with § — 0. The Clayton arises from BB1 when § = 1. The expressions for BB1
and BB7 copula densities are not trivial and can be found in Schepsmeier (2010).

Other copulas

Finally, we introduce a Plackett copula, see Joe (1997, pg. 91), that belongs neither to
Archimedean nor to elliptical families.

Definition 3.25 The Plackett copula with association parameter 0 > 0 is defined as

Co(u,v) = ﬁ (1 +(0—1)(u+v) — \/[1 + (0 —1)(u+v)]* — 4uvh(6 — 1) )
(3.43)

Its density function is given by
0(1+ (u—2uv+v)(d—1))
(14 (0 — 1) (u+v)]* — duvd(6 — 1))

co(u,v) =

Njw

Like the Normal and Student copulas, the Plackett copula allows to model positive (6§ > 1)
as well as negative (6 < 1) dependency. The case § = 1 implies independence.

There are several R packages where different copula families are implemented in. The
well-known is the R package copula that contains estimation function and a lot of other
useful tools for handling with Normal, Student, Gumbel, Clayton, Plackett, Frank and
Independent copulas. For more details above R packages for copula fitting see Appendix B.
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Tail dependence in specific copula families

Figure 3.5 displays a visualization of data generated from bivariate Gaussian, Frank,
Plackett copulas and Student’s t copula with 2 degrees of freedom with on the unit interval
uniformly distributed margins: scatter plot on the left panel (a), theoretical contour plot
of copula density on the middle panel and 3D perspective copula density plot on the
right panel. All bivariate samples have the same Kendall’s 7, namely 7 = 0.6. As we can
see from this figure, the copula density explodes for extremely small and extremely large
values of margins. Besides, a lot of points on the scatter plots are concentrated in the left
lower and right upper corner which makes the exploration of tail dependences difficult.

In practice, it is usual to create visualization plots of copulas whose margins are trans-
formed to standard normal. The plots obtained in a such way are more suitable for de-
tecting the dependence form, absence or presence of the tail dependences. A confirmation
of this procedure is based on the copula property 3.13 that states that the copula is in-
variant under increasing transformations of margins. Figures 3.6-3.8 show scatter plots,
theoretical and empirical contour plots of copula density for the most common copula
families with standard normal margins: Gauss, Frank, Plackett, independent copula, Stu-
dent’s t, Gumbel, Clayton, BB1 and BB7. In contrast to the case with uniform margins,
dependence contours and tails on these plots are more clearly depicted.

In practice, a true copula of observed data is unknown. So, it is impossible to create a
theoretical contour plot for the bivariate case. In such situations, we are forced to use
empirical contour plots. As we can see from Figures 3.6-3.8, the empirical contour plots
are not able to reflect the dependence form just like the theoretical contour plots do it.
But they are adequate enough to detect the most appropriate copula class.

Panel (a) of Figure 3.6 shows visualization plots of a data set generated from a bivari-
ate Gaussian copula with the dependence parameter r = 0.6. Panels (b) and (c) display
visualization plots of data sets generated from the bivariate Frank and Plackett copulas
respectively. Tails of the Frank copula illustrated on the scatter plot tend to be relatively
weak compared to the Gaussian ones. Another one remarkable feature of the Frank cop-
ula is that a strongest dependence is centered in the middle of the data. There are no
observable tail dependences in the right upper as well as in the left lower corner of the
scatter plots. According to Malevergne and Sornette (2006, pp. 170-172), it can be shown
for these three copulas

AMX,Y) = A(X,Y) = M\ (X,Y) =0.

The panel (d) of Figure 3.6 represents data from the independent copula. Neither tail
dependences nor any other art of association can be observed in this case.

Both upper panels (a) and (b) of Figure 3.7 display data from the bivariate Student’s t
copula with different number of degrees of freedom df = 2 and df = 4. Symmetric tails
are observed in this case. In contrast to the Gaussian copula, the coefficients of lower and
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upper tail dependence for Student copula are different from zero and are equal to

1—
)\(X7Y):AL(X,Y):)\U(X7Y):2tl,+1 <_\/V+1 1+T> s
r

where ¢, denotes the distribution function of the univariate t distribution with (v + 1)
degrees of freedom. The stronger the dependence parameter r and the lower the degree
of freedom, the stronger is .

The tails of the Gumbel copula, see panel (c) of Figure 3.7, are asymmetric. Lower tail but
no upper tail dependence is oberved in this case. According to Malevergne and Sornette
(2006, pp. 170-172), it holds

AL(X,Y)=0 and My(X,Y)=2-27.

Similar to the Gumbel case, the Clayton copula is also asymmetric, see panels (d) of
Figure 3.7. Observations are strongly correlated in the left lower and do not correlated
in the right upper corner of the scatter plot. It points to the presence of the lower and
absence of upper tail dependency. Following calculations in Malevergne and Sornette
(2006, pp. 170-172), it can be shown

A(X,Y)=0 and A (X,Y)=27.

The last Figure 3.8 demonstrates visualisation plots of data from BB1 and BB7 copulas.
These copulas are more flexible and allow asymmetric non-zero tail dependences. Pan-
els (a) and (c) exhibit data from BB1 and BB7 copulas with the strong upper and weak
lower tail dependence. In contrast, panels (b) and (d) illustrate data with strong lower and
weak upper tail dependence. Joe (1997, pg. 150 and pg. 153) gives following expressions
for BB1 copula

Mg =2-25 and N\, =2

and for BB7 copula
1 1
)\U:2—25 and >\L:2_S~

3.6 Pair-copula constructions and vines

One of the current techniques for dependence modeling is the joint normal transformation.
It comprises following steps: standard normal transformation of the margins, measuring a
dependence structure and transforming it back. This method was implemented by Ghost
and Henderson (2002) and by Iman and Helton (1985). The primary drawback of this
approach is that the joint normal distribution allows only for symmetric dependence
structures and no tail dependence.
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Figure 3.5: Graphical representation of Gaussian, Frank, Plackett and Student’s t copula
families with univariate margins and coefficient of association 7 = 0.6: scatter plot on the left
panel, theoretical contour plot in the middle and empirical contour plot on the right panel.
Copula parameters and coefficients of tail dependence were calculated (numerically for Frank
and Plackett copulas) using 7 according to the expressions given in Table 3.1.

Scatter plot Theor. contour plot 3D perspective plot

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Gaussian copula, 7 = 0.6, r = 0.809017, A\y = A, =0

Scatter plot Theor. contour plot 3D perspective plot

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(b) Frank copula, 7 = 0.6, § = 7.929643, \y = A;, = 0

Scatter plot Theor. contour plot 3D perspective plot
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(c) Plackett copula, 7 = 0.6, = 21.1318, \y = A, =0

Scatter plot Theor. contour plot 3D perspective plot

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(d) Student’s t copula, 7 = 0.6, df =2 Ay = A, = 0.4501849
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Figure 3.6: Graphical representation of Gaussian, Frank, Plackett and Independent copula
families with standard normal margins and coefficient of association 7 = 0.6 (except of
Independent copula): scatter plot on the left panel, theoretical contour plot in the middle and
empirical contour plot on the right panel. Copula parameters and coefficients of tail
dependence were calculated (numerically for Frank and Plackett copulas) using 7 according to
the expressions given in Table 3.1.
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(a) Gaussian copula, 7 = 0.6, r = 0.809017, A\y = Ay =
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(b) Frank copula, 7 = 0.6, § = 7.929643, Ay = A\, =0
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(c) Plackett copula, 7 = 0.6, § = 21.1318, \y = A\, =0
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(d) Independent copula, 7 =0, Ay = A, =0
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Figure 3.7: Graphical representation of Student’s t, Gumbel and Clayton copula families with
standard normal margins and coefficient of association 7 = 0.6: scatter plot on the left panel,
theoretical contour plot in the middle and empirical contour plot on the right panel. Copula

parameters and coefficients of tail dependence were calculated using 7 according to the
expressions given in Table 3.1.
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(a) Student copula, 7 = 0.6, df =2, r = 0.809017, \y = A, = 0.6129021
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(b) Student copula, 7 = 0.6, df = 4, r = 0.809017, Ay = Az, = 0.5000811
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(d) Clayton copula, 7 = 0.6, 8§ =3, Ay =0, A\, = 0.7937005
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Figure 3.8: Graphical representation of BB1 and BB7 copula families with standard normal
margins: scatter plot on the left panel, theoretical contour plot in the middle and empirical
contour plot on the right panel. We choose parameters for BB1 and BB7 copula to make
Kendall’s 7 approximately equal to 0.6. Coefficients of tail dependence and Kendall’'s 7 were
calculated according to the expressions given in Table 3.1.
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(a) BB1 copula, 7 = 0.5929996, (6,5) = (0.33,2.3), Ay = 0.6089344, A, = 0.378782
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(b) BB1 copula, 7 = 0.6112731, (6,8) = (1.5,1.47), Ay = 0.397558, A, = 0.7302616
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(¢c) BBT copula, T = 0.6035885, (6,5) = (3.2,0.8), Ay = 0.7581422, A}, = 0.4204482
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(d) BB7 copula, T = 0.6036062, (0,6) = (1.5,2.8), Ay = 0.4125989, A, = 0.7807092



CHAPTER 3. MODELING MULTIVARIATE DEPENDENCE 54

An alternative popular method for modeling multivariate dependencies is provided by
the copula approach. There are a huge number of bivariate copula families that allow
modeling of different dependence structures. An extension of the bivariate copulas to
higher dimensions is in general not trivial. It requires additional parameter restrictions
that causes flexibility reduction. Besides, the extension up to the higher dimension of
some copula families is even not possible, for example in case of the Plackett copula.

A so called pair-copula approach provides very flexible tool for constructing multivariate
dependency. The idea of this concept is to decompose the joint density function into a
cascade of building blocks of the bivariate copulas and their conditional and unconditional
distribution functions. The building blocks are called pair-copulas. The most important
advantage of this methodology lies in the ability to comprise miscellaneous dependency
structures, i.e varying copula families are allowed for different marginal pairs. In this
chapter we present a most important topics of the pair-copula theory based on the article
of Aas, Czado, Frigessi, and Bakken (2009). Further, we will show how the graphical
concept of vines, introduced by Bedford and Cooke (2001, 2002), can be helpful when
determinating an appropriate decomposition of a joint density.

3.6.1 Pair-copula constructions

Let X = (X1,...,Xy)" be a vector of random variables with a joint density f(z1,...,2q)
and marginal densities fi(x1),..., f4(z4) and marginal distributions F(xy),..., Fy(xq).
For the joint density, we have the functions of subvectors (X,., ..., Xy)! withr € {2,...,d — 1}

flxo, ... .xq) = f(xs, ..., xq) f(x2|x3, ..., 24)
f@r, .o yxq) = f(Xpsr, o xa) f(2e|Tega, oo 2q) (3.44)

f(@a-1,2q) = fa(xa) f(Ta—1|za)

Using (3.44) we can factorize the joint density f(x1,...,zq) as

flzr, ..o xq) = f(xa, ... xq) f(z1]22, .. . 2q)

= f(x?n cee ,.Id)f(l'le:g, te ’xd)f(xl,xz’ T ’xd) (345)

= fa(xa) f(xa-1|za) f(xa-2|va—r,xa) - f(z1|Ta) .. . 2a)

The factorization (3.45) is unique up to re-labeling of the variables. In subsection 3.5.2 we
have shown for the bivariate case how the joint density of two random variables can be
expressed in terms of a copula and marginal densities. Thus, we get using the notations
of this section

f(z1,22) = cra(Fi(1), Fa(22)) fi(21) f2(22) - (3.46)
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The generalization of (3.46) to the d-dimensional case is also possible

flxy, ... xq) =1 a(Fi(xy), ..., Fa(xg)) fr(zy) - - - falza) - (3.47)
For the conditional density f(x;|z) we get the unique expression

F(x1|z2) = f(z1,x2) _ c12(Fi(x1), Fo(xs)) f1(z1) fa(z2)
fa() fa(22) (3.48)

= ci2(Fi(21), Fa(22)) fi(21)

In contrast to the previous case, the conditional density f(x1|za, x3) allows for two different
presentations

f(331,$2,953) _ f($1,$2‘1’3)f($3) _ f(x1,$2’$3)
f(xa,73) f(xalzs) f(23) f(zalz3)
(3.40) Cr2j3 (F' (21| 3), F(w2|w3)) f(21]2s) f (2| 75)
)

f($1|372,$3) =

Flas|zs (3.49)
= crg3 (F(21]23), F(22|23)) f(21|23)
(328)012|3 (F(z1]x3), F(za|23)) cra(Fi(z1), F3(x3)) fi(21)
and similarly
f(x1]wa, 13) = cazpp (F(21]22), F(23]72)) cra(Fi(21), Fa(r2)) fi(z1) - (3.50)

For example, for three variables X, X, and X3 we can decompose the joint density as

(3.45

f(x1, 2, 23) :)fS(xs)f(@\x?))f(ﬂfl\xz,$3)
= f3(x3) - fa(x2)cos (Fo(z2), F3(x3))

(3.48)

=" f(z2|zs3)
- Craps (F(1]w3), F (o] w3)) crs(Fr (1), Fa(ws)) 1 (1)

-~

3.49
G29 ¢ (1 |w2,25)

So, one of the possible pair-copula decompositions of f(xy, za, x3) is

f(x1, 9, 23) = fi(w1) fa(z2) f3(3) - oz (Fa(w2), F3(23)) caz(Fi(z1), Fs(x3))

- 193 (F(21]x3), F(22|23)) (3.51)

The factorization (3.45) for an arbitrary dimension d of random vector X can be obtained
by applying the general formula for the conditional densities

f(@v) = cop, (F(alv)), F(vilv_;)) - fzlv—;) , (3.52)
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where v is a vector of dimension m < d and j € {1,...,k}. In the following, we denote
with v always the conditioning variables. By the symbol v_; we denote the vector v
without its jth component. Note, that there are many different re-parameterizations of
this decomposition. Next, we introduce rules that can be used for building such pair-copula
decompositions.

For evaluating the marginal conditional distribution functions F'(z|v), one uses the for-
mula

aC;}cuj|u_j (F(l’|1/_j), F(Vj‘y—j))

OF (vslv-;) ’
where Cy, |, _, is a bivariate copula. To make the interpretation of this formula easier, we
consider first a univariate v. For this case we have with x = 2, and v = x5

F(zlv) =

(3.53)

0C (F1($1)7 FQ(Q:?))
8F2($2)

F(a1]zo) = (3.54)

And for bivariate v = (2, 23)", the expression (3.53) acquires a form

OChgj3 (F(w1]x3), F(22]73))
Florlas, zs) = DF (w]75)

We use the notion hg(x,v) to represent the relation (3.54) when = and v are uniform,
where € O states a parameter set of specified parametric copula family of the joint
distribution of x and v. Le for x,v ~ U]0, 1]

_ 0Cy (Fy(x), F,(v)) _ 0Cy(z,v)

he(xz,v) = ) 50 (3.55)

where @ € O is known or estimated copula parameter. Using h-functions one can calculate
the conditional distribution of an arbitrary order. For instance, if x1, x5, x3, 4 ~ U[0, 1],
we get

F(a1|x2) = hey, (21, 22)

and

F(x1|xy, 23) = he, o, (F(21|23), F(22|23)) = he, ,\, (he, 5 (21, 73), he, 5 (T2, 73))
or
F({E1|ZL‘2,I3) = h91,3|2 (F($1|ZE2), F($3|$2)) = h91,3\2(h91,2 (1’1, xQ)v h93,2 (m3’ xQ))
further
F(x1|zs, w3, 24) = he, 4, ,(F (21|22, 73), F(24]22, 73))
= h91,4|2,3 (h91,3|2 (h91,2 (:131, i’g), h93,2 (:133, 1‘2)), h04,3\2 (h94,2 (1‘4, xQ)’ h93,2 (1‘3, x2>))

or
F($1|x2,x3,$4) == h91’2|3,4(F(1‘1|l’3a$4)7F(w2|x37$4)) —_
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or
F(xy]xy, 23, 74) = h01,3|2’4(F(x1|x2,x4),F(xgyx%m)) — .

In the following, we simplify a notation of h-functions by omitting a term 6, i.e. hg,,
gets a form h; 5. Below, we give expressions for h-functions of some copula families. For
its presentation, we refer to the article of Aas, Czado, Frigessi, and Bakken (Gauss and
Student) and to the diploma thesis of Ulf Schepsmeier Schepsmeier (2010) (BB1 and
BB7).

Proposition 3.26 Let C,.(u,v) be a BBI copula from Definition 3.29. The h-function of
this copula is given by

hy(u,v) = ®, (@_1(1\‘}%_1@» . (3.56)

Proposition 3.27 Let C,,(u,v) be a BB1 copula from Definition 3.32. The h-function
of this copula s given by

t, (u) — 1t (v)

\/ (15 (1)) (1=r2)
v+1

By (U, v) = ty4q (3.57)

Proposition 3.28 Let Cys(u,v) be a BBI copula from Definition 3.41. The h-function
of this copula is given by

(3.58)

Proposition 3.29 Let Cys(u,v) be a BB7 copula from Definition 3.42. The h-function
of this copula is given by

-1

=

=

ho 5 (u, v) = ll - {(1 —1—w) (- (1—w)f) = 1}
(3.59)

|
=
|

: [(1 —A=w)) (-1 =) = 1]
=1 =) (1 =)t
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3.6.2 D-vines

As we saw in the previous section, the representation of conditional distribution is not
unique. Hence, the factorization of joint density (3.44) is also not well-defined. Bedford
and Cooke (2001,2002) develops a graphical structure, a so called regular vine, that is
helpful by determining the decomposition of joint density. In this section we present only
a special case of regular vines, a D-vine, which was introduced by Kurowicka and Cooke
(2006).

The D-vine is one special method of decomposing the joint density. The factorization
provided in a such manner is not unique, but it restricts the number of all possible
decomposition enormously. The d-dimensional D-vine is specified by d — 1 nested trees T3,
7 =1,...,d—1, each of them consists of d — 7+ 1 nodes and d — 7 edges. Each node of the
D-vine is connected to at most 2 other nodes of the same tree. Each edge of the D-vine
corresponds to a bivariate copula density in a pair copula construction. When determining
a D-vine for given data, one has to solve two problems: the evaluation of (pseudo-) data
for each tree and copula identification for each edge. One builds the first tree with original
data. For computing data for tree T, j = 2,...,d — 1, one needs (conditional) data from
the previous tree. This problem can be solved by nesting h-functions. The second problem
is not trivial and its solving requires some techniques of goodness-of-fit testing for copulas
(see Chapter 4). Generally, density decomposition corresponding to the D-vine can be
written in the form of

d
flay,. ) = [ £lan)
k=1
d1d—j (3.60)
: H H Ci,itjlitl,...i+j—1 (F(33¢|$z‘+17 s 737i+j—1)a F(37i+j|$i+1> s 7$i+j—1)) .
j=11i=1

Here, the index j corresponds to the D-vine trees and index ¢ corresponds to the edges.
Figure 3.9 illustrates a four-dimensional D-vine for data set u = (uq,us, us, uy), where
ug ~ U0, 1] for each k = 1,2, 3, 4. Corresponding notations for the pair-copulas together
with its parameters are placed below the edges, and whereas variables required for specific
building block are placed above the edges. The first tree T} consists of the data wu itself.
For this step, we need only to determine pair-copulas c; 3, c23, ¢34 and their parameter
vectors 015, 023, 05 4. For constructing the second tree T, we need conditional variables
w2 and ugpp for edge c; 30 and conditional variables ugs and wuy3 for edge ¢y 43. Using
results from the previous section, we get

U2 = hm(uh Uz)

Uz = h372(u3,u2) = h273(u3, UQ)
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Figure 3.9: Example of a D-vine with 4 variables, 3 trees and 6 edges. Each edge will be
associated with a pair-copula building block.

Uz U1 Uz U2 Uz U3

T, : H 2 3 4
CV91.2 092.3 093.4
u3|uQ U1\’U/2 U4\U3 Uz\us
T, : 1,20 22 17,93 3,4
91,3\2 (')2,,1\3
uglug, uz  uilug, us
Ty : 1,32 2,43

Cel ,4]2,3

and
Ug|3 = h2,3(uz’ U3)
Uy|3 = h473(u4,u3) = h374(u4, Uzs) .

At last, for evaluation of the third tree, we need conditional data

U1j2,3 = h1,3|2 (U1|2, U3\2)

and

Uyg)2,3 = h4,2|3 (U4|37 U2\4)

for the edge 1,42, 3.

Generally, the algorithm for sequential estimating pair-copula parameters consists in fol-
lowing steps:

(1) Estimate parameters of the pair-copulas using original data that is uniformly i.i.d.

(2) Compute conditional observations for the second tree using h-functions and esti-
mated pair-copula parameters from step (1).

(3) Estimate pair-copula parameters for the second tree

(4) Repeat steps (2)-(3) for the next trees sequentially.

Pair-copula parameter achieved in a such way can be used as starting values in numerical
maximization of the log-likelihood.
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3.6.3 Inference for D-vine

Algorithm 1 can be used for calculating the copula part of the D-Vine log-likelihood
defined in (3.60). The whole expression can be obtained by adding the logarithms of the
marginal densities.

3.6.4 Simulation from D-vine

In this subsection, we present an algorithm for sampling from the D-vine according to
Aas, Czado, Frigessi, and Bakken (2009). This algorithm is based on the Probability
Integral Transformation Theorem 3.11 and requires the iterative application of the inverse
h-functions.

Problem: Sample a set of uniform variables x, ..., x, ~ U]0,1] with by the D-vine
pre-defined dependence structure.

Idea: Simulate n independent variables wy, ..., w, ~ U|0, 1]. Variables z1, ..., x, with
Ir1 = Wy
Ty = F2_|11(w2|x1)

T3 = F3_|1172(w3|x1, IQ)

Ty = F;|112 77777 o (Welzr, . ) (3.61)
fulfill the pre-defined conditions. To calculate the condition distribution function
Fj|1 ,,,,, j—1(wn|371, e ;953'71)

for each 7 = 2,...,n, we use the definition of the h-function

_ aC{) <F$(x)7 Fu(y))

ho(, V) aF, (v) !

and relationship
aC’Uwﬂ'/—j (F(x|y—j)7F(Vj|V—j>>

OF (vjlv;) ’
recursively. From the previous section we know, that the expression for F(x|v) is not
unique as long as v is not univariate. Though, F(x|v) has an unique representation in
case of D-vine, i.e.

F(zlv) =

j—1 (F(Ij‘l’g, ceey L1, F(Illl’g, . ,Ij_l))
0F(m1|$2, c. ,l’j,l)

-----

F(ﬁl?j|£l?1, ce ,.flfj_l) =
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Algorithm 1 Likelihood evaluation for the D-vine with uniformly distributed margins

input dependent variables z, ...z, ~U|0,1]
log-likelihood = 0
for:=1,2,....,ndo
Vo, = T
end for
fori=1,2,....n—1do
log-likelihood = log-likelihood + Le, ,(vo,1,v0,i+1)
end for
V1,1 = h01,1<'00,1,’00,2)
for k=1,2,...,n—3do
vk = he, o, (Vo k2, Vo k1)
V1okt1 = Do,y (Voks1,Vokt2)
end for
Vion—4 = h017n_1<’v0,navo,n71)
for j=2,....n—1do
for:=1,2,...,n—7jdo
log-likelihood = log-likelihood + Le, , (vj—-1,2i—1,j-1,2:)
end for
if j == (n—1) then
Stop
end if
vj1 = he,,(vj-11,Vj-12)
if n > 4 then
fori=1,2,....n—j5—2do
Vjo2 = homvﬂ(Uj71,2i+2,’0j71,2i+1)
Vj2i+1 = hoj,,iﬂ(Uj—1,2z‘+1,’vj—1,2i+2)
end for
end if
Vjon—2j—2 = hoj,n,j (vj71,2n72j7'Ujfl,2n72j71)
end for
output log-likelihood
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Algorithm 2 Simulation algorithm for D-vine: generates a set of uniform variables

x1, ...,z ~U[0,1] with by the D-vine pre-defined dependence structure.

input independent variables wq, ...

, Wy ~ U0, 1]

input parameters 6; ; of h-functions of corresponding copula density ¢; ;4 jji+1,...i+j—1(* ")

T1 =011 = U
_ _ h—l
To = Vg1 = 91"1(7«027 U1,1)
V2,2 = hel,l (U1,1, U2,1)
for i < 3,4,...,ndo
Vi1 = Wy
for k<1—-1,i—2,...,2do
-1
Vil = h9k7i7k<vi,1a Vi1,2k-2)
end for
-1
Vil = hei i1 (Vijs Vic1,1)
T; = Y1
if i==n then
Stop
end if
Vij2 = hel,i_l(vz‘—m, Uz‘,1)
Vi3 = hGM_l(vi,ly Ui—l,l)
if i > 3 then
for j <« 2,3,...,i—2do

Vi2j = hej,i,j (%‘71,2]'—27 Ui,ijl)

Vi 2j+1 = hej,i_j (%‘,2;’—1; Ui—1,2j—2)

end for
end if
Vi 2i—2 = hei,l,l (%‘—172@'—4, Ui,2i—3)
end for

output dependent variables xq, ...

Ly ~ U0, 1]
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Given the h-function, we can calculate the inverse of conditional distribution through the
inverse h!, i.e.
-1 _
F (jle, - @) = by (@, (20,0, @501))
Algorithm 2 provides a procedure for sampling from the D-vine. The index 6;; of the
h-function denotes the parameter vector of corresponding copula density ¢; jjiy1,....i+j—1-

3.7 Time series pair-copula approach

In the previous sections, we introduced time series models for univariate time series and
the features of copulas for modeling dependency in multivariate data. At last, we studied
how bivariate copulas can be extended to the higher dimensions via pair-copula construc-
tions. In this section we present a methodology for modeling multiple dependence, a so
called TS-PAIR-COPULA approach (TSPCA). This method is performed in two steps.
The first step, we apply (ARMA-) GARCH filter to each of the univariate return series
to model conditional mean and conditional volatility. Resulting standardized residuals of
each model should be identical and independent distributed under true model specifica-
tion. The second step, we analyze multiple dependence between standardized residuals
transformed to the interval [0,1] via a pair-copula approach. In such way, univariate
margins and dependencies are modeled separately. For modeling future returns, we do it
backwards. At the first step, we sample random vectors on [0, 1]¢ from the estimated pair-
copula construction and transform them to standardized residuals. Further, these quasi
standardized residuals should be rescaled to the future returns by using forecasted means
and variances that have been estimated with the marginal (ARMA-) GARCH models.

Let ry. 4, = (r1,...,74) be a d-dimensional data set of interest with components r; =
(T ,rit)t for all ¢+ = 1...d. Each r; consists of log-returns of any financial index
observed from the time period [1,¢]. One is interested in simulating future multivariate
returns B B
Tie+1 - Tdi41
Tigl t4m =
Tittm " Tdt+m

for the time period [t + 1,¢ + m]. We denote by * estimated values and by ~ forecasted
values. Following algorithm summarize the proposed procedures.

I. Modeling multiple dependence between time series

(1) Fit an appropriate (ARMA-) GARCH model with assumed innovation distri-
butions F; to vector x; with fitted conditional mean @, = (fi;1, ..., fiy)" and
conditional volatility 6; = (61, ...,6:)" for each i = 1...d. A residual analysis
is performed to check the model assumptions and fit the (ARMA-) GARCH
model.
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(2) Compute standardized residuals

Eij S Bal RSN | 1=1...d, j=1...1.

A

Jij

(3) Apply the estimated innovation distribution F} and the Probability Integral
Transformation to transform the standardized residuals to the unit interval

(4) Fit a pair-copula construction to the set u = (uy, ..., ug) withw; = (w1, ..., uy)
for all = 1...d. Appropriate pair-copulas will be chosen using the techniques
discussed in Chapter 4.

(5) Save estimated parameters of the decomposed model from step (4).
IT. Simulation of multivariate returns

(1) Generate a random sample & = (@y,...,uy) from the estimated pair-copula
model with 'lTl,z = (112-7,5“, . ,ﬂi7t+m)t and &Z-j ~ Z/{(O, 1) foralli =1... d, ] =
t+1,...,t+m.

(2) Transform each u; to the vector of standardized residuals by applying the
inverse of F;

= FNay) forall i=1...d, j=t+1,....t+m.

Due to the Probability Integral Transformation Theorem 3.11, it holds for

€= (Eitg1, - Eitem)

§ij~Fi forall ¢1=1...d, j=t+1...t+m.

(3) Forecast future return and future conditional volatility at th time point t+1 us-
ing equations (2.22) and (2.23), respectively, and estimated (ARMA-) GARCH
model parameters. For example, for an ARMA(1,1)-GARCH(1,1) model we get
expressions

Tig1 7= fli + @i Tig +0; - €0 = [l + @i -1 +0; - 0y - iy

~ LA 2 A A2 o~ A A A N2 A A2
i1 = Wi+ Qi &+ B 07y = Wi+ Qi+ (Gip - €it)” + Bi- 07

and for an GARCH(1,1) model

Tig+1 *= 0441 " €41 -
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(4) Using forecasted values 7,11, G441, and &, from the previous steps, predict

future return and future conditional volatility at time point ¢ + 2.
For an ARMA(1,1)-GARCH(1,1) model we get

i i= fli + @i Tipy1 + 0;i - 041 - Eiprr

~ N A ~ ~ 2 | A =2
Oippa = Wi + & - (Gigr1 - Eigr1)” + Bi Oigpa

and for an GARCH(1,1) model
~ A A2 A =2
Ojiqo "= Wi + Q4 " Ty + Bi - Ol s

Tig+2 '= O4t42 " €42 -

Note, if one is interested only on the one step ahead forecasting, the true
values 7; .49 should be used instead off predicted values 7,5 for calculating
conditional volatility at time point ¢ + 2.

Similar to the step (4), forecast future returns and volatilities for the next time
points t +3,...,t+ m.



Chapter 4

Goodness-of-fit tests for copulas

If one wants to investigate the dependence structure in multivariate data, one needs to
solve two different problems. The first one is choosing an appropriate parametric copula
family. In this case, the validity of the null hypotheses Hy : C' € C for some class C of
copulas should be tested. For example, C = {Gauss, Student, Clayton, . ..}. The second
one is the problem of estimating the dependence parameter € on the chosen copula class
C = {Cy: 0 € ©}, where O is the range of all possible values of . There are many
proceedings for goodness-of-fit testing of copula models, an overview of which is given by
Genest, Rémillard, and Beaudoin (2009). The tests presented in this paper require pseudo-
copula-observations as an input and test whether the data really comes from estimated
copula. In some situations, tests proposed by Genest, Rémillard, and Beaudoin (2009) do
not reject the null hypothesis for more than one copula family or the null hypothesis is
rejected for all copula families of interest. In the first case, one should make a subjective
judgment to decide whether the chosen copula is most suitable. In the second case, one
can not make any decision. In this section we provide an alternative methodology for
goodness-of-fit testing that is based on so called Vuong or Clarke test. The Vuong and
Clarke tests are methods that were developed for the comparison of non-nested models.
Our approach favors either only one copula or states the equivalence of several copulas.
Additionally, we study the power of the pairwise Vuong and Clarke tests and investigate
the accuracy of the proposed score method. This will depend on sample size, degree of
association and underlying copula family.

4.1 Vuong Test

For the comparison of two copulas fitted to the same data, we utilize the Vuong test
proposed by Vuong (1989). The Vuong test compares two regression models which need
not to be nested and is based on the Kullback-Leibler information criterion (KLIC),
see Kullback and Leibler (1951). KLIC measures the “distance” between two statistical

66
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models. Consider a data set of the length n consisting of a dependent variable Y; and a
possible set of explanatory variables x;. We have

KLIC := E, [log ho(Y;|z;)] — Eq |log f(Yi|z:, B)| | (4.1)

with ho(-) the true (but unknown) conditional density of Y; given &;, ¢ = 1...n, and Ej
expectation given the true model. Further, f(-) is conditional density of the fitted model
with estimated parameters ,B Generally, the one of two models with the smaller KLIC
is the better one, for it is closer to the true, but unknown, specification. For comparison
of two models with conditional densities f,(Y|z;, ') and fo(Yi|z;, %) one has to look at
their KLIC values. If model 1 is better than model 2, its KLIC statistic is smaller and the
following inequality holds
KLIC, < KLIC,

or in terms of (4.1)

By log ho(Yi[z:)] — o |log fi(Yila:, B)| < By llog ho(¥ife:)] - Eo [log fo(¥ife:, B7)|

}/;' X 31
Eo llog (Mﬂ >0. (4.2)
fo(Yilzi, B?)
In other words, the model 1 is favored over the model 2, if its log-likelihood values are
significantly larger. Vuong proposed the following statistic

m; 1= log (M) with i=1...n.
fo(Yilzi, B?)

This expression reduces to

Then m := (myq,...,m,)" is a random vector with expectation

EU[m] =Ry = (MT’ e 7#:7)t )

0
if ho(+) is the true probability mass function. If both models are equally close to the true
specification, it holds pg' = 0. Hence, we formulate our test problem as

Hy: py' =0 against Hy: pi' #0. (4.3)

The quantity pg' is unknown. Based on m, Vuong defined a test statistic v

U= \/ﬁ(%Z?:lmJ . - 1 —
\/% > iz (my —m)? i=1
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and has shown that under H
v 2 N(0,1) .

So, we formulate a decision rule for (4.3) in a following way

VUONG TEST: Reject the null hypothesis of equivalence of the two models
Hy: pg' =0 against Hy @ pg' #0

at significance level o, if [v| > 21 a, where 21 2 is a (1 — %)-quantile of the
standard normal distribution.

The test favors model 1 over model 2, if v > z1-g. This is reasonable since significantly
high values of v indicate a higher KLIC of model 1 compared to model 2 according to
the formula (4.1). And vice versa, test chooses the model 2, if v < 2;_a. Both models are
equivalent if —z1-g <V <Z_sg.

The Vuong test is not an exact test, since the test statistic is normally distributed only
asymptotically. Simulations demonstrate that it is not very powerful in small samples,
Clarke (2003).

The Vuong statistic is sensitive to the number of estimated coefficients in both models. Tt
is based only on the individual log-likelihood values and does not incorporate a number
of model parameters in the computation. Vuong suggested to improve his test by adding
a so called Schwarz’s correction term

% logn — % logn , (4.5)

where p; and py are the numbers of parameters in model 1 and model 2 respectively, n is
a number of observations. Thus, the adjusted Vuong statistic with Schwarz’s correction

is defined as | en - -
o VALGE m) — (§logn— o) "

VESL (mi — m)?

Note, the correction of individual log-likelihoods of model 1 by the term £:logn and the

model 2 by the term £2 logn leads to the same adjusted test statistic 7, i.e

_Vasrm)
VS g —

(4.7)

with

. . (4.8)
= |log fi(¥iles. B) — B logn| — [log fo(Vifz:, B2) — B logn| .

An alternative correction term due to Akaike can be also used. For individual log-likelihoods
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it is defined as
(p1 —p2)/n . (4.9)

The choice of a significance level a can be deferred to the user by considering a p-value.
The p-value is the smallest o value at which the null hypothesis can be rejected for the
data at hand. Before one starts with the testing of any hypothesis, the so called significance
level o should be chosen. The significance level is a fixed probability of rejecting the null
hypothesis wrongly, if it is in fact true. If the calculated p-value is less than the chosen
significance level then the null hypothesis should be rejected. We can calculate the p-value
of the Vuong test as follows: the smallest o at which the test rejects is given by

V=22 . (4.10)

Let ®(-) denote the distribution function of the standard normal distribution. Applying
®(-) to both sides of (4.10) and using symmetry of ®(-), we become

(v)) =1-3
& %:1-@(@;) (411)

& a=2(1- o)
& a=20(—|v|)

The last expression of (4.11) provides a formula for calculating the p-value for the Vuong
statistic
p=20(—|v]). (4.12)

The R code of the Vuong test is given in Appendix D.

4.2 Clarke Test

An alternative for comparing of non-nested models is distribution-free test proposed by
Clarke (2007). Likewise the Vuong test, it is based on the Kullback-Leibler Information
Criterion (4.1) and compares whether the log-likelihood of one model is significantly larger
than the log-likelihood of the other model. Similar to the Vuong test, the null hypothesis
of this test postulates the equivalence of both models. With the notions from the previous
section we formulate the null hypothesis of the Clarke test as

1
Vil

Hy: P <10g <M > 0)) =0.5. (4.13)

This equation means that the individual log-likelihoods are equally distributed around

zero under the null hypothesis, i.e. one half of the individual log-likelihood ratios should
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be greater than zero and other half should be less than zero. We introduce d;, i =1...n

~1 ~2
m; = log f1(Yilz}, B ) — log fo(Yilz},B) (4.14)
and define a test statistic as

B = Z L(0,00) (m;)
i=1

where 1(-) denotes an indicator function. B corresponds to the number of positive differ-
ences d; and can be interpreted as binomial distributed random variable with parameters
n and p = 0.5 under the null hypothesis, i.e.

B ~ Binom(n,p) .

1
Model 1 characterized by the parameter vector 8 is equivalent to the model 2 character-

9
ized by the parameter vector B , if B is equal to the expectation np = n/2 under the null
hypothesis. One can assume the equivalence of both models at significance level «, if

n n
pe(loalie) i
€5 ~fag +e¢ (4.15)
for e, ample small. Using ¢,y := § +&4 and co— := § — ¢4, expression (4.15) has the form
B € (cosCar) (4.16)

If model 1 is better then model 2, B will be significantly larger then its expected value
5 under the null hypothesis. Generally, it is difficult to construct a two-sided test for the
testing problem (4.13). Usage of one-sided tests makes sense in such situations. We split
the testing problem

Hy - B:gagainstle B#g

into two cases: the upper tail test

Hy: B= g versus Hy; : B > g (4.17)
and the lower tail test n "
Hy: B= 5 versus Hy : B< 3 (4.18)

Next, we need to determine a rejection region for (4.17) and (4.18), respectively. The
upper tail testing problem has a significance level «, if the error probability of type 1 is

not larger then «, i.e.
P(B>cy)<a (4.19)

Using the formula

P =Y (1) (4.20)
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for B ~ Binom(n,p), the expression (4.19) can be written as

n

D (Z) 05" <a. (1.21)

C=Ca+

UPPER TAIL CLARKE TEST: Reject the null hypothesis of equivalence
Hy: B:gversusle B>g

at significance level a, if B > ¢, , where c,, ts chosen to be the smallest integer
such that (4.20) holds.

For determining ¢, we use the equals sign in (4.19)

P(B>c¢yt) =«

1—=P(B<cor) =

P(B<c¢uy)=1—a

P(B<c¢y —1)=1-a (4.22)
B(cor —1)=1—a

Cot — 1 = zpin(1 — )

tre 00

Cot = T+ me(]- - a) ’

7

where B denotes the distribution function of B ~ Binom(n,0.5) and 2, is its quantile
function. The p-value is the smallest significance level at which the test rejects Hy. Hence,
we compute the p-value of the upper tail test by setting

B =cyy

& B=1+zn(l —a)
< B—1=zyn(1 — )
& BB-1)=1—-«

& a=1-B(B-1)

& p=1-B(B-1)

(4.23)

The lower tail testing problem has a significance level a, if the error probability of type 1
is not larger then «, i.e.
P(B<c¢, )<« (4.24)

or .
) (”)0.5” <a. (4.25)
C
c=0

So, we formulate the lower tail Clarke test as
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LOWER TAIL CLARKE TEST: Reject the null hypothesis of equivalence

Hy: B:gfversusle B<g

at significance level o, if B < c¢,_, where c,_ is chosen to be the smallest integer
such that (4.24) holds.

For determining ¢, we use the equals sign in (4.23)

P(B<c¢y )=«
& Bto )=« (4.26)

< Co- = me(Oé) )
We evaluate the p-value of the lower tail test by setting

B =c,_

< B = zpn(a)

- B(E) (4.27)
)

& p=DB(B).

The Clarke test is also sensible to the number of estimated parameters in each model.
Since the distribution-free test works with the individual log-likelihood ratios, we can not
apply the Schwarz’s correction term (4.5) as in the Vuong test with the summed log-
likelihood ratio. Clarke suggested to use an average correction. Individual log-likelihoods
of the model 1 and model 2 should to be corrected by the terms Z-logn and £2logn,
respectively. The adjusted test statistic becomes a form

=1

where m; is defined as in (4.8).

4.3 Simulation study and comparison of the Vuong and
Clarke tests

In this section, we present results of the simulation study where we used the Vuong and
Clarke tests for the bivariate goodness-of-fit testing for copulas:

e We simulated data from each copula C; € C with true parameter vector 8;, where i =
1,...8 and C = {Normal, Student, Clayton, Gumbel, Frank, Plackett, BB1, BB7}.
For the used fixed degrees of freedom for the Student copula df = 4 and deter-
mined BB1 and BB7 copula so that Ay = 0.3
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o We fitted every copula C; to the simulated data and denoted the estimated param-
eters by 8, j=1,...,8.

e We calculated the Vuong and Clarke statistics to test the null hypothesis of equiv-
alence of two models, C; with true parameter vector §; and C; with estimated
parameter vector 8;, 4,7 =1,...,8.

e We repeated sampling procedure N = 1000 times for each copula C; € C and
evaluated percentages of non-rejecting of the null hypothesis, percentages of rejecting
the null hypothesis in favor of true model and percentages of rejecting the null
hypothesis in favor of estimated model, which is not a true model.

e For the Vuong test as well as for the Clarke test we used Schwarz’s correction term.

e We repeated our simulation study for two different choices of sample length n €
{150,1000} and three different choices of Kendall’s 7 € {0.25,0.5,0.75}.

Summarizing results of this simulation study are given in Tables 4.2-4.4. Looking at these
tables, we state:

e Decision results of the bivariate Vuong and Clarke tests depend on the sample size
and on the Kendall’s 7.

e Error rate of the Clarke test is much more higher than the error rate of the Vuong
test. It holds for all possible combinations of n and 7. Under error rate we understand
percentages of rejection of the null hypothesis in favor of false model.

e Accuracy of both tests increases with the rising sample length. Under accuracy we
understand percentages of rejection of the null hypothesis in favor of true model.

e For large sample size and strong association, the chance of choosing the true copula
is close to 100% for both tests in exeption of several cases.

4.4 Distances between different copula families

As mentioned above, the results of the pairwise Vuong and Clarke tests depend substan-
tially on the the combination of 7 and sample size n as well as on the two copulas to be
compared. To investigate the influence of copula type, we measure the distance between ev-
ery two copula classes from the set { Normal, Student, Clayton, Gumbel, Frank, Plackett, BB1, BB7}
for different values of Kendall’s 7 € {0.25,0.5,0.75}. We do it by applying the Kullback-
Leibler information criterion (KLIC) that we have introduced in Section 4.1. For given
bivariate data set, we are interested whether the copula family C; or the copula family
Cs is the most appropriate for describing dependence structure within the data. Let 6,
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and 0y be (estimated) parameters of copula families C; and C, respectively. Hence, the
distance between two copulas is measured by KLIC in a following way

KLIC 01,02 // (601 -771,1'2)) Co, (Il,],’Q)dZEl d[[‘g s (428)

692 X1, 1‘2)

where g, and cg, are the densities of copulas 1 and 2. Given i.i.d. observations (xy;, x9;),
1t =1,...,n, from copula with the true or estimated density cy,, the KLIC between this
and some other copula with density cg, can be estimated as

KLIC(C,,Cy) = Zl (C"l x“’le)) , (4.29)

002 L4, le)

the parameter vectors 8, and @, are either known or will be estimated from the sample
data. Note, it holds following inequality

KLIC(Cy,Cy) # KLIC(Cs, Cy) .

Figure 4.1 (a) illustrates KLIC distances that were estimated empirically using formula 4.29.
KLICs were calculated for data sets of length n = 10000 sampled from different copula
families: Normal, Student (df = 4), Clayton, Gumbel, Frank, Plackett, BB1 (A\y = 0.3)
and BB7 (Ay = 0.3). Besides, Figure 4.1 (b) displays KLIC distances that were evaluated
by numerical integration of expression 4.28. These calculations were executed by Brech-
mann and can be found in his diploma thesis Brechmann (2010). The results for both
figures were obtained for different Kendall’'s 7 € {0.25,0.5,0.75}. Points with notation
C7 — C5 on the x-axes correspond to the KLIC distances between true copula C; and
another copula Cy which was fitted to the data from C);. We abbreviate names of cop-
ula families by its first letters except of BB1 and BB7 copulas. Hence, N corresponds
to Normal copula, S to Student, P to Plackett, F' to Frank, C to Clayton and G to
Gumbel. According to this notation, points with label N — P display the KLIC distances
between two copulas, Normal and Plackett, where Plackett copula was fitted to the data
from Normal copula. Black circular points represent the KLICs for data with 7 = 0.25.
Blue square points accord to the KLICs evaluated for the data with 7 = 0.5. At last, red
triangle points correspond to the bivariate data characterized by 7 = 0.75.

Looking at Figure 4.1, we state:

e There are some differences between KLICs obtained empirically or numerically. We
restrict our further interpretation only on the KLIC values estimated by numerical
integration.

e KLIC measures are generally not symmetrical: the distance between copula C and
copula C} is not equal to the distance between copula C5 and copula Cf.
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e Dissimilarities between copula families increase with rising degree of dependence 7,
except of some special cases. Firstly, distances N — S, BB1— BB7 and BB7— BB1
do not depend on the Kendall’s 7. Secondly, distances C — BB1, BB1—-C, C'— BB7
and BB7 — C' decrease with rising degree of dependence.

e Distances S— N, N-G, G—-N,S-P,P-5 5S-G, G—-S, F—-P, P-F,
G—-P,C—-BBl1, BB1—-C,C—BBT7and BB7— C do not change essentially with
increasing Kendall’s 7.

4.5 Relationship between accuracy of the Vuong/Clarke
test and KLIC values

Now, we interpret Tables 4.2-4.4 taking into account the distances between specific copula
families. Examination of all possible copula pairs and all combinations of 7 and n is not
possible because of a huge number. Therefore, we do it in following examples:

e Clayton - BB1: KLIC distances for this copula pair decrease with increasing
Kendall’s 7. Hence, we expect that accuracy of the bivariate Vuong and Clarke
tests falls when Kendall’s 7 goes up. For the small sample size n = 150 the percent-
ages of choosing true copula are 51.17, 41.29, 35.34 for the Vuong test and 55.06,
55.29, 62.86 for the Clarke test, when Kendall’s 7 takes values 0.25, 0.5, 0.75 respec-
tively. For the large sample size n = 1000 the percentages of choosing true copula
are 58.96, 52.12, 51.61 for the Vuong test and 53.26, 53.53, 62.05 for the Clarke test,
when Kendall’s 7 takes values 0.25, 0.5, 0.75 respectively. So, our presumption will
be fulfilled only for the Vuong test and it depends on the sample length: the accu-
racy of the Vuong test declines more rapidly for small samples as for large samples.
Surprisingly, the accuracy of the Clarke test goes up when Kendall’s 7 increases for
small as well as for large samples.

e Student - Normal: KLIC values barely change, when Kendall’s 7 goes up. Hence,
we expect the same behavior for accuracy of the Vuong and Clarke tests. For the
small sample size n = 150 the percentages of choosing true copula are 2, 2.8, 3.2 for
the Vuong test and 30.7, 34.9, 35.8 for the Clarke test when Kendall’s 7 takes values
0.25, 0.5, 0.75 respectively. For the large sample size n = 1000 the percentages of
choosing true copula are 80, 82.5, 78.6 for the Vuong test and 99.9, 98.3, 96.3 for
the Clarke test, when Kendall’s 7 takes values 0.25, 0.5, 0.75 respectively. As we can
see, there is a strong dependence between the accuracy and the sample length for
both the Vuong and the Clarke test. The results do not contradict our presumption:
there is no depict association between Kendall’s 7 and accuracy of both tests.

Based on these proposals, we conclude our results:
The accurateness of the bivariate Vuong and Clarke tests depends on the KLIC distances
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between copulas to be compared. This relationship is more stronger for small sample sizes
than for large sample sizes. Moreover, the Vuong test seems to have harder connection to
the KLIC distances in comparison to the Clarke test.

4.6 Comparison to Genest study

Next, we are interested whether the bivariate Vuong and Clarke tests are more efficient
than goodness-of-fit tests proposed by Genest, Rémillard, and Beaudoin (2009). The au-
thors give a critical overview of common bivariate goodness-of-fit techniques for copulas
and suggest the new ones, a total of seven test statistics. Additionally, the authors study
the finite-sample properties of the presented goodness-of-fit methodologies in depending
on degree of association Kendall’s 7 and specific copula classes to be compared. For ev-
ery 7 € {0.25,0.5,0.75}, they generated N = 10000 random samples of length n = 150
from each copula C; € C = {Gauss, Student (df=4), Clayton, Gumbel, Frank, Plackett},
¢t = 1,...,6, and tested the null hypothesis Hy : data comes from C; with C; € C,
j=1,...,6, according to each of the seven test statistics. Two issues were of interest:

e A chance of rejecting a copula under Hy, when it is a true copula. It should be
consistent with the pre-defined significance level a.
e A chance of rejecting a copula under Hy when it is a false copula.

We extend the results of Genest study presented in Tables 4.5-4.7 by the bivariate Vuong
and Clarke tests taken from Tables 4.2-4.4, where both tests use Schwarz’s correction.
Genest, Rémillard, and Beaudoin executed their calculations only for Normal, Student,
Clayton, Gumbel, Plackett and Frank copula families. Hence, we restrict our extension on
these copula classes and leave BB1 and BB7 copulas out. Note, the directly comparison of
Genest’s to our results is not possible because of non-identity of null hypothesis. Namely,
in the tests provided by Genest, Rémillard, and Beaudoin (2009), one tests whether the
data of interest comes really from the estimated copula family C, € C, k= 1,...,6. In
case of the Vuong and Clarke tests, one decides whether any copula Cj, € C fitted to
the data of interest is equivalent to any other copula C,, € C fitted to the same data,
k,m =1,...,6. Additionally, it is not possible to calculate entries in columns (I)>(II) and
(I)=(II) for the Vuong and Clarke tests for the rows where copula families in columns (I)
and (II) are identical. Entries in columns (I)<(II) can be calculated from Tables 4.2-4.4
by building an average value of entries in rows denoted by (I)<(II) according to specific
true copula family. We demonstrate it on example of Normal true copula, 7 = 0.25 and
n = 150 (see first three rows of Table 4.2):

e For this case, it holds (I)=Normal and (II) is one of the following copulas: Student
(df=4), Clayton, Gumbel, Frank or Plackett.
e The average error, i.e. percentages of favoring the false copula (IT), for the Vuong
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test is
0+034+0+0.3+0.2

5

=0.16

and for the Clarke test

17454541+ 73.6 + 50 + 21.1
)

=433 .

Analyzing Tables 4.5-4.7, we state:

The error rate of the Vuong test with Schwarz’s correction is much more smaller than the
error rates of the Genest’s goodness-of-fit tests. It however does not hold for the Clarke test
with Schwarz’s correction, error rate of which is much more higher for some copulas than
the error rates of the Genest’s goodness-of-fit tests. In some situations, the percentages of
rejecting the false copula by the Vuong or by the Clarke test is higher than by the Genest’s
test and in the other situations it is lower. Generally, the percentages of false decision
tend to decrease with increasing Kendall’s T for the Vuong as well as for the Clarke test.

4.7 Goodness-of-fit test for copulas based on distribu-
tion free tests

The Vuong as well as the Clarke test compares two copulas fitted to the same bivariate
data. In this section, we show how the Vuong and Clarke tests can be used for comparison
of more than two copulas. Let C = {C1, ..., C,,} denote a collection of all possible copula
families to be compared. For example, C = { Gauss, Student, Clayton, ...}. We illustrate
our idea on an bivariate data set generated from Gaussian copula with dependence pa-
rameter » = 0.75. Method presented in this section consists of four steps:

(i) Estimate parameter vector @; of every copula C;, i = 1,..., m, from C, for the bivari-
ate data of interest via maximume-likelihood estimation or using empirical Kendall’s
7. Note, that for Gauss, Gumbel, Clayton, Frank and Plackett copula classes, there
is unique relationship between copula parameter and Kendall’s 7, see Table 3.1 in
Chapter 3. So, for this copula families, we need only to determine Kendall’s 7 em-
pirically. For Student, BB1 and BB7 copulas we use MLE’s. We denote estimated

~

parameter vector of copula C; by 6, i =1,...,m.

(ii) For each i =1,...,m, compare copula Cp, with the remaining copulas C \ Cp, using
the bivariate Vuong or Clarke test. Resulting output of this step for the example
data is presented in Table 4.8 for the Vuong test and in Table 4.9 for the Clarke
test.

(iii) Calculate score of each row in Tables 4.8 and 4.9 in a following way: weight every
test outcome (I)>>(II) with coefficient 1, every test outcome (I)< (II) with coefficient
—1 and every test outcome (I)=(IT) with factor 0. The score value results from the
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Table 4.1: An example illustrating calculation of better, equivalent and worse entries with
data from Gaussian copula

data t BB1 BB7 Gauss Frank Plackett Clayton Gumbel better equiv. worse

data 1 5 3 2 7 2 -2 -7 -2
data2 | 4 2 2 5 5 -2 -6 -1
data3 | 1 -2 3 4 4 4 -4 3 B% 0% 2%
data4 | 1 -2 3 4 5 4 -4 3

sum of the evaluated weights. For example, the number of (I)>(II) outcomes of the
first row (Gaussian) in Table 4.8 is 7 and the number of (I)<(II) outcomes is 0.
The score value of this row is equal to 7+ 0 = 7. For the Clarke test, the score of
Gaussian copula is equal to 4.

(iv) Make decision according to the rule: copula with the highest score is the most suitable
one among all copula types considered. For instance, the Gaussian copula in Table 4.8
fitted to the example data is characterized by a highest score, so it is the most
appropriate copula for our data. It is different for the Clarke test. In this case, a
highest score corresponds to a Frank copula that is not a true one.

Next, we are interested whether the score approach based on the Vuong or on the Clarke
test provides accurate results subject to specific copula family chosen. We simulate bivari-
ate data from a fixed copula class N = 1000 times and evaluate scores N times according
to the steps (i)-(iv) described above. Then we calculate percentages of cases where the
score test favored the true copula and denote such entries by better. Further, we evaluate
percentages of cases where the score test outputted highest score value for the true cop-
ula, but there were some other copulas with the same score. We denote such entries by
equivalent. Finally, we compute the error rate, i.e. percentages of false decision. Table 4.1
demonstrates this procedure for data from the bivariate Normal copula with number of
repetitions N = 4. As we can see for the first case, the test decision is unique and it is a
(true) Normal copula. For the second and third cases, the score test can not distinguish
between Normal, Frank and Plackett copulas. And in the last case, the test favors (false)
Frank copula.

Table 4.10 reports results of the score test study for two sample sizes n = 150 and
n = 1000. This study contains computations for different values of 7 € {0.25,0.5,0.75}
for the Vuong and Clarke tests, both with Schwarz’s correction. Note, we use the same
data in this study as for Tables 4.2-4.4. For example, Table 4.10 shows that when testing
the null hypothesis

Hy : true copula is Gauss

for data from Normal copula with 7 = 0.25 and sample size n = 150, there were approx-
imately a of chance 45 % that the score test based on the Vuong test will assume the
null hypothesis. And in 31 % of all cases, the score test could not favor the Gaussian
copula over some others. These results are plausible because there is hardly any difference
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between Gauss and other copulas, particularly Frank and Plackett. It is different for the
Clarke test. For the same combination of n and 7, a chance of choosing the true copula
for the Normal case as well as the chance of equivalence with some copula(s) is equal to
Zero.

One can easy see from Table 4.10, that the score procedure based on the Vuong as well
as on the Clarke tests depends vigorously on the copula family and the combinations of
n and 7. In case of Plackett copula, the test increases its accuracy, i.e. percentages of
“better” decisions, with increasing Kendall’s 7 and as sample size goes from n = 150 to
n = 1000. The accuracy of the test for Gumbel data with small sample size does not
change depending on 7. The accuracy of the test based on the Vuong statistic for the
Clayton data is approximately of the same degree for small as well for large sample size.
Moreover, there is an increasing effect of accuracy depending on increasing 7 for the Clarke
case. Another remarkable fact is that the accuracy for BB1 and BB7 copulas is very small.
It is an explainable fact, because BB1 and BB7 with weak upper and vigorously lower
tail dependencies are very similar to dependence structure of the Clayton model.

Similar to Table 4.10, Table 4.11 contains results of the simulations study for score ap-
proach. The distinction is, that we used here the Akaike’s correction term in the Vuong
and Clarke tests. The differences between these two tables are minimal.

As mentioned in the previous section, the pairwise Vuong test has significantly lower
error rate in comparison to the Clarke test. Hence, we will use the score method based on
the Vuong test for goodness-of-fit testing and choosing an appropriate copula for D-vine
building blocks in the following chapter.
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CHAPTER 4. GOODNESS-OF-FIT TESTS FOR COPULAS

Figure 4.1: Estimated KLIC distances between different copulas calculated for data sets of

length n = 10000 samples from copula families Normal, Student (df = 4), Clayton, Gumbel,

Frank, Plackett, BB1 (\y
x-axes correspond to the KLIC distance between true copula C7 and another copula Cy which

0.3). Points with notation C7 — Cs on the

0.3) and BB7 (\y

estimated to the data from C] and is not a true copula.
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Table 4.5: Extended Genest study for data sets of size n = 150, coefficient of association 7 = 0.25
and true model denoted by (I). Genest study: Percentages of rejection
Hy : data comes from model (II) against Hy : data comes from model (I) by various tests for
data from different copula models and number of repetitions N = 10000. Extension: Percentages of
non-rejection Hy : (I) = (II) and its rejection in favor of model (I), denoted by (I)>(II), or in
favor of model (II), denoted by (I)<(II), by the Vuong and Clarke tests for data from different
copula models and number of repetitions N = 1000. Both tests use Schwarz’s correction.

Copula Test based on statistic Vuong Clarke
[ [ [ [ [ [
2 2 =) 2 2 2
AN I Vv AN I Vv
(IT) (D) S, T, S o B g 4 2 2 2 |2 B2 2
Clayton 4.6 4.8 4.1 4.5 4.7 4.8 4.9 0 18
Gumbel 86.1 624 57.9 42.7 80.9 76.7 224 || 46.2 53.8 0 55.3 264 18.3
Frank 56.3 32.7 374 26.4 42.8 36.2 6.2 20.1  79.8 0.1 326 374 30
Clayton
Plackett 56.0 31.2 33.7 23.4 43.9 39.0 8.1 205 795 0 52.7 358 11.5
Normal 50.2 27.5 245 16.8 41.8 34.6 6.4 181 81.6 0.3 134 325 541
Student ! || 56.5 32.3 23.2 15.5 51.0 52.7 329 || 7.2 91.3 1.5 52.7 41,5 5.8
Clayton 72.1 626 92.3 82.1 65.1 60.5 8.3 50.8 49.2 0 299 476 225
Gumbel 5.0 5.0 4.7 5.1 5.1 5.0 5.0 0.16 20.9
Frank 154 154 199 15.1 12.9 10.0 5.9 11.7 88.1 0.2 21.8 39.7 385
Gumbel
Plackett 14.3 147 189 14.7 12.5 10.6 4.9 85 914 0.1 38.2 369 249
Normal 10.1  11.7 244 18.9 10.2 7.5 5.9 65 935 0 8.9 175 73.6
Student 1 14.1 129 29.8 26.2 14.3 18.2 17.4 0.9 94.3 4.8 284 59.4 12.2
Clayton 40.0 36.8 77.3 70.6 36.2 36.1 9.6 31.1 689 0 41.3 406 18.1
Gumbel 334 185 9.1 6.1 27.8 29.5 124 15 84.7 0.3 48.7 279 234
Frank 5.3 5.1 5.1 5.0 4.9 4.9 5.1 0.18 21.5
Frank
Plackett 5.7 5.2 5.4 5.1 5.2 6.1 6.6 0.7 98 1.3 9.3 63.4 27.3
Normal 7.8 7.3 10.5 9.9 6.2 6.3 5.3 7.1 92.6 0.3 186 314 50
Student ! 185 11.4 220 19.7 14.6 23.0 40.7 5.2 93.6 1.2 49.9 406 9.5
Clayton 37.6 342 69.8 60.5 33.3 31.9 6.2 30,1 699 0 234 572 194
Gumbel 304 166 7.2 5.4 24.6 24.8 6.8 14.3 854 0.3 32.5 424 251
Frank 5.0 5.2 4.8 5.1 5.0 4.2 6.5 1.5 98.2 0.3 273 615 11.2
Plackett
Plackett 5.2 5.0 4.8 4.8 4.5 4.7 5.0 0.38 18.2
Normal 6.8 6.8 8.2 7.6 6.1 54 5.7 9.7 90.1 0.2 21 57.9 21.1
Student ! 141 9.8 15.6 14.4 10.1 15.6 26.2 2.6 94.2 3.2 40.2  31.8 28
Clayton 31.6 26.6 56.9 45.8 33.3  33.0 7.2 26.6 733 0.1 67.8 202 12
Gumbel 238 119 7.1 5.5 24.7 27.0 8.9 12.7 87.1 0.2 75.3 9.7 15
Frank 7.9 7.2 5.6 5.3 7.2 7.0 5.5 2.6 97.1 0.3 60.2 25.3 14.5
Normal
Plackett 7.9 6.8 4.4 4.4 8.2 9.4 6.0 2 96.5 1.5 319 54 14.1
Normal 5.1 5.0 4.7 5.2 4.7 5.0 4.8 0.16 43.3
Student ' || 10.5 6.8 7.4 74 16.6  27.8 299 | 2 95.1 2.9 30.7 59.6 9.7
Clayton 277 262 52.1 39.0 25.1 17.4 11.2 49 51 0 39 43 18
Gumbel 19.1 114 74 6.0 17.3 11.5 9.5 369 63 0 46 31 23
Y Frank 9.1 8.2 9.5 7.6 8.9 4.5 23.3 44 56 0 68 19 13
Student
Plackett 7.7 7.7 7.3 6.2 6.6 3.6 13.9 44 56 0 742 126 13.2
Normal 4.9 5.9 5.4 5.0 7.9 3.1 23.0 || 53.8 462 0 473 352 175
Student 1|| 4.8 5.3 4.6 4.7 4.5 4.8 5.4 2.7 13

I Student’s t copula with 4 degrees of freedom
2 Fitted Student’s t copula: in Genest study the degrees of freedom are fixed, df = 4; in Vuong and Clarke studies the degrees
of freedom are estimated
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Table 4.6: Extended Genest study for data sets of size n = 150, coefficient of association 7 = 0.5
and true model denoted by (I). Genest study: Percentages of rejection
Hy : data comes from model (II) against Hy : data comes from model (I) by various tests for data
from different copula models and number of repetitions N = 10000. Extension: Percentages of
non-rejection Hy : (I) = (II) and its rejection in favor of model (I), denoted by (I)>(II), or in
favor of model (1I), denoted by (I)<(II), by the Vuong and Clarke tests for data from different
copula models and number of repetitions N = 1000. Both tests use Schwarz’s correction.

Copula Test based on statistic Vuong Clarke
= - = = - =
2 2 2 2 2 2
AN I Vv AN I Vv
(In @ Sp T, S B g 4, 12 2 2 |2 2 B
Clayton 5.3 5.0 4.5 4.5 5.1 5.0 5.0 0 2.12
Gumbel 99.9 98.3 985 91.4 99.7  99.5 78.3 || 93.8 6.2 0 734 263 0.3
Frank 95.7 81.2 89.5 74.9 94.4 903 372 || 76.5 235 O 40 56.2 3.8
Clayton
Plackett 95.8 77.7 835 63.5 92.9 90.4 62.0 73 27 0 41.6 57.6 0.8
Normal 93.7 741 75.1 53.7 89.0 85.5 35.2 69.8 30.1 0.1 43.2  46.2 10.6
Student ! || 94.8 78.0 75.0 54.4 87.9 87.6 504 || 52.8 472 0 56.3 39.1 4.6
Clayton 99.6 98.4 99.9 99.0 99.7  99.5 33.4 || 92 8 0 51.6 47.7 0.7
Gumbel 4.6 5.0 4.6 4.9 4.5 4.9 5.0 0.04 12
Frank 39.8 375 424 28.4 52.1 37.0 9.3 335 66.4 0.1 379 485 136
Gumbel
Plackett 29.8 27.2 32.0 23.1 43.2 37.0 21.6 26.5 73.4 0.1 32.6 62 5.4
Normal 18.3 21.1  37.7 27.4 33.7 25.2 4.9 19 81 0 294  49.1 21.5
Student ! || 21.8 21.2 40.6 31.7 29.7  31.9 10.0 || 5.5 91.7 2.8 28.7 43 28.3
Clayton 89.1 84.9 98.6 96.3 86.9 90.4 13.3 76.3 237 0 51.4 459 2.7
Gumbel 63.0 39.6 28.3 15.8 44.1 57.6 9.2 476 524 0 394 41.3 19.3
Frank 4.8 5.1 4.8 5.2 4.8 4.8 5.1 0.08 8.24
Frank
Plackett 8.4 6.3 7.5 6.8 10.5 19.9 12.5 7.2 924 04 28.8 61.3 9.9
Normal 19.9 15.0 22.6 17.3 8.9 14.4 4.8 309 69.1 0 17.2  39.3 435
Student ! 35.1 19.6 37.2 27.2 229 44.3 19.1 234 76.3 0.3 50.5 18.8 30.7
Clayton 839 784 95.5 86.4 79.6 78.0 12.5 75.6 244 0 60.6 39.3 0.1
Gumbel 48.8 28.1 16.4 10.1 29.1 30.4 8.1 438 56.2 0 334 633 3.3
Frank 6.8 7.8 8.2 8.0 10.2 3.9 10.5 12.9 869 0.2 144 805 5.1
Plackett
Plackett 5.0 5.3 5.0 5.1 4.9 5.2 4.7 0.4 5.16
Normal 9.8 11.2 94 7.9 6.9 5.1 12.3 355 645 0 30.6 66.7 2.7
Student * 15.1 11.4 15.1 10.6 74 11.7 7.4 8.3 90.7 1 19.6 54.6 25.8
Clayton 80.0 68.8 90.3 75.2 90.8 88.2 7.8 69.2 308 0 51.6 43.1 5.3
Gumbel 383 17.8 16.1 10.8 42.0 44.4 5.7 28.7 711 0.2 46 31.5 225
Frank 20.2 14.3 174 14.1 13.4 8.5 8.7 10.5 894 0.1 69.6 16.7 13.7
Normal
Plackett 13.2 9.7 6.8 6.6 18.0 22.7 18.1 129 86.8 0.3 30.5 64.3 5.2
Normal 4.9 5.0 4.9 5.2 5.0 5.3 4.8 0.02 20.78
Student ! 8.2 5.3 5.9 5.2 20.4 32.1 8.8 2.8 93.2 4 349 50.8 14.3
Clayton 77.3 70.5  90.6 73.2 84.9 74.9 6.0 743 2577 0 471  51.1 1.8
Gumbel 339 182 173 11.8 30.3 20.9 4.9 39.7 603 0 49 36.1 14.9
Y Frank 269 18.9 293 20.7 24.2 8.1 6.0 40.3 59.7 0 895 5.5 5
Student
Plackett 13.8 11.0 11.6 9.5 10.2 6.9 10.4 32 68 0 64 31.5 4.5
Normal 5.2 6.4 5.9 6.1 9.9 2.9 6.7 46.4 53.6 0 43.8 30.7 25.6
Student || 5.0 4.9 4.9 5.0 5.1 5.2 4.9 1.62 20.74

I Student’s t copula with 4 degrees of freedom
2 Fitted Student’s t copula: in Genest study the degrees of freedom are fixed, df = 4; in Vuong and Clarke studies the degrees
of freedom are estimated
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Table 4.7: Extended Genest study for data sets of size n = 150, coefficient of association 7 = 0.75
and true model denoted by (I). Genest study: Percentages of rejection
Hy : data comes from model (II) against Hy : data comes from model (I) by various tests for data
from different copula models and number of repetitions N = 10000. Extension: Percentages of
non-rejection Hy : (I) = (II) and its rejection in favor of model (I), denoted by (I)>(II), or in
favor of model (II), denoted by (I)<(IL), by the Vuong and Clarke tests for data from different
copula models and number of repetitions N = 1000. Both tests use Schwarz’s correction.

Copula Test based on statistic Vuong Clarke
= = = = - =
2 2 2 2 2 2
AN I Vv AN I Vv
(IT) (D) S, T, SO 7 B g0 4 =2 B2 2 z =2 =
Clayton 5.4 5.0 4.9 5.1 5.1 5.2 5.0 0 0.1
Gumbel 99.9 99.9 99.9 98.7 99.9 99.9  49.1 || 99.3 0.7 0 93.6 6.4 0
Frank 99.1 86.2 97.0 81.2 99.9 99.7  76.7 || 98.6 14 0 84.8 152 0
Clayton
Plackett 99.5 89.1 936 73.6 99.6 99.5 64.1 97.3 2.7 0 41.7 58 0.3
Normal 99.8 91.7 949 7.7 99.5 99.6 23.8 96.3 3.7 0 91.2 8.8 0
Student ' || 99.8 95.1 94.3 79.4 99.0 99.1 18.2 || 91.5 8.5 0 53.3 46.3 04
Clayton 99.9 995 99.9 99.2 99.9 99.9  29.0 || 99.2 0.8 0 91.3 8.7 0
Gumbel 4.5 4.7 4.4 4.6 5.2 4.8 4.9 0.1 6.46
Frank 51.7 454 61.6 38.0 83.8 72.4 75.0 72 28 0 49.9 484 1.7
Gumbel
Plackett 258 20.3 298 17.9 67.8 62.8 39.6 53.8 462 0 271 71 1.9
Normal 12.3  17.0 294 18.6 60.7 53.6 5.9 36.7 633 0 65.2 33.7 1.1
Student ! || 16.1 17.4  32.9 19.8 54.8 52.0 3.9 18 80.8 1.2 5.3 67.6 27.1
Clayton 96.6 91.7 99.6 95.5 99.7 99.7 26.8 89.1 109 O 56.7 43.1 0.2
Gumbel 81.9 43.6 53.2 27.1 59.9 74.2 40.0 744 256 0 39.1 574 35
Frank 4.7 4.7 4.5 4.7 5.0 5.1 5.2 0 2.12
Frank
Plackett 20.6 8.0 15.4 8.8 18.6 36.0 7.9 35.6 642 0.2 52 42 6
Normal 40.9 21.2  40.2 20.5 18.4 30.1 49.8 659 34.1 0 70.2 295 0.3
Student ! 59.4 26.0 56.0 27.9 34.4 58.2 42.3 614 386 0 254 68.7 5.9
Clayton 89.8 86.8 97.7 78.6 99.5 99.1 18.8 87.6 124 0 949 5.1 0
Gumbel 45.8 234 19.1 114 35.5 294 374 || 683 31.7 O 659 34.1 0
Frank 149 154 185 15.3 9.7 3.6 10.9 || 50.6 494 0 207 783 1
Plackett
Plackett 4.7 5.0 4.9 5.1 4.9 5.2 5.2 0.08 2.12
Normal 7.7 129 7.7 6.0 2.5 1.2 44.3 705 295 0 56.7 43.2 0.1
Student! 11.0 123 114 6.7 4.3 3.6 45.2 30.0 69.6 0.1 444 554 0.2
Clayton 91.8 824 97.3 75.4 99.9 99.9 8.2 89.4 106 0 53.5 46.2 0.3
Gumbel 38.5 132 179 10.6 55.5 54.0 4.7 374 622 04 7.8 66.7 25.5
Frank 42.2 229 414 24.6 32.8 20.1 70.2 49.6 504 0 9.9 829 1.8
Normal
Plackett 16.5 7.6 7.0 7.0 23.0 30.6 30.0 35.6 64.3 0.1 36.7 619 14
Normal 4.9 4.4 4.4 4.8 4.9 4.6 5.1 0.02 5.16
Student ! 6.6 4.3 4.9 4.5 12.3 18.3 4.9 3.2 92.7 4.1 35.8 45 19.2
Clayton 90.6 86.6 97.7 78.6 99.9 99.7 109 || 89.8 10.2 0 945 5.5 0
Gumbel 339 15.1 19.2 11.5 48.4 39.3 4.6 435 564 0.1 61.7 35 3.3
. Frank 48.2 30.5 539 32.4 39.3 20.3 81.8 67 33 0 86.3 13.6 0.1
Student?
Plackett 15.7 8.9 11.0 9.7 16.4 17.2 43.5 42.1  57.8 0.1 35 64 1
Normal 4.1 5.7 5.1 6.0 5.0 2.1 5.9 41.4 585 0.1 486 27.1 243
Student 1|| 4.9 4.7 4.8 4.9 5.6 5.3 4.5 1.08 10.56

I Student’s t copula with 4 degrees of freedom
2 Fitted Student’s t copula: in Genest study the degrees of freedom are fixed, df = 4; in Vuong and Clarke studies the degrees
of freedom are estimated
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CHAPTER 4. GOODNESS-OF-FIT TESTS FOR COPULAS

Table 4.10: Simulation study with number of repetitions N = 1000 for goodness-of-fit
testing via score approach based on the Vuong and on the Clarke tests. Both tests use
Schwarz’s correction term. The results were evaluated for different combinations of sample
size n € {150,1000} and Kendall’s coefficient of association 7 € {0.25,0.5,0.75}.

n ‘ test ‘ T ‘ decision ‘ Gauss : Plackett :

Frank

Gumbel

Clayton

Student ! BB1 2: BB73

better 47.8
0.25 | equivalent 25.9
better 75.0 :
Vuong | 0.5 equivalent 15.9
better 68.2
0.75 | equivalent 19.6

worse 12.2

14.0
403

1.6
243

0.0

150 :
better 0.0 :

0.25 | equivalent
better
Clarke | 0.5 equivalent
better
0.75 | equivalent

WOorse

better
0.25 | equivalent
better
Vuong | 0.5 equivalent
better
0.75 | equivalent

WOorse

1000
better

0.25 | equivalent

better
Clarke | 0.5 equivalent

better

0.75 | equivalent

worse 30.8

I Student’s t copula with 4 degrees of freedom
2 BB1 copula with upper tail dependence Ay = 0.3
3 BB7 copula with upper tail dependence Ay = 0.3
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Table 4.11: Simulation study with number of repetitions N = 1000 for goodness-of-fit
testing via score approach based on the Vuong and on the Clarke tests. Both tests use
Akaike’s correction term. The results were evaluated for different combinations of sample
size n = 150 and Kendall’s coefficient of association 7 € {0.25,0.5,0.75}.

n ‘ test ‘ T ‘ decision Gauss = Plackett Frank Gumbel = Clayton Student 1 BB1 2 BB73
better 49.4 14.0 115 670 66.8 1.6 00 15

0.25 | equivalent 25.5 387 415 12.1 15.1 243 69  16.6

worse 25.1 47.3 47.0 20.9 18.1 741 ¢ 93.1 @ 81.9

| better | 754 410 377 701 607 48 70 115

Vuong | 0.5 | equivalent 15.8 25.8 21.8 14.2 20.8 45.1 ¢ 46.4 @ 46.9
worse 8.80 33.2 40.5 15.7 18.5 50.1 @ 46.6  41.6

] better | 689 607 756  60.7 559 0.0 255 25

0.75 | equivalent 18.9 23.2 15.0 25.9 31.9 0.0 : 56.4  54.7

150 worse 12.2 16.1 9.4 13.4 12.7 0.0 : 181 = 428
better 0.0 39.0 1.9 : 51.2 29.7 39.1 0.0 105

0.25 | equivalent 0.0 23.7 25.8 19.3 19.0 15.1 2.1 5.8

worse 100.0 37.3 72.3 29.5 51.3 45.8 © 97.9 = 83.7

| better | 144 335 630 522 194 203 117 155

Clarke | 0.5 | equivalent 11.6 11.4 23.9 20.1 16.0 22.8 © 20.0 11.0

worse 74.0 55.1 13.0 27.7 34.6 479 © 683 735

| better | 691 393 393 552 80 00 119 117

0.75 | equivalent 16.3 11.9 35.5 17.3 8.3 0.0 © 220 8.0

worse 14.6 48.8 25.2 27.5 13.7 100 : 66.1  80.3

I Student’s t copula with 4 degrees of freedom
2 BB1 copula with upper tail dependence Ay = 0.3
3 BB7 copula with upper tail dependence Ay = 0.3



Chapter 5

Application: Multivariate modeling of
international European stock market
index returns

In this chapter we simulate future returns for FINANCIAL MARKET INDICES data set by
applying TS-PAIR-COPULA approach. At first, we model conditional mean and volatil-
ity via Time Series models. We see, that the GARCH(1,1) models with skewed standard
t distribution for error terms are most successful at modeling the serial correlation in the
conditional mean and the conditional variance. We perform the further analysis on the
transformed standardized residuals and use them as an input data for pair-copula con-
struction with copulas from different families. The structure of the pair-copula decomposi-
tion of joint density is specified by applying a D-vine rule. We estimate the starting values
of the D-vine parameters sequentially using the hierarchical algorithm in Section 3.6.2 that
is based on the h-functions. Additionally, after fitting the D-vine, we validate the bivariate
distribution of the variable pairs, which were not explicitly modeled in the PCC. Next,
we simulate scenarios for future returns and investigate its time series properties. Finally,
we validate our results by comparison the dependence structure within the simulated and
the true data.

We introduce some notions that will be used through this chapter. We denote by n the
number of observations in each return time series and ¢ = 1,...,n. Further, d means the
dimension of the FINANCIAL MARKET INDICES data set, i.e. d=10and j =1,...,d.

91
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5.1 Univariate modeling of margins using GARCH ap-
proach

In this section, we apply the TIME SERIES APPROACH discussed in Chapter 2 to model
marginal distributions. According to Table 2.1 in Section 2.6.1 “Order of ARMA Models”,
ACF and PACF provide graphical tools that can be useful when detecting an appropriate
order of an ARMA model. Sample ACF and PACF of 10 return series are given in Fig-
ure 5.1. As we can see, neither ACF nor PACF cuts off after any lag. On the basis of these
plots, it is difficult to guess the correct order of the observed processes. We have fitted four
models for each return series from the data set FINANCIAL MARKET INDICES, namely
GARCH(1,1), AR(1)-GARCH(1,1), MA(1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1).
In Chapter 1, it was discovered that the return series itself are non-normally distributed
because of high kurtosis and non-zero skewness. So, it is reasonable to assume that the
error terms in GARCH models follow a standard skewed t distribution. The term stan-
dard means that the distribution has zero mean and unit variance. The full summaries of
univariate TS models are provided in Table 5.2. This table contains estimated model pa-
rameters, model checking results and goodness-of-fit measures. Graphical tools of residual
analysis such a QQ-plot and time series plot of standardized residuals plus ACF of stan-
dardized and squared standardized residuals are presented in Figures 5.2 and 5.3. Model
checking techniques used here were explicitly described in Chapter 2 in Section 2.8 “An
tllustrative example”.

The next step after the model fitting is its diagnostics. It implies the residual analysis as
well as model comparison. In practice, we are interested in a model with smallest number of
parameters. If our model assumptions are correct, the series of standardized residuals have
to be independently identical distributed. According to the Akaike Information Criterion
given in Table 5.2, none of the extended models AR-GARCH, MA-GARCH or ARMA-
GARCH fit the data better than the simplest GARCH(1,1) model: the AICs in extended
models are nearly equal to the AICs in the GARCH models for all indices. The other
goodness-of-fit criteria such as BIC and SIC yield the same conclusion. Thus, we restrict
our following analysis only to the GARCH models without any ARMA extension.

Next, we are interested in a distribution of standardized residuals of the univariate TS
models, which we assumed to follow standard skewed t distribution. According to the
p-values of Shapiro- and Jarque-Bera statistics presented in Table 5.2, the null hypothesis
of normality can be rejected for every significance level. The QQ-plots make it possible to
judge correctness of innovation distributions. For AEX, BVLG, FTMIB and OMXSPI
residuals the QQ-points lie approximately on a QQ-line that validates the model assump-
tion of €; ~ £;/3". For residual series of another indices, there are small deviations on the
upper and lower tails. However, these discrepancies are not of a high degree. Additionally,
the shape and skew parameters, v and A, are significant in all 10 GARCH models. Hence,
we accept a standard skewed t distribution ¢;/5* for error terms as correct.
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Another point of interest is whether any correlations in the residual series are present.
The sample autocorrelation functions for standardized residuals as well as the sample
autocorrelation functions for squared standardized residuals show few significant peaks
till lag 30. If we study these peaks outside the confidence band more precisely, we see
that the deviations from the upper bound are low. Moreover, the standardized residuals
are not only uncorrelated but also independent until lag 15 according to the p-values of
Q(15) and Q*(15) statistics of Ljung-Box test.

Further, points on the time series plots of the standardized residuals fluctuate randomly
about zero line and do not show any pattern. Estimated means and standard deviations
of all residual series are close to 0 and 1 respectively (see Table 5.2). So, residuals seem to
be independent identical distributed. It is also remarkable by virtue of the great p-values
of the T'R? statistics that there are no ARCH effects in the series of standardized residuals
(see Table 5.2).

Summarizing the conclusions presented above, we assume the GARCH(1,1) models with
skewed Student’s t innovations to be suitable for modeling the time-changing volatility of
the univariate return series.

5.2 Analysing dependence structure within standard-
ized residuals pairs of the fitted GARCH models

As mentioned in Chapter 3, the rank based dependence measures are invariant under
monotone increasing transformations. Such dependence measures are Kendall’s 7, Chi-
and K-plots. Pair-copula constructions requires as input data, which is independently
identically distributed on the unit interval. So, the standardized residuals &; should be
transformed into the interval [0, 1] before we start the estimation procedure. We do it by
applying estimated cumulative distribution functions ﬁb]., 7 =1,...,d to each residual
sequence. ng is assumed distribution of error terms in time series models. Tts parameters
will be estimated in a GARCH estimation procedure. Thereby, we become sequences
u;j ~ U0, 1], where

The (empirical) cumulative distribution function is a monotone increasing mapping. Hence,
associations described by the rank based dependence measures are as aforesaid the same
for the original data vectors €; as well as for the transformed residuals u;, j =1,...,d.

Figure 5.4 represents scatter and empirical contour plots of all possible pairs u;, ~ uj,
with ji,jo € {1,...,d} and j; # j2, a total of 45 cases. Chi- and K-plots are displayed
on Figure 5.5 on its upper and lower panel respectively. Figure 5.7 illustrates estimated
Kendall’s 7 correlation matrix in the form of an image matrix. Each cell of the image plot
stands for Kendall’s correlation coefficient and is colored. A dark color marks a compara-
tively strong dependence. And vice versa, a bright color stands for the dependence close
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to 0. As we can see from Chi- and Kendall plots, there are exclusive positive dependences
of different degrees between the pairs u;, j = 1,...,d. The empirical Kendall’s 7s confirm
this fact.

It is also remarkable, that STOXXER transformed residuals show a stronger dependence
with another data vectors as any other index. It can be explained by its calculation
method. The STOXXER stock index is based on the most stable European stocks, that are
also included in the calculation formula of national stock indices. The highest dependency
is observed between the residuals of FCHI and STOXXER whose Kendall’s 7 is equal
to 0.88. The two pairs BVLG vs. ATX and BVLG vs. OMXC20 are characterized by
the lowest dependency with corresponding Kendall’s 7 equal to 0.43.

By modeling financial time series, we are also interested in co-movement of univariate re-
turns. As mentioned in Chapter 3, tail dependence and particularly lower tail dependence
is an important feature of financial return series. To decide whether there are tail depen-
dences between the pairs of transformed standardized residuals, we look at the Chi-plots.
This methodology is extensively described in Section 3.4.4. If points of Chi-plot do not
return to the horizontal zero line for lambda values close to 1, it indicates a presence of
tail dependence. We see the presence of tail dependence for each pair from the Chi-plots
presented in Figure 5.5. The kind of such dependence, lower or upper one, is not clear.
So, we have to look at the Chi-plot that were computed separately for the data from
right upper and left lower corners of bivariate scatter plots. Figure 5.6 makes it clear that
lower tail dependence is presented for all data pairs. In contrast, upper tail dependence is
also observed, but not for all data pairs. For example, there is no upper tail dependence
between OMXC20 and any other data vector including STOXXER.

5.3 D-vine identification

For a D-vine construction, we need to choose only an order of 10 variables for the first
D-vine tree. It determines the other trees on the D-vine. There are 12! possible orders of
the portfolio index set. We constrain our analysis only to one D-vine that we determine
using the rule put strongest correlation on top for the first tree. We do it by looking at
the image plot of the estimated Kendall’s 7 correlation matrix of the transformed data
uj, 7 = 1...d. We build a first tree of our D-vine by sequentially adding an edge that
corresponds to the strongest possible correlation of all correlations that are left without
violating the D-vine rules. As first we find an index pair with the strongest correlations,
it is
4 —10

with Kendall’s correlation 7 = 0.88. On the next step, we determine further index that is
characterized by strongest correlation either with index 10 or with index 4. Such one is 6
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whose correlation with 10 is 7 = 0.85. So, we extend our sequence to
4—-10—-6.

The next strongest correlated pair one part of which is either 4 or 6 is 5 — 4 with cor-
responding empirical Kendall’s 7 = 0.79. Hence, the tree will be upgraded by the new
root

5—4—-10—-6.

Continuing this procedure, we get a resulting sequence that is a first tree of our D-vine
2-9-5-4-10—-6—-1-8—-7-3. (5.2)

Finally, the first tree (5.2) determines completely the whole structure of the D-vine that
is illustrated on Figure 5.8.

5.4 D-vine estimation

5.4.1 Sequential estimation

In this section, we estimate pair-copula parameters of the D-vine sequentially by applying
the algorithm described in Section 3.6.2 on the page 59. The formulas for determining
conditional data on each D-vine tree are given in Appendix E. For selection of the ap-
propriate copula for each building block, we combine following techniques which were
described in the theoretical chapters:

Scatter plot of the data

Scatter plot of the data with standard normal margins

Empirical contour plot of the data with standard normal margins
Chi-plots for the upper and lower tails

Empirical coefficients of the lower and upper tail dependence

Score test based on the Vuong statistic with the Schwarz’s correction.

Selecting procedures containing these steps for each building block of all D-vine trees are
given in Appendix F. We illustrate this approach on the two examples given below. Data
in the both examples comes from the first D-vine tree.

GDAXI ~ AEX: transformed standardized residuals of univariate time series models
for indices GDAXI and AEX, Figure 5.9. As we can see, the score method based
on the Vuong comparison prefers a Student copula. The tails on both scatter plots
are symmetrical. Pursuant to the Chi-plots for the lower and upper tails, we can
conclude a presence of the symmetrical middle dependences in both tails. Tail de-
pendences estimated empirically according to the formulas (3.9)-(3.10) are nearly
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equal. Note, these estimators for A\ and A are not stable, they depend on the
sample size and have a tendency to overestimation. Here, we are not interested in
absolute values of estimators but on the difference between them. Additionally, we
calculate tail dependences from estimated Student and BB1 models and compare
them with the empirical ones. The Student as well as the BB1 copula seems to re-
produce the difference between A\, and Ay similarly adequately. Finally, we choose
the Student copula. Our decision does not contradict conclusions above.

OMXC20 ~ BVLG: transformed standardized residuals of univariate time series mod-
els for indices OMXC20 and BVLG, Figure 5.10. We choose an appropriate copula
similar to the previous example. At first, the score test favor the BB1 copula over
all others. Looking at the scatter and empirical contour plots, one can detect asym-
metrical tail dependences. This fact will be also confirmed by the Chi-plots. There is
no upper tail dependence but clearly depicted lower tail dependence. The estimated
lower tail dependence is nearly twice as big as the upper one. This fact can not be
explained by the symmetrical Student copula, but by the BB1 copula. So, we select
the BB1 model as the most appropriate one.

5.4.2 Joint MLE estimation

Finally, we use the parameter values estimated sequentially as input for the optimiza-
tion function. In this step, the log-likelihood function of the pair-copula decomposition
determined by the 10-dimensional D-vine will be maximized by joint optimization of all
parameters. Table 5.3 represents starting values (column SEQ) and resulting parameter
values after optimization procedure (column MLE). As we can see, there are inconsider-
able differences between SEQ and MLE estimations. Additionally, we fit D-vine with all
Gaussian blocks to our data.

We apply the Vuong test to examine whether the MLE model is better than the SEQ
model. Note, we do not need any correction in this case because of the same number of
parameters in both models. According to the value of the test statistic —1.18 and it’s
p-value 0.23 when testing the null hypothesis M LE = SEQ, we can not reject the null
hypothesis of equivalence. So, if one does not possess any procedure for joint estimation
of D-vine, the sequential estimation provides right well results. Finally, we state that
both mixed D-vine models, MLE and SEQ, fit the data better than the D-vine with all
Gaussian blocks.

5.5 Validation results

Next, it is interesting whether the dependence structure of the new data, sampled from
the estimated pair-copula construction is similar to the dependence structure within the
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Table 5.1: Testing the null hypothesis about equivalence of models (I) and (II) via Vuong test
without any correction term in cases MLE vs. SEQ or SEQ vs. MLE and with Akaike’s and
with Schwarz’s correction in other cases

(II) SEQ (II) D-vine with all GAUSS blocks

none correction Schwarz’s correction Akaike’s correction

stat. p-val. decision | stat. p-val. decision | stat. p-val. decision

(I) MLE | —1.18 023 (I)=(II) | 2.99 0.003 (I)>(1) | 3.72 0 (D>
(I) SEQ | 1.18 023 (D= | 3.19 0001 (I)>1I) | 3.92 0 (I)=(1)

transformed standardized residuals. Note, not all variable pairs were explicitly modeled in
the pair-copula decomposition. To investigate the bivariate distribution of the simulated
data, we

(i) generate a set of N samples of length n from the pair-copula decomposed model
using estimated parameters

(ii) compare simulated variables with the observed data according to average values of
following statistics: the sample Kendall’s 7, empirical coefficients of the lower and
upper tail dependences Az, and S\U.

Table 5.4 presents the results of this comparison with the number of random samples
N = 2000 each of the length n = 855. The diagonal entries of this table correspond
to the data pairs which were modeled directly within the pair-copula construction. All
other data pairs were not explicitly modeled. As we can see from this table, all directly
modeled dependences are captured quite well. The data pairs with indirectly modeled
dependences shows features similar to the observed data either. Based on this study, we
state that the Kendall’s 7 are reproduced excellently for all index pairs. The coefficients
of tail dependence are reflected for the data pairs from the main diagonal of Table 5.4
quite well and for the remaining data pairs a little worse.

5.6 Simulation of future returns and validation results

For the simulation of the future returns, we use the second part of the algorithm described
in Section 3.7. Based on the one-step-ahead forecasting, we simulate N = 2000 scenarios
of length 50 for each index. Multivariate data sets created on this way feature the same
dependence structure as the data from the past and should have the same time series
properties as the observed return series. Sets of time series plots of simulated future
returns are displayed by Figure 5.11 separately for each index.

We validate the time series properties of simulated future returns and summarize results in
Table 5.5. Here, we compute such descriptive statistics as sample mean, sample standard
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deviation, sample kurtosis and sample skewness for the true data and evaluate its average
values over the all of the scenarios for each stock market index separately. As we can see,
the standard deviation, kurtosis ans skewness is reproduced by the univariate series quite
well. There are little differences in the reproduction of the expected mean: the expectation
of the simulated returns is a little bit higher as the expectation of test data.

Finally, we are interested whether the dependence structure within the simulated returns
is similar to the dependence structure within the observed future returns. For validation
we use the test data and simulated scenarios and sum up the results in Table 5.6. We
calculate Kendall’s 7 and tail dependence coefficients empirically for all possible pairs of
the test data for the validation. Additionally, we evaluate average values of these statistics
over all of the scenarios for the same pairs of the simulated data. Note, the calculation
of empirical estimators for 7, Ay and Ay is based on the small samples of the length 50.
Hence, the estimators may be deviant from the true values. As we can see, the dependence
structure within the simulated data is reproduced quite well.
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Figure 5.2: Residual analysis of the GARCH(1,1) models for daily returns of stock market
indexes with assumption of standardized skewed t innovations € ~ tffﬁ”d
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Figure 5.3: Residual analysis of the GARCH(1,1) models for daily returns of stock market
indexes with assumption of standardized skewed t innovations & ~ t;‘jtf\md
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CHAPTER 5. APPLICATION: FINANCIAL MARKET INDICES

Figure 5.7: Visualization of the empirical Kendall’s 7 correlation matrix between all pairs.

(1) AEX 0.53 0.47 0.52
@atx 4 0.53 0.43 0.53 0.51 0.53 0.46 0.52 0.52 0.57
@BvG - 0.47 0.43 0.48 0.45 0.47 0.43 0.48 0.48 0.51

(4) FCHI 0.53 0.48

(5) FTMIB 0.51 0.45

(6) GDAXI 0.53 0.47

(7) OMXC20 0.52 0.46 0.43
(8) OMXSPI 0.52 0.48
(9) smsl 0.52 0.48

(10) STOXXER 0.57 0.51

(1) AEX (2) ATX (3) BVLG (4) FCHI (5) FTMIB (6) GDAXI (7) OMXC20  (8) OMXSPI (9)SMSI  (10) STOXXER

108



109

CHAPTER 5. APPLICATION: FINANCIAL MARKET INDICES

»bw,ﬁbovoﬁ,wﬁm,m_m,mb

L8 T90T' v '¢le’6 P 8 T'9°0T '7°¢'6lL'T

hw{@,o_{ﬁmh@Q w;nqo_{mdtﬁb

L8 T 90T He Ce———8T' 90T FGlL 66— T19°01'7'G'6l8°C

“dapuy

nw;c;?ﬁb w;c;m:mb ;S«szm,o

LRTO0IE T g8 T 90T VL Gy — 1901 7686y 90T 7'G'6lTC

(QiTiqt ¢ TianT Bl ¢ 00Tvi0lt CrénioialTe
N.wﬁ.ooimvo mﬁwoﬁinmg Hw0q¢2wmo wOAWm@?mQ

L8 T 0T g8 T 90IL T T 90T P8 Ce———9 0T 7 'CT'6 ————017'G'6l9°C

dopuy dopuy dopuy

. . n,wg,A@,mQD - . mi@,o:ﬁwb O . T'9'0T'FI8"C &) . . . 9'0T'vglT’ 6 _ . ) O .
L8TE 0 ——ms 8 T L0l 19018 Y g — 9 0L F|T G — 0L 7°Cl9°6 s 7' '6l0T°C
. . ﬁw,:m,@b . . w%ghoﬁb . . H,@d:w:ﬁo . . w,oﬁidmb . . E,w,ms,ab . . wﬁii&b . .
Lsle I ——Fmp —8 L 9——Fmp I 9/8 0T s — 9 01T Ve—ms — 01 719 G ¥ clot 6 —mp — S 6% C
L'8leT 8°T[L9 T'9l8‘01 g‘otlty 01'vl9‘g v'slor‘e g6lv'e
b . 9] U U D 0D D
LE 8 8IL T o 11879 oy 9T 0T = 0119 o PI0T G 77— GlV 6y — 616 T
. n,mﬁo . w_zb . :wdb . 2180 . O:Q«D . iodmb . ﬁ;b . m_m,mb .
m N. SSNDE) N.. w SSNDL) w 1 ssnog) I @ rad @ OH SSND L) OH Jw uapnis W m 199 m @ SSNDE) @ 4
M.NQ »,w@ wJD 1@@ w,oHQ 2{@ 7'6n m,mo Q,ND
m rdd N rdad w rdd ._H Juapmy S © Juapmy S O .ﬁ Juapmy S A.W Juapmy S m rdd @ rdd N

“po1q Surpymq endoo-1red

' )M pajeroosse o Aew 98pe Yoo (S001) § PUR SO[QRIIRA ()T [HAM S[ENPISSI POZIPILPUR)S POWIIOJSURI) I0] dUIA-(] ¥ :8°G 9INSJI g

167,

S 8L

DA,

197,

AT

VL

CE€LL

‘CL

L



CHAPTER 5. APPLICATION: FINANCIAL MARKET INDICES

X.LAEX

X3.BVLG

Figure 5.9: 1ST D-VINE TREE: choosing copula for building block Cs 1

scatter plot, uniform margins

scatter plot, stan. normal margins

GDAXI ~ AEX

contour plot, stand. normal margins

Chi-plot for lower tail

Chi-plot for upper tail
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Figure 5.10: 15T D-VINE TREE: choosing copula for building block C7 3
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Table 5.3: Estimated parameters for 10-dimensional D-vine: column SEQ) contains estimations
obtained sequentially and column MLE contains estimations obtained by Maximum-likelihood

optimization.
block family par. SEQ MLE block family par. SEQ MLE
0 0.66  0.69 Cs409,5 Gauss 7 0.15  0.16
Cs9 BB1 e e é rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
1) 1.53 1.52 0.31 0.31
"""""""""""""""" Y Co,10/5,4 BB1 .
0 0.73 0.76 1) 1.36 1.35
Cy 5 BB1 I
) 2.10 2.08 Cs,6/4,10 Gauss 7 —0.15  p0.18
1 4.69 5.07 C Indep
Cs.4 Student LS
& 0.91 0.91 010,8\6,1 GELUSS T 0.39 0.40
U 6.91 7.10 C Indep
04710 Student B A
T 0.98 0.98 Cl,3|8,7 Gauss 7 0.19 0.19
1% 5.63 6.74 C Gauss 7 0.38 0.37
Cho,6 Student B e
A 0.97 0.97 09,6|5,4,10 Gauss 7 —0.28 —0.28
1 5.13 7.15 Cs 14 Gauss 7 —-0.10 -0.11
Cs 1 Student 0 L o
7 0.90 0.91 C4,8|10,6,1 Gauss 7 —0.10 —0.10
4 077  0.76 C Gauss 7 019  0.18
c.s BRI 0 0T 0T C wo7ers o Gaws 7019 0.1
) 1.87 1.89 Cé,3)1,8,7 Gauss 7 0.12 0.11
0 0.81  0.76 C Gauss 7 —0.24  —0.20
Cs 7 BB1 ’ LDZBI95,400 e e T
) 1.46 1.49 09,1|5,4,1O,6 Gauss 7 —0.27 —0.28
6 0.75 0.73 Cs Gauss 7 —-0.09 —-0.09
Crs BB1 - 814,10,6,1 e e T
1) 1.26 1.26 C4,7|10,6,1,8 Gauss 7 —0.11 —0.11
0275‘9 Gauss 7 0.26 0.26 01073\6,1,8,7 Gauss 7 0.19 0.19
0 0.37  0.40 C Indep.
Cous BBL Coapsass - Ind P
1) 1.30 1.29 Cgvg|5747107671 Indep
1 8.40 6.94 C Inde
05710|4 Student 577|4’106’1’8 ,,,,,,,,,,,,,,,,,,,, D
7 0.53 0.53 O4,3|10,6,178,7 Gauss 7 —0.10 —-0.10
C4,6\10 Gauss 7 —0.14 —0.17 02,8|9,5,4,10,6,1 Gauss 7 0.07 0.09
6 0.49  0.50 Co.715 Gauss 7 —0.08 —0.06
Crons BBL Comsaroprs  Gaus 7o —0.08  —0.0¢
) 1.37 1.37 O5,3|4,10,6,1,8,7 Gauss 7 —0.08 —0.07
06,8\1 Gauss 7 0.39 0.38 02,7|975,4,10,6,1,8 Gauss 7 0.09 0.08
Ci7s  Gauss 7 0.28 0.28 C9.315,4,10,6,1,8,7 Indep. 7

Cssr Gauss 7 043 041 Ca309,5,4,10,6,1,8,7 Gauss 7 0.09  0.09
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Figure 5.11: Sets of simulated future returns calculated using one step ahead forecasting
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Table 5.5: Validation time series properties of simulated future returns. We compare the
descriptive statistics (sample mean, sample standard deviation, sample kurtosis and sample
skewness) of the observed test data to its average values over all of the scenarios

index data mean st.deviation kurtosis skewness
ATX observed 0.42 1.96 0.17 -0.32
simulated 0.00 1.99 0.78 -0.21
observed 0.40 1.33 -0.27 -0.43
SMSI
simulated -0.01 1.41 0.38 -0.17
FTMIB observed 0.31 1.63 -0.04 -0.43
simulated 0.00 1.70 0.39 -0.25
observed 0.27 1.44 -0.40 -0.24
FCHI
simulated 0.00 1.48 0.34 -0.19
b d . 1. -0. -0.2
STOXXER observe 0.30 37 0.30 0.28
simulated 0.00 1.41 0.82 -0.14
GDAXI observed 0.25 1.59 -0.38 -0.27
simulated 0.00 1.63 0.57 -0.22
AEX observed 0.32 1.44 -0.25 -0.32
simulated 0.01 1.53 0.23 -0.34
observed 0.43 2.13 -0.36 -0.23
OMXSPI
simulated -0.01 2.19 0.37 -0.26
OMXC20 observed 0.27 1.42 -0.52 0.04
simulated -0.01 1.50 0.34 -0.24
observed 0.21 0.87 -0.06 -0.43
BVLG
simulated 0.00 0.99 0.61 -0.30
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Conclusion

In this thesis, we modeled and forecasted the multivariate return series of 10 Furopean
stock market indices using TIME SERIES PAIR-COPULA APPROACH. At first, we applied
the (ARMA-) GARCH filter with the standard skewed Students’s t innovations to get the
i.i.d. sequences of the univariate returns. We saw that the simple GARCH(1,1) models
fit data as good as the extended AR-GARCH, MA-GARCH or ARMA-GARCH models.
Next, we transformed the standardized residuals of the GARCH models to unit inter-
vals by applying the cumulative distribution function of the standard skewed Student’s
t distribution. The Probability Integral Transformation Theorem confirms this method-
ical approach. At last, we used the transformed residuals to estimate parameters of the
pair-copula construction, the structure of which was determined by the 10-dimensional
D-vine.

In this thesis, we also studied the distribution free Vuong and Clarke tests as tool of
bivariate goodness-of-fit testing for copulas. We satisfied the suitability of these tests for
copula selection in the simulation study which were executed for three different choices of
Kendall’s tau, for large and small sample sizes separately. We saw that the error rate of
the Clarke test is much more higher than the error rate of the Vuong test. Moreover, the
accuracy of the both tests depends on the sample length and the association degree mea-
sured in Kendal’s 7. Generally, the correctness of the Vuong as well as of the Clarke test
increases when Kendall’s 7 and sample length rise. Additionally, we assessed that results
of the both tests depend on the KLIC distance between two copulas to be compared. This
relationship is for the Vuong test stronger than for the Clarke test. It can be explained
by the fact that the Vuong statistic is based on the KLIC distance, whereas the Clarke
statistic is based on the transformed KLIC distance. Finally, we compared our tests with
the common goodness-of-fit tests presented by Genest, Rémillard, and Beaudoin (2009)
and found out that the Vuong test is more efficient.

Further, we generalized bivariate Vuong and Clarke tests to enable the comparison of more
than two models. We call this extension score test or scoring. We validated our approach
by simulation study which we performed for three different choices of Kendall’s 7, for
large and small sample sizes separately. The scoring accuracy depends on the sample size
as well as on the Kendall’s 7. The error rate of the score test based on the Vuong statistic
is much more lower than the error rate of the score test based on the Clarke statistic.
Moreover, the sets of copulas to be compared impact the results of the score test strongly.
Hence, we recommend to leave out similar copulas classes before starting the selecting
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procedure. For example, if there are no significant distinctions between modeling the data
with Gaussian or with Frank copula, one of them should be leaved out.

For choosing an appropriate copula for each building block of the D-vine, we combine
following techniques: scatter plots and empirical contour plots of the transformed stan-
dardized residuals with the uniform and standard normal margins; score test based on
the Vuong statistic with Schwarz’s correction; the empirical Kendall’s 7 and empirical
coefficients of lower and upper tail dependences as well as coefficients of lower and upper
tail dependences of estimated Student and BB1 copulas. As it is well-known, the empiri-
cal estimators of the tail dependence coefficients are not stable, so we were interested on
the ratio between Ay and A;, but not on its absolute values. The combination of these
methodologies turns out to be a sufficient tool for copula selection.

Finally, we simulated future returns of each stock market index by applying the TIME SE-
RIES PAIR-COPULA APPROACH backwards. Firstly, we sampled data from the estimated
D-vine and transformed this data to the quasi error sequences by applying the inverse of
the cumulative distribution function. We estimated the D-vine parameters in two ways:
sequentially (SEQ) and by using the MLE optimization procedure (MLE). Based on the
Voung test, we ascertained that the both models were equivalent to each other and the
both fitted the data better than a simple D-vine with all Gaussian blocks. The sequences of
error terms obtained in a such way incorporate the dependence structure within the future
data. Secondly, we forecasted future returns using parameters of the GARCH models and
simulated error terms. In conclusion, we validated our results and found out that scenar-
ios of the future returns reproduce the times series properties as well as the dependences
within the true data quite well.
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Appendix A

Notations

notation definition/meaning

X random variable

x realization of random variable X

X X = (Xy,...,X,) random vector

x x = (z1,...,x,) realization of random variable X
n mean vector of X

Y variance-covariance matrix of X

n length of sample size, length of random vector
d dimension

t, t; time point index

fe) density function

F() distribution function

fx() marginal density of X

fr() marginal density of YV

fxv () joint density function of random variables X and Y
Fx () marginal distribution function of X

Fy () marginal distribution function of YV

Fxy(+) joint distribution function of random variables X and Y
R(z;) rank of X; in vector X

Co(-,") copula with parameter vector

co(+y-) copula density with parameter vector 8

he(-, ) h-function wit parameter vector 6

xilx; value of z; given known value of z;

flxilzj) conditional density of X; given X

F(xi|zj) conditional distribution function of X; given X
E[], p expectation

Var(-), o2 variance

o standard deviation

z sample mean

v skewness

K kurtosis

h distance between two time points
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~v(-, ) autocovariance function

() autocorrelation function

~(+) autocovariance function of stationary time series

(%) autocorrelation function of stationary time series

r Pearson’s correlation, coefficient of linear dependence

P Spearman’s coefficient of monotonic dependence

T Kendall’s coefficient of monotonic dependence

AU coefficient of upper tail dependence

AL coefficient of lower tail dependence

B estimation of -

{} stochastic process or sequence of - values

{e:} white noise sequence

ii.d. identical independent distributed

AR(p) autoregressive model of order p

MA(q) moving average model of order ¢

ARM A(p, q) autoregressive moving average model of order (p, q)
ARCH (m) autoregressive conditionally heteroscedastic model of order m
GARCH (m,r) generalized autoregressive conditionally heteroscedastic model of order (m,r)
&t raw raw residuals

&t standardizes residuals

w Shapiro-Wilk test statistic

X2 Jarque-Bera test statistic

Q) Ljung-Box test statistic

Q?(") Ljung-Box test statistic for squared values

TR? Engle’s LM ARCH test statistic

X~ X follows distribution -

Ula,b] uniform distribution on [a, b]

N(0,1) standard normal distribution

o(+) distribution function of standard normal distribution
N(p,0?) normal distribution with parameters y and o2
SN(&,w?,\) skewed normal distribution with parameters &, w? and \
SN(&,w?, N\)*tard  standard skewed normal distribution with parameters &, w? and A
t, Student’s t distribution with parameter v

gstand standard Student’s t distribution with parameter v

tua skewed Student’s t distribution with parameters v and A
toiqnd standard skewed Student’s t distribution with parameters v and A
Na(p, X) multivariate normal distribution

typs multivariate Student’s t distribution

() Gamma function

B(-,-) Beta function

Dy() k-th Debye function

R real numbers

KLIC Kullback-Leibler Information Criterion
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R packages

copula

timeSeries

mi

fGarch

mlCopulaSelection

fgac

CDVineMLE

xtable

timeDate

FinTS

QRM1ib

Fitting, sampling and log-likelihood estimation of some most common parametric
copula families as Gauss, Student, Clayton, Gumbel, Plackett and Frank. Note,
fitting of the Student copula is not stable. Reference: Yan (2007)

Handling with time series, evaluate returns. Reference: Wuertz and Chalabi
(2009).

Handling with missing values. Reference: Gelman, Hill, Yajima, Su, and Pittau
(2009).

Fitting and model checking of (ARMA-) GARCH models, ACF and PACF. Ref-
erence: Wuertz, with contribution from Michal Miklovic, Boudt, Chausse, et al.
(2009).

Log-likelihood estimation of BB1 and BB7 copulas. Reference: Garcia and
Gonzalez-Lopez (2006).

Log-likelihood estimation of BB1 and BB7 copulas. Reference: Gonzalez-Lopez
(2009).

Maximum-Likelihoods estimation of D- and C-Vine (intern package of TU
Miinchen). Reference: Almeida and Schepsmeier (2010).

Functions for converting an R table in a LaTex code. Reference: Dahl (2009)

Handling with time series, kurtosis and skewness. Reference: Wuertz, with con-
tributions from Martin Maechler, Byers, , et al. (2009).

Handling with time series, Lagrange Multiplier (LM) test for autoregressive con-
ditional heteroscedasticity (ARCH) that will be used in checking of (ARMA-)
GARCH models. Reference: Graves (2009).

Fitting, sampling and log-likelihood functions of some most common parametric

copula families. Note, fitting of the Student copula is more efficient as in the
package copula. Reference: for S-Plus original; R port by Scott Ulman (2008).
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Statistical distributions used

C.1 Univariate distributions

C.1.1 Normal distribution

Definition C.1 A continuous random variable X is said to have a Normal distribution, denoted by
X ~ N(u,0?), with location parameter i € R and scale parameter o > 0 if its density function has a
form

1 (& — )’
IN (o) () = g2 exp {— 952 for z€eR.

For expectation and variance of X ~ A (u,0?), it holds
E[X]=p and Var(X)=o02.

The normal distribution with parameters p = 0 and o = 1 is called standard normal distribution and will
be defined by A(0,1). It has a density function

1 2
fN(O,l)(x) = \/ﬁ

e 2 .

C.1.2 Skewed normal distribution

The skewed normal distribution was introduces by Azzalini (1985, 1986). It belongs to a parametric
class of probability distributions and extends the normal distribution by an additional parameter A that
regulates the skewness, allowing for a continuous variation from normality to non-normality.

Definition C.2 A continuous random variable X is said to follow a skewed normal distribution,
denoted by X ~ SN (€,w?, \), with location parameter ¢ € R, scale parameter w > 0 and skew parameter
A € R if its density function can be expressed as

f (2) I _e=g? /,\(xj) -=£ dt f eR
xT) = e 2w e or <« .
SN (&,w2,\) o -
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For expectation and variance of X ~ SN (&, w?, \), it holds

5 22
EX] =&+ wA and Var(X)=w (1 )

2
(14 \2) IREY)
The skewed normal distribution is called standard skewed normal if E[X] = 0 and Var(z) = 1 and will
be denoted by SN(&,w?, A\)*te". Figure C.1 (panel (a)) give an impression about differences between
standard normal and skewed standard normal distribution plotted for three values of skew parameter,
A€ {1.5,0.5,1.1}. As we ca see, the density curve is shifted to the left for A > 1 and to the right for
A < 1, and for A — 1 it gets a symmetric form.

C.1.3 Student’s t distribution

In some practical situations, observed data has some additional properties that can not be captured
by the normal distribution. The Student’s t distribution is more suitable for modeling such data. This
distribution has heavier tails, i.e. it allows a higher probability for extreme values than the normal
distribution.

Definition C.3 A continuous random variable X is said to have a Student’s t distribution, denoted
by X ~t,, with the number of degrees of freedom v > 0 if its density function can be written in form

v+1

T (4) 1 N
fi, (x) = o (B (1 + ) for zeR,
(%) v
+oo
where I'(z) = [ t*“te~'dt is a Gamma function.
0

Parameter v is also called a shape parameter. For v — oo the t distribution collapses to the normal case.
For expectation and variance of X ~ t,, it holds

EX]=0forv >0 and Var(X)= forv >2.

v
v—2
Let X ~t,, v > 2, then X = X4/ VT_2 has a standard Student’s t distribution, i.e. X ~ tstend | with unit
variance, zero mean and probability function

vl
ftff‘md (j) = FI‘((Z))

5.2 T2
1
(1)
Panel (b) of Figure C.1 displays differences between standard normal and standard Student’s t distribu-

tions plotted for three values of skew parameter, v € {3,5,10}. As we can see, the density curves of t
distribution are more spiky as in the standard normal case and have thicker tails.

=

(r(v = 1))~

C.1.4 Skewed Student’s t distribution

The skewed Student’s t distribution was first introduces by Hansen (1994). It has an additional parameter
A that allows to form asymmetry in the skewed t distribution. A presentation here follows Jondeau, Poon,
and Rockinger (2007, pp. 160-162).
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Figure C.1: Panel (a): Density of the univariate standard skewed normal distribution for

A € {1.5,0.5,1.1} compared to the standard normal distribution;
Panel (b): Density of the univariate standard Student’s t distribution for v € {3,5,10}
compared to the standard normal distribution

(a) Standard normal versus skewed standard normal (b) Standard normal versus standard Student's t

—— standard normal —— standard normal

- - skewed stand. normal, lambda=1.5 - - standard t, nu=3
-+ skewed stand. normal, lambda=0.5 -+ standard t, nu=5

- =+ skewed stand. normal, lambda=1.1 +=+ standard t, nu=10
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Definition C.4 A continuous random variable X is said to have a skewed Student’s t distribution,
denoted by X ~ t, x, with shape parameter v € (2,00) and skew parameter A € (—1,1) if its density

function has a representation

L (45
v
2

Nl

r()) (n(v —2))” (1 - Vc_z 2)_@1

oo
where T'(z) = / t*Leldt is a Gamma function and
0

brta
¢ = e if 2 < -
bz+a Zf 2> —

14X

ftu,k (.’E) =b

)

SUISERSIS]

for zeR,

For A — 0 the skewed t distribution reduces to the symmetric Student’s t case. And for v — oo it

converges to the skewed normal distribution.

The constant terms a and b are defined as following to standardize the skewed t distribution (i.e for

X ~ t3isnd it follows E[X] = 0 and Var(X) = 1)

-2
a:4>\cy and b=1+3)\%—a?
b
with T
1_‘ vl
Rl 2 ) (r(v —2))72
(%)

C.2 Multivariate distributions

This section presents two most common multivariate distributions, Normal (or Gaussian) and Student’s
t that we use for construction of elliptical copulas in Section 3.5.4. Multivariate distributions are general-
izations of univariate distribution to higher dimensions. We focus our presentation mainly on a bivariate
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case.

In this chapter, we denote by d a dimension of a continuous multidimensional random vector X =
(X1,...,X4)". Let p € R states a mean vector of X

7 w(X1)

td 1(Xa)
and ¥ € R¥*? (with inverse matrix ¥~1) a corresponding variance-covariance matrix
Y= (COV(Xi’Xj))i,jzl...d

Particularly, in bivariate case
2
D 011 012\ _ o1 r0102
= = 5 ;
0921 022 o102 g5

0% = Var(X;) = Cov(X;,X;) and o5 = Var(Xy) = Cov(Xa, X2) ,

where

and r is a correlation between X; and Xs, i.e.

r = Cor(X1, Xa) = Cov(Xy, X3) _ g
b V/Var(X,) Var(Xy) 0102

Further, we denote by & = (z1,... ,xd)t a realization of a random vector X. We call a multivariate
distribution central if g = 0. Otherwise, it is said to be non-central.

C.2.1 Multivariate normal distribution

Most of the following discussions are taken from Johnson and Wichern (2007, pp. 149-152) “Applied
Multivariate Statistical Analysis’.

Definition C.5 A continuous d-dimensional random vector X = (X1,..., Xq)" is said to have a multi-
variate (or d-variate) Normal distribution, denoted by X ~ Ny(u,X), with location vector p € R?
and symmetric positive definit variance-covariance matriz ¥ € R¥*? if its joint probability density func-

tion is given by ( = )
1 _1 T — (x—p
Ny (@) = W| det X["2 exp <— D) ) .

It is obviously that for X ~ Ny(p, X) holds F [X] = p and Var (X) = . In a bivariate case X = (X1, X»)
we get following expression for density function

1 1
T1,T2) = — —F————
Ine(uz) (21, 2) S vy sy

(C.1)
(R () e
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If the random variables X; and X5 are uncorrelated with r = 0, then the joint density fa,(.x) can be
written as a product of two univariate normal densities

2 2
pannin = e 3 () )

! exp (—(xl _ Nl)z) L exp (_(xz - MZ)Z)
2ro? 207 /2703 202
= le (581) : sz(Cﬁz) ,

According to the definition (3.4), the last equation means the independence of X; and X5. So it can be
stated that for bivariate normal case, the independence is equivalent to the uncorrelateness.

A surface in the xy-plane of the bivariate standard normal probability distribution function (pdf) is
displayed in Figure C.2 on the upper panel. The lower panel represents a corresponding contour plots.
A contour line of a function of two variables is a curve along which the function has a constant value.
As we can see, the bivariate standard normal distribution has its maximum at the origin. If marginal
random variables X; and X, are independent (r = 0) then the surfaces of constant fi, (. x)(z1,22) are
concentric circles around the origin. In dependence case (r # 0) the surfaces of constant fu,, () (21, 72)
form ellipses around the origin. For positive dependence, the major axes of ellipses has a positive slope
and vice versa for negative dependence.

C.2.2 Multivariate Student’s t Distribution

In this chapter we refer to the book of Kotz and Nadarajah (2004, pp. 1-2) “ Multivariate t Distributions
and Their Applications”. In contrast to the multivariate Normal distribution, we denote here by the
symbol ¥ a correlation matrix of X, i.e

Y= (COY(Xi»Xj))i,j:L..d = (Tij)i,jzl..‘d :

Definition C.6 A continuous d-dimensional random vector X = (X1, ... ,Xd)t s said to have a multi-
variate (or d-variate) t distribution, denoted by X ~t, , 5, with degrees of freedom v > 0, location
vector p € R and symmetric positive definite dispersion matriz £ € R?*? if its joint probability density
function is given by

_v+d

v+d >

v+d
fro s (@) = ddetzérr((i)) <1+ i(mﬂ)tﬂl(mn)t>

1
V()

Asin the univariate case, the shape parameter v describes the peakedness of the multivariate distribution.
For d =1, p =0 and ¥ = 1 it reduces to univariate Student’s t distribution with degrees of freedom v.
For X ~t,, it holds
EX]=v foru>1
and
v
v—2

In the bivariate case X = (X7, X»)" with central t distribution, the expression for ¥ becomes a form

(1)

Var (X) = ¥ forv>2.
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Figure C.2: Visualization of a bivariate standard normal distribution with parameters
= (0,0)!, o1 = 09 = 1 and three different values of correlation coefficient r = —0.9, 0, 0.9

positive dependence, r=0.9 null dependence, r=0 negative dependence, r=-0.9

.,
1
HHH

HHHHT
s

T
T

HHH

(a) Theoretical 3D plots of bivariate density function

positive dependence, r =0.9 null dependence, r=0 negative dependence, r=-0.9

(b) Theoretical contour plots of bivariate density function

with » = Cor(X7, X3) and the density function simplifies to

1 1 22— 2rxyxg + 22\ 2
- —(1— 2\ — = 1 1 2
Sty (x1,22) 277( re)2 ( + v(1—12)



Appendix D

R code of Vuong and Clarke tests for
goodness-of-fit testing for copulas

D.1 Vuong Test

#
ki

# mm o

+#

-------- VUONG-TEST === - === m=mmmmmmmmmmmmmmommommemm o

1
H

# Author: Natalia Djunushalieva, TU Miinchen, March 2010
# For more details see Quang H. Vuong, 1989, Econometrica
# "Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses"

vuong.test<-function(loglik.modell,loglik.model2,alpha=0.05,p1=0,p2=0,
correction="Schwarz",print.result=TRUE,name.model1=NULL,,name.model2=NULL)

loglik.modell -
loglik.model2 -
alpha -
pl -
p2 -
correction -

print.result -
name.modell -

H H HEH HEHHEHEHH

name.model?2 -

++

result -
nu -
pvalue -

H H H H#H

kutosis -

0UPUT: PARAMETER DESCRIPTION

INPUT: PARAMETER DESCRIPTION

numerical vector, individual log-likelihoods of model 1
numerical vector, individual log-likelihoods of model 2
numerical, significance level of the test

numerical, number of parameters in model 1

numerical, number of parameters in model 2

character, correction due to Schwarz or due to Akaike
("Schwarz" or "Akaike")

logical, should test results be printed?

character, model 1 denotation

character, model 2 denotation

numerical, favored model (1=modell, 2=model2 or O=non)
numerical, value of test statistic

numerical, p-value of test statistic nu

numerical, kurtosis of diff=loglik.modell-loglik.model2
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# REQUIRED PACKAGES: timeDate (for kurtosis() function)

# load required packages - timeDate etc.
if('is.element (c("package:timeDate"),search())){library("timeDate")}

model.spec<-""
result<-NA

if ((is.null (name.modell)+ is.null(name.model?2))==0)

{
model.specl<-paste(" (1) ",name.modell,sep="")
model.spec2<-paste("(2) ",name.model2,sep="")
model . spec<-paste(model.specl,model.spec2,sep=" ~ ")

}

#cat (paste("VUONG TEST: ",model.spec,sep=""), "\n")
if (print.result)cat("HO: model (1) is eqivalent to model (2)", "\n")

n<-length(loglik.modell)

if (correction=="Schwarz")
{
correction.term<-(pl-p2)*log(n)/(2*n) # for individual log-likelihoods
}
else if (correction=="Akaike")
{
correction.term<-(pl-p2)/n # for individual log-likelihoods

}

# Calculate test statistic
m.i<-loglik.modell-loglik.model2-correction.term
kurt.ratios<-kurtosis(loglik.modell-loglik.model2)
nu<- (sqrt(n)*mean(m.1i))/(sqrt((n-1) /nxvar(m.i)))

if (abs(nu)<gnorm(1-alpha/2))

{
decision<-"Decision: non of the models is favored"
result<-0

}

if (nu >=qnorm(1-alpha/2) )

{
decision<-"Decision: favor model 1"
result<-1

}

if (nu <= -qnorm(l-alpha/2) )

{
decision<-"Decision: favor model 2"
result<-2

}

if (print.result)cat(decision,"\n")
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pvalue<-2*pnorm(-abs(nu))
result<-data.frame(result,round(nu,digits=3),
round (pvalue,digits=3) ,round(kurt.ratios,digits=3))

names (result)<-c("model","nu","p.value","kurtosis")
rownames (result)<-NULL

if (print.result)print (result)
if (print.result)cat("\n")

return(result)

rm(n,m.i,kurt.ratios,nu,pvalue,result,decision)
} # end of vuong.test()

D.2 Clarke Test

pr
#

# o

H#

-------- CLARKE-TEST = - ————m o mmmmommmommmomm

T

# Author: Natalia Djunushalieva, TU Miinchen, March 2010
# For more details see Kevin A. Clarke, 2007, Political Analysis
# "A Simple Distribution-Free Test for Nonnested Model Selection"

clarke.test<-function(loglik.modell,loglik.model2,alpha=0.05,p1=0,p2=0,
correction="Schwarz",print.result=TRUE,name.model1=NULL,,name.model2=NULL)

loglik.modell -
loglik.model2 -
alpha -
pl -
p2 -
correction -

print.result -
name.modell -

H OH HEH HHHEHEHHEH

name.model?2 -

H+

result -
nu -
pvalue -
kutosis -

H OH H H O H

# H
J=o
£
=)
=
H
S
=
]
g
=
Q
=
=
Q
=
()

INPUT: PARAMETER DESCRIPTION

numerical vector, individual log-likelihoods of model 1
numerical vector, individual log-likelihoods of model 2
numerical, significance level of the test

numerical, number of parameters in model 1

numerical, number of parameters in model 2

character, correction due to Schwarz or due to Akaike
("Schwarz" or "Akaike")

logical, should test results be printed?

character, model 1 denotation

character, model 2 denotation

0UPUT: PARAMETER DESCRIPTION

numerical, favored model (1=modell, 2=model2 or O=non)
numerical, value of test statistic

numerical, p-value of test statistic nu

numerical, kurtosis of diff=loglik.modell-loglik.model2

# load required packages - timeDate etc.
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if (!is.element (c("package:timeDate"),search())){library("timeDate")}
model.spec<-""
result<-NA

if ((is.null(name.modell)+ is.null(name.model2))==0)
{
model .specl<-paste("(1) ",name.modell,sep="")
model .spec2<-paste("(2) ",name.model2,sep="")
model . spec<-paste(model.specl,model.spec2,sep=" ~ ")

}

#cat (paste("CLARKE TEST: ",model.spec,sep=""), "\n")
if (print.result)cat("HO: model (1) is eqivalent to model (2)", "\n")

n<-length(loglik.modell)

if (correction=="Schwarz")
{
correction.term<-(pl-p2)*log(n)/(2*n) # for individual log-likelihoods
}
else if (correction=="Akaike")
{
correction.term<-(pl-p2)/n # for individual log-likelihoods

}

# Calculate test statistic
m.i<-loglik.modell-loglik.model2-correction.term
kurt.ratios<-kurtosis(loglik.modell-loglik.model?2)
B<-sum(m.i > 0)

# Calculate critical value

decision<-"Decision: non of the models is favored"

result<-0

if (B>=n/2)

{
if (print.result)cat("Perform upper tail test", "\n")
cAlphaPlus<-1+gbinom(p=(1l-alpha) ,size=n,prob=0.5)
#cat (paste("cAlphaPlus = ",cAlphaPlus), "\n")
pvalue<-1-pbinom(B - 1, n, 0.5)
if (pvalue<=alpha)

{
decision<-"Decision: favor model 1"
result<-1
}
}
if (B<n/2)
{
if (print.result)cat("Perform lower tail test", "\n")

cAlphaMinus<-gbinom(p=alpha,size=n,prob=0.5)
#cat (paste("cAlphaMinus = ",cAlphaMinus), "\n")
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pvalue<-pbinom(B, n, 0.5)

if (pvalue<=alpha)

{
decision<-"Decision: favor model 2"
result<-2

3

if (print.result)cat (decision,"\n")

result<-data.frame(result,round(B,digits=3) ,round(pvalue,digits=3),
round (kurt.ratios,digits=3))

names (result)<-c("model","B","p.value","kurtosis")

rownames (result)<-NULL

if (print.result)print(result)
if (print.result)cat("\n")

return(result)
rm(n,m.i,kurt.ratios,B,cAlphaMinus,cAlphaPlus,result,decision,pvalue)
} # end of clarke.test()
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Determining data for D-vine trees

In this appendix, we collect formulas for calculating conditional variables of the 10-dimensional D-vine
which sequential estimation we have discussed in Section 5.4. As mentioned in Section 3.6.1 on the page 54,
the conditional distribution of an arbitrary order can be computed using the h-function

9Cs, , (Fu(x), F,(v))
dF,(v) ’

F(z|v) = hg, , (z,v) =

if z and v are uniformly distributed. Here, v is a conditioning variable, Gy, , (Fi (), F,,(v)) is a copula that
describes dependence between = and v and 6, , is its (estimated) parameter vector. Note, the variables
x and v may be itself conditional. We will use following h-function property

hoz‘y (.’L‘, l/) = hgyyx (:L‘, V) .
It holds, because we can interchange the variables = and v in the copula, i.e.

Co. , (Fre(z), Fy(v)) = Co, , (Fu(v), Fr(x)) -

and it does not impact the calculation of F(z|v)
9Cy, , (Fu(z), Fy(v)) _ 0C, , (Fu(v), Fi())
F($|V) - hom,u(‘r’V) - 3Fy(1/) - 8Fu(1/) - hev,m(m7y) .

To simplify matters, we substitute the notations hgw and C’gw by its truncated forms h,, and C,,
respectively.

Determining data for 2nd tree

Ca 519

Edge 2,9 —— 9,5:

Ca 519 (F(22]79), F(75|79))
F(22]z9) = he, , (22, 79)

F($5|$9) = h95,9 (x573;‘g) = h99,5 (x5,x9)
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9,4|5

C,
Edge 9,5 —— 5,4:

Co.a15 (F(z9]75), F(74|75))
F(xglzs) = ho s (w9, x5)

F(x4lzs) = has (24, 25) = hs 4 (T4, 5)

5,10]4

C;
Edge 5,4 —2% 4 10:

C5,10|4 (F(z5]|4), F(210]74))
F(xs5|xg) = hs 4 (v5,24)

F(z10|z4) = h10,4 (T10, T4) = ha 10 (10, T4)

Cy,6110

Edge 4,10 —— 10, 6:

Ciy610 (F(w4|710), F(26]210))
F(z4|z10) = ha10 (24, T10)

F(x6|z10) = he,10 (T6,T10) = h10,6 (T6, T10)

Cio,116

Edge 10,6 —>1'% 6,1

Chro,116 (F(w10]26), F'(21]76))
F($10|9C6) = hlo,6 ($107$6)

F(x1|ze) = h16 (21, 26) = he,1 (T1,26)

6,8]1

C
Edge 6,1 —2% 1,8

Ce.81 (F(x6]71), F(28]21))
F(zg|lz1) = he (z6,21)

F(xglr1) = hg (w8, 21) = hig (v8,21)

1,718

C
Edge 1,8 —— 8, T:

C1718 (F(21]2s), F(z7]7s))
F(z1|zg) = h1,g (z1,28)

F(xr|zs) = hyg (@7, 28) = hg,7 (v7,25)

C,
Edge 8,7 —2% 7,3:

08,3\7 (F(xs|x7), F(z3]27))
F(xg|r7) = hg 7 (xs, x7)

F(xs|z7) = hs 7 (w3, 27) = hr 3 (v3,27)

138



APPENDIX E. DATA FOR D-VINE TREES 139

Determining data for 3rd tree

C2,419,5

Edge 2,59 —2%, 9, 4|5:

Co 4195 (F(x2|xg, 5), F(24]29, 75))
F(x3|zg, x5) = ha 59 (F(72]|29), F(25]79))

F(z4|xg, x5) = ha g5 (F(24]25), F(29]25)) = ho 415 (F(24]25), F(29]25))

Edge 9,4]5 2214, 5 10}4:
C9,10|5,4 (F(xglxs, xq), F(210|25,74))
F(xo|ws, 24) = hg 45 (F(zo|zs), F(14|25))

F($10|$579€4) = h10,5|4 (F(1‘10|$4),F($5|334)) = h5,10\4 (F($10|334)7 F($5|$4))

Edge 5, 10[4 141 4 6|10
05,6\4,10 (F($5|~T4, 1710)7F(176\174,$10))
F(x5|ry, 210) = hs10)4 (F(25|24), F(210]24))

F(x6|z4, w10) = heaj10 (F(z6|T10), F(24]210)) = hagji0 (F(6]|T10), F(24]210))

Edge 4,6/10 ~11°%, 10, 1]6:
Cinpno,6 (F(za|z10,76), F(21|T10, 76))
F(z4|z10,76) = h4,6\10 (F(z4]z10), F(26]710))

F(z1]|z10,76) = h110j6 (F(z1|76), F(210]76)) = h10,1)6 (F(71|76), F(710]26))

Edge 10,1/6 2%, 6, §|1.
C10,8|6,1 (F(x10|we, x1), F (28|26, 1))
F(z10lxe, 1) = hio,61 (F(z10]26), F(21]26))

F(zs|we, v1) = hg o)1 (F(ws|z1), F(we|21)) = he g1 (F(ws]21), F(26]71))

Ce,71,8

Edge 6,8|1 —1% 1,7]8:

Cé,71,8 (F(w6|x1,28), F (27|21, 78))
F(z6|z1,78) = hg g1 (F(xe|z1), F(28]21))

F(x7|21,28) = hy g (F(27|2s), F(w1]2s)) = by 718 (F(27]28), F(21]78))



APPENDIX E. DATA FOR D-VINE TREES 140

C1,318,7

Edge 1,78 —227, 8, 3|7:

Cr 38,7 (F(w1|ws, 27), F (23|28, 7))
F(x1|xg, 7) = hy 718 (F(21]28), F(27]28))

F(xs|rs, x7) = ha g7 (F(zs]27), F(ws|zr)) = hs g7 (F(xs|er), Fzs|27))

Determining data for 4th tree

Edge 2,4(9,5 Gaaopsa, g 10|5, 4:
C21009,5,4 (F (22|29, 75, 24), F (210|709, T5,74))
F(x2|z9, v5,24) = ha 4)9,5 (F (22|79, 25), F'(24]79, T5))

F(x10]xe, x5, 24) = hig95,4 (F(210|75, 24), F(29|25, 24)) = ho 1054 (F(210|75, 24), F (29|25, 24))

C,
Edge 9,10|5,4 —=>*1% 5 6|4, 10:
Co.6/5,4,10 (F (9|25, 74, 210), F (26|25, T4, 210))
F($9|$5, 1‘4,3310) = h9,10|5,4 (F($9\1‘5,$4)a F(9€10|$57$4))

F($6|$5,9€4,I10) = h6,5|4,10 (F(136\954,I10)»F(955|$4,9310)) = h5,6|4,10 (F($6\9547xlo),F(I5|$47I10))

Edge 5, 6|4, 10 <141, 4 )10, 6:
Cs 114,106 (F(z5]24, 710, T6), F (21|24, 710, 76))
F(x5]|24, w10, 26) = h5 64,00 (F (25|24, T10), F (26|24, T10))

F(z1]|24, 710, 26) = h1apio,6 (F(21]210, 26), F(24]210, 26)) = ha 10,6 (F(21|710, 76), F (204|710, 76))

Edge 4,1]10,6 Z221%%1, 10 8|6, 1.
04,8\10,671 (F($4|3310, st,xl)a F(x8|$107$67$1))
F(z4|z10,26,21) = h4,1|1o,6 (F(x4]210,26), F(21]210,76))

F(xs|z10, 26, 21) = hg 106,10 (F(28]xe, 1), F(x10]26, 1)) = h1og6,1 (F (28|26, 1), F(x10]26, 1))

Edge 10,86,1 2712, ¢ 7)1, 8.
Cho,716,1,8 (F (10|26, 71, 28), F (27|76, 21, 78))
F(z10|ze, 71, 78) = h1o,8)6,1 (F(T10]76, 21), F (28|26, 71))

F(x7|ze, v1,28) = hy 61,8 (F(w7|T1,28), F(26]21, 28)) = he 7)1,8 (F (27|21, 28), F (76|71, 28))



APPENDIX E. DATA FOR D-VINE TREES 141

c.
Edge 6,7|1,8 —22%7, 1,3|8,7:

Cé 31,87 (F(wg|r1, 28, 77), F(23|71, 8, 7))

F(xglry, xs,27) = he 71,8 (F(26]T1, 28), F(27|21, 28))

F(x3|xy, w8, 27) = hg 18,7 (F(xs|2s, x7), F(x1|ws, 27)) = hy 38,7 (F(23|28, 27), F (21|28, 27)))

Determining data for 5th tree

Cs,619,5,4,10
Sy

Edge 2,109, 5,4 9,6/5,4, 10:

02,6\975,4710 (F(3?2|339’$5,$47JC10)’ F(I6|939,335, 334,5610))
F($2|IE9,$579€471’10) = h2,10\9,5,4 (F($2|=’U9a 15,504)7 F($10|$97$5,$4))
F(x6|wg, x5, T4, 710) = he g|5,4,10 (F (6|5, T4, T10), F(29|T5, T4, 210))

= hg 65,4,10 (F (26|75, 24, 710), F (29|25, 74, 210))

C,
Edge 9, 6|5,4,10 —>%1%% 5 14,10, 6:
09,1\5,4,10,6 (F($9|$5,$4,$10, 336)’ F(331|375,$4, $107$6))
F(I9|$5,9€4,I10, 176) = h9,6|5,4,10 (F(I9|5E5, $4,I10)7F($6|$5,9§47I10))
F(x1|zs5, 74,210, %6) = h154,10,6 (F(21]24, 710, %6), F (25|74, 210, T6))

= hs 114106 (F (21|74, 210, 26), F (25|24, 710, T6))

C;
Edge 5,1/4,10,6 —=*2%%, 4 8|10,6, 1:
Cs 84,10,6,1 (F(25]24, 10, 6, 1), F (28|74, T10, 6, 71))
F($5|$4,$10,$6, 171) = h571|4,10,6 (F(955|1174, 17107336)7F($1|$47I10,5'36))
F(xg|xy, 210, 26, 1) = hg aj10,6,1 (F(28]|10, 6, 71), F(24]210, 76, 71))

= hyg10,6,1 (F(z8|z10, 6, 21), F(24]210, 6, 71))

C
Edge 4,8|10,6,1 — %1%, 10,76, 1, 8:
Ci,7110,6,1,8 (F(24]210, T6, 21, T8), F (27|10, T6, 21, 78))
F($4|33107966,$17 338) = h4,8|10,6,1 (F($4|$107x67$1)7F($8|3310, 336,331))
F(5177|2E107I6,1’1, 1?8) = h7,10\6,1,8 (F(l’7|$6, 951,338)7 F(I10|5567x17I8))

= hio,716,1,8 (F (276, 21, 28), F (10|76, 1, 238))
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10,3|6,1,8,7

C
Edge 10,7]6,1,8 6,3|1,8,7:

Cho,316,1,8,7 (F (10|76, T1, T8, T7), F (23|26, 71, T8, 7))
F(z10lwe, 1,8, T7) = h1o,716,1,8 (F(T10]76, T1, 8), F(27]76, 71, 78))
F(xs|xe, 21,28, 27) = h3,6\1,8,7 (F(x3|xy, w8, 27), F(26]21, T8, 27))

= hg 38,7 (F(2s]xy, w8, 27), F(26|21, T8, 7))

Determining data for 6th tree

c
Edge 2,6|9,5,4,10 —X2241% g 1|5, 4,10, 6:
C2,1\9,5,4,1O,6 (F(l’2|$9, L5, 24,210, 1’6)’ F($1|9397 L5, 24,210, %‘))
F (22|29, 5, 24, T10, Z6) = o 6j0,5,4,10 (F (22|79, 25, 4, 210), F (26|29, T5, 4, T10))
F(x1|zg, 5, T4, 710, T6) = h1,9j5,4,10,6 (F (21|75, 24, T10, 26), F'(29|Ts5, T4, T10, 6))

= h9,1|5,4,1076 (F($1|$57954,$107$6)7F($9\$5,$4,$10, 1‘6))

c
Edge 9,1|5,4,10,6 —=>1%%1, 5 8|4.10,6, 1:
C"9,8‘5,4,10,6,1 (F($9|I5,I4, .'131071'6,171), F(I8|I57I’4,I’10,l’67l’1))
F(xg|zs, 24,210, T6, 1) = ho 115.4,10,6 (F (%925, T4, T10, 6), F'(71 |25, T4, T10, T6))
F(xg|rs, 24,710, %6, T1) = hg 54,10,6,1 (F (78|74, T10, T6, ¥1), F'(25|T4, T10, T6, 1))

= hs814,10,6,1 (F(z8|T4, 210, 26, 71), F (25|74, 210, T6, 71))

c
Edge 5,8)4,10,6,1 —21%%2%, 4 7|10,6,1,8:
05,7\4,10,6,178 (F(SC5|334, T10,T6, L1, 1138), F($7|~’C47 L10,T6, L1, 968))
F(xs5|xq, 210, 26, T1, 28) = D5 8j4,10,6,1 (F (25|24, 210, T6, 21), F (28|74, 210, 26, 71))
F (27|24, w10, 26, 21, 28) = h7.aj10,6,1,8 (F(27|T10, 6, T1, 28), F'(24]210, 6, T1, 28))

ha 710,618 (F(27]210, 26, 71, 28), F' (24| 210, T6, 1, T8))

o)
Edge 4,710,6,1,8 —2>%227, 10, 36,1,8, 7:
04,3\10,6,1,8,7 (F(334|9610, X6, T1,T8, 3?7)7 F($3|3310, T6,T1,T8, 337))
F(I4|I107I6,1’1, T/s,fv) = h4,7|1o,6,1,8 (F(I4|1’10,$6,I1,I8),F($7|5€10, $6,$1,$8))
F(x3|r10, 26, 21, T8, 7) = h3 10(6,1,8,7 (F (23|26, T1, 28, 27), F(210|76, 71, 28, 7))

hio,316,1,8,7 (F (23|26, 21, 8, T7), F (10|26, T1, 8, T7))
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Determining data for 7th tree

C3 8)9,5,4,10,6,1
—)

Edge 2,1/9,5,4,10,6 9,8|5,4,10,6, 1:

C2.89,5,4,10,6,1 (F (22|29, T5, 4, T10, T6, 1), F'(28] 29, T5, 24, T10, T6, T1))
F($2|$9,$5,$47I10,$6,$1) = h2,1\9,5,471076 (F($2|5697$5,334, $107$6)7F($1|$975€57$4, 33107956))
F(xg|zy, x5, 24, T10, T6, T1) = h8,9\5,4,10,6,1 (F(wg|ws, 24, 710, 76, 1), F (29|25, T4, Z10, T6, 1))

= h9,8|5,4,10,6,1 (F($8|$5,9€47CC10, $6,$1)7 F($9|$5, $4,9610,$6€E1))

C
Edge 9,8|5,4,10,6,1 —>%1%%1%, 5 714 10,6, 1,8:
Co,75,4,10,6,1,8 (F(29|xs, T4, 210, T, 71, 28), F' (27|25, T4, 210, T, 1, 28))
F($9|$5, T4,T10, xﬁ,ml,xs) = h9,8\5,4,10,6,1 (F(339|3357334,$1073667$1),F($8|335733473710,3367961))
F(fl?7|$5,l’4,$10, 176,961,508) = h7,5\4,10,6,1,8 (F(CC7|9347I10,$679317Is)»F(I5|$479310,167501@8))

= hs 714,10,6,1,8 (F (27|24, 210, T6, 21, 28), F (25|24, 210, T6, T1, 8))

C,
Edge 5,7/4,10,6,1,8 —222%1%7, 4 3110,6,1,8,7:
C573‘4,1076717877 (F(mf)‘xﬁla 10, L6, L1, T8, 377), F(m3‘x47 10, L6, L1, T8, fL'7))
F(x5|24, 710, %6, T1, T8, T7) = hs 714,10,6,1,8 (F (25|24, T10, 6, 21, 28), F (27|74, 210, T6, 1, 8))
F(I3|$4,$10,9€6, 171,I87$7) = h3,4\10,6,1,877 (F($3|5'310,$6,$17$87$7)7F($4|$10, 176,I1,$87CC7))

= h4,3|10,6,1,8,7 (F(IE3|CU10,$6,I1, $8,$7), F($4|IE107$6,$1,=’58, $7))

Determining data for 8th tree

Cs,719,5,4,10,6,1,8
%

Edge 2,89, 5,4, 10,6, 1 9,75,4,10,6,1,8:

02,7\9,5,4,10,6,1,8 (F(332|909, T5,T4,T10, $6,$17$8)7 F($7|$9,$5733479010,33673?17908))
F(x2|z9, 75, 24, 710, T, T1, T8)

= h2,8|9,5,4,10,6,1 (F($2|$9»9€5, T4,210, L6, Sﬂl)a F($8|~T9»$5, T4,210, L6, xl))
F(x7|2g, 5,74, 210, T6, T1, Ts)

= h7,9|5,4,10,6,1,8 (F($7|905,9€4, T10,T6, L1, 378)7 F(369|9€5,$47 210, L6, L1, xs))

= hg 715,4,10,6,1,8 (F(z7]25, T4, T10, T6, T1, T8), F (20|25, T4, T10, T6, T1, T8))
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Co,3|5,4,10,6,1,8,7
%

Edge 9,7/5,4,10,6,1,8 5,34,10,6,1,8,7:

09,3\5,4,10,6,1,8,7 (F(909|$57 T4,210, L6, ﬂfl,xs,$7)7F($3|$5,$4,$10, $6,$17$87$7))
F(zo|zs, 74,710, T6, T1, T8, T7)

= h9,7|5,4,10,6,1,8 (F($9|$5,$4, Z10,%6, 21, 308), F($7|$5,$4, T10, %6, 21, 358))
F(x3|ws, 24, 10, T, T1, T8, T7)

= h3,5|4,10,6,1,8,7 (F(333|9U4,$1o,$67961,$8, 377)’ F($5|$4,$107$67$1,$8, 1‘7))

= hs 314,10,6,1,8,7 (F (23|24, 710, T6, T1, T8, T7), F (5|4, T10, T6, T1, T8, T7))

Determining data for 9th tree

C5,319,5,4,10,6,1,8,7

Edge 2,7/9,5,4,10,6,1,8 9,3|5,4,10,6,1,8,7:

02,3\9,5,4,10,6,1,8,7 (F(132|3C97 L5, T4, T105 L6, L1, T8, 377), F(333|$9, T5,T4,210,L6,L1, L8, 337))
F(x2|z9, 5, 24, 10, T6, T1, T8, T7)

= h2,7|9,5,4,10,6,1,8 (F(952\5C9,$5,964,17107336@1@8); F(x7|x9,x5,x4, Z10,%6, 21, 18))
F(x3|xg, x5, 24, 210, T6, T1, T8, T7)

= h3,95,4,10,6,1,8,7 (F (3|25, T4, 210, T, T1, T, T7), F (29|75, 24, 10, T6, T1, T8, T7))

= hg 35,4,10,6,1,8,7 (F' (23|25, T4, 210, T6, T1, T8, ¥7), F (29|75, T4, T10, T6, T1, T8, T7))



Appendix F

D-vine sequential estimation

This appendix contains results of estimating procedures for each building block of the D-vine from
Chapter 5. Such estimation technique of the D-vine parameters is called sequential estimation, i.e. pair-
copula parameter will be estimated individually but not jointly. In many practical situation, D-vine
estimations obtained in a such way are adequate. The log-likelihood function increases slightly when
estimating all parameters jointly in comparison to the log-likelihood function estimated sequentially.
The set, of tools for determining an appropriate pair-copula was described in Section 5.4 on page 95. In
following, we motivate our decision on the results of score test based on the Vuong statistic and justify it
by coefficients of lower and upper tail-dependence as well as scatter, contour and Chi-plots. Moreover, we
compare whether the tail-dependences of estimated Student copula describe co-movements in the data
better than the tail-dependences of estimated BB1 copula and vice versa. Note, for small 7’s (< 0.3) we
do not distinguish between several copula families and choose a Gauss copula as a most simple one.

Figure F.1: 1ST D-VINE TREE: determining copula family for building block Cj g

ATX ~ SMSI

scatter plot, uniform margins scatter plot, stan. normal margins contour plot, stand. normal margins Chi-plot for lower tail

Chi-plot for upper tail

X9.SMSI
X.9.SMSI

X.9.SMSI

10 1 2 3 3 2 -1 0 1 2 3 00 02 04 06 08

X2.ATX X2.ATX lambda

lambda

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 4 5 3 4 -4 -3 -5 -4
: 3 _ 5t \BB1 _
Upper tail dependence %\Emp =0.41 )A\’fj =0.19 G 1 =0.43
Lower tail dependence )\eme =0.38 )\tL =0.19 )\531 = 0.50

Chi-plots

nearly symmetrical tail dependences

Empirical Kendall’s ¥

0.52%**

Chosen copula

BB! with parameters 6= 0.66, 5=153
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X5.FTMIB

X.4.FCHI

Figure F.2: 1ST D-VINE TREE:

scatter plot, uniform margins

scatter plot, stan. normal margins

SMSI ~ FTMIB

contour plot, stand. normal margins Chi-plot for lower tail

determining copula family for building block Cy 5

Chi-plot for upper tail
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1 : ] : ]
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 4 6 2 2 -4 0 -7 -3
Upper tail dependence 5\;}7"1) =0.51 5\’;] =0.51 5\531 =0.61
Lower tail dependence ATP =0.62 AL =0.51 ABBL = 0.64

Chi-plots

asymmetrical tail dependences

Empirical Kendall’s 7

0.66***

Chosen copula

BB1 with parameters § = 0.73, § = 2.10

Figure F.3: 1ST D-VINE TREE:

scatter plot, uniform margins

scatter plot, stan. normal margins

FTMIB ~ FCHI

contour plot, stand. normal margins Chi-plot for lower tail

determining copula family for building block Cj 4

Chi-plot for upper tail

* |

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 5 5 1 1 -3 0 -7 -2
Upper tail dependence S\Zmp =0.68 5\5 =0.63 5\531 =0.69
Lower tail dependence AP =0.62 AL =0.63 ABBL =0.72

Chi-plots

nearly symmetrical strong tail dependences

Empirical Kendall’s 7

0.73%**

Chosen copula

Student with parameters 7 = 0.91, = 4.69
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X.10.STOXXER

X.6.GDAXI
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Figure F.4: 1ST D-VINE TREE: determining copula family for building block Cl4 1o

scatter plot, uniform margins

scatter plot, stan. normal margins

FCHI ~ STOXXER

contour plot, stand. normal margins Chi-plot for lower tail

Chi-plot for upper tail

X.10.STOXXER
0
L

X.10.STOXXER

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 5 3 0 4 -4 -1 -6 -1
Upper tail dependence 5\5"”7 =0.92 5\';} =0.80 5\531 =0.87
Lower tail dependence )\zmp =0.82 )\E =0.80 /\EB1 =0.87

Chi-plots

symmetrical strong tail dependences

Empirical Kendall’s 7

0.88%**

Chosen copula

Student with parameters” = 0.98, 7 = 6.91

Figure F.5: 1ST D-VINE TREE: determining copula family for building block Cig 6

scatter plot, uniform margins

scatter plot, stan. normal margins

STOXXER ~ GDAXI

contour plot, stand. normal margins Chi-plot for lower tail

Chi-plot for upper tail

X.10..STOXXER X.10..STOXXER X.10..STOXXER lambda lambda
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 6 4 -1 1 -2 0 -7 -1
Upper tail dependence 5\;"”7 =0.78 5\';} =0.76 5\531 =0.83
Lower tail dependence )\zmp =0.68 )\2 =0.76 /\EB1 =0.83

Chi-plots

symmetrical strong tail dependences

Empirical Kendall’s 7

0.85%**

Chosen copula

Student with parameters 7 = 0.97, U = 5.63
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Figure F.6: 15T D-VINE TREE: determining copula family for building block Cs 1

scatter plot, uniform margins

scatter plot, stan. normal margins

GDAXI ~ AEX

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

&

M

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 6 4 -1 2 -3 1 -7 -2
Upper tail dependence S\Zmp = 0.62 5\5 = 0.60 5\5]31 =0.69
Lower tail dependence )\eme = 0.65 )\tL = 0.60 /\J{BB1 = 0.68
Chi-plots symmetrical strong tail dependences
Empirical Kendall’s # 0.72***
Chosen copula  Student with parameters # = 0.90, © = 5.13
Figure F.7: 1ST D-VINE TREE: determining copula family for building block (' g
AEX ~ OMXSPI
scatter plot, uniform margins scatter plot, stan. normal margins contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail
5 . ] . ] W,
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 4 6 3 3 -4 -2 -6 -4
Upper tail dependence AP =0.58 A =0.44 ABB1 = 0.55
Lower tail dependence 5\6me = 0.62 AL =0.44 ABB1 = 0.62

Chi-plots

nearly symmetrical middle tail dependences

Empirical Kendall’s ¥

Chosen copula

BB1 with parameters § = 0.77, § = 1.87
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X.7.0MXC20

X3.BVLG
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Figure F.8: 1ST D-VINE TREE: determining copula family for building block Cy 7
OMXSPI ~ OMXC20

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins

Chi-plot for lower tail Chi-plot for upper tail

X.7..0MXC20

X.7.0MXC20

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 4 5 1 4 -2 -2 -4 -6
3 A — N\t — \BB1 _
Upper tail dependence {\[e]mp =0.31 %‘ff =0.20 AgPt=10.39
Lower tail dependence AT =0.58 AL =0.20 ABBL = 0.55

Chi-plots

not symmetrical tail dependences

Empirical Kendall’s ¥

0.53%**

Chosen copula

BB1 with parameters § = 0.81, § = 1.46

Figure F.9: 1ST D-VINE TREE: determining copula family for building block C7 3

scatter plot, uniform margins

scatter plot, stan. normal margins

OMXC20 ~ BVLG

contour plot, stand. normal margins

Chi-plot for lower tail Chi-plot for upper tail

oF o]

X3.BVLG

X.3.BVLG

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 4 5 3 -2 -3 1 -1 -7
5 A _ N\t — \BB1 _
Upper tail dependence {\[e]mp =0.21 %‘b =0.30 ApPt =027
Lower tail dependence AP =0.48 AL =0.30 ABBL =0.48

Chi-plots

not symmetrical tail dependences

Empirical Kendall’s ¥

0.43%**

Chosen copula

BB1 with parameters § = 0.75, § = 1.26
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Figure F.10: 2nd D-VINE TREE:

scatter plot, uniform margins

scatter plot, stan. normal margins
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determining copula family for building block Cj 59

contour plot, stand. normal margins

Chi-plot for lower tail

Chi-plot for upper tail

us.bg

7 7 f |t i D wm"‘x"‘&
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 0 0 0 1 0 0 -1 0
Upper tail dependence é\;m? =0.14 ):\%J = 0.0006 5\531 =0.15
Lower tail dependence AP =0.21 AL =0.0006 ABBL =0.002

Chi-plots

no tail dependences

Empirical Kendall’s ¥

0.17***

Chosen copula

Gauss with parameter 7 = 0.26

Figure F.11:

scatter plot, uniform margins

2nd D-VINE TREE:

scatter plot, stan. normal margins

determining copula family for building block Cjy 45

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

uabs
uabs

uabs

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 1 2 0 1 1 1 -7 1
: 3 _ N \BB1 _
Upper tail dependence %\Zmp =0.24 )A\’b =0.09 Aot =10.29
Lower tail dependence )\eme =0.31 )\tL = 0.09 /\J{BB1 =0.25

Chi-plots

nearly symmetrical middle tail dependences

Empirical Kendall’s 7

0.37%**

Chosen copula

BB1 with parameter § = 0.37, 6 = 1.30
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Figure F.12: 2nd D-VINE TREE: determining copula family for building block Cs 194

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

0.4
u10.b4

0.4

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 3 1 -1 1 1 1 -7 1
3 A _ N\t — \BB1 _
Upper tail dependence {\[e]mp =0.27 %‘);J =0.12 AgPt=10.35
Lower tail dependence AP =017 AL =0.12 ABBL =0.09

Chi-plots

symmetrical weak lower tail dependences

Empirical Kendall’s ¥

0.36***

Chosen copula

Student with parameter 7 = 0.53, 7 = 8.40

Figure F.13: 2nd D-VINE TREE: determining copula family for building block Cjgj10

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

u6.b10

] ] e RS L Ty IR s
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 0 NA NA 2 -2 0 NA NA
Upper tail dependence Xamp =0.07 ):\fj = 0.004
Lower tail dependence AP =0 AL =0.004
Chi-plots no tail dependences
Empirical Kendall’s ¥ —0.09***
Chosen copula  Gauss with parameter 7 = —0.14
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Figure F.14:

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins

Chi-plot for lower tail
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2nd D-VINE TREE: determining copula family for building block Cig,1j6

Chi-plot for upper tail

uLbs

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 4 4 4 4 -5 -3 -4 -4
. 3 _ N \BB1 _
Upper tail dependence {\Em? =0.34 )A\’fj =0.18 ApPt=0.34
Lower tail dependence AP =051 AL =0.18 ABBL =0.36

Chi-plots

not symmetrical tail dependences

Empirical Kendall’s ¥

0.42%**

Chosen copula BBI with parameters 6= 0.49, 5 =1.37

Figure F.15: 2nd D-VINE TREE: determining copula family for building block Cg g1

scatter plot, uniform margins scatter plot, stan. normal margins contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

™ " o “"7‘—‘\}9:‘6.?{%?&'{3",; ]
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 1 2 -1 1 1 1 -5 0
5 yemp _ N \BB1 _
Upper tail dependence %‘U =0.21 )A‘U =0.013 i\U =0.21
Lower tail dependence AP =017 AL =0.013 ABBL =0.06

Chi-plots no tail dependences

Empirical Kendall’s ¥ 0.26***

Chosen copula  Gauss with parameters 7 = 0.39
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Figure F.16: 2nd D-VINE TREE: determining copula family for building block C} 75

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

u7.b8
u7.b8

u7.b8

S PR o

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 1 0 0 1 -1 1 -2 0
3 A _ A\t — \BB1 _
Upper tail dependence {\[e]mp =0.13 )A\’;] =0.013 ApPt=0.16
Lower tail dependence AP =0.13 AL =0.013 ABBL =0.008

Chi-plots

no tail dependences

Empirical Kendall’s ¥

0.18%**

Chosen copula

Gauss with parameters 7 = 0.28

Figure F.17: 2nd D-VINE TREE: determining copula family for building block Cy 37

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

uab7

) ) o] d&k—""ﬁ’-‘::.'-?:,“-,w o] ‘WDQ’:“::?"::%-@(; 2 .
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 3 2 -2 1 1 2 -6 -2
3 yemp _ N\t — \BB1 _
Upper tail dependence %‘U =0.14 %‘U =0.02 ﬁ\U =0.20
Lower tail dependence AP =0.14 AL =0.02 ABBL =0.12

Chi-plots

no tail dependences

Empirical Kendall’s ¥

0.28%**

Chosen copula

Gauss with parameters 7 = 0.43
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u4.b95

u10.65.4

Figure F.18:

scatter plot, uniform margins

3rd D-VINE TREE:

scatter plot, stan. normal margins
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determining copula family for building block C 4195

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

.| ] ] S i | s
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test -1 -1 -1 1 0 0 0 2
Upper tail dependence é\;m? =0.17 )}B =0 ;\531 =0.09
Lower tail dependence AP =0.03 AL =0 ABBL =0

Chi-plots

no lower and weak upper tail dependence

Empirical Kendall’s ¥

0.10***

Chosen copula

Gauss with parameter 7 = 0.15

Figure F.19: 3rd D-VINE TREE:

scatter plot, uniform margins

scatter plot, stan. normal margins

determining copula family for building block Cy 19|54

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

q L3y o © R S
T i : ‘h"f""'ﬁf"’iﬁ’-}'ﬁ'ﬂwa :
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 3 3 1 2 -3 2 -7 -1
i NP _ \Eo— \BB1 _
Upper tail dependence %‘U =0.34 ))U =0.08 {‘U =0.29
Lower tail dependence )\eme =0.27 )\tL = 0.08 /\J{BB1 =0.15

Chi-plots

nearly symmetrical middle tail dependences

Empirical Kendall’s 7

0.38%**

Chosen copula

BB1 with parameter § = 0.31, § = 1.36
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Figure F.20: 3rd D-VINE TREE: determining copula family for building block Csg4,10

scatter plot, uniform margins scatter plot, stan. normal margins contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail
<« <«
s o]
° R P
E E E b -
b 3 z 5 7] 5 7
i i ER ER
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
- T 4w o2 a0 1 2 o3 0 oz o4 o o8 10 00 02 o+ o5 o8 10
wba10 wba10 wba10 lambda lama
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 0 NA NA 0 -1 1 NA NA
. yemp __ 3t
Upper tail dependence %\Um =0.07 )A‘U = 0.003
. €
Lower tail dependence AL P =0.03 /\tL = 0.003

Chi-plots no tail dependences

Empirical Kendall’s ¥+ —0.10***

Chosen copula  Gauss with parameter 7 = —0.15

Figure F.21: 3rd D-VINE TREE: determining copula family for building block Cjy 1j106

scatter plot, uniform margins scatter plot, stan. normal margins contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

@ o o 9 o e PVEER ST o g ars
3 3 R s Y
© o o N
o - BN
* A o ]
7 . 7 B
T T T T T T T T T
= 2 1 0o 1 2 3 00 02 04 06 08 10
uab106 uab1056 uab1056 lambda lambda

Chi-plots no tail dependences Empirical Kendall’s ¥ 0.004, p-value = 0.86
Chosen copula Independent copula
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Figure F.22: 3rd D-VINE TREE:

scatter plot, uniform margins

scatter plot, stan. normal margins
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determining copula family for building block C'gj6.1

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

ug.b6.1

S *mw?“;h%\ﬂ:g.", }
¥ ¥ A '\".\’i
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 1 1 1 1 -1 2 0 -5
Upper tail dependence %;]mp =0.21 5:’;] =0.016 /:\531 =0.16
Lower tail dependence AP =0.21 AL =0.016 ABBL =0.17

Chi-plots

approximately no tail dependences

Empirical Kendall’s ¥

0.26***

Chosen copula

Gauss with parameter 7 = 0.39

Figure F.23:

scatter plot, uniform margins

3rd D-VINE TREE:

scatter plot, stan. normal margins

determining copula family for building block Cg 7)1 5

contour plot, stand. normal margins Chi-plot for lower tail

Chi-plot for upper tail

O ] Natma e o A o Y )
o~ o ~ - ° TNV NN -
¢ T T T T ? T T T T 7 T T T T T T W T T T T T T
2 o 2 2 o 2 00 02 o1 o6 o0s 10 00 02 o0& o8 o0s 10
wbis wois lamba lamba
Chi-plots no tail dependences Empirical Kendall’s ¥ 0.015, p-value = 0.5

Chosen copula

Independent copula
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Figure F.24: 3rd D-VINE TREE: determining copula family for building block C} 357

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins

Chi-plot for lower tail

Chi-plot for upper tail

uz.ba.7

ua.ba.7

ua.b8.7

u1b87

u1b8.7

lambda

lambda

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 0 0 0 0 0 0 0 0
3 A _ A\t — \BB1 _
Upper tail dependence {\[e]mp =0.14 )A‘?J = 0.002 A L =0.07
Lower tail dependence AP =0.10 AL =0.002 ABBL = 0.007

Chi-plots

no tail dependences

Empirical Kendall’s ¥

0.13***

Chosen copula

Gauss with parameter 7 = 0.19

Figure F.25: 4th D-VINE TREE: determining copula family for building block C5 19j9,5.4

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins

Chi-plot for lower tail

Chi-plot for upper tail

o
o 34 EN
< < < 7 @ J @ J
5 3 3 s S
S S S <] <
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enns o
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i s Bt O T
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ER - 24 L

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 0 1 -1 3 1 1 -1 -4
Upper tail dependence é\gmp =0.13 )}fj =0 {\531 =0.16
Lower tail dependence AP =0.13 AL =0 ABBL =0.06

Chi-plots

no tail dependences

Empirical Kendall’s ¥

0.25%**

Chosen copula

Gauss with parameter 7 = 0.38
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Figure F.26: 4th D-VINE TREE: determining copula

U6.05.4.10

Figure F.27: 4th D-VINE TREE: determining copula

ULb4.106

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins

Chi-plot for lower tail

158

family for building block Cy g/5.4,10

Chi-plot for upper tail

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 0 NA NA 0 -1 1 NA NA
Upper tail dependence j\gmp =0.07 é\’f] = 0.001
Lower tail dependence AP =0 AL =0.001
Chi-plots no tail dependences
Empirical Kendall’s ¥ —0.18***
Chosen copula  Gauss with parameter 7 = —0.28

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins

Chi-plot for lower tail

family for building block Cf 14,106

Chi-plot for upper tail

i : ° : 47 R P S T e o s
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 0 NA NA 0 -1 1 NA NA
Upper tail dependence Xamp =0.07 )}E = 0.0003
Lower tail dependence AP =0 AL =0.0003
Chi-plots no tail dependences
Empirical Kendall’s ¥+ —0.07, p-value = 0.003
Chosen copula  Gauss with parameter 7 = —0.105
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Figure F.28: 4th D-VINE TREE: determining copula

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins

Chi-plot for lower tail

159

family for building block Cygj10,6,1

Chi-plot for upper tail

U8.10.6.1
U8.10.6.1

s | s

3 3

® ] 7

2 o o
g o 5 7 £ 7]
v s s

41061

451061 451061 lambda

lambda

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test -3 NA NA 1 1 1 NA NA
Upper tail dependence R j\eUmp =0 )}fj =0
Lower tail dependence AP =0.03 AL =0
Chi-plots no tail dependences
Empirical Kendall’s ¥ —0.06, p-value = 0.004
Chosen copula  Gauss with parameter 7 = —0.10

Figure F.29: 4th D-VINE TREE: determining copula

scatter plot, uniform margins

scatter plot, stan. normal margins

family for building

contour plot, stand. normal margins Chi-plot for lower tail

block 010,7|6,1,8

Chi-plot for upper tail

u7.b6.18
u7.06.18

u7.66.1.8
2 0
L
chi
06 08
L L
chi
06 08
L L

R e

u10.66.1.8

u1066.1.8 u1066.1.8 lambda

lambda

Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test -2 0 -2 2 2 2 -5 3
Upper tail dependence é\[e]mp =0.10 :fj =0 ;\531 =0.14
Lower tail dependence AP =0.03 AL =0 ABBL =0

Chi-plots

no tail dependences

Empirical Kendall’s ¥

0.13***

Chosen copula

Gauss with parameter 7 = 0.19
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Figure F.30: 4th D-VINE TREE:

u3b187

16.69.5.4.10

scatter plot, uniform margins

scatter plot, stan. normal margins

contour plot, stand. normal margins

Chi-plot for lower tail

160

determining copula family for building block Cg 31587

Chi-plot for upper tail

u3b187

0
0
L L I

o
00 02 04 06 08

" e S
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test -4 -1 -1 2 2 2 -3 3
Upper tail dependence é\;m? =0.06 )}B =0 ;\531 =0.05
Lower tail dependence AP =0.03 AL =0 ABBL =0

Chi-plots

no tail dependences

Empirical Kendall’s ¥

0.08, p-value = 0.0004

Chosen copula

Gauss with parameter 7 = 0.12

Figure F.31: 5th D-VINE TREE: determining copula family for building block

scatter plot, uniform margins

scatter plot, stan. normal margins

C5.6/9,5,4,10

contour plot, stand. normal margins

Chi-plot for lower tail Chi-plot for upper tail

S s R
1 1 o | o | whet
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test -2 NA NA -2 2 2 NA NA
Upper tail dependence %Z]:Z =0 )}ffj =0
Lower tail dependence A" =0 AL =0
Chi-plots no tail dependences
Empirical Kendall’s ¥+ —0.16***
Chosen copula  Gauss with parameter 7 = —0.24
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Figure F.32: 5th D-VINE TREE: determining copula family for building block

scatter plot, uniform margins

scatter plot, stan. normal margins

Co,115,4,10,6

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

S
5
)

o ~ ; | vtani gt ; i w‘i“".‘,\‘i%i?’-hﬂ"f"::?z{ -
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test -1 NA NA 3 -1 -1 NA NA
Upper tail dependence %Z]:Z =0 )}%tj =0
Lower tail dependence AL " =0 AL =0
Chi-plots no tail dependences
Empirical Kendall’s ¥ —0.18***
Chosen copula  Gauss with parameter 7 = —0.27

Figure F.33: 5th D-VINE TREE: determining copula family for building block

scatter plot, uniform margins

scatter plot, stan. normal margins

Cs 814,10,6,1

contour plot, stand. normal margins Chi-plot for lower tail Chi-plot for upper tail

8 | i SRR BN
Student BB1 BB7 Gauss Frank Plackett Clayton Gumbel
Score Vuong test 0 NA NA 0 0 0 NA NA
Ubpper tail dependence é\gmp =0.03 )}g =0
Lower tail dependence A7 =0.03 AL =0
Chi-plots no tail dependences
Empirical Kendall’s ¥ —0.06, p-value=0.009
Chosen copula  Gauss with parameter 7 = —0.09
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Figure F.34: 5th D-VINE TREE: determining copula family for building block
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Figure F.35: 5th D-VINE TREE: determining copula family for building block
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Figure F.36: 6th D-VINE TREE: determining copula family for building block
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Chi-plots no tail dependences Empirical Kendall’s # —0.023, p-value = 0.3
Chosen copula  Independent copula

Figure F.37: 6th D-VINE TREE: determining copula family for building block
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Chi-plots no tail dependences Empirical Kendall’s # —0.03, p-value = 0.15
Chosen copula  Independent copula
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Figure F.38: 6th D-VINE TREE: determining copula family for building block
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Figure F.39: 6th D-VINE TREE: determining copula family for building block
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Figure F.40: Tth D-VINE TREE: determining copula family for building block
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Figure F.41: Tth D-VINE TREE: determining copula family for building block
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Figure F.42: Tth D-VINE TREE: determining copula family for building block
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Figure F.43: 8th D-VINE TREE: determining copula family for building block
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Figure F.44: 8th D-VINE TREE: determining copula family for building block
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Figure F.45: 9th D-VINE TREE: determining copula family for building block
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