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Abstract

We consider a cluster Poisson model with heavy-tailed interarrival times and cluster sizes

as a generalization of an infinite source Poisson model where the file sizes have a regularly

varying tail distribution function or a finite second moment. One result is that this model

reflects long range dependence of teletraffic data. We show that depending on the heaviness

of the file sizes, the interarrival times and the cluster sizes we have to distinguish different

growths rates for the time scale of the cumulative traffic. The mean corrected cumulative

input process converges to a fractional Brownian motion in the fast growth case. However,

in the intermediate and the slow growth case we can have convergence to a stable Lévy

motion or a fractional Brownian motion as well depending on the heaviness of the underlying

distributions. These results are contrary to the idea that cumulative broadband network

traffic converges in the slow growth case to a stable process. Furthermore, we derive the

asymptotic behavior of the cluster Poisson point process which models the arrival times of

data packets and the individual input process itself.
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1 Introduction

The infinite source Poisson model is a fluid queue approximation of network data traffic that

assumes that the transmission of data files to the system happens at the jump times of a Poisson

process. The file sizes are assumed to form an iid (independently and identically distributed)

sequence independent of the underlying Poisson process. This model is also called M/G/∞ model

in the queueing literature. There is empirical evidence that the file sizes are heavy-tailed with an

index of regular variation in the interval (1, 2) (cf. [7, 8, 9, 18, 35]). The infinite variance of the

file size in the infinite source Poisson model causes long range dependence and self-similarity in

the input process which are stylized facts of teletraffic data (cf. the data analysis in [7, 8, 9, 22]).

However, this explains the long-range dependence of one individual source, but not that of the

overall teletraffic. The teletraffic of the network was studied in the seminal work of Mikosch et

al. [25]; see also the monographs of Resnick [30] and Whitt [34]. Guerin et al. [17] applied the

infinite source Poisson model to teletraffic data and realized some shortcomings in that model.

They suggested as an alternative a cluster Poisson model to be more realistic.

A cluster Poisson model is an obvious extension of the infinite source Poisson model. In the

present paper we consider a cluster Poisson point process N modeling the arrival of data files

sent to a server, i.e. we have a Poisson point process where at any jump time a cluster of data

transmissions is initiated. The cluster sizes will have a finite first moment but an infinite second

moment, and the interarrival times have an infinite second moment as well. This causes N to be

long range dependent and makes N sufficiently irregular for our results (see Section 3).

On the other hand, we consider the amount of data which is transmitted to the server, the so

called input process (A(t))t≥0. The file sizes are assumed to be regularly varying of index γ ∈ (1, 2)

or have a finite second moment. Hence, the present paper contains also the model of Fasen and

Samorodnitsky [15] and extends their results. In particular, we are interested in the characteri-

zation of the traffic generated by one source, but on the other hand we are also concerned with

the overall traffic of the network and on which way the properties of an individual source are

transferred to the traffic of the system. The teletraffic of the network is given by the cumulative

input of all sources. Thus, let (Ai)i∈N be iid input processes; e.g. independent users in a computer

pool generate independent traffic and Ai models the traffic of user i. With n input processes at

a time scale M , the mean corrected cumulative input is the stochastic process

Sn,M(t) =

n∑

i=1

(Ai(Mt) − E(Ai(Mt))) for t ≥ 0. (1.1)

The case where the time scale M = Mn depends on the number of users n (bird’s eye view) is the

situation where the term fast growth and slow growth case comes in. Let (Mn) be a sequence of

positive constants such that Mn ↑ ∞ as n ↑ ∞. Then the fast growth case means n ≫ Mn while

the slow growth case means n ≪ Mn. In this paper we will further use an intermediate growth

case; see Section 5.2. Then (M
(1)
n ) and (M

(2)
n ) are both sequences of positive constants tending

to ∞ as n → ∞ with M
(1)
n << M

(2)
n where n << M

(1)
n reflects the slow, M

(1)
n << n << M

(2)
n

the intermediate and n >> M
(2)
n the fast growth case. In Gaigalas and Kaj [16], who studied
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the renewal counting process of Pipiras and Taqqu [28] with heavy-tailed inter-renewal times

as a packet arrival model, an intermediate growth case also exist. However, their definition of

intermediate growth case is different to ours.

For a cluster Poisson model we can interpret the different growth cases also as a change in

the connection rate of one source, since the input of one cluster Poisson model with intensity

λ(n) = nλ0 has the same distribution as the cumulative input of n iid cluster Poisson sources

with intensity λ0. Thus, Mikosch et al. [25] described their growth rates of (Mn) by a change in

the connection rate rather than in the change of the number of users.

There are substantial reasons to separate the growth cases. If the number of sources n is very

large, then the process in (1.1) is the sum of a very large number of iid terms that change rela-

tively slowly. Hence, under general assumptions we can apply a central limit theorem and obtain

convergence to a Gaussian process; see the interesting paper of Mikosch and Samorodnitsky [26].

On the other hand, if the time scale M is very large, then the main phenomenon in (1.1) is, ac-

tually, in the deviations of the individual input processes from their means, A(Mt)−E(A(Mt)),

for large M . Then it is not obvious which limit we will obtain. In Levy and Taqqu [32, 23, 24]

and Pipiras and Taqqu [28] we find these different cases of first letting n and then M tend to

infinity and opposite for a renewal-reward model. Their limit process not only depends on the

order of the limits but also on whether the tails of the rewards are lighter or heavier than those

of the renewals; fractional Brownian motion, stable Lévy motion as well as stable processes with

dependent increments are possible limits (cf. Kaj and Taqqu [19] for an extension of that idea).

We will see a similar phenomena in our model.

We show that the asymptotic behavior of the variance of the input process and the asymptotic

behavior of the mean corrected individual input process

An(t) =
A (0,Mnt] − E(A (0,Mnt])

an
, t ≥ 0, (1.2)

respectively, where (an) is a sequence of positive constants tending to ∞, is either determined

by the cluster Poisson point process N , if γ > 3 − 2H (γ > H−1, respectively) and if the file

sizes have a finite second moment, or by the file sizes if γ < 3 − 2H (γ < H−1, respectively),

where H is a constant defined by the cluster Poisson model. We use these results on the traffic

of one source to mathematically explain the behavior of the teletraffic in the system. Thus,

we illustrate that the different regions for γ in the asymptotic behavior of the variance and

the input process have also to be distinguish in the asymptotic behavior of the mean corrected

cumulative input of the network. If γ > 3 − 2H or if the file sizes have finite second moment,

the process (Sn,Mn(t))t≥0 converges for any (sufficiently regular) sequence Mn ↑ ∞ as n → ∞ to

a fractional Brownian motion. This result extends the results of Fasen and Samorodnitsky [15]

who assumed finite second moments of the file sizes. On the one hand, we also allow heavy-tailed

file sizes and on the other hand, our results include the fast growth case. However, the result is

surprising. In the slow growth case of an ON/OFF and an infinite source Poisson model with

heavy-tailed file sizes the limit is a stable Lévy motion (cf. Mikosch et al. [25]). Mikosch and

Samorodnitsky [26] discovered that the occurrence of a stable limit, in the slow growth case of a
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general telecommunication model, is not robust. Our result confirms that idea.

In contrast, for H−1 < γ < 3 − 2H we have to distinguish three different growth rates of

(Mn) where any growth case has a different scaling and limit distribution; a fractional Brownian

motion with index (3−γ)/2 or H, or a γ-stable Lévy motion. Again we obtain in the slow growth

case the convergence to a fractional Brownian motion and not to a stable process. Finally, the

case γ < H−1 recovers the classical result of the ON/OFF and the infinite source Poisson model;

in the fast growth case the convergence to a fractional Brownian motion and in the slow growth

case to a γ-stable Lévy motion.

The paper is organized as follows. We start with some preliminaries in Section 2. In Sec-

tion 2.1 we introduce a general cluster Poisson model and in Section 2.2 we present the model

assumptions. As mentioned, a typical stylized fact of teletraffic data is long range dependence.

Hence, in Section 3 we compute the asymptotic behavior of the variance and the covariance of

the input process A and the point process N . On the one hand, we obtain that the variance

behaves asymptotically like a power function of some index in (0, 1), and hence N and A exhibit

long range dependence. On the other hand, we also see the influence of the underlying point

process N and the file sizes Z on the dependence structure of A. Next, we study the asymptotic

properties of

N (0,Mnt] − E(N (0,Mnt])√
Var(N (0,Mn])

for t ≥ 0, (1.3)

in Section 4. The results are different to the conclusions for the cluster Poisson point process

in Faÿ et al. [14] depending on their different model assumptions. Independent of the growth

rate of (Mn) we obtain the convergence of (1.3) to a fractional Brownian motion. Finally, the

asymptotic behavior of the input process (An(t))t≥0 and the properly normalized cumulative

input (Sn,Mn(t))t≥0 are derived in Section 5. To increase the readability of the paper the proofs

are postponed to Section 6.

We will use the notation =⇒ for weak convergence,
P−→ for convergence in probability,

ν
=⇒

for vague convergence, and
FDD

=⇒ for weak convergence of the finite dimensional distributions. For

x ∈ R we write x+ = max(0, x) and ⌈x⌉ = inf{k ∈ N : k ≥ x}. For two random variables

X,Y the symbol X
d
= Y means that X has the same distribution as Y . Let (xn)n∈N, (yn)n∈N be

sequences of constants then xn ∼ yn as n → ∞ iff limn→∞ xn/yn = 1. For a distribution function

F we denote by F = 1 − F the tail of F and finally, Leb denotes the Lebesgue measure.

2 Preliminaries

2.1 The cluster Poisson model

A cluster Poisson point process, which we use to model the arrival times of data files sent to the

server, is defined as follows:

(i) The initial cluster points, denoted by . . . < Γ−1 < Γ0 < 0 < Γ1 < Γ2 < . . . form a

homogeneous Poisson process with rate λ0, the connection rate.
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(ii) Each cluster initiated at Γm is of random size (Km + 1) with arrival points

Γm,k = Γm + Tm,k for k = 0, . . . ,Km,

where

Tm,k =
k∑

j=1

Xm,j for k ∈ N and Tm,0 = 0,

and the within-cluster arrival times (Xm,j)j,m∈N are a sequence of iid positive random

variables with common distribution FX independent of the sequence of iid positive cluster

sizes (Km)m∈Z with distribution FK .

Note that K = Km = 0 gives us the infinite source Poisson model. The times (Γm,k) correspond

in a telecommunication model with the arrival times of data files, denoted by (Zm,k), at the

server. The cluster Poisson point process describing the arrivals of data files is then

N =
∑

m∈Z

Km∑

k=0

εΓm,k
(2.1)

where ε denotes the dirac measure. This means N (s, t] counts the number of arrivals of data

packets in the time interval (s, t]. If E(K) < ∞ then by Faÿ et al. [14], Proposition 2.1, the

intensity of N is given by

λ = λ0(1 + E(K)). (2.2)

Mostly we will neglect the index m and write shortly

Tk =

k∑

j=1

Xj , k ∈ N, (2.3)

for an iid sequence (Xj) with distribution FX . Further, we assume:

(iii) the file sizes (Zm,k)m,k∈N0 are again an iid sequence of positive random variables with

distribution function FZ and E|Z| < ∞;

(iv) (Γm,k), (Km), (Zm,k) and (Xj,m) are independent sequences.

Here,

N (M) =
∑

m∈Z

Km∑

k=0

ε(Γm,k ,Zm,k) (2.4)

is a stationary marked point process. For details on stationary marked point processes we refer

to Karr [21], Daley and Vere-Jones [10, 11] and Faÿ et al. [14].
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If (Tl)l∈Z denotes the ordered arrival times of (Γm,k)m∈Z,k=0,...,Km with corresponding file sizes

(Zl)l∈Z where (Zl)l∈Z is again an iid sequence with distribution FZ , then the point processes N

and N (M) have the representation

N =
∑

l∈Z

εTl
and N (M) =

∑

l∈Z

ε(Tl,Zl)

where . . . < T−1 < T0 < 0 < T1 < . . . as well.

Now the amount of data brought to the server is modeled by the input process

A(t) =
∑

m∈Z

Km∑

k=0

[Zm,k ∧ (t − Γm,k)+ − Zm,k ∧ (−Γm,k)+] =

∫

R×R+

f dN (M), (2.5)

where

f(s, z) =

∫ t

0
1{s<x<s+z} dx for (s, z) ∈ R × R+.

With that representation we are able to compute the first and second moments of A(t) using the

Poisson structure of the underlying point process N (M) and hence, of A. This is presented in the

next lemma whose proof is postponed to Section 6.

Lemma 2.1

(a) Let f : R × R+ → R be measurable. Then

E

(∫

R×R+

f dN (M)

)
= λ

∫

R×R+

f(s, z)FZ(dz) ds.

(b) Let f, g : R → R+ be measurable. Then

Cov

(∫

R

f dN,

∫

R

g dN

)
= λ0

∞∑

k=−∞
c(|k|)

∫

R

E(f(s)g(s + Tk)) ds

where c(k) = E(K − k + 1)+.

(c) Let f, g : R × R+ → R+ be measurable and E|Z| < ∞. Then

Cov

(∫

R×R+

f dN (M),

∫

R×R+

g dN (M)

)

= λ0

∞∑

k=−∞
k 6=0

c(|k|)
∫

R×R2
+

E(f(s, z1)g(s + Tk, z2))FZ(dz1)FZ(dz2) ds

+λ

∫

R×R+

f(s, z)g(s, z)FZ (dz) ds.

(d) Let E|Z| < ∞ and h1, h2, h3 ≥ 0, h1 ≤ h2 < h3. Then

Cov(A(h1), A(h3) − A(h2)) =

∫ h3

h2−h1

(min(h1, h3 − x) − (h2 − x)+) g(x) dx
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where

g(t) = λ [E(Z1 − t)+ − E(Z1 ∧ (Z2 − t)+)]

+

∫

R2

1{s1≤0,s2≤t} FZ(−s1)F Z(t − s2) γ
(N)
2 (ds1, ds2) (2.6)

and

γN
2 (A × B) = λ0

∞∑

k=−∞
c(|k|)

∫

A
P(s + Tk ∈ B) Leb(ds) for A,B ∈ B(R+)

is the covariance measure of N .

A conclusion of Lemma 2.1 (a) and (2.5) is that A(t) has a finite mean under the assumption

that Z has a finite mean and

E(A(t)) = λtE(Z) (2.7)

(cf. Mikosch and Samorodnitsky [26], Lemma 2.2).

2.2 Model assumptions

In this paper the within-cluster interarrival times and the cluster sizes are assumed to be heavy-

tailed which is modeled by regularly varying tail distribution functions. For a positive measurable

function f we write f ∈ Rκ for κ ∈ R (f is regularly varying with index κ) if

lim
x→∞

f(tx)

f(x)
= tκ ∀ t > 0 .

More details on regular variation can be found, e.g., in Bingham et al. [6] and Resnick [30].

Assumption A

(a) The interarrival distribution function FX satisfies

F X ∈ R−1/β with β > 1.

(b) The cluster size distribution function FK satisfies

FK ∈ R−α with 1 < α < min(2, β).

Notice that Assumption A (a) assures that the within-cluster interarrival times have infinite

mean; it also makes the arrival process sufficiently irregular for our results. Assumption A (b)

makes sure that the file sizes transmitted within each cluster have infinite variance.

Assumption B

Assume that either of the following conditions is satisfied:

(a) β < 2 and

lim sup
x→∞

x
FX(x) − FX(x + 1)

FX(x)
< ∞. (2.8)
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(b) F is arithmetic, with step size ∆ > 0, and

lim sup
n≥0

n
FX

(
{n∆}

)

FX(n∆)
< ∞ . (2.9)

Remark 2.2 We need the technical Assumption B above to apply a local renewal theorem in

Lemma 2.3 (d) below. In fact, if the local renewal theorem is known to hold, then Assumption B

is unnecessary. We conjecture that the local renewal theorem holds under (2.8) for any β > 1,

regardless of whether or not F is arithmetic. �

Assumption C

The marks (Zl) satisfy one of the following conditions:

(a) E|Z|2 < ∞. Then we define γ := 2.

(b) FZ ∈ R−γ for some 1 < γ < 2.

Two conclusions from this assumption are important for our study. First, we have by Markov’s

inequality (in case (a)) and Karamata’s Theorem (in case (b)) (cf. Resnick [30], Theorem 2.1),

respectively, the following upper bound of the tail of FZ :

P(Z > x) ≤ Cx−γ1 for x ≥ 1, (2.10)

where γ1 = 2 if γ = 2, and γ1 < γ if 1 < γ < 2, respectively. In this paper γ1 will be chosen

sufficiently close to γ. Second, if we define

a(n) := n1/2 if γ = 2 , and

a(n) := F
←
Z (n−1) if 1 < γ < 2,

then by Resnick [30], Theorem 3.3 and Corollary 7.1 we have the central limit theorem

 1

a(n)

⌊nt⌋∑

l=1

[Zl − E(Z)]




t≥0

=⇒ (Sγ(t))t≥0 as n → ∞ in (D [0,∞) , J1), (2.11)

where (Sγ(t))t≥0 is a γ-stable Lévy process and for γ = 2 the limit process is a Brownian motion.

The space D[0, 1] (D [0,∞), respectively) denotes the space of right continuous functions on [0, 1]

([0,∞), respectively) with left limits (shortly: càdlàg = continue à droite, limitée à gauche). The

symbol J1 reflects that D[0, 1] is provided with the Skorokhod J1 topology. For completeness,

C[0, 1] denotes the space of continuous functions on [0, 1] which we provide with the uniform

metric; see Billingsley [5].

Throughout the paper we use the following notation:

H =
2 + β − α

2β
, (2.12)

c(k) = E(K − k + 1)+, k ∈ N0, (2.13)

G(t) =

∞∑

k=0

c(k)P(Tk ≤ t), t ≥ 0, (2.14)

V (t) = D(α, β)t−1(α − 1)−1FX(t)−2
P(K > F X(t)−1), t ≥ 0, (2.15)
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where

D(α, β) =
Γ(1 − β−1)2−αΓ(3 − α)

βΓ(2H)
. (2.16)

Here, Γ denotes the Γ-function. We further use that under Assumption A the inequalities

1

2
< H < 1 and 1 < 2 − H < H−1 < 3 − 2H < 2 (2.17)

hold. The next Lemma is crucial for the proof of our results.

Lemma 2.3 Let Assumption A hold. Then we have:

(a) c(k) ∼ (α − 1)−1kFK(k) ∈ R1−α as k → ∞.

(b) V (t) ∈ R2H−2 as t → ∞, where 2H − 2 ∈ (−1, 0).

(c) G(t) ∼ (2H − 1)−1tV (t) ∈ R2H−1 as t → ∞, where 2H − 1 ∈ (0, 1).

(d) Let additionally Assumption B hold. Then G(t) − G(t − 1) ∼ V (t) ∈ R2H−2 as t → ∞,

where 2H − 2 ∈ (−1, 0).

3 Asymptotic behavior of the variance

We start with the investigation of the asymptotic behavior of the variance of N and A. These re-

sults are essential to the understanding of the asymptotic behavior of these processes in Section 4

and 5.

Proposition 3.1 Let Assumption A hold. Then Var(N (0, ·]) ∈ R2H and

Var(N (0, t]) ∼ 1

H(2H − 1)
λ0t

2V (t) as t → ∞.

Proposition 3.2 Let Assumption A, B and C hold.

(a) If γ > 3 − 2H then Var(A(·)) ∈ R2H , where 2H ∈ (1, 2), and

Var(A(t)) ∼ (E(Z))2

H(2H − 1)
λ0t

2V (t) ∼ (E(Z))2 Var(N (0, t]) as t → ∞.

(b) If γ < 3 − 2H then Var(A(·)) ∈ R3−γ , where 3 − γ ∈ (1, 2), and

Var(A(t)) ∼ 2λ

(2 − γ)(3 − γ)(γ − 1)
t3FZ(t) as t → ∞.

Remark 3.3

(a) If γ > 3 − 2H the asymptotic behavior of the variance is completely determined by the

point process N . The file sizes Z have no influence on the rate of increase of the variance.
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(b) In contrast, if γ < 3−2H, the rate of increase of the variance comes only from the file sizes.

If we have an infinite source Poisson model with FZ ∈ R−γ for some 1 < γ < 2 then we

have the same asymptotic behavior of the variance (cf. Mikosch and Samorodnitsky [26],

p. 895). �

Similarly we derive now the asymptotic behavior of the covariance functions which show the long

range dependence of N and A.

Theorem 3.4 Let Assumption A, B and C hold. Define for h ≥ 1,

γN (h) := Cov(N (0, 1] , N (h, h + 1]),

γA(h) := Cov(A(1), A(h + 1) − A(h)).

Then γN ∈ R2H−2, where 2H − 2 ∈ (−1, 0), and

γN (h) ∼ λ0V (h) as h → ∞. (3.1)

(a) If γ > 3 − 2H then γA ∈ R2H−2, where 2H − 2 ∈ (−1, 0), and

γA(h) ∼ (E(Z))2γN (h) ∼ (E(Z))2λ0V (h) as h → ∞. (3.2)

(b) If γ < 3 − 2H then γA ∈ R1−γ , where 1 − γ ∈ (−1, 0), and

γA(h) ∼ λ

γ − 1
hFZ(h) as h → ∞. (3.3)

4 Asymptotic behavior of the number of packets

An interesting question itself is the behavior of the arrival process of data files modeled by

the point process N . On the other hand, we require that result also for the derivation of the

asymptotic behavior of the cumulative input to the server.

Theorem 4.1 Let Assumption A and B hold, and let (Mn) be a sequence of positive constants

such that Mn ↑ ∞ as n → ∞.

(a) Then
(

N (0,Mnt] − λMnt√
Var(N (0,Mn])

)

t≥0

=⇒ (BH(t))t≥0 as n → ∞ in C [0, 1] ,

where (BH(t))t≥0 is a standard fractional Brownian motion with Hurst index H given in

(2.12).

(b) Let (Ni) be iid copies of N . Then

1√
n Var(N (0,Mn])

n∑

i=1

[Ni (0,Mnt] − λMnt] =⇒ (BH(t))t≥0 as n → ∞ in C [0, 1] .

Astonishingly in contrast to the results in Faÿ et al. [14] the limit results in (a) and (b) do not

depend on the growth rate of (Mn).
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5 Asymptotic behavior of the input process

Let us start now with the asymptotic behavior of a mean corrected individual input process A.

Afterwards we will investigate the cumulative input to the server.

Theorem 5.1 Let Assumption A, B and C hold and let (Mn) be a sequence of positive constants

such that Mn ↑ ∞ as n → ∞.

(a) Let γ > H−1. Then
(

A(Mnt) − λMntE(Z)√
Var(N (0,Mn])

)

t≥0

FDD

=⇒ (E(Z)BH(t))t≥0 as n → ∞,

where (BH(t))t≥0 is a standard fractional Brownian motion with Hurst index H given in

(2.12). In particular, if γ > 3 − 2H then
(

A(Mnt) − λMntE(Z)√
Var(A (Mn))

)

t≥0

=⇒ (BH(t))t≥0 as n → ∞ in C [0, 1] .

(b) Let γ < H−1. Then
(

A(Mnt) − λMntE(Z)

a(Mn)

)

t≥0

FDD

=⇒ (λ
1
γ Sγ(t))t≥0 as n → ∞,

where (Sγ(t))t≥0 is the γ-stable Lévy motion given in (2.11).

Remark 5.2

(i) In the case H−1 < γ < 3−2H we have only stated the convergence of the finite dimensional

distributions. To show the tightness in C[0, 1] we can not use the classical arguments of

Billingsley [5] since the process does not converge in L2. However, we conjecture that the

convergence holds in C[0, 1] by proving the Lδ convergence for some δ ∈ (H−1, γ). See also

Remark 6.5 in Section 6.4.

(ii) Since the left hand side in (b) has continuous sample paths but the right hand side has

jumps, the convergence can not hold in (D[0, 1], J1); cf. Whitt [33, 34]. However, we conjec-

ture that with some technical effort we can extend the result to convergence in (D[0, 1],M1)

as in Resnick and Van den Berg [29]. Analog statements hold for further results presented

in this paper; cf. Theorem 5.5 and Theorem 5.6. �

For the asymptotic behavior of the mean corrected cumulative input process we have to

distinguish again different cases depending on the heaviness of the file sizes. The reason for these

cases is that we have on the one hand, the two different cases for the asymptotic behavior of

the variance (γ > 3 − 2H, γ < 3 − 2H) and on the other hand, the two different cases for the

asymptotic behavior of one mean corrected input process (γ > H−1, γ < H−1). These cases

result also in different cases for the asymptotic behavior of the mean corrected cumulative input

process; 3−2H < γ ≤ 2, H−1 < γ < 3−2H and 1 < γ < H−1. Recall that 1 < H−1 < 3−2H < 2.

11



5.1 3 − 2H < γ ≤ 2

Theorem 5.3 Let Assumption A, B and C hold. Further, let (Mn) be a sequence of positive

constants such that Mn ↑ ∞ as n → ∞, and either

(a) lim infn→∞ n−
1

γ−1
+ηMn > 0 for every η > 0, or

(b) limn→∞ n−
1

γ−1
+ηMn = 0 for some η > 0.

Further, let (Sn,Mn(t))t≥0 be given as in (1.1) and suppose γ > 3 − 2H. Then

(
[n Var(A(Mn))]−1/2Sn,Mn(t)

)
t≥0

=⇒ (BH(t))t≥0 as n → ∞ in C [0, 1] .

In particular, if

lim
n→∞

n
− 1

γ−1 Mn = C ∈ (0,∞]

holds, then (a) is valid. The conditions (a) and (b) imply a kind of continuity condition on

(Mn) which is natural. However, if E(Z2) < ∞ we can neglect the continuity condition; see

Theorem 5.4 below.

In the classical results as the ON/OFF and the infinite source Poisson model with heavy-

tailed file sizes we have contrary to Theorem 5.3 to distinguish between fast and slow growth

rates of (Mn). In the slow growth case we obtain the convergence to a γ-stable Lévy motion.

Hence, our general Poisson cluster model shows that this is not necessarily the case if we have

heavy-tailed file sizes.

Theorem 5.4 Let Assumption A, B and C hold. Further, let (Mn) be a sequence of positive

constants such that Mn ↑ ∞ as n → ∞, and let (Sn,Mn(t))t≥0 be given as in (1.1). Suppose that

E(Z2) < ∞. Then

(
[n Var(A(Mn))]−1/2Sn,Mn(t)

)
t≥0

=⇒ (BH(t))t≥0 as n → ∞ in C [0, 1] .

5.2 H−1 < γ < 3 − 2H

Theorem 5.5 Let Assumption A, B and C hold and let H−1 < γ < 3 − 2H. Further, let (Mn)

be a sequence of positive constants such that Mn ↑ ∞ as n → ∞, and (Sn,Mn(t))t≥0 be given as

in (1.1).

(a) Let (Mn) satisfies the fast growth condition

lim
n→∞

n−
1

γ−1
+ηMn = 0

for some η > 0. Then

(
[n Var(A(Mn))]−1/2Sn,Mn(t)

)
t≥0

=⇒ (B 3−γ
2

(t))t≥0 as n → ∞ in C [0, 1] .

12



(b) Let (Mn) satisfies the intermediate growth condition

lim
n→∞

n
1

γ−1
+ηM−1

n = 0 (5.1)

and

lim
n→∞

n
2−γ

2Hγ−2
−η

M−1
n = ∞ (5.2)

for some η > 0. Then

(
a(nMn)−1Sn,Mn(t)

)
t≥0

FDD

=⇒ (λ
1
γ Sγ(t))t≥0 as n → ∞.

(c) Let (Mn) satisfies the slow growth condition

lim
n→∞

n
2−γ

2Hγ−2
+ηM−1

n = 0

for some η > 0. Then

(
[n Var(N (0,Mn])]−1/2Sn,Mn(t)

)
t≥0

FDD

=⇒ (E(Z)BH(t))t≥0 as n → ∞.

5.3 1 < γ < H−1

Theorem 5.6 Let Assumption A, B and C hold and let 1 < γ < H−1. Further, let (Mn) be a

sequence of positive constants such that Mn ↑ ∞ as n → ∞, and (Sn,Mn(t))t≥0 be given as in

(1.1).

(a) Let (Mn) satisfies the fast growth condition

lim
n→∞

n−
1

γ−1
+ηMn = 0

for some η > 0. Then

(
[n Var(A(Mn))]−1/2Sn,Mn(t)

)
t≥0

=⇒ (B 3−γ
2

(t))t≥0 as n → ∞ in C [0, 1] .

(b) Let (Mn) satisfies the slow growth condition

lim
n→∞

n
1

γ−1
+η

M−1
n = 0

for some η > 0. Then

(
a(nMn)−1Sn,Mn(t)

)
t≥0

FDD

=⇒ (λ
1
γ Sγ(t))t≥0 as n → ∞.

Remark 5.7 For the ON/OFF and the infinite source Poisson model with heavy-tailed file

sizes the growth rates of (Mn) can be equivalently described by the asymptotics of the covariance

function γA. Here, this is only possible for 1 < γ < H−1. �
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6 Proofs

6.1 Proofs of Section 2

Proof of Lemma 2.1

(a) Consider the marked point process

N∗ =

∞∑

k=−∞
ε(Γk ,Kk,(Xj,k)j∈N,(Zj,k)j∈N0

) in R × N0 × R
N

+ × R
N0
+ ,

which is a Poisson random measure with intensity measure

m∗ = (λ0 × Leb) × FK ×
∞∏

j=1

FX

∞∏

l=0

FZ .

Let f∗ : R × N0 × R
N
+ × R

N0
+ → R be defined as

f∗(s, k, (xj), (zj)) =
k∑

l=0

f


s +

l∑

j=1

xj , zl


 .

Then
∫

R×R+
f dN (M) =

∫
R×N0×RN

+×R
N0
+

f∗ dN∗. Thus, by Campbell’s formula (cf. Baccelli and

Brémaud [2], p. 18)

E

(∫

R×R+

f dN (M)

)

= E

(∫

R×N0×RN

+×R
N0
+

f∗ dN∗
)

=

∫

R×N0×RN

+×R
N0
+

f∗ dm∗

= λ0

∫

R×N0×RN

+×R
N0
+

k∑

l=0

f


s +

l∑

j=1

xj, zl



∞∏

l=0

FZ(dzl)

∞∏

j=1

FX(dxj)FK(dk) ds

= λ0(E(K) + 1)

∫

R×R+

f(s, z)FZ(dz) ds.

(b) The covariance measure γN
2 of N is given by

γ
(N)
2 (A × B) = Cov(N(A), N(B)) = λ0

∫

R

γ̂∗((s + A) × (s + B)) ds (6.1)

where

γ̂∗(A × B) = E

(
K∑

k=0

K∑

m=0

1{Tk∈A,Tm∈B}

)
for A,B ∈ B(R);

see Faÿ et al. [14], Proposition 2.3. Let

γ∗(A) := E

(
K∑

k=0

K∑

m=0

1{Tk−Tm∈A}

)

= E

(
K∑

k=0

(K − k + 1)1{Tk∈A}

)
+ E

(
K∑

k=1

(K − k + 1)1{−Tk∈A}

)

=
∞∑

k=1

c(k) [P(Tk ∈ A) + P(−Tk ∈ A)] + c(0)1{0∈A} .
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Then by Campbell’s formula

Cov

(∫

R

f dN,

∫

R

g dN

)
=

∫

R2

f(s1)g(s2) γ
(N)
2 (ds1, ds2) = λ0

∫

R2

f(s)g(s + v) ds γ∗(dv)

for measurable functions f, g : R → R. In the case f, g positive this can be rewritten as

Cov

(∫

R

f dN,

∫

R

g dN

)
= λ0

∞∑

k=−∞
c(|k|)

∫

R

E(f(s)g(s + Tk)) ds. (6.2)

(c) Finally, the covariance measure γ
(M)
2 of the marked point process N (M) is given by

γ
(M)
2 (ds1, ds2, dz1, dz2) = γ

(N)
2 (ds1, ds2)FZ(dz1)FZ(dz2) + γ(d)(ds1, ds2, dz1, dz2) (6.3)

where γ(d) is the signed diagonal measure

γ(d)(A1 × A2 × B1 × B2) = λLeb(A1 ∩ A2) [FZ(B1 ∩ B2) − FZ(B1)FZ(B2)] (6.4)

for A1, A2 ∈ B(R), B1, B2 ∈ B(R+). This means

Cov(N (M)(A1 × B1), N
(M)(A2 × B2)) = γ

(M)
2 (A1 × A2 × B1 × B2).

For more details we refer to Mikosch and Samorodnitsky [26], p. 895. Again Campbell’s formula

gives

Cov

(∫

R×R+

f dN (M),

∫

R×R+

g dN (M)

)
=

∫

R2×R2
+

f(s1, z1)g(s2, z2) γ
(M)
2 (ds1, ds2, dz1, dz2) (6.5)

for measurable functions f, g : R×R+ → R. If f, g are positive the last equation reduces by (6.3)

and (6.4) to

Cov

(∫

R×R+

f dN (M),

∫

R×R+

g dN (M)

)

= λ0

∞∑

k=−∞
k 6=0

c(|k|)
∫

R×R2
+

E(f(s, z1)g(s + Tk, z2))FZ(dz1)FZ(dz2) ds

+λ

∫

R×R+

f(s, z)g(s, z)FZ (dz) ds

=: V1(t) + V2(t). (6.6)

(d) Let us define

f(s, z) :=

∫

[0,h1]
1{s<x<s+z} dx and f̃(s, z) :=

∫

[h2,h3]
1{s<x<s+z} dx

for s ∈ R, z ≥ 0. Then

A(h1) =

∫

R×R+

f dN (M) and A(h3) − A(h2) =

∫

R×R+

f̃ dN (M).
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Thus, a conclusion of (6.5) is

Cov(A(h1), A(h3) − A(h2))

=

∫

R2×R2
+

f(s1, z1)f̃(s2, z2) γ
(M)
2 (ds1, ds2, dz1, dz2)

=

∫

R2×R2
+

∫

[0,h1]
1{s1<x<s1+z1} dx

∫

[h2,h3]
1{s2<y<s2+z2} dy γ

(M)
2 (ds1, ds2, dz1, dz2)

=

∫

[0,h1]×[h2,h3]

∫

R2×R2
+

1{s1<x<s1+z1,s2<y<s2+z2} γ
(M)
2 (ds1, ds2, dz1, dz2) dx dy.

If we define

g(x, y) =

∫

R2×R2
+

1{s1<x<s1+z1,s2<y<s2+z2} γ
(M)
2 (ds1, ds2, dz1, dz2),

then

Cov(A(h1), A(h3) − A(h2)) =

∫

[0,h1]×[h2,h3]
g(x, y) dx dy.

Since N (M) is stationary, g depends only on the difference |y−x|. Thus, let g(v) := g(0, v). Then

Cov(A(h1), A(h3) − A(h2)) =

∫ h1

0

∫ h3−x

h2−x
g(x, x + v) dv dx

=

∫ h1

0

∫ h3−x

h2−x
g(v) dv dx

=

∫ h3

h2−h1

[min(h1, h3 − v) − (h2 − v)+] g(v) dv.

Furthermore, (6.3) and (6.4) give

g(v) =

∫

R2×R2
+

1{s1<0<s1+z1,s2<v<s2+z2} γ
(M)
2 (ds1, ds2, dz1, dz2)

= λ [E(Z1 − v)+ − E(Z1 ∧ (Z2 − v)+)] +

∫

R2

1{s1≤0,s2≤v} FZ(−s1)FZ(v − s2) γ
(N)
2 (ds1, ds2).

�

Proof of Lemma 2.3. (a) follows from Karamata’s theorem and (b) by the definition of V . (c) is

a conclusion from Omey [27] and (d) from Anderson and Athreya [1], Theorem 2, if Assumption

B (a) holds and from Doney [12], Theorem 3, if Assumption B (b) holds. By Zolotarev [36],

Theorem 3, the constants in [1] and [12] are equal. �
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6.2 Proofs of Section 3

Proof of Proposition 3.1. If we insert f = g = 1(0,t] in Lemma 2.1 (b) we obtain

Var(N (0, t]) = λ0

∞∑

k=−∞
c(|k|)

∫ t

0
P(0 < s + Tk ≤ t) ds

= λt + 2λ0

∞∑

k=1

c(k)

∫ t

0
P(Tk ≤ v) dv

= λt + 2λ0

∫ t

0
G(v) dv.

Since G ∈ R2H−1, 2H − 1 > 0, by Lemma 2.3 (c), we conclude with Karamata’s Theorem,

Var(N (0, t]) ∼ 1

H(2H − 1)
λ0t

2V (t) as t → ∞. �

The proof of Proposition 3.2 is based on some auxiliary Lemmatas.

Lemma 6.1

(a) Let Assumption A and B hold, and let h(z, t) = G(x + t) − G(x + t − z) for x ≥ 0. Then

there exist t0, C > 0 such that

h(z, t) ≤ C(z + 1)V (t)

for x > 0, z < t/2, t ≥ t0.

(b) Let Assumption C hold, and let h(t) = E(Z − t)+. Then there exists a C > 0 such that

h(t) ≤ Ct1−γ1 , t ≥ 1.

(c) Let Assumption C hold, and let h(t) =
∫∞
0 FZ(x)F Z(x + t) dx. Then there exists a C > 0

such that

h(t) ≤ Ct−γ1, t ≥ 1.

(d) Let Assumption A and C hold, and let h(t) =
∑∞

k=1 c(k)
∫∞
0 F Z(x)P(Z > x + t + Tk) dx.

Then there exists a C > 0 such that

h(t) ≤ Ct2H−γ1−1, t ≥ 1.

(e) Let Assumption A, B and C hold, and let

h(t) =

∫ ∞

0
F Z(x)

∞∑

k=1

c(k)P(Tk < x + t ≤ Tk + Z) dx.

Then

h(t) ∼ (E(Z))2V (t) as t → ∞.
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Proof.

(a) By Lemma 2.3 we know that G(t)−G(t−1) ∼ V (t) as t → ∞. Hence, there exist C1, t0 > 0

such that

G(x + t) − G(x + t − 1) ≤ C1V (x + t) for x ≥ 0, t ≥ t0.

Let z ≤ t/2 and t ≥ 2t0. Then

G(x + t) − G(x + t − z) ≤ G(x + t) − G(x + t − ⌈z⌉)

=

⌈z⌉∑

j=1

[G(x + t − j + 1) − G(x + t − j)]

≤ C1

⌈z⌉∑

j=1

V (x + t − j + 1)

≤ C1⌈z⌉ sup
1≤j≤t/2

V (x + t − j + 1)

≤ C2(z + 1)V (t),

where we used V (·) ∈ R2H−2 and Theorem 1.5.3 of Bingham et al. [6].

(b) Inequality (2.10) gives

E(Z − t)+ =

∫ ∞

t
P(Z > x) dx ≤ C3

∫ ∞

t
x−γ1 dx =

C3

γ1 − 1
t1−γ1 .

(c) We have again by (2.10)

h(t) ≤ C4

∫ ∞

0
FZ(x)(x + t)−γ1 dx ≤ C4t

−γ1

∫ ∞

0
FZ(x) dx = C4E(Z)t−γ1. (6.7)

(d) Note that

h(t) =

∫ ∞

0
FZ(x)

∞∑

k=1

c(k)P(Z > x + t + Tk) dx

=

∫ ∞

0
FZ(x)

∫ ∞

x+t

∞∑

k=1

c(k)P(Tk < z − x − t)FZ(dz) dx

≤
∫ ∞

0
FZ(x)

∫ ∞

x+t
G(z − x − t)FZ(dz) dx.

Since G is non-decreasing we have

h(t) ≤
∫ ∞

0
FZ(x)

∫ ∞

t
G(z)FZ(dz) dx.

Keep in mind that G ∈ R2H−1, FZ ∈ R−γ , then Potter’s Theorem and Karamata’s Theorem

give

h(t) ≤ C5E(Z)t2H−γ1−1.
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(e) We can write

h(t) =

∫ ∞

0
FZ(x)

∫ ∞

0

∞∑

k=1

c(k)P(x + t − z ≤ Tk < x + t)FZ(dz) dx

=

∫ ∞

0
FZ(x)

∫ ∞

0
[G(x + t) − G(x + t − z)] FZ(dz) dx

=

∫ ∞

0
FZ(x)

[∫ t/2

0
+

∫ ∞

t/2

]
[G(x + t) − G(x + t − z)] FZ(dz) dx

=: h1(t) + h2(t). (6.8)

Thus, we obtain by dominated convergence, (a) and Lemma 2.3 (d)

lim
t→∞

h1(t)

V (t)
=

∫ ∞

0
FZ(x)

∫ ∞

0
zFZ(dz) dx = (E(Z))2. (6.9)

Further,

h2(t) =

∫ ∞

0
FZ(x)

∫ ∞

t/2
[G(x + t) − G(x + t − z)] FZ(dz) dx

≤
∫ ∞

0
FZ(x)G(x + t)FZ(t/2) dx

= F Z(t/2)

[∫ t

0
+

∫ ∞

t

]
FZ(x)G(x + t) dx =: h21(t) + h22(t). (6.10)

Then (2.10), Potter’s Theorem and Lemma 2.3 (c) give for some 0 < ǫ < 1

h21(t) ≤ C6t
−γ1

∫ t

0
FZ(x)(x + t)

2−α
β

+ǫ
dx

= C6t
2−α

β
+ǫ−γ1

∫ t

0
FZ(x)

(x

t
+ 1
) 2−α

β
+ǫ

dx

≤ C7E(Z)t
2−α

β
+ǫ−γ1.

Next,

h22(t) ≤ C8t
−γ1

∫ ∞

t
x−γ1(x + t)

2−α
β

+ǫ
dx

= C8t
−γ1

∫ ∞

t
x

2−α
β

+ǫ−γ1

(
1 +

t

x

) 2−α
β

+ǫ

dx

≤ C9t
−γ1t

2−α
β

+ǫ−γ1+1.

Finally, since 2−α
β + ǫ − γ1 = 2H − 1 + ǫ − γ1 ≤ 2H − 2 for small ǫ we have

h2(t) ≤ C10t
2−α

β
+ǫ−γ1 = o(h1(t)) as t → ∞. (6.11)

Thus, (6.8)-(6.11) result in the proof of (d). �

Lemma 6.2 Let Assumption A, B and C hold, and g be defined as in (2.6).
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(a) If γ > 3 − 2H then

g(t) ∼ λ0(E(Z))2V (t) ∈ R2H−2 as t → ∞.

(b) If γ < 3 − 2H then

g(t) ∼ λ

γ − 1
tFZ(t) ∈ R1−γ as t → ∞.

Proof. We use the decomposition

g(t) = λ [E(Z1 − t)+ − E(Z1 ∧ (Z2 − t)+)] +

∫

R2

1{s1≤0,s2≤t} FZ(−s1)FZ(t − s2) γ
(N)
2 (ds1, ds2)

=: g1(t) + g2(t). (6.12)

From Lemma 6.1 (b) we conclude that

g1(t) ≤ 2λE(Z − t)+ ≤ Ct1−γ1 . (6.13)

Further, we have (cf. (35) of Mikosch and Samorodnitsky [26])

g2(t) = λh1(t) + λ0h2(t) + λ0h3(t) (6.14)

where

h1(t) =

∫ ∞

0
FZ(x)F Z(x + t) dx,

h2(t) =

∞∑

k=1

c(k)

∫ ∞

0
FZ(x)P(Z > x + t + Tk) dx,

h3(t) =

∞∑

k=1

c(k)

∫ ∞

0
FZ(x)P(Tk < x + t ≤ Tk + Z) dx.

Note that V (·) ∈ R2H−2 by Lemma 2.3 and 2H − 2 ∈ (−1, 0). Then Lemma 6.1 (c)-(e) give

g2(t) ∼ λ0h3(t) ∼ λ0(E(Z))2V (t) as t → ∞. (6.15)

Let γ > 3− 2H. Then (6.12), (6.13) and (6.15) result in (a). If γ < 3− 2H then F Z ∈ R−γ and

g1(t) ∼
λ

γ − 1
tFZ(t) as t → ∞. (6.16)

The reason is that

E(Z1 ∧ (Z2 − t)+) ≤ E(Z1)P(Z2 > t) = o(tF Z(t)) as t → ∞,

and by Karamata’s Theorem

E(Z − t)+ ∼ 1

γ − 1
tFZ(t) as t → ∞.
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Thus, (b) follows from (6.12), (6.15) and (6.16). �

Proof of Proposition 3.2.

We have by Lemma 2.1 (d) that

Var(A(t)) =

∫ t

−t
[min(t, t − x) − (−x)+]g(x) dx = 2

∫ t

0
(t − x)g(x) dx. (6.17)

Let γ > 3−2H. Then from Lemma 6.2 we know that g ∈ R2H−2. Hence, by Karamata’s Theorem

Var(A(t)) ∼ 2

2H − 1
t2g(t) − 1

H
t2g(t) ∼ (E(Z))2

(2H − 1)H
λ0t

2V (t) as t → ∞

follows. In the case γ < 3 − 2H the same arguments lead to the result. �

Proof of Theorem 3.4. First, we show (3.1). By Lemma 2.1 (b) we have with f = 1(0,1],

g = 1(h,h+1] (cf. Faÿ et al. [14], equation (2.9)) that

γN (h) = λ0

∫ 1

0

∞∑

k=1

c(k) [P(Tk ≤ v + h) − P(Tk ≤ v + h − 1)] dv

= λ0

∫ 1

0
[G(v + h) − G(v + h − 1)] dv.

Since G(u) − G(u − 1) ∼ V (u) ∈ R2H−2 as u → ∞ by Lemma 2.3 (d) we obtain by Embrechts

et al. [13], Lemma 1.3.5 (a), that

γN (h) ∼ λ0V (h) as h → ∞.

Next, we investigate the asymptotic behavior of γA. Here, Lemma 2.1 (d) gives

γA(h) =

∫ h+1

h−1
[min(1, h + 1 − x) − (h − x)+]g(x) dx =

∫ 1

−1
g(z + h)(1 − |z|) dz.

Further, g ∈ R2H−2 if γ > 3 − 2H and g ∈ R1−γ if γ < 3 − 2H, respectively (by Lemma 6.2)

such that by Embrechts et al. [13], Lemma 1.3.5 (a), we obtain

γA(h) ∼ g(h)

∫ 1

−1
(1 − |z|) dz = g(h) as h → ∞,

which proves the Theorem. �

6.3 Proofs of Section 4

For the proof of Theorem 4.1 we use the following notation. Let

bn :=

√
nMnF (Mn)−2P(K > FX(Mn)−1) =

1√
D(α, β)(α − 1)−1

√
nM2

nV (Mn), n ∈ N,(6.18)

where V and D(α, β) are given in (2.15) and (2.16), respectively, and

σ2 :=
2λ0

2 + β − α

∫ ∞

0
y−(2+β−α)/β

P(S1/β(1) ≤ y) dy+ (6.19)

+λ0

∫ ∞

0
E

(
2

2 − α
I(w + 1)2−α +

2

α − 1
I(w)I(w + 1)1−α − 2

(2 − α)(α − 1)
I(w)2−α

)
dw,
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where (S1/β(t))t≥0 is a 1/β-stable Lévy process which satisfies

(∑⌊nt⌋
k=1 Xk

F
←
X (n−1)

)

t≥0

=⇒ (S1/β(t))t≥0 as n → ∞ in (D [0,∞) , J1),

and

I(w) = inf{t ≥ 0 : S1/β(t) > w} for w > 0.

Furthermore, for the proof of Theorem 4.1 we require the next Lemma.

Lemma 6.3 Let the assumptions and the notation of Theorem 4.1 hold. Further, let (bn) be

given as in (6.18) and σ2 be given as in (6.19), respectively. Then

n Var(N (0,Mn]) ∼ σ2b2
n as n → ∞,

and in particular,

σ2 =
λ0

(2H − 1)H
D(α, β)(α − 1)−1 =

Γ(1 − β−1)2−αΓ(3 − α)

β(α − 1)(2H − 1)HΓ(2H)
.

Proof. We decompose N (0,Mnt] in the independent components

N (0,Mnt] = N+ (0,Mnt] + N− (0,Mnt]

where N+ (0,Mnt] is the number of arrivals of packets in (0,Mnt] belonging to a cluster initiated

in (0,Mnt] and N− (0,Mnt] is the number of arrivals of packets in (0,Mnt] belonging to a cluster

initiated in (−∞, 0], respectively, i.e.

N+ (0,Mnt] = #{(m,k) ∈ Z
2 : Γm ∈ (0,Mnt] ,Γm,k ∈ (0,Mnt] , k ∈ {0, . . . ,Km}},

N− (0,Mnt] = #{(m,k) ∈ Z
2 : Γm ∈ (−∞, 0] ,Γm,k ∈ (0,Mnt] , k ∈ {0, . . . ,Km}}.

Furthermore,

N± (0,Mnt] − E(N± (0,Mnt])

bn

are infinitely divisible with characteristic triplet (0, 0, ν̃±n,t) where for A ∈ B(R):

ν̃+
n,t(A) = λ0

∫ Mnt

0
P

(
b−1
n

K∑

k=0

εTk
[0, u] ∈ A

)
du,

ν̃−n,t(A) = λ0

∫ ∞

0
P

(
b−1
n

K∑

k=0

εTk
(u, u + Mnt] ∈ A

)
du;

for more details see Fasen and Samorodnitsky [15], p. 405. Thus, Sato [31], Example 25.12, and

the independence of N+ and N− result in

Var

(
N (0,Mnt]

bn

)
= Var

(
N+ (0,Mnt]

bn

)
+ Var

(
N− (0,Mnt]

bn

)

=

∫ ∞

0
x2 ν̃+

n,t(dx) +

∫ ∞

0
x2 ν̃−n,t(dx).
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Define ν±n,t := nν̃±n,t. Now, Lemma 5.1 and Lemma 5.2 of Fasen and Samorodnitsky [15] (which

are also valid for ǫ = ∞) give

n

b2
n

Var(N (0,Mnt]) =

∫ ∞

0
x2 ν+

n,t(dx) +

∫ ∞

0
x2 ν−n,t(dx) ∼ t2Hσ2

+ + t2Hσ2
− as n → ∞,

where σ2
+ + σ2

− = σ2. �

Proof of Theorem 4.1. We start with the proof of (b).

(b) Fasen and Samorodnitsky [15], Proposition 5.1, says that

1

bn

n∑

i=1

[Ni (0,Mnt] − λMnt]
FDD

=⇒ (σBH(t))t≥0 as n → ∞, (6.20)

which gives together with Lemma 6.3 the convergence of the finite dimensional distributions

in (b). For the proof of the tightness we use Billingsley [3], Theorem 12.3. Therefore, it is sufficient

to prove

E|Nn(t)|2 ≤ Ct2H−δ for t ∈ [0, 1], (6.21)

some C > 0, 0 < δ < 2H − 1, where

Nn(t) := (n Var(N (0,Mn]))−
1
2

n∑

i=1

[Ni (0,Mnt] − λMnt] for t ∈ [0, 1],

is stationary. Note that

E|Nn(t)|2 =
Var(N (0,Mnt])

Var(N (0,Mn])
.

Proposition 3.1 gives Var(N (0, ·]) ∈ R2H . Thus, Potter’s Theorem (Bingham et al. [6], Theo-

rem 1.5.6) and t ∈ [0, 1] result in (6.21).

(a) Let νn,t be the Lévy measure of Nn(t), and ν̂n,t be the Lévy measure of

N (0,Mnt] − λMnt√
Var(N (0,Mn])

.

Then

ν̂n,t(·) =
1

n
νn,t

(
1√
n
·
)

.

We have to prove

(i) ν̂n,t(·) = 1
nνn,t(

1√
n
·) ν

=⇒ 0 on (0,∞] as n → ∞,

(ii) limn→∞
∫
{|x|≤1} x

2 ν̂n,t(dx) = limn→∞
∫
{|z|≤n−1/2} z

2 νn,t(dz) = t2H ,

(iii) limn→∞
∫
{|x|>1} x ν̂n,t(dx) = limn→∞ 1√

n

∫
{|z|>n−1/2} z νn,t(dz) = 0,

which reflects the convergence of the characteristic triplet of the infinitely divisible random

variable Nn(t) to the characteristic triplet of a Gaussian random variable with mean 0 and

variance t2H . Then the claim follows by Kallenberg [20], Theorem 15.14.

The proof of (i)-(iii) can be done step by step as in Fasen and Samorodnitsky [15], Lemma 5.1

and Lemma 5.2 using limn→∞ n−
1
2 F (Mn)bn = ∞ and Lemma 6.3. �
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6.4 Proofs of Section 5

For the proof of Theorem 5.1 we require the following Lemma.

Lemma 6.4 Let Assumption A, B and C hold, and define

A(1)(t) =
∑

l∈Z

1{Tl≤0}((Tl + Zl)+ ∧ t), t ≥ 0,

A(2)(t) =
∑

l∈Z

1{0<Tl≤t}(Tl + Zl − t)+, t ≥ 0.

(a) Suppose E(Z2) < ∞. Then

0 ≤ E(A(1)(t)) = E(A(2)(t)) ≤ λ

2
E(Z2), t ≥ 0.

(b) Suppose 1 < γ < 2. Then

E(A(1)(t)) = E(A(2)(t)) ∼ λ(2 − γ)−1(γ − 1)−1t2FZ(t) as t → ∞.

Proof. Let f(s, z) = 1{s≤0}((s + z)+ ∧ t). Then we obtain by Lemma 2.1 (a)

E(A(1)(t)) = λ

∫ ∞

0

∫ 0

−∞
((s + z)+ ∧ t) ds FZ(dz)

= λ

∫ ∞

0

∫ 0

−∞

∫ t

0
1{x<z+s} dx ds FZ(dz)

= λ

∫ t

0

∫ ∞

x
FZ(s) ds dx.

(a) If E(Z2) < ∞ then

E(A(1)(t)) = λ

∫ ∞

0
F Z(s)

∫ s∧t

0
dx ds ≤ λ

∫ ∞

0
FZ(s)s ds =

λ

2

∫ ∞

0
FZ(

√
z) dz =

λ

2
E(Z2).

(b) Define h(x) =
∫∞
x F Z(s) ds. Then by Karamata’s Theorem we know that h ∈ R1−γ and

h(x) ∼ (γ − 1)−1xFZ(x) as x → ∞. Thus, again with Karamata’s Theorem we have

E(A(1)(t)) = λ

∫ t

0
h(x) dx ∼ λ(2 − γ)−1th(t) ∼ λ(2 − γ)−1(γ − 1)−1t2FZ(t) as t → ∞.

The equality E(A(1)(t)) = E(A(2)(t)) was proven in Mikosch and Samorodnitsky [26], p. 905. �

Proof of Theorem 5.1. We use the decomposition

A(Mnt) =

N(0,Mnt]∑

l=1

Zl +
∑

l∈Z

1{Tl≤0}((Tl + Zl)+ ∧ Mnt) −
∑

l∈Z

1{0<Tl≤Mnt}(Tl + Zl − Mnt)+

=: A(0)(Mnt) + A(1)(Mnt) − A(2)(Mnt),

where A(0)(Mnt) represents the amount of data whose transmission is initiated in (0,Mnt]. On

the other hand, A(1)(Mnt) reflects the data in (0,Mnt] whose transmission was initiated before 0.
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Finally, A(2)(Mnt) is the data transfer going on after Mnt but which was started in (0,Mnt].

Then

A(Mnt) − λMntE(Z) =




N(0,Mnt]∑

l=1

Zl − λMntE(Z)


+ [A(1)(Mnt) − A(2)(Mnt)]

=: S1(Mnt) + S2(Mnt). (6.22)

On the one hand, applying Theorem 4.1 we know that
(

N (0,Mnt] − λMnt√
Var(N (0,Mn])

)

t≥0

=⇒ (BH(t))t≥0 as n → ∞ in C [0, 1] . (6.23)

On the other hand, by (2.11)

(∑⌊Mnt⌋
l=1 [Zl − E(Z)]

a(Mn)

)

t≥0

=⇒ (Sγ(t))t≥0 as n → ∞ in (D[0, 1], J1). (6.24)

(a) Furthermore, by Proposition 3.1 and Potter’s Theorem there exists for some 0 < ǫ < H−γ−1

a C1 > 0 such that for Mn large

a2(Mn)

Var(N (0,Mn])
≤ C1

M
2
γ
+ǫ

n

M2H−ǫ
n

= C1M
2
γ
−2H+2ǫ

n

which tends to 0 as n → ∞. Hence,
(∑⌊Mnt⌋

l=1 [Zl − E(Z)]√
Var(N (0,Mn])

)

t≥0

P−→ (0)t≥0 as n → ∞ in (D[0, 1], J1). (6.25)

Then (6.23), (6.25) and Whitt [34], Corollary 13.3.2 result in

(
S1(Mnt)√

Var(N (0,Mn])

)

t≥0

=⇒ (E(Z)BH(t))t≥0 as n → ∞ in (D [0, 1] , J1). (6.26)

Note that 2 − γ − H < 0 since γ > H−1 > 1. Moreover, by Proposition 3.1, Lemma 6.4 and

Potter’s Theorem there exists for some 0 < ǫ < H+γ−2
2 a constant C2 > 0 such that for t > 0

and Mn large

E(A(j)(Mnt))√
Var(N (0,Mn])

≤ C2
(Mnt)2−γ+ǫ

MH−ǫ
n

≤ C2M
2−γ−H+2ǫ
n , j = 1, 2,

which tends to 0 as n tends to ∞. Hence, Markov’s inequality gives for any δ > 0,

lim
n→∞

P

(
A(j)(Mnt)√

Var(N (0,Mn])
> δ

)
= 0,

which means

S2(Mnt)√
Var(N (0,Mn])

P−→ 0 as n → ∞. (6.27)
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The conclusion follows then from (6.22), (6.26) and (6.27).

In the case γ > 3 − 2H we can prove the convergence in C[0, 1]. Thus, we show that

(An(t))t∈[0,1], where

An(t) =
A(Mnt) − λMntE(Z)√

Var(A(Mn))
,

is tight by Billingsley [3], Theorem 12.3. As in Theorem 4.1 it is sufficient to prove that there

exists a 0 < δ < 2H − 1 such that

E|An(t)|2 ≤ C3t
2H−δ for t ∈ [0, 1] (6.28)

and some C3 > 0. We have

E|An(t)|2 =
Var(A(Mnt))

Var(A(Mn))
.

Since Proposition 3.2 says that Var(A(·)) ∈ R2H , Potter’s Theorem shows (6.28) as well.

(b) Here we have again by Potter’s Theorem that for some constant C4 > 0:

Var(N (0,Mn])

a2(Mn)
≤ C4

M2H+ǫ
n

M
2
γ
−ǫ

n

= C4M
2H− 2

γ
+2ǫ

n ,

which tends to 0 as n → ∞. Hence,
(

N (0,Mnt] − λMnt

a(Mn)

)

t≥0

=⇒ (0)t≥0 as n → ∞ in C [0, 1] . (6.29)

Again Whitt [34], Corollary 13.3.2, (6.24) and (6.29) give
(

S1(Mnt)

a(Mn)

)

t≥0

=⇒ (λ
1
γ Sγ(t))t≥0 as n → ∞ in (D [0, 1] , J1). (6.30)

Finally, by Lemma 6.4 and Potter’s Theorem there exists for some 0 < ǫ < (γ−1)2

2γ a constant

C5 > 0 such that

E(A(j)(Mnt))

a(Mn)
≤ C5

M2−γ+ǫ
n

M
1
γ
−ǫ

n

= C5M
− (γ−1)2

γ
+2ǫ

n −→ 0 as n → ∞, j = 1, 2.

Thus, for any t ∈ [0, 1],

S2(Mnt)

a(Mn)

P−→ 0 as n → ∞, (6.31)

and we obtain the result by (6.22), (6.30) and (6.31). �

Remark 6.5 In both (a) and (b) we saw that the properly normalized process (S1(Mnt))t≥0 con-

verges in (D[0, 1], J1). However, the proof of the tightness of the normalized process (S2(Mnt))t≥0

can be difficult independently of the topology in D[0, 1]. Although the tightness of the scaled pro-

cess (A(1)(Mnt)) is by A(1)(Mnt) ≤ A(1)(Mn), 0 ≤ t ≤ 1, obvious, the tightness of (A(2)(Mnt))

is involved. �
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Proof of Theorem 5.3.

(a) We start to prove the convergence of the finite dimensional distributions. Therefore, we use

for i = 1, . . . , n the decomposition

Ai(t) =

Ni(0,t]∑

l=1

Z(i)
l +

∑

l∈Z

1{T (i)
l ≤0}((T

(i)
l + Z(i)

l )+ ∧ t) −
∑

l∈Z

1{0<T (i)
l ≤t}(T

(i)
l + Z(i)

l − t)+

=: A
(0)
i (t) + A

(1)
i (t) − A

(2)
i (t).

Then

Sn,Mn(t) =

n∑

i=1

[Ai(Mnt) − λMntE(Z)]

=

n∑

i=1




Ni(0,Mnt]∑

l=1

Z(i)
l − λMntE(Z)


+

n∑

i=1

[A
(1)
i (Mnt) − A

(2)
i (Mnt)]

=: S
(1)
n,Mn

(t) + S
(2)
n,Mn

(t). (6.32)

First, we investigate the asymptotic behavior of (S
(1)
n,Mn

(t))t≥0. A conclusion of Theorem 4.1 and

Proposition 3.2 is that
(∑n

i=1[Ni (0,Mnt] − λMnt]√
n Var(A (Mn))

)

t≥0

=⇒ (E(Z)−1BH(t))t≥0 as n → ∞ in C[0, 1]. (6.33)

Next, note that



n∑

i=1




Ni(0,Mnt]∑

l=1

Z(i)
l − λMntE(Z)






t≥0

d
=



∑n

i=1 Ni(0,Mnt]∑

l=1

Zl − λnMntE(Z)




t≥0

, (6.34)

and that by (2.11)
(∑⌊nMnt⌋

l=1 [Zl − E(Z)]

a(nMn)

)

t≥0

=⇒ (Sγ(t))t≥0 as n → ∞ in (D[0, 1], J1). (6.35)

By assumption (a) we have that there exists a constant C1 ∈ (0,∞) such that

n
1

γ−1
−ǫ

M−1
n ≤ C1 for n ∈ N. (6.36)

Moreover, by Proposition 3.2 and Potter’s Theorem we have that for any ǫ > 0 there exist C2 > 0

and n0 ∈ N such that for n ≥ n0:

a(nMn)2

n Var(A (Mn))
≤ C2

(nMn)
2
γ
+ǫ

nM2H−ǫ
n

= C2(n
1

γ−1
−ǫ

M−1
n )

2Hγ−2
γ
−2ǫ

n
3−2H−γ

γ−1
+ǫ′

, (6.37)

where ǫ′ = 2ǫ
γ−1 + ǫ2Hγ−2

γ − 2ǫ2 + ǫ. For small ǫ the right hand side of (6.37) tends to 0 by (6.36).

Hence, Corollary 13.3.2 of Whitt [34], (6.33), (6.35) and (6.37) result in



∑n
i=1 Ni(0,Mnt]∑

l=1

Zl − λnMntE(Z)

√
n Var(A(Mn))




t≥0

=⇒ (BH(t))t≥0 as n → ∞ in (D [0, 1] , J1),
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and finally by (6.34) in

 S

(1)
n,Mn

(t)
√

n Var(A(Mn))




t≥0

=⇒ (BH(t))t≥0 as n → ∞ in (D [0, 1] , J1). (6.38)

Since γ > 3 − 2H is equivalent to

−1

2
(γ − 1) > 2 − H − γ,

there exists an ǫ > 0 such that

−1

2
(γ − 1)

1

1 − ǫ(γ − 1)
− 2ǫ > 2 − H − γ.

Finally, by Potter’s Theorem, Proposition 3.2, Lemma 6.4 and (6.36) we have for some C3, C4 > 0

and n large

nE(A(j)(Mnt))√
n Var(A (Mn))

≤ C3
n(Mnt)2−γ+ǫ

(nM2H−2ǫ
n )

1
2

≤ C3(n
1

γ−1
−ǫ

M−1
n )

γ−1
2(1−ǫ(γ−1)) M−ǫ

n t2−γ+ǫ

≤ C4M
−ǫ
n , j = 1, 2, (6.39)

which tends to 0 as n → ∞. Then Markov’s inequality and (6.39) result in

lim
n→∞

P

( ∑n
i=1 A

(j)
i (Mnt)√

n Var(A (Mn))
> δ

)
= 0 for any δ > 0,

and consequently, as n → ∞,

1√
n Var(A (Mn))

S
(2)
n,Mn

(t) =
1√

n Var(A (Mn))

n∑

i=1

[
A

(1)
i (Mnt) − A

(2)
i (Mnt)

]
P−→ 0. (6.40)

Thus, (6.32), (6.38), (6.40) and Theorem 25.4 of Billingsley [4] give
(

1√
n Var(A(Mn))

n∑

i=1

[Ai(Mnt) − λMntE(Z)]

)

t≥0

FDD

=⇒ (BH(t))t≥0 as n → ∞.

The tightness follows as in Theorem 5.1 by Proposition 3.2 and Billingsley [3], Theorem 12.3.

(b) In the fast growth case the result follows from 3− 2H > γ, Lemma 6.2 (a), and Mikosch

and Samorodnitsky [26], Theorem 4.2, where we have E|M(0)|2+ǫ̃ < ∞ for some ǫ̃ > 0 by

Lemma 4.1 of Mikosch and Samorodnitsky [26] and Faÿ et al. [14], p. 124. �

Remark 6.6 If FZ ∈ R−γ with 1 < γ < 2 then similar computations as in Lemma 6.7 show

that for some constant C > 0:

Var(A(1)(t)) ∼ Ct3FZ(t) as t → ∞.

However, the second moment of A(2)(t) does not exist (V2(t) = ∞ in (6.6)) such that with our

approach we can not neglect the continuity condition in Theorem 5.3 in general. �
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Proof of Theorem 5.4. The proof follows as in Theorem 5.3 (a). The only difference is that

we use instead of (6.37),

a(nMn)2

n Var(A (Mn))
≤ C

nMn

nM2H−ǫ
n

= CM1−2H+ǫ
n −→ 0 as n → ∞,

which does not depend on the growth rate, and instead of (6.39) that

nE(A(j)(Mnt) − E(A(j)(Mnt)))2

n Var(A(Mn))
=

Var(A(j)(Mnt))

Var(A(Mn))
≤ Ct

Mn

M2H−ǫ
n

n→∞−→ 0

by an application of Lemma 6.7 below and E(A(1)(Mnt)) = E(A(2)(Mnt)). �

Lemma 6.7 Let Assumption A, B and C hold and E(Z2) < ∞.

(a) Let A(1)(t) =
∑

l∈Z
1{Tl≤0}((Tl + Zl)+ ∧ t), t ≥ 0. Then there exist C, t0 > 0 such that

Var(A(1)(t)) ≤ Ct for t ≥ t0.

(b) Let A(2)(t) =
∑

l∈Z
1{0<Tl≤t}(Tl + Zl − t)+, t ≥ 0. Then there exist C, t0 > 0 such that

Var(A(2)(t)) ≤ Ct for t ≥ t0.

Proof.

(a) We use the decomposition (6.6) of the variance in

Var(A(1)(t)) = V1(t) + V2(t),

where f(s, z) = g(s, z) = 1{s≤0}((s + z)+ ∧ t). Without loss of generality we can assume λ0 = 1.

Then, with Fubini’s Theorem

V1(t)

=
∞∑

k=−∞
k 6=0

c(|k|)
∫

R×R2
+

E
(
1{s≤0,s+Tk≤0}((s + z1)+ ∧ t)((s + Tk + z2)+ ∧ t)

)
FZ(dz1)FZ(dz2) ds

= 2

−1∑

k=−∞
c(−k)

∫

R−×R2
+

∫

[0,t]×[0,t]
E
(
1{x<s+z1} 1{y<s+Tk+z2}

)
dx dy FZ(dz1)FZ(dz2) ds

= 2

∞∑

k=1

c(k)

∫

R+

∫

[0,t]×[0,t]
FZ(x + v)P(y < −v − Tk + Z) dx dy dv.

By the monotonicity of F we have

V1(t) ≤ 2t

∫ t

0

[∫ ∞

0
FZ(v)

[ ∞∑

k=1

c(k)P(Z > y + v + Tk)

]
dv

]
dy.
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A conclusion of Lemma 6.1 (d) with γ1 = 2 is

V1(t) ≤ 2t

[∫ t0

0
+

∫ t

t0

][∫ ∞

0
F Z(v)

[ ∞∑

k=1

c(k)P(Z > y + v + Tk)

]
dv

]
dy

≤ 2tt0(E(Z)E(G(Z)) + C1t
2H−2+ǫ) ≤ C2t, t ≥ 1.

Note, min(x, y)2 ≤ xy for x, y ≥ 0. Hence,

V2(t) =

∫

R+

∫

R

1{s≤0}((s + z)+ ∧ t)2 ds FZ(dz) ≤
∫

R+

∫ 0

−∞
(s + z)+ t ds FZ(dz)

= t

∫

R+

∫ 0

−z
(s + z) ds FZ(dz) = t

∫

R+

z2

2
FZ(dz) = t

E(Z2)

2
.

(b) With the notation of (6.6) and f(s, z) = g(s, z) = 1{0<s≤t}(s + z − t)+ we have

Var(A(2)(t)) = V1(t) + V2(t).

First,

V1(t)

=
∞∑

k=−∞
k 6=0

c(|k|)
∫

R×R2
+

E
(
1{0<s≤t,0<s+Tk≤t}(s + z1 − t)+(s + Tk + z2 − t)+

)
FZ(dz1)FZ(dz2) ds

= 2

∞∑

k=1

c(k)

∫

[0,t]×R2
+

∫

R2
+

E(1{s+Tk≤t} 1{x<s+z1−t} 1{y<s+Tk+z2−t}) dx dy FZ(dz1)FZ(dz2) ds

= 2

∫ t

0

[∫

R+

FZ(x + v) dx

] [∫

R+

∞∑

k=1

c(k)P(y + v − Z < Tk ≤ v) dy

]
dv. (6.41)

Markov’s inequality gives
∫ ∞

0
FZ(x + v) dx ≤ E(Z2)

∫ ∞

0

1

(x + v)2
dx ≤ C1v

−1. (6.42)

Further,

∞∑

k=1

c(k)P(y + v − Z < Tk ≤ v)

=

∫ y+v

y

∞∑

k=1

c(k)P(y + v − z < Tk ≤ v)FZ(dz) +

∫ ∞

y+v

∞∑

k=1

c(k)P(Tk ≤ v)FZ(dz)

=

[∫ y+v/2

y
+

∫ y+v

y+v/2

]
[G(v) − G(y + v − z)] FZ(dz) +

∫ ∞

y+v
G(v)FZ (dz)

=: J1(y, v) + J2(y, v) + J3(y, v). (6.43)

Since G ∈ R2H−1 we have for large v by Lemma 2.3 and Lemma 6.1 (a) that

J1(y, v) ≤ C2G(v)v−1

∫ y+v/2

y
(z − y)FZ(dz) ≤ C2G(v)v−1 v

2
P(Z > y)

≤ C3G(v)y−2
1{y≥1}+C3G(v)1{0≤y≤1} . (6.44)
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Note that by the monotonicity of G and Markov’s inequality we obtain

J2(y, v) ≤ G(v)P(Z > y + v/2) ≤ C4G(v)(y + v/2)−2. (6.45)

Finally,

J3(y, v) = G(v)P(Z > y + v) ≤ C5G(v)(y + v)−2. (6.46)

Thus, (6.44)-(6.46) result in

∫ ∞

0
[J1(y, v) + J2(y, v) + J3(y, v)] dy ≤ C6G(v)

[∫ ∞

1

1

y2
dy + 1

∫ 1

0
1 dy

]
≤ C7G(v) (6.47)

for v ≥ v0 and some v0 > 1. Since G ∈ R2H−1 we obtain by Karamata’s Theorem and (6.41),

(6.42), (6.43), (6.47),

V1(t) = 2

[∫ v0

0
+

∫ t

v0

] [∫

R+

FZ(x + v) dx

] [∫

R+

∞∑

k=1

c(k)P(y + v − Z < Tk ≤ v) dy

]
dv

≤ C8 + C9

∫ t

v0

G(v)v−1 dv ∼ C10G(t) as t → ∞. (6.48)

Finally,

V2(t) = λ

∫

R+

∫

R

1{0<s≤t}(s + z − t)2+ ds FZ(dz) ≤ λ

∫

R+

∫ t

0
z2 dsFZ(dz) = tλE(Z2). (6.49)

Hence, (6.48) and (6.49) complete the proof. �

Proof of Theorem 5.5.

(a) follows again by Lemma 6.2 (b), and Mikosch and Samorodnitsky [26], Theorem 4.2.

(b) We use again the decomposition given in (6.32). On the one hand, applying Theorem 4.1

we have that
(∑n

i=1[Ni (0,Mnt] − λMnt]√
n Var(N (0,Mn])

)

t≥0

=⇒ (BH(t))t≥0 as n → ∞ in C [0, 1] . (6.50)

Furthermore, note that γ < 3 − 2H is equivalent to

2 − γ

2Hγ − 2
>

1

γ − 1
.

We use now the fact that if γ > H−1 then γ−1(2Hγ − 2) > 0. Moreover, Var(N (0, ·]) ∈ R2H by

Proposition 3.1. Thus, by Potter’s Theorem for any ǫ > 0 there exist C1 > 0 and n0 ∈ N such

that for n ≥ n0 we have

n Var(N (0,Mn])

a(nMn)2
≤ C1

nM2H+ǫ
n

(nMn)
2
γ
−ǫ

= C1n
− 2−γ

γ M
2Hγ−2

γ
n nǫM2ǫ

n

= C1

(
n

2−γ
2Hγ−2 M−1

n

)− 2Hγ−2
γ
−2ǫ

n
ǫ+2ǫ 2−γ

2Hγ−2 (6.51)
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which tends to 0 as n → ∞ for ǫ small enough by (5.2). Hence, Corollary 13.3.2 of Whitt [34],

(6.50), (6.35) and (6.51) result in



∑n
i=1 Ni(0,Mnt]∑

l=1

Zl − λnMntE(Z)

a(nMn)




t≥0

=⇒
(
λ

1
γ Sγ(t)

)

t≥0
as n → ∞ in (D [0, 1] , J1). (6.52)

A conclusion of (6.34) and (6.52) is that

S

(1)
n,Mn

(t)

a(nMn)




t≥0

=⇒
(
λ

1
γ Sγ(t)

)
t≥0

as n → ∞ in (D [0, 1] , J1). (6.53)

Return to mind that E(A(j)(·)) ∈ R2−γ by Lemma 6.4, j = 1, 2. Thus, by Potter’s Theorem for

any ǫ > 0 there exist C2 > 0 and n0 ∈ N such that for n ≥ n0 we have

nE(A(j)(Mnt))

a(nMn)
≤ C2

n(Mnt)2−γ+ǫ

(nMn)
1
γ
−ǫ

= C2n
γ−1

γ M
− 1

γ
(γ−1)2

n nǫM2ǫ
n t2−γ+ǫ

= C2n
ǫ+ 2ǫ

γ−1 (n
1

γ−1 M−1
n )

(γ−1)2

γ
−2ǫ

t2−γ+ǫ, (6.54)

which tends to 0 as n → ∞ for ǫ small enough by (5.1). Thus, Markov’s inequality gives

P

(
1

a(nMn)

n∑

i=1

A
(j)
i (Mnt) > δ

)
≤ nE(A(j)(Mnt))

ǫa(nMn)
−→ 0 as n → ∞ for any δ > 0,

and finally for t > 0,

S
(2)
n,Mn

(t)

a(nMn)

P−→ 0 as n → ∞. (6.55)

The statement in (b) is then a conclusion of (6.32), (6.53) and (6.55).

(c) The conclusion follows from (6.32), (6.35), (6.50), (6.54), Whitt [34], Corollary 13.3.2, and

a(nMn)2

n Var(N (0,Mn])
≤ C3

(
n

2−γ
2Hγ−2 M−1

n

) 2Hγ−2
γ
−(2ǫ)

n
ǫ+2ǫ 2−γ

2Hγ−2

which tends to 0 as n → ∞ for ǫ small enough by the small growth condition. �

Proof of Theorem 5.6.

(a) We use the arguments as in Theorem 5.6 (a).

(b) On the one hand, γ < 2 implies 1 − 2γ−1 < 0. On the other hand, since γ < H−1 we have

2
(
H − γ−1

)
< 0. Hence, again by Potter’s Theorem for any ǫ > 0 there exist C1 > 0 and n0 ∈ N

such that for n ≥ n0

n Var(N (0,Mn])

a(nMn)2
≤ C1

nM2H+ǫ
n

(nMn)
2
γ
−ǫ

= C1n
1− 2

γ
+ǫ

M2(H−γ−1)+2ǫ
n (6.56)

which tends to 0 as n → ∞ for ǫ small enough. Note, that here we not require the slow growth con-

dition. Then the conclusion follows from (6.32), (6.35), (6.50), (6.54), Whitt [34], Corollary 13.3.2

and (6.56). �
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