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Abstract

We discuss theoretical properties and estimation of continuous-time ARMA

(CARMA) processes, which are driven by a stable Lévy process. Such processes

are very useful in a continuous-time linear stationary set-up: they have a simi-

lar structure as the widely used ARMA models, and provide all advantages of

a continuous-time model. As an application we consider data from a deregu-

lated electricity market. Here we �t a CARMA(2,1) model to spot prices from

the Singapore New Electricity Market. The quality of the estimates is assessed

in a simulation study. The continuous-time modelling aims at a new pricing

methodology for energy derivatives.
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1 Introduction

Since the discovery of the light bulb, electricity has made a tremendous impact on

the development of our society. Today, it represents a crucial component of modern

way of life, and it is hard to imagine a life without it.

In recent years, electricity markets throughout Europe have undergone massive

changes due to deregulations. The original monopolistic situation was replaced by

deregulated markets, where consumers in principle are free to choose their provider so

that the market for electric power has become competitive. Before, most power sectors

were not exposed to competition, and prices were set by regulators according to the

cost of generation, transmission and distribution. Accordingly, hardly any price risks

existed. On spot markets of energy exchanges, where electricity for delivery on the

next day is traded, the situation is quite di�erent. Here prices are determined purely

by supply and demand, and hence they �uctuate considerably. As a consequence,

utilities, distributors and industrial companies are faced with electricity price risks.

Knowledge about the stochastic properties of prices and risk premiums - which are

paid to ensure against these price risks are essential for a successful risk management.

A main characteristic for electricity is its very limited storability. It is hardly

possible to ensure against price risks by building reserves. As a consequence, a sudden

rise in electricity demand (e.g. due to a failure of a power plant) often results in

signi�cant price jumps which are observed frequently in most electricity markets.

These are called price spikes and are unique to electricity markets, such that standard

models for commodities do not describe observed prices in a realistic way.

With deregulation and the introduction of competition a new challenge for power

market participants has emerged. Extreme price volatility, which can be even two

orders of magnitude higher than for other commodities or �nancial instruments, has

forced producers and wholesale consumers to hedge not only against volume risk but

also against price movements. Price forecasts have become a fundamental input to an

energy company's decision-making and strategy development. This turn has fostered

research in electricity price modelling and forecasting.

In conclusion, statistical modeling and estimation of electricity spot prices are an

important issue with consequences in pricing of energy derivatives and risk manage-

ment of electricity markets. The data exhibit certain features of commodity data as

well as �nancial data. So-called stylized facts present some universal characteristics of
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electricity spot price data; for details we refer to Bernhardt, Klüppelberg and Meyer-

Brandis [1] and Weron [22]. Obviously, such data exhibit yearly, weekly and daily

seasonality. In contrast to most �nancial data, electricity spot prices are stationary

(after removal of the seasonal e�ects). Electricity spot prices show impressive spikes

and strong leptokurtic behaviour, indeed second moments do not exist.

In Klüppelberg, Meyer-Brandis and Schmidt [13] a three-factor continuous-time

model was suggested for electricity spot prices, which has been used for pricing of

electricity derivatives in Meyer-Brandis and Tankov [15]. Although the model captures

the stylized features very well, it is somewhat hard to �t statistically. On the other

hand, in Bernhardt et al. [1] a discrete time stable ARMA model has been suggested,

which also captured the stylized features very well, and, as a fairly standard linear

model, is easy to �t, although the driving noise is stable. This means that no �nite

variance exists, so that the usual Hilbert space arguments do not apply. It has been

shown, on the other hand, that standard L2-estimation procedures can be applied

also in this heavy-tailed setup; cf. Davis [8] and Mikosch et al. [16] and references

therein.

In the present paper we extend the simple model used in Bernhardt et al. [1] to a

continuous-time setup. Our long term vision aims at pricing of energy derivatives for

which a continuous-time model is preferable.

So-called continuous ARMA (CARMA) models have been suggested already by

Doob [9] and rediscovered by Brockwell [3], so that an extensive literature exists by

now, mainly concentrated on �nite variance models. Although at �rst sight it may

seem straighforward to de�ne a CARMA process and apply statistical tools developed

for ARMA processes to data, which are necessarily sampled at discrete times, this is

not so straightforward. We want to mention some di�culties one has to deal with.

• Whereas there exist stationary and causal ARMA(p, q) processes for every p, q ≥
1, CARMA(p, q) processes exist for q < p; see Brockwell [3].

• Estimators usually exhibit a di�erent behavior for ARMA and CARMA models

(e.g. in terms of asymptotic properties etc.), although for a very �ne grid there

are similarities; cf. Brockwell [2], Section 6.

• For many applications it is important to estimate the driving Lévy process. This

is possible, but not straightforward; cf. Brockwell, Davis and Yang [5].
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Our paper is organised as follows. In Section 2 we present some theoretical re-

sults on CARMA processes with special emphasis on the driving stable Lévy process.

Section 3 is devoted to the statistical estimation procedure. In Section 4 we conduct

a simulation study to check our estimation procedure, and in Section 5 we analyze

the Singapore electricity spot price data using a stable CARMA model. Section 6

concludes.

2 Stable CARMA processes

Throughout we work on a �ltered probability space satisfying the usual conditions of

completeness and right-continuity. Let {L(t)}t≥0 be an α-stable Lévy process; i.e.

• L(0) = 0 a.s.

• L has independent increments.

• For every 0 ≤ s < t < ∞ the random variable

L(t)− L(s) ∼ Sα(c(t− s)1/α, β, µ)

for some α ∈ (0, 2), β ∈ [−1, 1], c > 0, µ ∈ R, i.e. the characteristic function

has for all t ≥ 0 the representation E[eiθL(t)] = etξ(θ) for θ ∈ R, where (cf.

De�nition 1.1.6 of Samorodnitsky and Taqqu [18])

ξ(θ) =

{
−cα|θ|α(1− iβ(sign θ) tan(πα

2
)) + iµθ for α 6= 1,

−c|θ|(1 + iβ 2
π
(sign θ) log |θ|) + iµθ for α = 1.

(2.1)

The sign function sign θ = −1, 0, 1 according as θ < 0, θ = 0 or θ > 0, respec-

tively.

If c = 1 and µ = 0, then L is called standardized.

• L has càdlàg sample paths.

W.l.o.g. we assume µ = 0, since it a�ects only location and can be subtracted, if

needed, cf. Property 1.2.6 and Corollary 1.2.7 in Samorodnitsky and Taqqu [18].

A Lévy-driven CARMA(p, q) process {Y (t)}t≥0 with p, q ∈ N0 such that q < p

and coe�cients a1, . . . , ap, b0, . . . , bq ∈ R is de�ned via the state-space representation

of the formal equation

a(D)Y (t) = b(D)DL(t), t ≥ 0, (2.2)
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where D denotes di�erentiation with respect to t (see below), {L(t)}t≥0 is a stable

Lévy process as de�ned above,

a(z) := zp + a1z
p−1 + · · ·+ ap and b(z) := b0 + b1z + · · ·+ bp−1z

p−1

are the characteristic polynomials, and the coe�cients bj satisfy bq = 1 and bj = 0

for q < j < p.

Since the derivative DL(t) does not exist in the usual sense, we interpret (2.2) as

being equivalent to the observation and state equations

Y (t) = bTX(t) , (2.3)

dX(t) = AX(t)dt + 1pdL(t) , (2.4)

where

X(t) =


X(t)

X(1)(t)
...

X(p−2)(t)

X(p−1)(t)

 , b =


b0

b1

...

bp−2

bp−1

 , 1p =


0

0
...

0

1

 ,

A =


0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−ap −ap−1 −ap−2 . . . −a1

 and A = −a1 for p = 1.

State space representations of continuous-time AR and ARMA processes date back

to Brockwell, Hyndman and Grunwald [6]. For (p, q) = (1, 0) and (p, q) = (2, 1), the

equivalence of (2.2) and (2.3)/(2.4) is illustrated in Tsai and Chan [19], pp. 585�586.

Equation (2.4) is the short notation for the stochastic integral equation

X(t) = eA(t−s)X(s) +

∫
(s,t]

eA(t−u)1pdL(u), 0 ≤ s < t, (2.5)

where the stable integral is de�ned as in Chapter 3 of Samorodnitsky and Taqqu [18].

Such in�nite variance models have already been mentioned in Brockwell [3].

Remark 2.1. The eigenvalues of the matrix A, which we shall denote by λ1, λ2, . . . , λp,

are the same as the zeros of the autoregressive polynomial a(·), which can easily

5



be veri�ed by expanding the determinant of λI − A along the �rst column using

Laplace's formula. The corresponding right eigenvectors are (1, λi, λ
2
i , . . . , λ

p−1
i )T for

i = 1, . . . , p. Note that these vectors are always eigenvectors, even in the case of not

pairwise distinct eigenvalues.

The following result guarantees the existence of a strictly stationary solution X

of (2.5). In order to formulate it we have to extend the stochastic integral in (2.5) to

the negative half-line. To extend the Lévy process L to the whole real line we take

two independent copies L1 and L2 of L and de�ne

L(t) = L1(t)I[0,∞)(t)− L2(−t−)I(−∞,0)(t) .

Proposition 2.2 (cf. Brockwell and Lindner [7], Theorem 3.3, Brockwell et al. [5],

Proposition 1).

(a) Let L be a Lévy process (non-deterministic) and assume that a(·) and b(·) have no
common zeros. Then the CARMA equations (2.3) and (2.4) have a strictly stationary

solution Y on R if and only if E log+ |L1| < ∞ and a(·) is non-zero on the imaginary

axis. In this case the solution {Y (t)}t∈Z is unique and the corresponding state vector

process {X(t)}t∈R can be chosen to be strictly stationary.

(b) There exists a strictly stationary solution X of (2.5) with the property that X(t)

is independent of {L(s) − L(t), s > t} for all t ∈ R if and only if the conditions in

(a) hold and that all eigenvalues of A have negative real parts:

<(λi) < 0, i = 1, . . . , p. (2.6)

This solution has representation

X(t) =

∫
(−∞,t]

eA(t−u)1pdL(u), t ∈ R , (2.7)

which has for all t ∈ R the same distribution as
∫∞

0
eAu1pdL(u).

(c) Assume that the conditions in (a) and (2.6) hold. Then

Y (t) = bTX(t) =

∫
(−∞,t]

g(t− u)dL(u), t ∈ R, (2.8)

where g(h) = bT eAh1p for h ≥ 0 is referred to as the kernel of {Y (t)}t∈R. The process

Y is causal in the sense that Y (t) is independent and {L(s), s > t} for all t ∈ R.
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The following result speci�es the �nite dimensional distributions of the

CARMA(p, q) process. It has been proved in Theorem 2.2 of Brockwell [3] under

the assumption of �nite second moments, which was also used in the proof. For this

reason we give a short proof for our situation.

Proposition 2.3.

If {L(t)}t∈R is a Lévy process with characteristic function (2.1) and E |L(1)|r < ∞
for some r > 0, then the stable CARMA(p, q) process Y as speci�ed in (2.3) exists,

if condition (2.6) is satis�ed. Then for �xed 0 ≤ t1 < t2 < · · · < tn the cumulant

generating function of (Y (t1), Y (t2), . . . , Y (tn)) is given by

ln E
[
eiθ1Y (t1)+...+iθnY (tn)

]
(2.9)

=

∫ ∞

0

ξ

(
n∑

j=1

θjb
T eA(tj+u)1p

)
du +

∫ t1

0

ξ

(
n∑

j=1

θjb
T eA(tj−u)1p

)
du

+

∫ t2

t1

ξ

(
n∑

j=2

θjb
T eA(tj−u)1p

)
du + · · ·+

∫ tn

tn−1

ξ
(
θnb

T eA(tn−u)1p

)
du.

In particular, the marginal cumulant generating function is

ln E[eiθY (t)] =

∫ ∞

0

ξ(θbT eAu1p) du , t ≥ 0 .

Proof. For j = 1, . . . , n, use (2.3) and (2.7) to write

Y (tj) = bTX(tj) = bT

[∫
(−∞,0]

eA(tj−u)1p dL(u) +

∫
(0,t1]

eA(tj−u)1p dL(u)

+ · · ·+
∫

(tj−1,tj ]

eA(tj−u)1p dL(u)

]
.

Therefore,

θ1Y (t1) + · · ·+ θnY (tn)

=

∫
(−∞,0]

n∑
j=1

θjb
T eA(tj−u)1p dL(u) +

∫
(0,t1]

n∑
j=1

θjb
T eA(tj−u)1p dL(u)

+

∫
(t1,t2]

n∑
j=2

θjb
T eA(tj−u)1p dL(u) + · · ·+

∫
(tn−1,tn]

θnb
T eA(tn−u)1p dL(u).
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Since a Lévy process has the Lebesgue measure as control measure, (2.9) follows now

by Proposition 3.4.2 of Samorodnitsky and Taqqu [18].

Throughout, we will assume the following:

Assumption 2.4.

(1) The driving Lévy process L is α-stable for α ∈ (0, 2).

(2) The characteristic polynomials a(·) and b(·) have no common factors, a(·) is non-
zero on the imaginary axis and satis�es condition (2.6). All zeros of a(·) are distinct.
(3) All component processes of X and the CARMA process Y are causal and strictly

stationary (which is guaranteed by Proposition 2.3).

Proposition 2.5 (cf. Brockwell et al. [5], Proposition 2).

Under Assumption 2.4, the stable CARMA(p, q) process Y can be represented as a

sum of dependent and possibly complex-valued CAR(1) processes:

Y (t) =

p∑
i=1

Y (i)(t) , t ≥ 0 , (2.10)

where

Y (i)(t) = κi

∫
(−∞,t]

eλi(t−u)dL(u) and κi =
b(λi)

a′(λi)
, i = 1, . . . , p , (2.11)

and a′(·) denotes the derivative of a(·).

Note that the statement of Proposition 2.5 can be extended for the case of eigenval-

ues of algebraic multiplicity greater than 1, cf. Equations (2)-(4) in Tsai and Chan [20].

Recall that Bernhardt et al. [1] have �tted a stable ARMA process to the Singapore

electricity spot price data. Di�erent model selection criteria supported the use of an

ARMA(1,2) or an ARMA(2,1) model. Consequently, a CARMA(2,1) model should

give a good �t to these data. It will be our leading example throughout the paper.

Example 2.6. [Stable CARMA(2, 1) process]

We consider the particular case of a stable CARMA(2, 1) process, which is under

Assumption 2.4 the strictly stationary and causal solution of the equations

(D2 + a1D + a2)Y (t) = (b0 + D)DL(t) , t ∈ R ,

i.e.

b(z) = b0 + z and a(z) = z2 + a1z + a2 = (z − λ1)(z − λ2) ,
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where λ1 6= λ2 and both have negative real parts. The kernel of Y is

g(h) = κ1e
λ1h + κ2e

λ2h =
b0 + λ1

λ1 − λ2

eλ1h +
b0 + λ2

λ2 − λ1

eλ2h for h ≥ 0.

In consequence, Y has the representation

Y (t) = κ1

∫
(−∞,t]

eλ1(t−u) dL(u) + κ2

∫
(−∞,t]

eλ2(t−u) dL(u) , t ∈ R.

3 Estimation of the stable CARMA model

Now we investigate the estimation of stable CARMA models. After deriving some

theoretical properties of the sampled process in Section 3.1, we discuss the estimation

of the CARMA parameters and the recovery of the driving Lévy process in Sections 3.2

and 3.3, respectively. We assume throughout that Assumption 2.4 holds.

3.1 Properties of the sampled process

In the following we assume that the stable CARMA process is observed at the closely

and uniformly spaced times 0, h, 2h, . . . , Nh, where h > 0 is prespeci�ed and N =

[T/h] is the integer part of T/h. Hence inference will be based on the observations

{Y (nh), n = 0, . . . , [T/h]} of the sampled process. The following result is an α-stable

version of Lemma 2.1 of Brockwell and Lindner [7], see also Proposition 3 of Brockwell

et al. [5]

Proposition 3.1. (a) For given h > 0 the sampled process {Y (h)
n }n∈Z := {Y (nh)}n∈Z

is given by

Y (h)
n =

p∑
i=1

Y (i,h)
n , n ∈ Z , (3.1)

where the discrete-time processes {Y (i,h)
n }n∈Z for i = 1, . . . , p are obtained by sampling

the component CAR(1) process {Y (i)(t)}t∈R as de�ned in (2.11) at spacing h. Since

we work with a strictly stationary version of Y we consider

Y (i,h)
n = eλihY

(i,h)
n−1 + Z(i,h)

n , n ∈ Z , (3.2)

with noise

Z(i,h)
n = κi

∫
((n−1)h,nh]

eλi(nh−u)dL(u) , n ∈ Z . (3.3)
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The rv's Z
(i,h)
n are Sα(c|κi|[

∫ h

0
eαλi(h−u) du]1/α, β sign(κi), 0)-distributed; for �xed h, i,

but varying n, they are iid; for �xed h, n, but varying i, they are dependent.

(b) The sampled process {Y (h)
n }n∈Z satis�es the equations

φ(B)Y (h)
n =

p∏
i=1

(1− eλihB)Y (h)
n = U (h)

n , n ∈ Z , (3.4)

where B denotes the backshift operator and

φ(z) =

p∏
i=1

(1− eλihz) = 1− φ1z − · · · − φpz
p.

The process {U (h)
n }n∈Z has representation

U (h)
n = W

(h)
n,0 + W

(h)
n,1 + · · ·+ W

(h)
n,p−1 , n ∈ Z , (3.5)

where

W
(h)
n,j =

p∑
i=1

η
(i,h)
j Z

(i,h)
n−j (3.6)

and the Z
(i,h)
n−j are as in (3.3). For all n ∈ Z the vector (W

(h)
n,0 , . . . ,W

(h)
n,p−1) has inde-

pendent components, which for j = 0, . . . , p− 1 are Sα(σ
(h)
j , β

(h)
j , 0)-distributed with

σ
(h)
j = c

(∫ h

0

∣∣∣f (h)
j (u)

∣∣∣α du

)1/α

, (3.7)

β
(h)
j =

∫ h

0
|f (h)

j (u)|αsign(f
(h)
j (u))β du∫ h

0
|f (h)

j (u)|α du
, (3.8)

and f
(h)
j (u) :=

∑p
i=1 η

(i,h)
j κie

λi(h−u) for 0 ≤ u ≤ h. The η
(i,h)
j are given in (3.12).

(c) The process {U (h)
n }n∈Z is (p − 1)-dependent, and for all n ∈ Z the rv U

(h)
n is

Sα(σ
(h)
∗ , β

(h)
∗ , 0) distributed, where

σ(h)
∗ =

(∑p−1
j=0(σ

(h)
j )α

)1/α

, (3.9)

β(h)
∗ =

∑p−1
j=0 β

(h)
j (σ

(h)
j )α∑p−1

j=0(σ
(h)
j )α

, (3.10)

and σ
(h)
j and β

(h)
j are given in (3.7) and (3.8), respectively.
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Proof. (a) Equations (3.2) and (3.3) are obtained by setting t = nh in (2.10) and (2.11).

The distribution of Z
(i,h)
n follows from Samorodnitsky and Taqqu [18], Property 3.2.2.

(b) Applying the operator
∏p

r=1(1− eλrhB) to both sides of equation (3.1), we obtain

the left hand side of equation (3.4). Now, for the right hand side, observe that

U (h)
n =

p∑
i=1


 p∏

r=1
r 6=i

(1− eλrhB)

Z(i,h)
n


and, in consequence,

U (h)
n =

p∑
i=1

(
η

(i,h)
0 Z(i,h)

n + η
(i,h)
1 Z

(i,h)
n−1 + · · ·+ η

(i,h)
p−1 Z

(i,h)
n−p+1

)
, (3.11)

where (we denote by
∑′ a sum taken over di�erent indices only)

η
(i,h)
0 = 1

η
(i,h)
1 = −

∑
r 6=i

eλrh

η
(i,h)
2 =

∑
r,k 6=i

′
e(λr+λk)h

η
(i,h)
3 = −

∑
r,k,j 6=i

′
e(λr+λk+λj)h (3.12)

...

η
(i,h)
p−1 = (−1)p−1e

P
r 6=i λrh .

Next notice that for all j = 0, . . . , p − 1, by change of variables and the fact that L

has stationary increments, for all n ∈ Z,

Z(i,h)
n

d
= κi

∫
(0,h]

eλi(h−u)dL(u) (3.13)

This distribution is independent of n, but not independent of i (for p ≥ 2). More-

over, because of Assumption 2.4(2) we have b(λi) 6= 0, hence κi 6= 0, so that the

random variables Z
(i,h)
n−j for i = 1, . . . , p are pairwise dependent, cf. Samorodnitsky

and Taqqu [18], Theorem 3.5.3. Now, rewrite (3.11) as

U (h)
n =

p∑
i=1

η
(i,h)
0 Z(i,h)

n +

p∑
i=1

η
(i,h)
1 Z

(i,h)
n−1 + · · ·+

p∑
i=1

η
(i,h)
p−1 Z

(i,h)
n−p+1. (3.14)
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De�ne W
(h)
n,j :=

∑p
i=1 η

(i,h)
j Z

(i,h)
n−j for j = 0, . . . , p − 1 and note that they are indepen-

dent. Next, observe that (3.6) holds and, according to Samorodnitsky and Taqqu [18],

Property 3.2.2, it follows that W
(h)
n,j ∼ Sα(σ

(h)
j , β

(h)
j , 0), where σ

(h)
j and β

(h)
j are as in

(3.7) and (3.8).

(c) The (p − 1)-dependence of {U (h)
n }n∈Z is obvious, whereas the formulas (3.9) and

(3.10) follow from [18], Property 1.2.1.

Remark 3.2. (Properties of the vector Z
(h)
n := (Z

(1,h)
n , . . . , Z

(p,h)
n )T )

(1) Following Samorodnitsky and Taqqu [18], Prop. 3.4.3, the vector Z
(h)
n is α-

stable, and by [18], Corollary 3.5.4 the components of Z
(h)
n are pairwise dependent.

Dependence for stable vectors is given by the spectral measure Γ, a measure on the

unit sphere Sp := {x : ‖x‖ = 1} ⊆ Rp in Rp and ‖ · ‖ is an arbitrary norm in Rd. Now

de�ne, for u ∈ [0, h], the vector g̃(u) := (κ1e
λ1(h−u), . . . , κpe

λp(h−u)) and the control

measure

m1(du) = ‖g̃(u)‖αdu .

From [18], Prop. 3.4.3, we can derive that for α 6= 1 the spectral measure Γ is for

every Borel set A ⊆ Sp given by

Γ(A) =
1 + β

2
m1(g

−1(A)) +
1− β

2
m1(g

−1(−A)), ,

and

g−1(A) =

{
u ∈ [0, h] :

g̃(u)

‖g̃(u)‖
∈ A

}
.

Considering the image g̃([0, h]) for h > 0 and recalling that λi 6= λj for i 6= j, we see

that Γ is not concentrated on a �nite number of points on Sp (and hence Z
(h)
n cannot

be expressed as a linear transformation of a vector of independent α-stable random

variables, cf. [18], Prop. 2.3.7).

(2) For α 6= 1 the characteristic function of the vector Z
(h)
n is given by

φ(θ1, . . . , θp) =

exp

{
−
∫ h

0

∣∣∣∣∣
p∑

j=1

θjκje
λj(h−u)

∣∣∣∣∣
α(

1− iβ sign

(
d∑

j=1

θjκje
λj(h−u)

)
tan

πα

2

)
du

}
,
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cf. [18], Prop. 3.4.2. If β = 0, we therefore have

φ(θ1, . . . , θp) = exp

{
−
∫ h

0

∣∣∣∣∣
p∑

j=1

θjκje
λj(h−u)

∣∣∣∣∣
α

du

}

= exp

−
∫ h

0

∣∣∣∣∣
p∑

i=1

p∑
j=1

θiθjκiκje
(λi+λj)(h−u)

∣∣∣∣∣
α/2

du

 .

3.2 Estimation of the CARMA parameters

The �rst inferential goal is to obtain a good estimator ∆̂ of the CARMA parameter

vector ∆ := (a1, . . . , ap, b0, . . . , bq−1). In the L2-case, Brockwell et al. [5] have shown

that, for �xed h, the mean corrected sampled process {Y ∗(h)
n := Y

(h)
n − EY

(h)
n }n∈Z

satis�es the ARMA(p, q) equations, where the innovation process is not necessarily

i.i.d. (cf. Proposition 3.1). The proof is based on the fact that every q-dependent

process in L2 has a MA(q) representation; cf. Proposition 3.2.1 in Brockwell and

Davis [4]. For the construction of the corresponding white noise process one uses

projections in L2, where two zero-mean random variables are orthogonal if and only

if they are uncorrelated.

Although for α < 2 some concepts of orthogonality have been developed, e.g.

the James orthogonality as de�ned in Samorodnitsky and Taqqu [18], Section 2.9, an

analogue to Proposition 3.2.1 of Brockwell and Davis [4] does not exist. Moreover,

for the de�nition of an ARMA process with in�nite variance innovations, the white

noise variables are required to be independent. Consequently, it is not clear how to

deal with the (p− 1)-dependent MA part of (3.4).

Concerning the estimation of the coe�cients, we are on safe grounds, at least

for ARMA models, since it has been shown that parameter estimation in in�nite

variance ARMA models may be treated not di�erently than in a Gaussian ARMA

model; cf. Davis [8] and Mikosch et al. [16] and references therein. Indeed, the rate of

convergence is for the heavy-tailed stable case better than in the L2-case.

Motivated by this, we will treat the cases α < 2 just like the Gaussian case α = 2.

We want to emphasize that, although theoretical second or higher moments do not

exist, their empirical counterparts do. Consequently, on an empirical level we can

calculate all necessary quantities.

Firstly, we calculate the same projection as in the L2 case. Then we estimate

13



the ARMA parameters β̂ = (φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q) by a pseudo-maximum likelihood

method (alternatively one could also use a least squares method). And, �nally, we

transform the ARMA parameters into the CARMA parameters ∆̂ = (â1, . . . , âp, b̂0, . . . , b̂q−1).

We start with the left-hand side of (3.4) and remark that the autoregessive co-

e�cients φ1, . . . , φp depend on the eigenvalues λr for r = 1, . . . , p and on the time

h between two subsequent observations. For the right-hand side of (3.4) we �rst

assume a moving average representation for U
(h)
n , ignoring the (p − 1)-dependence

and the fact that we are not in L2. Now we estimate the ARMA parameters β̂ =

(φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q) by maximum likelihood.

To obtain the CARMA parameters we match the left-hand side of (2.2) with the

left-hand side of (3.4), which gives the estimates for (a1, . . . , ap) from the estimates

for (φ1, . . . , φp). The estimates for (b0, . . . , bq−1) result from a matching argument of

the (empirical) autocorrelation function as follows.

Note that the autocorrelations of U
(h)
n can be calculated using the autocorrelations

of the original CARMA process, by calculating the autocorrelations of the process

φ(B)Y
(h)
n . More precisely, due to (3.4) we can write the autocovariances as

γU(k) = cov(φ(B)Y (h)
n , φ(B)Y

(h)
n−k), k ∈ Z. (3.15)

Now, one can plug into (3.15) the exact formula for γY (·) given in Section 2 of Brock-

well et al. [5] as

γY (k) = 2c2b′eA|k|Σb, k ∈ Z, (3.16)

where c is the scaling parameter of the stable Lévy process, A and b are as in the

state space equations (2.3) and (2.4), and Σ =
∫∞

0
eAyee′eA′ydy. So �nally, we get

(b0, . . . , bq−1) by matching γU(k)/γU(0) for su�ciently many k with the autocorrela-

tions of a MA(q) process, using the right-hand side of (3.15), where we have plugged

in the ARMA estimates.

We explain this in detail for our relevant example. We emphasize again that the

necessary stable theory will be treated elsewhere. In this applied paper we will check

whether this approximation is reasonable, and assess the quality of the corresponding

estimates in a simulation study in Section 4.

Example 3.3. [Stable CARMA(2, 1) process, continuation of Example 2.6]

Assume that we have observed a sampled version of the CARMA(2,1) process {Y (t), 0 ≤
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t ≤ T} with parameters ∆ = (a1, a2, b0) on a grid with grid size h > 0 and, based on

this, we have estimated the ARMA(2,1) parameters β = (φ1, φ2, θ). We immediately

get from the left-hand side of (3.4)

φ1 = eλ1h + eλ2h, φ2 = −e(λ1+λ2)h. (3.17)

From φ̂1, φ̂2 we get λ̂1, λ̂2 giving â1 = −(λ̂1 + λ̂2) and â2 = λ̂1λ̂2. To obtain an

estimator for b0 we proceed as described above. To calculate explicit expressions for

γU(0) and γU(1), denote the autocorrelation function of {Y (h)
n }n∈Z by γY . We invoke

(3.15) to calculate γU(0) and γU(1) as

γU(0) = (1 + φ2
1 + φ2

2)γY (0) + (2φ1φ2 − 2φ1)γY (1)− 2φ2γY (2), (3.18)

γU(1) = −φ2γY (3) + φ1(φ2 − 1)γY (2) + (φ2
2 + φ2

1 + 1− φ2)γY (1) + φ1(φ2 − 1)γY (0).

Recall from Example 3.1.1 of Brockwell and Davis [4] that the autocorrelation function

at lag 1 of an arbitrary MA(1) process with coe�cient θ is given by

γU(1)

γU(0)
=

θ

1 + θ2
. (3.19)

Now recall from (3.16) the exact formulas for γY (·), which depend on the CARMA

parameters a1, a2 and b0. To calculate the remaining CARMA parameter b0 we plug

in the estimates â1, â2 into the right-hand side expressions of (3.18). The resulting

estimated expressions depend now on b0 only, and we plug them into the left-hand

side of (3.19). It remains to solve this non-linear equation for b0 numerically. �

To estimate con�dence regions for the parameter vector

∆ = (a1, . . . , ap, b0, . . . , bq−1) =: (δ1, . . . , δp+q)

we use Proposition 4 and Remark 6 in Brockwell et al. [5], which are based on results

by Pham [17], Francq and Zakoïan [10] and Marquardt and Stelzer [14] for the L2-case.

Later, we adapt these con�dence regions to the α-stable case. Firstly, by Proposition 4

of Brockwell et al. [5] (under a second moment condition), ∆̂ is strongly consistent

for every h > 0 as T →∞. Moreover, a good approximation to the covariance matrix

of ∆̂ (based on the continuous observations of the CARMA process on [0, T ]) is given

by V := M−1/T , where M = (Mkj)j,k=1,...,p+q and

Mjk =
1

2π

∫ ∞

−∞

{
∂

∂δj

a(iω)

b(iω)

}{
∂

∂δk

a(−iω)

b(−iω)

} ∣∣∣∣ b(iω)

a(iω)

∣∣∣∣2 dω.
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This is due to the weak convergence of
√

T (∆̂MLE − ∆) to a normal distribu-

tion with mean vector 0 and covariance matrix M−1 (under the moment condition

E|L(1)|4+δ < ∞), where ∆̂MLE denotes a corresponding maximum likelihood esti-

mator in the Gaussian model.

Example 3.4. [Stable CARMA(2, 1) process, continuation of Example 3.4]

In the CARMA(2,1) case, we have δ1 = a1, δ2 = a2, δ3 = b0. We can calculate the

elements of M as

M11 = 1/(
√

2(C+ + C−)), M12 = M21 = 0,

M22 = 1/(2
√

2a2
2(1/C+ + 1/C−)), M13 = M31 = −b0/(a2 + a1b0 + b2

0),

M33 = 1/(2b0), M23 = M32 = 1/(a2 + a1b0 + b2
0),

where

C+ :=
√

a2
1 + a1C0 − 2a2, C− :=

√
a2

1 − a1C0 − 2a2, C0 :=
√

a2
1 − 4a2.

We �rst report on results for Gaussian CARMA processes. Using the approximat-

ing matrix V = M−1/T of the covariance matrix of ∆̂, one can derive asymptotic

con�dence regions for ∆, which are valid for a Gaussian CARMA process continu-

ously observed on [0, T ]. Brockwell et al. [5] have shown in simulations that for general

Lévy-driven CARMA processes in L2 that there is a close correspondence between the

values of
√

Vii for i = 1, . . . , p + q (i.e. the asymptotic standard deviations of the es-

timates in ∆̂) and the sample standard deviations s(δi) of estimates from su�ciently

many simulations for h very close to 0 (cf. Brockwell et al. [5], Remark 7).

For α-stable CARMA processes (α < 2) we expect a similar correspondence be-

tween the empirical standard deviations of the estimates for a CARMA process ob-

served on a �ne grid at 0, h, 2h, . . . , bT/hch and the sample standard deviations s(δi)

from simulated data also observed at 0, h, 2h, . . . , bT/hch. Furthermore, one can see

from simulations, that these sample standard deviations increase with h, so that for a

discretely observed process the con�dence regions derived from V (i.e. as if observed

continuously) usually will be too small and, in consequence, one may undervalue the

uncertainty about the parameter estimates. Hence, for h not so close to 0, we adapt

the matrix V in order to provide more reliable con�dence regions. To this end we

de�ne a diagonal matrix D := diag(s(δi)/
√

Vii, i = 1, . . . , p + q) and adapt V by set-

ting W := DV D. Then the matrix W is a covariance matrix, where the correlations

between all components are the same as in V , but the standard deviations of the

16



components are exactly s(δi). Recall that in the case, where h is small, s(δi) is very

close to
√

Vii, and, hence, W ≈ V .

We shall show this method at work in Section 5.2.

3.3 Recovering the background driving Lévy process

In order to suggest a parametric model for the background driving Lévy process, we

have to recover the realization of L from our observations, using given or estimated

values of (a1, . . . , ap) and (b0, . . . , bq−1). Following Brockwell et al. [5] one can use the

state-space representation of the CARMA process and work with the state vector X

and the canonical state vector Y. Essential for this approach is that the SDE of the

CAR(1) factors in (2.10) given by

dY (i)(t) + λiY
(i)(t) = κidL(t) (3.20)

for i = 1, . . . , p has a pathwise solution. Observe that the Lévy processes in [5] are

subordinators, so that the pathwise integral exists obviously. For α-stable processes

the following has been shown by Fristedt and Taylor [11].

Proposition 3.5. Let L be an α-stable Lévy process for α ∈ (0, 2). Assume that L

does not have a drift for α < 1 and that the Lévy measure is symmetric for α = 1.

Then L has �nite p-variation for p > α and in�nite p-variation for p ≤ α.

It has been shown by Young [21] that for such processes a pathwise (Riemann-

Stieltjes) integral exists for appropriate integrands. Moreover, a partial integration

rule has been proved. Indeed, for deterministic integrands, and integrators with arbi-

trary positive p variation, Young's results apply.

Example 3.6. [Stable CARMA(2, 1) process, continuation of Example 3.4]

In the CARMA(2,1) case, we haveX(t) = (X(0)(t), X(1)(t)) andY(t) = (Y (1)(t), Y (2)(t))

for t ≥ 0. Now following equations (2.18) and (5.3)-(5.5) of Brockwell et al. [5] we get

17



for t ≥ 0

X(0)(t) = X(0)(0)e−b0t +

∫ t

0

e−b0(t−u)Y (u) du,

X(1)(t) = −b0X
(0)(t) + Y (t),(

Y (1)(t)

Y (2)(t)

)
=

1

λ1 − λ2

(
λ2(b0 + λ1) −(b0 + λ1)

−λ1(b0 + λ2) b0 + λ2

)(
X(0)(t)

X(1)(t)

)
,

L(t) =
2λr + a1

b0 + λr

[
Y (r)(t)− Y (r)(0)− λr

∫ t

0

Y (r)(s) ds

]
, r = 1, 2.

The last equation represents two di�erent possibilities to recover the driving Lévy

process. It is, however, advantageous to take that r, where λr has the smallest absolute

value (for a reasoning of this choice see Brockwell et al. [5], Section 6).

4 Simulation study

We conduct a simulation study to test the estimation procedure for the CARMA

parameters and to assess the quality of the estimates. To this end, we simulate sample

paths of α-stable CARMA(2,1) processes for various values of α, and with CARMA

parameters a1 = 1.9647, a2 = 0.0893 and b0 = 0.1761. These are exactly the values

we found for the Singapore electricity data, cf. Section 5.

Since the parameters are estimated as if the driving Lévy process was a Brownian

motion (which corresponds to the case α = 2), it is particularly interesting to see,

how the estimates behave for di�erent values of α. Therefore, we repeat the study for

�ve di�erent scenarios, with α taking on the values 2.0, 1.8, 1.6, 1.4 and 1.2302 (cf.

Section 5), respectively. The other parameters of the stable distribution of the driving

Lévy process are chosen as β = 0.1719, c = 16.8713, and µ = −4.5388, so that they

correspond to the estimates in the Singapore electricity data.

In each of the �ve scenarios, we simulate 1000 time series, consisting of 1369

observations each (note that our data set in Section 5 consists of 1369 observa-

tions). We choose h = 1, so that the observation times are t = 1, 2, . . . , 1369. The

CARMA process, however, is sampled for each integer multiple of 0.01, i.e. at times

0.01, 0.02, 0.03, . . . , 1369, using an Euler approximation of the corresponding integrals.

For each realization we computed estimates of the CARMA parameters a1, a2 and

b0 as described in Example 3.3 and then, subsequently for the �ve di�erent scenarios,

18



calculated the mean, bias and the sample standard deviation for the 1000 estimates

each. The results are reported in Table 4.1.

As expected from theory (cf. Davis [8] and Mikosch et al. [16]), the estimates

of a1 and a2 get better, in terms of the sample bias and standard deviation, when

α decreases. This e�ect is much weaker for b0. This may be due to the fact that

the (p − 1)-dependent process {U (h)
n }n∈Z has a (weak) MA(1) representation only in

the case α = 2, whereas for α < 2, the structure of the process {U (h)
n }n∈Z is more

complicated as speci�ed in Proposition 3.1.

a1 a2 b0

true 1.9647 0.0893 0.1761

α = 2.0 mean 2.0112 0.0975 0.1853

bias 0.0465 0.0082 0.0092

std. dev. 0.1674 0.0416 0.0462

α = 1.8 mean 2.0021 0.0929 0.1862

bias 0.0374 0.0036 0.0101

std. dev. 0.1533 0.0391 0.0457

α = 1.6 mean 1.9879 0.0956 0.1879

bias 0.0232 0.0063 0.0118

std. dev. 0.1324 0.0371 0.0459

α = 1.4 mean 1.9738 0.0927 0.1873

bias 0.0091 0.0034 0.0112

std. dev. 0.1115 0.0359 0.0455

α = 1.2302 mean 1.9693 0.0912 0.1881

bias 0.0046 0.0019 0.0120

std. dev. 0.1038 0.0323 0.0442

Table 4.1: Simulation study for di�erent values of α, based on 1000 data sets each:

mean, bias, and sample standard deviation of estimates for the CARMA parameters

a1, a2, and b0.
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5 Singapore electricity data

In this section we �t a stable CARMA(2,1) model to data from the Singapore New

Electricity Market. The data can be downloaded at www.ema.gov.sg. It consists of

1369 daily spot prices measured in Singapore Dollars per MegaWatthour (SGD/MWh)

and covers the period from January 1, 2005 to September 30, 2008.

Recall that Bernhardt et al. [1] �tted a stable ARMA process to the same data set

(with the exception that their data set covered only the period from January 1, 2005

to April 11, 2007). Their model choice was based on the AICC and BIC criteria and

showed clearly that either an ARMA(1,2) or an ARMA(2,1) model should be used.

Every simple AR model led to a much higher AICC and BIC value. Consequently, we

expect that a CARMA(2,1) model should give a good �t to these data. Before �tting

the CARMA(2,1) model, we �rst remove trend and seasonal components, which are

obviously present in the data.

5.1 Removing trend and seasonal components

The original spot price data from the Singapore New Electricity Market is shown in

Figure 1. Applying just a trend function for the seasonality shows a rather bad �t,

in particular for the �rst half of 2008. Since energy prices are usually related to the

overall in�ation rate, we account for this and use also the accumulated in�ation rate

S
G

D
/M

W
h

01/01/2005 01/01/2006 01/01/2007 01/01/2008

10
0

30
0

50
0

Figure 1: Singapore New Electricity Market: Daily spot prices from January 1, 2005

to September 30, 2008, overlaid by the estimated trend and seasonal curve.
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rt in Singapore from the beginning of our time series up to time t as an exogenous

variable for our trend function. Consequently, we �t the function

Λt = β0 + β1 cos

(
τ1 + 2πt

365

)
+ β2 cos

(
τ2 + 2πt

7

)
+ β3rt

to the data. Estimation by a robust least squares method leads to the following

parameter estimates:

β̂0 β̂1 τ̂1 β̂2 τ̂2 β̂3

90.02 -7.95 -112.35 1.18 -80.78 16.92

Figure 1 contains the estimated trend and seasonal curve. This is subtracted from

the original data and the remaining time series which is shown in Figure 2 is modelled

in the following as a CARMA(2,1) process driven by a stable Lévy process. From this

plot we expect the innovations of this driving Lévy process to be positively skewed.

In Figure 3 one can �nd the empirical autocorrelation functions of the detrended and

deseasonalized series and of its squares. Whereas there are signi�cant autocorrelations

up to about lag 20 present in the detrended and deseasonalized data, one does not

�nd any autocorrelation in the squared series.

Answering a question of one of the referees, for our detrended and deseasonalized

data, we estimate the Hurst exponent Ĥ = 0.8209 with a standard error of 0.0292,

using Higuchi's [12] method. Accordingly, an approximate symmetric 95% con�dence

01/01/2005 01/01/2006 01/01/2007 01/01/2008

0
10

0
30

0
50

0

Figure 2: Singapore New Electricity Market: Daily spot prices from January 1, 2005

to September 30, 2008, after removing trend and seasonal components.
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Figure 3: Empirical autocorrelation functions of detrended and deseasonalized series

and its squares.

interval for H is given by [0.7637, 0.8781]. For a �nite variance time series, this would

indicate that a long range dependence is present in the data, since Ĥ > 0.5. However,

here we deal with an in�nite variance time series, and according to Samorodnitsky

and Taqqu [18], Chapter 7, a long range dependence would be present in our stable

setup, if H − 1/α > 0. As we will see later, in our data we �nd α̂ = 1.2302, so that

we have 1/α̂ = 1/1.2302 = 0.8129. Hence, taking the above con�dence interval for H

into account, Ĥ − 1/α̂ is not signi�cantly di�erent from 0, and we conclude that no

long range dependence is present in the detrended and deseasonalized data.

5.2 Fitting the CARMA(2,1) process

We �rst estimate the CARMA parameters a1, a2, and b0, and then try to recover the

driving Lévy process. For the estimation of the CARMA parameters we proceed as

described in Section 3.2 (and speci�ed in Example 3.3) which leads to the following

estimates:

â1 â2 b̂0

1.9647 0.0893 0.1761

Hence the �tted CARMA(2,1) model is

(D2 + 1.9647D + 0.0893)Y (t) = (0.1761 + D)DL(t), t ∈ [0, 1369],
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with estimated autoregressive roots λ̂1 = −0.0465 and λ̂2 = −1.9181. Note that the

estimated model is stationary by Proposition 2.2. To get reliable con�dence regions

for the parameter estimates we apply the method of Section 3.2. The asymptotic

covariance matrix V = M−1/1369 can be calculated by plugging the estimates â1, â2,

and b̂0 into the formulas for Mjk as calculated in Example 3.4. This yields

V = 10−4 ×

 52.8907 12.2657 16.2995

12.2657 8.7831 8.2655

16.2995 8.2655 10.9837

 ,

and the preliminary standard deviations
√

V11 = 0.07273,
√

V22 = 0.02964,
√

V33 =

0.03314, for the estimates â1, â2, and b̂0, respectively. As argued in Section 3.2, the

con�dence regions derived from V may be too small due to the discretization. On

the other hand, we want to emphasize that con�dence regions in stable discrete time

linear models are smaller than in the L2-case. Nonetheless, to be on the safe side, we

use the estimated sample standard deviations from the simulation study in Section 4

for comparison. There we found, for α = 1.2302 (cf. below) the sample standard

deviations ŝ(a1) = 0.1038, ŝ(a2) = 0.0323, ŝ(b0) = 0.0442, for â1, â2, and b̂0 respec-

tively. By setting D = diag(0.1038/0.07273, 0.0323/0.02964, 0.0442/0.02964) we get

for W = DV D

W = 10−4 ×

 107.7325 19.0766 34.6899

19.0766 10.4302 13.4318

34.6899 13.4318 24.4252

 .

Taking this as the corrected covariance matrix, we can now derive an approximate

95% con�dence region. Figure 4 shows three sections through a corresponding 95%

con�dence ellipsoid where one of the parameters is �xed to the estimated value each.

Note that 0 is not contained in either ellipsoid; i.e. all coe�cients are signi�cant.

To get a complete model speci�cation we now also estimate the Lévy increments

as described in Section 3.3 in order to specify an appropriate driving Lévy process.

The estimates of the Lévy increments L(n) − L(n − 1) were obtained by construct-

ing a realization of the component CAR(1) process corresponding to the estimated

autoregressive root λ̂1, since this root has a smaller absolute value than λ̂2; cf. Exam-

ple 3.6. The estimated Lévy increments are shown in the �rst plot of Figure 5. One

can see the positive skewness of the innovations. The second row of this plot contains

empirical autocorrelation functions of the increments and their squares. Obviously,
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Figure 4: Sections through a 95% con�dence ellipsoid with b0 = 0.1761 �xed (left),

a2 = 0.0893 �xed (middle), and a1 = 1.9647 �xed (right). The dots indicate the

location of the estimate (â1, â2, b̂0).

the dependence structure of the data is well described by our CARMA(2,1) model.

Moreover, we can obtain the empirical distribution function for the Lévy increments

and a histogram and the empirical distribution function are shown in the last plot

of Figure 5 as solid line. Finally we �t a stable distribution to the Lévy increments

using the program STABLE. This software is available from J. P. Nolan's website

academic2.american.edu/∼jpnolan. For our estimated Lévy innovations, it gives the

following parameter estimates of the stable distribution:

α̂ β̂ ĉ µ̂

1.2302 0.1719 16.8713 -4.5388

First note, that the estimate of the location parameter µ is quite small compared

to the estimate of the scale parameter c. As expected, the estimate β̂ of the skew-

ness parameter is positive. Moreover, the STABLE software provides estimated 95%

con�dence intervals for α and β. In our case, these are given by [1.1522, 1.3082] and

[0.0595, 0.2843], respectively. Hence they con�rm that the innovations are far from

being Gaussian, and that their skewness is signi�cantly di�erent from 0. The dashed

line in the bottom plots of Figure 5 corresponds to the cumulative stable distribution

function with these parameters, indicating the excellent �t of the stable distribution

to the Lévy increments.
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6 Summary and conclusion

In this paper we investigated CARMA processes, which are driven by a stable non-

Gaussian Lévy process. In particular, we discussed the existence of strictly stationary

and causal solutions and derived the cumulant generating function. Using a represen-

tation of the stable CARMA(p, q) process as sum of dependent CAR(1) processes we

can discribe the sampled CARMA process by an equation, where the left-hand side

corresponds to an AR(p) process and the right-hand side to a (p− 1)-dependent pro-

cess. Although, for a stable CARMA process, there is no weak MA representation of

this (p−1)-dependent process, we have seen in a simulation study, that we can apply

the same principle as in the case, where the innovations of the driving Lévy process

have �nite second moment: the standard deviations of the estimates even decrease as

the stable parameter α decreases. Finally, as an application, we �tted a CARMA(2,1)

model to spot prices from the Singapore New Electricity Market.

One of the advantages of continuous-time modelling is that it allows to investigate

pricing problems. Hence, we see an interesting future project in using the framework

of stable CARMA processes to develop strategies for pricing energy derivatives.
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Figure 5: Top: Estimated Lévy increments. Middle: Empirical autocorrelation func-

tions of estimated Lévy increments and squared increments. Bottom: Histogram and

empirical distribution function of estimated Lévy increments (solid line) and cumu-

lative distribution function of �tted stable distribution (dashed line).
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