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Abstract In this paper we consider regression models for count data al-

lowing for overdispersion in a Bayesian framework. We account for unob-

served heterogeneity in the data in two ways. On the one hand, we consider

more flexible models than a common Poisson model allowing for overdisper-

sion in different ways. In particular, the negative binomial and the gener-

alized Poisson distribution are addressed where overdispersion is modelled

by an additional model parameter. Further, zero-inflated models in which

overdispersion is assumed to be caused by an excessive number of zeros are

discussed. On the other hand, extra spatial variability in the data is taken

into account by adding spatial random effects to the models. This approach

allows for an underlying spatial dependency structure which is modelled

using a conditional autoregressive prior based on Pettitt et al. (2002). In

an application the presented models are used to analyse the number of in-

vasive meningococcal disease cases in Germany in the year 2004. Models

are compared according to the deviance information criterion (DIC) sug-

gested by Spiegelhalter et al. (2002) and using proper scoring rules, see for

example Gneiting and Raftery (2004). We observe a rather high degree of

overdispersion in the data which is captured best by the GP model when

spatial effects are neglected. While the addition of spatial effects to the

models allowing for overdispersion gives no or only little improvement, a

spatial Poisson model is to be preferred over all other models according to

the considered criteria.
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1 Introduction

A very popular model for count data is the Poisson distribution. However, in

the Poisson model equality of the variance and the mean is assumed which

is too restrictive for overdispersed data where the variance in the data is

higher than the expected one from the model. This paper aims to give an

overview over different models for spatially indexed count data allowing for

overdispersion in a Bayesian perspective. We follow two approaches for deal-

ing with the extra variability in overdispersed data. On the one hand, we

consider a wider class of models allowing for overdispersion, on the other

hand spatial random effects are introduced to capture unobserved spatial

heterogeneity in the data.

Overdispersion with respect to the Poisson model can be modelled by in-

troducing an additional parameter. In particular we consider the negative

binomial (NB) distribution and the generalized Poisson (GP) distribution

introduced by Consul and Jain (1973). Both models allow an independent

modelling of the mean and the variance by the inclusion of an additional

parameter.

When dealing with a data set with an excessive number of zeros, zero-

inflated models might be used, see for example Winkelmann (2003). In con-

trast to the GP and the NB model, overdispersion in zero inflated models

is caused by the occurrence of more zero observations than expected. Zero

inflated models can be used in combination with any model for count data.

Additionally to the zero observations arising from the count data model an

extra proportion of zeros is incorporated. Lambert (1992) introduced the

zero inflated Poisson regression model, a Bayesian analysis of the zero in-

flated Poisson model is given in Rodrigues (2003). Zero inflated regression

models in combination with the generalized Poisson distribution have been

addressed in Famoye and Singh (2003b) and Famoye and Singh (2003a)

using maximum likelihood estimation, a Bayesian analysis without the in-

clusion of covariates is given in Angers and Biswas (2003). Agarwal et al.

(2002) use a zero inflated Poisson regression model for spatial count data

in a Bayesian framework.

The second approach for modelling unobserved data heterogeneity is the in-

troduction of random effects. For spatially indexed data which are the focus

in this paper, spatial random effects associated with each region or site may

be used, allowing for the modelling of an underlying spatial dependency

structure.

In this paper, we consider Poisson, NB, GP and zero inflated (ZI) regres-

sion models both including and without spatial random effects in a Bayesian

context. In contrast to classical inference the Bayesian approach allows to

adjust for parameter uncertainty by assigning prior distributions to the pa-

rameters. Further, a spatial correlation structure is easily incorporated in

a Bayesian setting by assuming an adequate prior distribution for the spa-
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tial random effects. In this paper we assume a proper Gaussian conditional

autoregressive spatial prior based on Pettitt et al. (2002) which takes the

neighbourhood structure of the data into account and allows for spatial

dependencies. Since this results in a high dimensional, complex posterior

distribution, Markov Chain Monte Carlo (MCMC) is used for parameter

estimation.

We give an application of the considered models to disease mapping. In

particular, we analyse the number of invasive meningococcal disease cases

registered in Germany in the year 2004. Models are compared using the de-

viance information criterion (DIC) suggested by Spiegelhalter et al. (2002)

and proper scoring rules, see for example Gneiting and Raftery (2004). We

observe a substantial degree of overdispersion in the data which is mod-

elled best by the GP distribution when spatial effects are neglected. While

the addition of spatial random effects gives no or little improvement to the

models allowing for overdispersion, spatial effects turn out to be significant

for the Poisson model. In particular, according to the DIC and the scoring

rules a spatial Poisson models gives the best fit for these data. However,

no smooth spatial pattern is modelled. Instead some isolated regions with

high risk are detected by the spatial effects, indicating that the risk is not

sufficiently explained by the incorporated covariates in these regions.

This paper is organized as follows. In Section 2 the negative binomial, the

generalized Poisson and zero-inflated regression models are presented. The

conditional autoregressive prior assumed for the spatial effects is discussed

in Section 3, prior assumptions for the regression and model dependent

overdispersion parameters are given in Section 4. The DIC and the used

proper scoring rules are reviewed in Section 5. Finally, in Section 6 the pre-

sented models are applied to analyse the number of invasive meningococcal

disease cases in Germany is given. Section 7 gives a summary of the results

and draws conclusions. Details about the MCMC algorithms can be found

in the Appendix.

2 Models for count data including overdispersion

A commonly used model for count data is the Poisson model, where equality

of mean and variance is assumed. Since this condition is not satisfied any

more if overdispersion is present in the data, we consider models, which

allow the variance to be larger than the mean in this section. For a detailed

study of various count data models see Winkelmann (2003).
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2.1 Negative Binomial (NB) distribution and Regression

The density of the negative binomial distribution with parameters r > 0

and µ > 0 denoted by NB(r,µ) is defined by

P (Y = y|r, µ) =
Γ (y + r)

Γ (r)y!
·
( r

µ+ r

)r

·
( µ

µ+ r

)y

, y = 0, 1, 2, ... (2.1)

with

E(Y |r, µ) = µ and V ar(Y |r, µ) = µ
(

1 +
µ

r

)

.

The variance is the mean multiplied by the positive factor ϕ := 1 + µ

r
and

therefore greater than the mean, i.e. overdispersion can be modelled in the

negative binomial distribution. We call the factor ϕ dispersion factor. In the

limit r → ∞ the NB distribution converges to the Poisson distribution with

parameter µ, see Winkelmann (2003). The negative binomial distribution

also arises from a Poisson distribution where the parameter θ is assumed to

be random and to follow a Gamma distribution with mean E(θ) = µ and

variance V ar(θ) = µ2

r
. Therefore, overdispersion in the NB model can be

interpreted by unobserved heterogeneity among observations. In a regression

model with Yi ∼ NB(r, µi) independent for i = 1, .., n, the mean of Yi is

specified in terms of covariates xi and unknown regression parameters β by

E(Yi|xi,β) = µi > 0.

Note, that in the NB regression model the dispersion factor ϕi := 1 + µi

r

takes observation specific values.

2.2 Generalized Poisson (GP) distribution and Regression

The generalized Poisson distribution has been introduced by Consul and

Jain (1973) and is investigated in detail in Consul (1989). A random variable

Y is called generalized Poisson distributed with parameters µ > 0 and λ,

denoted by GP(µ, λ), if

P (Y = y|µ, λ) =















µ[µ(1 − λ) + λy]y−1 (1−λ)
y! exp

[

−µ(1 − λ) − λy
]

,

y = 0, 1, 2, ...

0 for y > mwhenλ < 0

(2.2)

where max(−1,− µ

m−µ
) < λ < 1 and m(≥ 4) is the largest positive integer

for which µ(1 − λ) +mλ > 0 for negative λ. Mean and variance are given

by

E(Y |µ, λ) = µ and V ar(Y |µ, λ) =
µ

(1 − λ)2
, (2.3)

hence ϕ := 1
(1−λ)2 can be interpreted as an dispersion factor for the GP

distribution. For λ = 0, the generalized Poisson distribution reduces to the
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Poisson distribution with parameter µ, for λ < 0 underdispersion can be

modelled, whereas for λ > 0 overdispersion is obtained. The focus in this

paper is the modelling of overdispersion, therefore λ is assumed to take

only values in the interval [0, 1) in the remainder of this paper. Similar to

the NB model, the GP distribution is a mixture of Poisson distributions as

has been proved by Joe and Zhu (2005). A regression model for independent

GP(µi,λ) distributed response variables Yi, i = 1, .., n is set up by specifying

the mean by

E(Yi|xi; β, λ) = µi > 0

like in the NB model. While the dispersion parameter in the NB regression

model depends on µi leading to a variance function which is quadratic in

µi, the dispersion parameter ϕ = 1
(1−λ)2 in the GP regression model is the

same for each observation and results in a linear variance function.

2.3 Comparison of NB and GP distribution

In order to compare the behaviour of the NB and the GP distribution, we

equate the mean and the variance of a GP(µ, λ) with the mean and the

variance of a NB(r, µ) distributed random variable, i.e.

µ

(1 − λ)2
= µ(1 +

µ

r
)

has to hold and the equation

r =
µ(1 − λ)2

λ(2 − λ)
(2.4)

is obtained. In Figure 1 the NB distribution is plotted in comparison to

the GP distribution with µ and r chosen according to (2.4). For a better

visual comparison the densities of these discrete distributions are presented

as line plots. For small values of λ both distributions behave very similarly.

With increasing values of λ slight differences between the two distributions

can be observed which become greater when λ tends to 1. In particular, the

negative binomial distribution gives more mass to small values of y if strong

overdispersion is present.

2.4 Zero Inflated (ZI) Models

For count data with an excessive number of zero observations zero inflated

(ZI) models can be used. These models allow for a higher number of zeros

than can be explained by standard models for count data. Additional to

the zero observations arising from the supposed count data distribution, a

proportion of extra zeros is assumed. ZI models have been widely used in

the literature, for a short overview see Winkelmann (2003).
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Fig. 1 Comparison of the generalized Poisson distribution with µ = 1, 10, 30
and λ = 0.2, 0.5, 0.9 to the negative binomial distribution with µ = 1, 10, 30 and

r = µ(1−λ)2

λ(2−λ)
.

Let π(y|θ) be a distribution function for count data with unknown param-

eters θ. Then a zero inflated model with extra proportion p ∈ [0, 1] of zeros

is defined by (see Agarwal et al. (2002))

P (Y = y|p,θ) =

{

p+ (1 − p)π(y = 0|θ) if y = 0
(1 − p)π(y|θ) if y > 0

(2.5)

Mean and variance are given by

E(Y |p,θ) = (1 − p)Eπ(Y |θ) (2.6)

and

V ar(Y |p,θ) = p(1 − p)[Eπ(Y |θ)]2 + (1 − p)V arπ(Y |θ). (2.7)

The introduction of latent indicator variables Z = (Z1, .., Zn)
′ leads to a

model which is easier to handle in a Bayesian context and in particular

allows a Gibbs step for p. Zi takes the value zi = 0 for all observations with

yi > 0. For all zero observations yi = 0, the latent variable takes the value

zi = 0 if observation i arises from the count data distribution π(y|θ) and

the value zi = 1 for extra zeros. Marginally, Zi ∼ Bernoulli(pi). Using the

latent variables Z, the joint likelihood of Y = (Y1, .., Yn)′ and Z is given by

f(Y,Z|p,θ) =
n

∏

i=1

pzi

i [(1 − pi)π(yi|θ)]1−zi

=
∏

i:yi=0

pzi

i [(1 − pi)π(0|θ)]1−zi ·
∏

i:yi>0

(1 − pi)π(yi|θ).
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In this paper we will focus on the zero inflated Poisson and the zero inflated

generalized Poisson models, which are special cases of the ZI model (2.5).

The zero inflated negative binomial distribution will not be discussed in this

paper, since the GP model turned out to be more adequate than the NB

model for the application considered later on.

2.4.1 Zero Inflated Poisson (ZIP) Distribution

Here the Poisson distribution is assumed for the underlying count data

distribution, i.e.π(y|θ) := π(y|µ) = µy
exp(−µ)

y!
. Mean and variance of the

ZIP distribution, denoted by ZIP (p, µ), are specified by E(Y |p, µ) = (1 −

p)µ and V ar(Y |p, µ) = (1− p)µ(µp+ 1) = E(Y |p, µ)(µp+ 1). For p > 0 the

dispersion factor ϕ := µp+ 1 of the ZIP model is positive, i.e. the presence

of extra zeros leads to overdispersion.

2.4.2 Zero Inflated Generalized Poisson (ZIGP) Distribution

The ZIGP regression model was already introduced by Famoye and Singh

(2003b), in Famoye and Singh (2003a) a generalisation to k-inflated GP re-

gression models is given. The ZIGP distribution, denoted by ZIGP (p, µ, λ),

is obtained if the density function of the GP distribution given in (2.2) is

chosen for π(y|θ). The mean and the variance of the ZIGP distribution are

given by E(Y |p, µ, λ) = (1 − p)µ and V ar(Y |p, µ, λ) = E(Y |p, µ, λ)
[

pµ +

1
(1−λ)2

]

. The dispersion factor of the ZIGP model is therefore given by

ϕ := pµ+ 1
(1−λ)2 . Here, overdispersion can both result from the overdisper-

sion parameter λ of the GP distribution and the extra proportion of zeros

p when p > 0.

2.4.3 Zero Inflated Regression Models

In a regression model Yi ∼ ZIP (pi, µi) and Yi ∼ ZIGP (pi, µi, λ), inde-

pendent for i = 1, .., n, respectively, a regression can be performed both for

p = (p1, .., pn)
′ and µ = (µ1, .., µn)′. As in the NB and GP model the pa-

rameter µi is assumed to depend on covariates xi and unknown regression

parameters β. For the proportion of extra zeros a logistic link might be

chosen, i.e. pi =
exp(x̃′

i
α)

1+exp(x̃′

i
α) with covariate vector x̃i and regression param-

eters α. However, for the data considered in our application no significant

zero inflation is detected. An extension to ZI models with regression on p

therefore seems unnecessary and is not addressed further in this paper.

Alternatively to ZI models hurdle models, see for example Winkelmann

(2003) for an overview, could be used. The most widely used hurdle model

is the zero hurdle model which assumes two separate models for zero and

non-zero observations. Attention is however restricted to zero inflated mod-

els in this paper. As mentioned above, the amount of zeros in the data

analysed in Section 6 turned out to be covered sufficiently well by non- zero

inflated models and gives no rise for a separate analysis of zero observations.
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3 Spatial effects using a Gaussian conditional autoregressive

model

In addition to covariates we will incorporate spatial random effects in the

regression models in order to account for spatial heterogeneity as well as

spatial correlation in the data. We consider models for data aggregated in

regions. A spatial dependency structure is imposed by assuming a prior

distribution for the spatial effects which takes the neighbourhood structure

of the area under consideration into account. In particular we consider a

special case of the Gaussian conditional autoregressive (CAR) model in-

troduced by Pettitt et al. (2002) . Assume the data to be distributed on

J regions {1, ..., J}. Then the vector γ = (γ1, .., γJ)′ of spatial effects is

assumed to follow a multivariate normal distribution, in particular

γ ∼ N(0, σ2Q−1) (3.1)

where the elements of the precision matrix Q = (Qij), i, j = 1, .., J are

given by

Qij =







1 + |ψ| ·Ni i = j

−ψ i 6= j, i ∼ j

0 otherwise
. (3.2)

We write i ∼ j for regions i and j which are contiguous and assume regions

to be neighbours if they share a common border. Ni denotes the number

of neighbours of region i. The conditional distribution of γi, given all the

remaining components γ
−i, i = 1, .., J is given by

γi|γ−i ∼ N
( ψ

1 + |ψ| ·Ni

∑

j∼i

γj , σ
2 1

1 + |ψ| ·Ni

)

.

The parameter ψ determines the overall degree of spatial dependence, for

ψ = 0 all regions are spatially independent, whereas for ψ → ∞ the degree

of dependence increases. Pettitt et al. (2002) show that Q is symmetric and

positive definite, therefore (3.1) is a proper distribution. Another convenient

feature of this CAR model is that the determinant of Q which is needed for

the update of ψ in a Markov Chain Monte Carlo(MCMC) algorithm can be

computed efficiently, see Pettitt et al. (2002) for details. Many other authors

have dealt with conditional autoregressive models. An overview about CAR

models is given in the book by Banerjee et al. (2004) and in Jin et al. (2004)

where also multivariate CAR models are discussed. The most popular model

is probably the intrinsic CAR model introduced by Besag and Kooperberg

(1995). The joint density for γ in the intrinsic CAR model is improper in

contrast to model (3.3) described above which has a proper joint density.

Czado and Prokopenko (2004) consider a modification of model (3.3) which

is a proper model as well but reduces to the intrinsic CAR model in the

limit. Another modification of the intrinsic CAR model leading to a proper

prior has been presented by Sun et al. (2000).
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4 Bayesian Inference

In order to account for parameter uncertainty and to allow for an underlying

spatial structure we consider the count data regression models discussed in

Section 2 in a Bayesian context. MCMC will be used for parameter estima-

tion. For more information on Bayesian data analysis and MCMC methods

see Gilks et al. (1996) and Gelman et al. (2004).

Assume the response variables Yi, i = 1, .., n to be observed at J regions.

Besides the well known Poisson regression model Poi(µi) we consider the

NB(r, µi), GP (µi, λ), ZIP (p, µi) and ZIGP (p, µi, λ) model. In each of these

models the parameter µi, i = 1, .., n is specified by

µi = ti exp(x′

iβ + γR(i)), (4.1)

where xi = (1, xi1, .., xik) denotes the vector of covariates and ti gives the

observation specific exposure which will be treated as an offset. The vector

β = (β0, .., βk) denotes the vector of unknown regression parameters. Note,

that an intercept β0 is included in the model. To allow for geographical

differences in the J regions spatial random effects γ = (γ1, .., γJ) are intro-

duced, R(i) ∈ {1, .., J} denotes the region of the i-th observation. For the

zero inflated models we assume a constant p for all observations. The pa-

rameters β, γ, λ, p and r, respectively, are taken to be a priori independent

and the following prior distributions are chosen:

– π(β) ∼ N(0, τ2Ik+1), with τ2 = 100

– π(γ|σ2, ψ) ∼ N(0, σ2Q−1) with Q specified as in (3.2)

For the hyperparameters σ2 and ψ the proper priors

– π(σ2) ∼ IGamma(a, b) with a = 1 and b = 0.005

– π(ψ) ∼ 1
(1+ψ)2

are assumed. For the model specific parameters the following prior distri-

butions are chosen:

– GP Regression: π(λ) ∼ U([0, 1])

– NB Regression : π(r) ∼ Gamma(a, b), i.e. π(r) = ba

Γ (a)r
a−1e−rb,

where a = 1 and

π(b) ∼ Gamma(c, d), i.e. π(b) ∝ bc−1e−bd with c = 1 and d = 0.005

– ZIP/ZIGP Regression: π(p) ∼ U([0, 1])

The schemes of the MCMC algorithms and details about the chosen proposal

distributions for Metropolis Hastings steps can be found in the Appendix.

5 Bayesian Model comparison

5.1 Deviance Information Criterion (DIC)

Spiegelhalter et al. (2002) suggest to use the following criterion for model

comparison in Bayesian inference. Assume a probability model p(y|θ). The
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Bayesian deviance D(θ), which is used as a measure for goodness of fit, is

defined as

D(θ) = −2 log p(y|θ) + 2 log f(y)

where f(y) is some fully specified standardizing term. To measure the model

complexity Spiegelhalter et al. (2002) introduce the effective number of pa-

rameters pD defined by

pD := E[D(θ|y)] −D(E[θ|y]).

Finally they define the deviance information criterion (DIC) as the sum of

the posterior mean of the deviance and the effective number of parameters

DIC := E[D(θ|y)] + pD.

According to this criterion the model with the smallest DIC is to be pre-

ferred. pD and DIC are easily computed using the available MCMC output

by taking the posterior mean of the deviance to obtain E[D(θ|y)] and the

plug-in estimate of the devianceD(E[θ|y]) using the posterior means E[θ|y]

of the parameter θ.

Bayes factors based on marginal likelihood provide an alternative method for

model comparison, see Kass and Raftery (1995). Further, Bayesian Model

Averaging (BMA), see for example Hoeting et al. (1999), which is based

on Bayes factors, presents a method for model selection taking model un-

certainty into account. However, since the computation of Bayes factors

requires substantial efforts for complex hierarchical models, see Han and

Carlin (2001), we use the DIC for model comparison in this paper.

5.2 Proper scoring rules

Apart from the DIC we use proper scoring rules for categorical variables for

comparing models, in particular we consider the Brier score and the loga-

rithmic score presented for example in Gneiting and Raftery (2004). While

Gneiting and Raftery (2004) use scoring rules for assessing the quality of

probabilistic forecasts, our focus is model comparison based on the poste-

rior predictive distribution. Under the probability model p(y|θ) a scoring

rule assigns a value S(pi, yi) for each observation yi, i = 1, .., n based on

the posterior predictive probability vector pi = (pi1, pi2, .., pim). Here the

component pij := P (yi = j|y) denotes the posterior predictive probability

that the i-th observation takes the value j which can be estimated by p̂ij :=
1
J

∑J

k=1 p(yi = j|θk) where θk, k = 1, .., J , denotes the k-th MCMC iterate

of θ after burnin. For computational reasons we set pim := 1 −
∑m−1

k=1 pik

where m − 1 gives the highest response value observed in the data. This

ensures that the probability vector pi sums up to 1.

Models are then compared based on the mean score given by

S(θ) =
1

n

n
∑

i=1

S(pi, yi).
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We consider positive oriented scores here, i.e. the model with the highest

mean score is to be preferred. The Brier score first proposed by Brier (1950)

is defined by

S(pi, yi) = 2piyi
− 1 −

m
∑

k=1

p2
ik

where piyi
= P (y = yi|θ) denotes the posterior predictive probability for

the true value yi under the considered model. The Brier score corresponds

to the expression

−
1

n

m
∑

k=1

n
∑

i=1

(pij − p̂
emp
ij )2

where p̂empij =

{

1 yi = j

0 otherwise
denotes the empirical probability that the i-

th observation takes the value j. Hence, according to the Brier score the

model which minimizes the squared difference between the observed and

the estimated probabilities is considered best.

The logarithmic score is defined by

S(pi, yi) = log piyi

and therefore chooses the model which gives the highest probability for

observing the true value. Both scores are proper, i.e. the highest score is

obtained for the true model, see Gneiting and Raftery (2004) for details.

Further, when parameter estimation is done using MCMC both scores are

computed easily based on the available MCMC output as indicated above.

Ideally, in order to avoid using the data twice, parameter estimation should

be based on about 75 % of the data only, whereas the scores should be

computed for the remaining 25 % of the data. However, since the data set

analysed in the next section is rather small and our focus is on comparing

models rather than prediction, we will use the same data for estimation and

computation of the scores.

6 Application

6.1 Data description

In this section the proposed models will be used to analyse the number of

invasive meningococcal disease cases reported in Germany during the year

2004. Meningococcal disease is caused by bacteria and can lead to serious,

perilous diseases, like for example meningitis, in which case we refer to in-

vasive meningococcal disease. In 2004, 600 cases of invasive meningococcal

disease were reported in Germany. Germany is divided into 439 regions, for

each of these regions the number of invasive meningococcal disease cases is

given for both men and women. A histogram of the total number of cases in

each region is given in Figure 2. A high proportion (67.2 %) of the data is



12 Susanne Gschlößl, Claudia Czado

equal to zero, on average 1.37 cases of meningococcal disease are observed in

each region, the maximum number of cases observed in one region is 18. The

variance of the data is 3.71 which is substantially higher than the mean and

therefore already indicates the presence of overdispersion in the data. On

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

Fig. 2 Histogram of the observations yi, i = 1, .., 439.

a higher aggregation level Germany consists in 16 states. Besides the mod-

elling of overdispersion in the data, an interesting issue is to detect whether

there are areas with an increased risk of contracting invasive meningococcal

disease. In this case, vaccination could be strongly recommended in these

risky regions. Therefore we include the 16 states as covariates in our model,

which will be modelled as factor covariates with state 1 as reference level.

Since we are interested in relative risks, population effects are eliminated

by including the expected number of cases in each region as an offset in

the analysis. The expected number of cases in each region is determined by

the population in each region times the overall observed risk, i.e. the total

number of cases divided by the total population.

Extra heterogeneity in the data, which might not be satisfactorily explained

by the gender or the state factors, can be handled by the model specific

dispersion parameters in the NB, the GP and the ZI models. While overdis-

persion in the NB and the GP model can be interpreted as unobserved

heterogeneity among observations, zero inflated models would assume that

part of the observations equal to zero are extra zeros, i.e. in some regions the

occurrence of invasive meningococcal disease might not have been reported.

On the other hand, heterogeneity in the data might also be taken into ac-

count by assuming a finer geographic resolution, i.e. by including a random

spatial effect for each region. We will assume the CAR prior presented in

Section 3 for these spatial effects which allows for a spatial dependency

structure. In contrast to this approach, the effects of the states included as

factor covariates can be seen as unstructured effects on a lower resolution,

since no correlation between states is allowed.
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We first analysed the data set in Splus using a Poisson model without spa-

tial effects including an intercept and as covariates the gender and the 16

states as factor covariates. No significant influence of gender could be de-

tected, therefore we decided to model the total number of cases without

distinguishing between men and women. This means, that we have only

one observation yi, i = 1, .., 439 for each region. The four states Nordrhein-

Westfalen, Mecklenburg-Vorpommern, Sachsen-Anhalt and Thüringen were

found to be significant and only the regression indicators of these states will

be included in the following. This model was used as a starting model for

the MCMC algorithms of the models discussed in Section 2.

6.2 Models

The MCMC algorithms for the Poisson, the GP, the NB, the ZIP and the

ZIGP regression models are run for 20000 iterations. The parameter µi, i =

1, .., n is specified for all models by

µi = ti exp(x′

iβ + γi)

with the same covariates included in each model and ti = popi

P

n

i=1
yi

P

n

i=1
popi

where popi denotes the population in region i. All models are fitted with

and without spatial effects. Since we have only one observation for each

region we use the simplified notation γR(i) = γi. The first 5000 iterations of

the MCMC samplers are discarded as burnin, convergence is achieved well

before for all models. After convergence the mixing of the samplers is sat-

isfactorily good, the estimated empirical autocorrelations with lag 5 are in

general well below 0.05 for the regression parameters in all non spatial mod-

els and both the regression parameters and the spatial effects in the spatial

GP and ZIGP models. Only in the spatial Poisson, ZIP and NB models a lag

of about 20 is needed in order to obtain autocorrelations of the regression

parameters below 0.05, for the spatial effects the autocorrelations are below

0.05 at a lag of 5 in the Poisson and ZIP models and a lag of about 10 in

the NB model. The estimated posterior means and 90 % credible intervals

for the regression parameters are reported in Table 1 for all models. Esti-

mation of the intercept slightly differs between the models and also changes

when spatial effects are added, especially for the Poisson and ZIP models

where large spatial effects are observed, see below. Estimation of the state

effects is rather similar in all models. For a comparison of the estimated

overdispersion in the different models, we consider the estimated dispersion

factors ϕi which are defined by 1+ µi

r
, 1

(1−λ)2 , (pµi+1) and pµi+
1

(1−λ)2 for

the NB, GP, ZIP and ZIGP regression models, respectively. In particular,

we compute the mean, minimum, maximum value and quantiles of the es-

timated posterior means ϕ̂i := 1
R

∑R

j=1 ϕ̂
j
i of the dispersion factors in each



14 Susanne Gschlößl, Claudia Czado

β̂0 β̂1 β̂2 β̂3 β̂4

no spatial effects

Poi -0.17 0.43 0.65 0.56 0.56
(−0.26,−0.09) (0.30, 0.57) (0.28, 1.02) (0.23, 0.87) (0.22, 0.88)

NB -0.15 0.42 0.67 0.54 0.48
(−0.25,−0.04) (0.23, 0.60) (0.23, 1.10) (0.16, 0.91) (0.09, 0.85)

GP -0.16 0.42 0.65 0.45 0.50
(−0.26,−0.06) (0.26, 0.58) (0.22, 1.06) (0.05, 0.84) (0.09, 0.88)

ZIP -0.13 0.43 0.69 0.60 0.59
(−0.23,−0.03) (0.27, 0.59) (0.29, 1.08) (0.25, 0.94) (0.24, 0.95)

ZIGP -0.15 0.42 0.67 0.47 0.52
(−0.26,−0.04) (0.23, 0.61) (0.22, 1.09) (0.05, 0.87) (0.09, 0.92)

with spatial effects

Poi -0.25 0.40 0.68 0.58 0.47
(−0.38,−0.14) (0.18, 0.61) (0.21, 1.13) (0.19, 0.97) (0.06, 0.86)

NB -0.18 0.41 0.68 0.55 0.48
(−0.29,−0.06) (0.20, 0.61) (0.23, 1.21) (0.17, 0.93) (0.08, 0.87)

GP -0.16 0.42 0.65 0.45 0.50
(−0.26,−0.06) (0.25, 0.58) (0.21, 1.06) (0.04, 0.84) (0.09, 0.88)

ZIP -0.23 0.39 0.68 0.60 0.49
(−0.36,−0.10) (0.16, 0.63) (0.22, 1.14) (0.19, 0.99) (0.07, 0.90)

ZIGP -0.15 0.42 0.66 0.48 0.52
(−0.26,−0.04) (0.23, 0.61) (0.22, 1.09) (0.06, 0.88) (0.10, 0.92)

Table 1 Posterior means and 90 % credible intervals for the regression parameters
(β1, .., β4: effects for the states Nordrhein-Westfalen, Mecklenburg-Vorpommern,
Sachsen-Anhalt and Thüringen, respectively) in the different models for the
meningococcal disease data.

model, where ϕ̂ji denotes the j-th MCMC iterate for ϕi after burnin. The

results are reported in Table 2. Note, that the dispersion factor in the GP

regression model is the same for all observations, whereas it depends on

the parameter µi and therefore is different for each observation in the other

models. Except for the ZIP model, all models exhibit a substantial degree of

overdispersion with respect to the Poisson model, regardless whether spatial

effects are included or not. In the non spatial NB model the average of the

estimated posterior means of the dispersion parameter is given by 1.396 and

drops to 1.293 when spatial effects are included. The range of the estimated

spatial effects in the NB model, see Table 3, is considerably smaller than in

the Poisson model where unexplained heterogeneity in the data is captured

by the spatial effects alone. However, part of the data variability in the NB

model is explained by spatial effects as well rather than the parameter r

alone. This is in contrast to the GP and ZIGP model, where the estimated

spatial effects are all very close to zero. Overdispersion in these models is

captured by the parameter λ only, resulting in a high estimated dispersion

parameter. Results are hardly affected by the inclusion of spatial effects.

The extension from a GP to a ZIGP model has almost no influence on the
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ϕ̂i

Parameter γ mean mean
(2.5%,97.5 %) min 25% 50% 75% max

r in NB yes 6.433 1.293
(2.483, 22.552) 1.051 1.150 1.205 1.313 5.358

no 3.836 1.396
(2.202, 6.864) 1.064 1.200 1.273 1.428 7.053

λ in GP yes 0.162
(0.098, 0.231)

1.432

no 0.163
(0.098, 0.232)

1.435

p in yes 0.029 1.041
ZIP (0.001, 0.087) 1.007 1.020 1.028 1.044 1.536

no 0.056 1.081
(0.006, 0.125) 1.013 1.041 1.056 1.089 2.226

p in yes 0.019
ZIGP (0.001, 0.064) 1.434
λ in yes 0.155 1.412 1.421 1.426 1.436 1.819
ZIGP (0.088, 0.224)
p in no 0.019
ZIGP (0.001, 0.063) 1.440
λ in no 0.157 1.417 1.427 1.432 1.442 1.826
ZIGP (0.090, 0.227)

Table 2 Estimated posterior means for the model specific dispersion parameters
in the considered models with and without spatial effects, with the 2.5 % and 97.5
% quantiles given in brackets. Further the mean (upper row), range and quantiles
(lower row) of the estimated posterior means of the dispersion factors ϕ̂i are given.

estimation of λ and the average dispersion parameter ϕi, the proportion of

extra zeros p is estimated very close to zero.

In the non spatial ZIP model the proportion of extras zeros p is estimated as

5.6 %, resulting in an average dispersion parameter of about 1.081. Accord-

ing to the large 95 % credible interval for p however, no significant degree

of zero inflation seems to be present. Unobserved heterogeneity still present

in the data after adjusting for covariates is captured better by the GP and

NB model, whereas the assumptions of extra zeros is obviously not appro-

priate for this data. When spatial effects are included to the ZIP model

the estimated proportion of extra zeros drops even further, indicating that

unexplained heterogeneity is picked up mostly by the spatial effects alone

like in the Poisson model, the range of the estimated posterior means of

the spatial effects in the ZIP and the Poisson model is almost the same,

see Table 3. The map plot of the estimated posterior means of the spatial

effects in the Poisson model, given in Figure 3 roughly represents the spatial

pattern of the observed relative risk in each region yi

ti
, i = 1, .., n which is

plotted in the upper row in Figure 4. The estimated posterior mean and

median of the spatial hyperparameter ψ in the Poisson model, see Table 3
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Model [minj γ̂j maxj γ̂j ] ψ̂ σ̂2

mean median mean median

Poisson [−0.383, 1.059] 0.394 0.207 0.541 0.422
(0.011,0.431) (0.149, 0.615)

NB [−0.151, 0.345] 1.223 0.588 0.227 0.140
(0.015,1.352) (0.012,0.281)

GP [−0.009, 0.020] 2.604 1.194 0.012 0.005
(0.038,2.199) (0.001,0.011)

ZIP [−0.371, 0.998] 0.329 0.235 0.477 0.417
(0.013,0.397) (0.169,0.529)

ZIGP [−0.011, 0.019] 1.739 1.154 0.018 0.011
(0.044,1.905) (0.001,0.027)

Table 3 Range of estimated posterior means of the spatial effects as well as
estimated posterior means, medians and 95 % credible intervals given in brackets
for the spatial hyperparameters in the considered models for the meningococcal
disease data.

are rather small, the lower bound of the 95 % credible interval is close to

zero, indicating that the overall degree of spatial dependence is very small.

This is reflected in the estimated spatial pattern which is not particularly

smooth. Only some rather isolated regions, which are marked in black in

−0.39 1.05 0 1

Fig. 3 Maps of the estimated posterior means (left) and 80 % credible intervals
(white: 0 included in credible interval, black: strictly negative credible interval) of
the spatial effects in the Poisson regression model for the Meningococcal disease
data.

the right map in Figure 3, have a significant positive spatial effect according

to the 80 % credible intervals. In these regions the observed number of inva-
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sive meningococcal disease cases was rather high and most of them do not

lie within the four states included as covariates. Therefore without spatial

effects the risk in these regions is not modelled sufficiently. The estimated

0 12.29

0.84 1.66 0.59 3.55

Fig. 4 Maps of the observed relative risk yi

ti

(upper row) and the estimated

posterior means of the risk factor µi

ti

in the non-spatial (lower row, left) and

spatial (lower row, right) Poisson regression model for the meningococcal disease
data.

posterior means of the risk factor µi

ti
are plotted for the non-spatial and

spatial Poisson model in the lower row of Figure 4. In the non-spatial Pois-

son model geographic differences are modelled by four state indicators only.

Since the risk in two of the states, which are neighbours, is about the same,

visually only three states can be distinguished in this plot. The inclusion of

spatial random effects gives a rather smoothed representation of the true

pattern, however the rough structure is detected reasonable well.
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6.3 Model comparison using DIC

In order to compare the presented models the DIC, reviewed in Section

5.1, is considered. In Table 4, the DIC, the posterior mean of the deviance

and the effective number of parameters are given for each model. Only in

the Poisson regression case a well defined normalizing constant f(y) (see

Section 5.1) exists, while in all other models the likelihood of the saturated

model depends on the unknown overdispersion parameters. Therefore we

make the choice of setting the normalizing function f(y) to 0. Consequently

E[D(θ|y)] is based only on the unscaled deviance which cannot be directly

interpreted as an overall goodness of fit measure of one specific model.

However, E[D(θ|y)] can be used for comparing the model fit of several

models when the number of parameters is roughly the same.

Model γ DIC E[D(θ|y)] pD

Poisson no 1291.8 1286.8 5.04
NB no 1273.9 1267.8 6.10
GP no 1265.6 1259.6 6.01
ZIP no 1291.8 1285.9 5.96
ZIGP no 1267.8 1261.5 6.35

Poisson yes 1248.7 1159.1 89.56
NB yes 1270.8 1240.0 30.74
GP yes 1265.7 1258.3 7.32
ZIP yes 1255.4 1175.1 80.31
ZIGP yes 1267.6 1260.2 8.28

Table 4 DIC, E[D(θ|y)] and effective number of parameters pD for the different
models.

For the non spatial models the lowest value of the DIC is obtained for the GP

model, while the DIC for the Poisson and the ZIP model takes the highest

value. Hence, according to the DIC the GP model is considered best among

the non spatial models, while the Poisson and ZIP model clearly perform

worse. The effective number of parameters pD is close to the true number

of parameters which is five for the Poisson regression model, six for the NB,

GP and ZIP regression models and seven for the ZIGP regression model.

When spatial effects are added, the posterior mean of the deviance and

the number of effective parameters in the GP and ZIGP models hardly

change. As mentioned in the previous section already, spatial effects are not

significant in these models, i.e. after adjusting for covariate information,

there is no further spatial heterogeneity in the data which might be captured

by the spatial effects. Instead any overdispersion present in the data seems

to be sufficiently captured by the model specific dispersion parameter. The

DIC for the spatial NB model is slightly better than for the non spatial

one, hence spatial effects improve the model. However, the spatial pattern
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is rather smooth as can be seen from the effective number of parameters

estimated by 30.74. For the Poisson and ZIP regression model in contrast,

a significant drop in the DIC is observed when spatial effects are taken into

account. This shows that there is some extra variability in the data which is

not sufficiently explained by the covariates only in these models. Since the

Poisson model does not allow for overdispersion and the heterogeneity is not

of a zero inflated nature, for these two models the unexplained variability

is covered by the spatial effects. According to the DIC the spatial Poisson

model gives the best fit and is to be preferred to a non spatial GP model.

Note, that the DIC must be used with care here, since strictly speaking the

DIC is defined for distributions of the exponential family only, see van der

Linde (2005). However, the posterior mean of the deviance E[D(θ|y)] which

can be considered for comparing the model fit of the non spatial models

where the number of parameters is very close, gives the same ranking of the

models as the DIC.

6.4 Model checking using proper scoring rules

Apart from the DIC we also compute the Brier score and the logarithmic

score presented in Section 5.2 for each model, results are reported in Table

5. These scores are based both on the posterior predictive probabilities and

the true observed number of cases and therefore provide a good measure for

checking which model fits the data best. The results support the conclusions

Model γ Brier score logarithmic score

Poisson no -0.6937 -1.4569
NB no -0.6883 -1.4363
GP no -0.6873 -1.4272
ZIP no -0.6921 -1.4549
ZIGP no -0.6878 -1.4291

Poisson yes -0.6280 -1.2422
NB yes -0.6717 -1.3779
GP yes -0.6863 -1.4243
ZIP yes -0.6481 -1.3251
ZIGP yes -0.6900 -1.4529

Table 5 Brier score and logarithmic score for the considered models with and
without spatial effects.

drawn in the previous section. For the non spatial models the GP regression

model fits the heterogeneity in the data best, followed by the ZIGP and NB

regression model. The use of a non spatial ZIP regression model does not

seem to be appropriate, the gain in comparison to the non spatial Poisson

model for which the lowest scores are obtained is very small. The scores for

the GP and the ZIGP model hardly change by allowing for spatial effects,
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indicating that the model specific dispersion parameters capture the data

heterogeneity well. Again a small improvement in the NB model is observed

when spatial effects are included. The scores for the spatial Poisson and

ZIP model however, are considerably smaller than for the other models.

This confirms again, that spatial effects have a significant influence in these

models and that a spatial Poisson model gives the best fit to the data.

7 Conclusions

We have presented several regression models for count data allowing for

overdispersion. Overdispersion is either modelled by the introduction of an

additional parameter as in the NB and GP model, by allowing for an extra

proportion of zero observations using zero inflated models or by combining

zero inflated models with overdispersed distributions.

Further, additionally spatial random effects are included in the models in

order to account for unobserved spatial heterogeneity in the data. This

approach allows for spatial correlations between observations.

These models were applied to analyse the number of invasive meningococcal

disease cases in Germany in the year 2004. The DIC, the Brier and the

logarithmic score were used for model comparison. The models allowing for

overdispersion gave a significantly better fit than an ordinary non spatial

Poisson regression model. Among these non spatial models, the GP model

fitted the data best, while the overdispersion present did not seem to be

caused by the presence of extra zeros in the data. For the GP and the

ZIGP model the inclusion of spatial effects did not improve the models, in

the NB model still some significant spatial variation was detected. For the

Poisson model which does not allow for overdispersion and the ZIP model

which is not modelling the nature of the overdispersion appropriately, the

inclusion of spatial effects led to a significant improvement. According to the

considered criterions the spatial Poisson model is to be preferred to all other

models. But we would like to note that the spatial model fitted shows no

smooth surface structure, it rather indicates isolated specific regions where

the covariates provide no adequate fit.

Instead of analysing the number of cases of invasive meningococcal disease

for one year only, it might be interesting to include data over several years in

the analysis. Space-time interactions could be included in order to examine

whether the spatial pattern changed over the years. This is the topic of

future research.

A Appendix

In the following the algorithmic schemes of the MCMC samplers for the

discussed models are summarized. Most update steps are performed using
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a single component Metropolis Hastings (MH) step. For the proposal dis-

tributions either a symmetric random walk proposal or an independence

proposal is used. In particular, for the independence proposal we take a

t-distribution with v = 20 degrees of freedom with the same mode and the

same inverse curvature at the mode as the target distribution.

A.1 GP regression model

– Sample λ|y,β,γ

– Sample βj |y, λ,β−j ,γ, j = 0, .., k

– Update of spatial effects

– Sample 1
σ2 |γ, ψ ∼ Gamma

– Sample ψ|γ, σ

– Sample γj |y, λ,β,γ−j , ψ, σ, j = 1, .., J

Since the full conditional of σ2 is Inverse Gamma, σ2 can be sampled di-

rectly using a Gibbs step. For the remaining parameters a MH step is used.

In particular, λ, β and γ are updated component by component using an

independence proposal distribution. The spatial hyperparameter ψ is up-

dated using a random walk proposal. For the Poisson regression model the

algorithmic scheme is the same, but with λ set fix to 0.

A.2 NB regression model

– Sample r|y,β,γ

– Sample βj |y, r,β−j ,γ, j = 0, .., k

– Update of spatial effects

– sample spatial hyperparameters 1
σ2 and ψ as in A.1

– Sample γj |y, r,β,γ−j , ψ, σ, j = 1, .., J

In the NB regression model r,β and γ are updated component by com-

ponent using a MH step. For r a random walk proposal is used, while γ and

β are updated using an independence sampler.

A.3 ZI models

To avoid convergence problems in the ZI models which arose in simulated

data due to correlation between the intercept β0, p and λ, we use collapsed

algorithms, in particular β0, p and λ are updated with the latent variables z

integrated out, i.e. based on model (2.5). Doing so convergence and mixing

of the samplers was improved a lot.
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A.3.1 ZIP model with constant p

– Updates with z integrated out

– Sample β0|y, p,β−0,γ

– Sample p|y,β,γ

– Sample zi|y, p,β,γ ∼ Bernoulli
( p

p+ (1 − p) exp(−µi)

)

∀iwith yi = 0

– Sample βj |y,β−j , z,γ, j = 1, .., k

– Update of spatial effects

– sample spatial hyperparameters 1
σ2 and ψ as in A.1

– Sample γj |y,β, z,γ−j , ψ, σ, j = 1, .., J

The latent variables z can be updated using a Gibbs step. Since the full con-

ditional of p is log concave, adaptive rejection sampling (ARS) introduced

by Gilks and Wild (1992) is used to update p. For the parameters β and γ

a MH step using an independence proposal distribution is performed.

A.3.2 ZIGP model with constant p

– Updates with z integrated out

– Sample β0|y, p, λ,β−0,γ

– Sample p|y, λ,β,γ

– Sample λ|y, p,β,γ

– Sample zi|y, λ, p,β,γ ∼ Bernoulli
( p

p+ (1 − p) exp(−µi)

)

∀iwith yi >

0

– Sample βj |y, λ,β−j , z,γ, j = 1, .., k

– Update of spatial effects

– sample spatial hyperparameters 1
σ2 and ψ as in A.1

– Sample γj |y, λ,β, z,γ−j , ψ, σ, j = 1, .., J

For the ZIGP model the same proposal distributions as in the ZIP model

are used. For λ an independence proposal is taken.
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