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We present a numerical method for pricing Bermudan options depend-
ing on a large number of underlyings. The asset prices are modeled with
exponential time-inhomogeneous jump-diffusion processes. We improve
the least-squares Monte Carlo method proposed by Longstaff and Schwartz
introducing an efficient variance reduction scheme. A control variable is
obtained from a low-dimensional approximation of the multivariate Bermu-
dan option. To this end, we adapt a model reduction method called proper
orthogonal decomposition (POD), which is closely related to principal com-
ponent analysis, to the case of Bermudan options. Our goal is to make use
of the correlation structure of the assets in an optimal way. We compute
the expectation of the control variable by either solving a low-dimensional
partial integro-differential equation or by applying Fourier methods. The
POD approximation can also be used as a candidate for the minimizing
martingale in the dual pricing approach suggested by Rogers. We evaluate
both approaches in numerical experiments.

Key Words Bermudan options, dimension reduction, proper orthogonal de-
composition, regression-based Monte Carlo, Fourier methods

1 Introduction

The present article is concerned with numerical pricing of multidimensional Bermu-
dan options. We call an option multidimensional if it is written on more than one
underlying. Important examples on the stock market include index options on an av-
erage, and basket options on the minimum or maximum of a set of assets. Derivatives
on other markets depending on several prices or driving factors also fall into this cat-
egory. We will consider Bermudan options with a finite number of exercise dates. By
choosing this number sufficiently high, the method presented here can could be used
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to approximate American options with a continuum of exercise possibilities. Note
that in fact whenever Monte Carlo (MC) simulation is used for pricing American op-
tions, this actually amounts to an approximation with a Bermudan option on the MC
time discretization grid. The approximation error may increase, however, for a larger
number of exercise points.

We assume the underlying prices to be driven by a multivariate time-inhomogeneous
jump-diffusion process. Theoretically, the same numerical pricing methods as in the
one-dimensional case can be employed here. These include partial integro-differential
equations (PIDEs) [7, 8] and Fourier transform methods [4, 5, 18]. However, they both
suffer from the curse of dimensionality which means that in practice they cannot be ap-
plied directly when the number of underlyings is large. MC methods are a feasible
alternative, whose complexity does not increase exponentially in the dimension. MC
simulations for Bermudan options are often based on dynamic programming princi-
ples. The Snell envelope is obtained through backward recursion. The conditional
expectation of future cashflows at each exercise point can be approximated using re-
gression, a method first introduced by Longstaff and Schwartz [19, 3, 15]. The option is
exercised if and only if the current intrinsic value is larger than this expectation. These
methods yield an approximation from below for the fair price. A different approach
uses a dual representation of the price, which allows for the computation of an upper
bound [20]. For an overview of Bermudan MC pricing see [16] and the references
therein.

The major drawback of all MC algorithms is their comparatively slow convergence
rate. There are several techniques, subsumed under the term variance reduction, which
can help obtaining more accurate results with fewer simulated paths. These include
antithetic variables, importance sampling, and control variables [1, 10, 11]. We will
focus on the latter and present an improved Longstaff-Schwartz algorithm using a
low-dimensional approximation of the option price as the control variable.

The dimension reduction relies on an orthogonal projection method called proper
orthogonal decomposition (POD) [17]. Similar to principal component analysis (PCA),
a small set of orthonormal vectors is found, which minimizes the projection error.
The approximation is hence optimal (in the L2-sense). A similar projection method
has already been successfully applied to European option pricing [13]. We extend
the concept to Bermudan options. In particular, we no longer rely on direct, accurate
computation of the option price via POD, but rather use a fast, coarse approximation
for variance reduction purposes.

An estimate for the approximation error is derived. The expectation of the low-
dimensional POD approximation can be computed efficiently with PIDE or Fourier
algorithms. Once this is done, the solution can be used for two purposes: first, it
can serve as a control variable. As the approximation is highly correlated with the
full-dimensional price process, this results in a substantially decreased variance of the
modified MC estimator. Second, the POD solution is a candidate for the minimizing
martingale in Rogers’ [20] dual MC method. We discuss both approaches. The dimen-
sion of the projection can be freely chosen. This allows for a trade-off between reduced
variance and increased effort for the computation of the low-dimensional expectation.
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The effectiveness of the POD depends on the correlation structure of the underlying
assets. High correlation allows for a more efficient decrease of variance with fewer
POD components. We investigate the performance of the POD variance-reduction
in numerical experiments. Using different types of options, basket sizes, correlation
parameters, and numbers of exercise dates, we show that the overall computational
time can as a rule be reduced by at least 50%, often even by more than 80%.

The paper is organized as follows. In Section 2, we present the multivariate jump-
diffusion model and formulate the Bermudan option pricing problem. The dimension
reduction methods and the corresponding convergence results are derived in Section 3.
Next, we describe the algorithms for variance-reduced Bermudan MC and the dual
MC approach in detail in Section 4. Section 5 contains the numerical experiments.
We describe the test settings and analyze the computational results. Finally, Section 6

gives a short conclusion and summary of the article.

2 Bermudan Basket Options

In this section, the market model used throughout the paper is introduced. We de-
fine the driving stochastic jump-diffusion process, declare assumptions concerning the
coefficients, and state the Bermudan option pricing problem.

2.1 The asset price process

We consider a Bermudan option depending on n assets. The terminal date of maturity
is T > 0 (last exercise date). The multivariate asset price process is denoted

(2.1) St :=
(
S1(t), . . . , Sn(t)

)
:=
(
S1(0) eX1(t), . . . , Sn(0) eXn(t)

)
∈ Rn, t ∈ [0, T].

For each i = 1, . . . , n, the price Si of the ith asset is modeled as the product of its initial
value Si(0) > 0 and the ordinary exponential of a time-inhomogeneous jump-diffusion
process Xi, given by

Xt :=
(
X1(t), . . . , Xn(t)

)
:=
∫ t

0
γs ds +

∫ t

0
σs dW(s) +

∫ t

0

∫
H

ηs ξ M̃(dξ, ds) ∈ Rn, t ∈ [0, T].
(2.2)

The diffusion part is driven by an Rn-valued Brownian motion W. The jumps are
characterized by M̃, the compensated random measure of an Rn-valued compound
Poisson process

Jt =
Nt

∑
i=1

Yi, t ≥ 0,

which is independent of W. Here, N denotes a Poisson process with intensity λ and
Yi ∼ PY (i = 1, 2, . . .) are iid on Rn (and independent of N). The corresponding Lévy
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measure is denoted by ν = λPY. We assume the drift γ : [0, T] → Rn, the volatility
σ : [0, T] → Rn×n, and the jump integrand η : [0, T] → Rn×n to be deterministic
functions. We make the following assumption concerning the moments of the process.

Assumption 2.1. The second exponential moment of the jump distribution Y exists:

E[e2‖Y‖Rn ] =
∫

Rn
e2‖ξ‖Rn PY(dξ) < ∞.

We assume further that∫ T

0
‖γt‖2

Rn dt < ∞,
∫ T

0
‖σt‖2

Rn×n dt < ∞, and ‖ηt‖Rn×n ≤ 1 for a.e. t ∈ [0, T].

The interest rate r is assumed to be constant. In order to avoid a discussion of
possible measure changes, we suppose the model (2.1) to be stated under the pricing
measure. In view of the dimension reduction performed in Section 3, it turns out to
be useful to express the value of the option in terms of the centered process

Zt := Xt − E[Xt], t ∈ [0, T].

Since the asset price process S = S(Z) depends on Z in a deterministic way, this is
nothing more than a simple transform of variables.

2.2 Bermudan Options

A Bermudan option grants the holder the right to exercise at one of Nex ∈ N admis-
sible dates, which we denote by 0 ≤ t1 < t2 < · · · < tNex = T. Let T (t, T) denote the
set of all stopping times with values in {ti|1 ≤ i ≤ Nex and ti ≥ t}. For simplicity, we
assume a constant interest rate r > 0. The discounted value V of a Bermudan option
at time t, given that the option was not yet exercised, is the solution of the optimal
stopping problem

(2.3) V(t, z) = sup
τ∈T (t,T)

E
[
e−rτg

(
S(Zτ)

)∣∣Zt = z
]
.

The payoff g : Rn → R is determined by the asset price process S which can be
expressed in terms of the centered jump-diffusion Z. We make the following assump-
tion.

Assumption 2.2. We assume that there is a constant Lg such that the payoff function g
satisfies the Lipschitz condition∣∣∣g(S)− g(S̃)

∣∣∣ ≤ Lg

∥∥∥S− S̃
∥∥∥

Rn
for every S, S̃ ∈ Rn.

Remark 2.3. Assumption 2.2 is considerably weaker than the corresponding assumption in
[13, Ass. 3.4]: it refers to the payoff in terms of S instead of Z. In particular, it is satisfied for
plain vanilla call and put options on weighted averages of the asset prices. The convergence
proofs below (Lemma 3.4 and Theorem 3.5) account for this weaker assumption with additional
technical estimates.
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This assumption is, in particular, satisfied for index options written on a weighted
average of the assets. An index put has the intrinsic value

g(S) =

(
K−

n

∑
i=1

wiSi

)+

,

where K is the strike and wi ∈ R are constant weights. Other examples include
maximum or minimum options. A maximum or minimum put corresponds to the
payoff

g(S) =
(

K− max
i=1,...,n

Si

)+

or g(S) =
(

K− min
i=1,...,n

Si

)+

,

respectively.
The aim when pricing Bermudan options is to find the optimal exercise time for

(2.3). It is well known that this can be done by backward dynamic programming: at
time t = T the value of the option is

(2.4) V(T, z) = e−rTg
(
S(ZT)

)
.

For any previous exercise date ti, i = 0, . . . , Nex − 1, the value is

(2.5) V(ti, z) = max
{

e−rti g
(
S(z)

)
, E
[
V(ti+1, Zti+1)

∣∣Zti = z
]}

.

Hence, it is optimal to exercise at time ti if and only if the intrinsic value g
(
S(z)

)
is

larger than or equal to the expected discounted future cash flow (given the option is
not yet exercised). Computing the conditional expectations

(2.6) E
[
V(ti+1, Zti+1)

∣∣Zti = z
]

for every exercise date is the basic challenge. The fair value of the option at time t = 0
is then given by V(0, 0).

3 Dimension Reduction

It is possible to derive a partial integro-differential (PIDE) equation which is satis-
fied by the conditional expectation (2.6) (see, e.g., [13]). Such a differential equation,
however, suffers from the curse of dimensionality. The same holds true for Fourier
transforms. It is hardly possible to apply these methods directly for large values of n,
say n > 10. In this section, we derive a low-dimensional approximation for Bermu-
dan options. To this end, we employ proper orthogonal decomposition (POD), which
makes use of the correlation of the individual assets. The idea is similar to principal
component analysis (PCA): we approximate the centered driving process Z with a
small set of orthonormal vectors.
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Definition 3.1. A sequence of orthonormal vectors {pl}l=1,...,n ⊂ Rn is called a POD-basis
for ZT, if it solves the minimization problem

min
〈pi ,pj〉Rn=δij

E
∥∥∥ZT −

d

∑
l=1

pl 〈ZT, pl〉Rn

∥∥∥2

Rn

for every d = 1, . . . , n.

The number d of components in the projection will later be the dimension of the
approximating problem. Like in PCA we can obtain a POD-basis by solving an eigen-
value problem. Let CXT be the covariance matrix of XT, and thus also of ZT. The
following proposition shows that the eigenvectors of CXT are indeed a POD-basis. It is
quoted from [13, Thm. 3.3].

Proposition 3.2. Every sequence of orthonormal eigenvectors (pl)l=1,...,n of the covariance
CXT , ordered by descending size of the corresponding eigenvalues µ1 ≥ µ2 ≥ · · · ≥ 0, is a
POD-basis. The expectation of the projection error is

(3.1) E
∥∥∥ZT −

d

∑
l=1

pl 〈ZT, pl〉Rn

∥∥∥2

Rn
=

n

∑
l=d+1

µl .

Subsequently, let (pl)l∈N and (µl)l=1,...,n denote the orthonormal basis and eigenval-
ues from Proposition 3.2. We define the projection operator

Pd :

{
Rn → span{p1, p2, . . . , pd} ∼= Rd,
z 7→ ∑d

l=1 〈z, pl〉Rn pl .

Hence, we can rewrite (3.1) as

E
∥∥ZT −PdZT

∥∥2
Rn =

n

∑
l=d+1

µl .

So far, we have approximated the value of Z only at time T. It turns out, however,
that this is indeed sufficient to obtain small projection errors for arbitrary t ∈ [0, T].

Proposition 3.3. The following holds:

(3.2) sup
t∈[0,T]

E ‖Zt −PdZt‖2
Rn ≤

n

∑
l=d+1

µl .

Proof. This is a direct consequence of the independent increments of Z. Using the
Pythagorean theorem, we obtain

E ‖ZT −PdZT‖2
Rn = E ‖Zt −PdZt + (ZT − Zt)−Pd(ZT − Zt)‖2

Rn

= E ‖Zt −PdZt‖2
Rn + E ‖(ZT − Zt)−Pd(ZT − Zt)‖2

Rn

≥ E ‖Zt −PdZt‖2
Rn .

Applying Proposition 3.2 yields (3.2).
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Consequently, it is not necessary to change Definition 3.1 in order to approximate
every Zt, t ∈ [0, T]. This is due to the fact that by approximating ZT, we capture also
the events up to time T. We use the projection to define the function

(3.3) Vd(t, zd) = sup
τ∈T (t,T)

E
[
e−rτg

(
S(PdZτ)

)∣∣PdZt = zd
]

for every zd ∈ Rd, t ∈ [0, T]. This is in fact the price process of a d-dimensional Bermu-
dan option. If d is chosen sufficiently small, this price can be computed efficiently
with Fourier or PIDE methods. In our numerical experiments (compare Section 5),
d ≤ 3 gave good results. Since the payoff in (3.3) is different from the payoff in (2.3),
the corresponding optimal stopping times need not be identical. Nevertheless, we can
state an error estimate for the difference

∣∣Vd(0, 0) − V(0, 0)
∣∣. In order to show this

convergence result, we will make use of the following lemma. It is concerned with the
approximation error for a fixed stopping time.

Lemma 3.4. Let τ ∈ T (0, T) be a fixed stopping time and let µ1 ≥ µ2 ≥ ... ≥ 0 be the
eigenvalues of the covariance matrix CXT . Then there exists a constant C > 0 (independent of
d) such that ∣∣∣E[e−rτg

(
S(PdZτ)

)]
− E

[
e−rτg

(
S(Zτ)

)]∣∣∣ ≤ C

√
n

∑
l=d+1

µl

for every d = 1, . . . , n.

Proof. Throughout the proof, we denote every constant factor depending on T but not
on d by C, i.e., the value of C is not fixed. Using Assumption 2.2 and the definition of
S, we obtain∣∣∣E[e−rτg

(
S(PdZτ)

)]
− E

[
e−rτg

(
S(Zτ)

)]∣∣∣
≤ E

[
Lg ‖S(PdZτ)− S(Zτ)‖Rn

]
= Lg E

∥∥∥∥(Si(0) e
∫ τ

0 γt(i) dt
∣∣∣e(PdZτ)(i) − eZτ(i)

∣∣∣ )n

i=1

∥∥∥∥
Rn

.

Since all norms on Rn are equivalent, we can use the 1-norm and obtain∣∣∣E[e−rτg
(
S(PdZτ)

)]
− E

[
e−rτg

(
S(Zτ)

)]∣∣∣
≤ C E

[ n

∑
i=1

Si(0) e|
∫ τ

0 γt(i) dt|
∣∣∣e(PdZτ)(i) − eZτ(i)

∣∣∣ ].
(3.4)

For the term depending on γ, we use Assumption 2.1 and obtain∣∣∣∣∫ τ

0
γt(i) dt

∣∣∣∣ ≤ ∫ T

0
‖γt‖Rn dt ≤ C

(∫ T

0
‖γt‖2

Rn dt
) 1

2

≤ C.
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Next, we apply the mean-value theorem to the exponential function for the estimate∣∣∣e(PdZτ)(i) − eZτ(i)
∣∣∣ ≤ emax{(PdZτ)(i),Zτ(i)} ‖PdZτ − Zτ‖Rn .

Inserting these estimates into (3.4) and applying the Cauchy–Schwarz inequality yields∣∣∣E[e−rτg
(
S(PdZτ)

)]
− E

[
e−rτg

(
S(Zτ)

)]∣∣∣
≤ C

n

∑
i=1

Si(0)E
[
emax{(PdZτ)(i),Zτ(i)} ‖PdZτ − Zτ‖Rn

]
≤ C

n

∑
i=1

Si(0)
(

E
[
e2 max{(PdZτ)(i),Zτ(i)}

]) 1
2
(

E ‖PdZτ − Zτ‖2
Rn

) 1
2
.

(3.5)

In order to get rid of the stopping time τ, we will make use of Doob’s inequality.
The centered process Z is a martingale by construction and so is PdZ, since Pd is a
linear operator. The norm function is convex. Hence, ‖PdZτ − Zτ‖Rn is a non-negative
submartingale. Doob’s inequality yields

(3.6) E ‖PdZτ − Zτ‖2
Rn ≤ E

(
sup

t∈[0,T]
‖PdZt − Zt‖Rn

)2

≤ 4E ‖PdZT − ZT‖2
Rn .

For the exponential term, we find

emax{(PdZτ)(i),Zτ(i)} ≤ e(PdZτ)(i) + eZτ(i) = e〈Zτ ,Pdei〉Rn + e〈Zτ ,ei〉Rn ,

where ei denotes the ith standard unit vector. Since the exponential function is convex,
both

(
e〈Zt,Pdei〉Rn

)
t∈[0,T] and

(
e〈Zt,ei〉Rn

)
t∈[0,T] are submartingales. Using Young’s and

Doob’s inequalities, we get

E
[
e2 max{(PdZτ)(i),Zτ(i)}

]
≤ E

[(
e〈Zτ ,Pdei〉Rn + e〈Zτ ,ei〉Rn

)2]
≤ 2E

[(
e〈Zτ ,Pdei〉Rn

)2
+
(

e〈Zτ ,ei〉Rn
)2]

≤ 8E
[
e2〈ZT ,Pdei〉Rn + e2〈ZT ,ei〉Rn

]
With [14, Prop. 2.3], we obtain

(3.7) E
[
e2 max{(PdZτ)(i),Zτ(i)}

]
≤ C.

Inserting (3.6) and (3.7) in (3.5) yields∣∣∣E[e−rτg
(
S(PdZτ)

)]
− E

[
e−rτg

(
S(Zτ)

)]∣∣∣ ≤ C
(

E ‖PdZT − ZT‖2
Rn

) 1
2

n

∑
i=1

Si(0).

Including the sum ∑n
i=1 Si(0) in the constant C and applying Proposition 3.2 to the

remaining expectation concludes the proof.
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The following theorem states the main convergence result for Vd.

Theorem 3.5. Let µ1 ≥ µ2 ≥ ... ≥ 0 be the eigenvalues of the covariance matrix CXT . Then
there exists a constant C > 0 such that

|Vd(0, 0)−V(0, 0)| ≤ C

√
n

∑
l=d+1

µl

for every d = 1, . . . , n.

Proof. Let

τn := argsupτ∈T (t,T) E
[
e−rτg

(
S(Zτ)

)]
and

τd := argsupτ∈T (t,T) E
[
e−rτg

(
S(PdZτ)

)]
be optimal stopping times for V(0, 0) and Vd(0, 0), respectively. Then we have

E
[
e−rτn g

(
S(Zτn)

)]
≥ E

[
e−rτd g

(
S(Zτd)

)]
(3.8)
and

E
[
e−rτd g

(
S(PdZτd)

)]
≥ E

[
e−rτn g

(
S(PdZτn)

)]
(3.9)

by construction. Moreover, we know from Lemma 3.4 that

(3.10)
∣∣∣E[e−rτx g

(
S(PdZτx)

)]
− E

[
e−rτx g

(
S(Zτx)

)]∣∣∣ ≤ C

√
n

∑
l=d+1

µl

for τx ∈ {τn, τd}. Combining (3.10) and (3.8), we find

E
[
e−rτd g

(
S(PdZτd)

)]
≤ E

[
e−rτd g

(
S(Zτd)

)]
+ C

√
n

∑
l=d+1

µl

≤ E
[
e−rτn g

(
S(Zτn)

)]
+ C

√
n

∑
l=d+1

µl .

On the other hand, using (3.9) and (3.10), we get

E
[
e−rτd g

(
S(PdZτd)

)]
≥ E

[
e−rτn g

(
S(PdZτn)

)]
≥ E

[
e−rτn g

(
S(Zτn)

)]
− C

√
n

∑
l=d+1

µl .

Together, these estimates yield

|Vd(0, 0)−V(0, 0)| =
∣∣∣E[e−rτd g

(
S(PdZτd)

)]
− E

[
e−rτn g

(
S(Zτn)

)]∣∣∣ ≤ C

√
n

∑
l=d+1

µl .
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Theorem 3.5 shows that Vd(0, 0) is a good approximation for the true Bermudan op-
tion value, if d is chosen sufficiently large. The convergence estimate does not depend
on the number of exercise points. Moreover, it can be shown that the eigenvalues µi,
i = 1, . . . , n decay at least like a power function (or even exponentially fast), if certain
smoothness criteria for the covariance matrix are satisfied (see [13, Th. 3.14]). If, on
the other hand, the individual assets are entirely independent, the POD method will
not yield any improvement. The dimension reduction relies on the correlation of the
basket.

4 Improving Least-Squares Monte Carlo

For European options, it is possible to solve the projected optimal stopping problem
(3.3) for relatively large dimensions d using Fourier or PIDE methods on sparse grids
[13, Th. 3.14]. Sparse grids, though, can be applied efficiently only for smooth func-
tions. In the European case, the necessary differentiability properties of Vd are due to
the smoothing effect of the diffusive part of the process. For Bermudan options, on
the other hand, a non-differentiable maximum function is involved at every exercise
point. The resulting solutions are not sufficiently smooth for sparse grid convergence
results, and the effect gets worse if the number Nex of exercise points is increased.
Moreover, the condition number of the linear equation systems of the corresponding
time discretized PIDEs may increase substantially. Hence, the use of sparse grids in the
context of American options poses considerable theoretical and practical challenges.

We will instead rely on conventional full grids to solve (3.3), using dimensions d ≤ 3.
According to Theorem 3.5, the accuracy of Vd(0, 0) as an approximation for V(0, 0) is
then of course limited. However, Vd is in any case highly correlated with V. In this
section, we discuss how to exploit this property to improve the convergence rate of MC
methods, using either variance reduced least-squares MC or a duality based pricing
approach.

4.1 Variance Reduction

Pricing Bermudan options with MC simulations is more demanding than pricing Euro-
pean contracts. We will use the well established least-squares MC method introduced
by Longstaff and Schwartz [19]. Starting with the terminal value (2.4) at time T, we
iterate backwards (i = Nex − 1, Nex − 2, . . . , 1) over all previous exercise dates using
the recursive formula (2.5). We denote by (Fti)

Nex
i=1 the natural filtration corresponding

to the driving process Z. The conditional expectation

(4.1) E
[
V(ti+1, Zti+1)

∣∣Fti

]
is assumed to be a linear combination of a set of Fti -adapted basis variables. This set
of variables may, e.g., include the current state Zti(1), . . . , Zti(n) of the driving process,
the values Sti(1), . . . , Sti(n) of the assets, and the value F(Zti) of the function on which
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the option is written (the weighted average for index options, or the minimum or max-
imum for the corresponding put options). Polynomials in all of these quantities are
also possible candidates. In practice, it turns out that the method is rather insensitive
to the concrete choice of basis variables.

Once a set of variables is fixed, the basis variables are evaluated in each recursion
step for each path of the MC simulation. The discounted future cashflow for each path
when the option is not exercised is already known from the backward recursion. The
conditional expectation (4.1) is then computed from simple linear regression over all
paths. This is the major difference to European options: we make use of the informa-
tion from all paths at the same time. Since the linear regression amounts to solving
a symmetric linear equation system, the computational effort of the regression step is
not linear in the number of paths. Moreover, it is harder to do these computations
in parallel. The computational time of the whole least-squares algorithm, however, is
often dominated by the simulation part (compare also the numerical experiments in
Section 5).

As with all MC methods, a rather large number of paths is needed to obtain accu-
rate approximations. For a discussion of convergence rates, see [2]. We denote the
number of simulated paths by N. Let VN

j , j = 1, . . . , N, be the price computed for the
jth simulated path, using the exercise strategy given by least-squares MC. Once the
number of paths and the exercise policy are fixed, these are independent and iden-
tically distributed (i.i.d.) copies of a random variable VN . The MC estimator for the
option price V(0, 0) is given by

θ =
1
N

N

∑
j=1

VN
j .

In order to improve the estimate, we will employ variance reduction with a control
variable as described, e.g., in [10, chap. 1.3]. This amounts to finding a second random
variable UN , which is closely related to VN , but whose expectation E[UN ] can be
computed much more efficiently. Then, we choose α ∈ R and compute the new
estimator

θvr(α) =
1
N

N

∑
j=1

[
VN

j + α
(

UN
j − E[UN ]

)]
,

where UN
j are i.i.d. copies of UN . The expectation of θvr(α) is obviously identical to

that of θ, therefore no bias is introduced. The variance of the new estimator is given
by

Var(θvr(α)) =
1
N

(
Var(VN) + 2α Cov(VN , UN) + α2 Var(UN)

)
.

The minimal possible variance
(4.2)

θvr(α
∗) =

1
N

(
Var(VN)− Cov2(VN , UN)

Var(UN)

)
=

1
N

Var(VN)
(

1−Corr2(VN , UN)
)

11



is obtained for

α∗ = −Cov(VN , UN)

Var(UN)
.

This optimal value α∗ cannot be calculated directly in practice, since at least the co-
variance Cov(VN , UN) is usually unknown. Thus, α∗ has to be estimated. Since we
simulate values of VN and UN anyway, this requires no additional effort. We can
use the empirical estimates for Cov(VN , UN) and Var(UN). Equation (4.2) shows
that the variance of the improved estimator will be arbitrarily small, if the correla-
tion Corr(VN , UN) of VN and UN is large.

We will employ the dimension reduction presented in the previous section to obtain
a suitable choice for UN . The solution Vd of the projected Bermudan pricing problem
(3.3) converges to V according to Theorem 3.5. Therefore, we set UN equal to the
approximated value of Vd along each path. We can obtain this approximation with
the very same method we use for V. Once we have simulated N paths for Z and
approximated the pathwise value of V with the least-squares method, obtaining the
value of Vd is possible with small additional effort for two reasons: first, we reuse
the same paths and can thus skip the expensive simulation step. Second, since Vd
effectively depends only on the d-dimensional process PdZ, and d� n, we can reduce
the number of basis variables for the regression significantly without loosing accuracy.

The main benefit of this choice of the control variable UN is that any method suit-
able for low-dimensional Bermudan options can be used to compute the expectation
Vd(0, 0). The steps required for this variance-reduced least-squares MC method are
summarized in Algorithm 1.

There is a large variety of algorithms which can be used to compute the expecta-
tion E[UN ] = Vd(0, 0) numerically, most notably those based on PIDEs or on Fourier
transforms. These approaches are well known; we will not discuss them in detail.
An overview of available methods can be found, e.g., in [6, 10]. PIDE methods make
use of the fact that the function f (z) := E

[
Vd(ti+1, Zti+1)

∣∣PdZti = z
]

satisfies the d-
dimensional PIDE

−∂t f (z) =
1
2

d

∑
i=1

d

∑
j=1

(σtσ
T
t )ij ∂2

zi ,zj
f (z)

+
∫

Rn

{
f (z + ηtζ)− f (z)−

d

∑
i=1

(ηtζ)i ∂zi f (z)
}

ν(dζ),

for z ∈ Rd, t ∈ [tk, tk+1], and k ∈ 1, . . . , Nex − 1. The differentials can be discretized us-
ing finite elements or finite differences. The integral term requires numerical quadra-
ture. Details of the implementation are discussed in [13].

Alternatively, the function f can be represented in terms of Fourier transforms:

f (z) =
e−rti+1

(2π)d

∫
Rd

e−izTu ϕti ,ti+1(−u)
∫

Rd
eiuTyg (S(y)) dy du

12



Algorithm 1 Variance-reduced least-squares MC pricing

1: compute expectation Vd(0, 0) = supτ∈T (0,T) E
[
e−rτg

(
S(PdZτ)

)]
(PIDE or FFT)

2: simulate N paths of Z
3: compute projected paths PdZ
4: for j = 1, 2, . . . , N do // terminal values
5: VN

j = e−rTg
(
S(ZT(j))

)
6: UN

j = e−rTg
(
S(PdZT(j))

)
7: end for
8: for i = Nex − 1, Nex − 2, . . . , 1 do // backward recursion
9: regression with large basis set for E

[
VN

j

∣∣Zti

]
10: regression with small basis set for E

[
UN

j

∣∣PdZti

]
11: for j = 1, 2, . . . , N do // pathwise exercise decision
12: compute intrinsic values e−rti g

(
S(Zti(j))

)
and e−rti g

(
S(PdZti(j))

)
13: VN

j = max
{

e−rti g
(
S(Z(j))

)
, E
[
VN

j

∣∣Zti

]}
14: UN

j = max
{

e−rti g
(
S(PdZ(j))

)
, E
[
UN

j

∣∣PdZti

]}
15: end for
16: end for
17: estimate mean µV and variance σ2

V of VN

18: estimate mean µU and variance σ2
U of UN

19: α = 1
N−1 ∑N

j=1
(VN

j −µV)(UN
j −µU)

σV σU

20: θvr(α) =
1
N ∑N

j=1

[
VN

j + α
(

UN
j −Vd(0, 0)

)]
21: return θvr(α)

for z ∈ Rd and i ∈ 1, . . . , Nex− 1, where ϕti ,ti+1 denotes the characteristic function of the
increment of Z over the interval [ti, ti+1]. In general, the payoff g is not integrable. This
can be remedied by either truncating the payoff or by subtracting a suitable smooth
function. The Fourier transforms can then be computed very efficiently using fast
Fourier transforms (FFT). Option pricing with Fourier methods is discussed, e.g., in
[4, 18].

4.2 Dual Method

Since the exercise policy found by linear regression of the conditional expectation is not
necessarily optimal, the least-squares MC presented in the previous section actually
computes an (arbitrarily precise) lower bound for the option price. The same value is
of course also a lower bound for the value of the continuously exercisable American
option. The approach presented by Rogers [20] uses a duality argument to obtain an
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approximation from above. The Bermudan option price can be written as

(4.3) V(0, 0) = inf
M∈M1

0

E

[
sup

i=1,...,Nex

(
e−rti g

(
S(Zti)

)
−Mti

)]
,

whereM1
0 is the space of all martingales M satisfying M0 = 0 and

E

[
sup

i=1,...,Nex

|Mti |
]
< ∞.

Rogers’ idea is to pick a suitable martingale M and compute the expectation in (4.3)
via MC simulation. Since the chosen martingale will in general not be optimal, the
computed price is larger than the infimum and is thus an upper bound. According
to [12, Thm. 1], we could also insert a supermartingale into the dual formulation and
still obtain an upper bound.

The choice of a “good” martingale M ∈ M1
0 is a delicate issue, since it is related

to the increments of a hedging strategy for the option. In practice, however, any
martingale related to the price of the option may yield remarkably accurate results.
Since the projected price process is an approximation for the true price, we suggest
setting

Mt :=

{
Vd(t,PdZt)−Vd(0, 0), t ∈ [0, τ],
e−rτg(S(PdZτ))−Vd(0, 0), t ∈ (τ, T],

where τ denotes the optimal stopping time for the projected Bermudan option. Note
that Vd(τ,PdZτ) = e−rτg(S(PdZτ)) holds by construction. Moreover, Mt +Vd(0, 0) can
be interpreted as the discounted value of a European option which grants the holder
the same wealth as an optimally exercised Bermudan option at maturity. Thus, it is
a martingale under the pricing measure. Algorithm 2 lists the computational steps of
the proposed dual method.

For practical applications, we are of course interested in bounds which are suffi-
ciently sharp to serve as approximations of the true price. Therefore, we compare the
dual MC method and the variance-reduced MC method with respect to computational
speed and accuracy. In our numerical experiments (see Section 5), the dual method
showed extremely fast convergence. It is sufficient to simulate a very small number
of paths for Z. In addition, there is no regression step. The individual paths can be
processed completely in parallel. There are some caveats, though. In contrast to the
variance reduction method, where we have used only the value Vd(0, 0), we have to
compute the solution Vd on a full space-time discretization grid in order to evaluate
M. As before, this can be done with PIDE and FFT methods, but computing the full
solution has several disadvantages. First, memory consumption is increased consider-
ably. Second, since we have to truncate the computational domain to a compact subset
of Rd, the accuracy of the solution decreases when we approach the boundary of this
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Algorithm 2 Duality based MC pricing
1: compute the solution Vd on a space-time grid (PIDE or FFT)
2: simulate N paths of Z
3: compute projected paths PdZ
4: for j = 1, 2, . . . , N do // pathwise maximum
5: initial value v(j) = g

(
S(0)

)
6: exercised_projected = f alse
7: for i = 1, 2, . . . , Nex do // forward iteration
8: intrinsic value u = e−rti g

(
S(Zti(j))

)
9: if not exercised_projected then

10: interpolate projected continuation value M = Vd(ti,PdZti(j))−Vd(0, 0)
11: intrinsic projected value ud = e−rti g

(
S(PdZti(j))

)
12: if ud ≥ M then
13: exercised_projected = true
14: end if
15: end if
16: v(j) = max{v(j), u−M}
17: end for
18: end for
19: θdual =

1
N ∑N

j=1 v(j)
20: return θdual

subset. Moreover, the evaluation of Mt at arbitrary arguments requires interpolation
and, thus, usually a finer discretization grid.

The most important drawback of the dual method is probably that the precision
of the result depends on the chosen martingale M. If M is too far from optimal, we
cannot expect convergence to the true option value. In particular, we will see that for
large numbers of assets with moderate correlation and many exercise possibilities, we
would have to choose a large value for d in order to obtain a reasonable sharp bound.
If, on the other hand, correlation is sufficiently high, the dual method is by far superior
regarding computational speed.

5 Numerical Experiments

In this section, we analyze the performance of the dimension reduction approach in
numerical experiments. The variance reduced and dual MC methods are applied to
test problems with various parameters. We vary the number of assets in the basket and
the number of exercise dates. We price options on baskets with high or low correlation
(compared to real stock market data) and study two different types of options.
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5.1 Test Setting

We consider baskets of n = 10, 20, and 30 assets. The driving stochastic process for
our test problems is a jump-diffusion of the form (2.2) with time-constant volatility and
jump distribution. Similar to [21], we include independent jumps for each individual
asset as well as common jumps for all assets. The common jumps for all assets are
driven by a compound Poisson process with intensity λ0 and are of fixed relative
height η0. The additional individual jumps of each asset price have intensity λi and
relative height ηi, i = 1, . . . , n. The price process of each asset Si satisfies

dSi(t)
Si(t)

= rdt +
n

∑
j=1

σijdWj(t) + η0d[N0(t)− λ0t] + ηid[Ni(t)− λit].

The Brownian motions Wj, j = 1, . . . , n, as well as the Poisson processes N0, N1, . . . , Nn
are all independent. The entries (σij)

n
i,j=1 of the volatility matrix are chosen such that

the covariance CD ∈ Rn×n of the diffusion part satisfies

CD(i, j) =
(

σσT
)

ij
= 0.2 e−ρ|i−j|, for i, j = 1, . . . , n,

where ρ ∈ R is a parameter controlling the decay of correlation. The discounted
value of every asset is a martingale under the pricing measure and can be written as
exponential of a jump-diffusion process as follows:

Si(t) = Si(0) exp
{(

r− 1
2

n

∑
j=1

σ2
ij − η0λ0 − ηiλi

)
t +

n

∑
j=1

σijWj(t)

+ ln
(
1 + η0

)
N0(t) + ln

(
1 + ηi

)
Ni(t)

}
, i = 1, . . . , n.

We set λ0 = λ1 = . . . = λn = 1, η1 = . . . = ηn = −0.05. For the remaining correlation
and jump parameters we use two different sets of values:

High correlation ρ = 0.1 η0 = −0.15,
Low correlation ρ = 0.4 η0 = −0.10.

Hence, we have a faster decaying correlation and less pronounced common jumps in
the “low correlation” scenario.

Figure 1 shows the eigenvalues of the covariance matrix of ZT in both scenarios.
All values are divided by the largest eigenvalue µ1 for normalization. The decay is
exponential. A faster decay means higher correlation and, thus, usually better perfor-
mance of the dimension reduction method. For comparison, the eigenvalues obtained
from the empirical covariance of the top 20 S&P 500 stocks are also plotted. The graph
shows that these eigenvalues are between those obtained from the test problem with
the two parameter sets described above.
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Fig. 1: Eigenvalue decay for different correlation scenarios and S&P 500 stocks. The
eigenvalues of the covariance matrices are ordered by size and normalized.

The initial value for the assets is Si(0) = 50, i = 1, . . . , n. We compute the price of
put options with strike K = 50 and value

V(0, 0) = sup
τ∈T (0,T)

E
[
e−rτ

(
K− F

(
S(Zτ)

))+ ],
where F is either the average

Favg(S) :=
1
n

n

∑
i=1

Si

or the minimum
Fmin(S) := min

i=1,...,n
Si

The admissible exercise dates are equally spaced: ti =
i

Nex
, i = 1, . . . , Nex. Their total

number is either Nex = 10 or Nex = 100.
For the computation of Vd both PIDE and FFT methods have been tested. Both yield

very similar results. Since the FFT showed slightly superior accuracy on identical grids
in our test cases, all of the results below refer to the FFT method. The grid refinement
and domain truncation are chosen in such a way that the absolute error of Vd(0, 0) is
well below 0.005 (0.5 cent). Usually, 26 grid points in each coordinate are sufficient to
achieve this. The complete method was implemented in C++, using the FFTW code
[9] for the Fourier transforms. The code was parallelized for shared memory systems
with OpenMP and executed on a workstation with 8 Opteron processors at 2.7 GHz.
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5.2 Results

Computational Time Before we analyze the gain in precision obtained with vari-
ance reduction and dual MC, we examine the additional computational cost per path
which is needed for these methods. If we fix the number N of MC paths, doing a plain
least-squares MC is obviously less time consuming than computing additional control
variables. This extra work is only worth the effort, if we can reduce the number of
paths significantly, so that the total computing time needed to achieve a given preci-
sion decreases. On the other hand, the dual method may take less time per path, since
no regression is needed and the pathwise computation of maxima is inexpensive. Fig-
ure 2 gives an overview of the computational times needed for different parts of the
algorithm. The simulation of paths is identical for all tested methods. The regression
step for the control variables takes slightly less time than the regression for the orig-
inal MC data, since it uses less basis variables. The set of basis variables for the full
MC contains n + 3 values (Z1, . . . , Zn, F, F2, F3), while the set for the control variable
has only d + 3 elements ((PdZ)1, . . . , (PdZ)d, F, F2, F3). The cost of the FFT increases
exponentially in the dimension d. Using full grids with dimensions d > 3 implies
computational times which are larger than the original MC method, even after taking
the reduced number of paths into account.
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Fig. 2: Computational times using variance reduction (VarRed) or dual MC (Dual) for
N = 50000 paths. (Average put option, low correlation, n = 30, Nex = 100.) The
number behind the method indicates the projected dimension d.
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Reduced Variance Since we have now seen how much additional time the variance
reduction needs, the question is how much accuracy we gain from it. A measure for
the accuracy is the variance of the MC prices. It can be used to obtain bounds on the
precision, e.g., by Chebyshev’s inequality. If the number of paths is sufficiently large
and the computed exercise policies do not change substantially, when further paths are
added, the variance is inversely proportional to the number of paths. Consequently,
half the variance means that roughly half the number of simulated paths is sufficient
for identical precision.

Figures 3 and 4 show results of the variance reduction and the dual MC for differ-
ent settings. In general, the methods work better for the average option than for the
minimum option. This is not surprising, because the average is captured better by the
POD components than the minimum. The variance can of course be decreased further
if the correlation is high. The number of exercise dates Nex also has a small influ-
ence. More exercise points yield less effective variance reduction. The dual method
converges extremely fast in every setting. Its accuracy, however, is only satisfying for
highly correlated baskets and the average put option. In any other case, a higher value
for d (d > 3) and a finer grid for the FFT solution are needed to obtain a reasonable
approximation with the dual method. This is usually not worth the computational
effort. The variance reduction, on the other hand, always works, although its effect
is hardly visible in the plot for the “worst case” of a minimum put option on lowly
correlated assets.

Choice of Dimension The effectiveness of the variance reduction of course also
depends on the dimension d of the projected problem. For the average option, it turns
out that d = 1 already yields a substantial improvement over the plain least-squares
MC method without variance reduction. Increasing the dimension gives only slightly
smaller variances. Nevertheless, d = 2 is worth considering, since the additional
computational effort is small. For the minimum put option, increasing d has a much
larger impact. Adding further POD components decreases the variance significantly.
Figure 5 illustrates this effect. In terms of overall computational effort, d = 2 turns
out to be a good choice, although d = 3 is sometimes even better (depending on the
number of assets and the efficiency of the method used to compute Vd(0, 0)).

In order to obtain a good estimate for the variance of the MC price, a large number
of MC experiments (usually at least 1000), each with the given number of paths N, is
necessary. A good approximation can be obtained by computing the variance within
each set of N paths and dividing by N. In fact, this approximation is accurate if the
exercise policy does not vary for different sets of simulated paths. In order to rule out
effects due to a possible change of exercise policy between different sets of paths, we
use the mean of this value over 100 MC experiments (with N paths each).
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Variance and Time Ratios Tables 1 and 2 summarize a large number of computa-
tional results for average and minimum options, respectively. Each cell of these tables
contains two numbers. The first one is the ratio of the variance σ2

vr after variance re-
duction to the variance σ2

MC of the plain least-squares MC method. The second one is
the ratio of total computing time tvr with variance reduction to computing time tMC
using plain MC for N = 100000 paths. While computational time increases with di-
mension d, the variance ratio decreases. The product of the two quantities gives a very
rough estimate of the total computing time ratio, because the number of paths needed
for a certain accuracy of the result decreases proportional to the variance. Taking, e.g.,
the entry for Nex = 10, n = 10, and d = 2 in Table 1, we obtain 0.04 · 1.26 = 0.05,
which means that we can save about 95% of computing time with variance reduction
of dimension 2. The entry for Nex = 100, n = 30, and d = 2 in Table 2, on the other
hand, yields 0.49 · 1.19 = 0.58, corresponding to a 42% lower computational cost due
to variance reduction.

Nex = 10 Nex = 100
# assets d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

high
corr

10 0.04|1.26 0.03|1.40 0.03|1.62 0.05|1.22 0.04|1.29 0.04|1.52
20 0.06|1.24 0.05|1.31 0.03|1.63 0.08|1.21 0.06|1.30 0.05|1.65
30 0.07|1.19 0.06|1.26 0.05|1.83 0.10|1.19 0.07|1.25 0.07|1.58

low
corr

10 0.10|1.26 0.06|1.34 0.04|2.44 0.12|1.22 0.07|1.30 0.05|2.19
20 0.14|1.22 0.10|1.29 0.08|2.40 0.15|1.21 0.10|1.28 0.08|2.03
30 0.16|1.19 0.12|1.25 0.10|2.43 0.18|1.21 0.13|1.24 0.11|1.92

Table 1: Variance ratio σ2
vr

σ2
MC

and time ratio tvr
tMC

for average put option (N = 100000 paths).

Nex = 10 Nex = 100
# assets d = 1 d = 2 d = 3 d = 1 d = 2 d = 3

high
corr

10 0.46|1.22 0.20|1.30 0.13|1.60 0.48|1.16 0.23|1.27 0.15|1.49
20 0.52|1.19 0.26|1.26 0.14|1.57 0.54|1.17 0.29|1.24 0.20|1.55
30 0.55|1.15 0.29|1.21 0.19|1.66 0.68|1.14 0.43|1.21 0.32|1.44

low
corr

10 0.64|1.20 0.36|1.30 0.24|2.23 0.66|1.18 0.39|1.27 0.26|1.97
20 0.69|1.17 0.44|1.25 0.32|2.09 0.70|1.16 0.47|1.24 0.35|1.81
30 0.70|1.14 0.47|1.20 0.37|2.07 0.71|1.13 0.49|1.19 0.39|1.67

Table 2: Variance ratio σ2
vr

σ2
MC

and time ratio tvr
tMC

for minimum put option (N = 100000

paths).
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6 Conclusion

In this article, we have presented a dimension reduction method for high-dimensional
Bermudan options under jump-diffusion models. A low-dimensional approximation
for the option price is obtained by orthogonal projection to a suitable set of basis vec-
tors, making use of the correlation structure of the assets. An error estimate for the
approximation has been shown. The expectation of the approximated price process
can be computed with any algorithm suitable for pricing low-dimensional Bermudan
options, in particular Fourier or PIDE methods. The solution then is used as a con-
trol variable for variance reduction of the Longstaff–Schwartz MC algorithm. It can
also serve as a candidate for the dual MC method proposed by Rogers. Numerical
experiments show that the dual method is sufficiently accurate only for highly corre-
lated baskets and options with a moderate number of exercise points. In these cases,
its convergence rate is outstandingly fast. It is, however, not suitable to approximate
American options with a continuum of exercise dates. The variance-reduced MC does
not suffer from these restrictions. Its convergence is slower, but it still yields signifi-
cant improvements in overall computational cost. The stronger the correlation of the
underlyings and the higher the dimension of the projected equation, the better the vari-
ance reduction works. Like the original least-squares MC simulation, the presented
variance-reduced least-squares MC method can be used to approximate American op-
tions with continuous exercise possibilities by choosing a sufficiently large number of
discrete exercise dates, at the cost of a possibly increasing approximation error.
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Fig. 3: MC, variance reduced MC, and dual MC for average put option (n = 30, d = 2).
Top: high correlation, Nex = 10; bottom: low correlation, Nex = 100.
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Fig. 4: MC, variance reduced MC, and dual MC for minimum put option (n = 30, d = 2).
Top: high correlation, Nex = 10; bottom: low correlation, Nex = 100.
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Fig. 5: Standard deviation with and without variance reduction for d = 1, 2, 3 (low
correlation, n = 30, nex = 10). Top: average put option; bottom: minimum put
option.
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