
Technische Universität München

Lehrstuhl für Computation in Engineering

The Finite Cell Method for Geometry-Based Structural Simulation

Zhengxiong Yang

Vollständiger Abdruck der von der Fakultät für Bauingenieur- und Vermessungswesen der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. habil. M. Manhart

Prüfer der Dissertation:

1. Univ.-Prof. Dr.rer.nat. E. Rank

2. Univ.-Prof. Dr.-Ing. habil. A. Düster,

Technische Universität Hamburg-Harburg

3. Prof. Dr. J. Parvizian,

Isfahan University of Technology, Isfahan, Iran

Die Dissertation wurde am 16.03.2011 bei der Technischen Universität München eingereicht
und durch die Fakultät für Bauingenieur- und Vermessungswesen am 22.06.2011 angenommen.

Abstract

The finite cell method is a fictitious domain method combined with p-version high-order poly-
nomial basis functions. This method enables the utilization of easily generated structured
grids to replace regular FE meshes. With trivial effort in mesh generation the major compu-
tational cost lies in the computation of stiffness matrices. This thesis presents a CT-derived
data specific integration scheme which accelerates the stiffness matrices computation by pre-
computation with respect to material constants and voxel dimensions. With this scheme
applied to solve three-dimensional isotropic linear elastic problems, a remarkable reduction
in computational time is achieved. Moreover a good accuracy is also obtained and verified
by several numerical examples. The high efficiency and accuracy of this integration scheme
enable establishment of a prototype of an interactive surgical planning platform which al-
lows for predicting and monitoring in-vivo bone-implant stress distribution in real-time via
computational steering.

iii

Preface

The work presented in this dissertation was developed during my PhD study majored in nu-
merical simulation at the Chair for Computation in Engineering at Technische Universität
München (October 2006 - February 2011). This work was funded by the Siemens, Cooperate
Technology PP2 and the International Graduate School of Science and Engineering, IGSSE
under the project ”Computational steering for Orthopaedics”. This support is gratefully ac-
knowledged.

I would like to thank all who contributed towards the accomplishment of this work. Firstly, I
truly thank Prof. Dr. Ernst Rank for being the strict yet great mentor who has taught me,
both consciously and unconsciously, how to explain things simply and clearly. His ideas and
suggestions had guided me through my research and had profoundly influenced my working
direction. Beside his support in academy, I am also grateful for his help and care in the daily
life. My gratefully and sincerely thank goes to Prof. Dr. Albert Gilg for the financial support
from Siemens AG, CT PP2 by an IGSSE scholarship, the entire work would not have been
possible without this support. I am also greatly indebted to Prof. Dr.-Ing. habil. Alexander
Düster, my second supervisor, because of his skillful supervision, because of his confidence in
me, and because of his rigorous and structured working method that has deeply influenced
my way of working. It has been a pleasure to share new ideas and discuss with him. A
big thank goes to my third supervisor Dr.-Ing. Stefan Kollmannsberger who had been my
supervisor during my master work and has continued to supervise me for part of my PhD
work. I deeply appreciate his effort and encouragement in guiding me through one of the
most tedious part of the project, as well as his patience and kindness during the correction
of this dissertation. I wish to thank Prof. Zohar Yosibash for his generous support with
abundant expertise in biomechanical simulation of human hard and soft tissues. I also thank
Prof. Jamshid Parvizian, one of the inventors of the finite cell method, for his help on me
and his long-term concern over the development of the method. Also I would like to thank
my supervisor of the IGSSE project, Dr.-Ing. Martin Ruess who has contributed a lot in the
organization towards the achievement of the project goals. Furthermore, I wish to thank Dr.
Utz Wever, my supervisor from Siemens, CT PP2, for his constant concern of the project and
continuous support and inspiration on my work.

Furthermore, I would like to express my gratitude to all my colleagues at the chair for Compu-
tation in Engineering at Technische Universität München for the various ways in which they
have supported me: A special thank you goes out to Dr.-Ing Dmitry Ledentsov, my former
colleague from whom I learned a lot of useful software and programming skills. His enthusi-
asm about science had also enlightened my aspiration to knowledge. I also thank Mr. Martin
Schlaffer for his invaluable technical support on the computer system. Mr. David Franke and
Michael Pfaffinger had been great colleagues next door for helping me out with many things.
I am also grateful to my two colleagues of the IGSSE project Mr. Eduardo Grande and Mr.
Christian Dick for their effort in accomplishing the project and valuable help.

Finally, I would like to thank my parents for their love, understanding and support on my
study over the last twenty years. And last but no least, a special thank to my wife Miao Yu,

v

without whom I would be a completely different person today. Her endless love and tender
care supported me over my six years stay in Germany, my PhD work would have been much
more difficult without her love. In addition I also appreciate her for helping me with part of
the correction of this dissertation.

Munich, Germany, Febuary 2011
Zhengxiong Yang

vi

Contents

1 Introduction 1

2 Biomechanical analysis of human femur 3
2.1 Bone physiology and anatomy . 3
2.2 Introduction to bone biomechanics . 5

2.2.1 CT imaging . 5
2.2.2 Bone density . 6
2.2.3 Bone adaption and remodeling . 6
2.2.4 Mechanical properties of bone tissues 7

2.3 Introduction to femur . 8
2.4 Femur mechanical analysis with the finite element method 12

2.4.1 FE Modeling . 12
2.4.2 Mesh generation . 13
2.4.3 Material assignment . 13

3 The p-version finite element method 14
3.1 Introduction . 14
3.2 Basic principles

in three-dimensional linear elasticity . 15
3.2.1 Equilibrium equation . 15
3.2.2 Kinematics . 15
3.2.3 Constitutive law . 16
3.2.4 Boundary condition . 17

3.3 Weak formulation − Principle of virtual work 17
3.4 The finite element approximation . 19

3.4.1 Spatial discretization by the FEM . 19
3.4.2 Hierarchic shape functions for high-order finite elements 20

3.4.2.1 Hierarchic shape function for one-dimensional problems 20
3.4.2.2 Hierarchic shape function for three-dimensional problems . . . 23

3.4.3 Equation system derived from the weak form 25

4 The finite cell method 28
4.1 Basic formulation . 28
4.2 Boundary conditions . 31

4.2.1 Neumann boundary conditions . 32
4.2.2 Dirichlet boundary conditions . 32

vii

4.3 Numerical integration . 33
4.3.1 Computation of cell stiffness matrices 33
4.3.2 Computation of cell load vectors . 35

4.4 A CT-derived data specific integration scheme 38
4.4.1 Geometric representations . 39

4.4.1.1 Implicit representation of geometry 39
4.4.1.2 Explicit representation of geometry 39

4.4.1.2.1 Voxel model derived from B-rep representation . . . 39
4.4.1.2.2 Voxel model derived from a CT scan 40

4.4.2 Mesh generation . 41
4.4.3 Precomputation of stiffness matrices 41

4.4.3.1 Basic formulation . 41
4.4.3.2 Determination of number of voxels per cell 44
4.4.3.3 Precomputation of Kλ and Kµ with respect to sx, sy and sz . 45

4.4.4 Stiffness matrices computing procedure with precomputed matrices . . 47
4.4.5 Computational efficiency estimation . 47
4.4.6 Acceleration of scalar-matrix computation using the BLAS routine . . . 48

4.4.6.1 BLAS . 49
4.4.6.2 Matrix transformation . 49

4.5 Numerical examples . 53
4.5.1 Inhomogeneous unit cube . 53
4.5.2 Thin-walled plate with a circular hole 55
4.5.3 Pressured homogeneous solid sphere . 63
4.5.4 Human trabecular bone biopsy . 66

5 Computational steering for orthopaedics using the FCM with fast integra-
tion 73
5.1 Introduction to hip replacement . 73
5.2 Introduction to computational steering . 75
5.3 Computational Steering for Orthopaedics . 76

5.3.1 Motivation . 76
5.3.2 Surgical planning system overview . 77
5.3.3 General procedure and system setup 79
5.3.4 Visualization techniques . 80
5.3.5 Simulation method . 82

5.3.5.1 Introduction to OpenMP . 84
5.3.5.2 Update of stiffness matrices 85
5.3.5.3 A fast direct solver based on the nested dissection algorithm . 87

5.3.5.3.1 The Pardiso solver 87
5.3.5.3.2 The nested dissection approach 87
5.3.5.3.3 A nested dissection based p-FEM solver 90

5.3.6 Computational steering system construction with Internet sockets . . . 92
5.3.6.1 Internet Protocol . 92
5.3.6.2 Internet socket . 92
5.3.6.3 Coupling of simulation and visualization 94

5.3.7 Surgical planning system demonstration 94

viii

5.3.8 Validation of the surgical planning system by a proximal femur experiment102

6 Conclusions 107

Bibliography 107

ix

1

Chapter 1

Introduction

As the finite element analysis methods is frequently implemented in the biomechanical analy-
sis, the disadvantages of standard FEM in modeling and meshing the biological structures start
to emerge. It is because of the geometrical differences between individuals, the discontinuity
of material properties, and also the complexity of structures. For instance, in the mechanical
analysis of a human femur with the finite element method [1], the construction of a volume
mesh is labor intensive.

One possibility of bypassing the computationally expensive mesh generation step is to use the
finite cell method (FCM) [2, 3] which is a fictitious domain method combined with high-order
shape functions. The basic idea is to extend the partial differential equation beyond the phys-
ical domain up to the boundary of a fictitious domain which is rectangular and can be easily
meshed with structured grids, so called cells. Within each cell, high-order shape functions are
applied to approximate the displacement field. Strains and stresses are also computed based
on high-order shape functions. However, the primary field variables are the displacements.
This method shows exponential rate of convergence for smooth problems and even good ac-
curacy for problems with singularities [2, 3]. The main computational effort of this method
lies in performing numerical integration of stiffness matrices, e.g. a dense set of integration
points is needed when Gaussian quadrature is applied. Thus, the necessity of speeding up the
stiffness matrices computation emerges in simulations where computational speed is demand-
ing. A CT-derived data specific fast integration scheme has been developed and is presented
in this dissertation. The basic idea of this scheme is to precompute the stiffness matrices
with respect to the two Lamé constants and CT voxel dimensions so as to avoid performing
Gaussian integration during run-time. This scheme shows both good accuracy and enormously
high efficiency in voxel-based numerical analyses demonstrated by several numerical examples.
The FCM with fast integration can be applied to solve various problems which when solved
with the standard FEM are time-consuming or even not feasible. One of the applications is a
computational steering system for patient-specific pre-operative surgical planning.

Fast and reliable methods for predicting and monitoring in-vivo bone strength are of major
importance in clinical applications such as fracture fixation or endoprostheses for joint replace-
ment. Furthermore, the development of implants calls for highly efficient and robust analysis
tools which allow, during a design loop, matching the mechanical properties of implants with
those of the individual bone in order to avoid adaptive remodeling with cortical thinning and

2 1. Introduction

increased porosity of the bone. The main objective of this dissertation is to develop and imple-
ment a prototype of such an analysis tool. The simulation kernel of this tool is powered by the
FCM with fast integration, which is extended to fulfill the requirement of the steering system,
while the visualization kernel is developed by the collaborative partner and is coupled with
the simulation kernel via high speed internet connection. The established surgical planning
system shows a good performance and opens new means to the surgeons who can perform
pre-operative planning with help of the real-time stress visualization.

The outline of this dissertation is as follows:

Chapter 2 introduces the biomechanical analysis of human bone as to provide preparation
and groundwork for Chapter 4 and 5.

Chapter 3 contains an introduction to the p-version finite element method. Starting from
the basic principles in three-dimensional linear elasticity the weak formulation is derived.
This is followed by the presentation of one and three-dimensional hierarchical shape functions.

Being a new method that combines the idea of the fictitious domain method with the p-
version finite element method, the finite cell method (FCM) is introduced in Chapter 4. After
the introduction of basic formulations, the standard approach for numerical integration in the
FCM is elaborated. As a special extension to the standard FCM, a CT-derived data specific
fast integration scheme for three-dimensional problems of linear elastostatics is then presented.
The accuracy and efficiency of this new integration scheme is verified by four numerical ex-
amples of three-dimensional linear elasticity.

In Chapter 5 starting from the introduction of hip replacement and the concept of com-
putational steering, the methodology of establishing the surgical planning system is addressed
in detail. A demonstration example of using the surgical planning system is given to show
one possible application of the system in helping surgeons’ decision making. Furthermore, the
accuracy of the surgical planning system is validated by an experiment given at the end of
this chapter.

Finally, conclusions are drawn in Chapter 6.

3

Chapter 2

Biomechanical analysis of human
femur

The mechanical response of the human femur has been an on-going research topic during
the past centuries. The development of modern theories of mechanics and computer-aided
computational tools, like finite element analysis (FEA), enables an in-depth study on the femur
properties and provides a convenient yet reliable approach to predict the femur’s mechanical
response. In this dissertation the finite cell method is employed in mechanical analysis of
the femur as well as the pre-selection of implants in surgical planning. As an introduction to
the biomechanical aspect of the topic, this chapter closely follows the description in [4, 5] and
aims at providing some basic knowledge of the mechanical properties of the human bone tissue
(especially the femur) and briefly introducing several commonly used finite element analysis
methods in femur analysis.

2.1 Bone physiology and anatomy

The skeletal system is a major constituent of the human body and consists of bones and
connective tissues, e.g., ligaments, tendons, muscles and cartilage. As porous mineralized
structures, bones are rigid and living organs that serve for moving, supporting and protecting
interior organs of the body. Bones are made up of marrow, blood vessels, epithelium, nerves
and the major composition: bone tissues, which are the mineral matrix that compose the rigid
parts of the organ.

Bone tissue consists of cells embedded in a fibrous organic matrix which is primarily colla-
gen (90%) and 10% amorphous ground substance. Based on its structural, mechanical and
metabolic function, bone tissue can be classified into two types, cortical bone and trabecular
bone, also referred to as compact bone and cancellous bone [6]. Figure 2.1 depicts the cancel-
lous and compact structure of a bone.

Compact (cortical) bone is the hard material that accounts for almost 80 percent of the total
bone mass of an adult skeleton and forms a protective outer shell. It consists of layers of bone
(lamellae), which are organized around central canals in which blood vessels, nerves, connective
tissue and lymphatic vessels are found. A cortical bone structure on a morphological level is

4 2. Biomechanical analysis of human femur

(a) Bone section [7]

Cancellous

Compact
bone

bone

(b) A close view [8]

Figure 2.1: Compact and cancellous bone structure

depicted in Figure 2.2(a). Cancellous (trabecular) bone is the porous material inside the
compact bone. It accounts for 20% of the total bone mass, but 80% of the total bone surface.
Cancellous bone is regarded as a three-dimensional inter-connected network of trabecular rods
and plates [6], a morphological view is shown in Figure 2.2(b).

(a) Cortical bone (b) Trabecular bone

Figure 2.2: Morphological views of cortical and trabecular bone structure [9]

Biologically, the compact and cancellous bone tissues are very similar in composition; the
difference lies in the arrangement of the microstructure. The classification of bone tissue as
compact or cancellous is based on the relative density (Section 2.2.2); i.e. the ratio of specimen
density to that of fully dense cortical bone [6].

2.2. Introduction to bone biomechanics 5

2.2 Introduction to bone biomechanics

This subsection addresses the bone’s biomechanical properties which includes: bone density,
bone adaption and remodeling, and mechanical properties of bone tissues. As the most com-
monly used non-invasive way of obtaining bone density information, the CT imaging is firstly
introduced.

2.2.1 CT imaging

Medical imaging is a technique to produce images of human body for clinical purpose or med-
ical science. It provides a fast and non-invasive means to acquire information of human tissue
and organs. The first imaging technique available in modern medicine is the X-ray radiogra-
phy. During the scanning, an X-ray generator produces a beam of X-rays which is projected
towards an object. These X-rays penetrate the object and are absorbed according to the
density and composition of the different areas of the object. The X-rays passing through the
object are captured by either a film or a digital detector which produces a 2D representation
of all the structures of an object superimposed on each other [10]. Images produced with
radiography have several limitations, e.g. only 2D images are produced and no information in
the slice thickness direction is available, and the image can be blurred due to the superposition
of different structures in the thickness direction.

To obtain 3D images of an object, advanced imaging techniques have been developed, such
as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, etc. These
techniques are all based on tomography which is the process of generating 2D sectional images
through a 3D object by using any kind of penetrating wave. The modern tomography involves
gathering data from multiple directions and feeding the data into a tomographic reconstruc-
tion software algorithm processed by a computer which constructs a series of cross-sectional
scans [11]. The image produced in a tomography is a tomogram. In the current study, the
main research focus is concentrated on images acquired by computed tomography using X-ray.
Note that although the original idea of computed tomography is closely related to X-ray, other
penetrating waves, such as neutron wave is also incorporated in the modern CT.

CT − short for computed tomography, is a powerful nondestructive imaging technique for
generating a series of cross-sectional 2D images inside one object. Each 2D CT image is
composed of a square image matrix. Each pixel is a square picture element that makes up the
matrix [12]. Since a CT section has a finite thickness, each pixel actually represents a small
volume element, or voxel [13]. Every voxel has been traversed during the scan by numerous
X-ray photons and the intensity of the transmitted radiation is measured by detectors. From
the radiation intensity information, the density or attenuation value of the tissue at each point
in the slice can be calculated. Specific attenuation values are assigned to each individual voxel.
These values are compared with the attenuation value of water and displayed on a scale of
arbitrary units named Hounsfield units (HUs) [14]. Normally the voxels are represented as 12-
bit binary numbers, and therefore have 212 = 4096 possible values. These values are arranged
on a scale from -1024 HU to +3071 HU, calibrated so that -1024 HU is the attenuation
produced by air and 0 HU is the attenuation produced by water. Tissue and bone then
produce attenuations in the positive range. The reading in Hounsfield units is also called the

6 2. Biomechanical analysis of human femur

CT number [15].

2.2.2 Bone density

The bone density, also called “apparent density”, is defined as dry, fat-free bone mass per
unit bulk volume [16]. It can be obtained by straightforward measurements of the weight
and volume of an excised bone specimen. The apparent density of human bones varies from
0.05g/cm3 [17] (loose trabecular bone) to 1.9g/cm3 (dense cortical bone) [18]. Another density
term which can also be straightforwardly measured is the so called ash density, which is the
density of the inorganic material alone. For this purpose, a bone specimen is firstly washed to
remove bone marrow and afterwards ashed in an oven for a certain time period, e.g., in [19]
at 650◦C for 24 hours, or in two steps 100◦C for 24 hours and 600◦C for another 24 hours [20].
Afterwards the ash density is calculated by ash weight per unit bulk volume1.

Generally, bone density can be obtained through invasive measurements on the bone specimen
in laboratory, or through non-invasive measuring techniques like Dual Energy X-ray Absorp-
tiometry (DEXA) or quantitative computed tomography (QCT). The DEXA is an enhanced
form of X-ray technology used to generate a 2D calibrated digitized radiograph of a bone.
The grey level of the pixels indicates the amount of X-rays passing through the bone. Often
employed to diagnose osteoporosis, the DEXA measures not the bone apparent density, but
the areal bone mineral content, so called the bone mineral density (BMD). The QCT is re-
ferred to as a dedicated computed tomography technique used to quantify some property of
the tissue, e.g., bone mineral density, lung nodule calcification, body fat measurement, etc.
Being one of the most precise technologies to measure the BMD of cross-sectional bone images,
it enables a sensitive determination of local changes [6]. It has been shown in [21] that tra-
becular bone mineral density measured by QCT and the apparent density measured directly
are significantly positively correlated. In general, QCT is performed on standard clinical CT
scanners. During the scanning, a calibration phantom which is comprised of several chambers
containing different concentrations of K2HPO4 is placed as close to the bone as possible to
minimize errors introduced by non-uniformity of the CT numbers within the scan field [22].
As a good linear relationship exists between the CT number and the corresponding K2HPO4

concentration [23], a new density term, the so called ”equivalent mineral density”, denoted
as ρEQM with unit (mg/cm3), is often employed to substitute the HU values in terms of the
linear relation.

2.2.3 Bone adaption and remodeling

Bone is an adaptive structure in which bone cells sense mechanical loading and adapt bone
mass and structure accordingly [6]. Wolff’s law [24] states that bone’s structures are developed
such that they can resist forces acting upon them in the most suited manner. They adapt
both their external conformation and their internal architecture to changes in external loading
conditions. Bone’s adaption to external loading is considered as an ongoing and life-long
process, which consists of two subprocesses: resorption and formation in which bone material

1The bulk volume is defined as the volume per unit mass of a dry material after ashing plus the volume of
the air between its particles

2.2. Introduction to bone biomechanics 7

is broken down or newly generated respectively. The formation process takes place when
local stresses are intensified, resulting in a rise in bone density on the microscopic scale and an
increment in bone external dimensions on a macroscopic scale. When local stresses are lowered,
the resorption process is triggered, causing a lowering of the density on the microscopic scale
and a decrease in bone external dimensions on a macroscopic scale.

2.2.4 Mechanical properties of bone tissues

Human bone can, by reasonable approximation, be regarded as a linear elastic material in
the range of regular physical loading. Similar to many structural materials for instance metal,
there is no significant difference in behavior between tension and compression within the range
of small deformation [25]. Generally the analysis of the material properties of metal is under
the homogeneous and isotropic assumption, namely, the metal is assumed to be uniform in
composition and have the same mechanical behavior in all directions. Human bone, however,
is neither a homogeneous nor an isotropic material, but rather heterogeneous and anisotropic,
meaning that its material composition differs from place to place and its mechanical properties
vary according to the direction.

The main reason for the bone’s heterogeneity and anisotropy is its structure, which has an
irregular, yet optimized, arrangement and orientation of the components. The collagen fibres,
lamellae, laminae and blood vessels show a clear tendency to be oriented along the length of
a long bone [26]. Consequently the different structures of cortical bone and trabecular bone
result in different mechanical properties, as concluded by Rice et al.. Trabecular and cortical
bone should, therefore, be regarded as different engineering materials [27]. Usually the tra-
becular bone is considered to be an orthotropic material with different properties or strengths
in three different orthogonal directions. Among the three directions, there is one principle di-
rection in which the trabecular structure behaves stiffer than in the other two directions [28].
The cortical bone is treated as a transversely isotropic material, which has different material
properties in one principle direction that is perpendicular to the plane of isotropy. Orthotropy
or transversely isotropy is a special case of anisotropy with reduced number of independent
material constants resulted from symmetry. As a reasonable approximation, isotropic material
models are often used to simplify the biomechanical analysis [29, 30].

The bone is a highly heterogeneous material, in which its density as well as its mechanical prop-
erties vary greatly at different location in the bone, even for the same bone type (trabecular or
cortical) [31, 32]. Many studies have shown that the mechanical properties of the bone can be
related to the bone apparent density [33, 34], or directly related to the bone equivalent mineral
density ρEQM without computing the apparent density [35, 29, 36]. In these studies the bone
mechanical properties are statistically related to the bone density with various approximated
correlations, among which power-law relations are often assumed. These relations are found
to be highly variable in terms of species and anatomical site [37, 38, 39]. For a specific bone
type and anatomical site, experiments have been carried out on bone specimens to obtain the
relations. However, deterministic values are difficult to acquire due to the fact that different
relations are reported when different experimental methods are used, e.g., compression test,
ultrasonic methods, or FE analysis of microscopic bone structure [37, 34, 33, 28]. Note that
even when the same method is used, the relations may be influenced by the geometries of

8 2. Biomechanical analysis of human femur

specimen [25]. Other parameters, such as age, sex and liquid content, are also reported to
have an influence on the material properties of the bone.

2.3 Introduction to femur

The femur (thigh bone), located in the upper part of the human leg, is one of the two strongest
bones in our body. In the stance posture, the femur is not vertical but inclining gradually
downward, as indicated in Figure 2.3(a). The inclination angle is approximately 7◦ and larger
in females than males.

Pelvis

Head

Neck
Lesser

Greater
trochanter

trochanter

Shaft

Medial Lateral
epicondyle epicondyle

(a) A complete view [40]

Central bone
cavity

Bone
marrow

Blood
vessel

Porous

Compact
bone

bone

Outer
membrane

(b) A longitudinal section view [41]

Figure 2.3: Femur osteology

The upper extremity of the femur, which consists of a head, a neck, a greater and a lesser
trochanter, is called the proximal femur. The femur’s head is spherical and forms more than
a hemisphere that articulates with the pelvis. Its surface is smooth and coated with a smooth
layer called articular cartilage, except for a small roughened pit below and behind the center
of the head. The femur’s neck, which connects the head with the femur shaft, forms a wide
angle of about 125◦ with the shaft in adults. This angle differs in person and gender (see
Figure 2.4 for various angles of femur from different adults).

This wide angle enables human to swing the limb from the pelvis easily. Geometrically the
neck is narrow in the middle while wider at its lateral than median end. The two trochanters,
greater and lesser, are eminences that work as leverage to the muscles and enable the axial
rotation of the femur. The greater trochanter is large, quadrilateral and located at the joint
of the neck to the shaft. The lesser trochanter is conical and situated at the lower and back
end of the neck.

The femur shaft has a cylindrical shape, but is slightly convex in its front and concaved at its
back. It has a hollow structure with a longitudinal ring-like wall mainly composed of compact

2.3. Introduction to femur 9

(a) (b) (c)

Figure 2.4: Three radiographs of femur with different head angles [42]

Femur
(thigh bone)

Patella
(knee cap)

Patellar
tendon

Fibula Tibia
(shin bone)

Figure 2.5: A schematic view of the knee-joint [43]

bone and a large medullary cavity in the middle. The lower extremity of the femur, which is
larger than the upper extremity, has a cuboidal form. It forms the knee-joint together with
the upper end of the tibia, the upper end of the fibula and the kneecap, see Figure 2.5.

In each part of the femur, the internal structures of the bone are aligned to form a pattern
which is adapted to the mechanical requirement caused by the load transmitted from the

10 2. Biomechanical analysis of human femur

femur’s head [44]. Throughout the femur, the bone adapts itself so efficiently that the bony
material is arranged in the paths of the maximum internal stresses, thereby its inner structure
is nearly optimum for an economical load transmission from the head to the tibia [45]. Re-
searchers have performed already in the first half of the last century computations of strains
and stresses to quantify the mechanical load transfer within a bone [44, 46, 47]. The rela-
tionship between the computed internal stresses resulting from the loading on the femur’s
head, and the inner structure of various sections of the femur is in good agreement with the
theoretically ideal relationships existing between stress and inner structure for efficiency and
maximum economy. Therefore, the following laws for bony structure are assumed to hold for
the femur [44, 48]:

“1. The inner structure and external form of human bone are closely adapted to the mechan-
ical conditions existing at every point in the bone.”

“2. The inner architecture of normal bone is determined by definite and exact requirements
of mathematical and mechanical laws to produce a maximum of strength with a minimum of
material.”

The inner architecture of the upper femur is depicted in Figure 2.6(a) and the principle stresses
obtained by mathematical calculations are depicted in Figure 2.6(b). In the femur shaft, the
cortical wall has its maximum thickness in the middle and becomes thinner as it reaches the
articular surface at the upper part of the shaft, where cavity is replaced by cancellous bone
gradually. As a result, at the proximal region of the femur the cancellous bone is enclosed by
a thin compact layer. The upper femur consists mainly of cancellous bone which is composed
of two systems of trabeculae, compressive and tensile. The compressive system of trabeculae
originates from the medial part of the shaft and radiates in curves upwards in a fan-like style.
The tensile system of the trabeculae originates from the lateral part of the shaft and spreads
upwards in an arch-like style. These two systems intersect with each other orthogonally. The
compressive system consists of two groups of trabeculae: the secondary compressive group
and the principal compressive group; while the tensile system is comprised of three groups:
the greater trochanter group, the principal tensile group and the secondary tensile group. A
2D schematic overview of the trabecular pattern of a human femur is shown in Figure 2.7.

1. The secondary compressive group:
This group of trabeculae originates from the inner boundary of the shaft near the lesser
trochanter. After aligning along the curving shaft for about 5cm, these trabeculae start to
separate smoothly with an angle of around 45◦ upwards and outwards to the region of the
greater trochanter. The upper curved paths end in the region near the upper neck, while lower
paths end in the region of the greater trochanter. Trabeculae in this group form a thin and
porous structure with large spaces in between [49].

2. The principal compressive group:
This group of trabeculae originates from the medial part of the shaft and radiates upwards
smoothly. They form paths reaching the upper part of the articular surface of the femur’s
head with a small curvature. Being regarded as a prolongation of the femur shaft, this group
of trabeculae is much thicker and organizes itself in a much denser manner in contrast to the

2.3. Introduction to femur 11

(a) A cross-sectional view

Load

N
eu

tr
al

ax
is The compressiveThe tensile

groupgroup

(b) Calculated principle stress directions

Figure 2.6: Proximal femur and the principle stress orientations [44]

The greater trochanter

The secondary

The secondary
The principle

The principle
tensile group

tensile group

tensile group

compressive group

compressive group

Figure 2.7: A schematic view of the trabecular pattern [42]

secondary group. These trabeculae paths are orthogonal to both the paths of the principle
tensile group and the articular surface of the femur’s head.

12 2. Biomechanical analysis of human femur

3. The greater trochanter tensile group:
Starting from the outer part of the shaft below the greater trochanter, trabeculae of the greater
trochanter tensile group spring upwards crossing the greater trochanter region and end at the
upper part of the greater trochanter. Some of them intersect with the paths of the secondary
compressive group in right angels. The trabeculea of this group bear much less stresses which
results in a slender structure.

4. The principal tensile group:
Originating from the outer part of the shaft, the principal tensile group of trabeculae radiates
upwards and inwards across the femur neck and reaches the lower part of the head. Function-
ing as the main tension stress transmitter, these trabeculae are characterized in thinner shape
but larger spacing in comparison with the ones of the principal compressive group.

5. The secondary tensile group:
The trabeculae of the secondary tensile group begin from the outer part of the shaft and
expand in a region lower than the principal tensile group. They also radiate upwards and
inwards and end either irregularly or at the medial part of the neck and shaft after crossing
the neutral axis.

2.4 Femur mechanical analysis with the finite element

method

The finite element method has been used in biomechanical simulations since the 70’s. It
provides a means to simulate a natural physiological/biomechanical phenomenon and to test
various hypotheses on the simulated model under multiple conditions in order to deduce an
approximate solution [50]. In biomechanics, FEM-simulation has become a well appreciated
research tool for the prediction of stress responses. In the specific area of human femur, re-
searchers have implemented various FE techniques to compute the femur’s mechanical response
and further to simulate human femur adaption, femoral head fracture and bone-prosthesis in-
teraction, etc. [51, 52, 53, 54]. Reliability and efficiency studies on these methods have been
conducted by many researchers through experimental validations [55, 1, 22].

Mainly differentiated by modeling and meshing, the FEA methods in Femur analysis can be
categorized into two types: the “voxel based” method and the “structure based” method. This
section will stress two methods in the FE analysis procedure of human femur that consists of
four steps: modeling, mesh generation, material assignment, and solution.

2.4.1 FE Modeling

CT scanning is the most commonly used non-invasive approach to obtain femur models. CT
data describe the scanned femur with a series of pictures, on which different volume units
are assigned with proper HU values. To extract a parametric description of femur geometry,
in the “voxel based” method the voxel data from a CT scan can be directly used after a
simple step of thresholding and segmentation (if acquired); while in the “structure based”

2.4. Femur mechanical analysis with the finite element method 13

method a geometric model which has a smooth surface description must be firstly constructed
or imported from a surface generation program in a preprocessing step.

2.4.2 Mesh generation

The “voxel based” method directly converts the CT voxel data to 8-noded hexahedral ele-
ments, each enclosing a given number of CT voxels. In each element linear shape functions
are commonly employed. This kind of method was initially proposed by Keyak [56] and has
been widely adopted to produce FE models of microscopic structures, e.g., small substructures
of trabecular bone [57, 58, 55].

Based on the geometric model obtained in the modeling step, in the “structure based” method
a mesh with either hexahedral or tetrahedral elements can be generated. Linear or quadratic
shape functions are often used in each element.

A comparative study on the two methods has been carried out in [55] to investigate the influ-
ence of different meshes on computational efficiency and accuracy. Three “structure based”
meshes and one “voxel based” mesh were compared numerically based on the same CT-derived
femur model: (a) a manually generated hexahedral mapped mesh, (b) an automatically gener-
ated tetrahedral mesh, (c) an automatically generated hexahedral mesh, and (d) an automat-
ically generated voxel-based hexahedral mesh. The “voxel based” method has the advantage
of easy mesh generation and shows good accuracy in displacements and interior stresses, while
the meshes generated using “structure based” methods shows higher accuracy throughout the
entire femur. The main reason for the errors in the “voxel based” method is due to the sin-
gularities occurring at the jagged boundaries of hexahedral meshes during FE analysis. On
the contrary, the high accuracy in the “structure based” method is contributed by a more ac-
curate geometric description and model discretization which entails higher computational cost.

An extension to the “structure based” method, which combines high order shape functions with
a structure-based tetrahedral mesh has been implemented in [1]. Different from the general
“structure based” method in which low order basis functions are used, only a relatively coarse
mesh is necessary when high order basis functions are used.

2.4.3 Material assignment

For all types of meshes above, averaged material properties, averaged densities for instance,
are assigned to each element. The assignment is straightforward in the “voxel based” method,
since the mesh is directly related to the voxel data. However, in the “structure based” method,
special assignment techniques are required since the elements are not predefined. In both
methods, Young’s modulus is assigned to every element based on the corresponding averaged
density.

The solution step is the same as in the standard finite element methods and is therefore not
further discussed.

14 3. The p-version finite element method

Chapter 3

The p-version finite element method

3.1 Introduction

The finite element method (FEM) is one of the most powerful tools to obtain numerical solu-
tions for partial differential equations that appear in various engineering fields, e.g., medical,
civil and mechanical engineering. Generally, the finite element method helps to predict the
behavior of a physical model with certain accuracy, which is restricted by various assumptions
that are introduced to simplify the problem under certain consideration and the discretization
error introduced by the finite element method itself. Both errors have to be controlled appro-
priately to ensure a reliable simulation.

The model error in finite element computations is due to the introduction of various physically
motivated approximations or simplifications when deriving a specific mechanical model for a
certain problem, e.g., using simplified constitutive law. The discretization error can be con-
trolled by either applying the h-version or p-version refinement. In h-version [59, 60, 61] the
mesh is locally or globally refined and low order basis functions (typically linear or quadratic)
with a fixed polynomial degree are commonly employed. In p-version FEM [62] the finite
element mesh is kept fixed and the polynomial degrees of the shape functions are increased
to achieve convergence to the unknown solution of the underlying mathematical model. The
mesh in p-version is generally coarse; however, for linear elliptic problems with smooth so-
lutions it shows exponential rate of convergence in the energy norm. When combining the
p-version with a proper local mesh refinement to an hp-version, exponential convergence rate
can even be achieved for a class of non-smooth problems.

The aim of this chapter is to give an introduction to high order finite element methods in
3D. For this purpose, the upcoming sections are arranged as follow: Section 3.2 introduces
some basic principles in three-dimensional linear elasticity theory. In Section 3.3 the principle
of virtual work which is the basis of the finite element method is introduced. Afterwards,
introduction to the finite element method with special emphasis on the p-version is given in
Section 3.4.

3.2. Basic principles

in three-dimensional linear elasticity 15

3.2 Basic principles

in three-dimensional linear elasticity

3.2.1 Equilibrium equation

The equilibrium conditions for a three-dimensional solid are obtained from inspection of an
infinitesimal volume element with length dx, dy and dz (shown in Figure 3.1). The equilibrium
conditions are

∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
+ fx = 0

∂τxy

∂x
+

∂σy

∂y
+

∂τyz

∂z
+ fy = 0 (3.1)

∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂z
+ fz = 0

where σx, σy, σz denote the normal stresses, τxy, τyz, τxz denote the shear stresses, and

f =
[

fx fy fz

]T
is the volume load vector.

σx

σy

σz

τxy

τyz

τzx

τxz

τzy

τyx

X

Y

Z

Figure 3.1: Stress components in 3D

3.2.2 Kinematics

The displacement u is described by the displacement vector

u =
[

ux(x, y, z) uy(x, y, z) uz(x, y, z)
]T

. (3.2)

16 3. The p-version finite element method

For small strains, the linear relation between strains and displacements is described by

ε =
[

εx εy εz γxy γyz γzx

]T
= Lu (3.3)

where

εx =
∂ux

∂x
, γxy =

∂ux

∂y
+

∂uy

∂x
,

εy =
∂uy

∂y
, γyz =

∂uy

∂z
+

∂uz

∂y
,

εz =
∂uz

∂z
, γzx =

∂uz

∂x
+

∂ux

∂z

(3.4)

and

L =

∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x

(3.5)

is the linear strain operator.

3.2.3 Constitutive law

For three-dimensional isotropic linear elastic problems, the stress vector

σ =
[

σx σy σz τxy τyz τzx

]T
(3.6)

can be related to the strains by

σ = C ε (3.7)

where C is the linear elastic matrix.

For linear isotropic elastic material, C can be written as

3.3. Weak formulation − Principle of virtual work 17

C =
E

(1 + ν) (1 − 2ν)

(1 − ν) ν ν 0 0 0
ν (1 − ν) ν 0 0 0
ν ν (1 − ν) 0 0 0
0 0 0 1−2ν

2
0 0

0 0 0 0 1−2ν
2

0
0 0 0 0 0 1−2ν

2

(3.8)

according to the Hook’s law, where E is the Young’s modulus and ν is the Poisson’s ratio.

3.2.4 Boundary condition

On the boundary ∂Ω = ΓN ∪ΓD , ΓN ∩ΓD = ∅ either displacements or tractions can be defined
as boundary conditions, in which prescribed displacements (Dirichlet boundary conditions) are
given at ΓD and prescribed tractions (Neumann boundary conditions) are given at ΓN .

3.3 Weak formulation − Principle of virtual work

Weak formulations are an important tool in the analysis of mathematical equations which
allow the transfer of problems in other fields such as partial differential equations into a set
of integral equations. The main feature of weak formulations is that a partial differential
equation is not required to hold pointwise yet only in a mean, integrated sense with respect
to a set of well-defined test functions [63]. The establishment of the weak form can be applied
to any equilibrium equation and is in solid mechanics mostly referred to as the principle of

virtual work [64].

The principle of virtual work can be derived as follows.
Multiplying (3.1) by a test function

v =

vx(x, y, z)
vy(x, y, z)
vz(x, y, z)

 ∈ V (3.9)

and integrating over the domain Ω yields

∫

Ω

[(
∂σx

∂x
+

∂τxy

∂y
+

∂τxz

∂z

)
vx +

(
∂τxy

∂x
+

∂σy

∂y
+

∂τyz

∂z

)
vy+

(
∂τxz

∂x
+

∂τyz

∂y
+

∂σz

∂z

)
vz

]
dΩ +

∫

Ω

(fxvx + fyvy + fzvz) dΩ = 0 (3.10)

where V = {v(x) ∈ H1(Ω) : v = 0 on ΓD} is a subspace of the Sobolev space H1(Ω) [65]
which consists of functions with square-integrable generalized derivatives.

18 3. The p-version finite element method

The test function v can be regarded as a virtual displacement. Integrating by part (3.10) and
applying the divergence theorem [66] yields

∫

Ω

(
σxε

(v)
x + σyε

(v)
y + σzε

(v)
z + τxyγ

(v)
xy + τxzγ

(v)
xz + τyzγ

(v)
yz

)
dΩ =

∫

ΓN

(txvx + tyvy + tzvz) dΓ +

∫

Ω

(fxvx + fyvy + fzvz) dΩ (3.11)

in which ε(v) and γ(v) stand for virtual strains, tx, ty and tz denote the tractions in X, Y and
Z directions, vx, vy and vz represent the virtual displacements in X, Y and Z directions.

Plugging in Equation (3.3) and (3.7), Equation (3.11) can be written as

∫

Ω

(Lv)T C (Lu) dΩ =

∫

Ω

vT f dΩ+

∫

ΓN

vT t dΓ . (3.12)

where L is the linear strain operator in Equation (3.5). The left-hand side of Equation (3.12)

B(u ,v) : =

∫

Ω

(Lv)T C (Lu) dΩ (3.13)

is a bilinear form, which represents the virtual work of internal stresses.

The right-hand side of Equation (3.12)

F(v) : =

∫

Ω

vT f dΩ+

∫

ΓN

vT t dΓ (3.14)

is a linear functional that expresses the virtual work of external stresses.

Equation (3.12) then reads

“ Find uEX ∈ S = {u(x) ∈ H1(Ω) : u = û on ΓD} , such that

B(uEX ,v) : = F(v) ∀v ∈ V = {v(x) ∈ H1(Ω) : v = 0 on ΓD} ” (3.15)

where uEX is the exact solution and û stands for prescribed displacements.

The strain energy is given by

3.4. The finite element approximation 19

U (u) : =
1

2
B (u ,u) (3.16)

and the energy norm is defined as

‖u‖E(Ω) =
√

U (u) =

√
1

2
B (u ,u). (3.17)

3.4 The finite element approximation

In general, the exact solution of (3.15) can only be obtained for problems with simple geome-
tries and boundary conditions. For more complicated problems, numerical methods, e.g. the
finite element method, are used to obtain approximate solutions to the weak form. Primarily,
the finite element method requires a problem defined in geometric domain to be divided into a
finite number of smaller elements. Each element is unique and may have different shapes, i.e.
quadrilaterals or triangles in 2D and hexahedra or tetrahedra in 3D. Over each element, the
unknown variables (e.g. displacements, strains, stresses, etc.) are approximated using either
linear or higher-order polynomial expansions which depend on the geometrical locations used
to define the element shape. The weak form is then discretized in a finite dimensional space.
The discretized weak form can be expressed as a linear system which is obtained in terms
of unknown parameters over each element. Linear algebra techniques are used to solve these
equations [67].

3.4.1 Spatial discretization by the FEM

Using the FE approximate solution, denoted by uFE, to replace the exact solution uEX , the
principle of virtual work (3.15) is rewritten as

“Find uFE ∈ Sh, such that

B(uFE ,v) : = F(v) ∀v ∈ Vh ” (3.18)

where Sh ⊂ S = {u(x) ∈ H1(Ω) : u = û on ΓD} and Vh ⊂ V = {v(x) ∈ H1(Ω) : v =
0 on ΓD} are the finite element subspaces.

In order to construct the finite subspace Sh, the reference domain Ω0 is subdivided into ne

non-overlapping subdomains, so called finite elements − Ωe. From this, it follows

ne⋃

e=1

Ωe ≈ Ω0 (3.19)

and

Ωei ∩ Ωej = ∅ for ei 6= ej . (3.20)

20 3. The p-version finite element method

(3.20) also requires that each two subdomains touch with each other only at nodes, full edges
or full faces to avoid hanging nodes [68].

The subspace S can be constructed using basis functions with local supports on the element
Ωe. The exact solution uEX is approximated with the FE solution constructed by a linear
combination of element shape functions Ni.

uEX ≈ uFE =

nmodes∑

i=1

Ni ui (3.21)

where ui are the coefficients corresponding to Ni which are defined on the elements Ωe fulfilling
the requirement that all shape functions of an element are zero outside the element and its
direct neighbors. Sorting ui corresponding to element e into one element displacement vector
Ue gives

ue
FE = Ne Ue . (3.22)

The global displacement function u is obtained by assembly of all element displacement func-
tions given as

uFE = NU . (3.23)

Shape functions N are defined on a standard element and mapped to the actual element for
numerical evaluations. The choice of shape functions and the mapping concept differentiate the
h- and p-version finite element method as well as related variants. Different shape functions
can be employed in the p-version FEM, one of them are the hierarchic shape functions.

3.4.2 Hierarchic shape functions for high-order finite elements

For constructing high-order basis functions, Szabó and Babus̆ka [62] propose a hierarchical
basis in which lower order shape functions are included in the set of higher order shape
functions. The construction of this basis is based on orthogonal Legendre polynomials. The
main difference of the hierarchic shape functions to non-hierarchic shape functions, e.g. shape
functions constructed by Lagrange polynomials, is illustrated and compared. The following
sections 3.4.2.1 and 3.4.2.2 follow closely the description of hierarchic shape function in [69].

3.4.2.1 Hierarchic shape function for one-dimensional problems

As a starting point for comparison, the standard finite element basis − nodal basis on a
standard element Ωst = (−1, 1) is firstly introduced, see the left-hand side of Table 3.1.

3.4. The finite element approximation 21

p = 1 p = 1

p = 2 p = 2

p = 3 p = 3

Table 3.1: Set of one-dimensional standard and hierarchic shape functions for p = 1, 2, 3

The standard finite element shape functions in one dimension are given by the set of Lagrange
polynomials

Np
i (ξ) =

p+1∏

j=1, j 6=i

ξ − ξj

ξi − ξj
. (3.24)

The points ξj where

Np
i (ξj) = δij (3.25)

are called nodes. Usually, the nodes are chosen to be equally distributed, i.e.

ξj = −1 + 2
j − 1

p
, j = 1, ..., p + 1 . (3.26)

For each polynomial degree p a separate set of shape functions has to be defined, for example,
for p = 1

N1
1 (ξ) = 1/2(1 − ξ)

(3.27)N1
2 (ξ) = 1/2(1 + ξ)

for p = 2

N2
1 (ξ) = 1/2 ξ (ξ − 1)

N2
2 (ξ) = (1 + ξ) (1 − ξ) (3.28)

N2
3 (ξ) = 1/2 (ξ + 1) ξ

for p = 3

N3
1 (ξ) = −1/16 (3 ξ + 1) (3 ξ − 1) (ξ − 1)

N3
2 (ξ) = 9/16 (ξ + 1) (3 ξ − 1) (ξ − 1)

(3.29)N3
3 (ξ) = −9/16 (ξ + 1) (3 ξ + 1) (ξ − 1)

N3
4 (ξ) = 1/16 (ξ + 1) (3 ξ + 1) (3 ξ − 1)

22 3. The p-version finite element method

etc. Note that the sum of all Lagrange polynomials for a given polynomial degree p equals
unity

p+1∑

i=1

Np
i (ξ) = 1 . (3.30)

The space representable by the standard basis can also be represented by a hierarchical basis,
see the right-hand side of Table 3.1. Note that the set of higher order basis functions includes all
lower order shape functions. The set of one-dimensional hierarchic shape functions, introduced
by Szabó and Babus̆ka [62] is given by

N1(ξ) = 1/2(1 − ξ) (3.31)

N2(ξ) = 1/2(1 + ξ) (3.32)

Ni(ξ) = φi−1(ξ), i = 3, 4, ..., p + 1 (3.33)

with

φj(ξ) =

√
2j − 1

2

ξ∫

−1

Lj−1(x) dx =
1√

4j − 2
(Lj(ξ) − Lj−2(ξ)) , j = 2, 3, ... (3.34)

where Lj(ξ) are the Legendre polynomials. The linear functions N1(ξ), N2(ξ) are called nodal

shape functions or nodal modes. Because the functions Ni(ξ), i = 3, 4, ... vanish at the domain
boundary

Ni(−1) = Ni(1) = 0, i = 3, 4, ... , (3.35)

they are called internal shape functions, internal modes or bubble modes. The orthogonality
property of Legendre polynomials implies

1∫

−1

d Ni

d ξ

d Nj

d ξ
d ξ = δij , i ≥ 3 and j ≥ 1 or i ≥ 1 and j ≥ 3. (3.36)

The construction of shape functions for two and three-dimensional Ansatz spaces can be easily
done by simply forming the tensor product of one-dimensional hierarchic shape functions. In
the next section the three-dimensional shape functions are presented for hexahedral elements.

3.4. The finite element approximation 23

3.4.2.2 Hierarchic shape function for three-dimensional problems

Using the basis functions introduced by Szabó and Babuška [62], the p-version in three-
dimensions is implemented based on a hexahedral element formulation. Hexahedral elements
(see Figure 3.2) have some advantages, when being compared to their corresponding tetrahe-
dral and pentahedral element formulations.

• Hexahedral element formulations lead to higher accuracy for low p.

• Hexahedral elements are especially well suited for thin-walled structures. One local
variable can be identified to correspond to the thickness direction. Therefore it is possible
to choose the polynomial degree in thickness direction differently from those in in-plane
direction.

• The numerical integration of hexahedral elements can be readily performed using a
Gaussian quadrature scheme.

ξ η

ζ

N1

N2

N3

N4

N5

N6

N7

N8

E1

E2
E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

F1

F2

F3

F4

F5

F6

ξ η

ζ

pξ, p
pη, p

pζ , q

Ωh
st = [(−1, 1) × (−1, 1) × (−1, 1)] Spξ,pη ,pζ

ts (Ωh
st),S

pξ,pη,pζ
ps (Ωh

st),Sp,p,q(Ωh
st)

Figure 3.2: Standard hexahedral element Ωh
st: definition of nodes, edges, faces and polynomial degree

The three-dimensional shape functions can be classified into four groups:

1. Nodal modes: The nodal modes

NNi

1,1,1(ξ, η, ζ) =
1

8
(1 + ξi ξ)(1 + ηi η)(1 + ζiζ), i = 1, ..., 8 (3.37)

are the standard trilinear shape functions, well known from the isoparametric eight-
noded brick element. (ξi, ηi, ζi) are the local coordinates of the i-th node.

24 3. The p-version finite element method

2. Edge modes: These modes are defined separately for each individual edge. If we
consider, for example, edge E1 (see Figure 3.2), the corresponding edge modes read:

NE1

i,1,1(ξ, η, ζ) =
1

4
(1 − η)(1 − ζ)φi(ξ) (3.38)

3. Face modes: These modes are defined separately for each individual face. If we con-
sider, for example, face F1, the corresponding face modes read:

NF1

i,j,1(ξ, η, ζ) =
1

2
(1 − ζ)φi(ξ)φj(η) (3.39)

4. Internal modes: The internal modes

N int
i,j,k(ξ, η, ζ) = φi(ξ)φj(η)φk(ζ) (3.40)

are purely local and vanish at the faces of the hexahedral element.

The indices i, j, k of the shape functions denote the polynomial degrees in the local directions
ξ, η, ζ .

Three different types of basis spaces have been implemented: the trunk space Spξ,pη,pζ

ts (Ωh
st),

the tensor product space Spξ ,pη,pζ
ps (Ωh

st) and the anisotropic tensor product space Sp,p,q(Ωh
st). A

detailed description of the three spaces can be found in DÜSTER [70, 69]. For the definition
of the spaces Spξ,pη,pζ

ts (Ωh
st) and Sp,p,q(Ωh

st) see also Szabó and Babuška [62].

The polynomial degree for the Ansatz spaces Spξ,pη,pζ

ts (Ωh
st) and Spξ,pη,pζ

ps (Ωh
st) can be varied

separately in each local direction (see Figure 3.2). The difference between the trunk space and
the tensor product space is relevant for the face modes and the internal modes. For explana-
tion, we first consider the face modes, for example the modes for face 1. Indices i, j denote
the polynomial degrees of the face modes in ξ and η direction, respectively.

Face modes (face F1): NF1

i,j,1(ξ, η, ζ) = 1
2
(1 − ζ)φi(ξ)φj(η)

trunk space tensor product space

i = 2, ..., pξ − 2 i = 2, ..., pξ

j = 2, ..., pη − 2 j = 2, ..., pη

i + j = 4, ..., max{pξ, pη}

The definition of the set of internal modes is very similar. Indices i, j, k now denote the poly-
nomial degrees in the three local directions ξ, η and ζ .

internal modes: N int
i,j,k(ξ, η, ζ) = φi(ξ)φj(η)φk(ζ)

3.4. The finite element approximation 25

trunk space tensor product space

i = 2, ..., pξ − 4 i = 2, ..., pξ

j = 2, ..., pη − 4 j = 2, ..., pη

k = 2, ..., pζ − 4 k = 2, ..., pζ

i + j + k = 6, ..., max{pξ, pη, pζ}

3.4.3 Equation system derived from the weak form

Starting from the weak form

B(uFE ,v) = F(v) , (3.41)

rewriting the virtual displacement

v = NV (3.42)

and plugging in Equation (3.23) and (3.42) into (3.41) yields

B(NU ,NV) = F(NV) . (3.43)

Plugging in (3.13) and (3.14) into (3.43), Equation (3.43) then reads

VT (

∫

Ω

(LN)T C (LN) dΩ)U = VT

∫

Ω

NT f dΩ + VT

∫

Γ

NT t dΓ . (3.44)

As this statement is valid for any value of the virtual displacement, it follows

∫

Ω

(LN)T C (LN) dΩU =

∫

Ω

NT f dΩ +

∫

Γ

NT t dΓ (3.45)

Defining

K =

∫

Ω

(LN)T C (LN) dΩ , F =

∫

Ω

NT f dΩ +

∫

Γ

NT t dΓ , (3.46)

Equation (3.45) is transformed to

KU = F (3.47)

where K is the global stiffness matrix and F is the global load vector.

26 3. The p-version finite element method

Having discretized the problem domain into finite elements and element-wise shape functions
N, the global stiffness matrix K and global load vector F are computed by assembly of all
element stiffness matrices and element load vectors respectively:

K =
ne

A
e=1

Ke , F =
ne

A
e=1

Fe (3.48)

The element stiffness matrix and the load vector can be computed by

Ke =

∫

Ω

(LN)T Ce (LN) dx dy dz , (3.49)

Fe =

∫

Ω

NT f dΩ +

∫

Γ

NT t dΓ . (3.50)

When computing the element stiffness matrix Ke, the computation of derivatives of the shape
functions is involved. Since the shape functions are defined in the local coordinate system,
a mapping of a general eight-node element in the global coordinate system to the standard
element [[−1, 1] × [−1, 1] × [−1, 1]] with local coordinates ξ = (ξ, η, ζ)T is required. For
instance, computation of the first derivative of the shape function Ni with respect to global
coordinate system involves the chain rule

∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

=

∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

= J

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

(3.51)

in which J is the Jacobian matrix. In order to obtain derivatives with respect to the global
coordinates, one has to invert the Jacobian matrix:

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z

= J−1

∂Ni

∂ξ
∂Ni

∂η
∂Ni

∂ζ

(3.52)

The Jacobian matrix must be regular (i.e., its determinant detJ 6= 0) in order to compute its
inverse.

3.4. The finite element approximation 27

The integration over one element can be computed by

∫

Ωe

(·) dΩ =

1∫

−1

1∫

−1

1∫

−1

(·) detJ (ξ, η, ζ) dξ dη dζ (3.53)

and the element stiffness matrix can be computed in the local coordinate system as:

Ke =

1∫

−1

1∫

−1

1∫

−1

(LN)T Ce (LN) detJ dξ dη dζ (3.54)

where LN is also denoted as the standard strain-displacement matrix B which will be used
hereafter.

28 4. The finite cell method

Chapter 4

The finite cell method

The finite cell method is a fictitious domain method combined with high-order shape functions.
The basic idea is to extend the partial differential equation beyond the physical domain, up
to the boundaries of a fictitious domain which is rectangular. In the new domain the exact
solution is approximated by high-order polynomials.

4.1 Basic formulation

Let us assume that on a domain Ω with the boundary ∂Ω a problem of linear elasticity is
described in weak form by

B (u ,v) = F(v) (4.1)

where the bilinear form is

B(u ,v) : =

∫

Ω

[Lv]T C [Lu] dΩ . (4.2)

The domain of computation is now embedded in the domain Ωe with the boundary ∂Ωe, see
Figure 4.1.

Without losing generality, the homogeneous Dirichlet boundary condition is assumed to be
applied along ΓD, while the Neumann boundary condition is defined along ΓN , where ∂Ω =
ΓD ∪ ΓN , ΓD ∩ ΓN = ∅ and ΓN = ΓI

N ∪ ΓH
N . ΓH

N and ΓI
N denotes the homogeneous and

inhomogeneous Neumann boundary condition, respectively. The linear functional of the weak
form (4.1) is

F(v) : =

∫

Ω

vT f dΩ +

∫

ΓN

vT tN dΓ (4.3)

where f are volume loads and tN are prescribed tractions.

4.1. Basic formulation 29

ΓI
N

ΓD

t̄

Ω

ū = 0

Ωe \Ω

Ωe+ =

Figure 4.1: The domain Ω is embedded in Ωe

The original physical domain Ω is now embedded in the domain Ωe with the boundary ∂Ωe,
see Figure 4.1 in which the situation of boundary conditions is also depicted for simplicity.
The interface between Ω and the extended domain (Ωe \Ω) is defined as ΓI = ∂Ω\ (∂Ω∩∂Ωe).
Following [71], the displacement variable u is extended as:

u =

{
u1 in Ω
u2 in Ωe \ Ω

(4.4)

while the transition conditions guarantee continuity at the interface between Ω and Ωe \ Ω:

t1 = t2 on ΓI

u1 = u2 on ΓI
(4.5)

Boundary conditions are set for ∂Ωe

t̄ = 0 on Γe,N .
ū = 0 on Γe,D

(4.6)

where Γe,N and Γe,D are the Neumann and Dirichlet boundaries of Ωe respectively, ∂Ωe =
Γe,N ∪ Γe,D, and Γe,N ∩ Γe,D = ∅.

The weak form of the equilibrium equation for the embedding domain Ωe is given as

Be (u ,v) = Fe(v) (4.7)

where the bilinear form is

Be(u ,v) : =

∫

Ωe

[Lv]T Ce [Lu] dΩ (4.8)

30 4. The finite cell method

in which Ce is the elasticity matrix of the embedding domain, given as

Ce = α C , (4.9)

where

α =

{
1.0 in Ω
0.0 in Ωe \ Ω

(4.10)

Plugging in Equation (4.9) and (4.10) into (4.8), the bilinear functional turns to

Be(u ,v) : =

∫

Ω

[Lv]T C [Lu] dΩ +

∫

Ωe\Ω

[Lv]T 0 [Lu] dΩ

=

∫

Ωe

[Lv]T αC [Lu] dΩ : = B (u ,v) . (4.11)

The linear functional

Fe(v) : =

∫

Ωe

vT α f dΩ +

∫

ΓN

vT t̄ dΓ +

∫

Γe,N

vT t̄ dΓ (4.12)

includes volume loads f , prescribed traction t̄ along ΓN interior to Ωe and prescribed traction
at the boundary of the embedding domain. The last term can be assumed zero due to Equa-
tion (4.6).

The embedding domain is now discretized in a mesh that is independent of the original domain.
These new elements, which are differentiated from classical elements, are called finite cells.
As a simple and beneficial initialization, cells are assumed to be rectangular hexahedra which
results in constant Jacobian matrices for cell-wise mappings, see Figure 4.2.
The union of all cells forms the extended domain

Ωe =

nc⋃

c=1

Ωc (4.13)

where Ωc is the domain represented by a cell, and nc is total number of cells resulting from
division of the embedding domain. At the discretized level, the bilinear form (4.8) turns to

Be(u ,v) : =

nc∑

c=1

∫

Ωc

[Lv]T αC [Lu] dΩ . (4.14)

4.2. Boundary conditions 31

t̄

ū = 0

Ωe

Figure 4.2: Discretization of the embedding domain using rectangular cells

The displacement variable in each cell is approximated as

u = NU (4.15)

where N denotes the matrix of shape functions and U is the vector of unknowns. In the current
implementation, Legendre polynomial based hierarchical shape function [62, 70, 72] is used, see
Section 3.4.2. This implementation allows an h-extension for low and high polynomial orders
by refinement of cells as well as a p-extension on a fixed mesh of (coarse) cells. Based on the
Bubnov-Galerkin approach, v = NV, plugging (4.15) into (4.14) the finite cell formulation is
given as

KU = F (4.16)

where K is the global stiffness matrix and F is the global load vector. They are obtained by
assembling cell matrices and cell load vectors respectively.

4.2 Boundary conditions

In FCM, application of boundary conditions on surfaces which do not conform to the mesh
embedding the original domain Ω is not as straightforward as it is in the standard FEM. Special
methods are needed to handle Neumann and Dirichlet boundary conditions separately.

32 4. The finite cell method

4.2.1 Neumann boundary conditions

Homogeneous Neumann boundary conditions are firstly considered. This “zero traction con-
dition” is equivalent to assuming material with zero stiffness in the extended domain. In-
homogeneous boundary conditions can be imposed by explicitly including the second term
in Equation (4.12), i.e. by integrating over the boundary ΓN lying in the interior of Ωe, see
Figure 4.3 for two-dimensional case. A detailed description of load vector computation for the
three-dimensional case is given in Section 4.3.2.

ΓN

t̄

Figure 4.3: The Neumann boundary conditions

4.2.2 Dirichlet boundary conditions

In [2, 3] a “stiff strip” of material from ΓD up to the Dirichlet boundary Γe,D of the extended
domain is assumed to apply homogeneous boundary conditions, see the dark region highlighted
in Figure 4.4. In this way, instead of being applied directly on the physical boundary, Dirichlet
boundary conditions can be applied on the cell boundary. This strip is generally assumed to
be of one magnitude stiffer than in the original computational domain to produce reasonably
accurate results.

ΓD

Γe,D

ū = 0

Figure 4.4: The Dirichlet boundary conditions

Inhomogeneous boundary condition can be applied with a natural extension of the “stiff strip”
approach. In the literature several ways to impose inhomogeneous Dirichlet boundary con-
ditions have been proposed, for instance, penalization or Lagrangian methods. In [2, 3, 73]

4.3. Numerical integration 33

the penalization method and the Nitsche method are implemented to prescribe either the
inhomogeneous or homogeneous displacement only at the boundary ΓD.

4.3 Numerical integration

4.3.1 Computation of cell stiffness matrices

The approximation of the original problem (4.2) over the domain has been replaced by a prob-
lem over an embedding domain, yet with discontinuous coefficients. Therefore, the integrand
in (4.14) may be discontinuous within cells being cut by the boundary ∂Ω. An adaptive in-
tegration is necessary to capture this discontinuity. Different integration schemes have been
investigated. Low order integration like trapezoidal rule on a refined grid of sub-cells can be
used while the integration points are distributed uniformly in the cell. Another alternative is
to use a quad tree technique subdividing the cut cell to non-uniform smaller cells for adaptive
integration [74].

In [3] a composed scheme which can integrate over either uniformly or adaptively divided
sub-cells has been proven to be a reliable method with high approximation accuracy. This
implementation is based on a hexahedral element applying hierarchic high-order shape func-
tions.

N1

N2

N3

N4

N5

N6

N7

N8

ξ
η

ζ

r s

t

Figure 4.5: Composed integration of hexahedral elements based on sub-cells [3]

The mapping from the standard element to the global coordinate system is defined as

x = Qc(ξ, η, ζ) =
8∑

i=1

Ni(ξ, η, ζ)Xi (4.17)

where Xi = (Xi, Yi, Zi)
T denote the global coordinates of the eight nodes and

34 4. The finite cell method

Ni(ξ, η, ζ) =
1

8
(1 + ξi ξ)(1 + ηi η)(1 + ζiζ), i = 1, ..., 8 (4.18)

are the tri-linear shape functions, where (ξi, ηi, ζi) are the local coordinates of the ith node.
The embedding domain is discretized with rectangular hexahedra. So the mapping reduces to

x = Qc(ξ, η, ζ) =

X1 + 1

2
(1 + ξ)hx

Y1 + 1
2
(1 + η)hy

Z1 + 1
2
(1 + ζ)hz

 (4.19)

which results in a constant Jacobian matrix

Jc =
1

2

hx 0 0
0 hy 0
0 0 hz

 (4.20)

where hx, hy and hz denote the cell size with respect to the x, y and z direction, respectively.
With a constant Jacobian matrix, the hierarchic shape functions defined on the standard ele-
ment which are mapped on the global coordinate system remain polynomials.

A composed integration is applied to compute the stiffness matrix

Kc =

∫

ζ

∫

η

∫

ξ

(Bc)T (ξ) α(x(ξ))CBc(ξ) detJc dξdηdζ (4.21)

where the cell to be integrated is divided into nsc sub-cells, see Figure 4.5. These sub-cells are
used for integration purposes only. In order to establish a relation between the coordinates of
the block-shaped sub-cell r = (r, s, t)T and the cell, a linear mapping function

ξ = Q̃sc
c (r, s, t) =

ξ1 + 1

2
(1 + r)hξ

η1 + 1
2
(1 + s)hη

ζ1 + 1
2
(1 + t)hζ

 (4.22)

is applied, where (ξ1, η1, ζ1) are the local coordinates of the anchor point of the sub-cell and
hξ, hη, hζ denote the size of the sub-cell. Since the sub-cells are block-shaped, the mapping
results in a constant Jacobian matrix

J̃sc
c = gradT Q̃sc

c (r, s, t) =
1

2

hξ 0 0
0 hη 0
0 0 hζ

 . (4.23)

4.3. Numerical integration 35

The stiffness matrix of cell c is obtained by carrying out the composed integration over the
nsc sub-cells

Kc =

nsc∑

sc=1

∫

t

∫

s

∫

r

(Bc)T (ξ(r)) α(x(ξ(r)))CBc(ξ(r)) detJc detJ̃sc
c drdsdt . (4.24)

In (4.24) it is also necessary to account for the determinant of the Jacobian matrix J̃sc
c which

is due to the change of variables. The shape functions are the same as in (4.21); however, the
mapping ξ(r) = Q̃sc

c (r, s, t) has to be applied to establish the relation between the coordinates
of the sub-cell (r, s, t) and the cell (ξ, η, ζ). The sub-cells can be created so as to have a uni-
form spacing or an adaptive algorithm based on an octree data structure can be applied. The
adaptive algorithm may be applied to automatically control the refinement of the sub-cells,
so that in those regions where the integrand exhibits a strong variation (e.g. jumps due to
the incorporation of the domain’s boundary) a more accurate quadrature is performed. A
different quadrature scheme may be chosen for each of the sub-cells.

To avoid ill conditioning, cells completely outside Ω can be ignored for integration and assem-
bly, or a small non-zero α can be used for such cells. Numerical experiences show that any α
as small as 10−10 can replace zero. The domain integral in the linear functional (4.12) can be
dealt with in the extended domain by introducing α and using the same procedure as for the
bilinear form.

4.3.2 Computation of cell load vectors

The cell load vector consists of two parts

Fc = Fc
f + Fc

t̄ =

∫

Ωe

(Nc)T α f dΩ +

∫

ΓI
N

(Nc)T t̄ dΓ (4.25)

where Fc
f represents the volume load and Fc

t̄ results from the surface traction [3]. Fc
f can be

computed through volume integration in a similar manner as the stiffness matrix. To account
for inhomogeneous Neumann boundary conditions defined on ΓI

N the boundary integral has
to be computed cell-wise to determine the load vector Fc

t̄ due to a surface traction t̄ acting on
ΓI

N . Since the boundary ΓI
N will normally not coincide with the boundary of the embedding

domain Ωe, the computation of the cell load vector cannot be obtained by simply integrating
over the boundary of the cells, since ΓN will generally intersect the cells.

In order to compute the load vector one needs to have a parametric description of the surface
on which the traction is acting in order to perform the integration. Figure 4.6 depicts a
triangulated surface intersecting a hexahedral element. The local coordinates of the triangular
element is given as (u, v). The cell load vector based on a traction t̄ acting on a surface spanned
by nc

f facets embedded in cell c can be computed as

36 4. The finite cell method

N1

N2

N3

N4

N5

N6

N7

N8

ξ η
ζ

Figure 4.6: Computation of load vector by integrating over the Neumann boundary

Fc
t̄ =

nc
f∑

f=1

∫

v

∫

u

(Nc)T (ξ) t̄ detJf
t dudv . (4.26)

where Jf
t denotes the Jacobian matrix which is a mapping from the global coordinates to the

local coordinates of the triangular facet f . In this case, a two-dimensional surface (u, v) is
embedded into a three-dimensional space (x, y, z). So the Jacobian matrix can be computed
as the norm of the vector normal to the surface. The vector normal is the cross product of

the two vectors xf
u =

∂xf

∂u
and xf

v =
∂xf

∂v
.

Accordingly Jf
t can be written as

Jf
t = |xf

u(u, v) × xf
v(u, v)| (4.27)

where xf denotes the global coordinates of the triangular facet.

Equation (4.26) then reads

Fc
t̄ =

nc
f∑

f=1

∫

v

∫

u

(Nc)T (ξ) t̄ |xf
u(u, v) × xf

v (u, v)| dudv (4.28)

In order to compute xf , a mapping from the local coordinates (u, v) of the standard triangular
element to the global Cartesian coordinates is required. Afterwards, the integration can be

4.3. Numerical integration 37

computed with a two-dimensional quadrature rule defined on a standard triangular element.
Note that Nc denotes the shape functions which are high order polynomials in the FCM.
To accurately integrate the product of the shape functions and the traction vector over the
area a high order integration rule is required. However, some high order quadrature rules for
triangular elements published in finite element textbooks and papers contain either negative
weights or points outside of the integral domain [75, 76, 77]. To ensure an accurate computa-
tion, a mapping from the local coordinates (u, v) defined on a standard quadrilateral element
([−1,−1]×[1, 1]) to the global coordinates (x, y, z) of the triangle is used instead, see Equation
(4.29).

xf = Qf(u, v) =

4∑

i=1

Ni(u, v)Xf
i (4.29)

Xf
i = (Xf

i , Y f
i , Zf

i)T denote the global coordinates of the three nodes of the triangle. By coa-
lescing two adjacent vertices of the quadrilateral element, the quadrilateral standard domain
can be transformed to fit the triangular facet, see Figure 4.7 where Xf

4 = Xf
3 has been chosen.

N1 N2

N3N4

u

v

x

y
z

Qf (u, v)

Xf
1

Xf
2

Xf
3

Figure 4.7: Parameterization of facets [3]

In Equation (4.29)

Ni(u, v) =
1

4
(1 + uiu)(1 + viv) (4.30)

are the bi-linear shape functions, where (ui, vi) denote the local coordinates of the ith node of
the standard quadrilateral. Applying the mapping function (4.29) makes it possible to perform
the integration with a two-dimensional Gaussian quadrature defined on a standard quadrilat-
eral. It should be borne in mind that the process of triangulating a curved surface introduces
a discretization error. Commercial CAD tools are designed to control this discretization error,
i.e. the deviation from the (true) curved surface, by specifying the maximum chordal deviation
tolerance of the facets.

38 4. The finite cell method

As can be seen from Figure 4.6 it is very likely that the Gaussian points related to one facet
fall within different cells (hexahedra). It is accordingly important to ensure that, during
the integration over each facet, the contribution of this integration point refers to the cell
where the integration point is located. This means that the corresponding cell number c
has to be determined for each integration point. Since a Cartesian grid of hexahedral cells
is applied to discretize the embedding domain Ωe, this cell number can be computed very
efficiently. For each integration point, the global coordinates are computed from the mapping
function xf = Qf(u, v) defined by the facet. Based on the global coordinates the corresponding
hexahedral can be readily determined, since a structured cell arrangement with fixed spacing
is applied. Having found the cell c which contains the present Gaussian point, the local
coordinates (ξ, η, ζ) of the cell have to be determined in order to compute the shape function
matrix NT (ξ). It is also possible to compute the inverse mapping, ξ = Qc−1(xf (u, v)), very
efficiently from global to local cell coordinates, since the mapping (4.19) is linear and can be
inverted analytically. One drawback of this way of integration is that the triangular facet is not
split up at the intersection with cell boundaries, integrating a function which is not continuous
over a surface will loose accuracy even for high order Gaussian integration. Hence a relatively
fine mesh is used to reduce integration error to a low level. Note that the numerical effort in
integrating over a fine surface mesh with a high order quadrature rule is still relatively small
since the two-dimensional integration does not dominate the overall computational effort.

4.4 A CT-derived data specific integration scheme

Rapid and simple grid generation is the major advantage of the FCM and general fictitious
domain methods over the standard FEM. The main reason is: in FCM shape functions and
model geometry are completely decoupled, so that the Cartesian grid generated in the anal-
ysis is not obliged to be aligned to the curved boundaries. As a result, the meshing process
is independent of the complexity of the model and is thus straightforward. With trivial effort
in mesh generation, the main computational load is shifted to the computation of cell stiff-
ness matrices. As a standard integration approach, Gaussian integration is applied in FCM
to compute cell stiffness matrices. For simple structures with homogeneous material prop-
erties, only (p + 1)3 integration points are necessary to compute the integration accurately.
However, for models with complex geometries and multi-material interfaces the computational
cost increases drastically because a dense set of integration points must be allocated inside
and outside the physical domain in order to capture both the true physical boundary and the
material interfaces. Using this method, considerable amount of computational time has to be
spent in order to achieve a high accuracy. One possibility in promoting the performance of
the FCM is to accelerate the stiffness matrices integration by precomputation.

To clarify the precomputation procedure, this part of the thesis is structured as follows.
Starting from the CT imaging theory given in Section 2.2.1, the three types of geometric
representations introduced in [3] will be repeated with emphasis on the last two types in
Section 4.4.1. Section 4.4.2 describes the mesh generation method and afterwards, the pre-
computation scheme is detailed in Section 4.4.3.

4.4. A CT-derived data specific integration scheme 39

4.4.1 Geometric representations

Fast and simply grid generation is one of the main advantages of the FCM. As the starting point
of a FCM computation, it is necessary to discuss different ways of representing the geometry
of a physical model. Three ways of representation of geometry − implicit representation of
geometry, voxel model derived from B-rep representation, and voxel model obtained from a
CT scan are accounted for in the FCM [3].

4.4.1.1 Implicit representation of geometry

The implicit representation of the boundary of a geometric model is defined using the zero
level set of function φ(x) = 0, similar to level set method [78, 79]. Implicit representation
gives an exact mathematical description of geometry. The geometric model is responsible
for the definition of zero extensions during the integration of cell stiffness matrices. For
this purpose, an accurate integration technique is necessary to fully capture the geometry.
Different techniques can be utilized to handle this problem, e.g., Gaussian integration with
large amount of quadrature points, or the quad-tree based composed integration technique
[3]. During the integration, judgment of whether an integration point lies inside or outside
is required. This type of representation is, however, mostly applicable in academic problems
and is for numerical investigations only. We therefore turn our focus onto accelerating the
computations on explicitly represented geometric models.

4.4.1.2 Explicit representation of geometry

One commonly used explicit representation is a voxel model, whose physical boundary is
defined by the value of voxels explicitly. Different from models with exact mathematical
description of geometry, voxel models provide approximated geometries as well as internal
material interfaces. This way of geometric description, on one hand, is geometrically less
accurate than the implicit representation; however, it enables a more efficient way of judging
whether an integration point is inside or outside the physical domain, since zero extensions are
included in the voxel models already. Two types of explicit geometric models have been defined
in [3], they are voxel model derived from B-rep representation and voxel model obtained from
a CT scan.

4.4.1.2.1 Voxel model derived from B-rep representation

Boundary representation, short for B-rep, is a representation form to describe shapes us-
ing a finite number of surfaces. One simple and common B-rep is based on triangulation,
through which curved boundaries can be approximated using inter-connected triangles. The
STL model, derived from the word STereoLithography [80], is probably the simplest B-rep
model which describes the unstructured triangulated surfaces with vertices (coordinate vec-
tors) and surface unit normals. This format of description is employed in FCM to encompass
inhomogeneous boundary conditions.

Voxel models can be generated from B-rep models through voxelization. An octree-based
voxelization algorithm, which has been implemented in [3, 81] for fast grid generation based

40 4. The finite cell method

on the hierarchical space-partitioning concept, is adopted to generate voxel models with vari-
ous resolutions. Figure 4.8 depicts a B-rep model of a telephone handset downloaded from [82]
and a voxel model derived from it.

(a) B-rep model (STL mesh
with 6,880 triangles)

(b) Voxel model with a res-
olution of 18 × 18 × 60

(c) Voxel model without
zero extension

Figure 4.8: Voxelization of a telephone handset

For this type of voxel models, the accuracy of geometric description mainly depends on the
voxelization resolution which is adjustable. This feature offers certain amount of flexibility to
select a suitable resolution level for problems with various accuracy demands.

4.4.1.2.2 Voxel model derived from a CT scan

In addition to voxelizing B-rep models, a more general approach to obtain voxel models is
through CT scanning. The largest difference of the CT-derived voxel models from those ob-
tained from B-rep is that the CT-derived models are originally composed of voxels and contain
zero extension already. Hence this type of voxel models is more suitable for the FCM com-
putation, in which voxel data are directly imported and meshed with rectangular grids. It is
therefore of great advantage to implement the FCM algorithms in the biomechanical applica-
tions, which when solved using the standard finite element method requires large amount of
human labor and computational cost in the preprocessing. In comparison with voxel models
obtained from B-rep, the downside of CT-derived voxel models is that the model resolution
is scanning machine dependent and is for an existing voxel model easier to decrease than to
increase. Thus, the flexibility in data adjustment is smaller.

4.4. A CT-derived data specific integration scheme 41

4.4.2 Mesh generation

The QCT-based voxel finite element method (VFEM) [55] is often used to analyze voxel
models derived from QCT scans. In VFEM each voxel is converted directly to an eight-node
hexahedral element or several voxels are converted to a hexahedral element with an averaged
elasticity tensor [83]. Similar to this strategy, in FCM we convert several voxels into one cell
which has, rather than an averaged, a piecewise constant elasticity tensor, i.e. the elasticity
tensor of each voxel remains unchanged. Since no restriction of number of voxels per cell is
defined, the mesh size is relatively flexible: we can have as many/few cells as numerically
necessary. Two extremes are that only one cell embeds the whole model or one cell is directly
converted from one voxel as in VFEM. Starting from a voxel model derived from either a B-rep
model or a CT scan, after fixing the number of voxels in each cell, based on [84] a structured
mesh can be automatically generated with trivial effort. A fast meshing algorithm has been
developed using 3D index-based reconstruction matrices. See [84] for algorithmic details.

4.4.3 Precomputation of stiffness matrices

For better explaining the idea of this CT-derived data specific precomputation scheme, let us
consider a simple example in which the embedding domain Ωe is meshed with only one cell
enclosing nx×ny ×nz voxels that are extracted directly from a CT scan. The precomputation
is carried out in the parametric space where the cell is subdivided into nx × ny × nz sub-cells,
each can be identified with a voxel from the CT-scan having a constant material property in
the Cartesian space. The cell stiffness matrix can be computed by carrying out composed
integration, which integrates over nx × ny × nz sub-cells. The stiffness matrix of each sub-
cell can be precomputed exactly with respect to the elasticity coefficients and unknown sizes
of the overlapping voxel. In this way Gaussian integration can be replaced by scalar-matrix
multiplication during run-time. The basic formulations for precomputation of general isotropic
linear elastic problems are given as follows.

4.4.3.1 Basic formulation

The stiffness matrix formulation

Kc =

nsc∑

sc=1

∫

t

∫

s

∫

r

(Bc)T (ξ(r)) α(x(ξ(r)))CBc(ξ(r)) detJc detJ̃sc
c drdsdt (4.31)

given in Section 4.3 is a general form for the composed integration, which allows for both
uniform and non-uniform sub-cell structures. In this fast integration scheme, precomputation
with respect to adaptively refined sub-cell structures is not easily feasible due to the fact
that the positions of adaptive refinements are model-dependent and are unknown in prior.
Hence only uniform sub-cell structures are implemented. Mapping from sub-cells to cell can
be avoided and integrations can be carried out directly in the cell parametric space. For
simplifying the precomputation, a uniform degree of shape functions is chosen for each cell
such that the strain-displacement matrix is the same for all cells (Bc = B). Equation (4.31)
then reads

42 4. The finite cell method

Kc =

1∫

−1

1∫

−1

1∫

−1

BT (ξ) α(x(ξ))CB(ξ) detJc dξdηdζ . (4.32)

The variable α is used to determine whether a point lies in the physical or the extended domain
and α(x(ξ))C denotes the cell material matrix as a function of local coordinates ξ = (ξ, η, ζ)T .
For CT-derived voxel models, the constant property of each voxel allows us to replace α(ξ)C
with a piecewise constant matrix function C̄c(ξ).

Note that one cell embeds nx × ny × nz voxels and let us denote the material matrix of each
voxel as Cc

ijk, where i = 1 , ..., nx, j = 1 , ..., ny and k = 1 , ..., nz denote the local voxel indices

with respect to ξ, η and ζ directions. Accordingly, C̄c(ξ) can be written as

C̄c(ξ) = Cc
ijk when

Tξ,i ≤ ξ ≤ Tξ,i+1

Tη,j ≤ η ≤ Tη,j+1

Tζ,k ≤ ζ ≤ Tζ,k+1

(4.33)

in which the voxel boundaries are defined as

Tξ,i = −1.0 + 2
i − 1

nx

, i = 1, 2, ..., nx

Tη,j = −1.0 + 2
j − 1

ny

, j = 1, 2, ..., ny . (4.34)

Tζ,k = −1.0 + 2
k − 1

nz

, k = 1, 2, ..., nz

The cell stiffness matrix Kc then reads

Kc =

1∫

−1

1∫

−1

1∫

−1

BT (ξ) C̄c(ξ)B(ξ) detJc dξdηdζ (4.35)

where detJc is constant in FCM analysis due to rectangular grids. Inserting (4.33) into (4.35)
and by implementing composite integration the stiffness matrix Kc can be decomposed into
summation of nx × ny × nz subintegrals

Kc =

nz∑

k=1

ny∑

j=1

nx∑

i=1

Kc
ijk (4.36)

where

4.4. A CT-derived data specific integration scheme 43

Kc
ijk =

Tζ,k+1∫

Tζ,k

Tη,j+1∫

Tη,j

Tξ,i+1∫

Tξ,i

BT (ξ)Cc
ijk B(ξ) detJc dξdηdζ . (4.37)

For the sake of simplicity, we confine our method to linear isotropic media. In one cell the
material matrix of each voxel Cc

ijk can be decomposed as a linear combination of λc
ijk and µc

ijk

which are the two Lamé constants corresponding to the voxel with index ijk. The relationships
between these two constants, elastic modulus and Poisson’s ratio read

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
. (4.38)

Decomposition of the voxel material matrix is given as

Cc
ijk = λc

ijk Cλ + µc
ijk Cµ (4.39)

where

Cλ =

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

and Cµ =

2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

(4.40)

are constant matrices.

Inserting Equation (4.39) into (4.37) gives

Kc =
nz∑

k=1

ny∑

j=1

nx∑

i=1

(λc
ijk Kλ

ijk + µc
ijk Kµ

ijk) (4.41)

where

Kλ
ijk =

Tζ,k+1∫

Tζ,k

Tη,j+1∫

Tη,j

Tξ,i+1∫

Tξ,i

BT (ξ)Cλ B(ξ) detJc dξdηdζ (4.42)

and

44 4. The finite cell method

Kµ
ijk =

Tζ,k+1∫

Tζ,k

Tη,j+1∫

Tη,j

Tξ,i+1∫

Tξ,i

BT (ξ)Cµ B(ξ) detJc dξdηdζ . (4.43)

denote two matrices corresponding to the voxel with index ijk. These two groups of matrices
are independent of the material constants of each voxel, but depend on other parameters, e.g.
the voxel dimensions, etc. In order to find out the correlation between the voxel parameters
and the two groups of matrices, investigations on each component in Equation (4.42) and
(4.43) have been carried out.

Matrices Cλ and Cµ are constant. Computation of the strain-displacement matrix B requires
derivatives of the shape functions N. Computation of derivatives involves the computation
of the inverse of Jacobian matrix Jc which depends on the cell sizes (hx, hy, hz). In terms of
(4.34), the integration intervals depend on the number of voxels in each cell nx, ny and nz.
Hence, for a given polynomial degree (denoted p) the values of Kλ

ijk and Kµ
ijk depend on the

number of voxels in each direction (nx, ny, nz) and cell sizes (hx, hy, hz). For a CT-derived
voxel model, a constant dimension (sx, sy, sz) is assigned to all voxels by default. Therefore,
the cell sizes can be computed by multiplying the voxel dimensions (sx, sy, sz) with the num-
ber of voxels in each direction (hx = sx nx, hy = sy ny, hz = sz nz). Kλ

ijk and Kµ
ijk then depend

only on six variables nx, ny, nz, sx, sy and sz. As a result, the precomputation of two groups
of matrices Kλ and Kµ can be performed once the six variables are determined.

Yet determination of the six parameters involves solving two additional sub-problems. First,
the values of nx, ny and nz should be user-definable. Restrictions on the three parameters
are required such that the matrices precomputed with respect to the three quantities can
be applicable to cells in the entire fictitious domain. Second, since the voxel dimensions sx,
sy and sz are CT machine dependent, precomputations with respect to unknown dimensions
is not feasible. Therefore a special technique is required to decouple voxel dimensions from
precomputed matrices. Solutions to these two problems are presented in Section 4.4.3.2 and
4.4.3.3 separately.

4.4.3.2 Determination of number of voxels per cell

In the current research nx, ny and nz are set to the same integer nv. With nv voxels in each
direction, one cell contains in total nv × nv × nv voxels, denoted by n3v. Each voxel possesses
two precomputed matrices Kλ

ijk and Kµ
ijk of size depending on the polynomial degree of shape

functions only. The precomputed matrices can be applied to all cells, when the number of
voxels in each direction in the whole fictitious domain can be divided exactly by nv. Otherwise
the original fictitious domain Ωe has to be extended to a larger fictitious domain denoted by
Ωe2 in which the number of voxels in each direction can be divided exactly by nv. The voxels
inside the newly extended domain are set to voids to avoid altering the original physical
problem.

4.4. A CT-derived data specific integration scheme 45

4.4.3.3 Precomputation of Kλ and Kµ with respect to sx, sy and sz

Starting from Equation (4.42), the strain-displacement matrix B is given as

B =
[

B1 B2 . . . Bi . . . Bnp

]
(4.44)

where np is the total number of shape functions and the ith strain-displacement submatrix Bi

is given as

Bi =

∂Ni(ξ,η,ζ)
∂x

0 0

0 ∂Ni(ξ,η,ζ)
∂y

0

0 0 ∂Ni(ξ,η,ζ)
∂z

∂Ni(ξ,η,ζ)
∂y

∂Ni(ξ,η,ζ)
∂x

0

0 ∂Ni(ξ,η,ζ)
∂z

∂Ni(ξ,η,ζ)
∂y

∂Ni(ξ,η,ζ)
∂z

0 ∂Ni(ξ,η,ζ)
∂x

(4.45)

in which Ni is the ith shape function. Since the shape functions are defined in the local
coordinate system, computation of derivatives with respect to the global coordinate system
(x, y, z) involves the chain rule:

∂Ni(ξ,η,ζ)
∂x

∂Ni(ξ,η,ζ)
∂y

∂Ni(ξ,η,ζ)
∂z

 =

∂ξ
∂x

∂η
∂x

∂ζ
∂x

∂ξ
∂y

∂η
∂y

∂ζ
∂y

∂ξ
∂z

∂η
∂z

∂ζ
∂z

∂Ni(ξ,η,ζ)
∂ξ

∂Ni(ξ,η,ζ)
∂η

∂Ni(ξ,η,ζ)
∂ζ

 = (Jc)−1

∂Ni(ξ,η,ζ)
∂ξ

∂Ni(ξ,η,ζ)
∂η

∂Ni(ξ,η,ζ)
∂ζ

 (4.46)

in which the cell Jacobian matrix Jc is diagonal and depends on the cell sizes.

Jc =

∂x(ξ,η,ζ)
∂ξ

∂y(ξ,η,ζ)
∂ξ

∂z(ξ,η,ζ)
∂ξ

∂x(ξ,η,ζ)
∂η

∂y(ξ,η,ζ)
∂η

∂z(ξ,η,ζ)
∂η

∂x(ξ,η,ζ)
∂ζ

∂y(ξ,η,ζ)
∂ζ

∂z(ξ,η,ζ)
∂ζ

 =
1

2

hx 0 0
0 hy 0
0 0 hz

=
1

2

sx nv 0 0

0 sy nv 0
0 0 sz nv

 . (4.47)

Inverse of the cell Jacobian matrix is given as

(Jc)−1 = 2

1

sx nv
0 0

0 1
sy nv

0

0 0 1
sz nv

 . (4.48)

Plugging in (4.46) and (4.48) into (4.45) yields

46 4. The finite cell method

Bi = 2

∂Ni(ξ,η,ζ)
∂ξ

1
sx nv

0 0

0 ∂Ni(ξ,η,ζ)
∂η

1
sy nv

0

0 0 ∂Ni(ξ,η,ζ)
∂ζ

1
sz nv

∂Ni(ξ,η,ζ)
∂η

1
sy nv

∂Ni(ξ,η,ζ)
∂ξ

1
sx nv

0

0 ∂Ni(ξ,η,ζ)
∂ζ

1
sz nv

∂Ni(ξ,η,ζ)
∂η

1
sy nv

∂Ni(ξ,η,ζ)
∂ζ

1
sz nv

0 ∂Ni(ξ,η,ζ)
∂ξ

1
sx nv

. (4.49)

As described in Section 2.2.1, each CT image consists of a set of square pixels, namely, all
voxel data have equivalent sizes in x, y directions:

sx = sy . (4.50)

This property enable us to replace sy with sx such that the number of unknown parameters is
reduced from three to two − sx and sz. sx and sz of various voxel models are different from
each other − they depend on the CT scanning setting which varies from machine to machine.
To overcome the difficulties arising in the precomputation with respect to the two unknown
parameters, Kλ and Kµ are not directly precomputed but further decomposed.

Inserting (4.50), (4.44) and (4.47) into (4.42) and (4.43), after steps of simplifications Kλ
ijk

and Kµ
ijk can be rewritten as

Kλ
ijk = sz Kλ0

ijk + sx Kλ1

ijk +
s2

x

sz

Kλ2

ijk (4.51)

Kµ
ijk = sz Kµ0

ijk + sx Kµ1

ijk +
s2

x

sz
Kµ2

ijk (4.52)

Introducing a new parameter r = sx/sz, (4.51) and (4.52) then read

Kλ
ijk = sz (Kλ0

ijk + r Kλ1

ijk + r2 Kλ2

ijk) (4.53)

Kµ
ijk = sz (Kµ0

ijk + r Kµ1

ijk + r2 Kµ2

ijk) (4.54)

where Kλ0

ijk, Kλ1

ijk, Kλ2

ijk, Kµ0

ijk, Kµ1

ijk and Kµ2

ijk denote six groups of constant matrices depending
only on p and nv. Each matrix is symmetric, densely populated and has the same size as Kc.
With respect to different p and nv, these matrices can be precomputed and stored.

Several existing methods can be applied to precompute the matrices accurately, e.g., Gaus-
sian quadratures, adaptive trapezoid integration, or adaptive Simpson integration. In our
precomputation, hierarchic shape functions that span the trunk space are employed to mini-
mize the matrix size. Some information of the precomputed matrices Kλ0 (nv = 10) is given
in Table 4.1.

4.4. A CT-derived data specific integration scheme 47

Polynomial degree 1 2 3 4 5 6

Number of rows/columns 24 60 96 150 222 315

Data size (Mbyte) 2.29 13.96 35.52 86.40 188.85 379.71

Table 4.1: Precomputed matrix size and data size for K
λ0 with nv = 10

It is obvious that a large reduction of necessary memory-space could be obtained by using
symmetry of the coordinate axes. It follows immediately, that all matrices Kijk can be obtained
by row and column permutation of i, j and k. Therefore only single matrices would have to
be stored. This would reduce the necessary memory space by 3! = 6. Further reduction
would be possible (by another factor of 8), if one takes into account that Knv−i,j,k can be
immediately obtained from Kijk, and the same for other indices. Summarizing the overall
memory space could be reduced by a factor of approximately 50. This possible reduction is
not implemented for two reasons. First, it would require a lot additional effort to find out
the permutation matrices with which the matrices in (4.53) and (4.54) can be reconstructed.
Second, in Section 4.4.6 the computation of stiffness matrices is accelerated by using the
BLAS routine. For this implementation, the two groups of matrices Kλ

ijk and Kµ
ijk in (4.53)

and (4.54) are required to be completely stored in the memory. Furthermore, in Section 5.3.5.2
these two groups of matrices are also required to be stored in a complete form to ensure an
efficient numerical simulation during the entire computational steering process. As one of the
major goals of the research was the speed of computation, reconstructing new matrices from a
condensed form involves additional memory references and data movement and was thus not
accepted for current applications. Moreover, as these matrices occupy only a small fraction of
the computer memory-space (less than 5% for nv = 10 and p = 6 on a modern computer with
16Gb physical memory), its negative impact can be neglected in this research.

4.4.4 Stiffness matrices computing procedure with precomputed
matrices

With precomputed matrices at hand, the procedure of stiffness matrices computation is illus-
trated in Figure 4.9. The polynomial degree p and the number of voxels per cell nv are user
defined input parameters. After reading in the CT data the program generates rectangular
grids and computes r and sz. Subsequently it reads in six groups of precomputed matrices and
computes Kλ and Kµ. In the next step, the cell stiffness matrices are computed by performing
scalar-matrix multiplications.

4.4.5 Computational efficiency estimation

To estimate the speedup factor by using the precomputed matrices, the number of floating
point operations in computing the stiffness matrix of one cell using the FCM without pre-
computation is firstly estimated. A cell is assumed to contain nv × nv × nv sub-cells, in each
sub-cell (p + 1)3 Gaussian integration points are adopted to integrate exactly. Thanks to the
symmetry, only entries in the upper or lower triangular part of stiffness matrix have to be

48 4. The finite cell method

Figure 4.9: Stiffness matrices computing procedure

computed. Denoting the number of rows of matrix Kc as nr, the total number of entries in
the lower triangular part of the matrix nt, we have nt = 1

2
nr (nr + 1). The estimated number

of floating point operations is

T1 = 6 nr (6 + nr) (p + 1)3 n3v (4.55)

and for FCM with precomputed matrices the number of operations is

T2 = 2 nt n3v . (4.56)

The speedup factor is T1/T2 ≈ 6 (p + 1)3, which for p = 6 equals 2,058.

4.4.6 Acceleration of scalar-matrix computation using the BLAS

routine

To effectively utilize a high-performance computer, it is significant to avoid unnecessary mem-
ory references. The movement of data between memory and registers can be as costly as
floating point operations [85], and accordingly the efficiency of many linear algebra computa-
tions can be achieved not by developing new computing algorithms, but rather by compiling
algorithms to minimize data movement and maximize the reuse of data in cache.

4.4. A CT-derived data specific integration scheme 49

4.4.6.1 BLAS

One possible approach of improving the efficiency is to use the Basic Linear Algebra Subpro-
grams (BLAS), which are routines that provide standard building blocks for performing basic
vector and matrix operations [85]. Highly optimized implementations of the BLAS interface
have been developed by hardware vendors such as Intel and AMD, as well as by other au-
thors, e.g. Goto BLAS and ATLAS [86]. The BLAS package includes FORTRAN routines of
three levels, the level 1 BLAS performs vector-vector operations; the level 2 BLAS performs
matrix-vector operations; the level 3 BLAS performs matrix-matrix operations. The efficiency
of the BLAS routines are indicated by the ratio of floating-point operations to data move-
ment, which if high enough, shows an efficient reuse of data in cache. The level 3 BLAS that
targets at matrix-matrix operations can achieve very good performance on high-performing
computers with memory hierarchy. The reason is that the matrices are partitioned into blocks
on which the matrix-matrix operations are performed. This way the block data which is held
in cache can be fully reused and in addition the operations on blocks enable the parallelization
on multi-core computers. With these considerations, on top of the precomputation described
in Section 4.4.3 the stiffness matrix computation can be speeded up the second time if the
scalar-matrix multiplications can be transformed to matrix-matrix multiplications.

4.4.6.2 Matrix transformation

To facilitate the description, the total number of cells is denoted as nc. For convenience
matrices Kλ

ijk and Kµ
ijk are replaced with Kλ

r and Kµ
r (r = 1, ..., n3

v) by reorganizing the
indices from 3D to 1D. Accordingly, Equation (4.41) becomes

Kc =

n3v∑

r=1

λc
r Kλ

r +

n3v∑

r=1

µc
r Kµ

r (4.57)

In the next step Kλ
r , Kµ

r and Kc are vectorized from matrices to single column vectors in a
column-majored order. For reducing vector size, only entries in the lower triangular part of
the matrix are considered. The new vectors are denoted as K̄λ

r , K̄µ
r and K̄c, respectively. The

size of vector K̄λ
r and K̄µ

r is denoted as nt, which equals to 1
2
nr (nr +1) where nr is the number

of rows of Kc.

50 4. The finite cell method

Thereafter, Equation (4.57) is rewritten as

K̄c =

K̄c
1

K̄c
2

.

.

.
K̄c

nt

= λc

1

K̄λ
11

K̄λ
12

.

.

.
K̄λ

1nt

+ λc

2

K̄λ
21

K̄λ
22

.

.

.
K̄λ

2nt

+ ... + λc

n3v

K̄λ
n3v1

K̄λ
n3v2

.

.

.
K̄λ

n3vnt

+ µc
1

K̄µ
11

K̄µ
12

.

.

.
K̄µ

1nt

+ µc

2

K̄µ
21

K̄µ
22

.

.

.
K̄µ

2nt

+ ... + µc

n3v

K̄µ
n3v1

K̄µ
n3v2

.

.

.
K̄µ

n3vnt

.

(4.58)

Transforming Equation (4.58) into matrix-vector multiplication form gives

K̄c =

K̄λ
11 K̄λ

21 . . . K̄λ
n3v1

K̄λ
12 K̄λ

22 . . . K̄λ
n3v2

.

.

.
K̄λ

1nt
K̄λ

2nt
. . . K̄λ

n3vnt

λc
1

λc
2

.

.

.
λc

n3v

+

K̄µ
11 K̄µ

21 . . . K̄µ
n3v1

K̄µ
12 K̄µ

22 . . . K̄µ
n3v2

.

.

.
K̄µ

1nt
K̄µ

2nt
. . . K̄µ

n3vnt

µc
1

µc
2

.

.

.
µc

n3v

. (4.59)

By assembling K̄c (c = 1 , ..., nc) of each cell in terms of cell numbers into a matrix denoted as
KG, the matrix-vector multiplications are transformed into two matrix-matrix multiplications
which can be efficiently computed with the help of the BLAS subroutine “dgemm”, see
Equation (4.60).

4.4. A CT-derived data specific integration scheme 51

KG =
[

K̄1 K̄2 . . . K̄nc
]

=

K̄1
1 K̄2

1 . . . K̄nc

1

K̄1
2 K̄2

2 . . . K̄nc

2

.

.

.
K̄1

nt
K̄2

nt
. . . K̄nc

nt

=

K̄λ
11 K̄λ

21 . . . K̄λ
n3v1

K̄λ
12 K̄λ

22 . . . K̄λ
n3v2

.

.

.
K̄λ

1nt
K̄λ

2nt
. . . K̄λ

n3vnt

λ1
1 λ2

1 . . . λnc

1

λ1
2 λ2

2 . . . λnc

2

.

.

.
λ1

n3v
λ2

n3v
. . . λnc

n3v

+

K̄µ
11 K̄µ

21 . . . K̄µ
n3v1

K̄µ
12 K̄µ

22 . . . K̄µ
n3v2

.

.

.
K̄µ

1nt
K̄µ

2nt
. . . K̄µ

n3vnt

µ1
1 µ2

1 . . . µnc

1

µ1
2 µ2

2 . . . µnc

2

.

.

.
µ1

n3v
µ2

n3v
. . . µnc

n3v

(4.60)

With the above approach, the stiffness matrices of all cells are computed altogether at the
beginning right after Kλ

ijk and Kµ
ijk are formed in terms of Equation (4.51) and (4.52). After-

wards, the stiffness matrix of each cell can be retrieved from KG.

The speedup factor of using the BLAS routine varies from problem to problem, it does not
only depend on the matrix size but also on the number of cores, cache sizes and so on. To
provide an approximate quantification of this factor, a series of test computations have been
carried out on an Intel Xeon W5590, 3.33GHz work station, 8 cores. The setting of 10×10×10
voxels per cell (n3v = 1000) is used in order to minimize the total number of cells. With this
setting, the speedup factor using the BLAS routine of the Intel-MKL library for p = 1, ..., 6
and nc = 1, ..., 2000 was evaluated. Only one core is activated during the entire evaluation.
Graphs plotted for all polynomial degrees have a similar distribution which starts from ap-
proximately 3 and increases up to 6. For the reason of clarity, only the graphs corresponding
to p = 4 and p = 5 are plotted in Figure 4.10.

From reading the graphs, one can see that the speedup factor is, rather than a fixed value, a
range of from 3 to 6. Multiplying this range with 6 (p + 1)3 − the speedup factor obtained
in Section 4.4.5, the final speedup factor varies from 18 (p + 1)3 to 36 (p + 1)3. For p = 6
the maximum speedup tends to 12,348. It is important to mention that the code for stiffness
matrix computation can be easily and efficiently parallelized on a multi-core machine using
OpenMP. The efficiency of parallelization is demonstrated in the third example in Section 4.5.

52 4. The finite cell method

Number of cells nc

S
p
ee

d
u
p

fa
ct

or

0
1

2

3

4

5

6

7

8

12

200 400 600 800 1000 1200 1400 1600 1800 2000

matrix 11325 × 1000 multiplied with matrix 1000 × nc (p = 4)

matrix 24753 × 1000 multiplied with matrix 1000 × nc (p = 5)

Figure 4.10: Speedup factor graphs evaluated for p = 4 and p = 5

4.5. Numerical examples 53

4.5 Numerical examples

In this section, four numerical examples are given for verifying the FCM with fast integration
scheme and, moreover, to demonstrate its numerical efficiency. The computations are carried
out using a p-FEM code named “AdhoC” [87] which has been modified to adapt to the fast
integration scheme. The number of voxels per cell is set to either 5 × 5 × 5 or 10 × 10 × 10
for all problems. The direct solver “Pardiso” [88, 89] is adopted as the solver for FCM due to
its numerical stability and good parallelizability. In the post-processing 15× 15× 15 resulting
points are set within one cell. Results on these points are visualized with the open-source
visualization tool “Paraview” [90].

4.5.1 Inhomogeneous unit cube

In this example the accuracy of the FCM computation is verified by a unit cube with inhomo-
geneous material property. The cube model and its problem setup are given in Figure 4.11.
The size of the cube is 1 × 1 × 1mm. The material model is assumed to be linear elastic,
isotropic and inhomogeneous with a constant Poisson’s ratio ν = 0.3 and a varying Young’s
modulus described by

E = (x + 10)2 (y + 10) (z + 1)N/mm2 (4.61)

which is visualized in Figure 4.11(b). Symmetry boundary conditions are applied at x =
−0.5, y = −0.5, z = 0 mm, while a traction load with the value of 1.0N/mm2 is applied in the
normal direction on the face of y = 0.5, see Figure 4.11(a).

t̄n

1

1

1

A

B

X
Y

Z

(a) The dimensions of the cube model and the
problem setup

(b) Plot of Young’s modulus variation within
the cube

Figure 4.11: A unit cube model

A numerical analysis of this model was performed using the standard p-version finite element
method in [73], in which a mesh of 2 × 2 × 2 is used while in each element the material ma-
trix is approximated by high-order polynomials. A uniform p-extension was conducted with

54 4. The finite cell method

p = 1, ..., 8. p + 1 Gaussian integration points are used in each element to attain highly accu-
rate results which are taken as the reference solution for the FCM computation.

In the FCM computation, a voxel model is obtained by voxelizing the solid model into 20 ×
20× 20 voxels, each has a constant but different value of Young’s modulus which is computed
by evaluating Equation (4.61) at the center of each voxel, see Figure 4.12. With 10× 10× 10
voxels per cell, the voxel model is embedded into 2 × 2 × 2 cells shown in the same figure.

Figure 4.12: Voxel model 20 × 20 × 20 and its discretization

p-FEM
FCM

st
ra

in
en

er
gy

degrees of freedom

3.41e-4

3.415e-4

3.42e-4

3.425e-4

3.43e-4

3.435e-4

200 400 600 800 1000 1200

Figure 4.13: Strain energy convergence graph

4.5. Numerical examples 55

The FCM analysis is conducted by a uniform p-extension with p = 1, ..., 6 using the fast
integration scheme. The strain energy of the p-FEM and the FCM solution are plotted in
Figure 4.13. The relative difference of the two strain energy at p = 6 is about 0.014%.

The displacement distribution in z-direction and the strain distribution in y-direction are
plotted in Figure 4.14.

Uz

2.120e-6
0.000

-1.000

-2.000

-2.541

εy

8.930e-4

8.000e-4

7.000e-4

6.000e-4

5.000e-4

4.327e-4

Figure 4.14: Displacement distribution in z-direction (Uz) and strain distribution in y-direction (εy)
for p = 4 on the mesh of 2 × 2 × 2

In addition to strain energy, the displacement results in z-direction evaluated at point A
(0.0, 0.5, 0.5) and strain results in y-direction evaluated at point B (0.5,−0.5, 0.0) are compared
by using the two methods. The two evaluation points are indicated in Figure 4.11(a). The
displacement and strain plots are shown in Figure 4.15 and 4.16.

The FCM results coincide very well with the p-FEM results. For p = 6, the relative difference
in displacement at point A is approximately 0.14%; while the relative difference in strain at
point B is about 0.16%.

It is noteworthy that the voxel model for FCM computation is not the “exact” model which
is used in the p-FEM computation. Geometrically, the voxel model exactly represents the
original model; however, the deviation in material distribution caused by the voxelization
process generates a modeling error. One can read from the results that the impact of material
modeling error on the accuracy of the FCM computation is limited.

4.5.2 Thin-walled plate with a circular hole

The thin-walled plate with a circular hole example is a widely accepted benchmark in com-
putational mechanics. In Figure 4.17 only one eighth of a plate with a hole in the center
is presented. The size of the plate is 10 × 10 × 1mm and the radius of the hole is 1mm.
The plate material is assumed to be linear homogeneous isotropic with Young’s modulus
E = 206900N/mm2 and Poisson’s ratio ν = 0.29. Symmetry boundary conditions are applied
at x = y = z = 0 mm and a traction load of 100 N/mm2 is imposed as indicated in Fig-
ure 4.17. As the reference solution obtained by an “overkill” finite element approximation the

56 4. The finite cell method

p-FEM

FCM

d
is

p
la

ce
m

en
t

in
z-

d
ir

ec
ti

on

degrees of freedom

−3.4e-5

−3.6e-5

−3.8e-5

−4.0e-5

−4.2e-5

−4.4e-5

−4.6e-5

−4.8e-5

−5.0e-5

−5.2e-5

−5.4e-5
200 400 600 800 1000 1200

Figure 4.15: Displacement in z-direction computed at point A by p-FEM and FCM

p-FEM

FCM

st
ra

in
in

y
-d

ir
ec

ti
on

degrees of freedom

7.85e-4

7.9e-4

7.95e-4

8.0e-4

8.05e-4

8.1e-4

200 400 600 800 1000 1200

Figure 4.16: Strain in y-direction computed at point B by p-FEM and FCM

4.5. Numerical examples 57

t̄n

1

1
10

10

X
Y

Z

A

B

Figure 4.17: Thin-walled plate with circular hole

strain energy of the plate amounts to 2.475213962 [69].

The geometry of this implicitly represented model can be exactly described with mathematical
functions, especially the circular boundary. Using adaptive sub-cell structures, it is possible
to precisely locate a dense group of Gaussian integration points near the physical boundary
to capture the exact geometry. However, performing fast integration by accounting whether
a Gaussian point locates inside or outside the physical domain is no longer feasible, since
no Gaussian points are used. The geometric representation is transformed from implicit to
explicit and thereafter one voxel is regarded as a homogeneous isotropic solid even when it
intersects with the real physical boundary. In this case, modeling errors are generated and a
quantitative error analysis is necessary.

A C++ program has been written to voxelize the model with resolutions as user-defined input
parameters. The zero extension is defined by judging whether the center of a voxel lies inside
or outside the geometric model. Figure 4.18 depicts one voxel model with a resolution of
100 × 100 × 5. For vertical or horizontal surfaces the voxelized model can fully represent the
original model without introducing any geometric deviation. However, for oblique or curved
surface the voxelization process induces modeling errors caused by deviation of the jagged
boundary from the oblique or curved surface.

A schematic representation of a voxel model generated by voxelization of a quarter circle
is shown in Figure 4.19(a) while its geometric deviations are highlighted in Figure 4.19(b).
In Figure 4.19(b) the regions marked in dark grey stand for the geometric deviations over-
estimated by voxel representation, while the regions in light grey represent the geometric
deviations underestimated. These two types of differences account for the modeling errors
of the voxel model. To quantify the errors, we evaluate in this example the relative error in

58 4. The finite cell method

(a) Isometric view (b) Top view

Figure 4.18: Voxel model with a resolutions of 100 × 100 × 5

R R

R̃i

(a) (b)

Figure 4.19: Schematic representation of a voxel model and its geometric deviations at a curved
boundary

radius, which is computed using Equation (4.62). R̃i is evaluated at ns = 500 ∗ nedges (nedges

denotes the number of edges involved) sampling points equally distributed on the edges of the
jagged boundary which approximates the circular arc, see Figure 4.19(b). L2 norm is used in
the computation in order to prevent cancellation between the positive and negative parts.

(ēR)E(Ω) =

∣∣∣∣∣
R − R̃i

R

∣∣∣∣∣
L2

100[%] (4.62)

For convergence studies the voxel model is refined in the xy-plane, in addition, three voxel
models with resolutions of 200 × 200 × 10, 300 × 300 × 10 and 400 × 400 × 10 are generated.

4.5. Numerical examples 59

Relative errors of the four models have been estimated by applying a reference solution and
are listed in Table 4.2.

Number Resolution Error[%]

1 100 × 100 × 5 2.783691

2 200 × 200 × 10 1.433703

3 300 × 300 × 10 0.900102

4 400 × 400 × 10 0.679198

Table 4.2: Resolutions and corresponding modeling errors

From voxel models cell grids are generated. Three sample meshes are shown in Figure 4.20.

(a) 20 × 20 × 1 (b) 30 × 30 × 1 (c) 40 × 40 × 1

Figure 4.20: Hexahedral meshes of voxel models with different cell resolutions

For the voxel models 100 × 100 × 5, each cell represents 5 × 5 × 5 voxels; while 10 × 10 × 10
voxels per cell is applied to the voxel models 200×200×10, 300×300×10 and 400×400×10.

As the model is refined the voxel size decreases as well as the hexahedral grid size, which
results in more cells lying completely outside the circular hole. These cells are discarded to
save computational cost, see Figure 4.20(a), 4.20(b) and 4.20(c). The Dirichlet and Neumann
Boundary conditions are applied directly onto the cell boundaries. With the fast integration
scheme a series of computations have been carried out. In this example only p-refinement is
considered, the polynomial degree for all cases increases uniformly from one to six.

The strain energy against the degrees of freedom is plotted in Figure 4.21.

In terms of Equation (4.63) [3]

(er)E(Ω) =

√
|B (uEX ,uEX) − Be (uFC ,uFC) |

B (uEX ,uEX)
100[%] (4.63)

the relative error in energy norm is plotted versus the degrees of freedom in Figure 4.22.

60 4. The finite cell method
st

ra
in

en
er

gy

degrees of freedom

voxel model: 100 × 100 × 5, p = 1, ..., 6

voxel model: 200 × 200 × 10, p = 1, ..., 6

voxel model: 300 × 300 × 10, p = 1, ..., 6

voxel model: 400 × 400 × 10, p = 1, ..., 6

reference solution

50000 100000 150000 200000
2.471

2.472

2.473

2.474

2.475

2.476

2.477

Figure 4.21: Strain energy convergence graph

As each voxel model represents a (slightly) different geometry, the strain energy of the four
models converges to different values as the polynomial degree increases (see Figure 4.21). The
converged values of the two coarser voxel models are higher than the reference solution. For
models with resolution 300× 300 × 10 and 400× 400× 10 the relative errors in strain energy
reduce to below 1% as the polynomial degree increases. Nevertheless the exponential rate of
convergence as in [3], where the exact geometry has been considered by means of an implicit
representation, can not be observed. Since the geometry of the circular arc is different from
that with the voxelized arc, accordingly the ”exact solution” on a voxelized model is different
from the one in [3]. As the voxel model is refined, the modeling error reduces and subsequently
the FCM solution approximates more closely the ”exact solution”. It is noteworthy that the
error in energy norm conforms to the modeling error tabulated in Table 4.2.

Figure 4.23 depicts the von Mises stress distribution computed on the voxel model 300×300×10
with a mesh of 30×30×1 and p = 4. The stresses were evaluated on 15×15×15 postprocess-
ing points per cell. The visualization tool “Paraview” visualized the result directly without
specific postprocessing approach employed.

In this example, voxels that approximate the circular hole form a jagged boundary which yields
stress singularities along the circular arc. To further investigate the influence of singularity,
von Mises stresses along the cutline A-B were surveyed. The reference solution obtained by
an “overkilled” FE analysis is plotted in Figure 4.24. The relative errors of the FCM solutions
have been computed and are plotted in logarithmic scale in Figure 4.25.

4.5. Numerical examples 61

re
la

ti
ve

er
ro

r
in

en
er

gy
n
or

m
[%

]

degrees of freedom

voxel model: 100 × 100 × 5, p = 1, ..., 6

voxel model: 200 × 200 × 10, p = 1, ..., 6

voxel model: 300 × 300 × 10, p = 1, ..., 6

voxel model: 400 × 400 × 10, p = 1, ..., 6

10000 100000
0.1

1

10

Figure 4.22: Relative errors of strain energy with respect to different voxel models and discretizations

von Mises
341.2948

300

200

100

7.4541

Figure 4.23: Von Mises stress distribution of the 300 × 300 × 10 voxel model, with p = 4 and on a
mesh 30 × 30 × 1

On the cutline A-B, slight stress oscillations occur adjacent to point A (x = y =
√

2
2

). Close
to this point, the voxel model 100× 100× 5 with p = 3 produces an error of around 10%. For
finer voxel models with high-order shape functions employed the relative error can be reduced
down to below 3%.

62 4. The finite cell method

135

130

125

120

115

110

105

100

95
1614121086420

vo
n

M
is

es
st

re
ss

reference solution

r =
√

(x − b)2 + y2, z = 0

Figure 4.24: Reference solution of von Mises stress along the cutline A-B

re
la

ti
ve

er
ro

r
in

vo
n

M
is

es
st

re
ss

[%
]

r
141286420 10

10

1

0.1

0.01

0.001

0.0001

1e-05

1e-06

voxel model: 100 × 100 × 5, p = 3

voxel model: 200 × 200 × 10, p = 4

voxel model: 300 × 300 × 10, p = 4

voxel model: 400 × 400 × 10, p = 5

Figure 4.25: Relative errors of von Mises stress along the cutline A-B

4.5. Numerical examples 63

4.5.3 Pressured homogeneous solid sphere

In this example we investigate the performance of the integration scheme on a spherically
symmetric model.

P

2R

(a) Spherical solid under radial traction

X
Y

Z

(b) One-eighth spherical model

Figure 4.26: Spherical solid model

A spherical solid model of radius R = 5.0mm with uniform traction P = 1.0N/mm2 in the
radial direction on its outer surface is plotted in Figure 4.26(a). In the computation only
one-eighth of the sphere is modeled due to spherical symmetry, see Figure 4.26(b). Assume
that the sphere is a homogeneous isotropic linear elastic solid with Poisson’s ratio ν = 0.3 and
Young’s modulus E = 1.0. Due to hydrostatic loading the normal components of stresses are
constant and equal to P , while the shear components vanish.

Figure 4.27: Voxel model of the one-eighth sphere with a resolution of 100 × 100 × 100

Assuming the sphere’s center fixed, displacement in the radial direction varies linearly from
zero to uR = 1

E
(1 − 2ν) P R = 2.0. Three voxel models with resolution 100 × 100 × 100,

130 × 130 × 130 and 160 × 160 × 160 are created for the FCM computation, the coarsest one
is illustrated in Figure 4.27. Voxelization of the spherical model generates modeling errors.

64 4. The finite cell method

As an approximation, these errors are quantified by the relative error in radius evaluated in
2D on the voxels at x = 0mm only. The errors are computed in terms of Equation (4.62), in
which R̃i is evaluated at ns = 500 ∗ nedges sampling points equally distributed on the edges of
the jagged boundary that approximates the circular arc. The errors are listed in Table 4.3.

Number Resolution Error[%]

1 100 × 100 × 100 4.232662

2 130 × 130 × 130 3.313271

3 160 × 160 × 160 2.627209

Table 4.3: Resolutions and corresponding geometric deviations

From voxel models the finite cell grids are generated, a mesh of 10× 10× 10 cells embedding
the voxel model 100× 100× 100 is shown in Figure 4.28. It is necessary to mention here that
since the exact solution is linear, it can be well approximated even when only one cell with
p = 1 is used [3]. In this example the large number of cells results from implementation details
of the fast integration scheme.

Figure 4.28: Mesh with 630 cells for voxel model 100 × 100 × 100

In the FCM analysis symmetry boundary conditions are applied directly on the cell surfaces,
while the Neumann boundary conditions are imposed implicitly on a surface mesh (B-rep)
which is non-conforming to the Cartesian grids, see Figure 4.29. The surface of the one-eighth
sphere is meshed with 9801 triangles which are sufficient to accurately approximate the exact
geometry. The analysis is conducted by a uniform p-extension with p = 1, ..., 6 on three voxel
models. A contour plot of the radial displacement distribution for voxel model 130×130×130
and p = 4 is shown in Figure 4.30. The exact solution at R = 5mm is 2.0mm, which confirms
a good agreement between the analytical solution and the FCM result.

The accuracy of the integration scheme is further examined by investigating the relative error
in von Mises stress, which is defined by

evM = |σvM

P
|100[%] (4.64)

4.5. Numerical examples 65

Figure 4.29: A B-rep model of the one-eighth sphere

Figure 4.30: Contour plot of the radial displacement (model 130 × 130 × 130, p = 4)

Figure 4.31 plots the relative error evM evaluated on 10000 points equally distributed along
the cutline A-B (x = y = z) in the interval from 0 to 5/

√
3. Similar to the previous example,

the modeling errors at the sphere boundary affect the approximation accuracy. Nevertheless,
a high accuracy can be obtained when a relatively fine voxel discretization and an appropriate
polynomial degree is chosen. In this example relative errors of the three models are all con-
trolled below 3%. Note again, that this error in energy norm is of the same size as the error of
geometry as investigated in Table 4.3. In the following example it will be demonstrated that
the loss of a small amount of accuracy in stress pays off in gaining incomparable reduction in
computational time in CT-based biomechanical simulations.

66 4. The finite cell method

re
la

ti
ve

er
ro

r
in

vo
n

M
is

es
st

re
ss

[%
]

r
54.543.532.521.50.50

10

1

1

0.1

0.01

0.001

voxel model: 100 × 100 × 5, 630 cells, p = 3

voxel model: 200 × 200 × 5, 1334 cells, p = 4

voxel model: 300 × 300 × 10, 2419 cells, p = 5

Figure 4.31: Relative errors of von Mises stress along the cutline A-B

4.5.4 Human trabecular bone biopsy

The third example is the numerical analysis of a trabecular bone specimen. A biopsy model is
obtained through micro-CT scanning and has been converted to a 3D STL model [91], which
can be downloaded from [92], see Figure 4.32.

Figure 4.32: A complete human trabecular biopsy model

4.5. Numerical examples 67

Figure 4.33: A substructure of the human trabecular biopsy model

The goal of this example is to demonstrate the accuracy and efficiency of the fast integration
scheme on complex geometric models by comparing it with a FEA result as the reference
solution. The convergence study on the model in Figure 4.32 is inhibited by the complexity in
geometry and limitation in computer memory. To attain a computable model, a substructure
in B-rep (STL format) highlighted in Figure 4.32 has been segmented out and is plotted in 4.33.
In this research the new model is regarded to have the exact geometric description, based on
which the FEM and the FCM analyses are performed. The material is assumed to be linear
elastic with isotropic and homogenous behavior with Young’s modulus E = 1000.00N/mm2

and Poisson’s ratio ν = 0.3. A prescribed displacement Up = [0, 0, −0.1]T mm is applied
on the top surface of the model while its bottom is completely fixed in three directions. The
reaction forces on the topmost surface computed by the two methods will be utilized for com-
parison.

A series of FEA computations has been conducted to generate a reference solution. The mesh
generator NETGEN [93] is adopted as the preprocessor to discretize the STL model and to
generate 10-node tetrahedral meshes. Different levels of discretization are created. Figure 4.34
displays the coarsest and the finest mesh with 23,450 and 3,437,623 elements, respectively. The
mesh generation is a computationally expensive process for finer discretizations. The meshing
time is listed in Table 4.4.

(a) Coarsest tetrahedral mesh (b) Finest tetrahedral mesh

Figure 4.34: Model discretizations using NETGEN

68 4. The finite cell method

The commercial FEA software package ABAQUS [94] serves as both solver and postproces-
sor. With boundary conditions applied the FEA results are computed on each discretization.
The computational time measured on an AMD Opteron 250, 2.4Hz machine (with one core
activated) is listed in Table 4.4, in which the summation of mesh generation and computation
time is calculated and tabulated in the last column.

Number of Computational time (s)

Elements Meshing Computation Total

1 23450 405 23 428

2 37050 388 43 431

3 81206 482 1501 633

4 300611 2300 1006 3306

5 480679 7516 2160 9676

6 860028 2358 6533 8891

7 1577863 8159 14410 22569

8 3437623 12083 43431 55514

Table 4.4: FEM computational time of the human biopsy model using NETGEN and ABAQUS
measured on an AMD Opteron250, 2.4Hz machine with one core activated

Figure 4.35 shows the convergence of the reaction force Fz caused by the prescribed displace-
ment on the topmost surface of the model under h-refinement of the mesh.The converged value
of −2470 is taken as the reference solution for the FCM comparison.

The FCM allows a fast import of a voxel model derived from a CT scan which can be directly
implemented into an analysis procedure. In this example, however, such a CT scan is not
available. One possible way of retrieving the voxel dataset is to voxelize the STL model with
different resolutions in a CT-like fashion. The octree-based voxelization program mentioned
in Section 4.4.1.2 is utilized to generate voxel models with various resolutions. For comparison
purpose, four voxel models with resolutions of 81 × 75 × 30, 135 × 125 × 50, 270 × 250 × 100
and 297 × 275 × 110 are generated. Figure 4.36(a) depicts one voxel model with a resolution
of 270 × 250 × 100.

This model, with the setting of 10×10×10 voxels per cell, is discretized into 6750 cells. Cells
that lie completely outside the physical domain are discarded for saving computational cost,
and the remaining 2124 cells are plotted in Figure 4.36(b). With the same boundary condi-
tions applied as in the FEM analysis, numerical results computed on these four voxel models
are obtained by a uniform p-extension. Figure 4.37 presents the displacement distribution in
z-direction on the voxel model 270 × 250 × 100 on mesh 27 × 25 × 10 with p = 4.

The convergence curves of reaction forces on the four voxel models are plotted in Figure 4.38.
The setting of 5×5×5 voxels per cell is adopted for the two coarser models, while 10×10×10

4.5. Numerical examples 69

 0

re
ac

ti
on

fo
rc

e
F

Z

degrees of freedom N

FEM

-2470

-2480

-2490

-2500

-2510

-2520

1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06 8e+06 9e+06

Figure 4.35: Convergence of the reaction force (FEA)

(a) Voxel model with a resolution of 270 × 250 ×
100

(b) FCM discretization

Figure 4.36: A voxel model and its FCM discretization of the trabecular biopsy specimen

voxels per cell is chosen for the two finer ones. On the model with the lowest resolution the
curve converges slowly, since the modeling error of this voxel model is relatively large. As the
voxel model is refined, the FCM results get closer and closer to the reference solution. The
FCM results of the last two finer models converge to approximately −2430 which produces a
relative error of below 2%.

As mentioned at the end of the second example, the computational speed is the highlight of
this scheme. The FCM code is parallelized using OpenMP technique, and was executed on an

70 4. The finite cell method

Figure 4.37: Displacement in z-direction

 0

re
ac

ti
on

fo
rc

e

degrees of freedom N

-2350

-2400

-2450

-2500

-2550

-2600

-2650

-2700
100000 200000 300000 400000 500000

voxel model: 81 × 75 × 30, 565 cells, p = 1, ..., 6

voxel model: 135 × 125 × 50, 2040 cells, p = 1, ..., 6

voxel model: 270 × 250 × 100, 2124 cells, p = 1, ..., 6

voxel model: 351 × 325 × 130, 4222 cells, p = 1, ..., 6

FEM reference solution

Figure 4.38: Reaction force convergence curve of the FCM results

Intel Xeon W5590, 3.33GHz work station, 8 cores. For the reason of fairness in comparison
with the FEM computation, only one core is activated. The computational time was measured
on the voxel model 270× 250× 100 which produces plausible results according to Figure 4.38.
Table 4.5 lists the computational time of this model for p = 1, ..., 6.

4.5. Numerical examples 71

p DOF Computational time (s)

Reading Stiffness Assembly Solver Total

1 8913 0.06 0.23 0.04 0.15 7.02

2 33264 0.31 1.25 0.51 1.79 15.45

3 57615 0.71 3.20 1.63 5.81 28.55

4 103755 1.59 7.53 6.24 18.39 62.55

5 171684 3.31 16.99 19.09 51.22 138.63

6 267774 6.98 33.10 52.35 130.91 299.47

Table 4.5: Computational time of the 270 × 250 × 100 model with FCM parallelized with one core

The total computational time in the last column includes all steps of one analysis, from read-
ing in the voxel model to post-processing. The time for FCM to get a converged result is
about 300s when p = 6, while the FEM computation time for the coarsest tetrahedral model
is 428s, see Table 4.4. For fairness the 428s is divided by the CPU frequency ratio of two
computers (3.33HZ/2.4HZ=1.3875) and equals to 308s, which is almost the same as the FCM
computation that produces highly accurate results. It’s also noteworthy that besides the FEM
computational time listed in Table 4.4, a significant time is required in an a-prior preprocess-
ing step to convert the CT scan into a B-rep model based on which tetrahedral meshes are
generated. This conversion is labor-intensive. Note that this tedious step is avoided in the
FCM with which the CT voxel model can be directly processed with little effort.

For investigating the efficiency of parallelization, the same computations were performed on
the same machine parallelized with 8 cores. The new computational time is tabulated in
Table 4.6.

p Stiffness matrix Assembly Solver Total (s)

1 core 8 cores efficiency [%] 8 cores 8 cores 8 cores

1 0.23 0.10 28.75 0.04 0.13 4.16

2 1.25 0.29 53.88 0.46 1.18 6.75

3 3.20 0.46 86.96 1.50 3.13 11.34

4 7.53 1.32 71.31 5.95 8.05 25.28

5 16.99 2.57 82.64 17.82 17.92 58.18

6 33.10 5.50 75.23 50.21 50.25 145.01

Table 4.6: Computational time of the 270 × 250 × 100 model with FCM parallelized with 8 cores

The efficiency of parallelization is estimated by dividing the speedup by the number of cores.
In this example, the parallelization efficiency has been calculated based on the stiffness ma-
trix computational time measured in the two contexts tabulated in Table 4.6. The highest
parallelization efficiency is approximately 87% for p = 3.

72 4. The finite cell method

The high efficiency in the FCM computation is contributed from both the preprocessing and
the fast integration. In this example, the preprocessing time (cells generation) takes approxi-
mately 0.1 second, which is of big advantage when comparing with the processing time of the
FEM computations. Furthermore, the fast integration scheme drastically shortens the stiffness
matrix computational time, which in this problem takes less than 5% of the total time after
parallelization. The main part of the computational time is dedicated to the solver, whose
performance on solving the linear system of equations plays an important role. In the FCM
applications, iterative solvers can be applied to solve small-sized problems with relatively sim-
ple geometries, while fast and reliable direct solvers are more commonly used to handle large
linear system of equations resulted from geometrically complicated or inhomogeneous models
due to the bad conditioning of equation systems.

73

Chapter 5

Computational steering for
orthopaedics using the FCM with fast
integration

5.1 Introduction to hip replacement

The hip is a joint where the femur meets the pelvis. It consists of two parts, the femoral head
which is covered by a layer of smooth cartilage and the acetabulum which is part of the pelvic
bone. There is fluid flowing in between the two parts helping the ball-socket-like joint move
smoothly, see Figure 5.1.

Socket

Ball of femur
Ball of cartilage

Pelvis (hip bone)

Femur (thigh bone)

Figure 5.1: Hip joint [95]

The cartilage can be worn down by a degenerative joint disease called osteoarthritis, aging or
injury. The breakdown of the cartilage roughens the contact surface and thus causes pain and
eventual loss in joint movement. In this case the diseased or damaged parts of the hip joint

74 5. Computational steering for orthopaedics using the FCM with fast integration

must be removed and replaced by an artificial joint which has smooth surfaces. This surgery
is called the total hip replacement (THR).

The THR is an effective treatment for severe hip joint damages and diseases. There are ap-
proximately 1 million THR operations carried out worldwide per year [96] with a success rate
over 90%. The majority of patients are in their 60s or 70s. In THR the femur’s head along
with the surface layer of the socket are removed and replaced with a metal ball attached to a
metal stem fitted into the shaft of the femur. The metallic ball and stem are commonly called
the “prosthesis” or “implant”. Additionally the damaged socket in the pelvis is replaced by
a plastic or metal socket. Prosthesis can be categorized into two types, cemented prosthesis
and non-cemented prosthesis, see Figure 5.2. Upon inserting a cemented prosthesis which
has smooth surfaces into the femur shaft, it must be fixed in place with a special cement,
which accommodates uniform load transfer between the prosthesis and the irregular texture
of bone. As an alternative, non-cemented prosthesis which has a microscopic porous surface
that provokes ingrowth of bone material into the prosthesis stem is often used for an improved
fixation especially for young patients.

(a) A cemented prosthesis (b) A non-cemented prosthesis

Figure 5.2: Two types of prostheses [97]

The development and application of THR have tremendously improved the quality of life for
the majority of patients who received the operation. However, after a THR operation, the
muscle and joint loads are carried almost entirely by the prosthesis stem, while the remaining
part of the femur exhibits stress shielding [98]. Consequently, most post-operative femurs un-
dergo long-term changes in their bone architecture, because the bone of a healthy human being
or animal will remodel in response to the loads it is subjected to, according to Wolff’s law.

5.2. Introduction to computational steering 75

These changes include bone resorption in the cortical region and formation of a fibrous tissue
between the implant and bone interface. The resorption and formation increase with time and
will cause cortical thinning, reduction in bone density and loss of integrity of the implant-bone
interface (aseptic loosening). As a result, patient suffer from pain and functional restrictions,
eventually a revision surgery might be unavoidable. Through retrospective evaluations based
on the long-term hip replacement registration data from the Nordic Hip Registers, the implant
design, surgical technique and patient age are found to be the three main risk factors in a
THR [99]. Despite of this database it is yet unclear of how the three factors precisely affect a
THR.

Finite element based simulation methods have been proved to be accurate and efficient tools
for biomechanical analysis [1, 22]. For many years FE simulations have been carried out
to assist surgeons and implant designers in improving their understanding of the origin and
patterns of the stresses and strains involved, and how a failure is formed [100, 101, 102].
Furthermore, it is used for preclinical testing and design testing of new prostheses [103, 104].
To the author’s knowledge, these tests are mainly targeted at validating a certain prosthesis
design, so far there’s no real-time interactive surgical planning system that recruits patient-
specific data according to the individual mechanical properties of the involved bone. The
rapid development of high performance computers and new simulation methods enhances the
possibilities of establishing such a system which, if innovatively constructed, can be recruited
to perform preclinical tests for specific patients in real-time via computational steering.

5.2 Introduction to computational steering

During the past decades numerical simulations have been more frequently used to obtain nu-
merical solutions to the differential equations which can not be solved analytically. From the
numerical results of the simulation, knowledge of background processes and physical under-
standing of the simulation region can be obtained. Traditionally the simulations are run in
batch-mode, after which visualization tools are used to post-process and visualize the dataset
created by computation. For this reason the interaction between simulation and visualization
is a long process with limited user interaction.

The recent advances in computing power and computational technology now enables a close
coupling between simulation and visualization to a degree where the influence of changes in
input parameters can rapidly be computed and visualized. This way of scientific visualization
is called computational steering (CS). A good computational steering tool can help the user
to find optimal configurations by dynamically modifying computations while they are running
and even steer the computations in real time.

Primarily there are three requirements for the establishment of such a computational steering
tool. First, because in most real-world examples the data are vast, efficient interactive visual-
ization techniques for large data sets are needed. Second, to limit the computational time of
a large-scale simulation to the permittable range of a real-time simulation, high performance
simulation kernels play a key role [105]. Third, if the simulation and the visualization are run-
ning on various sources such as supercomputer back-ends and visualization front-ends [106],

76 5. Computational steering for orthopaedics using the FCM with fast integration

high bandwidth and low latency networks are called for to handle the large amount of data
to be transferred between simulation and visualization kernels interactively.

The basic idea of computational steering is straightforward; however, its implementation is
tedious and labor-intensive. The establishment of a new CS system often requires many
modifications on the original scientific code. Three broad approaches have been addressed
in [107], they are program instrumentation, direct scientific computation and recasting scien-
tific computations respectively. In program instrumentation an existing scientific application
is employed and only small modifications of the source codes are made to provide access points
for parameters and results. In direct scientific computation a code is broken up into various
modules to allow users to interact with them. In recasting scientific computations a simulation
is constructed using reusable computational components to be connected with a visual pro-
gramming environment. For the above three approaches the effort of modifying the original
scientific code increases; however, in turn more flexibility and interactivity is available.

5.3 Computational Steering for Orthopaedics

5.3.1 Motivation

Total hip replacement is a successful treatment for joint failures caused by bone diseases or
accidents. The endurance of a THR surgery is determined by prosthetic, surgical and patient
factors. Correct selection of a patient-specific prosthesis can prominently improve the surgery
quality and postpone or even avoid revision. Hence, preoperative planning is an essential
ingredient for a successful surgery.

In most clinical centers worldwide the preoperative selection of a prosthesis is done with a
template of implants drawn on a translucent sheet and an anteroposterior (AP) X-ray of the
patient’s hip joint [108, 109]. The prosthesis outlines are superimposed onto the X-ray trans-
parency to decide whether a prosthesis is geometrically suitable or not. The drawbacks of
this approach are that only two-dimensional data are available while the three-dimensional
information is still missing, also the rotational misalignment is not controlled and the revi-
sion on the prosthesis position is only limited in the coronal plane. Thus, which prosthesis is
chosen is decided by a surgeon’s appraisement based on his subjective judgments from intra-
operative experiences, a rigorous method is still lacked. In recent years, new Computer Aided
Orthopaedic Surgery systems, e.g. HipNav systems [110], [111], have been developed. These
tools aim at visualizing the prostheses and patient’s femur in 3D and providing surgeons the
positioning and geometric information to assist surgeons in selecting a best-fitting prosthesis
in a more precise and reproducible manner. From the geometric perspective the implementa-
tion of these tools in an orthopaedic surgical planning ensures a good preoperative selection
of the implant, which from the mechanical perspective may be inappropriate. On top of the
geometric information the patient-specific biomechanical information, e.g. physiological load
transmission from the implant to the proximal femur, is more crucial concerning the long-term
stability and longevity of an implant. If an ideal implant is selected the post-operative strain
patterns should replicate the preoperative physiological strain state so that the stress shielding
can be prevented.

5.3. Computational Steering for Orthopaedics 77

This aspect can be dealt with finite element based simulation methods which have been proved
to be accurate and efficient tools for biomechanical analysis [1, 22]. They have been carried
out to assist surgeons and implant designers in improving their understanding of the origin
and patterns of the stresses and strains involved, and how a failure is formed [100, 101, 102].
Furthermore, it is used for preclinical testing and design testing of new prostheses [103, 104].
These approaches, however, are mainly targeted at validating a certain prosthesis design, not
at selecting the implant for a specific patient prior to surgery. Moreover, such studies are
time-consuming and not yet suited for patient-specific surgery planning.

Ideally, a computational tool for patient-specific surgery planning should include the following
features:

• to employ patient-specific data, such as femur geometry and material information

• short preprocessing time

• to perform fast and accurate computation of stresses and strain states

• to provide user interaction and direct feedback for computations of multiple scenarios

In the following, a methodology which is capable of fulfilling these requirements will be pre-
sented. It was implemented and tested not on a high-end system but standard hardware at
a current price of approximately 5000 Euros. This part of the dissertation is structured as
follow: the surgical planning system is firstly overviewed in Section 5.3.2, in Section 5.3.3 the
structure of the computational steering system will be presented to give an overview of the
system establishment, afterwards the visualization approaches are discussed in Section 5.3.4,
Section 5.3.5 details the simulation method, the coupling is described in Section 5.3.6, Sec-
tion 5.3.7 gives a demonstration example of the computational steering system, whose accuracy
was validated by a biomechanical example in Section 4.5.

5.3.2 Surgical planning system overview

This planning system employs patient-specific bone information and can provide patient-
specific biomechanical information in real-time. The system was constructed as a collaborative
work with Dick et al. who developed the user interface as well as the visualization kernel of
the system [112, 113].

In a preprocessing step prior to the starting of the planning system, pre-operative CT scans
are segmented and processed in a separate program to provide a clean voxel model as well as
a surface description of the geometry (B-rep model). This B-rep geometry is mainly used as
a reference for application of boundary conditions and visualization of stresses on the femur
surface.

The system starts from importing the segmented CT data and the B-rep model. Users can ro-
tate and zoom in/out of the femur. In addition, users have the option of viewing details hidden

78 5. Computational steering for orthopaedics using the FCM with fast integration

in the interior of the bone through a lens-like focus and context metaphor. The material law
relating the CT Hounsfield Unit value with the bone elasticity modulus can be input by the
user. Starting with the segmented CT voxel model at the initial CT resolution, a hierarchical
octree representation is constructed in a bottom-up order. Property of a voxel at a coarser
resolution level is average of the properties of all voxels contained at a finer level of this voxel.
Once the hierarchy has been constructed, the user first selects the resolution level at which
to perform the simulation. To apply the boundary conditions, a movable plane indicating
at which place the bone is clamped and two loads with adjustable magnitude, position and
direction are available to simulate the realistic loading conditions, see Figure 5.3(a). As a
preclinical study, the physiological stress distribution in the femur can be simulated in this
step before the implantation simulation takes place.

(a) Femur model with fixation
and loads

(b) Femur model segmented with
two cutting planes

(c) Femur model with an implant
model inserted

Figure 5.3: Surgical planning system overview

Two movable cutting planes are provided to simulate the femur tissue removal process, see 5.3(b).
To validate different testing prostheses via computational steering, the program runs in an
iterative loop where one iteration is one completely new simulation. Implant candidates are
represented by B-rep models, which can be translated or rotated in 3D. Each implant can
freely be placed anywhere in the computational domain including inside the femur to test the
post-operative stress states, see Figure 5.3(c).

When an implant is placed inside the femur, the relative motion between the implant surface
and the femur’s interior structure should be taken into account. Simulation of the relative
motion involves the modeling of a frictional contact of the bone-implant interface, which
complicates the establishment of the planning system. As an approximation, the implant is
considered to be perfectly bonded to the femur at the places where two objects are in contact

5.3. Computational Steering for Orthopaedics 79

or overlapping.

5.3.3 General procedure and system setup

Since the “Computational Steering” concept was proposed a decade ago, many relevant ap-
proaches and applications have been developed [81, 106, 114, 115]. The general approach in
constructing a computational steering system is to separate the visualization and simulation
into two communicating processes, possibly running on different processors. Traditionally the
simulation is run in parallel on a high performance computing (HPC) cluster using the Message
Passing Interface library (MPI), while the front-end visualization system is allowed to con-
nect and disconnect as required from a long running simulation and to take a service-oriented
approach to visualization and steering. Relying on the HPC clusters, the computational load
can be distributed to a number of processors in order to keep the simulation time within a
permissible range. However, such clusters are not easily affordable for medium or small in-
stitutes or companies. As the development of multi-core processors and graphics processing
units (GPUs), high performance computing is no longer only available to computer scientists
in research labs. HPC systems are now being built from the same commodity chips found in
desktop personal workstations [116]. The affordability of the new HPC system, which consists
only of one computer with multi-core processors and GPUs, has remarkably increased lately.
Performing simulation on a single computer is then made possible.

Figure 5.4: Computational steering pipeline

80 5. Computational steering for orthopaedics using the FCM with fast integration

The computational steering system for surgical planning is established with two machines, one
for simulation, one for visualization. The simulation was implemented in C language under
Linux ultilizing the finite element code AdhoC [117, 118, 87] and compiled on a commer-
cially available workstation (Dell Precision T5500, 24GB Memory, Intel Xeon W5590 CPU,
3.33GHz, 8 cores). The visualization was implemented by Dick et al. in Visual C++ under
Windows on the other workstation with a powerful graphics card (NVDIA Quadro FX 5800
graphics card with 4GB memory hosted in a Windows 7 machine with 4GB RAM, Intel Xeon
X5550 CPU, 2.67GHz, 8 cores). In order to foster a strong coupling of two codes running un-
der different system architectures, the communication is enforced through high-speed socket
connection with speed 1Gbps. The general setup procedure is depicted in Figure 5.4.

Data transfer via network in between the two machines causes an additional latency, which
decreases with the amount of data transferred. A dedicated data reduction scheme has been
developed for efficient data communication between the two terminals. This scheme will be
addressed in Section 5.3.6.

5.3.4 Visualization techniques

The purpose of visualization in computational steering is to provide a real-time visual repre-
sentation of the state of a simulation. To provide an intelligible representation and a rapid
response for the visualization, efficient rendering techniques and effective visualization pat-
terns have been developed by Dick et al. [112, 113]. The visualization pipeline is depicted in
Figure 5.5.

On the visualization machine both CPU and GPU are working for the visualization kernel.
In the first run, the segmented data and the B-rep geometry are read in by the visualization
kernel. Voxel data of the segmented femur are converted into a uniform format and are sent
to the simulation kernel, which computes the stress results and transfers them to the visual-
ization machine. This procedure is carried out on the CPU for once only to set up the system,
after which the system enters an iterative loop containing the following two steps:

1. The GPU instead of the CPU is utilized to rapidly process the results and render the image.
Three visualization patterns depicted in Figure 5.6 have been developed for different purposes.

In Figure 5.6(a) the femur and implant meshes are rendered as semi-transparent surfaces and
the von Mises stresses are rendered in red through volume ray-casting. The magnitude of
stress is indicated by the intensity of the red color. This visualization pattern tends to provide
the surgeon some basic information about the stress distributions and a general overview of
the load transfer in the interior of the femur. In Figure 5.6(b) a more advanced technique
which combines volume rendering with transparent, shaded, and antialiased lines is employed
to indicate stress directions computed from a 3D stress tensor field. The directional infor-
mation provided by these lines gives a visualization of the flow of forces through the bone as
indicated in Figure 2.7. Figure 5.6(c) illustrates the third visualization pattern − the com-
parative stress visualization, which shows the differences between the simulated stress tensor
field resulting from a virtual implant surgery and the physiological stress distribution. Note
that the loading conditions (directions, positions and magnitudes) are completely the same for

5.3. Computational Steering for Orthopaedics 81

Figure 5.5: Visualization pipeline

(a) Volume rendering of von
Mises stresses in red color via
ray casting

(b) 3D stress tensor fields visual-
ization by stress lines

(c) 3D comparative stress visual-
ization by stress lines (normal
components)

Figure 5.6: Visualization patterns

82 5. Computational steering for orthopaedics using the FCM with fast integration

the two states in order to ensure a meaningful stress visualization. Principal stress directions
in the physiological state are utilized as a reference frame, on which the two stress tensor
fields are decomposed into normal and shear stress components at each point and the differ-
ences are visualized with respect to these components. The visualization of changes in the
normal stress components can be used to identify the regions of stress shielding according to
the Wolff’s law, while the visualization of changes in shear stress components at the implant-
femur interface can be employed to help to judge the initial rotational stability1 which must be
secured for the integration of a non-cemented implant to be sustained over the long term [119].

2. As a simplification, the implant model is generated as a new voxel model which has the
same voxel dimensions as the CT data. The voxel data are acquired by voxelization of a B-rep
implant model through an oct-tree based fast voxelization technique. This step is categorized
to the visualization, not the simulation for two reasons. First, by implementing a GPU-based
voxelization approach, the execution time is much shorter than on the CPU. Second, the im-
plant voxel model which is stored in the GPU can be directly employed and visualized in the
rendering process. During the steering when the implant position is modified by the user,
a new position information of these voxels is sent to the simulation kernel to trigger a new
computation.

The GPU-based visualization techniques enable the visualization kernel to render large-scale
data in the range of milliseconds. As a result, the main computational effort in the current
computational steering system is devoted to the simulation.

5.3.5 Simulation method

In the mechanical analysis of human bone, the finite element method proves to be an effective
tool for stress analysis and failure prediction. Two types of model construction and mesh
generation methods, “voxel-based” and “structure based” methods, are commonly used to
predict the bone mechanical response [1], see Section 2.4.1.

The “structure based” method shows higher accuracy while the “voxel based” method is more
efficient concerning the computational time. The drawback of the “structure based” method
is the computational efficiency which is hindered by the preprocessing step in which a ge-
ometrical model with smooth surface description is first constructed from CT-derived voxel
dataset and then a 3D mesh is generated from the geometrical model. The “voxel based”
method is comparatively advantageous with respect to model creation and mesh generation;
however, its efficiency is undermined by having to solve the system of equations resulting from
the vast number of 8-noded elements converted directly from voxels, when a good accuracy is
demanded. A “voxel-based” FEM simulation system was developed by Dick et al. [112]. This
system shows a good efficiency but a limited accuracy as it incorporates only linear elements
and works with voxel models with low resolutions.

The FCM with fast integration is an efficient and reliable alternative to the two choices above.

1Rotational stability means that the stem is resistant to the articular forces that induce rotation around
the implant’s longitudinal axis

5.3. Computational Steering for Orthopaedics 83

Application of this method in the femur analysis has three main advantages: first, the voxel
model obtained from a CT scan can be used as an immediate basis for the computation with-
out segmentation or complicated mesh generation. Second, it is possible to speed up the
computation of cell stiffness matrices such that it takes only a small fraction of total compu-
tational time. Third, less time is needed in the solution phase in comparison with the general
“voxel based” methods in which linear shape functions (h-version FEM) are used, due to the
fact that p-version models generally have less degrees of freedom than h-version models. With
FCM applied to the computational steering system, both high efficiency and high accuracy
can be achieved, thus the real-time simulation is made possible.

Figure 5.7: Simulation pipeline

Figure 5.7 depicts the simulation pipeline. The polynomial degree p and the number of voxels
in each direction per cell nv are user-defined parameters and are independent of the visual-
ization kernel. After receiving the voxel model, the simulation kernel generates a rectangular
domain which embeds the entire femur. This domain is subdivided into a finite number of
equal-sized grids (cells). To account for different implantation scenarios that might happen
during the steering process, a large fictitious domain which has the capacity to enclose both
femur and implant is needed. Considering the real operation scenario, the most essential stress
state for the surgeon is when the prosthesis shaft is completely embedded by the femur. Hence,
other transition states during the steering, e.g. when the implant is partially in contact with
the femur, are of much less importance and can be computed with lower accuracy. With these

84 5. Computational steering for orthopaedics using the FCM with fast integration

considerations, the computational domain is only confined to embed the initial geometry of
the femur. Cells lying completely outside the femur’s physical domain are discarded to save
computational cost.

In the initial run, stiffness matrices of all cells are computed altogether by implementing
matrix-matrix multiplications using the BLAS subroutine provided by the Intel MKL. The
computed stiffness matrix of each cell is stored in the memory. This procedure is carried out
only once, after which the program enters an iterative loop consisting of three steps:

1. The program acquires implant information from the visualization kernel and checks which
cells to update and afterwards automatically chooses whether local or global update should
be applied.

2. The unknowns of the cells whose stiffness matrices are updated in step 1 are solved by a
nested dissection based p-FEM solver [120] which can efficiently handle local modifications.

3. In the post-processing 3D stress distributions are evaluated on predefined resulting points
located inside the voxels. The code for post-processing has been parallelized with OpenMP to
reach maximum efficiency. After the post-processing stage, the 3D stress dataset is transferred
back to the visualization kernel which visualizes the data and completes one iteration.

The structure of this subsection is organized as follow: the OpenMP technique is introduced in
Section 5.3.5.1, the update of cell stiffness matrices is addressed in detail in 5.3.5.2, the p-FEM
solver which is well suited for the computational steering system is described in Section 5.3.5.3.

5.3.5.1 Introduction to OpenMP

OpenMP (Open Multi-Processing) is an application program interface for shared memory and
distributed shared memory multiprocessors [121]. OpenMP takes a directive-based approach
for supporting parallelism. It provides a set of pragmas, run-time routines, and environment
variables that programmers can use to specify shared-memory parallelism in Fortran, C, and
C++ programs. It is a widely accepted specification and is supported by venders like Sun,
Intel, IBM and SGI.

Figure 5.8: Fork and Join model

5.3. Computational Steering for Orthopaedics 85

OpenMP is based on a Fork and Join model depicted in Figure 5.8. The program starts with
a single process called the master thread, which runs sequentially until it reaches a paral-
lel region. At this point additional threads, called the worker threads, are created and the
master thread forks into the multiple worker threads. At the end of the parallel region the
threads synchronize and join to become a single master thread again. Depending on usage,
machine load and other factors, the threads are allocated to processors by the run-time en-
vironment. The number of threads can be assigned by the run-time environment based on
environment variables (OMP NUM THREADS in Linux system) or in code using functions.

OpenMP has the advantages of being very easy to employ on currently existing serial codes
and allowing incremental parallelization. It takes parallel programming to the next level by
creating and managing threads for the user. All one needs to do is to insert appropriate
pragmas in the source program which is then compiled with an OpenMP supported compiler.
OpenMP also has the advantages of being widely used, highly portable and ideally suited to
multi-core architectures [122].

5.3.5.2 Update of stiffness matrices

The update of the stiffness matrices takes place in two cases. The first case is during the femur
tissue removal process (refer to Section 5.3.2) when the two cutting planes are activated. As
an approximation, voxels lying in between the two planes are set to void. For retaining the
original computational domain, altered cells that contain only void voxels are not discarded.
This updating process is carried out only once or of most a few times, therefore the stiffness
matrices of the related cells are globally recomputed. The second case of update is during the
implant steering process. In the visualization kernel the implant B-rep model is voxelized on
the GPU each time its state is modified. To simulate the interaction between the implant and
the femur, the following approach is implemented.

The computational domain and its discretization are kept fixed during the entire computa-
tional steering process, namely no remeshing is performed. The cell stiffness matrices remain
unchanged when the implant is navigated outside the computational domain. Upon entrance
of the implant model, the overlapping voxels which originally belong to the computational
domain (either void or bone) are replaced by the implant voxels. More technically, the ma-
terial properties of these voxels are assigned with the property of the implant. To reduce the
computational complexity, implant voxels lying outside the computational domain are not con-
sidered. The stiffness matrices of the cells whose voxel members are modified by the implant
model are marked to be recomputed. Three approaches are available for the recomputation:

1. A similar approach as in the initialization step is carried out. The stiffness matrices of all
the marked cells can be computed globally with the BLAS subroutine.

2. Scalar-matrix multiplications are carried out locally for each voxel to compute the stiffness
matrices of the overlapping voxels in all marked cells.

3. The drawback of the first approach is that performing a completely new computation on
cells containing only a few overlapping voxels does not pay off. The second approach is a good

86 5. Computational steering for orthopaedics using the FCM with fast integration

supplement to the first one; however, it lacks efficiency for cells containing a large number of
overlapping voxels. Therefore, the third approach which combines the first and the second
one is adopted. This approach is able to firstly determine cell-wise whether to update the cell
stiffness matrix globally or locally, then to call the corresponding subroutine for computation.
A threshold criterion is needed to judge whether global or local updating subroutine should be
called. This criterion depends fully on the number of overlapping voxels in one cell (denoted as
nov): if nov is larger than the threshold, the cell stiffness matrices are updated globally; other-
wise updated locally. Computations with both subroutines have been carried out to quantify
this threshold value empirically. In terms of the speedup graphs depicted in Figure 4.10 in
Section 4.4.6.2, the speedup factor of using the BLAS routine depends on the number of cells
and the polynomial degree. As a reasonable approximation, the influence of polynomial de-
gree can be neglected since the graphs of p = 1, ..., 6 have the similar distribution. In the
computational steering application it is reasonable to confine the total number of cell to be-
low 500 due to the limitation of the computing power available. Accordingly the number of
marked cells is also below 500. In terms of Figure 4.10, the speedup factor can be regarded
as approximately constant within this range. As a result, the threshold value is independent
of both p and the number of marked cells. With these considerations, the threshold value is
empirically evaluated on 100 cells with shape functions of polynomial degree increasing from
one to six in each cell.

In each evaluation the number of overlapping voxels of each cell (nov) increases uniformly from
1 to 1000. The computational time of both local and global update was measured on an Intel
Xeon W5590, 3.33GHZ machine with 1 core activated. The threshold value is determined
by finding out the value of nov with respect to which the global and local updating time is
approximately the same. The threshold values with respect to different polynomial degrees
are tabulated in Table 5.1.

Polynomial degree 1 2 3 4 5 6

Threshold 120 63 56 46 40 40

Table 5.1:
Threshold values with respect to different polynomial degree p for total number of cells
≤ 500

Upon fixation of the threshold value, the marked cells can be categorized into two groups:
one group is updated globally and the other group is updated locally. The number of globally
updated cells is denoted as nG

c and the number of locally updated cells is denoted as nL
c . The

subroutine for global update adopts the idea of transforming scalar-matrix multiplications into
matrix-matrix multiplications which can be efficiently computed using the BLAS routine. In
the subroutine for local update, stiffness matrices of the overlapping voxels in nL

c cells are
updated by performing scalar-matrix multiplications which are parallelized with OpenMP.

With this approach the optimum stiffness matrix updating time can be achieved. Further
improvement on the performance of the computational steering system is shifted to assembly

5.3. Computational Steering for Orthopaedics 87

and solver.

5.3.5.3 A fast direct solver based on the nested dissection algorithm

5.3.5.3.1 The Pardiso solver

The package PARDISO is a high-performance, robust, memory-efficient and easy to use li-
brary for solving large sparse symmetric and nonsymmetric linear systems of equations on
shared-memory multiprocessors [88, 89]. This solver employs the Metis nested dissection re-
ordering technique and shows advantages in stability and efficiency in solving sparse matrices
over many other direct solvers. As described in Section 4.5, the Pardiso solver is utilized as
the main solver for most FCM applications. It exhibits superior performance for solving linear
systems of equations that are badly conditioned.

As the default setting for Pardiso, the input matrices must be stored in a compressed sparse
row (CSR) format. Using this format, operating on the zero entries can be avoided and the
unknowns of a sparse system of equations can be numbered in a way so that the total amount
of storage required for the direct solution is reduced. However, the conversion of input matrix
to this format is recursive and is required in every computational step. Moreover, the con-
version process is unparallelizable and can not be performed locally, namely each time when
the stiffness matrix of one or more cells is modified, the global matrix has to be completely
reconverted. Impact of this drawback is not pronounced when the simulation is performed
only once. However, in a computational steering environment, carrying out matrix conversion
in each updating iteration reduces the efficiency to a notable extend. A more suitable solver
is required for the computational steering system.

As an alternative, a nested dissection based p-FEM solver [120] is chosen and employed in the
simulation kernel to handle the computational steering computations more efficiently.

5.3.5.3.2 The nested dissection approach

Applying the nested dissection method as a direct solver was firstly introduced by George [123]
for the solution of finite element problems. The basic idea of this method is to recursively
subdivide the computational domain and eliminate local unknowns in a bottom-up step before
in the final step a top-down solution process is performed. The algorithm can be split into
three parts, recursive substructuring, static condensation, and solution [124].

1: Recursive substructuring

The idea is depicted on a mesh in Figure 5.9(a), which consists of nodal elements (hollow
circles) interconnected by lines.

In the first step the initial computational domain A is partitioned into four subdomains (de-
noted as A1, A2, A3, A4) by a separator, which is a set of nodes marked in black in Fig-
ure 5.9(b). Next, each subdomain is further partitioned into four new subdomains (denoted
as Ai,1, Ai,2, Ai,3, Ai,4, i= 1, 2, 3, 4) by a new separator marked in grey, see Figure 5.9(c).
Following this strategy, the domain partitioning process is performed recursively until only

88 5. Computational steering for orthopaedics using the FCM with fast integration

A

(a) Original 9 × 9 grids

A1 A2

A3 A4

(b) First domain partitioning

A1,1 A1,2

A1,3 A1,4

A2,1 A2,2

A2,3 A2,4

A3,1 A3,2

A3,3 A3,4

A4,1 A4,2

A4,3 A4,4

(c) Recursive domain partition-
ing

Figure 5.9: Nested dissection subdivision

few unknowns are consisted in each subdomain. To clarify the domain hierarchy an octree
structure is employed to illustrate the domain subdivision, see Figure 5.10. The original do-
main is of the highest level (here Level 2), after each partitioning the newly generated four
domains are of one level lower. The undividable subdomains are of the lowest level, level 0.
The separator of each subdomain is set to have the same level number.

Level 0

Level 1

Level 2

A

A1 A2 A3 A4

A1,1 A1,2A1,3 A1,4 A2,1A2,2A2,3 A2,4 A3,1A3,2A3,3 A3,4A4,1A4,2A4,3 A4,4

Figure 5.10: An octree structure

On each subdomain, the unknowns are categorized into two groups, inner unknowns and outer
unknowns. The outer unknowns of subdomain level i are the unknowns on the ith level sep-
arator while the inner unknowns are the ones on the i − 1th (i ≥ 2) level separator. On the
lowest level, the rest unknowns represented by the hollow circles in Figure 5.9(c) are called
internal unknowns, whose coupling with the inner and outer unknowns can be eliminated by
static condensation.

Referring to Figure 5.9(b) and 5.9(c), the separator that has a “+” shape is firstly used by
George for domain partitioning. As an alternative, vertical and perpendicular separators
with shapes like “−” and “|” can also be used to produce linear systems of equations with a
slightly smaller number of unknowns [124].

2: Static condensation

5.3. Computational Steering for Orthopaedics 89

This step computes the local system of equations of each subdomain. On the lowest level the
system of equations is taken directly from the discretization. On higher levels the system is
computed from the four subdomains. By reordering the unknowns according to inner (I) and
outer (O) degrees of freedom, the system Ku = d can be reassembled as:

[
KII KIO

KOI KOO

] [
uI

uO

]
=

[
dI

dO

]
(5.1)

which can be written as

KII uI + KIO uO = dI (5.2)

KOIuI + KOOuO = dO (5.3)

The inner unknowns uI from Equation (5.3) can be eliminated by solving Equation (5.2) for

uI = K−1

II
(dI − KIOuO) (5.4)

which is substituted into Equation (5.3) to get

K̃OOuO = d̃O (5.5)

where K̃OO = (KOO − KOIK
−1

II
KIO) and d̃O = dO − KOIK

−1

II
dI .

The new system depends only on uO . As a result, the cost of solving the complete local
system of equations is reduced to solving part of the system only. The most expensive part of
Equation (5.5) is to compute K̃OO , the Schur complement of matrix KII . There are several
existing methods to compute the Schur complement, out of which Gaussian elimination is
selected.

The static condensation procedure can be described using the octree hierarchy depicted in Fig-
ure 5.10. The static condensation is performed recursively in a bottom up step, starting from
the leaf nodes of the tree. On each node, the inner (internal) unknowns are eliminated and the
Schur complement matrix is computed and passed to the father node where a new system
of equations is assembled with all the other Schur complement matrices of the son nodes.
In Figure 5.11, the condensation procedure on the partitioned subdomains in Figure 5.9(c) is
illustrated to provide a geometric description.

3: Solution

The solution process is started from solving the condensed system of equations on the highest
level. Afterwards, the solution to the original system (Equation (5.1)) can be computed
in a top-down process, where the values of the unknowns on the separators are computed
recursively from the local systems of equations on each subdomain.

90 5. Computational steering for orthopaedics using the FCM with fast integration

A1,1 A1,2

A1,3 A1,4

A2,1 A2,2

A2,3 A2,4

A3,1 A3,2

A3,3 A3,4

A4,1 A4,2

A4,3 A4,4

(a) Partitioned domain

A1,1 A1,2

A1,3 A1,4

A2,1 A2,2

A2,3 A2,4

A3,1 A3,2

A3,3 A3,4

A4,1 A4,2

A4,3 A4,4

(b) Eliminating internal unknowns
on the 0th level subdomains

A

A1 A2

A3 A4

(c) Eliminating inner un-
knowns of the higher level
subdomains

Figure 5.11: Nested dissection condensation

5.3.5.3.3 A nested dissection based p-FEM solver

Taking advantage of the hierarchical organization of the computational domain, the nested
dissection scheme shows high efficiency in solving sparse systems of equations. Either octree
or binary tree hierarchy can be used to discretize the geometry of the domain of a regular
shape. However, it is difficult to model arbitrary shaped domains with a regular geometric
discretization efficiently. To overcome this drawback, modifications of this method to solving
problems with unstructured meshes have been proposed in several papers [125, 126]. One good
strategy is to hierarchically discretize the finite elements instead of domain’s geometry. Based
on this strategy, a nested dissection approach for p-version FEM was developed by niggl

and mundani [120]. The main difference of this method from the general nested dissection
approach lies in the domain substructuring step, which is split into two parts: finite element
hierarchy creation and setup of degrees of freedoms.

1. Finite element hierarchy creation
After a finite element mesh is created, the elements are organized hierarchically using a spatial
identifier − the barycenter. An octree is used to recursively subdivide the domain as long as
more than one element center point is contained in an octree cell. A 2D sample of a finite
element mesh and its hierarchical representation are depicted in Figure 5.12.

2. Setup of degrees of freedom
In contrast to the h-version, in the p-version finite element method the degrees of freedom are
not only associated to nodes, but also to edges, faces and internal modes. Therefore, the DOFs
which are located on the nodes, edges and faces shared by several elements must be assigned
separately to the octree. The DOF setup procedure follows the rule that each DOF must
be located at the lowest common father (LCF) of the element it belongs to. To find out the
LCF of some elements, the so called Morton index is employed to identify the corresponding
nodes in an octree. A numbering rule is applied to all the father nodes that its eight sons are
numbered from 0 to 7 in a specific order. By accumulating all numbers on a way down from

5.3. Computational Steering for Orthopaedics 91

0 1

1

1

2

2

2
3

3

3

10 11 12 13

Figure 5.12:
A 2D FE discretization and its corresponding octree structure. The numbering scheme
of the octree is defined as: 0 − SW, 1 − SE, 2 − NW, 3 − NE.

the root to one node, the index of this node can thereby be obtained. A 2D FE discretization
and its corresponding octree structure are depicted in Figure 5.12. After the Morton indices
of all nodes are set up, the position of a DOF in the tree can be located by comparing the
indices of the elements it belongs to. Figure 5.13 shows the DOF assignment of the 2D FE
sample.

0 1

1

11

2

2

2

2

3
3

33
4

4
5

67

8

9

10

10

11

11

12 13

1, 2, 5 7, 8

3, 6

9, 10, 11

Figure 5.13: DOFs setup in a tree

The Morton indices of elements 1 and 2 are 10 and 12 respectively. A LCF of index 1 can be ob-
tained by comparing the two Morton indices. The LCF index indicates the position where the
common DOF shared by the 1st and 2nd elements − the DOF of number 4 is stored in the tree.

92 5. Computational steering for orthopaedics using the FCM with fast integration

After all the DOFs are assigned, the element stiffness matrices and load vectors are computed
and stored at the position of the particular element in the tree. This completes the step
of domain substructuring. The next two steps, the static condensation and the solution are
identical to the standard nested dissection approach and are applied to solve the system of
equations.

The biggest advantage of this nested dissection method is its efficiency in performing local
modifications. Instead of completely reassembling the system of equations, only parts of the
tree on which local modifications take place have to be reassembled. This characteristics is
highly suited for the computational steering environment in which only several cells undergo
modification during the steering process while the rest remain unchanged.

5.3.6 Computational steering system construction with Internet
sockets

The last key ingredient in the computational steering system is to couple the simulation
kernel with the visualization kernel through an Internet socket connection. Description of the
coupling details entails some basic knowledge of the Internet protocol and the Internet socket.

5.3.6.1 Internet Protocol

The Internet Protocol (IP) is the protocol by which data is transferred between computers
on the Internet. The task of the Internet Protocol is to deliver distinguished protocol data-
grams2 from the source host to the destination host solely based on their addresses. For this
purpose the Internet Protocol defines addressing methods and structures for datagram encap-
sulation [128]. The IP address is defined as a numerical label assigned to a computer or device
in a network that uses the Internet Protocol to communicate between its nodes. With a given
IP address computers can be specified via a network based on the fact that at a given time
each host on the Internet has a unique IP address.

5.3.6.2 Internet socket

The Internet socket is a mechanism for exchanging data between processes, which can be
either on the same or different machines connected via a network. Bidirectional data transfer
is enabled by the establishment of a socket connection, until one of the endpoints terminates
the connection [129].

An Internet socket consists of a local and a remote socket address. A socket address is a
combination of an IP address and a port number which is utilized to distinguish multiple
applications from each other. Sockets are typically used in conjunction with the Internet pro-
tocols − Transmission Control Protocol (TCP), Internet Protocol (IP) and User Datagram
Protocol (UDP). TCP is a connection-oriented protocol that is responsible for reliable com-
munication between two end processes. UDP is primarily used for broadcasting messages over
a network.

2A datagram is a collection of data that is sent as a single message [127].

5.3. Computational Steering for Orthopaedics 93

Sockets are usually implemented by using application programming interface (API) libraries
such as Berkeley sockets (used on UNIX system) and Windows Sockets (used on Windows
system). Socket interfaces can be divided into three types, datagram sockets which use UDP,
stream sockets which use TCP, and raw sockets which use IP. The socket APIs are relatively
small and simple. Many of the functions are similar to those used in file input/output routines
such as read(), write(), and close(). The actual function calls to use depend on the program-
ming language and the socket library chosen. Development of application programs that use
the API is called socket programming or network programming [130, 131]. The TCP socket
programming interface typically operates in a client-server model, the client sends out requests
to the server, and the server does some processing with the requests received and returns a
reply back to the client. A server-client model for a TCP socket connection is illustrated in
Figure 5.14.

Server Client

socket()socket()

bind()

listen()

accept()

connect()

read()

read()
write()

write()

close()
close()

Blocking until connection from client

Figure 5.14: Socket system call

The system calls socket() and bind() first create a socket on the server which then waits for an
incoming connection from the client using listen() and accept(). The client creates a socket
by calling socket(), from which a request is sent to the server using connect() to establish a
connection. After the establishment of connection, data are exchanged between the server and
client using read() and write() until the termination of one endpoint.

94 5. Computational steering for orthopaedics using the FCM with fast integration

5.3.6.3 Coupling of simulation and visualization

Three approaches for the implementation of computational steering are introduced in Sec-
tion 5.2. They are: program instrumentation, direct scientific computation and recasting
scientific computation. Being an easy-to-implement approach, program instrumentation is se-
lected to reuse the simulation code AdhoC which is modified to provide functions called by the
user via commands transferred through socket network. The socket system implemented for
the computational steering is based on the server-client model depicted in Figure 5.14. After
the socket connection is established, the user can manipulate the steering process through the
user interface, which converts a user’s operations into commands (integer numbers) that are
sent to the simulation kernel. A list of enumerated commands is predefined and stored in both
codes to ensure a common “language” for the communication. According to the command, the
corresponding functions on the simulation kernel are called and executed. Dataflows, either
incoming model information or outgoing stress results, are transferred in binary mode. In the
steering mode, some functions are called iteratively to keep the results updated.

To enhance the communication efficiency, a dedicated data reduction scheme minimizing the
dataflow to be transferred has been implemented. During the steering process when the
implant is moved into the femur, only the indices (1D position number) of the altered voxels
are computed and transferred. These indices (I1D) are computed according to the formula

I1D = Iz · Bx · By + Iy · Bx + Ix , (5.6)

where Ix, Iy and Iz are 3D position indices and Bx, By and Bz are the numbers of voxels in
the data block. The computation takes only a small fraction of the total computational time.
Hence, its impact can be neglected. After receiving the data, the recipient can retrieve the
real positions by inversing Equation (5.6).

5.3.7 Surgical planning system demonstration

A femur model is obtained by CT scanning on a human femur specimen performed on a
Siemens Sensation Cardiac 64 scanning machine with slice thickness of 1.0 mm and pixel size
of 0.74 mm. The CT scans, having a resolution of 256× 256× 512, are directly imported and
the femur voxel model is segmented by thresholding the Hounsfield Unit values. Note that
segmentation is not necessary for the FCM simulation, but only used to support the visual-
ization of surface data of the femur. In addition to the femur model, the geometric model
of a prosthesis is provided in STL format for generating implant voxel models. A material
law relating the Hounsfield Unit value to the Young’s modulus of each voxel as proposed
in [132, 133] is employed. The Poisson’s ratio is set to constant 0.3.

The material law

E =

33900(8.2106 · 10−4HU + 0.057663)2.20 HU ≤ 320

10200(8.2106 · 10−4HU + 0.057663)2.01 HU ≥ 660 [MPa]

5307(8.2106 · 10−4HU + 0.057663) + 469 320 < HU < 660

(5.7)

5.3. Computational Steering for Orthopaedics 95

is provided by the user and is assigned in the code before the program starts. In this example,
two resolution levels 1 × 1 × 1 (new model has the same resolution as the original one) and
2 × 2 × 2 (the resolution of the new model is half of the original one) are selected for the
simulation.

(a) Femur and implant model (b) Finite cell grids of the
model with the origi-
nal resolution

(c) Finite cell grids of
the model with half
resolution

Figure 5.15: Femur model and its meshes

The femur model and the implant model are illustrated in Figure 5.15(a). After establish-
ment of the socket connection, the segmented model and boundary conditions are sent to the
simulation terminal, where computations are carried out. The number of voxels per cell is set
to 10 × 10 × 10 to minimize the total number of cells. From the voxel model finite cells are
generated. Within each cell shape functions of polynomial degree four are used to attain high
accuracy. For saving computational cost voxels below the fixation plane are not accounted for
in the generation process of the grids. Cells that contain only void voxels are discarded leaving
1216 cells for the model at the original resolution level and 238 cells at the half resolution level,
see Figure 5.15(b) and 5.15(c). Initially two loadings are activated: a compression load with
a magnitude of 1500N located at the femur’s head and a tension load with a magnitude of
1125.0N located at the greater trochanter. These two loads reflect the physiological loading
imposed by the body weight and the muscles, respectively. In FCM the loads are applied on
two small interior facets with the area of 4× 4 voxel length horizontally located at the center
of the loading spheres.

In the simulation both the preoperative physiological stress state and the altered stress state
caused by the virtual implantation of a prosthesis model are computed and visualized using
the aforementioned three visualization patterns.

96 5. Computational steering for orthopaedics using the FCM with fast integration

(a) 1×1×1 resolution
level (without im-
plant)

(b) 2 × 2 × 2 resolu-
tion level (with-
out implant)

(c) 1 × 1 × 1 resolu-
tion level (with im-
plant)

(d) 2 × 2 × 2 reso-
lution level (with
implant)

Figure 5.16: von Mises stress distributions visualized in red through ray casting

Figure 5.16 captures the screenshots from a running computation and displays the von Mises
stress distributions of both models in red using volume rendering through ray casting [112].
The simulation results visualized in all figures show good accordance with physical intuition.
Although theoretically the coarser resolution model produces results with a lower accuracy,
apparent differences in von Mises stress indicated by the color intensity can not be observed
due to limitations of this visualization pattern. The computational time for models at two
resolution levels was measured and is tabulated in Table 5.2. Note that this time includes
visualization, simulation and communication. The visualization time is of one or two magni-
tudes lower than the simulation time and is not accounted for in the statics.

The initialization time includes the time of CT data import and transferring, precomputed
matrices setup, and initial stiffness matrices computation, etc. Unlike in many computational
steering systems where a large portion of the time has to be spent in the initialization step, this
system has a quick starting time. The steering time consists of the time of stiffness matrices
update, solution, post-processing, and communication. For the finest model (1×1×1) one new
computation (updating time) takes 8.75s which is, unfortunately, beyond an acceptable time
range for a computational steering. Yet for the coarsened model (2×2×2) one new computation
takes much less time − 0.75s allowing for a quasi real-time computational steering.

An enhanced pattern to the von Mises stress visualization is to visualize the principle stress us-
ing violet (tension) and green (compression) trajectories [113] as shown in Figure 5.17 and 5.18.
Figure 5.17(b) depicts the femur interior stress lines at the physiological state under a body
load. With the same data set, the virtual post-operative stress lines are plotted in 5.17(c). The
implantation of a prosthesis considerably changes the stress distribution and in the new state

5.3. Computational Steering for Orthopaedics 97

Model 1×1×1 2×2×2

DOF 61,368 13,698

Initialization System setup 4.73 2.50
time [s] Stiffness matrices computation 0.78 0.16

Total 5.51 2.66

Updating Stiffness matrices update 0.13 0.04
time [s] Solution 6.94 0.50

(one iteration) Post-processing 1.28 0.18
Communication 0.22 0.03

Total 8.57 0.75

Table 5.2:
Computational steering time measured on a Dell Precision T5500, 24GB Memory, Intel
Xeon W5590 CPU, 3.33GHz, 8 cores

(a) von Mises stress distribution (b) principle stress lines (without
implant)

(c) principle stress lines (with im-
plant)

Figure 5.17: Two visualization patterns on the 1 × 1 × 1 level voxel model

the stress lines are mostly attracted by the prosthesis. This phenomenon coincides very well
with the stress shielding effect mentioned in Section 5.1. To allow a more precise comparison,
the third visualization pattern which exhibits only changes in stresses with yellow (decrease)
and red (increase) colors is depicted in Figure 5.6(c). This novel way of visualization provides
a more direct perception of changes in stress, with which decisions on the selection of an im-
plant can be made relatively easily.

98 5. Computational steering for orthopaedics using the FCM with fast integration

(a) von Mises stress distribution (b) principle stress lines (without
implant)

(c) principle stress lines (with im-
plant)

Figure 5.18: Two visualization patterns on the 2 × 2 × 2 level voxel model

In the following part of the example, an illustrative pre-operative prosthesis selection proce-
dure by applying comparative stress visualizations is suggested. The goal is to show how the
system can ease the selection of a suitable implant based on a patient-specific femur model.
The influences of implant type, implant size and implant position are taken into account. In
total two implant types, each having three sizes are tested in order to illustrate their impact
on the post-operative stress distributions. The testing is separated into two parts: in the first
part, two implant models each representing one type are tested and compared, after which
one implant type is determined for the second part of testing. In the second part, implant
models of the selected implant type with different sizes are tested with respect to different im-
plantation positions. Finally by comparing the resulting comparative stresses, the best-fitting
implant model and its positioning is determined.

In order to allow an interactive selection of implant, a suitable resolution level of the femur
model must be preselected to ensure a smooth steering process before the program is started.
This resolution level depends fully on the initial resolution of the femur model. Generally, a
CT model obtained directly from standard CT images having a resolution of 256 × 256 can
produce more than 600 cells, which are too many for a smooth steering. Hence, a lower reso-
lution level - 2× 2× 2 is chosen, resulting in around 200 cells for the current CT model. The
error induced by the coarsened model is analyzed and quantified in a simpler biomechanical
example presented in Section 5.3.8. In the current example, additional computations on the
model with full resolution are performed in order to provide visual references for comparison.
As a more general implementation, computations at full resolution can be used for fine-tuning.

1st Part: The implant type is determined according to the comparative stresses computed
on two implant models of different types at a fixed implantation position. Figure 5.19 de-
picts the comparative stress visualizations of the normal components on the two models. One

5.3. Computational Steering for Orthopaedics 99

(a) Implant model G2 (b) Implant model em CUT

Figure 5.19: Comparative visualization of post-operative stress changes with respect to different
implant models (both pictures are visualized based on the same color scale)

Figure 5.20: Two implant positions

can read from Figure 5.19(a) that the commonly used G2 implant yields a strong increase in
stress at the region of the greater trochanter and moreover a larger region of stress reduction
in the femur neck and shaft. These changes indicate larger region of stress shielding and
higher possibility of bone loss. In contrast to the G2 implant, the new generation implant
CUT has a much shorter stem which restricts the stress shielding zone to a smaller region,
see Figure 5.19(b). As a result, instead of G2 the implant type CUT is chosen in the first place.

2nd Part: Interactive testings of different implant models were performed at the 2 × 2 × 2

100 5. Computational steering for orthopaedics using the FCM with fast integration

resolution level. To ensure the correctness of a selection, recomputations of the comparative
stress distributions at the 1 × 1 × 1 resolution level were carried out to provide reference so-
lutions. As an approximation to the real implantation context, instead of placing an implant
in the interactive surgery at an arbitrary position, the central point of the implant head is
fixed to the center of the femur head to allow only rotations of the stem. The determination
of the positioning of the implant is thus simplified to only rotation. By studying the stress
changes via rotating the implant stem, the two positions shown in Figure 5.20 are chosen for
comparison.

(a) CI (b) CII (c) CIII

Figure 5.21: CUT Implant models

Figure 5.21 depicts three implant candidates with the same shape but increasing sizes. In the
following they are referred to as CI , CII and CIII .

From the geometric perspective, model CI is suited for the higher position while CII and
CIII are suited for the lower position. Interactive testings were performed to test the three
cases at the 2 × 2 × 2 level. Screenshots of the normal components of the comparative stress
visualization for the three implant models were taken and are displayed in Figure 5.22. From
these figures it can be deduced that for this patient-specific femur model, implantation with
the prosthesis model CI produces the least changes in normal stresses (indicated by smaller
region of changes in stress and lower line intensity in both red and yellow colors), while CII

and CIII impose more stress shielding.

Hence it makes sense to select the model candidate CI as the solution for this patient to mini-
mize stress shielding. To prove our selection and to show more accurate results, computations
at the 1 × 1 × 1 resolution level were performed and the results are depicted in Figure 5.23.
Differences between the two levels of computation can be observed. They are, however, not
pronounced which indicates that the lower level of resolution chosen for the computational
steering already provides sufficient accuracy to judge over the stability of an implant.

In addition to the normal components, the shear components of the comparative stress which
affect the rotational stability of the post-operative integration of implant are also considered.

5.3. Computational Steering for Orthopaedics 101

(a) Implant CI (b) Implant CII (c) Implant CIII

Figure 5.22: Normal components of the comparative stress visualization at the 2 × 2 × 2 resolution
level

(a) Implant CI (b) Implant CII (c) Implant CIII

Figure 5.23: Normal components of the comparative stress visualization at the 1 × 1 × 1 resolution
level

Comparative visualizations of the shear components are shown in Figure 5.24 and 5.25. Ac-
cording to the area and intensity of the red curves which indicate the range and magnitude of
shear components, the largest implant CIII yields the best performance.

With the help of the results of the proceeding simulations, surgeons can now select either
implant CI for minimum stress shielding or implant CIII to achieve a higher implant rotational
stability. The final decision depends on the surgeon’s judgment in terms of the patient’s need.

102 5. Computational steering for orthopaedics using the FCM with fast integration

(a) Implant CI (b) Implant CII (c) Implant CIII

Figure 5.24: Shear components of the comparative stress visualization at the 2 × 2 × 2 resolution
level

(a) Implant CI (b) Implant CII (c) Implant CIII

Figure 5.25: Shear components of the comparative stress visualization at the 1 × 1 × 1 resolution
level

5.3.8 Validation of the surgical planning system by a proximal fe-
mur experiment

This subsection presents the validation of the planning system by means of an example in
which the results of the FCM computation are compared to in vitro experiments on the fresh-
frozen proximal femur which were performed by Yosibash et al. [22].

The bone depicted in Figure 5.26(a) was completely fixed on the bottom and loaded by a load
controlled machine with a constant value of 1000N on the femur top in the vertical direction.
A Solartron DFg5 direct current linear variable displacement transducer (DC-LVDT) was po-
sitioned on a stand arm with its core connected to the loading machine to measure the femur

5.3. Computational Steering for Orthopaedics 103

(a) (b) (c)

Figure 5.26: a: In vitro experiment, b: Femur voxel model, c: finite cell meshes

head vertical displacement. Four uniaxial strain gauges (SGs) were installed on the surface
of the proximal femur at inferior and superior parts of the femur neck and on the medial
and lateral femur shaft, see Figure 5.26(a). The strain values measured by the four SGs and
the displacement value measured by the LVDT are used as reference solutions for the FCM
comparison.

The FCM computations were conducted with the procedures detailed in Section 4.4. A femur
voxel model which is extracted from a QCT scan taken by Yosibash et al. is depicted in
Figure 5.26(b). The QCT scan has a resolution of 512×512×200 with a spacing of 0.78125mm
in the in-plane directions and 0.75mm in the longitudinal direction. As a reasonable approxi-
mation, the femur is assumed to be an inhomogeneous isotropic linear elastic solid. The voxel
Hounsfield unit value as measured by a CT scan is converted to the bone equivalent density
according to

ρEQM [g/cm2] = 10−3 (0.6822 HU − 5.48) (5.8)

The bone density then is related to the Young’s modulus by:

E =

{
10200 (1.22 ρEQM + 0.0523)2.01 HU ≤ 500

5307 (1.22 ρEQM + 0.0523) + 469 HU ≥ 500 [MPa]
(5.9)

A finite cell mesh was generated from the femur voxel model. Cells that contain only voids
are discarded, the remaining 667 cells are shown in Figure 5.26(c). In the FCM analysis the
femur bottom is fixed in three directions and a loading with a value of 1000N is applied on the
top in order to simulate the real loading condition. The analysis is conducted by a uniform

104 5. Computational steering for orthopaedics using the FCM with fast integration

von Mises

27.184

20.000

10.000

0.0218

AA

AA

von Mises

24.127

20.000

10.000

0.0018

Figure 5.27: Cross-sectional views of the von Mises distribution in the proximal femur

p-extension with p = 1, ..., 6. The von Mises stresses are plotted in x-y and x-z cross-sectional
views shown in Figure 5.27. The convergence curve of the strain energy is plotted in Figure
5.28.

st
ra

in
en

er
gy

degrees of freedom N
0 10000 20000 30000 40000 50000 60000 70000 80000 90000

141

142

143

144

145

146

147

148

149

150

151

152

FCM

Figure 5.28: Convergence of strain energy

The principle strains computed by the FCM with p = 4 are listed together with the experimen-
tally measured uniaxial strains in the upper part of Table 5.3. In the FCM computation, the
vertical displacement on the top of the femur is approximated by a point-wise displacement
evaluated on a point located in the center of the top surface. Two types of strain values are

5.3. Computational Steering for Orthopaedics 105

presented: the “point-wise” value gives the principle strain evaluated at exactly the center
point of the strain gauge, while the “surface averaged” value is computed by averaging the
principle strains over the strain gauge surface due to the fact that SG readings are an averaged
value over the length of the SGs.

LVDT SG1 SG2 SG3 SG4

Experiment [µε] Surface -300 -1303 440 -1303 441

Point-wise -295 -1249 806 -1171 436

FCM results [µε] Errore[%] 1.67 4.14 83.18 10.13 0.91

(1 × 1 × 1) Surface NA -1246 765 -1154 440

Errore[%] NA 4.37 73.86 11.43 0.22

Point-wise -291 -1287 786 -1174 479

FCM results [µε] Errore[%] 3.00 1.23 78.63 9.90 8.86

(2 × 2 × 2) Errorf [%] 1.36 3.04 2.48 0.26 9.86

Table 5.3: Comparison of the FCM strain results (p = 4) with experiment. Errore denotes the
relative error with respect to the experiment, while Errorf denotes the relative error with
respect to the FCM results of the model at a higher resolution level

A good agreement between the FCM computation and the experiment is observed except at
the second strain gauge. Concerning this point, the computation were verified by compar-
ing with the FEM result of Yosibash who performed the same analysis with the standard
p-FEM. The average strain value obtained by Yosibash on the second SG is 790 [µε], which
is in good accordance with the FCM result. Hence the large error on SG2 is attributed to a
defaulting of the strain gauge during the experiment.

In [56] a finite element analysis of human bone was performed based on a coarsened voxel
model derived from the voxel model with full resolution. Such a coarsened model has been
used in Section 5.3.7 for the purpose of enabling the computational steering. To evaluate
and quantify the accuracy of computation with coarser models, an additional computation
was carried out on a model coarsened from the resolution of 1 × 1 × 1 to 2 × 2 × 2. The
coarsening is accomplished by averaging the Young’s modulus of eight neighboring voxels.
The new model is then meshed with 124 cells. For comparison purpose only p = 4 is used
in each cell. With the same boundary conditions and SG positions the FCM results of the
second model are shown in the lower part of Table 5.3. The accuracy of the FCM computation
is lower on the coarsened model than on the original one, but is still within an acceptable range.

Measured on an Intel Xeon W5590, 3.33GHz work station with 8 cores, the total computational
time and one computational steering iteration time for the original model (computed with p =

106 5. Computational steering for orthopaedics using the FCM with fast integration

4) is approximately 9 and 4 seconds respectively after parallelization, while for the coarsened
model is 4 seconds and 0.5 seconds.

107

Chapter 6

Conclusions

The finite cell method with fast integration is presented in this thesis. This scheme shows
a remarkable efficiency in computational time on three-dimensional CT-derived models with
complex geometries and multi-material interfaces, like for instance biological hard tissues.
Three numerical examples are given to demonstrate the accuracy of this method by compari-
son with either analytical or numerical reference solutions.

Development of the FCM with fast integration provides a new yet efficient way to handle
biomechanical simulations which naturally possess complicated geometries. Fast simulations
on these geometries, which are difficult to be performed using the traditional FEM are thus
made possible. This method can be implemented in various applications, e.g., a fast and inter-
active tool for patient-specific surgery planning, an efficient homogenization tool for micro-CT
structures, or an analysis tool for probabilistic analysis of human bone’s mechanical behavior.
Further applications of this method are not limited to biomechanical simulations only; any
voxelizable physical model fulfilling the requirement (with either complex geometry or inho-
mogeneous material properties) can be efficiently simulated. However it is not recommended
to implement this scheme for simple structures with regular geometries, which can be solved
with little effort using standard FEM.

Powered by the FCM with fast integration, an interactive preoperative surgical planning sys-
tem has been constructed and is presented in this dissertation. With the advanced simulation
technique and the GPU-based advanced visualization techniques, a quasi real-time computa-
tional steering system is created and can be used for an interactive selection of prostheses.
A planning example is given to demonstrate the efficiency of the system and to clarify the
implant selection procedure. Being a new approach to visualize post-operative stress changes,
the comparative stress visualization is demonstrated to be an effective means for selecting the
type, size and positioning of a patient-specific implant.

The current planning system can provide the images of stress on the screen, according to
which an implant is selected based on the judgment of a surgeon. Further improvement of this
system can be to develop a deterministic selection program, which can determine a unique
implant size and positioning automatically. Furthermore, as the development of computing
power, enabling computational steering at the highest resolution level may be made possible
in the near future.

108 Bibliography

Bibliography

[1] Z. Yosibash, R. Padan, L. Joscowicz, C. Milgrom, A CT-based high-order finite element
analysis of the human proximal femur compared to in-vitro experiments, ASME Journal
of Biomechanical Engineering 129 (2007) 297–309.

[2] J. Parvizian, A. Düster, E. Rank, Finite cell method – h- and p-extension for embedded
domain problems in solid mechanics, Computational Mechanics 41 (2007) 121–133.

[3] A. Düster, J. Parvizian, Z. Yang, E. Rank, The Finite Cell Method for three-dimensional
problems of solid mechanics, Computer Methods in Applied Mechanics and Engineering
197 (2008) 3768–3782.

[4] R. Padan, Towards a Reliable Mechanical Simulation of the Proximal Femur, Master’s
thesis, Ben-Gurion University of the Negev, Beer-Sheva (2006).

[5] C. Clemente, Gray’s Anatomy of the Human Body, Lea & Febiger, 1985.

[6] V. C. Mow, R. Huiskes, Basic Orthopaedic Biomechanics and Mechano-Biology, Lippin-
cott Williams & Wilkins; Third Edition, 2004.

[7] University of London, Bone Ossification & Growth, https://courses.stu.qmul.ac.uk
/smd/kb/microanatomy/bone/index.htm.

[8] A. P. Spence, Basic Human Anatomy, Benjamin-Cummings Pub Co; Third Edition,
1990.

[9] K. U. Leuven, Biomechanics in Dentistry, http://www.feppd.org/ICB-Dent/campus/bi
omechanics in dentistry/ldv data/mech/basic bone.htm.

[10] G. F. Knoll, Radiation Detection and Measurement, John Wiley & Sons (4th Edition),
2010.

[11] G. T. Herman, Foundamentals of computerized tomography: Image reconstruction from
projection, Springer, 2nd Edition, 2009.

[12] S. Henwood, Clinical CT: techniques and practice, Cambridge University Press, 1999.

[13] M. Prokop, Spiral and Multislice Computed Tomography of the Body, Thieme, 2002.

[14] R. Pelberg, W. Mazur, Cardiac CT Angiography Manual, Springer, 2007.

Bibliography 109

[15] D. Mukherjee, S. Rajagopalan, CT and MR Angiography of the Peripheral Circulation:
Practical Approach with Clinical Protocols, CRC Press, 2007.

[16] I. Leichter, A. Bivas, A. Giveon, J. Y. Margulies, A. Weinreb, The relative significance
of trabecular and cortical bone density as a diagnostic index for osteoporosis, Physics in
Medicine and Biology 32(9) (1987) 1167–1174.

[17] H. N. Herkowitz, G. R. Bell, The lumbar spine, Lippincott Williams & Wilkins, 2004.

[18] A. Terrier, J. Miyagaki, H. Fujie, K. Hayashi, L. Rakotomanana, Delay of intracorti-
cal bone remodelling following a stress change: A theoretical and experimental study,
Clinical Biomechanics 20 (2005) 9981006.

[19] E. Schileo, E. DallAra, F. Taddei, A. Malandrino, T. Schotkamp, M. Baleani, M. Vice-
conti, An accurate estimation of bone density improves the accuracy of subject-specific
finite element models, Journal of Biomechanics 41 (2008) 2483–2491.

[20] R. E. Kusy, T. C. Peng, P. E. Hirsch, S. C. Garner, Interrelationships of Bone Ash and
Whole Bone Properties in the Lactating and Parous Rat, Calcif Tissue Int 41 (1987)
337–341.

[21] W. T. Edwards, R. C. McBroom, W. C. Hayes, Variation of density in the vertebral
body measured by quantitative computed tomography, Trans. Orthop. Res. Soc. 11
(1986) 205.

[22] Z. Yosibash, N. Trabelsi, C. Milgrom, Reliable simulations of the human proximal femur
by high-order finite element analysis validated by experimental observations, Journal of
Biomechanics 40 (2007) 3688–3699.

[23] A. H. Karantanas, J. A. Kalef-Ezra, D. C. Glaros, Quantitative computed tomography
for bone mineral measurement: technical aspects, dosimetry, normal data and clinical
applications, British Journal of Radiology 64 (1997) 298–304.

[24] M. Alter, A. Rogers, Science of Flexibility, Human Kinetics Publishers; 3rd Edition,
2004.

[25] T. M. Keaveny, X. E. Guo, E. F. Wachtel, T. A. McMahon, W. C. Hayes, Trabecular
bone exhibits fully linear elastic behavior and yields at low strains, J Biomech 27(9)
(1994) 1127–1136.

[26] A. Mortensen, Concise encyclopedia of composite materials, Elsevier Science; Second
Edition, 2007.

[27] J. C. Rice, S. C. Cowin, J. A. Bowman, On the dependence of the elasticity and strength
of cancellous bone on apparent density, J Biomech. 21 (1988) 155–168.

[28] S. C. Cowin, G. Yang, Averaging Anisotropic Elastic Constant Data, Journal of Elas-
ticity 46 (1997) 151–180.

110 Bibliography

[29] J. C. Lotz, T. N. Gerhart, W. C. Hayes, Mechanical properties of trabecular bone from
the proximal femur: a quantitative CT study, J Comput Assist Tomogr 14(1) (1990)
107–114.

[30] T. S. Keller, Predicting the compressive mechanical behavior of bone, Journal of Biome-
chanics 27(9) (1994) 1159–1168.

[31] J. Catanese, E. P. Iverson, R. K. Ng, T. Keaveny, Heterogeneity of the mechanical
properties of demineralized bone, Journal of Biomechnics 32(12) (1999) 1365–1369.

[32] A. G. Au, A. B. Liggins, V. J. Raso, J. Carey, A. Amirfazli, Representation of bone
heterogeneity in subject-specific finite element models for knee, Computer Methods and
Programs in Biomedicine 99(2) (2010) 154–171.

[33] M. J. Ciarelli, S. A. Goldstein, J. L. Kuhn, D. D. Cody, M. B. Brown, Evaluation
of orthogonal mechanical properties and density of human trabecular bone from the
major metaphyseal regions with materials testing and computed tomography, Journal
of Orthopaedic Research 9 (1991) 674682.

[34] J. Y. Rho, An ultrasonic method for measuring the elastic properties of human tibial
cortical and cancellous bone, Ultrasonics 34(8) (1996) 777–783.

[35] S. M. Lang, D. D. Moyle, E. W. Berg, N. Detorie, A. T. Gilpin, N. J. Pappas, J. C.
Reynolds, M. Tkacik, R. L. Waldron, Correlation of mechanical properties of vertebral
trabecular bone with equivalent mineral density as measured by computed tomography,
The Journal of Bone and Joint Surgery 70(10) (1988) 1531–1538.

[36] T. S. Kaneko, J. S. Bell, M. R. Pejcic, J. Tehranzadeh, J. H. Keyak, Mechanical prop-
erties, density and quantitative CT scan data of trabecular bone with and without
metastases, Journal of Biomechanics 37(4) (2004) 523 – 530.

[37] P. Augat, T. Link, T. F. Lang, J. C. Lin, S. Majumdar, G. H. K., Anisotropy of the elas-
tic modulus of trabecular bone specimens from different anatomical locations, Medical
Engineering & Physics 20 (1998) 124–131.

[38] C. E. Hoffler, K. E. Moore, K. Kozloff, P. K. Zysset, S. A. Goldstein, Age, Gender,
and Bone Lamellae Elastic Moduli, The Journal of Bone and Joint Surgery 18 (2000)
132–143.

[39] M. Hobatho, J. Rho, R. Ashman, Anatomical variation of human cancellous bone me-
chanical properties in vitro, Stud Health Technol Inform 40 (1997) 157–173.

[40] The Internet Encyclopedia of Science, Femur, http://www.daviddarling.info/encycl
opedia/F/femur.html.

[41] The American Heritage Medical Dictionary, Houghton Mifflin Harcourt, 2008.

[42] M. Schünke, E. Schulte, U. Schumacher, PROMETHEUS Lernatlas der Anatomie. All-
gemeine Anatomie und Bewegungssystem, Thieme, Stuttgart, 2005.

Bibliography 111

[43] L. Medical Internet Solutions, Anatomy of the Knee, http://www.aclsolutions.com
/anatomy.php.

[44] J. C. Koch, The laws of bone architecture, Am. J. Anat. 21 (1917) 177–298.

[45] A. Maciel, Biomechanics of Hip Joint Capsule, Computer Graphics Lab, Institute of
Computing and Multimedia Systems, School of Computer and Communication Sciences,
Swiss Federal Institute of Technology (2002).

[46] J. Grunewald, Die Beanspruchung der Lagen Rohrenknochen des Menschen, Z Orthop
Chir 39 (1920) 27–49.

[47] P. Marique, Etudes sur le femur, Libr. Sci. Bruxelles (1945) 1–180.

[48] E. C. Case, A possible explanation of fenestration in the primitive reptilian skull, with
notes on the temporal region of the genus Dimetrodon, Contributions from the Museum
of Geology, University of Michigan 2(1) (1984) 1–12.

[49] I. Hvid, Mechanical strength of trabecular bone at the knee, Dan Med Bull 35(4) (1988)
345–365.

[50] P. Lafortune, C. E. Aubin, H. Boulanger, I. Villemure, K. M. Bagnall, A. Moreau,
Biomechanical simulations of the scoliotic deformation process in the pinealectomized
chicken: a preliminary study, Scoliosis 2(16).

[51] R. Ruimerman, Modeling and remodeling in bone tissue, Ph.D. thesis, Technische Uni-
versiteit Eindhoven (2005).

[52] T. Ota, I. Yamamoto, R. Morita, Fracture simulation of the femoral bone using the finite-
element method: How a fracture initiates and proceeds, Journal of Bone and Mineral
Metabolism 17(2) (1998) 108–112.

[53] P. K. Tomaszewski, N. Verdonschot, S. K. Bulstra, G. J. Verkerke, A Comparative Finite-
Element Analysis of Bone Failure and Load Transfer of Osseointegrated Prostheses
Fixations, Annals of Biomedical engineering 38(7) (2010) 2418–2427.

[54] J. Cegonino, J. M. Garćıa Aznar, M. Doblaré, D. Palanca, B. Seral, F. Seral, A Com-
parative Analysis of Different Treatments for Distal Femur Fractures using the Finite
Element Method, Computer Methods in Biomechanics and Biomedical Engineering 7(5)
(2004) 245–256.

[55] M. Viceconti, L. Bellingeri, L. Cristofolini, A. Toni, A comparative study on different
methods of automatic mesh generation of human femurs, Medical Engineering & Physics
20 (1998) 1–10.

[56] J. H. Keyak, J. M. Meagher, H. B. Skinner, C. D. Mote, Automated three-dimensional
finite element modelling of bone: a new method, Journal of Biomedical Engineering 12
(1990) 389–397.

112 Bibliography

[57] B. v. Rietbergen, H. Weinans, R. Huiskes, A. Odgaard, A new method to determine tra-
becular bone elastic properties and loading using micromechanical finite-element models,
Journal of Biomechanics 28(1) (1995) 69–81.

[58] D. P. Fyhrie, M. S. Hamid, R. F. Kuo, S. M. Lang, Direct three dimensional finite
element analysis of human vertebral cancellous bone, in: Transactions of the 38th Annual
Meeting of the Orthopaedic Research Society, ORS, 1992, p. 551.

[59] O. Zienkiewicz, R. Taylor, The Finite Element Method – The Basis, 5th Edition, Vol. 1,
Butterworth-Heinemann, 2000.

[60] K. J. Bathe, Finite element procedures, Prentice Hall, 1996.

[61] T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis, Dover Publications, 2000.

[62] B. A. Szabó, I. Babuška, Finite Element Analysis, John Wiley & Sons, 1991.

[63] P. D. Lax, A. N. Milgram, ”parabolic equations”. Contributions to the theory of partial
differential equations., Annals of Mathematics Studies, Princeton University Press 33
(1954) 167–190.

[64] N. S. Ottosen, M. Ristinmaa, The Mechanics of Constitutive Modeling, Elsevier Science,
2005.

[65] I. Babuška, T. Strouboulis, The finite element method and its reliability, Oxford Uni-
versity Press, 2001.

[66] J. Stewart, Calculus: Concepts and Contexts, Brooks Cole, 2009.

[67] D. W. Pepper, J. C. Heinrich, The finite element method: basic concepts and applica-
tions, Taylor & Francis, 1992.

[68] H. Bungartz, M. Schäfer, Fluid-structure interaction, Springer, 2006.

[69] A. Düster, High order finite elements for three-dimensional, thin-walled nonlinear con-
tinua, Ph.D. thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Ver-
messungswesen, Technische Universität München (2001).

[70] A. Düster, H. Bröker, E. Rank, The p-version of the finite element method for three-
dimensional curved thin walled structures, International Journal for Numerical Methods
in Engineering 52 (2001) 673–703.

[71] P. Neittaanmäki, D. Tiba, An embedding of domains approach in free boundary prob-
lems and optimal design, SIAM Journal on Control and Optimization 33 (5) (1995)
1587–1602.

[72] B. A. Szabó, A. Düster, E. Rank, The p-version of the Finite Element Method, in:
E. Stein, R. de Borst, T. J. R. Hughes (Eds.), Encyclopedia of Computational Mechanics,
Vol. 1, John Wiley & Sons, 2004, Ch. 5, pp. 119–139.

Bibliography 113

[73] M. Ruess, D. Tal, N. Trabelsi, Z. Yosibash, E. Rank, The finite cell method for bone
simulations: verification and validation, submitted to Biomechanics and Modeling in
Mechanobiology.

[74] D. Schillinger, A. Düster, E. Rank, The hp-d adaptive finite cell method for geometrically
nonlinear problems of solid mechanics, submitted to International Journal for Numerical
Methods in Engineering.

[75] L. Zhang, T. Cui, H. Liu, A set of symmetric quadrature rules on triangles and tetrahe-
dra, Journal of Computational Mathematics 27 [1] (2009) 89–96.

[76] J. Savage, A. Peterson, Quadrature rules for numerical integration over triangles and
tetrahedra, IEEE Antennas and Propagation Magazine 38 [3] (1996) 100–102.

[77] G. R. Cowper, Gaussian quadrature formulas for triangles, Internal Journal for Numer-
ical Methods in Engineering 7 [3] (1973) 405–408.

[78] S. Osher, R. Fedkiw, Level-Set Methods and Dynamic Implicit Surfaces, Springer, 2003.

[79] J. A. Sethian, Level-Set Methods and Fast Marching Methods, Cambridge University
Press, 1999.

[80] F. W. Liou, Rapid prototyping and engineering applications, CRC Press, 2007.

[81] P. Wenisch, C. van Treeck, A. Borrmann, E. Rank, O. Wenisch, Computational steering
on distributed systems: indoor comfort simulations as a case study of inter-active cfd on
supercomputers, International Journal of Parallel, Emergent and Distributed Systems
22 (4) (2007) 275–291.

[82] Le Telephone, http://www.3dvia.com/models/F86CE0EEC0D2E4F6/le-telephone.

[83] B. v. Rietbergen, Computational Strategies for Iterative Solutions of Large FEM Appli-
cations Employing Voxel Data, International Journal for Numerical Methods in Engi-
neering 39 (1996) 2743–2764.

[84] A. Alberich-Bayarri, D. Moratal, L. Marti-Bonmat, M. Salmeron-Sanchez, A. Valles-
Lluch, L. Nieto-Charques, J. J. Rieta, Volume Mesh Generation and Finite Element
Analysis of Trabecular Bone Magnetic Resonance Images, in: Conf Proc IEEE Eng
Med Biol Soc, 2007, pp. 1603–1606.

[85] J. J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, Algorithm 679: A set of Level 3
Basic Linear Algebra Subprograms, ACM Trans. Math. Soft. 16 (1990) 18–28.

[86] BLAS (Basic Linear Algebra Subprograms), http://www.netlib.org/blas/index.html.

[87] U. Heißerer, AdhoC 4 – Technical Guide, Lehrstuhl für Bauinformatik, Technische Uni-
versität München (2007).

[88] O. Schenk, K. Gärtner, Solving Unsymmetric Sparse Systems of Linear Equations with
PARDISO, Journal of Future Generation Computer Systems 20(3) (2004) 475–487.

114 Bibliography

[89] O. Schenk, K. Gärtner, On fast factorization pivoting methods for symmetric indefinite
systems, Elec. Trans. Numer. Anal. 23 (2006) 158–179.

[90] A. Henderson, ParaView Guide, A Parallel Visualization Application, Kitware Inc
(2007).

[91] E. Perilli, F. Baruffaldi, M. Visentin, B. Bordini, F. Traina, A. Cappello, M. Viceconti,
MicroCT examination of human bone specimens: effects of polymethylmethacrylate
embedding on structural parameters, Journal of Microscopy 225 (2007) 192–200.

[92] F. Baruffaldi, E. Perilli, Human bone biopsy, 3D model Bn 326 3D.stl, From: The BEL
Repository, http://www.tecno.ior.it/VRLAB/.

[93] J. Schöberl, NETGEN, http://www.hpfem.jku.at/netgen/index.html.

[94] SIMULIA, ABAQUS, http://www.simulia.com/products/abaqus standard.html.

[95] healthinfotranslations.com, Total hip replacement, http://www.healthinfotranslatio
ns.com/pdfDocs/Total Hip Replacement BOS.pdf.

[96] B. A. MacWilliams, D. R. Wilson, J. D. DesJardins, J. Romero, E. Y. Chao, Hamstrings
cocontraction reduces internal rotation, anterior translation, and anterior cruciate liga-
ment load in weight-bearing flexion, Journal of Orthopaedic Research 17 (1999) 817–822.

[97] Villoy Implants, http://villoy.com/Villoy%20Implants%20V-200%20V-250%20Hip%2
0Stem.html.

[98] E. Kuhl, F. Balle, Computational Modeling of Hip Replacement Surgery: Total Hip
Replacement vs. Hip Resurfacing, TECHNISCHE MECHANIK 25 (2005) 107–114.

[99] E. F. McCarthy, J. S. Khurana, P. J. Zhang, Essentials in Bone and Soft-Tissue Pathol-
ogy, Springer, 2009.

[100] V. C. Mow, R. Huiskes, Basic Orthopaedic Biomechanics and Mechano-biology, Lippin-
cott Williams & Wilkins, 2005.

[101] N. Verdonschot, R. Huiskes, Mechanical effects of stem-cement interface characteristics
in total hip replacement, Clinical Orthopaedics & Related Research 329 (1996) 326–336.

[102] H. Weinans, R. Huiskes, Trends of mechanical consequence and modeling of a fibrous
membrane around femoral hip prostheses, IEEE Computational Science & Engineering
23 (1990) 991–1000.

[103] S. Saha, A. Roychowdhury, Application of the Finite Element Method in Orthopedic
Implant Design, Journal of Long-term Effects of Medical Implants 19 [1] (2009) 55– 82.

[104] T. Günter, B. Merz, R. Mericske-Stern, J. Schmitt, R. Leppek, M. Lengsfeld, Testing
dental implants with an in vivo finite element model, Biomedizinische Technik. Biomed-
ical engineering 45 (10) (2000) 272–276.

Bibliography 115

[105] R. v. Liere, J. D. Mulder, J. v. Wijk, Computational steering, Future Generation Com-
puter Systems 12 (1997) 441–450.

[106] A. Borrmann, P. Wenisch, M. Egger, C. van Treeck, E. Rank, Collaborative Com-
putational Steering: Interactive collaborative design of ventilation and illumination of
operating theatres, ICE08, Plymouth.

[107] S. G. Parker, D. Beazley, C. R. Johnson, Computational Steering Software System and
Strategies, IEEE Computational Science & Engineering 4 (1997) 50–59.

[108] N. Sugano, K. Ohzono, T. Nishii, K. Haraguchi, T. Sakai, T. Ochi, Computed-
tomography-based computer preoperative planning for total hip arthroplasty, Computer
Aided Surgery 6 (1998) 320–324.

[109] S. Eggli, M. Pisan, M. Miiller, The value of preoperative planning for total hip arthro-
plasty, Journal of Bone and Joint Surgery 80B (1998) 382–390.

[110] A. M. DiGioia, D. Simon, B. Jaramaz, M. Blackwell, The value of preoperative planning
for total hip arthroplasty, Computer Assisted Orthopaedic Surgery Symposium 80B
(1995) 382.

[111] D. Bongini, M. Carfagni, L. Governi, A semiautomatic computer program for selecting
hip prosthesis femoral components, Computer Methods and Programs in 3 63(2) (2000)
105–115.

[112] C. Dick, J. Georgii, R. Burgkart, R. Westermann, Computational Steering for Patient-
Specific Implant Planning in Orthopedics, In Proceedings of Visual Computing for
Biomedicine (2008) 83–92.

[113] C. Dick, J. Georgii, R. Burgkart, R. Westermann, Stress Tensor Field Visualization for
Implant Planning in Orthopedics, IEEE Transactions on Visualization and Computer
Graphics 15(6) (2009) 1399–1406.

[114] M. Riedel, W. Frings, T. H. Eickermann, S. Habbinga, P. Gibbon, D. Mallmann,
A. Streit, F. Wolf, T. H. Lippert, Collaborative Interactivity in Parallel HPC Appli-
cations, Springer US, 2010.

[115] J. Vetter, K. Schwan, High performance computational steering of physical simulations,
Proceedings of the 11th International Symposium on Parallel Processing, IPPS 97 (1997)
128–132.

[116] K. Manjunathachari, K. Satyaprasad, Modeling and simulation of parallel processing
architecture for image processing, Journal of Theoretical and Applied Information Tech-
nology 3 (2007) 1–11.

[117] A. Düster, M. Rücker, AdhoC 3 – User’s Guide, Lehrstuhl für Bauinformatik, Technische
Universität München (2001).

[118] A. Düster, H. Bröker, H. Heidkamp, U. Heißerer, S. Kollmannsberger, R. Krause,
A. Muthler, A. Niggl, V. Nübel, M. Rücker, D. Scholz, AdhoC 4 – User’s Guide, Lehrstuhl
für Bauinformatik, Technische Universität München (2004).

116 Bibliography

[119] H. Effenberger, A. Heiland, T. Ramsauer, W. Plitz, U. Dorn, A model for assessing
the rotational stability of uncemented femoral implants, Archives of Orthopaedic and
Trauma Surgery 121 (1-2) (2000) 60–64.

[120] A. Niggl, E. Rank, R.-P. Mundani, H.-J. Bungartz, Organizing a p-Version Finite Ele-
ment Computation by an Octree-Based Hierarchy, in: Proc. of the Int. Conf. on Adaptive
Modeling and Simulation, 2005.

[121] B. Chapman, G. Jost, R. van der Pas, Using OpenMP, The MIT Press, 2007.

[122] A. Kiessling, An Introduction to Parallel Programming with OpenMP, http://www.ro
e.ac.uk/ifa/postgrad/pedagogy/2009 kiessling.pdf.

[123] A. George, Nested Dissection of a Regular Finite Element Mesh, SIAM Journal on
Numerical Analysis 10 (1973) 345–363.

[124] M. Bader, C. Zenger, A fast solver for convection diffusion equations based on nested
dissection with incomplete elimination, in: Euro-Par 2000 Parallel Processing, 2000, pp.
795–805.

[125] P. Charrier, J. Roman, Partitioning and Mapping for Parallel Nested Dissection on
Distributed Memory Architectures, in: Lecture Notes In Computer Science, 1992, pp.
295–306.

[126] Y. Zhuang, J. Canny, Real-time Global Deformations, in: Algorithmic and computa-
tional robotics, 2001, pp. 97–105.

[127] C. Hedrick, Introduction to the Internet Protocols, Australian UNIX systems User Group
Newsletter 10 (1) (1989) 75 – 76.

[128] K. Siyan, Inside TCP/IP: a comprehensive introduction to protocols and concepts, New
Riders Pub, 1997.

[129] R. Tougher, Linux Socket Programming In C++, http://tldp.org/LDP/LG/issue74
/tougher.html.

[130] W. R. Stevens, B. Fenner, A. M. Rudoff, UNIX Network Programming: The sockets
networking API, Addison-Wesley, 2004.

[131] S. Rai, An Introduction to Socket Programming, http://www.ee.lsu.edu/suresh/pr
og4710/handout1.pdf.

[132] J. H. Keyak, Y. Falkinstein, Comparison of in situ and in vitro CT scan-based finite
element model predictions of proximal femoral fracture load, Medical Engineering and
Physics 25(9) (2003) 781–787.

[133] J. H. Keyak, I. Y. Lee, H. B. Skinner, Correlations between orthogonal mechanical
properties and density of trabecular bone: Use of different densitometric measures,
Journal of Biomedical Materials Research 28(11) (1994) 1329–1336.

