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Abstract 
 

While rapid and low-cost product development (PD) processes have been identified as a 

primary success factor for companies in highly competitive markets, the simultaneous 

reduction of development cost and lead-time is not possible. In reality, a time-cost tradeoff 

situation arises as organizations seek the fastest PD process subject to a predefined budget, or 

vice-versa, identifying the lowest cost PD process for a given project duration. Identifying the 

set of all best time-cost tradeoff solutions constitutes a fundamental optimization problem in 

the engineering- and operations management literature. It is of great practical relevance since 

PD processes may involve a substantial amount of costly resources employed over an 

extended period of time. Despite its thorough study in past decades, previous research was 

based on limiting assumptions, which are challenged in this thesis. Thus, the underlying work 

intends to overcome previous research deficits in order to derive new managerial insights 

which contribute to our improved understanding of PD processes and ultimately better 

products, too.  

For this purpose, we first introduce a new model for PD processes simultaneously 

accounting for cyclic process architectures, overlapping, crashing and work policy. These four 

process parameters can be considered as the most fundamental as they considerably affect 

process time/cost. Past research on the time-cost tradeoff problem in PD merely considered 

one or two of these parameters jointly, but not all four. Next, we conduct a sensitivity analysis 

of this complex model using simulation in order to examine the effects of the aforementioned 

parameters on process time/cost. Subsequently, we propose an optimization strategy capable 

of identifying the set of all best time-cost tradeoffs solutions for a PD process. Finally, a PD 

process in the aerospace industry as well as a process in the automotive industry served as 

case study for our new model, simulation and optimization approach thereby verifying 

insights derived from artificially constructed processes throughout the thesis. 

Among other insights and findings, this work reveals that time-cost tradeoffs in PD may 

not only emerge from modifications of process architecture, crashing- or overlapping strategy 

– which is the current state of knowledge – but also from work policy rules. Furthermore, our 

investigation indicates that feedbacks economically favor the application of crashing and 

overlapping. To some extent, we hence claim that the temporal benefits of process time 

cutting strategies in PD outweigh their cost related drawbacks with increasing process 

dynamics. Also, we discovered that increasing parallel information flows within a PD process 

economically foster the application of crashing and overlapping. Last but not least, we could 

derive scale-up behaviors for PD process time and cost as a function of various parameters. 
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0. Nomenclature 
 

 

0.1 Abbreviations 

AoA 

AoN 

CE 

CPM 

DSM 

GA 

GERT 

LHS 

MOEA 

MOGA 

MOO 

MOOP 

PD 

PDF 

PERT 

SOO 

SOOP 

UCAV 

WBS 

Activity-on-Arc network 

Activity-on-Node network 

Concurrent Engineering 

Critical Path Method 

Design Structure Matrix 

Genetic Algorithm 

Graphical Evaluation and Review Technique 

Latin Hypercube Sampling 

Multi-Objective Evolutionary Algorithm 

Multi-Objective Genetic Algorithm 

Multi-Objective Optimization 

Multi-Objective Optimization Problem 

Product Development 

Probability Density Function 

Program Evaluation and Review Technique 

Single-Objective Optimization 

Single-Objective Optimization Problem 

Unmanned Combat Aerial Vehicle 

Work Breakdown Structure 

 

0.2 Symbols 

M1 Design Structure Matrix with rework probabilities 

M2 Design Structure Matrix with rework impacts 

M3 Design Structure Matrix with minimal overlapping available intensities without 



II 

rework penalty 

M4 Design Structure Matrix with maximal overlapping needed intensities without 

rework penalty 

M5 Design Structure Matrix with minimal overlapping available intensities 

M6 Design Structure Matrix with maximal overlapping needed intensities 

F* Pareto front 

F*ε Pareto front containing only ε-dominated vectors 

X
*
 Decision space 

Y
*
 Objective space 

A Decision vector 

B Decision vector 

C Vector with sampled cost values for every activity 

D 

H 

I 

Vector with sampled duration values for every activity 

Vector with active activities during process simulation 

Vector with inactive activities during process simulation 

L Vector with learning curve values for cost and duration for every activity 

P Vector containing a permutation encoded as random keys 

Pi Vector containing all chronologically precedent activities of activity i 

R Vector with maximal crashing intensities for every activity 

S Vector that accounts for the activity sequence in the process 

X Decision vector 

Y Objective vector 

ci Sampled cost of activity i 

îc
 

Maximal cost of activity i 

ic
 

Most likely cost of activity i 

ic
 

Minimal cost of activity i 

ctot Total process cost considering crashing cost and overlapping cost 

ctot/c Total process cost without consideration of crashing cost 

ctot/o Total process cost without consideration of overlapping cost 

 i ic k  
Actual cost of activity i in the ki-th iteration of activity i 

 i ic k  
Actual cost of activity i in the ki-th iteration of activity i considering rework 

impact and learning effects 

 i iC k
c

 
Change in cost of activity i due to crashing in the ki-th iteration of activity i 



III 

 i iO k
c

 
Change in cost of activity i due to an overlapping with all chronological 

predecessors in the ki-th iteration of activity i 

 i iR k
c  Change in cost of activity i in the ki-th iteration due to partial rework 

/totc cc  Change in cost in percent of the total process cost due to crashing 

  
ij i j

ij O k ,k
h t  

Overlapping function: duration of rework due to an overlapping between activity 

i and j in the ki-th iteration of activity i and the kj-th iteration of activity j 

  
ij i j

ij O k ,k
ĥ t

 
Maximal duration of rework due to an overlapping between activity i and j  in 

the ki-th iteration of activity i and the kj-th iteration of activity j 

ki Iteration number for activity i  

ik̂  Maximal number of iterations allowed for activity i provoked by any other 

activity 

li Learning curve value of activity i for cost and duration 

nA Number of activities in the process 

nB Number of bits used to encode crashing and overlapping intensities 

nR Number of reworked activities in the process 

nfb Number of feedback relationships in a process 

nff Number of feed-forward relationships in a process 

nr,i Maximal number of partial reworks for an activity i 

 ,ij i jD k k
o

 
Percentage of activity i’s duration when it delivers the output in the ki-th iteration 

for activity j in the kj-th iteration 

 ,ij i jR k k
o

 
Percentage of activity j’s duration when it receives the output in the ki-th 

iteration from activity i in the ki-th iteration 

pc Crossover probability 

pm Mutation probability 

îr  Maximal crashing intensity for activity i 

 i ir k  Actual crashing intensity for activity i in the ki-th iteration of activity i 

ttot
 

Total process duration 

tott̂  Maximal process duration (out of a set of process durations) 

tott̂  Minimal process duration (out of a set of process durations) 

ttot/c
 

Total process duration without consideration of crashing 

ttot/o
 

Total process duration without consideration of overlapping 

ti Sampled duration of activity i 

ît
 

Maximal duration of activity i 



IV 

it  
Most likely duration of activity i 

it  Minimal duration of activity i 

 i it k  
Actual duration of activity i in the ki-th iteration of activity i 

 i it k  
Actual duration of activity i in the ki-th iteration of activity i considering rework 

impact and learning effects 

 ij i jO k ,k
t  Overall duration of overlapping between activity i and j in the ki-th iteration of 

activity i and the kj-th iteration of activity j 

 ij i jO k ,k
t

 
Overall duration of overlapping between activity i and j considering the dates 

 ,ij i jR k k
T  and 

 ,ij i jD k k
T   

 i iC k
t

 
Change in duration of activity i due to crashing in the ki-th iteration of activity i 

 i iO k
t

 
Change in duration of activity i due to rework caused by an overlapping between 

activity i and all its chronological predecessors in the ki-th iteration of activity i 

 
i iR k

t  Change in duration of activity i in the ki-th iteration due to partial rework 

/tott ct
 

Change in duration in percent of the total process duration due to crashing 

  i i iR r k  
Crashing function generating a dimensionless value in dependence of crashing 

intensity in the ki-th iteration of activity i 

TE Point in time for the next event of the discrete event simulation 

IT  Minimal finish time of all inactive activities 

DT  Minimal point in time when an active activity is allowed to deliver output to any 

other activity 

 i is k
T

 
Start time of activity i in the ki-th iteration of activity i 

 i if k
T

 
Finish time of activity i in the ki-th iteration of activity i 

 ,ij i jA k k
T

 
Point in time in the ki-th iteration of activity i when the output of activity i is 

fully available for activity j in the kj-th iteration 

 ,ij i jD k k
T

 
Point in time in the ki-th iteration of activity i when the output of activity i is 

effectively delivered for activity j in the kj-th iteration 

 ,ij i jN k k
T

 
Point in time in the kj-th iteration of activity j when activity j needs the input of 

activity i in the ki-th iteration 

 ij i jO k ,k
T

 
Point in time in the ki-th iteration of activity i and the kj-th iteration of activity j 

to overlap activity i and j 

 ,ij i jR k k
T

 
Point in time in the kj-th iteration of activity j when activity j effectively receives 



V 

the input of activity i 

  Factor for the crashing function with  0,   

ij  Factor for the overlapping function with  0, ij
 

  Coefficient for calculation of rework in case of simultaneous overlapping events 

with  ,0   

i
 

Cumulative rework factor for activity i 

i  Brooks factor for activity i 

ij Product of learning curve value and rework impact 

  Crashing effect parameter which is the ratio for the time change due to crashing 

in percent of total process duration and the cost change due to crashing in percent 

of total cost 

ς Factor indicating the priority of ψ in favor of cost or duration 

τ Factor indicating the priority of ϕ in favor of cost or duration 

 i ik
 

Factor for rework cost due to overlapping for activity i in iteration ki 

  Overlapping effect parameter which is the ratio for the time change due to 

overlapping in percent of total process duration and the cost change due to 

overlapping in percent of total cost 

 i ik  
Product of crashing intensity for activity i in iteration ki and Brooks factor  
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1. Introduction 
 

1.1 Motivation 

The product development process  

Organizations face tremendous challenges to gain and sustain a competitive advantage in a 

mass-customized, global market. In such an environment, rapid, frugal, and effective product 

development (PD) has been identified as a source of competitive advantage (Clark and 

Fujimoto 1991, Langerak and Hultink 2005). Consequently, PD has received extensive 

consideration in the literature (Krishnan and Ulrich 2001). Ulrich and Eppinger (2004) 

defined PD as “(…) the set of activities beginning with perception of a market opportunity 

and ending with the production, sale, and delivery of a product”. The collection of these 

various activities and their dependency relationships (or interfaces) constitutes the PD 

process. Thereby, activities represent system elements and their corresponding information 

flows among each other form the system relationships. Thus, PD processes can be regarded as 

systems and therefore benefit from the application of systems thinking and the tenets of 

systems engineering (Browning and Eppinger 2002). It is important to note that PD processes 

often involve creativity and experimentation, and thus can be highly iterative – as opposed to 

other types of processes like production- or assembly processes – exchanging information 

rather than hardware components. Eppinger (2001) actually described the exchange of 

information as “(…) the lifeblood of product development”. Consequently, the information 

flow within the PD process, more precisely its structure, greatly affects its cost, duration and 

quality since it determines the point in time when activities receive or deliver 
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Figure 1.1: A generic product development process (adapted from Ulrich and Eppinger, 2004). 

 

necessary information from, or to, other activities. Information flows in PD occur on a top-

level between activities as well as on the bottom level within each activity (Bhuiyan 2004). 

Although Ulrich and Eppinger (2004) define a generic PD process (Figure 1.1) on a macro-

level (i.e. process level) composed of six phases, PD processes may slightly differ even on a 

high-level view from firm to firm or within the same enterprise for similar projects – not to 

speak of a micro level (i.e. activity level) view with individual activities in place of entire 

development phases. According to Ulrich and Eppinger (2004), such variants of the generic 

PD process particularly depend on the type of product to be developed.
1
  

 

Measures of PD success 

Whereas a broad survey of PD research reveals differences in how PD is actually executed in 

companies (Krishnan and Ulrich 2001), the measures of PD performance are fortunately less 

variant. Consistent with Ulrich and Eppinger (2004) the success of PD can be mainly assessed 

along five dimensions: product quality, product cost, development time, development cost, 

and development capability. Due to our focus on the development process, we only 

considered development time and development cost in this thesis, taking the other three 

criteria as given.
 
Both, development time and cost strongly vary with the complexity of the 

underlying product to be developed. For instance, the development of a screwdriver may take 

only one man-year of development time and about €150k development cost (Ulrich and 

Eppinger 2004) while the entire PD process for the Airbus A380 airplane roughly last 5 years
2
 

                                                 
1They classify products into 8 types: 1) market-pull products 2) technology-push products 3) platform products 4) process 

intensive products 5) customized products 6) high-risk products 7) quick-build products and finally 8) complex systems.   
2 The development history of this aircraft can be traced back to the 1980s. Though, Airbus officially announced the 

development in December 2000.  
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with thousands of engineers being involved and cost approximately €12 billion
3
 when the first 

aircraft was completed.  

 

Strategies to reduce PD time and cost 

Many independent studies and empirical investigations have confirmed a direct relationship 

between  the economic success of a new product and quick PD processes (Calantone and Di 

Benedetto 2000, Tatikonda and Montoya-Weiss 2001, Chen et al. 2005). Clearly, developing 

products faster than competitors allows a company to gain a larger marketing window and 

potentially a first-mover advantage (Lieberman and Montgomery 1988) which may be 

decisive for success assuming distinct market conditions.
4
 Therefore, numerous PD cycle time 

cutting methods and tools have been proposed in the past. Most notably in this context is a 

systematic approach called Concurrent Engineering (CE). This approach reflects an 

engineering management philosophy composed of an entire set of principles across different 

management domains that jointly accelerate PD processes, decrease PD cost and improve 

process quality (Funk 1997, Yassine and Braha 2003). Rediscovered in the late 1970’s and 

early 1980’s
5
, particularly in the USA, the benefits of CE can be achieved through a 

combination of overlapping phases, cross-functional integration and analytical tools such as 

design for assembly, quality function deployment or computer-aided design (Funk 1997). 

However, if we merely focus on the enhancements related to the PD process itself, then two 

distinct approaches can be identified in literature and in practice.  

The first one takes a macro perspective of the development process considering the 

dependency relationships amongst the constituent development phases or activities. The 

objective is to find an optimal arrangement or sequence for these development activities based 

on their dependency or precedence relationships. Such an arrangement of activities and their 

                                                 
3 www.manager-magazin.de (12.01.2005). 
4 Though, potential drawbacks for first-mover’s exist as well (see Lieberman and Montgomery 1988). 
5 In fact, Smith (1997) could even trace back the fundamentals of CE until the end of the 19th century. 
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pattern of interaction is referred to as process structure or process architecture (Browning and 

Eppinger 2002). An optimal arrangement provides a streamlined development process subject 

to a defined objective (e.g. minimal lead-time).  

The second approach to accelerate development processes assumes an established 

process architecture and attempts to reduce lead time further through activity crashing and/or 

overlapping. While crashing attempts to shorten the PD process with intra-activity changes by 

adding resources to an activity, overlapping considers inter-activity relationships.  

 

Time-Cost tradeoffs in PD 

In fact, significant progress has been made as many firms could cut cycle time of their PD 

processes in half (Smith and Reinertsen 1997) by applying enhancement techniques like the 

ones mentioned in the previous paragraph. Nevertheless, the potential strategic advantage of 

expediting PD processes is typically accomplished at the expense of augmented cost. 

Streamlining the process architecture, adding resources to bottleneck activities and 

overlapping entire design phases may help to shorten lead-time but not necessarily to reduce 

cost. These methods may provoke activity iteration and activity rework
6
 or they assign 

additional resources (e.g. staff) to the project which greatly affects the budget since cost in PD 

is mainly governed by project duration and the number of people allocated to it (Ulrich and 

Eppinger 2004).  

Indeed, we do not want to preclude the possibility of developing PD processes which 

are optimal with respect to both dimensions. However, in practice, managers rather face time-

cost tradeoff decisions when planning PD processes. In order to facilitate this decision 

process, they are especially interested in a specific set of processes exclusively composed of 

the best trade-off processes, i.e. a subset of all possible processes featuring the fastest lead-

time for a certain budget. Such a set containing all best trade-off solutions is called Pareto-

                                                 
6 We will explain the genesis of activity iteration and rework in chapter 2. 
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front and its calculation for PD processes is a well-known, non-trivial, problem in project 

management. Nevertheless, related publications to date rely on limiting assumptions hence 

degrading the practical relevance of the presented results and insights. In particular, the 

structure of PD processes was assumed to be acyclic thereby neglecting potential activity 

rework. In order to provide some empirical evidence for this issue, let us briefly devote our 

attention to the performance of PD projects in recent years. 

 

Cost and schedule overruns in PD 

Despite all advances in project management techniques and impressive progress regarding 

project planning and estimation, cost and schedule (c/s) overruns for PD projects still persist 

across industry. Particularly c/s overruns of recent large-scale projects in the aerospace 

industry hit the headlines. For instance, Airbus had to spend about €2.2 billion extra money 

for the development of the A380 airplane which equals an overrun of 25%
7
 of the initial 

estimates. In the USA, the Boeing Inc. officially started the development of the new “787- 

Dreamliner” aircraft in April 2004 optimistically predicting a development time of nearly 4.5 

years. Following several announcements of delay, the first flight of the “787” occurred on 

December 15
th

, 2009, which roughly corresponds to a delay of 2 years or 50% of original 

schedule. Likewise, if we concentrate on the software development industry, c/s overruns 

seem to be a familiar phenomenon, too. The internationally recognized Standish Group 

releases a yearly report on software project failures with disillusioning results in 2004 

(Standish Group 2004): 18% of all projects have been cancelled before they ever got 

completed, 53% of all projects exhibited substantial c/s overruns while merely 29% of all 

projects finished on budget and on schedule. Similarly, in automotive industry, c/s overruns of 

more than 15% occur in 60%-80% of all PD projects according to Hab and Wagner (2006). 

We would like to dispense further examples but instead claim that c/s overruns in PD are the 

                                                 
7 www.wikipedia.org  
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rule rather than the exception. Obviously, the reasons for such a poor track record are 

manifold comprising factors like the change of system requirements, politics, inappropriate 

skills and low morale of employees or poorly defined objectives – just to name a few. 

However, poor management of the PD process and the lack of proper analysis tools is 

partially blamable as well (Standish Group 2004, de Weck 2006). Given the fact that PD 

processes exhibit some kind of repeatable structure for non-unique projects (Browning and 

Ramasesh 2007) and that many activities in PD are routine enough to allow their statistical 

characterization (Adler 1995), these overruns are even more disappointing.  

 

Reasons for cost and schedule overruns 

One of the main reasons for cost and schedule overruns is the lack of adequate PD process 

models which can cope with the dynamics of PD in practice. Typically, these dynamics arise 

as a result of iterations in the process which are often planned in order to improve quality and 

to allow for innovation (Eppinger 2001). Though, the immediate side effect of iterations in the 

process is the rework of activities increasing cost and potentially duration as well. 

Consequently, neglecting iterations in the PD process generally results in optimistic schedules 

and budget planning. In fact, rich and powerful PD process models explicitly accounting for 

iteration exist. But these models are usually too complex for analytical optimization methods 

and have therefore neither been used for a separate time/cost optimization nor for a conjoint 

time-cost tradeoff optimization. Rather, outdated models are widespread in literature and 

practical use for predicting cost and lead-time of a process as well as for process optimization. 

Not surprisingly, the application of these models results in unrealistic c/s predictions and 

suboptimal (i.e. overpriced and delayed) processes which were supposed to be 

“optimal”/“Pareto-optimal”.  
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Thesis motivation 

As consequence, a new, more comprehensive, investigation of time-cost tradeoffs for PD 

processes is necessary in order to overcome the well-known shortcomings. Therefore, this 

thesis explicitly addresses the impact of feedbacks on the time-cost problem in PD using 

realistic process models, time/cost simulation as well as state-of-the art optimization 

techniques. The novel, and more practical, managerial insights gained through such a study 

will ultimately help to design better, i.e. cheaper and faster, PD processes and consequently 

better products as well. Given their magnitude of cost and duration, the resulting monetary 

benefits may be enormous. 

 

1.2 Scope of Work and Research Gap 

Scope of work 

The literature on time-cost tradeoffs of PD processes and – in particular – related research 

fields, e.g. PD process modeling or process optimization, is extremely vast. Therefore we 

limit the scope of this study as follows.  

 

Process modeling: 

With respect to process models we focus on activity-network based models, which view a 

project as a process decomposed into a network of activities. Most PD process models have 

used the activity network as framework (Browning and Ramasesh 2007). We neither consider 

systems dynamics models of a PD process (Ford and Sterman 1998) nor causal models or 

parametric models (Browning and Ramasesh 2007). System dynamics models typically take a 

holistic “black box” view on a process with stocks and flows of generic work to be done 

(Browning and Ramasesh 2007). This perspective makes it difficult to explore the effects of 

particular process parameters (e.g. process architecture, crashing) on time and cost which is 

an objective of this thesis. Also, causal models or parametric models do not appear to be 
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appropriate for this study as they use techniques such as regression analysis (Browning and 

Ramasesh 2007) to derive general relationships between model parameters.  

 

Process resources: 

Furthermore, we ignored the explicit scheduling of resources for the actual analysis of time-

cost tradeoffs. In fact, many resources must be managed during PD (e.g. staff or machinery) 

thereby posing constraints on the start & finish of an activity consequently also affecting the 

outcome of the time-cost Pareto-front of any process. Hence, the non-consideration of 

resource constraints is a limitation of our model but it is a reasonable assumption for this 

thesis as financial capital and duration of an activity happen to be the most fungible resources. 

Accounting for additional resources only delays process lead-time and/or augments cost.  

 

Process measures:  

We do not focus on the product itself therefore not only disregarding product quality but also 

measurements for the impact of process quality on cost and time. Analogical to the 

dispensation with resources, quality of a process is expected to affect its cost and time thus 

potentially extending time-cost tradeoffs by a further dimension resulting in time-cost-quality 

tradeoffs. Nevertheless, we waived an explicit investigation due to the huge research gaps in 

the field of time-cost-quality tradeoffs and the already ambitious objectives to be covered in 

this thesis. Implicitly, however, we do consider process quality because of the consideration 

of iterations in the process which constitute a proxy for process quality. 

 

Process optimization: 

To compute Pareto-optimal processes, we did not consider optimization techniques which 

would aggregate the two optimization objectives – time and cost – into a single one (e.g. some 

monetary value). This decision was motivated by two major drawbacks of aggregation 
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methods: 1) the requirement of problem specific knowledge as well as 2) the inability to 

determine portions of the entire Pareto front in one single optimization run. In section 3.2.3 

we will discuss this issue more in detail. 

 

Research gaps 

With the scope of this work established we analyzed the resulting, still numerous, set of 

publications including strongly theoretical work as well as empirical field studies in order to 

identify crucial research gaps. As a result, four major gaps in literature concerning the time-

cost optimization of PD processes could be revealed:  

1. Assuming feedbacks in PD processes, neither the separate nor the combined behavior of 

crashing and overlapping in such a dynamic environment has been investigated yet. 

Crashing and overlapping constitute two managerial levers to accelerate PD processes 

and hence greatly impact time and cost. 

2. The effects of work policy
8
, a further important managerial lever for process cost and 

time, have not been researched yet, in particular its role on time-cost tradeoffs. 

3. No work so far has investigated a “global” trade-off optimization of PD processes 

simultaneously considering a cyclic process structure and different work policies at a 

macro level (i.e. process level) as well as crashing and overlapping at a micro level (i.e. 

activity level). 

4. It is noticeable that, in the literature, the calculation of process time and cost is strictly 

based on non-deterministic simulation methods rather than deterministic closed form 

analysis if the underlying process structure features iterative information flows. 

Table 1.1 summarizes the current state of research in the context of this thesis. Essentially, we 

examined the managerial choices previous PD process models in the literature allowed, along 

with the proposed strategy to predict process cost and schedule (either via closed form  

                                                 
8 See section 2.4 for more information. Basically, work policy refers to a set of rules governing cost and timing of activity 

execution as well as the allowed managerial levers.  
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 Current State of Literature 

Process Model Time/Cost Calculation Optimization Exemplary References 

 Closed Form Simulation 
Single-

objective 

Multi-

objective 
 

A      
Malcolm et al. 1959 

Kelley and Walker 1959 

D     
Browning and Eppinger 2002 

Abdelsalam and Bao 2006 

A/O     
Roemer et al. 2000 

Cho and Eppinger 2005 

D/O  ()   

Cho and Eppinger 2005 (no 

explicit investigation of 

overlapping) 

A/C     
Kelley 1961 

Fulkerson 1961 

D/C     - 

A/O, C     
Roemer et al. 2004 

Gerk and Qassim 2008 

D/O, C     - 

Table 1.1: Tabular literature survey. 

 

analysis or via simulation) of the model and the optimization approach applied to it (either 

single-objective, multi-objective or none). As for the complexity of process models, we 

distinguished between 1) models merely permitting acyclic process architectures (denoted as 

“A”) 2) models allowing iterations and thus dynamics in the process (denoted as “D”) 3) 

models that incorporate a crashing policy (denoted as “C”) and finally 4) models featuring an 

overlapping policy (denoted as “O”). Since the investigation of different work policies has not 

been considered in any model yet, we waived its explicit listing in Table 1.1. 

Inherently, activity network based PD process models exhibit a process architecture 

either of type A1 or A2 whereas crashing and overlapping constitute variable options that can 

be added to an architecture. The resulting combinations for these four aspects of work policy 

are listed in the left most column of Table 1.1 yielding a total of 8x2x2=32 different scopes 

for publications to be surveyed. Note that each cell separately corresponds to a logical “AND” 

relationship between a model type and a mode for c/s calculation or optimization. If at least 

one publication could be associated to a certain combination, the corresponding cell was 
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marked with a  and vice versa it was marked with a  if no related work has been published 

yet. Besides, we resigned on a complete reference list for each cell but instead quoted one or 

two exemplary references for each row in the table, if possible. 

 

1.3 Thesis Objectives 

Inspired by the aforementioned deficiencies we define the following high level objectives for 

this thesis. To some extent, the objectives build up on each other: 

Thesis objective 1: Development of a richer PD process model accounting for feedback 

relationships in the process as well as for crashing- and overlapping 

policies. Additionally, different work policies with varying rules shall 

be developed.  

Thesis objective 2:  Development of a solution methodology for the newly developed 

process model in order to predict process cost and lead-time. 

Thesis objective 3:  Time-cost sensitivity analysis of major model parameters. Firstly, 

general scale-up behaviors for time and cost assuming cyclic processes 

shall be derived. Besides, the impact of work policy, crashing and 

overlapping in dynamic process environments shall be investigated. 

Based on the results of this study, new managerial insights shall be 

derived.  

Thesis objective 4:  Development of an efficient optimization framework capable of 

generating the time-cost Pareto-front of any PD process which applies 

the newly developed model and simulation. 

Thesis objective 5:  Multi-objective time-cost optimization of real-world PD processes 

which apply the developed model and simulation. Thereby, the insights 

gained through the use of artificial test processes shall be verified.  
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Research Gaps Covered In This Thesis 

Process Model Time/Cost Calculation Optimization 

 Closed Form Simulation Single-objective Multi-objective 

D - - -  

D/O -    

D/C -  -  

D/O, C -    

Table 1.2: Research gaps covered in this thesis. 

 

Thesis coverage 

A summary of the objectives, presented at Table 1.2, clearly illustrates the research gaps 

which are supposed to be filled by the current study. The only interesting issue not covered in 

this work is an analytical solution for the time/cost calculation of iterative processes. 

 

1.4 Thesis Organization 

This thesis is essentially composed of four parts (Figure 1.2) and organized as follows. A first 

part comprising chapters 1-3 intends to foster the motivation and comprehension of the 

underlying thesis topic. Moreover, it provides background information necessary to 

understand the following chapters. For this purpose, chapter 2 introduces the most 

fundamental parameters of a PD process, subject to the purposes of this work, as well as their 

time-cost simulation. Subsequently, chapter 3 elaborates on the actual time-cost problematic 

for PD processes. Since the identification of the optimal time-cost tradeoffs constitutes a 

multi-objective optimization problem, the reader is additionally equipped with basic 

knowledge on multi-objective concepts and optimization techniques capable of computing the 

Pareto-front of the time-cost problem.  

The second part of the thesis, including chapters 4 and 5, covers the new modeling and 

simulation of PD processes. Firstly, chapter 4 introduces a new, more realistic PD process 
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Figure 1.2: Illustration of thesis outline. 

 

model and presents how time and cost of processes applying this new model can be 

approximated via simulation. Then, chapter 5 concludes the second part by a thorough 

sensitivity analysis of the model. Thereby, 48 million artificial test processes were simulated 

to obtain general insights on the time-cost behavior of the most important process parameters 

in a cyclic process environment.  

Next, chapters 6 & 7, representing the third thesis part, exclusively cover the time-cost 

tradeoff optimization. In chapter 6 we introduce an appropriate multi-objective optimization 

method for the novel process model in order to obtain Pareto-optimal process solutions. 

Subsequently, this optimization strategy is applied to two real-world processes in order to 

demonstrate the practical application of our new model, simulation and optimization. 

Moreover, previous insights based on artificially constructed processes are verified. Finally, 
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this work ends with a short fourth part containing conclusions and an outlook for future 

research.  
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2. Fundamental PD Process Parameters  
 

 

In order to accomplish the thesis objectives, it is essential to be aware of the fundamental PD 

process parameters which must be modeled, simulated and finally optimized. Thereby, we 

consider those process parameters as fundamental which 1) significantly affect its time and 

cost on one hand but 2) which can be also modified in practice by project managers on the 

other hand. Subject to the previously defined scope of the underlying work, we identified four 

of these parameters: process architecture, crashing- and overlapping policy as well as work 

policy. In the following we will briefly introduce the reader to each of them in a separate 

section. 
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2.1 Process Architecture 

2.1.1 Introduction 

Establishing an appropriate process architecture is critical for any successful PD strategy as it 

significantly affects project costs and lead-time. For example, Ahmadi et al. (2001) report on 

significant improvement in terms of PD lead-time and costs as a result of re-arranging the 

existing process architecture of a manufacturer for rocket engines. The process architecture 

defines not only the process activities but also the pattern of interaction among all activities 

which in turn impacts process cost and schedule: 

 

Definition 2.1 The process architecture describes the activities of a process and their 

dependency relationship as well as their sequence of execution (Browning and Eppinger 

2002) 

 

Activity networks 

In this work, we model process architectures as a network consisting of nodes and directed 

arcs thus prescribing a directed graph (digraph). This network-based view of a process can be 

generally classified into activity-on-arc (AoA) networks or activity-on-node (AoN) networks. 

In case of AoA networks, nodes represent events (typically start and finish dates of activities) 

in the process whereas arcs constitute activities. Contrary, AoN networks are probably more 

direct and frugal since nodes denote activities and arcs simply describe logical relationships, 

e.g. predecessor relationships, between them. Typically, both network types are visualized 

with flowcharts or traditional graph-based representation schemes.  

 

Iteration and feedback 

However, these formats are obviously not convenient to compare different architectural 

differences, in particular if numerous activities and relationships are involved (Browning and 

Eppinger 2002). Moreover, due to the importance of iterations in PD, proper network-based 

models have to account for feedback information flows and consequently cyclic process 
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architectures. Iterations have been widely recognized as a fundamental characteristic of PD 

processes (e.g. Eppinger et al. 1994, Fricke 2000). Eppinger et al. (1997) defined iteration as 

the repetition of activities to enhance an evolving development process. In this work we 

define iteration as follows: 

 

Definition 2.2 Iteration represents the rework of an activity due to information feedback. 
 

 

Feedback occurs when a design activity commences based on missing (or uncertain) 

predecessor information if the (complete) predecessor information is received after the start of 

the activity (Figure 2.1). The late arrival of predecessor information could be due to detected 

errors, failure to meet requirements, or changing design directives, to name just a few of the 

common causes. There is no comprehensive classification scheme for iteration, although the 

literature refers to different types of iteration as planned versus unplanned, sequential versus 

parallel, good versus bad, and major versus minor (Safoutin and Smith 1998). Generally, 

iterations are admitted to enhance product quality (Whitney 1990, Safoutin and Smith 1998), 

while also being a driver of cost and lead-time. Therefore, it is clear that effective 

management of iteration is required to plan and control project cost, duration, technical 

performance (or quality), and risk.  

Iteration can be managed in many ways including by: improving the sequence of design 

activities to streamline information flows, which form the basis for activity dependencies 

(Yassine and Braha 2003); developing new engineering automation tools to perform iterations  

 

 
Figure 2.1: Demonstration of iteration. 
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faster (Yassine et al. 2000); adding resources at bottleneck activities (Yassine et al. 2003); and 

possibly limiting the scope of the development effort. Although activity iteration could be an 

intrinsic property of the process architecture, it is also a side effect of overlapping (see section 

2.3) two nominally sequential activities.  

 

Modeling activity networks with the Design Structure Matrix 

Traditional AoA models (e.g. PERT) or AoN models do not allow to incorporate feedbacks. 

Therefore, numerous models have been constructed to allow feedback information flow 

within the process. Neumann and Steinhardt (1979) extended the PERT technique by 

probabilistic feedback loops and Adler (1995) developed a model based on queuing theory 

principles to consider iterations. Furthermore, Eppinger et al. (1997) used signal flow graphs 

to model all types of information flow while Ahmadi et al. (2001) applied markov chains. 

Though, these models rely on limiting assumptions, e.g. for the model used in Ahmadi et al. 

(2001) the sum of feedback probabilities for a certain activity must not exceed 1.0, and/or 

their format is neither concise nor suited to highlight iterations (e.g. Adler 1995, Eppinger 

1997). Due to these shortcomings, which do not capture the real complexity of PD processes, 

and because of the amenability to matrix-based analysis we decided to utilize a digraph-based 

information flow model called the design structure matrix (DSM)
9
, introduced by Steward 

(1981). Many DSM models with different objectives have been developed (e.g. to identify 

critical activities (Smith and Eppinger 1997)), but for our purposes so called activity-based 

DSMs are best suited as they represent the flow of activities over time which is particularly 

useful for highlighting iterations in the process (Browning 2001):  

 

Definition 2.3 A binary activity-based DSM is equivalent to the adjacency matrix of the 

underlying process digraph/AoN network. The nA nodes of the digraph (representing the 

activities in a process) correspond to the nA column and row headings in the matrix. The 

                                                 
9 The term Dependency Structure Matrix is also commonly used. 



2 Fundamental PD Process Parameters 

25 

arrows, indicating a relationship between activities, correspond to the marks inside the 

matrix. 

 

Hence, as shown in Figure 2.2, an activity-based DSM is a square matrix that shows activities 

along its diagonal, activity outputs in its columns and activity inputs in its rows.
10

 As the 

number of activities and relationships grows, the matrix-based visualization provides 

significant advantages over digraphs and other models in visualization of feedback loops 

which are immediately obvious as super-diagonal marks. In order to model a process 

architecture using DSMs, the following three steps are required.  

 

2.1.2 Definition of activities  

The first step in establishing a process architecture is the definition of convenient activities 

capable of producing the process’ required result of value. The project management literature 

typically proposes the use of a work breakdown structure (WBS) to identify high-level 

activities which are subsequently decomposed (Browning and Ramasesh 2007). In contrast, 

the PD literature provides a variety of generic, standard processes (like depicted in Figure 1.1) 

with default activities (e.g. Whitney 1990, Ulrich and Eppinger 2004). In fact, standardizing 

activities might be extremely useful for well-known processes in stable environments  

 

  

(a) Digraph representation (b) DSM representation 

Figure 2.2: A small process model visualized with a digraph (a) and an activity-based DSM (b). 

                                                 
10 Some DSM literature uses the opposite convention (the transpose of the matrix), with inputs in columns and outputs in 

rows, and thus feedback below the diagonal; the two conventions convey equivalent information. 
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and a set of standard activities could serve as an initial activity list for new processes. 

However, when choosing activities, process planners should also consider internal or 

external prescriptions and regulations (i.e. activities might be mandated in some contexts) as 

well as an activity’s ability to reduce risk and uncertainty (Browning and Eppinger 2002, 

MacCormack and Verganti 2003, Browning and Ramasesh 2007). Besides, process ambiguity 

and complexity often impede the activity definition in advance of process execution thus 

requiring an adaptive selection of activities based on their added value (Lévárdy and 

Browning 2009). Also, process planners have to think about the level of detail for process 

modeling, and consequently about the level of granularity for activity selection (Browning 

and Ramasesh 2007). Apparently, choosing the “right” activities of a process is a non-trivial 

task and involves many aspects to be considered.  

 

2.1.3 Definition of activity dependencies 

Like aforementioned, a process architecture does not only define a set of process activities but 

also their dependencies among each other. The literature distinguishes three dependency types 

between any pair of activities i and j: 1) independent activities which are simply not related at 

all 2) dependent activities, i.e. either activity i depends on j or vice versa j depends on i 3) 

interdependent activities which depend on each other. As a consequence of these activity 

dependencies, information can be exchanged in four different ways between an upstream 

activity i and a downstream activity j (Figure 2.3a). In case i and j are independent we note 

only concurrent information flows between them hence allowing the parallel execution of 

both activities. Contrary, dependent activities imply two possibilities for information flow: 

either i delivers information to j through a sequential feed-forward relationship or j provides 

output to i which constitutes a sequential feedback relationship hence potentially provoking 

the rework of i. Arguably the most interesting flows, namely coupled information flows, are 

caused by interdependent activities: since i requires the output information of j as input and j 
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(a) (b) 

Figure 2.3: Information flows between two activities (a) and within an activity-based DSM (b). 

 

needs the output of i as input, we realize a “chicken and egg” problem. In order to solve it, the 

upstream activity i has to carefully make assumptions about the output of downstream activity 

j as wrong or imprecise assumptions could lead to an undesirable output of i thereby 

increasing the probability of unintentional activity iterations later in the process. Therefore, 

several possibilities have been suggested to reduce the number of coupled information flows 

(Browning 2001), including 1) aggregation of two coupled activities to one 2) decomposition 

of coupled activities or 3) applying a technique called Tearing (Steward 1981). 

With the different information flows between activities established, we note that feed-

forward flows in the process are shown below the diagonal of activity-based DSMs, and non-

zero super-diagonal cells indicate the presence of feedback information flow (Figure 2.3b). 

While any concurrent activities i and j are intuitively modeled through an empty mark (or a 

zero value) in cells m1,ij and m1,ji of an activity-based DSM M1, coupled information flow 

among i and j is indicated by non-zero values in both corresponding matrix cells.  

 

2.1.4 Definition of the activity sequence 

So far, process activities have been selected and their dependencies among each other have 

been determined. Though, one crucial component of any process architecture is still missing: 
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the activity sequence. We refer to this term as the order of activities in the rows or columns of 

an activity-based DSM indicating the sequence of activity execution. Altering the activity 

sequence of any process architecture, subject to possible predecessor constraints (e.g. due to 

technical feasibility issues), may change the information flow among its activities thus 

resulting in a novel architecture. Though, re-sequencing the activities does neither add new 

relationships to the process nor does it remove existing ones. Hence, it does not change 

activity dependencies at all. Instead, it possibly converts sequential feed-forward flows to 

feedback flows or vice versa thereby greatly influencing the extent of iteration in the process. 

This transformation can be also regarded as dilemma between “waiting for inputs” (i.e. 

sequential feed-forward) and “making assumptions about the input” (i.e. sequential feedback). 

Consequently, sequencing of activity may commute prerequisites to assumptions. In contrast, 

coupled or concurrent information flows cannot be affected by varied activity sequences. 

Let us briefly demonstrate the described effect of activity sequencing with a simple 

example using the process displayed in Figure 2.2. By exchanging the position of activities 1 

and 7 in the original DSM (Figure 2.4a)
11

, we define a new activity sequence and 

consequently obtain a new process architecture, depicted at Figure 2.4b. The visual and 

concise format of the corresponding DSMs quickly illuminates their structural differences.  

 

Figure 2.4: Original DSM sequence (a) and re-sequenced DSM with different architecture (b). 

                                                 
11 Assuming that no constraints prohibit this exchange. 

  
(a) (b) 
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While the original activity sequence results in an architecture which primarily features feed-

forward information flow (highlighted in green color) and only a moderate number of 

feedbacks (highlighted in red color), the new process architecture is characterized by much 

more feedback marks which are supposed to augment the extent of iteration and rework. 

Noteworthy, all feed-forward relationships associated with the interchanged activities 1 and 7 

have been converted and appear as feedbacks in the re-sequenced process.  

It is clear that the activity sequence’s impact on process cost, schedule and uncertainty 

may be enormous. But due to the factorial growing number of possible activity sequences 

with increasing number of activities nA (i.e. nA!) it is mostly too time consuming to evaluate 

every sequence according to some metric (e.g. cost) and to choose the best one, even for 

moderate nA. In lieu of randomly selecting any activity sequence, researches have proposed a 

variety of deterministic sequencing objectives for DSM modeled processes (see Meier et al. 

2007 for an overview) which can be used as objective functions for search algorithms. Most 

of them focus on minimizing super-diagonal marks in the DSM, i.e. the number of feedback 

relationships. The motivation is not only an expected reduction of cost and lead-time due to 

less iteration/rework but also a reduction of process uncertainty since feedbacks represent 

assumptions instead of actual information. However, all of these proposed objectives are 

merely proxies for the actual goals of decreasing the process’s overall duration, cost, and risk. 

 

2.2 Crashing 

Essentially, crashing boils down to an attempt to get the most effectiveness out of the least 

time and expense:  

 

Definition 2.4 Crashing is a popular approach to compress process lead-time through the 

assignment of additional resources (e.g., overtime, more or faster machinery, software tools) 

to process activities. Importantly, the new, shorter process retains the original information 

flow. 
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Although it is not necessarily a special feature for scheduling PD projects, however, we 

include a crashing feature in our proposed model in chapter 4 since crashing of activities has 

been widely used in process management to reduce project lead-time (Kerzner 2005). The 

immediate side effect of this strategy is typically a raised budget as most resources will not be 

for free. Though, higher initial cost are accepted in certain competitive circumstances due to 

the anticipation of greater long term market shares and product profitability resulting from an 

earlier product launch. Also, if a PD process is behind its schedule, managers are often 

disposed to bring the project back “on track” at the expense of a greater budget. 

Consequently, a tradeoff situation between process lead-time and process cost arises, making 

the definition of a proper crashing strategy for an entire process to a nontrivial task. Indeed, 

crashing constitutes a powerful mean to reduce process duration but it has to be carefully 

planned and executed in practice to unfold its positive effects. 

In fact, crashing may shorten an activity’s duration, thus decreasing overall project 

duration if the activity is on the critical path.
12

 Though, it is important to mention that 

previous literature modeled crashing merely as time decreasing and cost increasing although 

practice shows that, despite the allocation of additional resources, duration is sometimes also 

extended (Brooks 1995) - especially if we consider human resources. New staff must not 

necessarily be familiar with the tasks at hand and may be less productive than already 

assigned staff. Moreover, new human resources must be taught and guided by usually the 

most experienced members of the PD process who could work themselves to get the activity 

finished. As a consequence, work progress of a crashed activity could be slowed down and 

unintentionally elongate overall process lead-time.  

 

2.3 Overlapping 

In contrast to crashing, influencing the process with intra-activity changes, overlapping 

                                                 
12 Notably, the critical path may change as a consequence of crashing. 
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constitutes an approach which considers inter-activity relationships: 

 

Definition 2.5 Overlapping of development activities is one of the basic pillars of Concurrent 

Engineering (CE) practices (Funk 1997, Smith 1997) considering downstream concerns in 

upstream phases as opposed to a strictly sequential stage-gate workflow between activities 

(Wang and Yan 2005, Yassine and Braha 2003). 

 

The basic overlapping model deals with overlapping two sequential activities in a PD project, 

referred to as an upstream feeding activity i and a downstream dependent activity j (see 

Figure 2.5a). Most of the literature on overlapping applies this simple two activity scenario 

rather than modeling overlapping of multiple activities (probably for reasons of complexity). 

However, in chapter 4 we will introduce a process model which accounts for multiple activity 

overlapping. The main objective of a basic overlapping problem is to find the best 

overlapping magnitude between i and j that minimizes total lead-time (see Figure 2.5b). 

Although overlapping i and j gives the downstream activity i a head-start, the benefits of 

activity overlapping might be partly eliminated since potential deficiencies exist as well 

(Krishnan et al. 1997a, Wang and Yan 2005).  

As downstream activities are allowed to start without complete input information, 

additional uncertainty is introduced into the process: the crucial information provided by 

upstream activities might be received either too late or in poor quality. Therefore, 

unintentional iteration in the process might occur requiring downstream rework which could 

boost a process’s overall cost and duration (see Figure 2.5c). Additionally, forcing upstream 

activities to produce information early in order to pass it to downstream activities could result 

in a quality loss for upstream activities (Krishnan et al. 1997a). Mansfield et al. (1979) and 

Eastman (1980) both provided empirical evidence for PD processes with increased costs due  

 

   
(a) (b) (c) 

Figure 2.5: Illustration of overlapping two activities. 
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to overlapping stages. However, MacCormack et al. (2001) argued that overlapped PD 

process stages enhance flexibility, which in turn may save money in uncertain and dynamic 

environments.  

Due to this tradeoff (process speed vs. rework), the success of overlapping requires 

accurate management of interaction and communication (Terwisch and Loch 1999, Ford and 

Sterman 2003). Potential candidates for overlapping have to be selected carefully along with a 

reasonable intensity of overlapping (AitSahlia et al. 1995). Evaluating the effects of 

overlapping in an industry-specific study, Loch and Terwisch (2005) confirmed the time 

savings of overlapping in general while arguing that its specific impact depends on a firm’s 

capability to resolve uncertainty early in the process. 

 

2.4 Work Policy 

Often neglected in past studies, work policy may have a substantial impact on process 

measures, such as cost, schedule or uncertainty. 

 

Definition 2.6 The term work policy, introduced by Browning and Eppinger (2002), refers to 

the set of rules governing the timing of activity execution. Moreover it outlines the managerial 

levers available (e.g. crashing, overlapping) and which choices are possible. Consequently, 

the work policy affects not only timing but also cost and eligibility. 

 

Accordingly, the work policy may have a tremendous impact on process cost & duration and 

eventually project success. Therefore its definition is mostly a task for senior process/project 

managers. Essentially, a work policy in the context of this thesis addresses the following 

fundamental questions: 

 Which activities may work concurrently? 

 Which activities are allowed to be crashed? 

 Which activities may proceed without complete input information? 

 Which activities can make assumptions about its inputs? 
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 How is iteration managed?  

 When do activities work off their rework? 
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3. Time-Cost Simulation and 

Optimization of PD Processes 
 

 

This chapter firstly provides background information on the simulation of the process 

parameters, introduced in the precedent chapter, with respect to time and cost. Subsequently, 

the second section introduces the classical time-cost tradeoff problem in PD and furthermore 

exposes research gaps in this context. Finally, this chapter concludes with an introduction of 

optimization methods capable of solving multi-objective problems, such as the time-cost 

problems.  
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3.1 Time-Cost simulation of PD processes 

While traditional acyclic network models (CPM, PERT) allow for a deterministic calculation 

of cost and schedule, cyclic information flows subject to stochastic feedback probabilities 

dramatically complicate a similar closed form analysis. The author is not aware of any 

publication to date (see Table 1.1) which presented a deterministic strategy to calculate 

duration and cost for cyclic process models. As the use of simulation is widespread for 

stochastic processes of any kind, numerous PD process simulation models have been 

published in the PD literature. We like to resign on the enumeration of all simulation models 

but note that the core difference lies in two aspects: 1) the modeling of the dynamic progress 

of the process and 2) the sampling of activity cost and duration from known probability 

density functions (PDFs).  

Having selected DSMs for the modeling of the process, we note that several DSM-based 

simulation models (and tools) already exist in the literature (Browning and Eppinger 2002, 

Cho and Eppinger 2005, Abdelsalam and Bao 2006). While all these simulations are mainly 

aimed at determining the process completion time and cost for a given task arrangement, 

some exhibit an additional component for determining the optimal architecture as well (e.g. 

Abdelsalam and Bao 2006) by testing (i.e. calculating time and cost) various architectural 

arrangements. However, if we focus on the simulation (and not optimization) component, then 

minor differences would only exist between the various PD process simulation models.  

Aside from the detailed differences that are inconsequential to this thesis, all DSM-

based simulation models work as follows. First, as input, a DSM simulation model usually 

requires a binary DSM based process model and some additional data. For each activity 

interface (i.e. marks in the DSM), the model requires an assessment of the probability of a 

typical change in the data causing rework for a dependent activity as well as the impact and 

the learning curve effect of that rework should it occur. Activity duration and cost are random 

variables, represented by probability density function (PDF), e.g. a triangular PDF using three 
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point estimates: best duration, likely duration, and worst duration.  

Then, the simulation quantifies a process configuration’s expected cost, duration and 

variance. Variances in duration and cost are largely attributed to the number of iterations 

required in the process and their scope. Since task rework may or may not occur (depending 

on a probabilistic check of feedback relationships in the process), the simulation model treats 

iterations stochastically, with a probability of occurrence depending on the particular package 

of information triggering rework. 

 

3.2 Potential Time-Cost Tradeoffs for PD Processes 

The classical time-cost tradeoff problem 

By assuming acyclic process architectures, previous research was capable to analytically 

calculate/approximate the impact of changes in the crashing- and overlapping policy on cost 

and duration. Overlapping and crashing are both means applied in practice to reduce PD time, 

but they usually subject the process to additional cost as pointed out in section 2.2 and 2.3. 

Even if speed-to-market is decisive for successful PD, it is clear that companies are not 

willing to invest an unlimited amount of money into their projects. Firms often have a 

predefined budget for a PD project which must not to be exceeded. A time-cost tradeoff 

situation clearly arises as organizations seek the fastest PD process through managerial 

decisions subject to a predefined budget, or vice-versa, identifying the cheapest PD process 

for a given project duration. 

The time-cost tradeoff problem for PD processes has been a long-term subject of 

research. Interestingly, in the early years of traditional project management, the time-cost 

tradeoff was treated solely as a crashing problem. Kelley and Walker (1959) were the first to 

state the problem of computing the least-cost curve for a project composed of activities, which 

have an associated normal completion time and a crashed completion time, as a parametric 

linear problem. Then, Kelley (1961) and Fulkerson (1961) independently proposed two 
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different efficient algorithms based on network flow methods to solve this problem with a 

linear cost function. Later publications investigated more complex cost functions exhibiting 

convexity (Berman 1964), concavity (Falk and Horowitz 1972) or assigning penalties to 

pivotal activities (Kanda and Rao 1984).  

However, most activity network-based research on time-cost tradeoffs assume an 

acyclic network, as compared to cyclic networks that are noted in PD project scheduling 

environments. Recently, Roemer et al. (2000) also analyzed the time-cost tradeoff due to 

overlapping and bridged the gap between the literature on overlapping and crashing by 

demonstrating the benefits of jointly applying both strategies in a subsequent publication 

(Roemer and Ahmadi 2004).  

 

Time-Cost tradeoffs due to changes in the process architecture 

While crashing and overlapping have been widely recognized for their role on time-cost 

tradeoffs, we note that tradeoffs due to changes in process architecture or because of work 

policy rules have been mostly neglected so far. Advanced complexity of analytical 

calculations for cyclic process architectures might be the reason for this research deficiency. 

Though, simulating PD processes, as pointed out in the previous section, allows us to 

approximate the impact on cost and duration through changes in the architecture or work 

policy.  

In the pioneering work of Browning and Eppinger (2002), the authors proposed a 

cyclic process model using a discrete event simulation in order to show that pure 

manipulations of the process sequence may lead to different time-cost outcomes. In fact, both 

authors expected a time-cost tradeoff exclusively emerging by a rearrangement of the activity 

sequence (Figure 3.1). This hypothesis could be confirmed in a study by Meier (2006) who 

separately optimized the activity sequence of the identical PD process in the aerospace 

industry with respect to cost and duration using a simulation as objective function. 
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(a) Adapted from Browning and Eppinger (2002). (b) Adapted from Meier (2006). 

Figure 3.1: Time-Cost tradeoffs through changes in the process architecture. 

 

Figure 3.1b illustrates the corresponding results of the optimization thereby clearly indicating 

the different regions of the search space for the optimal process duration and process cost. 

 

Iterative overlapping 

Both studies of Browning (2002) and Meier (2006) demonstrated that process sequences with 

low values for lead-time exhibited in return high cost, and vice versa such process sequences 

with long durations featured low cost. Thereby, an explicit reduction of process lead-time 

could be established by favoring highly iterative processes over sequential ones. This 

important concept is called iterative overlapping (Browning and Eppinger 2002; Krishnan et 

al. 1997b): 

 

Definition 3.1 Iterative overlapping refers to a strategy which allows an activity to be started 

concurrently with its predecessors, instead of waiting for final results of all its predecessors, 

in order to allow designers to set up and “get their feet wet” (Browning and Eppinger 2002). 

 

The benefits of iterative overlapping are typically achieved through low rework impact values 

and high learning curve effects of activities on the critical path which can be started in parallel 

with other activities while no complete input information is available (Figure 3.2). This 

strategy clearly increments the probability of rework, in particular if the output of the 

upstream activity is difficult to forecast. But in case of low rework impact values and high 
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Figure 3.2: Illustration of iterative overlapping. 

 

learning curve effects overall lead-time can still be shortened. On the other hand, the 

downside of iterative overlapping constitutes a rise of the process’ budget due to rework as 

well as an increased uncertainty within the process and higher coordination effort. 

 

3.3 Time-Cost Optimization 

3.2.1 Introduction 

Introduction 

When dealing with time-cost tradeoffs, the objective is to identify the set of all best tradeoff 

solutions of the problem – the Pareto-front. Thus, we have to apply multi-objective 

optimization (MOO) methods rather than single-objective ones in order to determine this set. 

Fortunately, much attention has been paid in the last few years to the optimization of 

problems whose formulation involves simultaneously optimizing multiple, contradicting, 

objective functions. This interest is mainly motivated by the multi-objective nature of most 

real world problems (Deb 2009). Contrary to single-objective optimization problems 

(SOOPs), a single best solution with respect to all objectives usually does not exist for a 

multi-objective optimization problem (MOOP). Instead, one seeks a set of the best tradeoffs, 

which consists of elements that are superior to others in at least one of the objectives (in this 

thesis: time or cost) while inferior in the remaining objectives. This set is commonly known 

as Pareto-optimal set and its solutions are called non-dominated solutions which lie in a 

region of the search space called the Pareto frontier, or Pareto-front for short. The remaining 
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solutions in the search space are called dominated solutions. 

 

Exemplary multi-objective optimization problems 

Let us examine some examples for MOOPs. Fujita et al. (1998) optimized a four-cylinder 

automotive gasoline engine with respect to fuel consumption, acceleration performance and 

starting response (Figure 3.3a). In Poloni et al. (2000), Poloni applied MOO methods in order 

to seek a trade-off among hydrodynamic lift and hydrodynamic drag for a sailing yacht fin 

keel (Figure 3.3b). Another interesting application refers to the optimization of low-thrust 

spacecraft trajectories from Earth to Mars and from Earth to Mercury (Coverstone-Carroll et 

 

 
 

(a) (b) 

  
(c) (d) 

Figure 3.3: Illustration of Pareto-fronts for different real world applications, adapted from Fujita et al. 

(1998) (Figure 3.3a), adapted from Poloni et al. (2000) (Figure 3.3b), adapted from Coverstone-Carroll 

et al. (2000) (Figure 3.3c), adapted from Everson and Fieldsand (2006) (Figure 3.3d). 
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al. 2000) in order to minimize travel time while maximizing payload mass (Figure 3.3c). 

Finally, Everson and Fieldsend (2006) cast the tuning of safety related systems like the Short 

in the number of false alerts (false positive) served as two contradicting objectives (Figure 

3.3d). The literature on multi-objective real-world applications is abundant with many more 

examples and the reader may refer to (Coello et al. 2007, Deb 2009). 

 

3.2.2 Multi-objective definitions  

Definition of an MOOP 

After the informal introduction we formally define basic multi-objective concepts, mainly 

used in Part III of this work, starting with the definition of an MOOP: 

 

Definition 3.2 A typical multi-objective optimization problem (MOOP) with m decision 

variables and n objectives can be formulated as: 

 

min/max Y = f(X) = (f1(X), …, fn(X)) 

(3.1) where X = (x1, …, xm)X
* 

Y= (y1, …, yn)Y
*
 

with Y representing the objective vector, X denotes the decision vector, X
*
 constitutes the 

decision space and Y
*
 the objective space. 

 

Concrete examples for X
* 

in the context of this thesis comprise the crashing intensity for a 

certain activity or the overlapping duration between two activities as well as the process 

architecture. Contrary, process cost and process duration can be regarded as examples for Y
*
. 

Constraints in the decision variables x1,…, xm define the feasible region X
*
, and any point 

XX
*
 defines a feasible solution. Basically, a function f(X) maps decision variables in X to 

the corresponding objective values in Y. Figure 3.4 depicts such a mapping assuming the 

overlapping duration of an activity i as well as its crashing intensity as decision variables 

while activity cost and activity duration denote objective values. Please note that an extended 
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Figure 3.4: Mapping of decision variables to objective values. 

 

overlapping duration of an activity may also elongate the entire activity duration due to 

rework as pointed out in section 2.3. 

 

Domination and non-domination 

 

Definition 3.3 A decision vector AX
*
 is said to dominate a decision vector BX

*
, denoted 

as A B, for a multi-objective minimization problem if the following two equations hold: 

i  {1, …, n}: fi(A) ≤ fi(B)  (3.2) 

  

j  {1, …, n}: fj(A) < fj(B) (3.3) 

 

 

Based on the above equations, Zitzler et al. (2000) defined non-domination and Pareto-

optimality as follows: 

 

Definition 3.4 A decision vector AX
*
 is non-dominant related to a set X

+X
*
 if: 

BX
+
: B A (3.4) 

 

 

The decision vector AX
*
 can be called Pareto-optimal if A is non-dominated relative to X

*
.  

 

Pareto-front 

The introduced terms ultimately allow us to formally define the Pareto-front: 

 

Definition 3.5 The Pareto-front F
*X

*
can be defined as: 
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F
*
 = {AX

*
 | BX

*
: B A} (4.5) 

 

 

Figure 3.5 provides a visual example. The two objectives y1 and y2 must be minimized. The 

curve on the lower-left of the shaded area indicates the Pareto-front. Points B and C are 

placed on the Pareto-front and cannot be dominated by any other feasible point while point A 

is dominated by many of the points (such as B) on the Pareto-front.  

 

ε-dominance 

Another highly-beneficial, multi-objective, concept regards ε-dominance (Laumanns et al. 

2002, Helbig and Pateva 1994): 

 

Definition 3.6 A decision vector AX
*
 is said to ε-dominate another decision vector BX

*
 

(written as A ε B) for an ε > 0 if the following equation holds: 

i  {1, …, n}: (1 + ) · fi(A) ≤  fi(B) (3.6) 
  

 

 

Applying the ε-dominance concept to the Pareto-front yields the following definition: 

 

Definition 3.7 A set of vectors *

F is called the -Pareto set if the following two conditions 

hold: 

*

F = {BX
*
 | A *

F : A ε B} (3.7) 

  
*

F F
*
 (3.8) 

 

 

 
Figure 3.5: Illustration of Pareto-optimal solutions (points B and C) in a search space. 
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Figure 3.6: Illustration of ε-dominance. 

 

The first condition (equation 3.7) ensures that every *

F  constitutes a so-called -approximate 

set of F
*
 (Helbig and Pateva 1994), and the second equation postulates that every ε-Pareto set 

*

F  contains Pareto solutions of F
*
 only. Basically, the ε-dominance reduces the cardinality of 

the Pareto-region by decomposing the objective space into multiple hyper-boxes. Figure 3.6 

visualizes ε-dominance for two objectives (cost and duration).  

 

3.2.3 Genetic algorithms for multi-objective optimization 

Classification of MOO techniques 

For MOOPs, such as the underlying time-cost tradeoff problem, numerous optimization 

strategies have been developed. Generally, MOO techniques can be classified into three major 

categories (Miettinen 1999, Collette 2003, Coello 2007):  

1. A priori techniques including MOOP solver which assume a desired goal or a pre-

ordering of the objectives performed by the decision maker prior to the search.  

2. Posteriori techniques not requiring preference information from the decision maker 

prior or during the search.  

3. Progressive techniques requiring input of the decision maker during the search to guide 

the search towards areas in the search space which perform the tradeoff between 
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objective functions that the decision maker would like to perform. 

Figure 3.7 depicts all three categories with exemplary optimization methods for each class. A 

more detailed hierarchy of MOP methods is presented in Collette and Siarry (2003). 

 

Multi-objective meta-heuristics 

Interestingly, all of the optimization methods in Figure 3.7, except Meta-heuristics, convert 

the MOOP to a SOOP which subsequently has to be optimized by a single-objective optimizer 

(Deb 2009). Importantly, the obtained solution is specific to the parameters used in the 

conversion method and not guaranteed to be Pareto-optimal. Furthermore, aggregation 

methods, while easy to implement and converging to the Pareto front, are incapable of 

producing certain portions of the Pareto front in one single run but deliver a single solution 

instead.
13

 Besides, they require additional problem-specific knowledge about the relative 

weightings of the various objectives. Due to these shortcomings of “classical”
14

 aggregation 

 

 

Figure 3.7: Classification of multi-objective optimization methods. 

                                                 
13 For many aggregation methods we can prove that every Pareto-optimal solution corresponds to an optimal solution of the 

single-objective optimization problem.  
14 Deb (2009) applies the term “classical method” for search and optimization algorithms which use single solution updates 

and deterministic transition rules. 
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methods, multi-objective meta-heuristics have become very popular to solve real-world 

MOOPs.  

 

Definition 3.8 Meta-heuristics are methods that orchestrate an interaction between local 

improvement strategies and higher level procedures to create a process capable of escaping 

from local optima and performing a robust search (Glover 2003). 

 

Genetic Algorithms 

Among a variety of meta-heuristics in literature, Genetic Algorithms (GAs) have received 

most attraction in literature.  

 

Definition 3.9 Genetic Algorithms (GAs) are search algorithms based on the mechanics of 

natural selection and genetics (Goldberg, 1989). 

 

Originally developed to solve SOOPs, GAs have been extended by multi-objective operators 

as their massive parallel search qualifies them to handle MOOPs extraordinarily well since the 

entire Pareto set (rather than a single Pareto point) can be quickly approximated in a single 

run. Due to these benefits, we developed in chapter 6 a MOGA tailored to our time-cost 

tradeoff problem.  

Detailed information on Genetic Algorithms can be found in Holland (1975) or 

Goldberg (1989). However, other meta-heuristics like Ant Algorithms (Doerner 2004, Iredi 

2001), Evolution Strategies, Particle Swarm algorithms (Coello et al. 2004) have been also 

enriched by a multi-objective version. It is important to note that a general superiority of one 

approach over the other cannot be claimed due to the No Free Lunch theorems (Wolpert and 

Macready 1997).  

 

Simple GA flow 

On a high-level perspective, GAs can be classified in GA components and GA mechanics. The 

components of a GA consist of 1) a proper data structure, called chromosome (by analogy to 
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natural evolution), representing one point in the search space, as well as of 2) a fitness 

function. This function evaluates chromosomes in the objective space Y
*
 and subsequently 

assigns them a scalar value, called fitness value, which reflects the quality of the chromosome. 

Since GAs start their search from multiple points in X
*
, an entire set of chromosomes, called 

population, is maintained. Notably, a chromosome is not equal to a decision vector X but 

encodes it with an appropriate representation (e.g. a binary or integer representation).  

In order to iteratively guide the search of the chromosomes, GAs incorporate special 

mechanics, namely initialization, selection, crossover and mutation. At the beginning of every 

GA, the initialization phase randomly generates a population according to the underlying 

encoding strategy for a chromosome. Afterwards, fitness values are assigned to every 

chromosome and a so called mating pool is created. This mating pool is filled by randomly 

sampling from the population using a proportionate- or ordinal based selection scheme. 

Basically, selection schemes are supposed to filter those chromosomes out of a population 

which are most promising for further search operations. Following selection, crossover and 

mutation are applied to the mating pool. While the crossover stage is responsible for a global 

exploration of the search space by combining significantly large traits of two chromosomes, 

mutation operators typically manipulate only small parts of a chromosome hence being often 

regarded as a local search mechanic. Subsequent to mutation, an entire iteration of a GA, 

denoted as generation, has been completed and it is checked whether a predefined 

convergence criterion (e.g. the number of generations) has been met. Figure 3.8 depicts the 

previously described simple flow of a GA. Not every GA design relies on the previously 

described mechanics and does not necessarily exhibit a search flow as depicted in Figure 3.8. 

Instead, additional, and often more complex mechanics can be found in literature. Though, the 

aforementioned mechanics can be regarded as “backbone” for every GA/MOGA as they 

appear in every GA/MOGA to some extent. 
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Figure 3.8: Illustration of a simple GA flow. 

 

Multi-objective GAs 

Multi-objective GAs retain many of the single-objective GA features. Though, by contrast to 

single-objective GAs, MOGAs must be designed to appropriately ensure (1) the preservation 

of diversity and (2) the proper definition of a convergence criterion (Laumanns et al. 2002, 

Kumar and Pocket 2002). The first issue addresses the desire to identify as much of the Pareto 

front as possible (rather than getting stuck in a single section of it). Thus, a variety of 

substantially different Pareto points must be identified. Second, in most real-world problems, 

the true Pareto front is unknown, hampering to ascertain convergence. A final set of solutions 

might be non-dominated (and diverse) in relation to the GA population sample, but this does 

not necessarily imply its affiliation to the real, global Pareto front. Consequently, single-

objective convergence criteria like “stop after a certain number of generations” or “stop after 

a certain portion of the population is non-dominated” are inappropriate. While increasing the 

run duration improves solution quality and raises probability of reaching the Pareto front, 

computational time might be wasted if the population has already converged.  
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4. A New Process Model and Simulation 
 

 

Previous models used to calculate PD process duration and cost rely on assumptions which do 

not capture the real complexity. As a consequence, a more thorough investigation of time-cost 

tradeoffs in PD processes requires a process model that addresses both, inter-activity (process 

architecture, overlapping policy, work policy) and intra-activity (crashing policy) effects. 

While many features of this model may have appeared in a previous study, no work has 

analyzed them all comprehensively as a system. Such a model is generally too complex to 

lend itself to closed-form analytical evaluation and must be rely on simulation techniques in 

order to approximate process cost and time. This chapter describes the proposed model that 

overcomes the aforementioned limitations and its analysis via discrete-time Monte Carlo 

simulation. 
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4.1 Process Architecture 

Recalling definition 2.1, a process architecture describes the process activities and their 

dependency relationships (Browning and Eppinger 2002). Thereby, a process consists of nA 

disjoint activities, which are recorded in a certain process sequence in vector S. Due to the 

variety of relationship types between activities, the new PD process model must handle 

independent, unidirectional and bidirectional flows of information between activities. For this 

purpose, we use two numerical DSMs, each with real number values in the interval [0,1] to 

record these three types of information flow. A first DSM M1,ij records the probability of 

activity j causing rework for activity i. Since the intensity of rework for an activity can vary 

depending on its robustness – an effect known as rework impact (Browning and Eppinger 

2002) – a further DSM M2,ij is necessary in order to record the fraction of activity i that must 

be reworked due to the output of activity j. For instance, m2,ij = 0.9 means that in the event of 

rework for activity i, provoked by activity j, 90% of activity i must be repeated (Figure 4.1). 

 

4.2 Activity Cost and Duration 

As a next step, let us introduce the notation for an activity’s cost and duration. In reality, both 

values are uncertain and cannot be assumed to be deterministic. As a triangular distribution 

for cost and duration is relatively easy to build with minimal data, we apply it for each 

activity yielding sampled values for cost, ci, and duration, ti, which are recorded in vectors C 

and D for all activities. The triangular distribution is a continuous probability distribution 

 

 

Figure 4.1: Demonstration of rework probability and rework impact. 
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with a lower limit a, mode c and upper limit b. Figure 4.2 depicts the corresponding 

probability density function (PDF). In our case the following three data points are required for 

the PDF: minimal (optimistic) duration or cost, it  and ic , most likely duration or cost, it  and 

ic , and maximal (pessimistic) duration or cost, ît  and iĉ . Importantly, we sampled cost and 

duration values from correlated triangular PDFs using the Latin Hypercube Sampling (LHS) 

(Iman et al. 1981) to avoid unrealistic sampling pairs for cost and duration of the same 

activity. Basically, this strategy divides the range of values for ci and ti into equally probable 

intervals and accepts only sampled cost & duration values within the same interval. Thus, a 

duration value close to it  entails a cost value close to ic  (and not close to iĉ ), too. 

However, the original values for duration (ti) and cost (ci) sampled from the respective 

PDFs may be changed in the ki-th iteration of activity i, with  0,ik   , to  i it k  and  i ic k  

through crashing, learning curve effects, rework impact and overlapping. Thereby,  i it k  and 

 i ic k denote the cost and duration in iteration ki considering rework impact and the effects of 

a learning curve which we assume to be constant in every iteration. These effects can arise if 

activity i is iterated (i.e. ki > 0) because of a change in the output of an activity j. Thus, we 

obtain the following definitions: 
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Figure 4.2: Illustration of the triangular PDF defined on the range  ,x a b  and related functions. 



4 A New Process Model and Simulation 

53 

  ik
i i i ijc k c   (4.1) 

  

  ik
i i i ijt k t   (4.2) 

with 2, ij i ijl m  where il L  indicates the learning curve value of activity i for both cost and 

duration, and m2,ij the rework impact. Consequently, we model learning as a function where 

an activity i takes li % of the original duration & cost in the second and subsequent 

executions. 

 

Moreover,  i iC k
c  and  i iC k

t  record the change in cost and duration through crashing 

which we allow to be different in every single iteration. Contrary,  i iO k
c  and  i iO k

t  refer to 

the variable change in cost and lead time of activity i in iteration ki as a result of overlapping 

with chronological predecessors. Additionally, an activity may be partially reworked in cyclic 

process environments influencing its cost and duration by  i iR k
c  and  i iR k

t . All these 

thoughts lead to the following two essential equations for cost and duration of an activity i in 

any of its iterations:  

  

         i i i i i i
i i i i O k C k R k

c k c k c c c     (4.3) 

  

         i i i i i i
i i i i O k C k R k

t k t k t t t     (4.4) 

  

 

In the following sections we will describe the calculation of  i iO k
c ,  i iR k

c ,  i iC k
c  , 

 i iO k
t ,  i iR k

t  and  i iC k
t . Notably, an activity i features in every iteration a start time for 

execution,  i is k
T , and a finish time,  i if k

T . Thus,      i i i i
i i f k s k

t k T T   holds. In any iteration, 

start time  i is k
T  and finish time  i if k

T  for any activity must be determined. The calculation of 

both dates is a matter of great importance and not trivial as many factors influence the 

computation. Finally, the overall cost and duration of the PD process are expressed by the 

parameters ctot and ttot, respectively. 



4 A New Process Model and Simulation 

54 

4.3 Activity Overlapping 

Basically, the overlapping strategy schedules the time when an activity receives the input 

information from predecessors and when it delivers its output to successive activities thereby 

defining the duration of overlapping between an activity and any of its dependent activities 

(predecessors or successors).  

 

Base case: overlapping based on finish to start relationships 

In order to carefully establish all the overlapping parameters in our model, we initially assume 

simple finish to start relationships between dependent activities i and j. In this case, all output 

of i for j occurs at  i if k
T  and all input information for j is needed at 

 j js k
T . However, by 

assuming preliminary output information from an upstream activity i, the downstream activity 

j may be intentionally started earlier in time than  i if k
T  thereby overlapping with i. Although a 

reduction of the overall time span can be achieved in this way, overlapping may elongate the 

lead time of j by a penalty time 
 j jO k

t  since it is started with imperfect predecessor 

information from i thus causing additional rework (Figure 4.3).  

Thereby, the duration of overlapping between two dependent activities is mainly 

governed by two points in time (Figure 4.4): 1) the point in time when an upstream activity i 

delivers output information in the ki-th iteration to a downstream activity j in the kj-th  

 

 

 

Figure 4.3: A simple overlapping of two activities 

with 
   ,ij i j j jD k k s k

T T  

 

Figure 4.4: A simple overlapping of two activities 

with 
     , ,ij i j ij i j j jD k k R k k s k

T T T   
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iteration, 
 ,ij i jD k k

T  with 
   , i iij i j

f kD k k
T T , and 2) the point in time 

 ,ij i jR k k
T  with 

   ,ij i j j jR k k s k
T T

when a downstream activity j receives input in the kj-th iteration from an upstream activity i.
15

 

Both dates are equal, i.e. 
   , ,ij i j ij i jD k k R k k

T T , but we still have to define these two points in time 

as their relationship to the start/finish time of their respective activity may differ. Thus, with 

respect to the base case, overlapping takes place if 
     ,j j ij i j j js k D k k f k

T T T   or 

     ,i i i iij i j
f k s kR k k

T T T   holds (Figure 4.3 and Figure 4.4). Please note the extended rework 

duration in Figure 4.3 and Figure 4.4 as a consequence of an augmented overlapping duration. 

 

Extending the base case by points in time for information available and needed 

In the previous section, we assumed finish to start relationships between dependent activities. 

Though, it is more general (and more realistic) to assume that the complete output information 

of an upstream activity i for a downstream activity j is available at a point in time 
 ,ij i jA k k

T  

with 
   , i iij i j

f kA k k
T T  and vice versa that an activity i needs input information at a point in time 

 ,ij i jN k k
T  with 

   , i iij i j
s kN k k

T T . Since 
     , , i iij i j ij i j

f kD k k A k k
T T T   holds, 

 ,ij i jA k k
T  constitutes an 

upper bound for 
 ,ij i jD k k

T  while 
 ,ij i jN k k

T  constitutes a lower bound for 
 ,ij i jR k k

T  due to 

     , ,ij i j ij i j j jR k k N k k s k
T T T   (Figure 4.5). In order to determine 

 ,ij i jA k k
T , we simply need to add  

 

 

Figure 4.5: Overlapping between two activities including 
 ,ij i jA k k

T  and 
 ,ij i jN k k

T  

                                                 
15 For cyclic processes, overlapping may also occur between a downstream activity feeding an upstream one. 
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the percent of activity i required before its complete output is available, recorded in M3,ij, to its 

start date: 
      3,, i iij i j

i i ijs kA k k
T T t k m   . Similar, 

 ,ij i jN k k
T  is calculated through the summation 

of the percent of activity j which can occur before it requires complete input from activity i, 

recorded in M4,ij, with the start time of activity j: 
      4,,

  
i iij i j

i i ijs kN k k
T T t k m . 

 

Bounds for preliminary information available and needed 

Since we like to exactly specify the theoretical time period in which 
 ,ij i jD k k

T  and 
 ,ij i jR k k

T  can 

occur, we need to furthermore define a lower bound for 
 ,ij i jD k k

T  as well as an upper bound for 

 ,ij i jR k k
T . Thereby, 

 ,ij i jD k k
T  is bounded below by a time point constituting the percent of 

activity i’s duration required before its preliminary output is available for a downstream 

activity j. In contrast, 
 ,ij i jR k k

T  is bounded above by a point in time representing the percent of 

activity j that can occur before it requires preliminary input from its upstream activity i.  

The former percent value is recorded in M5 and consequently: 

     5, ,i i ij i j
i i ijs k D k k

T t k m T   . Accordingly, rework penalties due to faulty predecessor 

information are assigned to activity j if 
       5,, ,

,  
i iij i j ij i j

i i ijs kD k k A k k
T T t k m T   

  
. On the other 

hand, the percent values for the upper bound of 
 ,ij i jR k k

T  can be found in M6, so that 

      6,
ij j j j

j j ijR k s k
T T t k m    holds and activity j is penalized with rework if 

        6,, ,
,  

ij i j ij i j j j
j j ijR k k N k k s k

T T T t k m   
  

. Figure 4.6 visualizes the newly introduced bounds 

and further overlapping related parameters presented in the next paragraph. 

 

Final calculation for overlapping duration 

With these bounds established, we can now exactly compute 
 ,ij i jD k k

T  and 
 ,ij i jR k k

T  in any 
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Figure 4.6: Overlapping between two activities displaying all relevant overlapping parameters. 

 

iteration using the parameters   5, 3,,
,

ij i j
ij ijD k k

o m m    and   4, 6,,
,

ij i j
ij ijR k k

o m m    representing the 

percent of an activity which must be processed until it delivers/receives information. The 

following equations hold:  

        , ,i iij i j ij i j
i is kD k k D k k

T T t k o    , if activity j is not active   (4.5) 

  

    , ,ij i j ij i jD k k A k k
T T  , if activity j is active  (4.6) 

    

        ,ij j j j ij i j
j jR k s k R k k

T T t k o  
 

 (4.7) 

 

Beside the obvious equations 4.5 and 4.7, equation 4.6 accounts for a special case: an activity 

i is supposed to deliver its preliminary output information to an activity j which is active, i.e. 

activity j has already started execution before 
 ,ij i jD k k

T , due to the output of another activity p 

(Figure 4.7a). In this event, it is reasonable (and economical) to wait with the transfer of 

information from i to j until the final output of activity i is available, i.e. 
   , ,ij i j ij i jD k k A k k

T T  

(Figure 4.7b), instead of feeding j with preliminary output - although possible in theory. 

Otherwise, the poor quality of i’s preliminary information would simply provoke additional 

rework of j without any temporal benefits (e.g. a reduction of overall time for i and j 

combined). Thus, we do not refer to the described case as an overlapping situation.  
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(a) Activity p causes the execution of j before 

activity i delivers output to j. 

(b) Delay of preliminary output information of i in 

order to avoid unnecessary rework for j.  

Figure 4.7: Special overlapping case: downstream activity j is active. 

 

Next, we present the computation of overlapping durations 
 ij i jO k ,k

t  and 
 ij i jO k ,k

t'  for the 

ki-th iteration of activity i and the kj-th iteration of activity j. While the entire overlapping 

duration between activity i and j is described by 
 ij i jO k ,k

t , 
 ij i jO k ,k

t'  constitutes the overlapping 

duration which causes rework for activity j due to an imperfect information flow between i 

and j: 

            ,
min , max ,

i i i iij i j j j j j
f k s kO k k f k s k

t T T T T   (4.8) 

  

            , , ,
min , max ,

i iij i j ij i j j j ij i j
s kO k k A k k f k N k k

t' T T T T   , if activity j is not active  (4.9) 

  

  ,
0

ij i jO k k
t'   , if activity j is active  (4.10) 

 

Rework duration caused by overlapping 

In order to determine the amount of rework generated through overlapping we still have to 

define an overlapping function   
ij i j

ij O k ,k
h t' . This function calculates the time span of rework 

between an activity j and one of its chronologically precedent activities i as a function of the 

overlapping duration 
 ,ij i jO k k

t'  (Figure 4.8a). The set of all predecessors for an activity j in the 

kj-th iteration is denoted as Pj. Similar to Roemer et al. (2004) we define a first overlapping 

function as follows: 
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(a) Effect of the overlapping function. (b) Plot of the overlapping function. 

Figure 4.8: Illustration of rework through overlapping. 

 

    

 
1

ij O k ,kij i j

ij i j ij i j

t'

ij O k ,k O k ,k
ij

e
h t' t'

 


  




 (4.11) 

with 0 ij   . The corresponding function is depicted in Figure 4.8b for different αij 

values. Moreover, we define a second, linear, overlapping function with 0 ij   : 

    ij i j ij i j
ij ijO k ,k O k ,k

h t' t'    (4.12) 

The linear overlapping function is probably more intuitive for practitioners as it is easier to 

immediately calculate the consequences of overlapping (i.e. the rework duration/cost). 

 

Simultaneous overlapping events 

It is possible that two or more chronological predecessors of an activity j overlap with j and 

deliver their information to j at the same time (Figure 4.9a). In this event, we do not simply 

cumulate the individual rework durations between j and any jiP . Rather, we reduce the sum 

of every pair-wise rework between an activity j and all its overlapping predecessors by a 

factor j  depending on the cardinality of Pj, where j  is calculated as follows: 

Pj

j e





  (4.13) 
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(a) Overlapping of three activities. (b) Plot of the rework reduction factor. 

Figure 4.9: Overlapping of multiple activities. 

 

with  ,0    (Figure 4.9b). As we assume the maximal pair-wise rework between j and 

any jiP  to be the minimal amount of cumulative rework, we must furthermore define a 

predecessor ˆ
ji P  with maximal rework time 

      , ,
ˆ max |

ij i j ij i j
ij ij jO k k O k k

h t' h t' i  P . 

Hence, overall cumulative rework 
 j jO k

t  for a downstream activity j due to overlapping 

constitutes:  

       , ,
ˆ,

ˆ
j j ij i j ij i j

j

ij i ijO k O k k O k k
p p i

t h t' h t'
  

 
    
 
 

P

 (4.14) 

 

Rework cost caused by overlapping 

Finally, we assume a proportional relationship between the rise in cost of any activity i due to 

rework caused by overlapping with its predecessors in iteration ki, denoted as  i iO k
c , and the 

duration of rework  i iO k
t :    i i i iO k O k

c t  . Accordingly,  i iO k
c  is a percentage of activity i’s 

cost considering learning and rework effects, proportional to the ratio of overlapping rework 

duration and duration prior to overlapping: 

   
 

 
i i

i i

O k

i iO k

i i

t
c c k

t k


    (4.15) 
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4.4 Activity Crashing 

Time reduction through crashing 

To reduce the time of an activity i, it can be crashed in the ki-th iteration by a duration of

 i iC k
t  to            

i i i i
i i i i i iO k O k

t k t - t k t k     . Thereby, we define  i ik  as follows:  

   i i i i ik r k    (4.16) 

where    0i i îr k ,r  corresponds to the actual crashing intensity whereas  0 1îr ,  represents 

the maximal crashing intensity recorded in vector R, and i  constitutes a crashing factor 

which we refer to as Brooks factor. The Brooks factor i  is either negative or 1.0, i.e. 

   0 1i i    , and allows us to model situations where activities resist crashing and can 

be, at worst, elongated despite the assignment of large resources (Brooks 1995). Obviously, 

   i i
i i O k

t k t   is either decreased through crashing if  0  1i ik   holds, or remains 

unchanged if   0i ik  , or is increased if    0i ik  . Figure 4.10 illustrates the effects of 

 i ir k  and i  on an activities’ duration. Hence, the change in duration of activity i due to 

crashing in iteration ki can be expressed as: 

        
i i i i

i i i iC k O k
t t k t k       (4.17) 

Unlike past literature (Roemer and Ahmadi 2004, Roemer et al. 2000), which mainly 

investigated the crashing of entire process stages, we do not allow a varying crashing intensity 

over time while the activity is executed. We feel this is a reasonable assumption since we 

decompose the entire PD process in much smaller work units and the duration of a single 

activity constitutes only a fraction of the lead time for an entire process stage (e.g., concept  

 

 

Figure 4.10: The effects of crashing. 
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development). Hence, it is realistic to assume that a single activity is merely crashed with a 

constant intensity. Though, we allow a varying crashing intensity in different iterations of an 

activity. 

 

General cost increase through crashing 

As mentioned in the introductory section, the immediate side-effect of crashing an activity is 

its augmented cost. Thereby, an activity’s cost rise due to crashing in the ki-th iteration, 

 i iC k
c , depends on its corresponding crashing intensity  i ir k  and a crashing function, 

  i i iR r k , which we allow to be continuous or discrete. Generally, we note:  

         
i i i i

i i i i iC k O k
c c k c R r k      (4.18) 

Thus, the change in cost as a consequence of crashing is a percentage of the activity’s cost in 

iteration ki. In the continuous case we set:  

  
  

1
1 100

1
i i i

i i

R r k
r k



 
  
  

,   ,0  (4.19) 

Figure 4.11a plots the convex function   i i iR r k  for different values of . However, many 

activities have only particular ways in which they can be done differently - e.g., by using 

technology B instead of technology A. This calls for a step function instead. Given a sequence  

 

 

 

Figure 4.11: Illustration of the continuous crashing 

function for different values of α. 

Figure 4.12: Illustration of crashing resources 

being paid only once. 
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of m coefficients  0 1 mα ,α ,...,α  and a sequence of interval margins    0,11 2 m-1x ,x ,...x  

we can define a sequence of intervals:  0 10A ,x ,  1 1 2 2   s s sA x ,x , s , ...,m  and 

 1 1m mA x , . With these parameters we define a second crashing function: 

  
  

  
0

1
1 1 100

1
ss

m

i i i A i i

s i i

R r k r k
r k




  
     
    

  (4.20) 

with 1A as the indicator function of A, i.e.: 

  
 1  if 

1
0 otherwise

i i s

A i i

, r k A
r k

,

 
 


 (4.21) 

 

Crashing cost for cyclic processes 

In practice, the effects of crashing are achieved through an assignment of additional resources 

which may be paid in different ways. While irrelevant for acyclic processes, the payment 

mode of extra resources affects  i iC k
c  of cyclic processes. We distinguish the following 

modes:  

1. One-time resource cost which must be paid only once in the initial iteration since they 

are existent for the remaining process duration (e.g. machinery). In this case,  

 

         if 0

0                                              if 0

i i

i i

i i i i i iO k

C k

i

c k c R r k , k
c

, k

    
  

 

 (4.22) 

holds (see Figure 4.12). 

 

 
 

(a) Crashing cost must be paid in every iteration 

including rework. 

(b) Crashing cost for partial rework is not paid. 

Figure 4.13: Illustration of single payment crashing. 
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(a) Crashing cost must be paid in any iteration 

including rework. 

(b) Crashing cost for partial rework must be 

paid. 

Figure 4.14: Illustration of multiple payment crashing. 

 

2. Single payment resource cost which are paid only once at the beginning of every 

iteration (e.g. set-up cost for machinery, rental of facilities) including reworked 

activities (Figure 4.13a). Importantly in this case, partial rework (see next subsection) of 

an activity in any iteration will not affect its crashing cost since  i iC k
c  is computed 

according to equation 4.18 only once for any new iteration (Figure 4.13b). 

3. Finally, we define multi payment cost for resources which must be paid continuously 

during activity execution in any iteration (e.g. staff). Consequently, crashing cost must 

be considered for an activity each time it is started (Figure 4.14a) and for partial rework 

cost (Figure 4.14b; see next subsection). Again,  i iC k
c  is determined, subject to 

equation 4.18, when it is started in any new iteration. 

 

4.5 Partial Rework of Activities 

Base Case: Singular partial rework provoked by one activity 

Sometimes, a downstream activity j may deliver its output to an upstream activity i after the 

latest point in time when activity i needed it, i.e. 
   6,,ji j i

ji i iD k k
T m t k  . Such a situation 

typically emerges if 
   i ij j

f kf k
T T  and m1,ij with j>i holds, which is only possible for cyclic 

processes. Iterative overlapping (see section 3.1 and definition 3.1) would be a practical 

example for this case. In this event, the duration 
   , ,ij i j ij i jD k k N k k

T T  must be reworked as it  
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Figure 4.15: Illustration of singular partial rework. 

 

constitutes the time span between information delivery and the lower bound for information 

needed. We refer to this reworked duration as partial rework.  

As a consequence of partial rework, cost and duration of an activity i (i.e.  i ic k  and 

 i it k ) are modified by  i iR k
c  and  i iR k

t . If activity i is partially reworked for the first time, 

caused by an activity j, the temporal change  ,1i iR k
t  (the “1” denotes the calculation of partial 

rework of i for the first time) is calculated as follows:  

      ,1 , ,i i ji j i ij i j
ijR k D k k N k k

t T T     (4.23) 

Figure 4.15 illustrates the above calculation. It is important to mention that  i if k
T  changes due 

to the added duration. Contrary, the calculation of  ,1i iR k
c  depends on how crashing resources 

are paid. If crashing cost are paid via single payment (case 1 and 2 in the previous section) we 

note: 

 

    
   

    
, ,

,1

ji j i ij i j

i i i i

i i i i

ijD k k N k k

i iR k O k

f k s k

T T

c c k c
T T

 

    



 (4.24) 

Otherwise, if crashing cost must be paid continuously, the following equation holds: 

 

    
   

      
, ,

,1

ji j i ij i j

i i i i i i

i i i i

ijD k k N k k

i iR k O k C k

f k s k

T T

c c k c c
T T

 

      



 (4.25) 
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(a) First partial rework due to activity j. (b) Second partial rework due to activity p. 

Figure 4.16: Illustration of multiple partial rework. 

 

Multiple partial rework  

Generally, an activity i might be partially reworked nr,i times during its execution until it is 

completely reworked again, i.e. until ki changes. Hence, we have to accumulate cost and 

duration associated with any partial rework in order to finally derive  i ic k  and  i it k : 

   

,

,

1

r i

i i i i

n

R k R k l

l

t t


    (4.26) 

  

   

,

,

1

r i

i i i i

n

R k R k l

l

c c


    (4.27) 

The calculation for case nr,i=1 was pointed out in the previous paragraph. Though, if nr,i>1 we 

have to change the temporal reference system in order to apply equations 4.23-4.25. Firstly, 

after an activity was partially reworked, its finish time must be appropriately updated. 

Moreover, we introduce a point in time for the information input which provoked the latest 

partial rework:  ,r i is k
T . Hence,  ,r i is k

T  must be updated every time when activity i is partially 

reworked. Figure 4.16 visualizes a scenario for two partial rework events with all important 

model parameters. Formally, we define:  

 

  

    

    ,

, ,

,

,

   , if 1

       , if 1

ji j i ij i j

i i

r i iji j i

ijD k k N k k

R k l

ijs kD k k

T T l

t

T T l


  


  

   






 (4.28) 
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  
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





 (4.29) 

Notably, we considered the continuous crashing case (equation 4.25) regarding equation 4.29. 

 

Simultaneous partial rework events 

As opposed to overlapping (see section 4.3), the partial rework of an activity i caused through 

multiple activities at the same time does not require an advanced coordination effort between 

the individual activities. Thus, there is no need for a similar calculation as in case of 

simultaneous overlapping events using a rework reduction factor. Instead, we decided to 

separately calculate rework cost and durations if two or more activities deliver their output to 

an activity i at an identical point in time and cause partial rework of i. Out of these values we 

simply select the maximal values with respect to rework cost and duration and assign them to 

activity i.  

 

4.6 Work Policies 

In addition to the work policy proposed by Browning and Eppinger (2002), denoted as P1, we 

defined four new work policies P2-P5 through the assignment of rules which are supposed to 

affect the process flow (and thus ttot as well as ctot) in different ways. An overview of the 

respective rules in combination with a visual example as well as their assignment to P1-P5 is 

depicted at Table 4.1. In practice, the entire set of rules of the defined work policies must not 

necessarily be valid for every activity within the process. For instance, some activities might 

be allowed to work simultaneously if they are not necessarily adjacent while others are not. 

Though, to avoid further complications of our process model, we resigned on such a “mix” of 

policy rules on an activity level. While most of the rules should be self-explanatory, we like to 
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Rule Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 

Adjacent activities may be executed concurrently: 

 

     

Activities can make assumptions about its input 

from downstream activities: 

 

     

All predecessor information must be available 

before an activity can start: 

 

     

Partial rework is immediately accomplished: 

 

     

Non-Adjacent activities are allowed to be 

executed concurrently: 

 

     

An activity may be crashed: 

 

     

Sequential activities may be overlapped: 

 

     

Delay of an activity to be reworked according to 

some strategy: 

 

     

Activities can start if all non-reworked 

predecessor information is available: 

 

     

Table 4.1: Overview of rules assigned to the five work policies P1-P5. 
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dwell on the final two rules of Table 4.1.  

Regarding the first case, we recognize that it might be sometimes beneficial to 

intentionally delay the rework of an activity i if one or more predecessors of i are still 

processed (look at the visual example in the corresponding cell of Table 4.1). Because these 

predecessors may deliver new input information to i, subject to a certain probability, they 

could all cause partial (or entire) rework of i which ultimately increments overall cost. Such a 

situation could be prevented through a delay of the start time of i according to some strategy. 

For instance, if i was supposed to start at  i is k
T  we decided to delay its beginning to the 

maximal finish time of its predecessors,  i is k
T̂ , which are still executed at  i is k

T : 

        max :
i i i ij j j j

is k s kf k f k
T̂ T | j T T  P . Though, as downside of this strategy, time could be 

wasted if i is eventually not fed with new input information by its predecessors.  

Considering the lowermost rule in Table 4.1, we intended to allow the start of an 

activity if all predecessors have been completed at least once. Therefore, an activity does not 

have to wait for the final output of reworked predecessors but may work in parallel of it. This 

rule is expected to result in a decrease of process duration but also in an increase of rework 

and thus cost. 

Last but not least let us elaborate on the impact of activity sequence in dependence of 

work policy rules. Clearly, the different rules in Table 4.1 determine when an activity is 

allowed to start, in particular if predecessor information is required or not (compare P1 and P5 

as extreme examples). Simultaneously, the activity sequence governs the definition of 

predecessors and successors. Consequently, we expect an interaction between these two 

managerial levers. In fact, fewer restrictions with respect to predecessor information needed 

are likely to increase the number of redundant activity sequences. Activities may be 

exchanged in the activity sequence much more often without affecting their actual start times 

if work policy rules allow a start independent of predecessor outputs. Therefore, we suspect 
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less spread regarding process cost and duration due to changes in the activity sequences for 

minor restrictive work policies like P5 and vice versa higher time-cost variances for highly 

restrictive work policies in terms of input information needed such as P1. 

 

4.7 Monte-Carlo Simulation for Process Duration and Cost  

To investigate time-cost tradeoffs, we must compare varied instances of this model with 

respect to ctot and ttot. To gain realistic values for both measures, we simulate each instance 

with a discrete event, Monte Carlo simulation - a slight modification of the approach proposed 

by Browning and Eppinger (2002). Our Monte Carlo simulation employs the Latin Hypercube 

sampling (LHS) method (Iman et al. 1981) as the conditional Monte Carlo Sampling 

techniques (Adlakha 1986) do not help reduce computational effort in an iterative project 

since activities iterate probabilistically. Basically, the LHS method produces a paired ctot and 

ttot for each run which can then be used to form individual or joint probability density 

functions. The simulation can be set to terminate when either a certain number of runs has 

been executed or a stable state has been reached in the simulation results (i.e., if the mean and 

variance in the PDFs of output values falls below a certain threshold). 

 

Calculation of the next event TE 

During simulation, we distinguish between a set of active activities, H, and a set of not 

active/inactive activities I. If an activity i is active, its finish time 
i if ( k )T  is greater than the 

current simulation time while it is not active if its finish time is smaller than the current 

simulation time. In order to simulate time and cost for processes according to our model, we 

repeatedly have to calculate the point in time for the next event, TE, until the simulation 

converges. Essentially, TE is either 1) the minimal finish time of all not active activities 

  min |
i i

I f k
T T i   I  or 2) the earliest point in time when any active activity is allowed to 
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Figure 4.17: Simulation event graph. 

 

deliver output to any other activity  ( , )min |  
ij i jD D k kT T i H . More formally: 

 min ,E I DT T T  (4.30) 

It is important to mention that work policies pose constraints regarding DT . For instance, 

assuming the first four work policies, an activity i can only deliver its output to another 

activity j if j has been already received the input information of all chronological 

predecessors. Contrary, P5 enables the flexibility for an activity i to neglect the output of a 

precedent activity j with kj>0 and to start instead with its output at kj=0.  

After computing TE, which is related to an activity i, the finish time of  i if k
T  is 

calculated. Thereby, all of the previously introduced effects due to crashing, partial rework, 

overlapping and learning must be considered. Subsequently, the next event TE is computed 

changing simulation time again. This procedure is iterated until H={} holds, i.e. no active 

activity is left (Figure 4.17). 
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5. Time-Cost Sensitivity Analysis of PD 

Processes Using Simulation 
 

 

Prior to a time-cost tradeoff optimization, it is reasonable to initially understand the behavior 

of such a comprehensive model with respect to time and cost. This allows us not only to gain 

a better understanding of model dynamics but also to derive new managerial insights for some 

of the research gaps illustrated in Table 1.1. Therefore, we examined in this chapter the 

impact of work policies, process architecture, crashing and overlapping on process cost and 

schedule using simulation of 48 million artificially constructed processes. Notably, these four 

“high-level” model parameters can be directly controlled by process managers. In the first 

section, we will devote our attention to the effects of work policy and process architecture on 

process cost and duration. Subsequently, we separately analyze the efficiency of crashing and 

overlapping when applied to cyclic processes. This chapter concludes with a summary 

including the most important insights. 
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5.1 Time-Cost Investigation of Process Architecture and Work Policies 

5.1.1 Introduction 

When a new process must be established, process planners typically start with a macro 

perspective on the process and firstly define process architecture as well as work policy 

before they devote their attention to detailed parameters of individual activities such as 

crashing or overlapping (Figure 5.1). We followed this approach for our sensitivity analysis 

and hence start our investigation with the two “high-level” model parameters, namely process 

architecture and work policy. 

According to definition 2.1, the architecture of a PD process defines not only the 

activities of a process but also the relationships between them as well as their temporal 

sequence of execution. Interestingly, studies to date have not yet derived scale-up behaviors 

for cost or duration of iterative processes due to changes of process architecture related 

parameters. Moreover, the influence of different work policies on the corresponding scale-ups 

has been neglected, too. To close these two research gaps is the objective of the following 

section. 

 

 

Figure 5.1: Typical approach for process planning. 
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5.1.2 Test setup 

Model parameters 

In general, our PD process model allows three distinct ways of modifying a process 

architecture:  

1) Deletion/adding of activities in the process.  

2) Deletion/adding/modification (i.e. changing the probabilities) of relationships between 

activities.  

3) Rearrangement of the process sequence which really means changing the type of 

relationships between activities and thus influencing the information flow within the 

process. Importantly, the sequence does not affect coupling but only its implications 

(i.e. wait for input information or make assumptions). 

Table 5.1 lists the parameters of our model which correspond to the above mentioned points 

and provides information whether a specific parameter was held constant throughout the 

upcoming test scenarios or variable. Additionally, a brief overview of the valuation for each 

parameter is provided.  

 

Construction of artificial processes 

To explore the impact of work policy and process architecture on time & cost we had to 

construct an adequate set of test processes featuring different characteristics. Thus, the model 

parameter M1 appears to be variable in Table 5.1. Given a specified number of activities nA for 

every test process, we count an exponential number
16

 of different possibilities to assign 

relationships between the activities. Moreover, these relationships may feature different 

probabilities. Due to this apparent complexity, we had to find a trade-off between the number 

of process architectures simulated and generalization of simulation results. 

                                                 

16 Exactly, 

2 2

1

A An n
A A

i

n n

i





 
 
 

  possibilities. 
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Test Parameter 

 

Parameter Value 

  Constant Variable 

P
ro

ce
ss

 A
rc

h
it

e
ct

u
re

 

DSM - M1  X 
Artificially generated with random, sequential 

and mixed assignment of relationships.  

Number activities -nA X  20 activities for each artificial DSM M1 

Number feedbacks - nfb  X 
Tests with 0,20,40 and 60 feedbacks within M1 

(randomly assigned) 

Number feed-forwards - nff  X 
Tests with 30,60,90 and 120 feed-forwards 

within M1 (randomly assigned) 

Feedback probabilities m1,ij  X Tests with m1,ij=0.5, m1,ij=0.3, m1,ij=0.1 

Process Sequence - S  X Tests with random permutations of S 

Activity cost - ci X  Cost for each  activity with  9,11ic    

Activity duration - ti X  Duration for each activity with  9,11it    

Learning and rework impact 

- ij 
 X Tests with ij=0.1, ij =0.3 and ij=0.5 

Max. iterations caused by 

any other activity - ˆ
ik  

 X Tests with ˆ 5ik  , ˆ 10ik   and ˆ 15ik   

Table 5.1: Process architecture related model parameters for the sensitivity analysis. 

 

As a consequence, we set nA=20 constant for each test process. This number is adequate 

to obtain qualitatively usable results which also reveal the differences between different work 

policies or architecture related strategies. Holding this variable constant also allows for 

greater understanding of other variables. Each activity was assigned a single deterministic 

value for cost and duration with  / 9,11i ic t   (see Table 5.2) as this determinism makes 

comparisons of different test scenarios less noisy.  

To cut the vast number of different relationship assignments, we constructed processes 

exhibiting different numbers of feed-forward relationships, nff, and feedback relationships, nfb,  

 

c1/t1=9.7 c5/t5=10.0 c9/t9=9.4 c13/t13=9.8 c17/t17=10.7 

c2/t2=10.3 c6/t6=9.1 c10/t10=9.9 c14/t14=10.8 c18/t18=9.7 

c3/t3=10.9 c7/t7=10.2 c11/t11=9.5 c15/t15=9.6 c19/t19=10.0 

c4/t4=10.7 c8/t8=10.6 c12/t12=10.2 c16/t16=9.1 c20/t20=10.9 

Table 5.2: Cost and duration values for each activity of the artificial DSMs. 
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as follows. Firstly, we set  30,60,90,120ffn   since this set of values corresponds to a 

realistic “relationship density” of 15-60% of all possible feed-forward relationships.
17

 

Contrary, we defined  0,20,40,60ffn   as feedback relationships are supposed to occur less 

likely than feed-forward ones in most real world PD processes. So, for our tests, we obtain 16 

different nff/nfb combinations.   

For any given nff and nfb combination, we constructed 1.000.000 distinct processes as 

follows (see Figure 5.2). Firstly, we randomly allocated all feed-forward relationships to the 

20 activities. Then, the underlying number of feedbacks was randomly assigned to the 

activities 1.000 times while feed-forward assignments remained constant. In this way, we 

yielded 1.000 test processes. Afterwards, we randomly determined a new assignment for the 

feed-forward relationships subsequently adding feedbacks, again 1.000 times. This procedure 

is iterated 1.000 times consequently providing 1.000.000 test processes for a single nff/nfb 

combination. Due to the 16 nff-/nfb combinations we finally gain 16.000.000 random test 

processes. Notably, an activity must not necessarily be connected with another because of the 

random assignments. 

Beside these completely random process architectures, we also constructed two other 

process types: 1.) sequential processes and 2.) mixed processes. For their generation, we used 

the same construction procedure as in case of random processes hence generating 16.000.000 

distinct process instances for each process type. Though, regarding sequential processes, we  

 

Figure 5.2: Illustration of constructing artificial DSMs. 

                                                 
17 Assuming 20 process activities we obtain 190 possible feed-forward/feedback relationships. 
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ensured during the assignment of feed-forward relationships that adjacent activities are always 

sequentially linked in order to guarantee strictly sequential information flows within the 

processes. In contrast, mixed processes exhibit sequential information flows combined with 

parallel activities. For this purpose, we merely connected every second activity with its 

adjacent activity. Figure 5.3 depicts two process architectures for each of the three different  

 

 

Figure 5.3: Exemplary artificial process architectures. 
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process types. According to the just outlined process construction, random processes 

inherently feature most parallelism between activities, followed by mixed processes while 

sequential test processes are characterized by the least parallelism. 

 

5.1.3 Scale-up behavior for time and cost 

5.1.3.1 Impact of relationships 

Neglecting the effects of overlapping and crashing, feedbacks in a process will generally 

augment cost and duration associated to an individual activity. Though, processes constitute 

systems with activities (i.e. system elements) interacting among each other. Therefore, it is 

usually not obvious how cost and duration of the entire process (=system) are changed 

through feedbacks. Besides, work policy rules set up constraints concerning the processing of 

activities which is supposed to impact ctot and ttot as well. Thus, we were interested how both, 

process architecture related parameters and work policy, affect the scale-up behavior of 

process cost and duration. With respect to work policies, we resigned on a consideration of P3 

in this section as it differs from P2 only in terms of crashing and overlapping while 

work/rework must be processed in the same ways as regulated by P2. However, the entire 

process architecture related model parameters listed in Table 5.1 were considered. In the 

underlying subsection (which corresponds to a base case), we mainly focused on the impact of 

relationships and therefore treated the following subset of parameters constant: 

 Process Sequence S 

 Learning and rework impact: ij=0.5 

 Maximal number of iterations for activity i caused by any other activity: ˆ 5ik   

 

Impact on cost 

Applying the discrete event simulation (as described in section 4.7) to the random test 

processes for different nff/nfb combinations assuming work policy P1, P2, P3 and P4 yields the 
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average cost values displayed at Figure 5.4. While absolute values differ for the four work 

policies we instantly note that, regardless of work policy, cost rather increase logarithmically, 

depending on the number of relationships, than exponentially. In fact, iterations make every 

activity pricier. But rework impact and learning curve effects (like defined by equation 4.1) 

absorb rework cost thereby preventing its exponential boost. Importantly, the scale-up 

behavior is not explicitly governed by nfb but also by the number of feed-forwards since 

absolute process cost apparently rise with increasing nff for identical nfb (assuming nfb>0). 

Figure A.5 in the appendix visualizes the respective scale-up as a function of nff and the 

 

Number feed-forwards = 30 

 
 

Number feed-forwards = 60 

 
 

Number feed-forwards = 90 

 

Number feed-forwards = 120 

 

Figure 5.4: Comparison of cost outcomes for work policies P1, P2, P4 and P5 assuming random 

processes and a feedback probability 0.5.  
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results point out a linear growth rate of cost for all work policies: O(nff). Contrary, we claim 

that the number of feedbacks accumulates process cost logarithmically: O(log(nfb)). 

Moreover, both growth rates hold for sequential and mixed processes, too. The corresponding 

charts, depicted at Figure A.1 and Figure A.2, can be found in the appendix. Nevertheless, 

regarding absolute cost values, we note – to some extent serious – discrepancies between the 

applied work policies. For instance, P5 produced in average twice as cost-intensive processes 

as P1 assuming nff = 120 and nfb=60. 

Usually, increasing the probability of feedback within a process is supposed to result in 
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Figure 5.5: Comparison of cost outcomes for work policies P1, P2, P4 and P5 assuming random 

processes with 120 feed-forwards and different feedback probabilities.  
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more rework and ultimately higher cost & duration. Yet, this downsides may be diluted 

through constraints such as the maximal number of iterations allowed, 
ik̂ , or an exponential 

reduction of rework cost due to learning and rework impact (see equations 4.1 and 4.2). For 

instance, the relationships of a process could feature a (theoretical) feedback probability of 

100% and, still, overall cost and schedule might not significantly differ compared to a 

feedback probability of 30%. Figure 5.5 addresses this issue and shows that cost curves for 

feedback probabilities 0.5 and 0.3 vary only marginally for all four investigated work policies. 

 

Impact on duration 

In contrast to cost, process lead-time is not necessarily a summation of the individual 

activities’ durations, mainly because of potential parallelisms between activities. Hence, 

feedbacks in the process could leave the critical path, and thus overall process lead-time, 

unchanged. Nevertheless, the average growth of duration for the different test process types 

(results for random processes are plotted in Figure 5.6, for other types in appendix Figure A.3 

and Figure A.4) in dependence of nfb appears to be very similar to that for cost. Also, an 

increasing number of feed-forwards (assuming nfb>0) provokes a linear scale-up of process 

time (Figure A.6), just like for cost. Notably, work policies responsible for inexpensive 
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Number feed-forwards = 90 

 

Number feed-forwards = 120 

 

Figure 5.6: Comparison of schedule outcomes for work policies P1, P2, P4 and P5 assuming random 

processes and a feedback probability 0.5.  

 

processes, e.g. P1, seem to produce processes with high duration. We will investigate this 

issue more in detail in subsection 5.1.4. Finally, Figure 5.7 shows the impact of feedback 

probability on process duration for all work policies.  

 

Min-Max values  
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Work policy 4 

 

Work policy 5 

 

Figure 5.7: Comparison of schedule outcomes for work policies P1, P2, P4 and P5 assuming random 

processes and 120 feed-forwards.  

 

Figure 5.8 illustrates minimal and maximal cost/schedule results for random processes with 

120 feed-forwards assuming a feedback probability of 0.5. The mentioned variance for both, 

cost and duration is evident and proved that a reduction of nfb does not necessarily result in a 

reduction of process cost or time. Referring to Figure 5.8, a process architecture with nfb=20 

could actually cause cost as high as for a process featuring nfb=60. Consequently, objective 

functions for process sequencing which merely rely on a minimization of nfb (e.g. Steward  
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Figure 5.8: Min-Max values for cost and duration of P1 assuming random processes, 120 feed-forward 

relationships and a feedback probability 0.5.  
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1981, Gebala and Eppinger 1991, Kusiak and Wang 1993) may indeed result in stable 

processes with less perturbation through feedbacks. Though, this may not be the cheapest 

and/or most expeditious. Hence, we suggest resigning on such deterministic proxies and 

instead using simulation techniques to determine process cost and duration.  

 

5.1.3.2 Impact of learning, rework impact and activity sequence 

Effects of λ 

The previous test results clearly pointed out that a low number of feedbacks does not 

guarantee a reduction of overall process cost ctot or duration ttot. A reason for this outcome is 

the fact that, theoretically, a process might contain numerous feedback relationships 

provoking, however, only minor cost/duration for rework if rework impact and learning curve 

values are low.
18

 Reversely, few feedbacks within a process could cause the unfavorable 

repetition of non-robust activities ultimately ending in high process cost and duration. In order 

to empirically demonstrate this proposition on the one hand and to determine the actual 

impact on cost and duration through changes in ij we conducted a series of tests, partially 

depicted at Figure 5.9 and Figure 5.10 for random processes (the other test results can be  
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18 At this point, we like to repeat that low values in the learning curve vector indicate that learning is high (see section 4.2). 
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Work policy 4 

 

Work policy 5 

 

Figure 5.9: Cost comparison of lambda values for work policies P1, P2, P4 and P5 assuming random 

processes with 120 feed-forwards and a feedback probability 0.5.  
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Figure 5.10: Schedule comparison of lambda values for work policies P1, P2, P4 and P5 assuming 

random processes with 120 feed-forwards and a feedback probability 0.5.  
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found in the appendix). Studying both figures reveals that modifying ij does not affect the 

scale-up behaviors we noted before. Instead, ij seems to merely act as a scaling factor for 

both, process cost and schedule. 

 

Maximal number of iterations 

Beside ij, the maximal number of repetitions allowed for an activity i provoked by any other 

activity, namely ˆ
ik , constitutes another model parameter concerning learning. Therefore, we 

examined the sensitivity of ˆ
ik  on cost and duration by simulating the artificial test processes 

of all three process types for  ˆ 5,10,15ik  . Intuitively, we would expect a steeper 

cost/duration increase with growing number of iterations. But instead, all cost/schedule curves 

appear to overlap for any ˆ
ik  (e.g. Figure A.7 in the appendix). This observation holds for all 

work policies since rework cost/duration decline exponentially because of learning and 

rework impact ultimately resulting in a convergence of ij close to zero even after a few 

iterations.  

 

Constant vs. exponential learning 

In a subsequent test bank, we therefore intentionally applied a constant ij in any iteration to 

its original cost or duration (i.e. ci and ti). We refer to this strategy as “constant learning” (CL) 

since ij remains constant as opposed to the previous strategy where ij decreases 

exponentially (“exponential learning” - EL). Thus, the following equations hold for CL:  

   , i i i ij ic k c k    (5.1) 

  

   , i i i ij it k t k    (5.2) 

Because of the constant value for  i ic k  or  i it k  in higher order iterations, the CL strategy 

is supposed to result in higher rework cost compared to the EL approach. But with increasing 
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number of relationships cost/duration growth might be restricted through ˆ
ik
 
as the growth of 

cost and duration can only continue if activities are allowed to be reworked. Figure 5.11 

displays for the investigated work policies the scale-up behaviors for three of the previously 

described cases assuming random processes with 120 feed-forwards: 1) ˆ 15ik   for 

exponential learning 2) ˆ 15ik   for constant learning and 3) ˆ
ik    for constant learning. 

Noteworthy, feedback probability was set to 0.2 since some of the simulation runs for ˆ
ik    

required enormous computational time for high feedback probabilities. As a result, we  
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Figure 5.11: Cost comparison of learning strategies for work policies P1, P2, P4 and P5 assuming 

random processes with 120 feed-forwards and a feedback probability 0.2.  
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Figure 5.12: Cost comparison of learning strategies for work policies P1, P2, P4 and P5 assuming 

random processes with 120 feed-forwards and a feedback probability 0.5.  

 

empirically confirmed that ˆ
ik  is not a crucial model parameter as long as we assume an 

exponential learning. In fact, ˆ
ik  will only become a decisive model parameter with respect to 

ctot and ttot if we alter the initial calculation of ij according to equations 5.1 and 5.2. Then, 

scale-up behavior will shift from a logarithmic to an exponential one. 
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quantity of relationships or the activities associated with a certain relationship. Instead, the 

activity sequence determines the starting dates of activities through potentially transforming 

sequential feed-forward relationships to feedbacks and vice versa. In order demonstrate the 

effect of activity sequencing, we just picked any of the randomly generated processes with 

nff= 60 and nfb=20. Subsequently, we created 5000 random (and distinct) activity sequences 

out of the 20! possibilities and simulated them. The corresponding cost and duration results 

are plotted at Figure 5.13. Clearly, a strong variation in cost is noticeable, ranging from $407 

to maximal $724 with an average value of $574. Similar, duration values vary from 186 days 

to 326 days with an average of 256 days. Apparently, the monetary consequences can be 

enormous if managers select a suboptimal process sequence.  

 

5.1.4 Time-Cost tradeoffs due to work policy 

Analyzing Figure 5.4 and Figure 5.6 already indicated potential time-cost tradeoff decisions 

due to the choice of a work policy. Thus, we assume that time-cost tradeoffs do not only 

emerge from crashing/overlapping decision or from process architecture related parameters 

like the activity sequence, but also from the choice of the underlying work policy. In order to 

examine this proposition more in detail, we approximated the time-cost objective space of 

random processes with 120 feed-forwards for P1, P2, P4 and P5 (for the other two process  

 

  

Figure 5.13: Cost and duration for different activity sequences. 
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Number feedbacks = 0 

 
 

Number feedbacks = 20 

 
 

Number feedbacks = 40 

 

Number feedbacks = 60 

 

Figure 5.14: Time-cost approximation of objective spaces for policies P1, P2, P4 and P5 assuming 

random processes with 120 feed-forwards and 0.5 feedback probability. 

 

types the reader may refer to Figure B.8 and Figure B.9 in the appendix) with respect to 

different nff (see Figure 5.14). For this purpose, we used the simulated min-max cost & 

duration values as four corners of the space and approximated the shape between these corner 

points. The resulting objective spaces highlight the suggested trade-offs. Apparently, the 

discovered tradeoffs would not occur for acyclic processes like visualized by the case nfb=0 in 
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rules of every work policy involve advantages and disadvantages regarding cost and schedule. 

As a general observation, the dynamics of feedbacks amplify the time-cost differences 

between our defined work policies since the corresponding time-cost Pareto-front spreads out 

more with increasing number feedbacks. Also, the approximation of the work policy objective 

spaces illuminates different volatilities in terms of cost and duration. For instance, while P1 

seems to be more volatile with respect to duration, P5 tends to be very robust concerning 

schedule but very volatile with respect to cost.  

Regarding the shape of a potential Pareto-front for all four work policies, the 

approximated objective spaces indicate that it must not necessarily be coherent. Instead, it 

appears that the Pareto-front features discontinuities, mainly with respect to process cost, with 

increasing amount of feedbacks. This observation is counterintuitive as we would assume that 

more process dynamics provoke larger objective spaces hence leading to a merging of the 

objective spaces (with continuous Pareto-front) in lieu of a spread-out. But as explained 

earlier, learning curve & rework impacts as well as a maximal limit for the allowed number of 

iterations prevent a higher volatility of the objective spaces with more feedbacks. Besides, 

with more feedbacks – and thus greater rework cost – the cost (and resource) conserving work 

policy rule to prohibit non-adjacent activities to work in parallel (see Table 4.1) seems to 

become more dominating. This rule is only part of P1 and obviously generates processes in a 

cost region which cannot be attained by the other work policies. 

While a work policy may be superior to all other work policies for certain processes and 

process parameters, the existence of a “super work policy” dominating any other policy for all 

possible processes is very unlikely. Schedule related advantages of a work policy are typically 

realized through the promotion of parallelism within the process - but at the expense of 

additional cost for rework (e.g. P5 fosters iterative overlapping but generates very costly 

processes). Vice versa, cheap processes are characterized by work policy rules which prevent 

the occurrence of (expensive) rework, and thus a more sequentially linked process with low 



5 Time-Cost Sensitivity Analysis of PD Processes Using Simulation 

92 

amount of iterative overlapping /parallelism. Consequently, a “super work policy” had to 

strongly foster parallelism within the process without provoking additional cost. Indeed, such 

a scenario might be possible for a process with high learning & low rework impact rates but 

rather as a result of process specific parameters and not as a result of work policy rules.  

 

5.1.5 Summary 

The previous time-cost investigation of process architecture and work policies using 

simulation revealed interesting insights and propositions which can be summarized in the 

following propositions: 

1. Regardless of work policy, scale-ups of cost and duration for cyclic processes 

significantly depend on the definition of learning and rework impact, λij. If rework 

cost/schedule decline exponentially due to λij, process cost and duration grow 

logarithmically with the number of relationships in the process. Contrary, the scale-up 

becomes exponential if λij occurs at a constant rate and, in addition, the number of 

maximal iterations is high (preferably not limited by an upper bound). From a practical 

perspective, the logarithmical scale-up behaviors are interesting as they suggest that 

product quality, which is influenced by the number of iterations, could be strongly 

enhanced at a more or less moderate increase of overall cost and duration. 

2. Feedback probabilities, the value of λij itself, or the maximal number of iterations 

separately rather influence absolute cost/duration values than general growth rate.  

3. Assuming identical test processes, the four/five work policies defined in chapter 4 cause 

different outcomes for process cost and duration. Interestingly, no work policy appeared 

to be superior to the others in both (cost, duration) dimensions. Instead, a time-cost 

tradeoff due to the choice of work policy arises. Therefore we suggest extending the 

time-cost tradeoff problem by a further managerial lever (beside crashing, overlapping 

and process architecture), namely work policy.  
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5.2 Time-Cost Investigation of Crashing 

5.2.1 Introduction 

While the immediate effects of crashing an individual activity regarding its time and costs 

have been already explained in section 4.3, the upcoming sensitivity analysis addresses the 

influence of crashing on process cost & time assuming cyclic processes. In particular we were 

interested how modifications of cyclic process architectures and the choice of work policy 

influence economic efficiency of crashing. As illustrated by Table 1.1, previous literature on 

crashing merely considered acyclic process models for similar analysis and neglected the 

potential influences of work policy, too.  

 

Crashing for cyclic processes 

According to the definition of crashing intensity and crashing function for a single activity i 

we immediately know whether it was economic reasonable to crash i or not. If in any iteration 

 

  
1

i i

i i i

r k

R r k
  (5.3) 

 

holds, duration of activity i was percental more decreased than cost increased in iteration ki. In 

this case, we denote it “economic reasonable” to crash activity i in ki – although, in practice, it 

might be sometimes reasonable to crash i even if the above ratio is lower than 1 (e.g. for the 

release of important resources necessary for other activities in another project). However, at a 

process level, it is more difficult to evaluate the economic efficiency of a particular crashing 

strategy and to compare it with other crashing strategies. Let us demonstrate this problem 

assuming the following trivial scenario. 

A process comprises five activities of equal cost and duration, all activities are 

sequentially linked and no feedback relationships exist. In this case, ttot=50 (Figure 5.15a). If a 

project manager decides to crash all activities by 20%, ttot is shortened by 20% (Figure 5.15b) 

as well but the individual activity costs rise according to some crashing function. To keep the 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.15: Illustration of different processes with activity durations in brackets. a) A simple process 

without crashing b) a simple process with crashing c) a simple process with iteration and no crashing 

d) a simple process with iteration and crashing. 

 

example simple, let us suppose a linear relationship in cost rise due to crashing, i.e. any 

crashed activity costs 20% more than the original activity. Accordingly, process schedule is 

expedited by 20%, too, and crashing seems to be a “fair” strategy for managers as schedule 

could be accelerated at a more or less fair price. However, if the process features feedback 

relationships, which might provoke rework, we face the problem of deciding whether to crash 

an iterated activity or not. Basically, we could distinguish two extreme crashing strategies 

with respect to the iterated activities: 

Strategy 1: Reworked activities are not crashed at all.  

Strategy 2: Reworked activities are crashed.  

Which strategy is more economic? Firstly, we observe that most of the reworked activities 

would be simply executed in parallel to the non-reworked ones due to the underlying process 

structure, regardless of any crashing policy (Figure 5.15c). Thus, the elongated schedule of 

the nA activities in the process is mainly governed by the rework duration of activity 1Ani   

since it cannot overlap with any non-reworked activity. 



5 Time-Cost Sensitivity Analysis of PD Processes Using Simulation 

95 

Concerning strategy 1, the iterations in the process cause a rise in duration by 20% (we 

neglect rework impact and learning curve effects for reasons of simplicity in this example), 

compared to the process without iteration and consequently ttot = 60. This result is interesting 

in that respect as 80% of the tasks had to be executed again and therefore ctot increases by 

80%. Contrary, if we pick the more intuitive crashing strategy 2, overall process time almost 

remains unchanged because of the sequential process structure (Figure 5.15d). As ttot = 58 

holds in this case, we note only a moderate schedule acceleration of 3.3% but simultaneously 

a boost in cost of 8.9%, both compared to strategy 1. Hence, we regard strategy 2 as economic 

less reasonable than strategy 1. By the way, the best policy for our example would be to crash 

only the last reworked activity.  

 

Measuring the economic efficiency of crashing 

Even this simple example illustrated that the decision to crash an activity or not in a cyclic 

process environment may not be as obvious and intuitive as for acyclic processes. In order to 

quantitatively compare different crashing strategies in some of the later test scenarios we 

introduce the crashing effect parameter ϕ:  

 

Definition 5.1 The crashing effect parameter ϕ defines the ratio between the percental 

process time change (decrease or increase) compared to original duration due to crashing, 

and the simultaneous cost increase in percent of original cost: 

/

/

tot

tot

t c

c c

t

c


 


   (5.4) 

where 

/
/ 100

tot

tot c tot
t c

tot

t t
t

t


    (5.5) 

holds and ttot/c corresponds to the duration of a process applying the selected crashing 

strategy. Analogical, 
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/
/ 100

tot

tot c tot
c c

tot

c c
c

c


    (5.6) 

denotes the percental change of process cost due to crashing, compared to process cost 

without crashing. The factor τ represents a weight indicating the priority of ϕ in favor of 

cost or duration. Finally, we assume that ctot>0 as well as ttot>0 and define ϕ=-∞ or ϕ=∞ 

(depending on /tott ct ) if 
/ 0

totc cc  . 

 

Unfortunately, the validity of ϕ is ambiguous depending on the algebraic signs for /tott ct  and 

/totc cc . Figure 5.16 displays the four cases for different signs (assuming τ=1) while we 

consider the first case (Figure 5.16a) as the most likely to appear in practice. 

  

(a) / /0 and 0
tot tott c c ct c     (b) / /0 and 0

tot tott c c ct c     

 

  

(c) / /0 and 0   
tot tott c c ct c  (d) / /0 and 0   

tot tott c c ct c  

Figure 5.16: Illustration of the ratio ϕ. 
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5.2.2 Test setup 

To examine the behavior of crashing, we conducted a series of tests using the identical 

artificial test processes, including the same cost and duration of the 20 activities (Table 5.2), 

proposed in the previous section. Instead of five work policies, we considered only those three 

work policies which permit crashing: P3, P4, and P5. Table 5.3 lists the crashing related 

parameters of our model and their valuation for the next tests. Most importantly, we selected 

two extreme crashing strategies for the test banks: 1) all activities are crashed in all their 

iterations by a constant intensity ri(ki)=0.2 (which is a quite conservative choice) or 2) all 

activities are not crashed in all their iterations, i.e. ri(ki)=0 holds for all activities and all 

iterations. We had to cut down the practically infinite number of possible crashing strategies 

to those two extreme scenarios in order draw some general conclusions on the behavior of 

crashing by means of simulation. In the next chapter we will present an optimization approach 

capable of detecting Pareto-optimal crashing strategies. 

In terms of crashing function we decided to apply the more general continuous crashing 

function (equation 4.18) and simulated different assignments for its factor α. Notably, we set 

α=13.644 for some of the tests. We obtain this value by solving equation 4.8 assuming 

ri(ki)=0.2 as well as    0 2i i iR r k . . Thus, crashing an activity i by 20% will result in both, a 

time reduction of i by 20% and a cost rise of i by 20% - which could be called “fair”. 

Furthermore, we set the Brooks factor to i=1 as it is possible, but unlikely, that crashing 

elongated the activity. 

 

 Test Parameter Parameter Value 

  Constant Variable 

C
ra

sh
in

g
 

Crashing intensity - ri(ki) X  Either ri(ki)=0.2 or ri(ki)=0 

Crashing function - R(ri(ki)) X  Continuous crashing function 

Factor for R(ri(ki)) – α  X α=16, α=13.644, α=8, α=4, α=2 

Brooks factor - i X  Tests with i=1 

Table 5.3: Crashing related model parameters for the sensitivity analysis. 
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A further crucial remark for the following tests refers to our prohibition of applying 

crashing more than once to an activity, i.e. we do not allow a potentiation of time reduction 

for an activity i by ri(ki) in subsequent iterations. We feel this is a reasonable constraint in 

order to avoid unrealistic time reductions. Besides, in practice it is unlikely to assign further 

resources to an activity, which has been already expedited through new resources before, just 

because it is reworked. 

 

5.2.3 Economic efficiency of crashing  

5.2.3.1 Base case 

At the beginning of this section we study the impact of process architecture on the behavior of 

crashing in cyclic process environments. For this purpose, we begin with a base case scenario 

which is supposed to explore how basic architecture related model parameters, e.g. the 

number of feedbacks, affect the economic efficiency of crashing. In addition to the described 

test setup in the precedent subsection, we assumed the following parameters to be constant for 

the base case: 

 Learning and rework impact for reworked activities: ij=0.5 

 Applied work policy: P3 without overlapping 

 Factor α for the crashing function: α=13.644 

 Brooks factor: i=1 

 Factor τ=1 

 Maximal number of iterations: 5ik̂   

Given these test parameters, 1   would always hold for acyclic processes, i.e. the crashing 

of the processes would cause a time reduction of 20% and a cost increase by 20%. Though, 

adding feedbacks in the process changes everything. Table C.1 through Table C.9 in the 

appendix record the simulation outcomes with respect to   for our base case tests. Thereby,  
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Multi payment resource cost 

 
 

Single payment resource cost 

 
 

One-time resource cost 

 

One-time resource cost (zoomed-in) 

 
Figure 5.17: Economic efficiency of crashing for the base case. 

 

we simulated test processes with different process architectures including the 16 different 

combinations for number of feedbacks & feed-forwards, feedback probability and process 

type. Averaging the 16 ϕ values for a specific feedback probability allows us to measure the 

effect of feedback on the economic efficiency of crashing. The lower this sum, the more 

economic is crashing. Figure 5.17 plots these average values for the three distinct payment 

methods of crashing (see section 4.4) and allows us to conclude the following insights: 

1. The economic efficiency of crashing goes up with growing number of reworks (i.e. 

higher feedback probability; see Figure 5.18) if the resources required for crashing are 

paid via one-time payment or single-payment. This is not a big surprise as the additional  
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Random processes 

 

Sequential processes 

 

Mixed processes 

 

Figure 5.18: Average number of reworks for different processes crashed via multiple payment 

assuming 120 feed-forwards. 

 

resources must not be paid over the entire time span of an activity. Contrary, 1   for 

all tests if crashing resources must be paid continuously. As a general observation, we 

recognize huge discrepancies between the payment modes for crashing. This indicates 

that the resource type for crashing is a crucial driver for its efficiency. 

2. As opposed to acyclic processes, we discovered that process structure (sequential, 

mixed, random) of cyclic processes affects ϕ as long as crashing resources must not be 

paid continuously in every iteration (e.g. staff). In case of single payment, we found that 

crashing becomes more favorable with increasing parallelism within the processes, i.e. 

random test processes performed in average best and sequential ones worst. This 

outcome is mainly caused by the highest values for cost increase due to crashing (i.e. 

/totc cc ) for sequential processes (e.g. Table C.10-Table C.12 in the appendix). At the 

same time, the percental time reduction through crashing (i.e. /tott ct ) was not affected 

by any process type. Therefore, sequential processes featured the worst  values. We 

identified the relatively high difference of reworked activities nR
19

 between sequential 

                                                 
19 We would like to point out that nR accounts only for activities which are completely reworked and not for the activities 

which are partially reworked. 
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processes and the other two process types as main reason for the higher /totc cc  

outcomes. Assuming an identical amount of feedback relationships, identical activity 

costs and durations as well as identical feedback probabilities, the higher nR value for 

sequential processes is provoked by its lower activity-density (i.e. the number of 

activities executed within a certain period of time) compared to the other process types. 

Thus, in case an activity i produces new input information for another activity j, it is 

more likely that j is not executed simultaneously and therefore has to be completely 

reworked (and crashed) again. Contrary, for highly parallel processes it is more likely 

that j is executed in parallel hence only resulting in a partial rework of j, which is 

cheaper than completely reworking and crashing j again. Our thesis is empirically 

confirmed by Table C.16 through Table C.21 which record the number of reworked 

activities and the number of partial reworks for all process types assuming single 

payment crashing in all iterations. Figure 5.19 illustrates this issue with the help of a 

simple sequential (Figure 5.19a) and mixed (Figure 5.19b) process. In this example, the 

sequential process structure produces three reworks while the mixed process structure 

provokes only one rework and two partial reworks. 

As for the case of one-time payment crashing, it is clear that absolute crashing 

costs must be identical for any process structure. Consequently, the outcome of /totc cc  - 

and ultimately of   as well since /tott ct  does not change – is mainly governed by  

 

  

(a) (b) 

Figure 5.19: Comparison of activity density for sequential (a) and parallel processes (b). 



5 Time-Cost Sensitivity Analysis of PD Processes Using Simulation 

102 

absolute process cost ctot: the smaller ctot the higher the impact of crashing cost and thus 

the higher (=worse) /totc cc  values. Accordingly, sequential processes appeared to be the 

most favorable process structure for crashing if feedback probability is low or medium 

high as ctot is higher compared to random or mixed processes. The /totc cc
 
 recorded in 

Table C.13-Table C.15 confirm this statement. In contrast, if feedback probability is 

high, ctot raises more for processes comprising a high number of parallel activities 

consequently. 

 

5.2.3.2 Investigating the effects of bottleneck activities 

One of our base case assumptions likely to fail in practice constitutes the almost identical 

values for cost and duration with  / 9,11i ic t   (see Table 5.2). Simultaneously, we noticed 

due to preliminary tests, which are not presented in this work, that the position of differently 

loaded activities (regarding its cost and duration) within a process affects ϕ. To account for 

effects due to different workloads at different positions in the process, we set up test scenarios 

for the placement of “bottleneck” activities with particularly high cost and duration values in 

the interval  / 19,21i ic t  . Thereby, we distinguished 1) front-loaded processes with five 

bottleneck activities (i=1,..,5) at the beginning of the process 2) medium-loaded processes 

with five bottleneck activities (i=8,..,12) in the middle of the process and 3) back-loaded 

processes with five bottleneck activities (i=16,..,20) at the end of the process. Furthermore, we 

fixed feedback probability to 0.5 for all test cases since we do not expect any insights for 

different feedback probabilities. Relative to the base case, other model parameters remained 

unchanged. The entire set of simulation results with respect to   is available in the appendix 

(Table C.37-Table C.45) and revealed the following insights:  

1. The distribution of bottleneck activities distinctly affects economics of crashing. 

Clearly, medium-loaded processes yielded the lowest (=best) average   values and are 
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One-time resource cost 

1.  

Single payment resource cost 

 

Multi payment resource cost 

 

Figure 5.20: Economic efficiency of crashing for processes with bottleneck activities. 

 

1. most favorable for crashing. Contrary, back-loaded processes do not favor crashing 

(Figure 5.20). This outcome can be explained with the distribution of reworks, which is 

exemplary visualized by Figure 5.21 for front-loaded processes with 120 feed-forwards 

and 60 feedbacks (the equivalent distributions for medium-loaded, back-loaded and 

equally loaded processes are depicted at Table C.46-Table C.48 in the appendix). 

Apparently, activities in the middle of the process are statistically reworked more often 

 

Random processes 

 

Mixed processes 

 

Sequential processes 

 

Figure 5.21: Distribution of reworks for front-loaded processes with 120 feed-forwards and 60 

feedbacks. 
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than those at the beginning or at the end of the process thus affecting overall process 

cost and duration most – regardless of process type or the placement of bottleneck 

activities. Hence, crashing applied to costly and long-lasting activities in the middle of 

the process will result in a percental higher process cost/duration reduction compared to 

crashing of back-loaded or front-loaded processes. 

2. Consistent with the base case, crashing is most favorable for processes with high 

number of parallel activities (i.e. in our test cases random process) and not favorable for 

sequential process structures, regardless of the placement of bottleneck activities. 

 

5.2.3.3 Investigating the effects of learning and crashing function 

Based on the previous time-cost study of process architecture related parameters and work 

policy we know that λij mainly acts as a scaling factor for process cost & duration. Thereby, 

process cost and duration obviously grow with increasing λij (or vice versa decline with 

decreasing λij) as rework is more expensive/time-consuming. Thus, in case of higher λij 

values, the benefits of additional resources are more advantageous (in particular if associated 

cost arise only in the first iteration of an activity) as they can be used for a longer period of 

time. Generally, ϕ becomes better (i.e. declines) with increasing λij values, and vice versa ϕ 

increases with declining λij values (see Table C.28-Table C.33 in the appendix).  

Since crashing cost heavily depend on the defined crashing function, we were also 

interested in the effects of varying α values for the continuous crashing function (equation 

4.8). For this purpose we simulated several scenarios based on the base case parameters. As 

exception to the base case, we assumed a fixed feedback probability of 0.5 for all processes 

and tested four different assignments for α: 2, 4, 8 and 16. In view of our selected crashing 

function it is not surprising that crashing becomes less economic with growing α as illustrated 

by Figure 5.22 (see also Table C.22-Table C.27 in the appendix). Evidently, a higher α value 

exponentially rises the price for crashing and, in turn, results in an exponential decrease of ϕ. 
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(a) One-time resource cost. (b) Single payment resource 

cost. 

(c) Multi payment resource 

cost. 

Figure 5.22: Comparison of average economic efficiency for different alpha values of the crashing 

function. 

 

5.2.3.4 Investigating the effects of work policy 

According to Table 4.1, work policies P4 and P5 allow, beside P3, the application of crashing, 

too. To investigate whether the rules of these three different work policies may actually 

change ϕ we performed base case tests for P4 and P5 in the same manner as for P3 and 

compared the outcomes. As single exception to the base case, we did not consider the multiple 

payment of resources since 1   is supposed to hold in this case for every test process 

regardless of work policy. In fact, a visualization of the corresponding test results (Figure 

5.23) clearly indicates a correlation between the choice of work policy and ϕ. For both 

payment methods, P5 performed best while P4 proved to be least economic choice.  

We claim that P5 is superior to P3 and P4 due to its higher scale-up behavior for cost (see 

Figure 5.4). In light of identical crashing cost for the two single payment methods, /totc cc  

must decrease with higher process cost according to equation 5.8. In turn, the reduction of 

/totc cc  causes a decline of ϕ due to constant /tott ct  values for all test cases. We argued 

similar in section 5.2.3.1, explaining the varying   outputs for different process types. 
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(a) One-time resource cost. (b) Single payment resource cost. 

Figure 5.23: Comparison of base case tests for different work policies. 

 

5.2.4 Summary 

The insights gained in the previous sections justified our investigation of crashing assuming 

cyclic processes. In fact, our analysis confirmed the gaps of past research on crashing 

mentioned in the first chapter as well as its role for the time-cost tradeoff problem. Our 

findings can be summarized as follows: 

1. As opposed to acyclic processes, the type of resources used for crashing is crucial. In 

dynamic process environment, managers should generally use resources which have to 

be paid only once for all potential iterations of an activity, e.g. machinery or software. 

Then, crashing becomes more economic with increasing number of activities to be 

reworked in the process. Contrary, adding resources to an activity which must be paid in 

every of its iterations (e.g. staff) causes a constant economic efficiency regardless of 

process architecture related process parameters like the number of feedbacks. Though, 

notably, we did not obtain any test results which would be characterized as inefficient, 

even if resources had to be paid in any iteration. 

2. The primary type of information flow within a cyclic process affects economic 

efficiency of crashing. Generally, crashing becomes more economic with increasing 
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number of parallel activities, i.e. activities which are uncoupled with respect to feed-

forward information flow. Contrary, processes featuring a strictly sequential 

information flow performed worst. 

3. Crashing should be applied to those activities which 1) exhibit highest cost and duration 

values and which concurrently 2) exhibit a high probability to be repeated. Tests with 

artificial processes demonstrated that, in average, activities are most likely to be 

repeated if they are placed in the middle of a process. 

4. In contrast to acyclic processes, work policy impacts the efficiency of crashing as it 

significantly governs the scale-up behavior for process cost and schedule. Thereby, 

crashing is favored by work policy rules which provoke high cost. Hence, policy P5 

appeared to be the most appropriate work policy and P4 the most inadequate one.  
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5.3 Time-Cost Investigation of Overlapping 

5.3.1 Introduction 

In principle, overlapping and crashing affect process cost and schedule in an identical manner: 

both strategies are supposed to shorten lead-time but augment process cost as downside effect. 

Nevertheless, substantial differences exist:  

1. Overlapping can only be applied to sequential or coupled activities.
20

 Hence, we expect 

that the process architecture plays a more pivotal role for overlapping than for crashing.  

2. Overlapping requires the consideration of at least two activities: one or more upstream 

activities and one or more downstream activities. Importantly, the potential expenses for 

overlapping (i.e. cost for rework) merely affect the downstream activities while cost and 

duration of upstream activities remain unchanged. In contrast, crashing merely involves 

an individual activity. 

3. The amount of additional rework for the downstream activity, provoked by overlapping, 

depends on absolute overlapping duration instead on a percental decrease of a single 

activity’s duration/cost like in the event of crashing. 

Due to these apparent discrepancies, we decided to separately investigate crashing and 

overlapping. Yet, the outline for the overlapping related sensitivity analysis in this section is 

almost identical to that for crashing. Firstly, we provide an overview of the test setup, 

followed by a presentation of the test results. The section is concluded with a summary of the 

insights.  

 

Measuring the economic efficiency of overlapping 

Prior to the discussion of test results we introduce, analogical to crashing, an overlapping 

effect parameter ψ to measure the efficiency of overlapping: 

 

                                                 
20 If two or more activities are independent of each other, they may overlap as well. However, we do not refer to this case. 
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Definition 5.2 The overlapping effect parameter ψ defines the ratio between the percental 

change of process time, compared to original duration, due to any overlapping strategy and 

cost: 

/

/


 


tot

tot

t o

c o

t

c
   (5.7) 

where 

/
/ 100
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tot o tot
t o
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
    (5.8) 

holds and ttot/o corresponds to the duration of a process applying the selected overlapping 

strategy. Likewise, 

/
/ 100

tot

tot o tot
c o

tot

c c
c

c


    (5.9) 

denotes the change of process cost due to overlapping, compared to the process cost 

without overlapping. Similar to crashing we use a factor ς representing a weight which 

indicates the priority of ψ in favor of cost or duration. Finally, we assume that ctot>0 as 

well as ttot>0 and define     or    (depending on /tott ot ) if 
/ 0

totc oc  . 

 

5.3.2 Test setup 

In order to make the test results for overlapping somewhat comparable to those for crashing 

we considered the same artificial processes (with identical cost & duration for all activities 

etc.) presented in section 5.1.2. Additionally, we examined work policies P3-P5 for the 

upcoming tests. Though, vitally, we did not permit the use of crashing for P3-P5 in order to 

obtain results which are completely associated to the impact of overlapping and not distorted 

by any crashing effects.  

Table 5.4 lists the overlapping related parameters of our model along with the values 

assigned to them. To limit the number of test cases, we had to keep those model parameters 
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constant which we expected to be least crucial for the derivation of new insights. Part of these 

restrictions was also the application of only two extreme overlapping strategies:  

1. Overlapping of sequentially coupled activities does not occur at all. 

2. Two or more activities which are sequentially coupled overlap – if possible – in any 

iteration. According to equations 4.5 and 4.6, overlapping cannot occur if an activity 

would have to deliver its output to an active activity. 

In the event of overlapping, we selected the linear overlapping function   
ij i j

ij O k ,k
h t'  to 

calculate rework cost and duration. Due to its simplicity, the linear overlapping function is 

more suited to demonstrate the effects of overlapping assuming artificial test processes. 

Finally, we set the various overlapping related points in time to a constant value (see Table 

5.4) which allows a comparison with the crashing results to some extent. For instance, we 

decided to deliver an upstream activity’s information to all possible successors after 80% of 

its completion (similar to crashing the activity by 20%) while a downstream activity receives  

 Test Parameter Parameter Value 

  Constant Variable 

O
v
er

la
p

p
in

g
 

Factor for overlapping function - α  X α =1, α =0.5, α =0.25, α =0 

Factor for cumulative rework – β X  β=0.5 

Overlapping function   
ij i j

ij O k ,k
h t'  X  Linear overlapping function   

ij i j
ij O k ,k

h t'  

DSM (minimal information available 

without penalty) - M3 
X  Constant m3,ij = 1.0 

DSM (maximal information needed 

without penalty) - M4 
X  Constant m4,ij = 0 

DSM (minimal information available 

with penalty) - M5 
X  Constant m5,ij = 0.8  

DSM (maximal information needed 

with penalty) - M6 
X  Constant m6,ij = 0.2 

Time in point when information is 

delivered - TD 
X  Constant TD = 0.8 

Time in point when information is 

received – TR 
X  Constant TR = 0.2 

Table 5.4: Test parameters for work policy P3b. 
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upstream information just after 20% of its execution. 

 

5.3.3 Economic efficiency of overlapping  

5.3.3.1 Base case 

Like section 5.2 we start our investigation of overlapping with a base case which basically 

covers the impact of architecture related model parameters on the efficiency of overlapping. 

For this purpose, the following assumptions hold: 

 Learning and rework impact for reworked activities: ij=0.5 

 Maximal number of iterations: 5ik̂   

 Applied work policy: P3 without crashing 

 Factor ς=1 

 Factor αij=0.5 for the overlapping function. Assuming the overlapping with 

TD=0.8 and TR=0.2 of two activities, which feature identical cost/duration values, 

then combined cost of both activities raise by 10% while duration is accelerated 

by 10% - hence constituting a nearly “fair” overlapping strategy for the two-

activity case. Besides, for our sequential test process without feedbacks, overall 

process duration is expedited by 20% while cost rises by 20% thus making the test 

results somewhat comparable to crashing (at least for that process type). Though, 

different to crashing, it is much more difficult to define a fair overlapping strategy 

on process level as the number of overlapping events, which determine the change 

of process cost/duration caused by overlapping, is difficult to predict in advance.  

Considering these base case rules we simulated the artificial test processes for all 16 distinct 

nff/nfb combinations and yielded ψ values recorded in Table D.64 through Table D.66 in the 

appendix. After analyzing these outcomes, we propose the following insights: 

1. In average, applying the base case overlapping strategy to iterative processes becomes 

more economic with increasing number of reworks (and thus process dynamics). Figure 
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5.24 highlights how the averaged ψ values for all nff/nfb combinations decline (i.e. 

overlapping becomes more economic) for any process type since 
/tott ot

 
decreases more 

than 
/totc oc  goes up with rising feedback probability (Figure 5.25 and Figure 5.26). 

Remarkably, and contrary to the corresponding crashing tests, 
/tott ot  does not remain 

constant while 
/totc oc  increases. 

 

 

 

 

  

Figure 5.24: Average economic efficiency of 

overlapping for the base case of policy P3b. 

Figure 5.25: Percental change of process cost due 

to overlapping for the base case of policy P3b. 

 

 

Random processes 

 

Figure 5.26: Percental change of process time 

due to overlapping for the base case of policy 

P3b. 

Figure 5.27: Average number of reworks and 

partial reworks with and without overlapping. 
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Increased activity density 

In order to explain these observations, it is crucial to initially point out that overlapping 

clearly augmented the number of partial reworks for any of the test processes (Figure 

5.27-Figure 5.29) because of an augmented activity density – a phenomenon already 

noticed throughout our investigation of crashing. Due to overlapping, activities deliver 

their output earlier to successors while the activities’ individual durations are not 

reduced (in fact, they are even elongated through the additional rework caused by 

overlapping). Hence, it is more likely that an activity delivers its information to a 

successor which is still executed than being finished. Figure 5.30 visualizes this issue 

using a simple process consisting of four sequentially linked activities and three 

feedbacks. As a result, overlapping “squeezes” the process with less slack times 

between activities finally causing an exponential boost of partial reworks. On the other 

hand, the number of “normal” reworks, which are completely reworked (i.e. ki of an 

activity i changes), is only marginally affected by overlapping and exhibits a slower (i.e. 

logarithmical) scale-up behavior.  

 

 

Sequential processes 

 

Mixed processes 

 

Figure 5.28: Average number of reworks and 

partial reworks with and without overlapping. 

Figure 5.29: Average number of reworks and 

partial reworks with and without overlapping. 
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(a) (b) 

Figure 5.30: Comparison of different activity densities without (a) and with (b) overlapping. 

 

Increase of cost 

With the impact of overlapping on partial reworks described, we now proceed to explain 

the evolution of 
/totc oc  and 

/tott ot . Given the assumptions of our base case, then 
/totc oc  

is basically composed of two values: 1) rework cost arising through the overlapping 

events themselves
21

 and 2) cost attributed to partial rework events. Both values rise – 

and as a consequence 
/totc oc  as well – with higher feedback probability (see Figure 

5.27-Figure 5.29). As the exponentially increasing partial rework costs are 

countervailed by the mere logarithmical increase of rework cost associated with actual 

overlapping events, we note that 
/totc oc  grows linearly (Figure 5.25).  

 

Decrease of duration 

Keeping in mind the results with respect to ψ (Figure 5.24), 
/tott ot  must decrease at a 

higher rate than 
/totc oc  grows. Probably, it is initially not intuitive that 

/tott ot  actually 

declines as the exponential boost of partial reworks for any test process (Figure 5.27-

Figure 5.29) is expected to elongate the individual activity durations. Though, the 

critical path of a process, which determines its overall lead-time, is not necessarily a 

summation of activity times. In fact, we found that the temporal benefit of overlapping 

                                                 

21 i.e.  
1 0

iA

i j

k̂n

O k
i j

c
 

  
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two individual activities is even exponentiated (contrary to crashing) while the number 

of consecutively overlapped activities increases. As the critical path always constitutes a 

chain of consecutively connected activities
22

 this effect holds for the critical path, and 

thus 
/tott ot , too. To visualize our proposition, we extended the simple two-activity 

overlapping model by two more activities and calculated the relevant overlapping 

parameters subject to the base case overlapping assumptions (Figure 5.31) as well as 

identical durations for all activities (10 units).  

We claim that, relative to process time, an earlier start of activity i due to 

overlapping with its predecessor i-1 effects the entire chain of succeeding activities until 

the end of the critical path. Importantly, a successor i+1 does not commence earlier 

relative to i but relative to process time (except i and i+1 additionally overlap). Thus, in 

the example depicted at Figure 5.31, overlapping shortens overall process duration note 

only by 10% but even by 16.05%.
23

 Increasing the number of consecutively linked 

activities amplifies this effect and makes overlapping even more useful with respect to 

process duration as demonstrated by Figure 5.32. It depicts the simulated start times for 

 

 

 

Figure 5.31: Illustration of an overlapped waterfall 

process consisting of 4 equal activities assuming the 

base case parameters. 

Figure 5.32: Calculation of start times with 

and without overlapping for a waterfall 

process consisting of 100 equal activities. 

                                                 
22 In the simplest case, the critical path merely consists of one single activity. 
23 Without overlapping, overall process duration constitutes 40 units. 
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100 sequentially linked activities (a “waterfall process”) of equal duration (10 units) 

without the application of the base case overlapping parameters (red line) and with 

overlapping (blue line). Clearly, the gap between start times diverges in favor of 

applying overlapping with increasing number of activities.  

2. Similar to crashing, we discovered that process structure affects the efficiency of 

overlapping. Given low feedback probabilities, overlapping appears to be most 

economic for random processes and least economic for sequential ones. In fact, 

sequential processes feature the highest number of overlapping events (=number of 

reworks; see Figure 5.28), which is the reason for their lower 
/tott ot  values compared to 

mixed or random processes. But this temporal advantage is not for free. Particularly for 

low feedback probabilities, 
/totc oc  is mainly governed by rework cost generated through 

overlapping events and not by the number of partial reworks. Therefore, sequential 

processes are more pricy than the other two process types with less overlaps. 

Differently, however, partial reworks grow exponentially with increasing feedback 

probability and consequently affect 
/totc oc  much more for high feedback probabilities. 

Since sequential processes exhibited the least increase of partial reworks, the difference 

between 
/totc oc  values of sequential process and 

/totc oc  values of random or mixed 

processes will decline with higher feedback probability. Therefore, ψ values for 

sequential processes approximate the respective values for random and mixed processes 

with higher feedback probability.  

 

5.3.3.2 Investigating the effects of bottleneck activities 

Next, we present the insights related to the placement of bottleneck activities. For this 

purpose, we did not change the base case overlapping parameters except for the extension of 

cost & duration for selected activities at the beginning, in the middle, and at the end of the  



5 Time-Cost Sensitivity Analysis of PD Processes Using Simulation 

117 

 

Figure 5.33: Average economic efficiency of overlapping for differently loaded processes. 

 

process. The corresponding simulation outcomes regarding ψ (Table D.91-Table D.93 in the 

appendix) are similar to those for crashing and can be summarized as follows:  

1. Economic efficiency of overlapping is affected by the distribution of bottleneck 

activities. Again, we gained the best results for medium-loaded processes and the worst 

ones for back-loaded processes (Figure 5.33). Since activities in the middle of a process 

are more likely to be repeated than those at the end, the benefits of overlapping become 

more salient if the highly iterated activities are those which exhibit the highest amount 

of cost & duration. 

2. Consistent with the base case, overlapping is most favorable for processes with high 

number of parallel activities (i.e. in our test cases random process) and not favorable for 

sequential process structures. 

 

5.3.3.3 Investigating the effects of learning and overlapping function 

Regarding the effects of learning and overlapping function, we conducted tests with varying 

λij values as well as different α values for the overlapping function and studied the resulting 

impact on ψ. Still, the base case assignments hold for all model parameters – except for these  
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Figure 5.34: Average economic efficiency of 

overlapping for different alpha values. 

Figure 5.35: Average economic efficiency of 

overlapping for different λij values. 

 

two. Table D.85 through Table D.90 in the appendix list the ψ outcomes for all test processes, 

and produced the following findings: 

1. While it is no surprise that overlapping becomes more economic with decreasing α for 

the linear overlapping function (as the amount of rework due to overlapping decreases), 

it is interesting to note that ψ > 0 holds even in case of αij=1 (Figure 5.34). Recalling the 

definition of the applied overlapping function (equation 4.12), αij=1 implies an 

additional rework duration/cost for a downstream activity j equal to the overlapping 

duration with an upstream activity i, i.e. 
   ,j j ij i jO k O k k

t t'   holds. In this case, we would 

intuitively expect that 
/ 0

tott ot   , and consequently ψ=0, holds.  

Though, as a result of overlapping, the downstream activity j may be finished 

earlier than the upstream activity i, i.e. 
   i ij j

f kf k
t t , assuming we do not consider any 

rework penalties. In this situation, rework time equal to the overlapping duration could 

be added to j and still, overall duration would be reduced through overlapping thus 

generating /tott ot  values below 0. Figure 5.36 displays this scenario which is likely to  
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Figure 5.36: Overlapping between two activities assuming an earlier finish of activity j than activity i. 

 

appear if the duration related difference between two overlapped activities is high (e.g. 

between a non-reworked activity and a reworked activity).  

2. Opposed to crashing, we did not yield a monotonically increasing function for ψ with 

increasing λij values (Figure 5.35). Rather, overlapping becomes for all process types 

more economic with decreasing λij values until a certain inflection point for 

 0.5,0.3ij  . Then, ψ dramatically rises indicating that our base case overlapping 

strategy is not economical anymore. Mainly decisive for this behavior are the 
/tott ot  

values for different λij which define a bathtub-similar function (Figure 5.38) while 

differences with respect to 
/totc oc

 
are less striking (Figure 5.37). Considering the fact  

 

  

Figure 5.37: Average percental change of 

process cost for different λij values. 

Figure 5.38: Average percental change of 

process time for different λij values. 
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Figure 5.39: Average number of overlapping 

events for different λij values. 

Figure 5.40: Average rework duration/cost due to 

overlapping events for different λij values. 

 

that the average number of overlapping events is almost identical for any λij (Figure 

5.39), we would intuitively expect that 
/tott ot  constantly decreases with increasing λij: 

with higher λij, reworked activities retain more of their original duration thus resulting in 

a higher percentage of rework duration (which can be overlapped) on overall process 

duration. Though, this effect roughly holds only for 0 5ij . .  

For λij>0.5 we have to take into account that rework duration/cost due to an 

overlapping of two activities depends on the overlapping duration 
 ij i jO k ,k

t' (as pointed 

out earlier in section 4.3). Due to equations 4.1 and 4.2 (defining the effects of λij) 

 ij i jO k ,k
t'  will decrease exponentially on the basis of λij with increasing number of 

iterations for the activities which overlap. Hence, the average overlapping duration 

grows exponentially with λij, and consequently associated rework duration/cost as well 

(Figure 5.40). Therefore, 
/totc oc  increases with higher λij and ultimately depresses the 

efficiency of overlapping. 
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5.3.3.4 Investigating the effects of work policy 

Assuming the base case parameters for work policy P3b we also simulated the test processes 

for policies P4 and P5 and yielded the ψ values recorded in Table D.106 through Table D.111 

in the appendix. The average ψ for all nff/nfb combinations is visualized at Figure 5.41 clearly 

proving that work policy has a significant impact on the efficiency of overlapping.  

As opposed to crashing, we found that work policy P4 is most favorable for overlapping 

while P5 turned out to be the least economic choice. In case of work policy P5 it is also 

interesting to note that ψ does not steadily drop with higher feedback probability but rather 

increases for higher feedback probabilities than 0.3. We explain these two observations with 

the fact that P4 fosters the occurrence of “normal” reworks which can be overlapped while P5 

provokes a higher number of partial reworks which cannot be overlapped. In light of these 

facts, overlapping can have a greater impact on processes applying P4 instead of P5 or P3b. 

 

5.3.4 Summary 

Generally, the previously presented test results indicate that overlapping can be regarded as a 

robust approach to cut process duration, in particular for dynamic processes. Even for adverse 

conditions, managers can assume that the application of overlapping will positively affect its 

schedule. Simultaneously, however, it is almost certain that overlapping will unfavorably  

 
Figure 5.41: Average economic efficiency of overlapping for different work policies. 
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boost process budget. More in detail, we can conclude the following propositions: 

1. With increasing dynamics, overlapping becomes (in most cases) more economic, mainly 

because of an extended critical path length. We found that a higher number of equally 

long activities on the critical path amplify the temporal benefits of overlapping two 

activities. This effect may outweigh the percental cost increase associated with 

overlapping, which exhibits a linear growth. Interestingly, overlapping slightly reduces 

the number of reworks, but on the other hand causes an exponential enlargement of 

partial reworks which make the process significantly more expensive. For work policies 

fostering the occurrence of partial reworks in order to reduce process time, such as work 

policy P5, the cost for partial reworks may even exceed the time consuming benefits of 

overlapping for certain conditions ultimately diminishing the efficiency of overlapping. 

2. The primary type of information flow affects efficiency of overlapping. While 

sequential processes featured the highest speed-up of process lead-time, they also 

showed the highest amount of additional cost. Vice versa, overlapping positively 

affected the schedule of random processes least, but caused the least amount of rework 

cost. Overall, however, we obtained the best trade-off results between time reduction 

and boost of cost for random processes, and the worst ones for sequential processes. 

3. Contrary to crashing, higher learning and rework impact values must not necessarily 

enhance the economic efficiency of overlapping. Rather, we gained the best results for 

an interval  0.5,0.3ij   where overlapping performed best. Higher or lower λij values 

reduced the economic efficiency.  

4. In contrast to acyclic processes, work policy impacts the efficiency of overlapping as it 

determines the amount of activities which can be overlapped. Thereby, the impact of 

overlapping is higher for work policy rules which foster the occurrence of “normal” 

reworks and minimize the number of partial reworks. Therefore, policy P4 appeared to 

be the most appropriate work policy and P5 the most inadequate one. 
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5.4 Summary 

At the beginning of this thesis, we presented the omissions of previous research on the 

classical time-cost tradeoff problem. This chapter was supposed to close some of these 

shortcomings, and it actually did. We revealed a series of new, interesting, insights which 

could moreover serve as a starting point for future research. In the following we list the most 

important test results in tabular form and summarize the major statements. 

First of all, on a macro level, we studied the time-cost behavior of our process model 

with respect to process architecture and work policies. An overview of the time-cost effects of 

the tested parameters can be found at Table 5.5 and Table 5.6. As major managerial insight, 

we demonstrated that time-cost tradeoffs may not only arise due to crashing, overlapping or 

process architecture but also due to the choice of a work policy if the underlying process  

 Parameter Effects on cost Effects on time 

W
o
rk

 p
o
li

cy
 

P1 
Least cost of all work policies due to least 

amount of rework 

Highest duration of all work policies due 

to least amount of iterative overlapping 

P2 
Second highest cost of all work policies 

due to second highest amount of iterative 

overlapping. 

Delay of output delivery causes less 

iterative overlapping, and thus less cost, 

than P2 and P5 

P4 
Delay of output delivery causes less 

iterative overlapping, and thus less cost 

than P2 and P5 

Delay of output delivery causes less 

iterative overlapping, and thus longer 

processes than P2 and P5 

P5 
Highest cost of all work policies due to 

highest amount of iterative overlapping 

and thus rework. 

Provokes shortest processes of all work 

policies due to highest amount of iterative 

overlapping and thus parallelism. 

Table 5.5: Summary of work policy related effects on process time and cost. 

 Parameter Effects on cost Effects on time 

P
ro

ce
ss

 A
rc

h
it

e
ct

u
re

 

M1 - nfb 
Logarithmic increase of cost regardless 

of work policy: ≈O(log(nfb)) 

Logarithmic increase of time regardless 

of work policy: ≈ O(log(nfb)) 

M1 - nff 
Linear increase of cost regardless of 

work policy assuming nfb>0: ≈O(nff) 

Linear increase of time regardless of 

work policy assuming nfb>0: ≈ O(nff) 

m1,ij 
Higher feedback probabilities increase 

absolute cost but not scale-up behavior  

Higher feedback probabilities increase 

absolute time but not scale-up behavior 

ij 
Typically a scaling factor; Depends on 

nfb and definition of the learning curve 

Typically a scaling factor; Depends on 

nfb and the definition of learning curve 

ki 

Depends on learning curve and nfb; Can 

cause logarithmic up to an exponential 

increase of cost: O(log nfb) - O( 2 fbn
). 

Depends on learning curve and nfb; Can 

cause logarithmic up to an exponential 

increase of time: O(log nfb) - O( 2 fbn
). 

S Affects nfb and nff  see effects for M1 Affects nfb and nff  see effects for M1 

Table 5.6: Summary of process architecture related effects on process cost and time. 
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 Parameter Effects on economic efficiency 
C

ra
sh

in
g

 

M1 - nfb,nff 
In average, crashing becomes more economic for all payment types with 

increasing number of reworks and thus increasing sum nfb+nfb. 

M1 – Process Structure 

Process structure affects economic efficiency if crashing resources must not 

be paid continuously in any iteration.  

 

In case of one-time payment for the crashing resources, crashing is most 

economic for sequential processes if feedback probability is low. For higher 

feedback probabilities, random processes turned out to be more economic. 

 

In case of single payment crashing, crashing is most economic for random 

processes and least favorable for sequential ones. 

m1,ij –  

Feedback probability 

In average, crashing becomes more economic for all payment types with 

increasing number of reworks and thus higher feedback probability.  

ij Efficiency of crashing increases with higher ij values. 

Bottleneck activities In average, medium-loaded processes are most suited for crashing while 

back-loaded processes are least economic.  

Factor for R(ri(ki)) – α Efficiency of crashing decreases with higher α values. 

Work policy P3-P5 
Work policy rules affect the efficiency of crashing. P5 appeared to be the 

most favorable work policy for crashing and P4 the most inadequate one. 

Table 5.7: Summary of crashing related effects on process cost & time as well as on its efficiency. 

 

features feedbacks. Likely, this observation was not discovered in the past since prior research 

mainly assumed acyclic process models. Furthermore, we derived some general time-cost 

scale-up behaviors for cyclic processes in dependence of various process parameters. 

Subsequently, we examined the effects of iteration on crashing and overlapping since 

such a study has not been conducted yet, too. Firstly, to measure the impact of iterations as 

well as that of other model parameters on the economic efficiency of crashing & overlapping, 

we introduced efficiency ratios for both strategies. According to these ratios we claim that, 

generally, feedbacks in the process amplify the positive effects of both strategies, i.e. crashing 

and overlapping become more economical with increasing feedbacks. Although exceptions 

exist, this insight is probably the most important one and it theoretically encourages the 

application of Concurrent Engineering techniques in dynamic process environments. While 

the actual impact of feedbacks on crashing and overlapping might be identical, the reasons are 

different and have been explained in great detail. The results also point out the validity of 
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systems theory for process- and project management: while the effects of crashing and 

overlapping on time and cost might be predictable on an activity (i.e. system element) level, 

they are not on a process level (i.e. system level). Thus, in our case it is accurate to say that 

the system is more than the sum of its individual elements. Table 5.7 and Table 5.8 provide a 

summary of the effects of considered model parameters on economic efficiency of crashing 

and overlapping. As a major limitation of our study, we merely considered two extreme 

crashing/overlapping strategies in order to draw generally accepted conclusions. Beside, by 

pure means of simulation it is unlikely to determine a best crashing/overlapping strategy. 

Though, the next chapter of this thesis presents an approach to identify Pareto-optimal 

crashing and overlapping strategies.  

 Parameter Effects on economic efficiency 

O
v
er

la
p

p
in

g
 

M1 - nfb,nff 
In average, overlapping becomes more economic with increasing number of 

reworks and thus increasing sum nfb+nfb. 

M1 – Process Structure 

Process structure affects the efficiency of overlapping. Given low feedback 

probabilities, overlapping appears to be most economic for random 

processes and least economic for sequential ones. With higher feedback 

probabilities, sequential processes become more favorable.  

m1,ij – 

Feedback probability 

In average, overlapping becomes more economic with increasing number of 

reworks and thus higher feedback probability. 

ij 

For all process types, efficiency of overlapping initially increases with 

higher ij until a certain inflection point in the interval  0.3,0.5
ij
  is 

reached. Then, efficiency decreases with increasing ij. 

Bottleneck activities In average, medium-loaded processes are most suited for overlapping while 

back-loaded processes are least economic.  

Factor αij Efficiency of overlapping decreases with higher α values. 

Work policy P3-P5 
Work policy rules affect the efficiency of overlapping. P4 appeared to be 

the most favorable work policy and P5 the most inadequate one. 

Table 5.8: Summary of overlapping related effects on process cost & time as well as on its efficiency. 
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6. A New Time-Cost Optimization of PD 

Processes  
 

 

To determine Pareto-optimal solutions with respect to time and cost of cyclic PD processes, 

we do not aggregate these two objectives into a single one (which would reduce a multi-

objective problem to a single-objective one). While easy to implement, aggregation methods 

are incapable of producing certain portions of the Pareto front in a single run. They also 

require additional problem-specific knowledge about the relative weightings of the various 

objectives. Furthermore, decision makers often prefer to consider multiple solutions in light of 

other circumstances and variables which are not part of the formal problem. Therefore, we 

seek to maintain the PD process time-cost tradeoff problem as a multi-objective optimization 

problem rather than collapse it into a single-objective optimization problem (which could be 

done by assuming a monetary value of time, for example). For this purpose, this chapter 

proposes the components and mechanics of a multi-objective Genetic Algorithm – the ε-

MOEA (Deb et al. 2003) – tailored to approximate the time-cost Pareto front of PD processes 

assuming the novel process model in chapter 4. Finally, we explain how to deal with problem 

specific constraints. 
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6.1 Literature Review and Selection of Multi-objective Genetic Algorithm 

By surveying the literature, it becomes obvious that most MOGA designs, especially those 

proposed in the 1980s and 1990s, do not account for both, preservation of diversity and 

convergence to the true Pareto-front, but merely cope with one criterion. The first 

implementation of a MOGA dates back to 1984 and is credited to Schaffer (1984) with his 

thesis on the vector evaluated GA (VEGA). Later, Goldberg (1989) suggested the use of 

Pareto ranking and selection in combination with a niching mechanism to move a population 

towards the Pareto-front. In this approach, the GA population is decomposed into non-

dominated fronts, and individuals within each non-domination level are assigned a common 

fitness rank. Many publications based on this design appeared in the 1990s. Fonseca and 

Fleming (1998) proposed the Multi-Objective GA (MOGA), Srinivas and Deb (1994) the 

Non-dominated Sorting GA (NSGA), Deb et al. (2002) the NSGA-2, and Zitzler et al. (1999, 

2002) the Strength Pareto Evolutionary Algorithm (SPEA) and SPEA2, respectively. All of 

these approaches focus on a good distribution of solutions without ensuring convergence to 

the Pareto front. On the other side, Rudolph and Agapie (2000) and Hanne (1999) developed 

MOEAs that guarantee at least some solutions belonging to the global Pareto front. As 

opposed to the former MOGAs, both algorithms fail in maintaining a good distribution of 

identified solutions resulting in incomplete coverage of the efficient frontier (Laumanns et al. 

2002).  

More recent approaches attempt to address both, diversity and convergence. Laumanns 

et al. 2002 introduced an archiving strategy based on  -dominance and claimed that this 

strategy guarantees convergence towards the Pareto front as well as a good solution spread. 

Based on the idea of applying  -dominance to MOEAs, Deb et al. (2003) proposed further 

enhancements to Laumanns’ original approach. In a comprehensive, comparative study, Deb 

et al. (2005) thoroughly tested several MOGAs on artificial test functions with respect to 

critical performance measures like computational time, hyper-volume, sparsity, and 
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convergence. These test functions, presented in Deb (1999) were constructed to feature multi-

objective difficulties including convexity, non-convexity, discontinuity, and non-uniformity. 

While no strategy dominates throughout all tests, the ε-MOEA (Deb et al. 2003) performed 

best overall, averaged over all test functions and all performance measures. Despite these 

excellent results for the ε-MOEA, knowledge about the Pareto set is still required to some 

extent. Thus, none of the MOEAs to date can seriously guarantee a rapid and diverse 

convergence to the true global Pareto front without problem specific knowledge. In fact, 

choosing a multi-objective GA constitutes a separate multi-objective problem itself. Though, 

we decided to apply the ε-MOEA to the time-cost tradeoff problem due to the encouraging 

results in (Deb et al. 2005) and its expected ability to cope with noisy fitness functions (like a 

simulation) in a better way than most other MOEAs because of its use of the ε-dominance 

criterion. In the following, we will present the flow of the ε-MOEA as well as its 

customization to the time-cost tradeoff problem. 

 

6.2 Flow of the ε-MOEA 

Initialization  

Initially, the ε-MOEA randomly generates a certain number of chromosomes, each of them 

representing a unique PD process with different activity sequences or overlapping- and 

crashing intensities. These chromosomes are afterwards evaluated by a fitness function which 

assigns them values for process cost and duration using the PD process simulation introduced 

in chapter 4. Subsequently all chromosomes are split up into two distinct populations. 

Contrary to the “classical” GA design (see Figure 3.8), the ε-MOEA maintains two co-

evolving populations during its execution – a parent population, P, and an archive population, 

A. While P is allowed to contain both, dominated and non-dominated chromosomes with 

respect to their absolute values for process cost and duration, the archive population is 

exclusively composed of ε-non-dominated chromosomes.  
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Advantages and disadvantages of ε-dominance 

Applying the ε-dominance (see definition 3.6) criterion to the archive population results in 

two major benefits (Deb et al. 2005). First, the cardinality of the Pareto-region is reduced as ε-

dominance decomposes the objective space into multiple hyper-boxes. Spanning a length of εi 

in the i
th

 objective, these hyper-boxes can be occupied by at most one chromosome. 

Therefore, the number of solutions in the ε-Pareto-front goes up with decreasing ε. The 

second benefit of the ε-dominance approach is its pragmatism, making the ε-MOEA 

interactive with a decision-maker. Nevertheless, this strategy has disadvantages as well: the ε 

value determining the solution resolution has to be set manually or adaptively. But setting ε 

inappropriately could result in an archive preserving poor solutions. In worst case, the archive 

would contain only one solution which ε-dominates all other solutions. 

 

Selection, crossover and mutation 

With the two population sets finally produced, the ε-MOEA proceeds as follows. According 

to a selection method for P and A, described later in section 5.3, one chromosome is picked 

out of P and one out of A. Then, these two chromosomes undergo the ordinary GA 

mechanisms crossover and mutation, which are explicated in section 5.3, to create a new 

chromosome (offspring). Divergent to the original flow of the ε-MOEA we additionally 

included two mechanisms after the mutation phase. First, we incorporated an efficient repair 

mechanism (described in section 5.5) to address firm predecessor constraints in the activity 

sequence. Second, the uniqueness of the offspring is thereafter controlled in order to avoid 

duplicates in the two populations as a result of the use of a simulation as fitness function (see 

section 5.2). In case the offspring is unique it is passed to the fitness function. Otherwise, it is 

discarded and the algorithm returns to the archive selection procedures.  
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Acceptance procedure and convergence 

As final step in the ε-MOEA, acceptance procedures for P and A (Deb et al. 2005) decide 

whether the offspring replaces any of its members or not. This procedure is iterated until any 

predefined convergence criterion is met and the archive population is expected to contain the 

Pareto-solution in the end. Defining an appropriate convergence criterion has been always a 

problem in the design of MOGAs in the past (Laumanns et al. 2002, Kumar and Rockett 

2002) and no unique solution to it has been proposed yet. Since we do not have any 

knowledge about the Pareto front in advance, we decided to choose the following 

convergence criterion. The ε-MOEA is assumed to be converged if the absolute number of 

Pareto solutions remains constant for a certain number of generations and if additionally the 

number of changes regarding the optimization objectives (i.e. in our case time and cost) 

within the set of Pareto solutions (e.g. 5% of all Pareto solutions) does not exceed a 

predefined threshold for this period.  

 

Schematic flow 

Figure 6.1 illustrates the overall flow of the selected ε-MOEA design. In contrast to most 

multi-objective GAs, which process the entire population through discrete steps, our version 

of the ε-MOEA constitutes a steady-state evolutionary algorithm (EA). To speed up 

computation, steady-state EAs use only a portion of the population for processing, and each 

offspring is compared with the parent population immediately after its creation. 

 

Figure 6.1: Flowchart of the modified ε-MOEA. 
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6.3 GA components 

With the flow of our tailored GA established we now propose the problem-specific setup of 

its components, i.e. the data structure and fitness function, more in detail. Since the data 

structure of the GA depends on the data to be optimized, we firstly define the set of 

parameters for the time-cost optimization. 

 

6.3.1 Selection of optimization parameters 

At the beginning of the optimization process, we have to identify those parameters in our PD 

process model which are considered to be constant and those parameters which are supposed 

to be optimized. Basically, we decided to encode three fundamental process parameters, 

namely activity sequence, crashing and overlapping. Notably, we did not include the choice of 

work policy in our optimization approach as we intended to investigate the impact of work 

policy on the Pareto-front. Thus, we the following list of model parameters was encoded: 

1. The activity sequence S 

2. The crashing intensity  i ir k  for each activity i and every iteration ki. (up to ˆ
ik ) 

3. The percentage of activity i’s duration when it delivers the output in the ki-th iteration 

for activity j in the kj-th iteration: 
 ,ij i jD k k

o
 
in every iteration ki (up to ˆ

ik ) for every pair 

of activities i and j. 

4. The percentage of activity j’s duration when it receives the output in the ki-th iteration 

from activity i in the ki-th iteration:
 ,ij i jR k k

o  in every iteration ki (up to ˆ
ik ) for every pair 

of activities i and j. 

The parameters 
 ,ij i jD k k

o  and 
 ,ij i jR k k

o  are used to calculate the overlapping duration as well as 

other overlapping related values, e.g. the resulting rework duration, as explained in section 

4.3.  
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6.3.2 Data structure 

Random key encoding 

As for the selected optimization parameters, we realize that  i ir k , 
 ,ij i jD k k

o  and 
 ,ij i jR k k

o  

constitute real numbers while S represents a permutation. In general, permutations are 

represented through integers in the chromosome. Though, Bean (1994) proposed a random 

key representation based on real numbers as encoding scheme and pointed out its benefits for 

combinatorial problems. Mainly for this reason we selected random keys to encode the 

activity sequence of a PD process.  

Typically, the real numbers are used as ascending sorting keys to encode a permutation. 

These numbers are initially determined by random and alter only under the influence of 

mutation and crossover. Accordingly, a permutation of length l consists of a vector 

1 2( , ,..., )lr r rP
 

with  0,1
l

P . Considering the surjective function : l lS S   with 

 0,1,..., 1lS l  , random keys are sorted in ascending order: 
(1) (2) ( )... lr r r     . A 

permutation is then encoded by  (1), (2),..., ( )l   . This formalism describes that the key 

positions within P are ordered according to their absolute value. As an example, consider the 

following chromosome and the corresponding encoding: 

 

 

Theoretically, a key could be generated several times, although the chance is reduced 

when using sufficient precision for the keys. In this case, a left-right strategy could be used to 

ensure feasibility. In addition to the preservation of feasibility, another benefit of random keys 

is important: partial relative ordering is preserved after crossover. Furthermore, the absolute 

ordering information is also preserved to some extent (Knjazew 2002).  
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Encoding of activity sequence 

As a result of the random key encoding for S, we treat all optimization parameters as real 

numbers which can be easily transformed into binary strings with certain degree of precision. 

At a high level, we divided the binary chromosome into four disjoint segments, each of them 

representing one single optimization parameter, as follows. First, the process sequence can be 

easily encoded through nA random keys representing the identities of the corresponding 

activities. Each random key is assigned to exactly one distinct gene and consists of 32 bits. 

Hence, the real number of the key is determined by transforming the binary string to a 

decimal number which is subsequently divided through 2
32

. To process only feasible process 

sequences, we have to take care of two issues: 1) an integer value of the permutation must 

occur exactly once, and 2) we are not allowed to violate predecessor constraints in S. 

Fortunately, we can avoid the first problem by the use of random keys. However, dealing with 

predecessor feasibility will be covered later in section 5.3. For now, we continue explaining 

the encoding of the two overlapping parameters.  

 

Encoding of overlapping 

As the overlapping intensity between two activities i and j may differ depending on their 

underlying iteration it is not sufficient to encode 
 ,ij i jD k k

o  or 
 ,ij i jR k k

o  through one single bit 

number. Instead, we have to encode the 
 ,ij i jD k k

o  or 
 ,ij i jR k k

o  values for all possible 

combinations of ki and kj. Overall,    ˆ ˆ1 1i jk k   combinations exist and must be included in 

the chromosome. Thereby, each combination is binary encoded through a bit number of any 

length, nB, depending on the precision required by the user. We feel that 256 discrete 

intervals, i.e. an 8-bit encoding (nB=8), should be sufficient in practice. To reduce 

computational effort, we furthermore encode only values with 
 ,

1
ij i jD k k

o   and values for 
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 ,
0

ij i jR k k
o  , respectively. Otherwise, we would include unnecessary information merely 

extending chromosome length.  

Thus, the second segment of the chromosome is established by initially identifying 

those relationships in M3 and M5 which meet the aforementioned requirements. Then, we 

consecutively generate an 8-bit number for every (ki, kj) pair as depicted at Figure 6.2 and 

append it to the existing chromosome. To decode the overlapping segment, every of its nB-bit 

blocks is transformed to an integer value u in the interval 0,2 1Bn    yielding a value for 

 ,ij i jD k k
o  in the interval  3, 3, 4, 3,,

2 1B
ij ij ij ijn

u
m m m m
 

    
and, with respect to ( , )ij i jR k ko , in the 

interval  5, 6, 5, 6,,
2 1B

ij ij ij ijn

u
m m m m
 

    
. 

 

Encoding of crashing  

The last segment of the chromosome addresses crashing. We encode the crashing value of an 

activity i in any of its iterations (up to ˆ
ik ) using nB -bit numbers as well. For evaluation, these 

bit numbers are transformed to an integer value u with 0,2 1Bnu      in order to generate 

crashing intensities as follows:   ˆ
2 1B

i i i n

u
r k r 


.  

 

Figure 6.2: Illustration of overlapping encoding. 
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Aggregating the four different segments of our data structure so far, we obtain an encoding 

scheme for a chromosome of the multi-objective GA as illustrated at Figure 6.3. 

 

6.3.3 Fitness function 

Since our process model is too complex to deterministically approximate time and cost of  

 

 

Figure 6.3: Illustration of chromosome encoding. 
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arbitrary PD processes, we had to use the simulation introduced in chapter 4  to gain realistic 

cost and schedule outcomes.  

 

Drawbacks of a simulation as fitness function 

Though, the use of simulation has two major drawbacks. First, the computational effort for 

simulation becomes greater with increasing number of feedbacks. Thus, a single fitness 

function evaluation might be extremely time-consuming, which is particularly 

disadvantageous for a population-based search (like GAs). Second, a simulation can be 

regarded as a “noisy” fitness function because its output – the resulting ctot and ttot 

distributions – may slightly vary each time. A noisy fitness function will potentially assign 

different fitness values to identical chromosomes, leading to varying Pareto-fronts over 

successive runs of the ε-MOEA. Moreover, identical chromosomes could become competitors 

in the population of a single ε-MOEA run due to their different fitness values, allowing them 

both to take up space in the archive population. In worst case, the population could merely 

consist of multiple instances of the same chromosome with different fitness values. However, 

two mechanisms prevent this scenario.  

 

Preserving diversity 

The first one is part of the MOEA design: the ε-dominance criterion. If cost and duration 

outcomes for two chromosomes with identical encoding differ by less than the corresponding 

ε values both chromosomes compete for the same hyper-box. Therefore, one of the two 

identical chromosomes is discarded, thus ensuring the uniqueness of the other chromosome. 

Nevertheless, the difference in simulation outcome could also exceed the ε value, particularly 

if ε is chosen too low; therefore, the stopping criteria for the number of simulation runs must 

be coordinated with the choice of ε. If this scenario occurs frequently, diversity in the archive, 

and consequently the number of potential Pareto-solutions, decreases. Fortunately, we can 
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easily avoid this case by extending the ε-MOEA with an operator in front of fitness evaluation 

(see Figure 6.1) verifying the uniqueness of the offspring by comparing its data structure with 

all members of P and A. Obviously, computational time will be increased (since, theoretically, 

no offspring could be produced for numerous iterations), but we nevertheless emphasize the 

incorporation of this additional mechanism to ensure diversity.  

 

6.4 GA Mechanics 

6.4.1 Selection and acceptance procedures 

As pointed out earlier in this chapter, the ε-MOEA maintains two distinct populations instead 

of one which requires us to apply a selection operator to each of them. Moreover, we have to 

consider multi-objective fitness values, i.e. chromosomes rather exhibit a separate fitness 

value for cost and duration than a single aggregated one. Thus, we have to perform two-

objective domination checks in order to select a chromosome. In the original study on the ε-

MOEA, Deb et al. (2003) proposed the following selection procedures. 

 

Selection 

With respect to the parent population P, chromosomes are selected according to a tournament 

selection strategy. Tournament selection constitutes a so called ordinal-based selection 

scheme and is widespread in use due to the ability to ensure an adequate selection pressure 

over time. Basically, the selection pressure indicates how many copies of the best fit 

chromosome survive the selection stage (Bäck 1994). During tournament selection, a certain 

number of chromosomes depending on the size s of the tournament are randomly picked. 

Generally, the best fit chromosome – in our case, the chromosome which dominates the other 

chromosomes in the tournament – wins the tournament with a certain probability and 

overcomes the selection phase. If the tournament contains non-dominated chromosomes, then 

we randomly pick one out of them assuming an equal probability. The literature distinguishes 
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tournament selection with replacement (TWR) and without replacement (TWOR). In the case 

of TWR all chromosomes which just participated in a tournament are also allowed to be 

potential candidates for the succeeding tournament. In consequence, the best string is 

expected to obtain s copies in average. Contrary, TWOR requires s "iterations" of selection, 

i.e. individuals are allowed to participate in a tournament only if all other chromosomes have 

been part of a tournament in the same iteration. Accordingly, the best chromosome gets 

exactly s copies for further processing. Sastry and Goldberg (2001) compared both methods 

claiming a superiority of TWOR as it is less noisy and needs a lower population size to 

achieve the same accuracy as TWR. Regarding tournament size s, we decided to set s = 4 due 

to the results in (Goldberg et al. 1991, Goldberg and Deb 1991). In contrast to P, we just 

randomly select a chromosome from the archive population A without the use of any selection 

operator.  

 

Acceptance procedures 

In addition to the selection procedures, the ε-MOEA features two so called acceptance 

procedures determining whether the offspring replaces any member in P or/and in A. 

Basically, the offspring replaces a chromosome in P if it dominates one or more of them 

(chosen at random) or if it is non-dominated to all population members in P. Though, if at 

least one member in P dominates the offspring, it is not accepted. The acceptance procedure 

for the archive population is more complex and the reader may refer to (Deb et. al 2003) for a 

detailed description. However, in principle this procedure is similar to the acceptance strategy 

for P but based on ε-dominance checks.  

 

6.4.2 Crossover 

In lieu of applying one crossover operator to the entire chromosome, we decided to use 

crossover for each segment of our data structure separately. This is motivated by the great 
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length of a chromosome – easily comprising several thousand bits – and its time consuming 

evaluation via simulation. Applying multiple crossover operations leads to a more intense 

mixing of the genes hence increasing the “search speed” of the ε-MOEA. Though, such a 

strategy bears the risk of premature convergence. Overall, from a practical point of view, we 

feel that the computational advantage outweighs the theoretical disadvantage in solution 

quality.  

Knjazew (2002) empirically investigated different crossover operators on artificial test 

functions claiming a superiority of the single-point crossover (Goldberg 1989) compared to 

the popular two-point crossover and uniform crossover. Mainly for this reason we also 

incorporated it in our GA design. In general, the single-point crossover for two chromosomes 

works as follows. First of all, two chromosomes out of the mating pool (i.e. the population 

after selection) are randomly chosen and only undergo crossover with a certain crossover  

 

 

Figure 6.4: Demonstration of crossover. 
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probability pc . Then, a crossover sites is chosen randomly. Subsequently both chromosomes 

are sliced at the crossover site into two segments. Finally, the offspring gets two segments 

from different chromosomes. Figure 6.4 demonstrates how the crossover works if applied to 

each of the four sections of our data structure. 

 

6.4.3 Mutation 

Similar to crossover, we apply mutation to the four segments of a chromosome separately 

assuming a certain mutation probability pm which is typically set to a low value. For this 

purpose, a simple bit-swap mutation (Goldberg 1989) is supposed to work fine. 

  

6.5 Dealing With Predecessor Feasibility 

In order to exclusively process feasible activity sequences after crossover and mutation, we 

must address predecessor constraints. Firm predecessor constraints are inherently recorded in 

M4 and M6 as an activity j cannot be started before its predecessor i if it requires all input 

information from i to begin, i.e. if m4,ij = m6,ij = 0 assuming i>j. As m6,ij constitutes an upper 

bound for m4,ij, m6,ij = 0 is sufficient to  indicate firm predecessor constraints. Since random 

key encoding of the activity sequence merely ensures the prevention of duplicate activity IDs 

in the chromosomes, an additional, efficient repair mechanism is required to transform any 

activity sequence into a precedent-feasible one. Apparently, a straight-forward repair strategy 

in case of predecessor violation would be the iteration of crossover or mutation until all 

constraints are satisfied. Though, depending on the number of constraints, the discrepancy 

between the immense number of possible permutations (nA! for nA activities) and the number 

of feasible solutions could be great and simply too time consuming. Besides, this strategy is 

not deterministic. Therefore, we handle predecessor constraints in another deterministic and 

efficient way as follows.  

 



6 A New Time-Cost Optimization of PD Processes 

142 

Strategy to ensure predecessor feasibility 

Generally, predecessor conflicts do not occur between activities which can be executed 

concurrently – i.e., activities which do not rely on predecessor information at the same point 

in time. Assuming we start with an empty activity sequence at time T0, we can calculate the 

set of parallel activities at T0 based on the DSM M6 and subsequently pick an activity out of 

this set according to a deterministic strategy. For instance, we could scan the (potentially 

infeasible) activity list of the chromosome from left to right and select the activity ID which 

matches first any activity ID in the set of parallel activities. Then, the chosen activity is 

appended at the end of the feasible activity list and all of its relationships within the network 

of activities are temporarily deleted. Repeating this procedure until all activities have been 

assigned to a spot in the activity sequence, we will never violate any predecessor constraints. 

 

 

Input:  

 

Integer      n_a; 

ActivityList p[n_a]; 

Array        M_6[n_a][n_a]; 

 

Output: 

 

Feasible schedule list f[n_a] 

 

Algorithm: 

 

1: Integer i=0; 

2: Integer j=0; 

3: ActivityList f=new ActivityList[n_a]; 

4: WHILE i < n_a 

5:     FOR j to n_a-1 

6:        IF p[j].numberOfPredecessors == 0 AND 

7:           P[j].isScheduled == FALSE THEN  

8:                f[i]=p[j]; 

9:                BREAK; 

10:       ENDIF 

11:       j++; 

12:    ENDFOR 

13:    j=0; 

14:    FOR j to M_6.length-1 

15:       M_6[j][f[i].columnID]=0; 

16:    ENDFOR 

17:    j=0; 

18:    p[f[i]].isScheduled = TRUE; 

19:    i++; 

20:ENDWHILE 

 

Figure 6.5: Pseudo-code for mapping any permutation to a feasible activity list. 
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The pseudo-code shown in Figure 6.5 describes the repair mechanism more in detail. As 

input, the algorithm needs the permutation to be mapped, p, the number of activities, n_a and 

the DSM M_6[n_a][n_a]. Besides, two auxiliary variables i and j are used. The output 

is a precedent- feasible activity list f. The algorithm identifies the first activity of p without 

precedent activities and assigns it to spot i in f. Then, all dependencies on the selected 

activity are deleted in M_6[n_a][n_a]. This simple algorithm scales up in complexity 

O(nA
2
). 

 

Exemplary repair of predecessor violation 

As an example, consider the DSM in Figure 6.6a representing M6 and an infeasible activity 

sequence to the right of it. The DSM indicates the precedence relationships between the 

activities – e.g., activity 1 must precede activity 3 and activity 2 must precede activities 3 and 

5. Accordingly, the permutation {3-1-4-2-5-6} is not feasible since, for instance, activity 3 is 

scheduled prior to activity 2. Applying the repair algorithm leads to the following results. 

Activities 1 and 2 do not depend on any other activities in the set and thus comprise the initial 

set of parallel activities. The first value in this set which also occurs in the infeasible sequence 

p is {1}. Thus, the first value of the feasible schedule list, f, must be 1: f[0] = 1. After 

deleting the row and column for activity 1 in M6, the next iteration of the algorithm begins, 

detecting a new set of parallel activities: {2}. In this set, activity 2 is the earliest one in p and  

 
(a) (b) 

Figure 6.6: Preserving predecessor feasibility. 
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consequently f[1] = 2 holds. The row and column for activity 2 are deleted and a new loop 

starts. Repeating all steps of the algorithm until convergence, we obtain the precedent-feasible 

schedule list f = {1, 2, 3, 4, 5, 6}. 
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7. Case Studies 
 

 

The following chapter presents the combined application of the previously proposed new 

model, simulation and optimization strategy on two real-world PD processes: the first process 

appeared in the aerospace industry and the other in the automotive industry. Thereby, the 

goals of this study are twofold. Firstly, as much as possible insights gained during the 

sensitivity analysis, which were based on artificially constructed processes, shall be verified 

by processes in practice. Besides, we intended to justify the (practical) need for a complex 

process model like the one we developed in order to approximate Pareto-optimal processes. 

Unfortunately, modeling of crashing and overlapping in both case studies cannot be compared 

with the fair assumptions in chapter 5. Thus, it did not make sense to calculate ϕ and ψ values 

for the Pareto-fronts of the two processes and to compare the outcomes with the insights in 

chapter 5. Each case study is outlined as followed. Initially, we briefly provide background 

information on the process itself, subsequently present the test setup including the adjustment 

of the process data to our model and finally discuss the optimization results.  
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7.1 Case Study 1: Preliminary Design Process of an Unmanned Combat Aerial Vehicle 

7.1.1 Process description 

The first case study comprises a process describing the preliminary design of an unmanned 

combat aerial vehicle (UCAV), presented in the work of Browning (1998). Generally, 

UCAVs are an experimental class of unmanned aerial vehicles which are designed to deliver 

weapons with great degree of autonomy.
24

As an example for a UCAV, Figure 7.1 depicts the 

Boeing X-45A UCAV, which mainly served as technology demonstrator and had its first 

flight on May 22, 2002.  

The UCAV process, which serves as case study, is based on an actual project at The 

Boeing Company (Browning 1998) but data was disguised to protect company proprietary 

information. Motivated by the interest of the United States Air Force on some type of UCAV, 

Boeing initially developed some notional vehicle concepts using historical data and their 

perspective on Air Force needs. Subsequently, the Air Force provided more specific 

requirements. That prompted a kick-off of the Preliminary Design Phase, culminating in a 

proposal to the Air Force. For the case study, we resigned on the conceptual design phase but 

exclusively considered the preliminary design process. This process consisted of 14 activities 

(see Table 7.1) connected via 52 relationships (see Figure 7.2) and can probably not be 

regarded as a very complex PD process. For a more detailed description of the individual  

 

  
(a) X-45A upside. (b) X-45A underside with weapons bay 

door open. 

Figure 7.1: Picture of the Boeing X-45A UCAV, adapted from www.wikipedia.org.  

                                                 
24 www.wikipedia.org 
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activities, e.g. input/output information, the reader may refer to Browning (1998). Despite its 

reduced complexity, we nevertheless feel that this design process is suited for a first case 

study for several reasons:  

1) Preliminary design processes tend to be dynamic exhibiting much iteration which makes 

them interesting to investigate. 

2) Instead of a long-lasting field study over several months, actual project data (in good 

quality) was available for the UCAV process and could be quickly adapted to our 

process model.  

3) Given our rich process model, the scope of the process is suited as a first place to start 

in order to not obscure potential insights. 

 

7.1.2 Case study setup 

Process architecture 

Fortunately, most of the process architecture related data necessary for our process model 

could be completely adopted from Browning (1998). Table 1.1 provides an overview of the 

14 process activities including their cost and schedule data for the triangular distribution as 

well as values for the learning curve and maximal number of allowed iterations. This data is 

Activities Time (days) Costs ($k)   

ID Name it  
it  ît  ic  

ic  iĉ  L ik̂  

1 Prepare UCAV Preliminary DR&O 1.9 2 3 8.6 9 13.5 0.35 5 

2 Create UCAV Preliminary Design Architecture 4.75 5 8.75 5.3 5.63 9.84 0.20 5 

3 Prepare & Distribute Surfaced Models & Int. Arngmt. Drawings 2.66 2.8 4.2 3 3.15 4.73 0.60 5 

4 Perform Aerodynamics Analyses & Evaluation 9 10 12.5 6.8 7.5 9.38 0.33 5 

5 Create Initial Structural Geometry 14.3 15 26.3 128 135 236 0.40 5 

6 Prepare Structural Geometry & Notes for FEM 9 10 11 10 11.3 12.4 1.00 5 

7 Develop Structural Design Conditions 7.2 8 10 11 12 15 0.35 5 

8 Perform Weights & Inertias Analyses 4.75 5 8.75 8.9 9.38 16.4 1.00 5 

9 Perform S&C Analyses & Evaluation 18 20 22 20 22.5 24.8 0.25 5 

10 Develop Balanced Freebody Diagrams & External Applied Loads 9.5 10 17.5 21 22.5 39.4 0.50 5 

11 Establish Internal Load Distributions 14.3 15 26.3 21 22.5 39.4 0.75 5 

12 Evaluate Structural Strength, Stiffness, & Life 13.5 15 18.8 41 45 56.3 0.30 5 

13 Preliminary Manufacturing Planning & Analyses 30 32.5 36 214 232 257 0.28 5 

14 Prepare UCAV Proposal 4.5 5 6.25 20 22.5 28.1 0.70 5 

Table 7.1: Activity data for the UCAV process. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1               

2 .4        .2      

3  .5  .4           

4 .3  .5            

5 .4  .5   .1  .1    .3 .1  

6 .1    .4          

7 .4     .4         

8      .5      .5   

9 .4  .5 .5    .5       

10    .1  .5 .2 .1   .4    

11      .5 .5 .5  .5     

12 .4     .4 .5   .5 .4    

13 .5    .5       .4   

14 .3 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4  
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1               

2 .5        .1      

3  .3  .5           

4 .4  .8            

5 .1  .1   .1      .3 .1  

6 .1    .3          

7 .5     .8         

8      .5      .5   

9 .3  .3 .3    .3       

10    .1  .5 .4 .3   .3    

11      .5 .5 .3  .3     

12 .5     .3 .5   .5 .5    

13 .9    .9       .3   

14 .5 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8 .8  
 

Figure 7.2: M1 showing rework probabilities for 

the UCAV process. 

Figure 7.3: M2 showing rework impact values for 

the UCAV process. 

 

based on interviews in the field conducted by Browning (1998) and historical 

data/experiences. Referring to Table 7.1, activities 5, 9 and 13 seem to be the most critical 

with respect to both, time and cost. Though, their learning curve value is rather low which 

means that rework of those activities is expected to be worked off quickly and cheap. Notably, 

learning does not occur at all for activities 6 and 8 hence constituting potential bottleneck 

activities. In addition to the activity data, information flows between the activities (Figure 

7.2), i.e. M1 in our model, as well as rework impact information (Figure 7.3), i.e. M2, were 

available in the study of Browning (1998) and completely adopted. 

 

Crashing and overlapping 

Since the process model in Browning (1998) did not account for overlapping and crashing, we 

had to collect the respective data interviewing an aerospace & aeronautics expert who was 

also familiar with the UCAV process. Therefore, we like to point out that the proposed 

crashing data (Table 7.2) describes no actual data but merely proxies based on (subjective) 

knowledge/experience in the field. According to this expert, each activity could be 

theoretically crashed (Table 7.2) through the assignment of additional staff hence provoking 

multiple payment cost for crashing (see section 4.4). Extra costs for crashing were calculated 
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ID Activity Name 
Continuous 

or Discrete? 
Intensity () 

Maximum 

Crashing 
Resource 

1 Prepare UCAV Preliminary DR&O C Medium = 6 25% Staff 

2 Create UCAV Preliminary Design Architecture C High = 12 25% Staff 

3 Prepare & Distribute Surfaced Models & Int. Arngmt. Drawings C Medium = 6 10% Staff 

4 Perform Aerodynamics Analyses & Evaluation C High = 12 25% Staff 

5 Create Initial Structural Geometry C High = 12 25% Staff 

6 Prepare Structural Geometry & Notes for FEM C High = 12 50% Staff 

7 Develop Structural Design Conditions C Medium = 6 25% Staff 

8 Perform Weights & Inertias Analyses C Medium = 6 25% Staff 

9 Perform S&C Analyses & Evaluation C High = 12 25% Staff 

10 Develop Balanced Freebody Diagrams & Ext. Applied Loads C High = 12 25% Staff 

11 Establish Internal Load Distributions C High = 12 10% Staff 

12 Evaluate Structural Strength, Stiffness, & Life C High = 12 10% Staff 

13 Preliminary Manufacturing Planning & Analyses C Medium = 6 50% Staff 

14 Prepare UCAV Proposal C Medium = 6 10% Staff 

Table 7.2: Crashing related data for the UCAV process. 

 

for all activities using the continuous crashing function as defined by equation 4.19. Thereby, 

no activity is supposed to be elongated through the crashing resources and hence κi=1 holds. 

Importantly, the most cost- and time intensive activity 13 may be crashed by 50%. 

Considering the fact that extra cost for crashing this activity are expected to be moderate due 

to a medium high α value, we suggest a high positive impact of crashing activity 13 on entire 

process duration at a relatively low price. 

Analogical to crashing, we developed the overlapping information necessary on the 

basis of interviews with the aforementioned expert. The result, primarily matrices M3-M6, is 

depicted at Figure 7.4 through Figure 7.7. Clearly, overlapping intensities are not very high  

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1               

2 1        1      

3  1  1           

4 1  1            

5 1  1   1  1    1 1  

6 1    1          

7 1     1         

8      1      1   

9 1  1 1    1       

10    1  1 1 1   1    

11      1 1 1  1     

12 1     1 1   1 1    

13 1    1       1   

14 1 1 1 1 1 1 1 1 1 1 1 1 1  
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1               

2 0        0      

3  0  0           

4 0  0            

5 0  0   0  0    0 0  

6 0    0          

7 0     0         

8      0      0   

9 0  0 0    0       

10    0  0 0 0   0    

11      0 0 0  0     

12 0     0 0   0 0    

13 0    0       0   

14 0 0 0 0 0 0 0 0 0 0 0 0 0  
 

Figure 7.4: M3 showing maximal overlapping 

available values for UCAV process. 

Figure 7.5: M4 showing minimal overlapping 

needed values for UCAV process. 
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 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1               

2 1        1      

3  1  1           

4 1  1            

5 1  1   1  1    1 1  

6 1    1          

7 1     1         

8      1      1   

9 1  1 1    1       

10    1  .8 1 1   1    

11      .8 1 1  1     

12 1     1 1   1 1    

13 1    1       1   

14 1 1 1 1 1 1 1 1 1 1 1 1 1  
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1               

2 0        .8      

3  0  .5           

4 .2  0            

5 0  .2   .9  .3    .5 .8  

6 .2    .1          

7 0     0         

8      0      .5   

9 0  0 .2    .2       

10    .5  0 .5 .1   .5    

11      0 .1 0  .5     

12 0     0 0   .2 .2    

13 0    0       .2   

14 0 0 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3  
 

Figure 7.6: M5 showing minimal overlapping 

available values for UCAV process. 

Figure 7.7: M6 showing maximal overlapping 

needed values for UCAV process. 

 

while several firm predecessor constraints (see M6) exist. Hence, we assume, contrary to 

crashing, only a minor impact of overlapping on overall process cost and time. In the event of 

overlapping between sequentially linked/coupled activities, we selected the linear overlapping 

function (equation 4.12) to model the rework penalties. As rework impact and rework 

probabilities can be regarded as some kind of indicator for the amount of rework due to 

(faulty) preliminary information input, we set 
1 2ij ,ij ,ijm m   for the overlapping function. 

 

GA and simulation settings 

Finally, we propose the parameters for the optimization and process simulation. Generally, the 

optimal determination of all ε-MOEA parameters constitutes an optimization problem by 

itself. To obtain a good and wide-spread Pareto-front we thus determined most of the 

parameters by empirical tests and prior experiences with GA/MOEA related problems rather 

than using mathematical equations.  

We used a relatively high population of 10.000 chromosomes, encoded with nB=8 bits, 

as computational time was no concern and let the ε-MOEA run maximal 8.000 generations. 

Though, the ε-MOEA could be finished earlier if the number of solutions in the archive 

population did not change for 1.500 generations indicating a stall very close to the true 
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Pareto-front. Due to Meier et al. (2007) we pushed a global search and set the crossover 

probability pc to 100% while mutation probability pm was set to a low value of 0.25 for each 

of the four chromosome segments (i.e. mutation is expected to occur for each segment with 

probability 25%).  

The discrete event process simulation, discussed in chapter 4, served as objective/fitness 

function for the ε-MOEA. Thereby, each process was simulated 1.500 runs and the average 

values for cost and duration were assigned to the corresponding chromosome as fitness 

values. Since the high number of simulation runs yielded relatively stable outputs with only 

minor deviations for identical processes, we set the size of the two-dimensional hyper-boxes 

to 0.2, i.e. ε=0.2 holds for the ε-MOEA. In this way, we expect ε to be small enough to 

generate a sufficiently high number of Pareto-solutions.  

 

7.1.3 Optimization results 

Comparison of Pareto-fronts for work policies P1-P5 

Assuming the case study setup, one complete run of the ε-MOEA for the UCAV process last 

approximately 45 minutes on a workstation featuring 6GB RAM, 12 virtual cores at 3.33 GHz 

clock rate and Windows 7 as operating system. First of all, we were interested in the 

outcomes of the Pareto-front for all five work policies which are separately displayed at 

Figure 7.8-Figure 7.12. In addition to the Pareto-fronts, all figures show the simulated time-

cost results for 10.000 randomly generated chromosomes/processes (a comparison of all work 

policies is shown at Figure 7.13) in order to demonstrate the difference between “guessing” 

and sophisticated optimization strategy. Interestingly, this discrepancy is not very salient for 

all work policies because of the high number of random solutions and low complexity of the 

process: 1) with respect to process architecture, merely 14 activities exist and cannot be 

sequenced in any arbitrary way because of predecessor constraints 2) the number of potential 

overlapping scenarios is limited because of low overlapping intensities (see matrices M3-M6). 
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(a) Overall objective space (b) Pareto region 

Figure 7.8: Pareto-front and random solutions for the UCAV process assuming work policy P1. 

  

(a) Overall objective space (b) Pareto region 

Figure 7.9: Pareto-front and random solutions for the UCAV process assuming work policy P2. 

  

(a) Overall objective space (b) Pareto region 

Figure 7.10: Pareto-front and random solutions for the UCAV process assuming work policy P3 
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(a)  Overall objective space (b) Pareto region 

Figure 7.11: Pareto-front and random solutions for the UCAV process assuming work policy P4. 

  

(a)  Overall objective space (b) Pareto region 

Figure 7.12: Pareto-front and random solutions for the UCAV process assuming work policy P5. 

 

Figure 7.13: Comparison of random solutions for the UCAV process assuming work policies P1-P5. 
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Nevertheless, the five diagrams let us already suspect that the number of feasible 

processes is much higher than the number of actual Pareto-optimal processes. Consequently, 

the chance for managers to select a suboptimal process is very high. For instance, even the 

min-max values of the random solutions for cost and duration assuming the less complex 

work policies P1 and P2 range from $636k-$820k and from 75days to 175days, respectively. 

With more complexity, i.e. crashing and overlapping, we note an actually greater min-max 

interval for work policies P3-P5, namely $653k-$1.450k and 43days-133days. Consequently, 

the effort for a thorough process planning, including modeling, simulation and optimization, 

may significantly pay off compared to a pure “guess”. 

 

Analysis of the overall Pareto-front 

Plotting the Pareto-fronts of all five work policies into one diagram yields Figure 7.14 and 

ranges from $635k to $962k with respect to cost and from 137 days to 43 days, respectively. 

Thus, the percental volatility in terms of duration is higher than in case of cost. Besides, the 

Pareto-fronts confirm some of our previously derived insights in chapter 5 regarding the time-

cost scale-up for P1-P5. Although the absolute difference between the five Pareto-fronts are 

not rather salient (because of the aforementioned low process complexity), we nevertheless  

 

 

Figure 7.14: Comparison of Pareto-fronts for the UCAV process assuming work policies P1-P5. 
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note outcomes which are consistent with Figure 5.4 and Figure 5.6 describing the scale-up for 

time-and cost assuming different nfb/nff combinations: P1 generated the cheapest but also 

slowest processes, applying P2 and P4 resulted in medium costly and slow processes while P3 

and P5 provoked the quickest and most expensive processes. Neglecting crashing and 

overlapping for P3-P5 indeed changes absolute values of the corresponding Pareto-fronts but 

not this basic statement as illustrated by Figure E.19 in the appendix. The second case study 

will highlight the different scale-up behaviors for P1-P5 much more as it involves more 

activities and (feedback) relationships. 

Composing the overall Pareto-front for the UCAV process out of the five individual 

Pareto-fronts for every work policy allows us to analyze the “global” Pareto-optimal 

processes more in detail. Figure 7.15 depicts this overall efficient frontier, decomposed into 

four different sectors containing processes with diverse time-cost characteristics: the most 

cost and resource conserving processes can be found in sector 1, sector 2 includes speedier 

processes without the application of crashing & overlapping whereas sector 3 represents the 

probably most balanced (in terms of time and cost) Pareto-processes with the use of crashing 

and overlapping, and finally sector 4 comprises the fastest but most cost-intensive processes. 

Evidently, the sectors containing cheap processes feature an almost vertical spread/volatility  

 

 

Figure 7.15: Overall Pareto-front for the UCAV process assuming work policies P1-P5 with four 

disjoint sectors which are analyzed more in detail. 
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Parameter Sector 1 Sector 2 Sector 3 Sector 4 

Dominating work policy P1 P2 P5 P5 

Average number of feedback relationships 10.2 16.3 16.9 22.4 

Average distance of a feedback mark to diagonal 4.43 4.06 4.07 4.47 

Weighted average distance of a feedback mark to diagonal 1.07 1.23 1.25 1.33 

Average number reworks 2.77 7.10 7.82 10.2 

Average number partial reworks 2.61 4.07 5.43 8.12 

Average crashing intensity (1
st
 iteration) for any activity 

(min: 0, max: 0.24) 
0 0 0.09 0.14 

Average crashing intensity (1
st
  iteration) for critical 

activities 5, 9 and 13 (min: 0, max: 0.33) 
0 0 0.10 0.19 

Average crashing intensity (1
st
 iteration) for most critical 

activity 13 (min: 0, max: 0.50) 
0 0 0.15 0.40 

Average intensity for overlapping available (1
st
 iteration) 

between two activities (min: 0.8, max: 1.0) 
0 0 0.91 0.89 

Average overlapping received intensity (1
st
 iteration) 

between two activities (min: 0, max: 0.38) 
0 0 0.21 0.18 

Table 7.3: Selected process parameters for four disjoint sectors of the overall Pareto-front. 

 

in terms of duration while the sector 4 with the fastest processes is spread-out horizontally and 

shows only little improvement of duration at a very high prize. Importantly, the shape of the 

combined Pareto-front is strongly continuous thus confirming our previous simulation results 

in chapter 5 for artificial processes with low nfb (see upper right corner of Figure 5.14). An 

evaluation of each sector, presented in Table 7.3, revealed substantial differences in process 

characteristics: 

1. Although exceptions may exist, we note a certain correlation between the number of 

feedbacks and process cost/schedule: the more feedbacks the higher cost and the more 

rapid the process. Vice versa, cost dropped and processes became slower with less 

feedback marks. Obviously, in average, processes were accelerated at the expense of 

more parallel activities (iterative overlapping) which provoke a higher amount of costly 

rework (and partial rework). Contrary, we could not find a correlation between the 

placement of feedback relationships, in particular their distance to the diagonal 

(indicating the “length” of the feedback loop) with or without feedback probability as 

weight, and process/duration. 
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 1 2 3 5 4 6 10 7 8 11 9 12 13 14 

1               

2 .4        .2      

3  .5  .4           

5 .4  .5   .1   .1   .3 .1  

4 .3  .5            

6 .1   .4           

10     .1 .5  .2  .4     

7 .4     .4         

8      .5      .5   

11      .5 .5 .5 .5      

9 .4  .5  .5    .5      

12 .4     .4 .5 .5  .4     

13 .5   .5       .4    

14 .3 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4 .4  
 

 6 10 1 2 14 5 3 4 9 13 8 7 12 11 

6 .31  .1   .4         

10 .5 .16      .1   .1 .2  .4 

1   .04            

2   .4 .23     .2      

14 .4 .4 .3 .4 .01 .4 .4 .4 .4 .4 .4 .4 .4 .4 

5 .1  .4   .10 .5   .1 .1  .3  

3    .5   .06 .4       

4   .3    .5 .18       

9   .4    .5 .5 .18  .5    

13   .5   .5    .47   .4  

8 .5          .18  .5  

7 .4  .4         .10   

12 .4 .5 .4         .5 .07 .4 

11 .5 .5         .5 .5  .05 
 

Figure 7.16: M1 for a cheap but slow process. Figure 7.17: M1 for an expensive but fast process. 

 

2. While overlapping intensities do not greatly differ for sectors 3 and 4, quick processes 

are crashed at a higher rate, especially the aforementioned critical activities 5, 9 and 13.  

Both of the above observations are visualized by Figure 7.16 and Figure 7.17 which represent 

the DSMs M1 for both, a cheap but slow process (Figure 7.18) and an expensive but fast 

process (Figure 7.17). In addition to the process architecture, the DSM in Figure 7.17 

furthermore involves data regarding crashing intensities in the 1
st
 iteration for any activity 

(white numbers on the diagonal). Besides, background colors for the DSM cells indicate the 

overlapping intensities in the 1
st
 iteration (M6) for all relationships: green colored cells denote 

an intensity m6,ij<0.2, yellow colored cells intensities 0.2<m6,ij<0.4 and finally red colored 

cells represent high overlapping intensities m6,ij>0.4.  

Referring to the activity sequence of a fast process (Figure 7.17), it is interesting to note 

that activities 6 and 10 precede the requirements and objectives and that activity 14 is 

executed before all activities have been finished. Still, it is a feasible sequence as all firm 

predecessor constraints are satisfied. The position of these three activities merely indicates 

that, in order to expedite the process, their initial execution should begin earlier while their 

rework may occur later. 
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Justification of model complexity 

Another contribution of the optimization results is the justification to build, and use, a 

complex PD process model like the one we introduced in chapter 4. Collectively allowing 

cyclic process architectures, crashing, overlapping as well as different work policies explicitly 

affects the objective space for potential processes as demonstrated by Figure 7.18. Assuming 

work policy P3, this chart more or less displays the separate Pareto-fronts for different levels 

of model complexity: 

 Only changes in the process architecture are allowed but not application of 

overlapping or crashing (red dots in Figure 7.18). 

 Assuming constant process architecture (the original one) and no crashing, only 

changes of the overlapping intensities are permitted (blue dots in Figure 7.18). 

 Assuming constant process architecture (the original one) and no overlapping 

between sequentially linked/coupled activities, only changes of the overlapping 

intensities are permitted (green dots in Figure 7.18). 

Analogical diagrams for work policies P4 and P5 can be found in the appendix, Figure E.13-

Figure E.18. The differences between all four Pareto-fronts are enormous while changing the 

process architecture seems to be the greatest lever for the UCAV process. However, as  

 

 

Figure 7.18: Comparison of the overall Pareto-front (all work policies) for the UCAV process with 

the Pareto-fronts assuming work policy P3 for different levels of complexity. 
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conclusion, only the combined consideration of all relevant process parameters reveals the 

best (Pareto-optimal) solutions.  

 

7.2 Case study 2: Development process of an automotive hood 

7.2.1 Process description 

Indeed, the UCAV case study produced some important contributions: 1) to some extent it 

already verified our assumptions on time-cost tradeoffs due to work policy rules which were 

initially based on artificial processes and 2) it demonstrated that a certain model complexity is 

necessary to identify global Pareto-solutions. Though, the UCAV process itself consisted only 

of a few activities barely connected with each other. Therefore, we feel that it is not perfectly 

suited to fully demonstrate the impact of process parameters, particularly the effects of 

iteration, on time-cost tradeoffs. Hence, we analyzed a second, more complex, process which 

is based on an actual project in practice, too. A crucial factor for the selection of this process 

was once more the large set of available process data. 

This time, however, we examine the PD process of an automotive hood at The Ford 

Company. Consistent with the UCAV case study, data is realistic but disguised to protect 

company proprietary information. Figure 7.19 shows the components of a generic hood-

system thereby highlighting that the entire system is composed of several individual  

 

 

Figure 7.19: Components of a generic hood subsystem, adopted from Galbraight et. al (2003); a) hood 

inner b) hood outer c) main reinforcement d) hood ringe reinforcement e) latch reinforcement f) 

assembly without the outer panel. 
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components. Basically, the process comprises 43 activities connected via 232 relationships 

and considers not only the development of hood components but also the development of 

tooling for assembly and stamping (see Table 7.4). Also worth mentioning is the occurrence 

of several verification & validation activities potentially provoking feedback loops. 

 

7.2.2 Case study setup 

In the following, we present only partial material of the entire case study setup due to the size 

 

of the DSMs prescribing process architecture as well as crashing- and overlapping data. 

Though, the entire set of data, consistent to the UCAV case study, can be found in section F 

of the appendix.  

 

Process architecture 

The process architecture related data for the hood development is based on a study of Zambito 

(2000) at The Ford Company and partially presented in Yassine et. al (2000). Again, data 

gathering in the field was mostly conducted through interviews with engineers involved in the 

project. A brief description of each activity as well as its respective time, cost and learning 

values can be found in tabular form at Table 7.4. The corresponding pattern of interaction 

between the individual activities, i.e. M1, is depicted at Figure 7.20 while M2 is placed in the 

appendix (Figure F.21). Evidently, the activities referring to the development of tooling (i.e. 

activities 26, 27 and 28) as well as activity 32 can be regarded as the most critical activities. 

Beside their above average cost and duration values, they feature only minor improvement 

effects through learning (=high values in vector L) hence making their rework expensive and 

long-lasting. Notably is also the high amount of firm predecessor constraints (see Figure 

F.25). Beginning with activity 16, almost all succeeding activities are subject of predecessor 

constraints. Thus, we expect only marginal differences in process time and cost for varying 

process architectures.  
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Activities Time (days) Costs ($k)   

ID Name it  
it  ît  ic  

ic  iĉ  L ik̂  

1 
Strategies for product, mkt, mfg, supply, design, and reusability 

confirmed (Est. PDL) 
0 0 0 0 0 0 - - 

2 Select powertrain lineup 0 0 0 0 0 0 - - 

3 Select materials for all system components 13.5 15 16.5 10 11.3 12.4 0.75 5 

4 Freeze proportions and selected hard-points 54 60 66 41 45 49.5 0.75 5 

5 
Verify that hard-points and structural joint designs are compatible 

w/ program targets 
36 40 44 27 30 33 0.75 5 

6 Approve master sections 36 40 44 41 45 49.5 0.85 5 

7 Develop initial design concept (preliminary CAD model) 36 40 44 68 75 82.5 0.10 5 

8 Estimate blank size 0.9 1 1.1 0.7 0.75 0.8 0.10 5 

9 Estimate efforts 0.9 1 1.1 4.1 4.5 4.9 0.10 5 

10 Develop initial attachment scheme 4.5 5 5.5 3.4 3.8 4.13 0.50 5 

11 Estimate latch loads 4.5 5 5.5 20 22.5 24.8 0.10 5 

12 Cheat outer panel surface 9 10 11 10 11.3 12.4 0.50 5 

13 Define hinge concept 18 20 22 20 22.5 24.8 0.50 5 

14 
Get prelim. mfg and asy feas. (form, holes, hem, weld patterns, 

mastic locations, adhesive) 
4.5 5 5.5 3.4 3.75 4.13 0.50 5 

15 Perform cost analysis (variable and investment) 1.8 2 2.2 16 18 19.8 0.50 5 

16 Perform swing study 1.8 2 2.2 2 2.3 2.5 0.75 5 

17 
Theme approval for interior and exterior appearance (prelim surf 
available) 

13.5 15 16.5 20 22.5 24.8 0.10 5 

18 Marketing commits to net revenue; initial ordering guide  4.5 5 5.5 8.4 9.4 10.3 0.10 5 

19 Program DVPs and FMEAs complete 9 10 11 10 11.3 12.4 0.75 5 

20 
Approved theme refined for craftsmanship execution (consistent w/ 

PA objectives) 
13.5 15 16.5 30 33.8 37.1 0.10 5 

21 
PDN0 - Interior and exterior Class 1A surfaces transferred to 
engineering (+/- 0.5mm) 

2.7 3 3.3 4.1 4.5 5 0.10 5 

22 Conduct cube review and get surface buyoff 18 20 22 54 60 66 0.25 5 

23 
Verify mfg and asy feas. (form, holes, hem, weld patterns, mastic 
locations, adhesive)  

9 10 11 64 71 78 0.75 5 

24 Evaluate functional performance (analytically) 13.5 15 16.5 81 90 99 0.50 5 

25 
PDN 1 - Release system design intent level concept to 

manufacturing 
18 20 22 122 135 149 0.50 5 

26 Develop stamping tooling 378 420 462 2835 3150 3465 0.90 5 

27 Develop hemming tooling (if applicable) 57.6 64 70.4 475 528 581 0.75 5 

28 Develop assembly tooling 90 100 110 810 900 990 0.75 5 

29 
PDN2 - Last Class 1surface verified and released for major formed 

parts 
18 20 22 176 195 215 0.50 5 

30 PDN3 - Final math 1, 2, & 3 data released 18 20 22 189 210 231 0.50 5 

31 CAD files reflect pre-CP verification changes 18 20 22 203 225 248 0.75 5 

32 
Make "like production"  part and asy tools / ergonomics / process 
sheets (to extent feasible) 

72 80 88 864 960 1056 0.75 5 

33 First CPs available for tuning and durability testing 4.5 5 5.5 57.3 63.8 70.1 1.00 5 

34 Complete CMM analysis of all end items & subassemblies 9 10 11 122 135 149 0.10 5 

35 Perform DV tests (physical) 18 20 22 257 285 314 0.10 5 

36 Verify manufacturing and assembly process capability 4.5 5 5.5 67.5 75 82.5 0.10 5 

37 Complete prelim. ESO for: CP durability testing 13.5 15 16.5 213 236 260 0.10 5 

38 Complete prelim. ESO for: Initial set of road tests completed 27 30 33 446 495 545 0.10 5 

39 
Complete prelim. ESO for: Known changes from CP containable for 

1PP 
4.5 5 5.5 77.6 86.3 94.9 0.10 5 

40 
Complete prelim. ESO for: Design is J1 level - no further changes 
except No-Blds 

4.5 5 5.5 81 90 99 0.10 5 

41 Supplier commitment to support 1PP w/ PSW parts 2.7 3 3.3 50.6 56.3 61.9 0.10 5 

42 
Complete prelim. ESO for: Eng. confidence that objectives will be 
met declared 

2.7 3 3.3 52.7 58.5 64.4 0.10 5 

43 Readiness to proceed to tool tryout (TTO), 1PP and Job #1 9 10 11 182 203 223 0.10 5 

Table 7.4: Activity data for the hood development process. 
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Figure 7.20: DSM M1 for the hood development process. 

 

Crashing and overlapping 

Since the process models in the studies of Zambito (2000) and Yassine et. al (2000) did not 

account for crashing or overlapping, we had to ask an expert familiar with the hood 

development process for the missing information. According to the input of the expert, we 
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generated Table F.112 focusing on crashing as well as the overlapping related matrices M3-M6 

(Figure F.22 through Figure F.25 in the appendix). Notably, crashing for the hood process is, 

opposed to the UCAV process, not completely staff driven. In lieu, some of the 

aforementioned critical activities may be crashed through the purchase of additional 

machinery – though, at a very high prize. Finally, we assume κi=1 holds for all activities.  

In terms of overlapping two sequentially connected activities, matrices M5 and M6 of the 

hood development process highlight that the possibilities to actually overlap are rather 

limited. Activities 16-43 require almost perfect input information from their predecessors in 

order to begin execution. Therefore, the corresponding cells in M6 feature low values while 

M5 values are high suggesting that overlapping durations will be low. As an exception, the 

early activities 1-15 are less constrained thus permitting a considerable amount of overlapping 

between a few activity pairs. All in all, however, we do not expect a great impact of 

overlapping on the Pareto-front for this case study. Identical to the first case study, rework 

penalty in case of overlapping was calculated according to the linear overlapping function 

(equation 4.12) and set
1 2ij ,ij ,ijm m  . 

 

GA and simulation 

Despite a three times greater number of activities and almost five times more relationships, 

we did not have to dramatically change the settings for the ε–MOEA and simulation because 

of the outlined predecessor constraints. Stable simulation outputs for the average cost and 

duration values of a chromosome could be obtained after 1.800 simulation runs (empirically 

determined). Regarding the optimization parameters, additional constraints may cut down the 

size of the feasible search space but increase the probability of generating redundant solutions 

(due to our repair mechanism) on the other hand. Thus, we increased the number of 

generations while population size remained identical to the UCAV process. Explicitly, the ε–

MOEA was run with 10.000 8-bit encoded chromosomes for maximal 15.000 generations. 
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7.2.3 Optimization results 

Comparison of Pareto-fronts for work policies P1-P5 

To remain consistent with the first case study, we conducted equal tests for the hood 

development process proposing accordant charts in the following. First of all, Figure 7.21-

Figure 7.25 visualize the Pareto-fronts and 10.000 randomly generated process solutions for 

each of the five work policies. Similar to the UCAV process, the time-cost differences 

between Pareto- optimal solutions and random solutions are not very salient. Yet, this 

outcome is not very surprising as the high number of predecessor constraints was expected to 

limit the impact of modifications in the process architecture, which might be the greatest lever 

of all process parameters, for each policy. Nevertheless, a certain gap exists and volatility of 

min-max cost & duration values is clearly higher than in case of the UCAV process. 

Therefore, the optimization results insistently recommend the use of a sophisticated 

optimization strategy instead of a random walk. 

 

Analysis of the overall Pareto-front 

A comparison of random solutions, which can be regarded as an indicator of the entire 

objective spaces, between all work policies is shown at Figure 7.26. In contrast, Figure 7.27 

displays the outcome of randomly generated processes for all work policies assuming that 

overlapping and crashing are prohibited. In this way, we can compare the results with the 

theoretically approximated objective spaces in section 5.1.4 (see Figure 5.14). Definitely, we 

note significant differences between the data plotted at Figure 7.26/Figure 7.27 and the 

respective charts for the UCAV process (Figure 7.13 and Figure E.20). Apparently, the higher 

process dynamics of the hood development process, compared to the UCAV process, 

emphasizes much more the impact of work policy rules and crashing/overlapping on process 

time & cost. In fact, the outputs look similar to the analogical test results with artificial 

processes in section 5.1.3. Also, Figure 7.27 verifies our proposition in section 4.6 regarding  
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(c) Overall objective space (d) Pareto region 

Figure 7.21: Pareto-front and random solutions for the hood process assuming work policy P1. 

  

(c) Overall objective space (d) Pareto region 

Figure 7.22: Pareto-front and random solutions for the hood process assuming work policy P2. 

  

(c) Overall objective space (d) Pareto region 

Figure 7.23: Pareto-front and random solutions for the hood process assuming work policy P3 
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(e) Overall objective space (f) Pareto region 

Figure 7.24: Pareto-front and random solutions for the hood process assuming work policy P4. 

  

(e) Overall objective space (f) Pareto region 

Figure 7.25: Pareto-front and random solutions for the hood process assuming work policy P5. 

 

 

Figure 7.26: Comparison of random solutions for the hood process assuming work policies P1-P5. 
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Figure 7.27: Comparison of random solutions for the hood process assuming work policies P1-P5 

without crashing and overlapping. 

 

 

Figure 7.28: Overall Pareto-front for the hood process assuming work policies P1-P5. 
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supposed to occur with more feedback relationships. Hence, the underlying case study 

verified this important insight. To examine the solutions on the overall Pareto-front more in 

detail, we decomposed it into three sectors: 1) sector 1 includes the cheapest but slowest 

processes exclusively generated by work policy P1 2) Pareto-solutions produced by work 

policies P3 and P4 appear in the second sector while 3) sector 3 features the collectively fastest 

processes associated with highest cost. The evaluation of certain process parameters for each 

sector is proposed in Table 7.5 allowing the following conclusions: 

1. The discontinuity with respect to cost in the Pareto-front between sectors 1 and 2 is not 

a result of different feedback densities or longer feedback cycles (distance to the 

diagonal). Rather, it is more likely caused by the work policy rule regarding the parallel 

execution of non-adjacent activities. Whereas P2–P5 allow the simultaneous execution 

of non-adjacent activities, P1 does not. Thus, the processes in sectors 2 and 3 (obtained 

through the application of P2-P5) exhibited more parallelism within the process and 

consequently a higher number of costly reworks/partial reworks. 

2. The actual amount of rework/partial rework may not be an immediate result of process 

architecture (e.g. number of reworks) but is also work policy driven. 

Parameter Sector 1 Sector 2 Sector 3 

Dominating work policy P1 P3 P4 

Average number of feedback relationships 65.4 63.8 77.7 

Average distance of a feedback mark to diagonal 7.16 6.94 9.04 

Weighted average distance of a feedback mark to diagonal 1.92 1.88 2.34 

Average number reworks 59.3 155.3 158.9 

Average number partial reworks 51.3 60.2 81.2 

Average crashing intensity (1
st
 iteration) for any activity (min: 

0, max: 0.15) 
0 0.07 0.08 

Average crashing intensity (1
st
  iteration) for critical activities 

26, 27, 28 and 32 (min: 0, max: 0.21) 
0 0.05 0.09 

Average crashing intensity (1
st
 iteration) for most critical 

activity 26 (min: 0, max: 0.25) 
0 0.07 0.18 

Average intensity for overlapping available (1
st
 iteration) 

between two activities (min: 0.86, max: 1.0) 
0 0.92 0.93 

Average overlapping received intensity (1
st
 iteration) between 

two activities (min: 0, max: 0.2) 
0 0.09 0.11 

Table 7.5: Selected process parameters for four disjoint sectors of the overall Pareto-front. 
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Justification of model complexity 

At last, we were interested if changes of the Pareto-front due to the addition/reduction of 

model complexity are as evident as in case of the UCAV process and hence computed the 

Pareto-fronts for different levels of model complexity. Exemplarily displaying the 

corresponding Pareto-fronts for work policy P3 (Figure 7.29) illuminates their differences and 

highlights once more the need for a complex process model. As opposed to the UCAV, 

however, process architecture is not the greatest lever for process cost & duration process. We 

suspected this outcome due to the high amount of firm predecessor constraints which simply 

prevent the generation of distinct process architectures. In lieu, modifications of the individual 

crashing intensities mainly affect the results for process lead-time and cost. 

 

7.3 Summary 

In the previous sections we applied our new process model, simulation and time-cost 

optimization approach to two PD processes in practice with varying complexity and industry 

affiliations. By means of these two practical examples we intended to highlight the 

shortcomings of past research thereby justifying the need for our study. Moreover, the 

managerial insights gained in chapter 5 were based on artificially constructed process and  

 

 

Figure 7.29: Comparison of the overall Pareto-front (all work policies) for the hood process with the 

Pareto-fronts assuming work policy P3 for different levels of complexity. 
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should be hence verified with actual processes in practice. 

In fact, the two case studies insistently demonstrated the need for a sophisticated joint 

approach of process modeling, simulation and optimization. Assuming different levels of 

model complexity, the Pareto-fronts for the two case study processes showed substantial 

differences. This observation let us conclude that a realistic time-cost estimation (which is the 

basis for a subsequent optimization) is only possible when considering all fundamental 

process parameters simultaneously. Besides, regarding optimization, we compared the 

obtained Pareto-optimal points with random solutions. Thereby, we detected substantial 

differences consequently pointing out the need for an intelligent optimization strategy instead 

of a random “guess”. 

Referring to the verification of previous insights, we could actually confirm some of 

them, in particular the impact of work policy on process time &cost. First of all, we 

demonstrated that time-cost tradeoffs also emerge for the two practical processes due to the 

choice of work policy rules (and not only through overlapping- and crashing intensity or 

process architecture modifications). Moreover, the Pareto-fronts (and approximated objective 

spaces) exhibited a similar shape like the theoretically derived ones in chapter 5. Importantly, 

the time-cost advantages/disadvantages of the individual work policies were identical for case 

studies and theoretical processes. Besides, the global Pareto-front (including the consideration 

of all process parameters) of the second, more iterative, featured discontinuities – just like we 

pointed out for artificial processes. Last but not least we could validate our assumption in 

section 4.6 referring to the impact of changes in the activity sequence on the variance of time 

and cost: in fact, work policy P1 provoked a higher spread in time & cost as a consequence of 

changes in the activity sequence than the other work policies.  
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8. Conclusions and Future Work 
 

 

8.1 Conclusions 

The time-cost tradeoff problem for PD processes constitutes a problem of great practical 

relevance as PD processes may involve an enormous amount of (expensive) resources 

employed over a long period of time. Consequently, managers are anxious to minimize cost 

and duration simultaneously. Though, past research pointed out that cost reducing strategies 

extend process duration and vice versa time cutting methods boost process cost. Thus, a 

tradeoff problem arises making efficient process planning mandatory in order to avoid a waste 

of money and/or time. Since processes can be regarded as systems, the design of optimal 

processes is clearly associated with the (systems) engineering community. Indeed, the actual 

product is not engineered but the related development process.  

In fact, the literature on the time-cost tradeoff problem extensively studied the effects of 

time- and cost reducing methods and even proposed optimization strategies to identify the set 

of all best tradeoff processes. But publications to date lacked in analyzing the impact of 

feedbacks on these time/cost minimizing strategies and on the time-cost solutions themselves 

– although feedbacks are likely to occur in PD processes and greatly affect time & cost. 

Besides, previous studies merely considered a subset of process parameters concurrently for 

the time-cost analysis. As a consequence, the insights and contributions of previous literature 

regarding practicability must be questioned. This research gap was the motivation for the 
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underlying thesis: to help engineers developing better products because of faster and cheaper 

processes. For this purpose, we developed a new PD process model which accounts for 

feedbacks in the process and jointly considers the process parameters influencing time and 

cost most. Particularly notable is the introduction of several work policies. Furthermore, we 

proposed a time-cost simulation tailored to this model as well as an optimization strategy 

capable of detecting the Pareto-front solutions for a process.  

We used the new model, simulation and optimization to derive numerous managerial 

insights. These insights are representative as they are based on millions of artificially 

constructed processes and (to some extent) verified by two real-world processes. In our 

opinion, the most important insights and conclusions are the following:  

1. The scale-up behavior for cost and duration of cyclic processes mainly depends on 

learning and rework impact rather than number of relationships. In most cases, time and 

cost will increase logarithmically with the number of relationships in the process. 

Though, the scale-up becomes exponential if learning occurs at a constant rate and the 

number of maximal iterations is not limited. From a practical perspective, the 

logarithmical scale-up behaviors are interesting as they suggest that product quality, 

which is influenced by the number of iterations, could be strongly enhanced at a more or 

less moderate increase of overall cost and duration. 

2. The introduced work policies cause different outcomes for process cost and duration. 

Interestingly, no work policy appeared to be superior to the others in both (cost, 

duration) dimensions. Instead, a time-cost tradeoff due to the choice of work policy 

arises. Therefore we suggest extending the time-cost tradeoff problem by a further 

managerial lever (beside crashing, overlapping and process architecture), namely work 

policy. The substantial time-cost differences for the work policies should also sensitize 

engineers/managers for the impact of this managerial instrument.  

3. With increasing dynamics, the application of crashing and overlapping becomes more 
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economic. Hence, the application of these two Concurrent Engineering strategies is 

highly favorable for dynamic process environments. As for crashing, the type of 

resources used for crashing is crucial. In general, managers should use resources which 

have to be paid only once for all potential iterations of an activity, e.g. machinery or 

software. With respect to overlapping, we found that an extended critical path length 

(due to rework) amplifies the temporal benefits of overlapping two activities. This effect 

may outweigh the percental cost increase associated with overlapping, which exhibits a 

linear growth. Interestingly, overlapping slightly reduces the number of reworks, but on 

the other hand causes an exponential enlargement of partial reworks which make the 

process significantly more expensive. 

4. The primary type of information flow within a cyclic process affects economic 

efficiency of crashing and overlapping. In average, crashing and overlapping become 

more economic with increasing number of parallel activities, i.e. activities which are 

uncoupled with respect to feed-forward information flow. Contrary, processes featuring 

a strictly sequential information flow performed worst. 

5. The time-cost optimization of real-world processes clearly highlighted the need for a 

sophisticated process model. Assuming different levels of model complexity, the 

corresponding Pareto-fronts for the two case study processes showed substantial 

differences. This observation let us conclude that only the combined consideration of all 

fundamental process parameters for modeling, simulation and subsequent optimization 

is pivotal to gain “global” Pareto-optimal processes.  

 

8.2 Future work 

In consequence of the practical relevance of the time-cost tradeoff problem in PD and the 

results of our work, we encourage scientists to continue research on this problem. Some of the 

possible directions for future research are the following ones:  
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1. One of the weaknesses of the proposed model is the missing consideration of resource 

constraints. Resources like staff, machinery or facilities – just to name a few – must be 

assigned to PD activities and are typically limited. Therefore, activities can be only 

executed if the necessary resources are available. Hence, we suggest to extend the 

model by resource constraints and to study their impact on the scale-up behavior for 

time & cost as well as on the Pareto-front. 

2. Beside cost and duration, technical performance/quality is another dimension to be 

considered for process planners. Therefore, we encourage the extension of our process 

model/simulation/optimization by measurements for technical performance of the 

product to be developed. Obviously, quality is expected to increase with growing 

number of iterations in the process and we accounted for iterations. Thus, we indirectly 

considered quality issues. Though, we did not explicitly incorporate quality related 

model parameters.  

3. We strongly recommend further research on closed form analysis for the approximation 

of time and cost for cyclic processes. A realistic proxy could be used as a deterministic 

objective function for the multi-objective optimization and is essential for very large 

problem sets involving several hundred or thousand activities. Otherwise, using 

simulation as objective functions for large problem sets would require a high 

computational effort. Indeed, research towards closed-form solutions is very 

challenging and we cannot say if it will succeed for arbitrary processes. Though, the 

potential benefits of a closed-form are worth trying.  
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A: Simulation results for section 5.1.3 

Number feed-forwards = 30 

 
 

Number feed-forwards = 60 

 
 

Number feed-forwards = 90 

 

Number feed-forwards = 120 

 

Figure A.1: Comparison of cost outcomes for work policies P1, P2, P4 and P5 assuming sequential 

processes and a feedback probability 0.5.  
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Number feed-forwards = 30 

 
 

Number feed-forwards = 60 

 
 

Number feed-forwards = 90 

 

Number feed-forwards = 120 

 

Figure A.2: Comparison of cost outcomes for work policies P1, P2, P4 and P5 assuming mixed 

processes and a feedback probability 0.5.  
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Number feed-forwards = 30 

 
 

Number feed-forwards = 60 

 
 

Number feed-forwards = 90 

 

Number feed-forwards = 120 

 

Figure A.3: Comparison of schedule outcomes for work policies P1, P2, P4 and P5 assuming sequential 

processes and a feedback probability 0.5.  
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Number feed-forwards = 30 

 
 

Number feed-forwards = 60 

 
 

Number feed-forwards = 90 

 

Number feed-forwards = 120 

 

Figure A.4: Comparison of schedule outcomes for work policies P1, P2, P4 and P5 assuming mixed 

processes and a feedback probability 0.5.  
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Number feedbacks = 0 

 
 

Number feedbacks = 20 

 
 

Number feedbacks = 40 

 

Number feedbacks = 60 

 

Figure A.5: Comparison of cost outcomes for work policies P1, P2, P4 and P5 assuming random 

processes and different number of feedbacks with feedback probability 0.5.  
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Number feedbacks = 0 

 
 

Number feedbacks = 20 

 
 

Number feedbacks = 40 

 

Number feedbacks = 60 

 

Figure A.6: Comparison of schedule outcomes for work policies P1, P2, P4 and P5 assuming random 

processes and different number of feedbacks with feedback probability 0.5.  
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Number feed-forwards = 30 

 
 

Number feed-forwards = 60 

 
 

Number feed-forwards = 90 

 

Number feed-forwards = 120 

 

Figure A.7: Comparison of cost outcomes for different maximal number of iterations allowed 

assuming P1, random processes and a feedback probability 0.5.  
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B: Simulation results for section 5.1.4 

Number feedbacks = 0 
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Figure B.8: Time-Cost approximation of objective space for policies P1, P2, P4 and P5 assuming 

sequential processes with 120 feed-forwards and 0.5 feedback probability. 
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Number feedbacks = 0 

 
 

Number feedbacks = 20 

 
 

Number feedbacks = 40 

 

Number feedbacks = 60 

 
Figure B.9: Time-Cost approximation of objective space for policies P1, P2, P4 and P5 assuming mixed 

processes with 120 feed-forwards and 0.5 feedback probability. 
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C: Simulation results for section 5.2.3 

 Random processes – Multi Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 
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30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Average 

Average 

-1 -1 -1 

-1 

Table C.1:   values for the base case of P3a assuming random processes. 

 Sequential processes – Multi Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 
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30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Average 

Average 

-1 -1 -1 

-1 

Table C.2:  values for the base case of P3a assuming sequential processes. 

 Mixed processes – Multi Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 
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30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Average 

Average 

-1 -1 -1 

-1 

Table C.3:  values for the base case of P3a assuming mixed processes. 
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 Random processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
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Fe
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30 -1 -1 -1.01 -1.01 -1 -1.02 -1.05 -1.08 -1 -1.07 -1.15 -1.20 

60 -1 -1 -1.01 -1.01 -1 -1.03 -1.10 -1.14 -1 -1.14 -1.19 -1.21 

90 -1 -1 -1.01 -1.01 -1 -1.07 -1.14 -1.16 -1 -1.18 -1.20 -1.21 

120 -1 -1 -1 -1.01 -1 -1.12 -1.16 -1.17 -1 -1.20 -1.21 -1.21 

Average 

Average 

-1.004 -1.078 -1.136 

-1.073 

Table C.4:   values for the base case of P3a assuming random processes. 

 Sequential processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
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er
  

Fe
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30 -1 -1 -1 -1 -1 -1 -1.02 -1.05 -1 -1.05 -1.09 -1.13 

60 -1 -1 -1 -1 -1 -1.04 -1.09 -1.12 -1 -1.13 -1.15 -1.17 

90 -1 -1 -1 -1 -1 -1.07 -1.13 -1.14 -1 -1.16 -1.17 -1.18 

120 -1 -1 -1 -1.01 -1 -1.12 -1.15 -1.16 -1 -1.19 -1.19 -1.19 

Average 

Average 

-1 -1.068 -1.113 

-1.06 

Table C.5:  values for the base case of P3a assuming sequential processes. 

 Mixed processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 
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30 -1 -1 -1.01 -1.01 -1 -1.02 -1.03 -1.07 -1 -1.06 -1.14 -1.19 

60 -1 -1 -1 -1.01 -1 -1.04 -1.10 -1.14 -1 -1.15 -1.19 -1.21 

90 -1 -1 -1 -1.01 -1 -1.08 -1.14 -1.16 -1 -1.18 -1.19 -1.20 

120 -1 -1 -1 -1.01 -1 -1.12 -1.16 -1.16 -1 -1.20 -1.20 -1.20 

Average 

Average 

-1.003 -1.076 -1.132 

-1.07 

Table C.6:  values for the base case of P3a assuming mixed processes. 
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 Random processes – Once Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 
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30 -1 -1.05 -1.11 -1.18 -1 -1.28 -1.94 -3.41 -1 -2.24 -4.15 -5.54 

60 -1 -1.07 -1.15 -1.25 -1 -1.83 -4.45 -6.45 -1 -4.05 -5.77 -7.20 

90 -1 -1.08 -1.19 -1.33 -1 -3.07 -6.22 -7.69 -1 -5.20 -7 -8.49 

120 -1 -1.10 -1.23 -1.43 -1 -4.41 -7.26 -8.85 -1 -6.16 -8.08 -9.63 

Average 

Average 

-1.136 -3.804 -4.844 

-3.261 

Table C.7:   values for the base case of P3a assuming random processes. 

 Sequential processes – Once Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
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30 -1 -1.06 -1.13 -1.22 -1 -1.36 -2.04 -3.15 -1 -2.54 -4 -5.2 

60 -1 -1.07 -1.16 -1.27 -1 -2.01 -4.67 -6.27 -1 -4.24 -5.74 -7.08 

90 -1 -1.08 -1.19 -1.34 -1 -3.44 -6.19 -7.61 -1 -5.25 -6.91 -8.32 

120 -1 -1.10 -1.23 -1.44 -1 -4.70 -7.25 -8.82 -1 -6.25 -8.08 -9.51 

Average 

Average 

-1.143 -3.844 -4.82 

-3.269 

Table C.8:  values for the base case of P3a assuming sequential processes. 

 Mixed processes – Once Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.05 -1.11 -1.18 -1 -1.29 -1.90 -3.11 -1 -2.27 -4.07 -5.39 

60 -1 -1.07 -1.15 -1.25 -1 -1.88 -4.60 -6.40 -1 -4.19 -5.80 -7.20 

90 -1 -1.08 -1.19 -1.33 -1 -3.27 -6.16 -7.64 -1 -5.23 -6.97 -8.42 

120 -1 -1.10 -1.23 -1.43 -1 -4.62 -7.33 -8.94 -1 -6.18 -8.10 -9.61 

Average 

Average 

-1.136 -3.821 -4.839 

-3.265 

Table C.9:  values for the base case of P3a assuming mixed processes. 
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 Random processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 20 19.9 19.8 19.7 20 19.6 19.1 18.5 20 18.8 17.5 16.7 

60 20 19.9 19.9 19.9 20 19.4 18.2 17.5 20 17.5 16.9 16.6 

90 20 19.9 19.9 19.8 20 18.6 17.6 17.3 20 17.0 16.8 16.6 

120 20 20 19.9 19.9 20 17.9 17.3 17.2 20 16.7 16.7 16.6 

Average 

Average 

19.91 18.64 17.78 

18.77 

Table C.10: 
totc / cc  values for the base case assuming random processes. 

 Sequential processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 20 20 20 20 20 20 19.7 19.1 20 19.1 18.3 17.7 

60 20 20 20 20 20 19.4 18.4 17.8 20 17.8 17.4 17.2 

90 20 20 20 19.9 20 18.6 17.8 17.6 20 17.3 17.1 17.1 

120 20 20 20 19.9 20 17.9 17.5 17.4 20 16.9 17 17 

Average 

Average 

19.99 18.83 18.12 

18.98 

Table C.11: 
totc / cc  values for the base case assuming sequential processes. 

 Mixed processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 20 19.9 19.9 19.8 20 19.7 19.3 18.6 20 18.8 17.6 16.8 

60 20 19.9 19.9 19.9 20 19.3 18.3 17.6 20 17.5 16.9 16.6 

90 20 20 19.9 19.9 20 18.5 17.6 17.4 20 17.1 16.9 16.7 

120 20 20 19.9 19.9 20 17.9 17.4 17.3 20 16.8 16.8 16.8 

Average 

Average 

19.93 18.68 17.83 

18.81 

Table C.12: 
totc / cc  values for the base case assuming mixed processes. 
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 Random processes – One-time Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 20 19 17.9 16.9 20 15.6 10.3 5.9 20 8.9 4.8 3.6 

60 20 18.7 17.4 16.1 20 10.9 4.5 3.1 20 4.9 3.5 2.8 

90 20 18.5 16.9 15.1 20 6.5 3.2 2.6 20 3.9 2.9 2.4 

120 20 18.2 16.3 14 20 4.5 2.8 2.3 20 3.3 2.5 2.1 

Average 

Average 

17.813 9.513 7.85 

11.725 

Table C.13: 
totc / cc  values for the base case of P3a assuming random processes. 

 Sequential processes – One-time Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 20 18.8 17.6 16.4 20 14.7 9.8 6.4 20 7.9 5 3.8 

60 20 18.6 17.2 15.8 20 9.9 4.3 3.1 20 4.7 3.5 2.8 

90 20 18.5 16.7 14.9 20 5.8 3.2 2.6 20 3.8 2.9 2.4 

120 20 18.2 16.2 13.9 20 4.3 2.8 2.3 20 3.2 2.5 2.1 

Average 

Average 

17.675 9.325 7.787 

11.596 

Table C.14: 
totc / cc values for the base case of P3a assuming sequential processes. 

 Mixed processes – One-time Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 20 19 18 17 20 15.5 10.5 6.4 20 8.8 4.9 3.7 

60 20 18.7 17.4 16 20 10.6 4.4 3.1 20 4.8 3.5 2.8 

90 20 18.5 16.8 15.1 20 6.1 3.2 2.6 20 3.8 2.9 2.4 

120 20 18.2 16.3 13.9 20 4.3 2.8 2.3 20 3.3 2.5 2.1 

Average 

Average 

17.806 9.488 7.844 

11.713 

Table C.15: 
totc / cc  values for the base case of P3a assuming mixed processes. 
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 Random processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 1.4 3.6 6.1 0 10.8 42.5 132 0 70.7 120 305 

60 0 2 5.2 9.1 0 37.5 219 377 0 198 248 461 

90 0 2.7 6.8 12.4 0 114 354 491 0 276 438 568 

120 0 3.2 8.6 16.8 0 202 438 591 0 341 520 663 

Average 

Average 

4.869 188.05 263 

151.98 

Table C.16: Number of reworked activities for the base case of P3a assuming random processes. 

 Sequential processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 2 5 8.2 0 14.9 50 117 0 97.3 214 309 

60 0 2.2 6 10.3 0 50.8 240 376 0 224 360 478 

90 0 3 7.2 13.1 0 137 361 496 0 294 451 581 

120 0 3.3 8.9 17.4 0 220 446 597 0 356 533 659 

Average 

Average 

5.413 194.11 284.77 

161.43 

Table C.17: Number of reworked activities for the base case of P3a assuming sequential processes. 

 Mixed processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 0 1.4 3.6 6.1 0 11 40 111 0 73.3 203 290 

60 0 2.1 5.3 9.3 0 40.9 223 376 0 209 346 463 

90 0 2.8 6.9 12.6 0 124 357 492 0 284 442 572 

120 0 3.3 8.7 17 0 208 441 594 0 346 526 668 

Average 

Average 

4.944 188.62 276.39 

156.65 

Table C.18: Number of reworked activities for the base case of P3a assuming mixed processes. 
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 Random processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 0 0.1 0.7 0 1.5 9.3 45.2 0 20.9 120 248 

60 0 0 0 0.3 0 7.7 89.2 209 0 125 248 370 

90 0 0 0 0.4 0 47.7 209 301 0 231 348 454 

120 0 0 0 0.9 0 128 294 378 0 343 453 553 

Average 

Average 

0.15 107.48 219.62 

109.08 

Table C.19: Number of partial reworks for the base case of P3a assuming random processes. 

 Sequential processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 0 0 0 0 0 5.7 28.1 0 19.7 77.3 152 

60 0 0 0 0 0 9.2 88.6 176 0 115 189 268 

90 0 0 0 0 0 56.3 187 256 0 207 290 367 

120 0 0 0 0.4 0 137 276 347 0 327 408 482 

Average 

Average 

0.03 97.93 181.38 

93.11 

Table C.20: Number of partial reworks for the base case of P3a assuming sequential processes. 

 Mixed processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 0 0 0 0.4 0 1.2 8.1 36.6 0 20.6 112 236 

60 0 0 0 0.1 0 8.2 90.5 207 0 130 244 358 

90 0 0 0 0.1 0 52.1 203 289 0 226 332 431 

120 0 0 0 0.8 0 132 289 370 0 338 440 530 

Average 

Average 

0.09 105.42 212.35 

105.95 

Table C.21: Number of partial reworks for the base case of P3a assuming mixed processes. 
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 Random processes – Single Payment 

α = 2 

Number Feedbacks 

α = 4 

Number Feedbacks 

α = 8 

Number Feedbacks 

α = 16 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -35.5 -35.9 -40 -41.5 -13.9 -14.8 -15.9 -16.4 -4.03 -4.28 -4.59 -4.82 -0.58 -0.62 -0.66 -0.69 

60 -35.5 -37.9 -38.7 -40.4 -13.9 -15.5 -16.1 -16.3 -4.03 -4.57 -4.78 -4.86 -0.58 -0.66 -0.69 -0.70 

90 -35.5 -37.9 -39 -39.9 -13.9 -15.9 -16.1 -16.3 -4.03 -4.72 -4.80 -4.85 -0.58 -0.68 -0.70 -0.70 

120 -35.5 -39.9 -38.8 -39 -13.9 -16 -16.1 -16.1 -4.03 -4.80 -4.82 -4.84 -0.58 -0.70 -0.70 -0.70 

Sum -38.18 -15.44 -4.55 -0.658 

Sum -14.709 

Table C.22:  values for random processes assuming different α values. 

 Sequential processes – Single Payment 

α = 2 

Number Feedbacks 

α = 4 

Number Feedbacks 

α = 8 

Number Feedbacks 

α = 16 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -35.5 -35.9 -37.2 -40.1 -13.9 -14.2 -15.2 -15.7 -4.03 -4.18 -4.39 -4.54 -0.58 -0.61 -0.63 -0.65 

60 -35.5 -37.8 -39.4 -39.3 -13.9 -15.3 -15.7 -15.9 -4.03 -4.51 -4.61 -4.67 -0.58 -0.65 -0.67 -0.68 

90 -35.5 -37.8 -39.5 -39.2 -13.9 -15.8 -15.8 -15.9 -4.03 -4.66 -4.70 -4.72 -0.58 -0.67 -0.68 -0.68 

120 -35.5 -38.5 -39.1 -39 -13.9 -16 -15.9 -15.8 -4.03 -4.77 -4.75 -4.74 -0.58 -0.69 -0.69 -0.69 

Sum -37.8 -15.18 -4.46 -0.644 

Sum -14.520 

Table C.23:  values for sequential processes assuming different α values. 

 Mixed processes – Single Payment 

α = 2 

Number Feedbacks 

α = 4 

Number Feedbacks 

α = 8 

Number Feedbacks 

α = 16 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -35.5 -37 -40.6 -41.6 -13.9 -14.5 -15.7 -16.4 -4.03 -4.27 -4.58 -4.81 -0.58 -0.61 -0.66 -0.69 

60 -35.5 -37.9 -38.6 -40 -13.9 -15.5 -16.1 -16.3 -4.03 -4.57 -4.75 -4.85 -0.58 -0.66 -0.69 -0.70 

90 -35.5 -37.9 -39 -39.5 -13.9 -15.9 -16.1 -16.3 -4.03 -4.72 -4.76 -4.80 -0.58 -0.67 -0.67 -0.69 

120 -35.5 -39.0 -38.8 -39 -13.9 -16 -16.1 -16.1 -4.03 -4.78 -4.77 -4.79 -0.58 -0.68 -0.68 -0.67 

Sum -38.18 -15.41 -4.54 -0.649 

Sum -14.694 

Table C.24:  values for mixed processes assuming different α values. 
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 Random processes – Once Payment 

α = 2 

Number Feedbacks 

α = 4 

Number Feedbacks 

α = 8 

Number Feedbacks 

α = 16 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -35.5 -76.6 -134 -176 -13.9 -31.3 -57.6 -73.6 -4.03 -8.81 -16.7 -22 -0.58 -1.30 -2.42 -3.21 

60 -35.5 -105 -1.51 -187 -13.9 -49.2 -71.6 -87.1 -4.03 -16 -22.6 -27.8 -0.58 -2.35 -3.36 -4.20 

90 -35.5 -138 -165 -183 -13.9 -60.1 -79.1 -93.9 -4.03 -20.1 -27.1 -32.4 -0.58 -3.03 -4.08 -4.96 

120 -35.5 -144 -160 -186 -13.9 -68.2 -91.3 -104 -4.03 -23.8 -30.8 -36.1 -0.58 -3.61 -4.73 -5.63 

Sum -112.4 -57.66 -18.77 -2.83 

Sum -47.91 

Table C.25:  values for random processes assuming different α values. 

 Sequential processes – Once Payment 

α = 2 

Number Feedbacks 

α = 4 

Number Feedbacks 

α = 8 

Number Feedbacks 

α = 16 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -35.5 -98.1 -156 -199 -13.9 -36.9 -54.5 -70.3 -4.03 -10 -16.2 -21.2 -0.58 -1.47 -2.31 -3.02 

60 -35.5 -122 -174 -194 -13.9 -58.2 -72.7 -88.5 -4.03 -16.9 -22.9 -27.9 -0.58 -2.45 -3.33 -4.11 

90 -35.5 -144 -175 -178 -13.9 -69.4 -86.2 -96.4 -4.03 -20.8 -27.1 -31.8 -0.58 -3.05 -4.03 -4.86 

120 -35.5 -150 -169 -184 -13.9 -72.9 -93.6 -101 -4.03 -24.1 -30.7 -35.7 -0.58 -3.63 -4.70 -5.57 

Sum -130.3 -59.76 -18.84 -2.80 

Sum -52.93 

Table C.26:  values for sequential processes assuming different α values. 

 Mixed processes – Once Payment 

α = 2 

Number Feedbacks 

α = 4 

Number Feedbacks 

α = 8 

Number Feedbacks 

α = 16 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -35.5 -81.9 -147 -179 -13.9 -31.9 -55.4 -72.5 -4.03 -9.20 -16.3 -21.7 -0.58 -1.32 -2.36 -3.12 

60 -35.5 -105 -1.51 -187 -13.9 -53.5 -72 -87.6 -4.03 -16.5 -22.8 -28 -0.58 -2.43 -3.37 -4.20 

90 -35.5 -140 -167 -180 -13.9 -60 -79 -93.6 -4.03 -20.3 -27 -32.1 -0.58 -3.03 -4.06 -4.92 

120 -35.5 -147 -163 -185 -13.9 -68 -91.1 -102 -4.03 -23.8 -30.7 -35.9 -0.58 -3.62 -4.71 -5.60 

Sum -114.1 -57.63 -18.78 -2.82 

Sum -48.33 

Table C.27:  values for mixed processes assuming different α values. 
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 Random processes – Once Payment Crashing 

λ = 0.1 

Number Feedbacks 

λ = 0.3 

Number Feedbacks 

λ = 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.19 -1.41 -1.55 -1 -1.61 -2.43 -2.99 -1 -2.24 -4.15 -5.54 

60 -1 -1.40 -1.58 -1.74 -1 -2.39 -3.10 -3.69 -1 -4.05 -5.77 -7.20 

90 -1 -1.57 -1.76 -1.92 -1 -2.88 -3.64 -4.27 -1 -5.20 -7 -8.49 

120 -1 -1.71 -1.92 -2.10 -1 -3.31 -4.12 -4.78 -1 -6.16 -8.08 -9.63 

Average 

Average 

-1.491 -2.700 -4.844 

-3.012 

Table C.28:   values for random processes assuming different λ values. 

 Sequential processes – Once Payment Crashing 

λ = 0.1 

Number Feedbacks 

λ = 0.3 

Number Feedbacks 

λ = 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.22 -1.37 -1.50 -1 -1.74 -2.33 -2.84 -1 -2.55 -4 -5.2 

60 -1 -1.40 -1.55 -1.69 -1 -2.43 -3.06 -3.60 -1 -4.24 -5.74 -7.08 

90 -1 -1.54 -1.72 -1.87 -1 -2.89 -3.59 -4.18 -1 -5.25 -6.91 -8.32 

120 -1 -1.69 -1.89 -2.06 -1 -3.33 -4.11 -4.73 -1 -6.25 -8.08 -9.51 

Average 

Average 

-1.469 -2.677 -4.821 

-2.989 

Table C.29:   values for sequential processes assuming different λ values. 

 Mixed processes – Once Payment Crashing 

λ = 0.1 

Number Feedbacks 

λ = 0.3 

Number Feedbacks 

λ = 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.19 -1.39 -1.53 -1 -1.62 -2.39 -2.93 -1 -2.27 -4.07 -5.39 

60 -1 -1.41 -1.58 -1.73 -1 -2.43 -3.10 -3.69 -1 -4.19 -5.80 -7.20 

90 -1 -1.56 -1.74 -1.90 -1 -2.90 -3.63 -4.24 -1 -5.23 -6.97 -8.42 

120 -1 -1.71 -1.92 -2.09 -1 -3.32 -4.12 -4.77 -1 -6.18 -8.10 -9.61 

Average 

Average 

-1.484 -2.696 -4.839 

-3.006 

Table C.30:   values for mixed processes assuming different λ values. 
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 Random processes – Single Payment Crashing 

λ = 0.1 

Number Feedbacks 

λ = 0.3 

Number Feedbacks 

λ = 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.04 -1.07 -1.08 -1 -1.04 -1.09 -1.12 -1 -1.07 -1.15 -1.20 

60 -1 -1.08 -1.08 -1.08 -1 -1.08 -1.11 -1.13 -1 -1.14 -1.19 -1.21 

90 -1 -1.10 -1.09 -1.09 -1 -1.10 -1.12 -1.13 -1 -1.18 -1.20 -1.21 

120 -1 -1.11 -1.10 -1.10 -1 -1.11 -1.12 -1.13 -1 -1.20 -1.21 -1.21 

Average 

Average 

-1.064 -1.08 -1.136 

-1.093 

Table C.31:   values for random processes assuming different λ values. 

 Sequential processes – Single Payment Crashing 

λ = 0.1 

Number Feedbacks 

λ = 0.3 

Number Feedbacks 

λ = 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.03 -1.04 -1.04 -1 -1.02 -1.05 -1.06 -1 -1.05 -1.09 -1.13 

60 -1 -1.06 -1.05 -1.05 -1 -1.07 -1.08 -1.09 -1 -1.13 -1.15 -1.17 

90 -1 -1.07 -1.07 -1.07 -1 -1.09 -1.10 -1.11 -1 -1.16 -1.17 -1.18 

120 -1 -1.09 -1.08 -1.08 -1 -1.10 -1.11 -1.11 -1 -1.19 -1.19 -1.19 

Average 

Average 

-1.046 -1.062 -1.113 

-1.073 

Table C.32:   values for sequential processes assuming different λ values. 

 Mixed processes – Single Payment Crashing 

λ = 0.1 

Number Feedbacks 

λ = 0.3 

Number Feedbacks 

λ = 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.04 -1.06 -1.07 -1 -1.04 -1.08 -1.11 -1 -1.06 -1.14 -1.19 

60 -1 -1.08 -1.07 -1.07 -1 -1.08 -1.11 -1.13 -1 -1.15 -1.19 -1.21 

90 -1 -1.09 -1.08 -1.08 -1 -1.10 -1.11 -1.12 -1 -1.18 -1.19 -1.20 

120 -1 -1.10 -1.10 -1.10 -1 -1.11 -1.12 -1.12 -1 -1.20 -1.20 -1.20 

Average 

Average 

-1.059 -1.077 -1.132 

-1.089 

Table C.33:   values for mixed processes assuming different λ values. 
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 Random processes - Multiple Payment Crashing 

λ = 0.1 

Number Feedbacks 

λ = 0.3 

Number Feedbacks 

λ = 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Sum 

Sum 

-1 -1 -1 

-1 

Table C.34:   values for random processes assuming different λ values. 

 Sequential processes - Multiple Payment Crashing 

λ = 0.1 

Number Feedbacks 

λ = 0.3 

Number Feedbacks 

λ = 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Sum 

Sum 

-1 -1 -1 

-1 

Table C.35:   values for sequential processes assuming different λ values.  

 Mixed processes - Multiple Payment Crashing 

λ = 0.1 

Number Feedbacks 

λ = 0.3 

Number Feedbacks 

λ = 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Sum 

Sum 

-1 -1 -1 

-1 

Table C.36:   values for mixed processes assuming different λ values. 
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 Random processes – Once Payment Crashing 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -2.23 -4.16 -5.59 -1 -2.22 -4.07 -5.40 -1 -2.21 -3.95 -5.21 

60 -1 -3.95 -5.73 -7.33 -1 -4.12 -5.87 -7.31 -1 -3.96 -5.57 -6.90 

90 -1 -4.96 -6.85 -8.53 -1 -5.40 -7.26 -8.78 -1 -5.07 -6.80 -8.18 

120 -1 -5.84 -7.80 -9.48 -1 -6.47 -8.47 -10.0 -1 -6.03 -7.89 -9.36 

Average 

Average 

-4.778 -4.961 -4.695 

-4.811 

Table C.37:  values for the placement of bottleneck activities assuming random processes. 

 Sequential processes - Once Payment Crashing 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -2.59 -4.16 -5.51 -1 -2.54 -3.99 -5.18 -1 -2.39 -3.63 -4.65 

60 -1 -4.19 -5.85 -7.38 -1 -4.37 -5.88 -7.21 -1 -3.97 -5.39 -6.62 

90 -1 -5.05 -6.84 -8.44 -1 -5.49 -7.18 -8.60 -1 -5.01 -6.68 -8 

120 -1 -5.91 -7.81 -9.41 -1 -6.53 -8.43 -9.95 -1 -6.01 -7.84 -9.19 

Average 

Average 

-4.821 -4.959 -4.586 

-4.789 

Table C.38:  values for the placement of bottleneck activities assuming sequential processes. 

 Mixed processes - Once Payment Crashing 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -2.27 -4.10 -5.48 -1 -2.26 -3.96 -5.25 -1 -2.2 -3.81 -4.95 

60 -1 -4.07 -5.83 -7.44 -1 -4.24 -5.91 -7.32 -1 -3.98 -5.52 -6.84 

90 -1 -5.00 -6.85 -8.49 -1 -5.44 -7.25 -8.75 -1 -5.06 -6.74 -8.13 

120 -1 -5.82 -7.83 -9.44 -1 -6.50 -8.50 -10.0 -1 -5.99 -7.86 -9.32 

Average 

Average 

-4.789 -4.961 -4.65 

-4.8 

Table C.39:  values for the placement of bottleneck activities assuming mixed processes. 
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 Random processes – Single Payment Crashing 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.06 -1.15 -1.22 -1 -1.07 -1.15 -1.20 -1 -1.08 -1.16 -1.19 

60 -1 -1.13 -1.18 -1.22 -1 -1.15 -1.20 -1.23 -1 -1.14 -1.19 -1.20 

90 -1 -1.16 -1.19 -1.21 -1 -1.19 -1.22 -1.23 -1 -1.16 -1.19 -1.20 

120 -1 -1.18 -1.19 -1.20 -1 -1.21 -1.22 -1.23 -1 -1.18 -1.19 -1.19 

Average 

Average 

-1.131 -1.144 -1.129 

-1.135 

Table C.40:  values for the placement of bottleneck activities assuming random processes. 

 Sequential processes - Single Payment Crashing 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.05 -1.12 -1.17 -1 -1.05 -1.10 -1.14 -1 -1.05 -1.09 -1.12 

60 -1 -1.12 -1.16 -1.18 -1 -1.13 -1.16 -1.18 -1 -1.13 -1.15 -1.16 

90 -1 -1.15 -1.16 -1.18 -1 -1.17 -1.19 -1.19 -1 -1.15 -1.16 -1.17 

120 -1 -1.17 -1.17 -1.18 -1 -1.20 -1.20 -1.20 -1 -1.16 -1.17 -1.17 

Average 

Average 

-1.113 -1.119 -1.105 

-1.112 

Table C.41:  values for the placement of bottleneck activities assuming sequential processes. 

 Mixed processes - Single Payment Crashing 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.06 -1.15 -1.22 -1 -1.07 -1.15 -1.20 -1 -1.07 -1.14 -1.19 

60 -1 -1.13 -1.18 -1.22 -1 -1.15 -1.20 -1.22 -1 -1.14 -1.17 -1.20 

90 -1 -1.16 -1.18 -1.20 -1 -1.19 -1.21 -1.22 -1 -1.16 -1.17 -1.18 

120 -1 -1.17 -1.18 -1.19 -1 -1.21 -1.22 -1.22 -1 -1.16 -1.17 -1.18 

Average 

Average 

-1.128 -1.141 -1.121 

-1.13 

Table C.42:  values for the placement of bottleneck activities assuming mixed processes. 
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 Random processes – Multiple Payment Crashing 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Sum 

Sum 

-1 -1 -1 

-1 

Table C.43:  values for the placement of bottleneck activities assuming random processes. 

 Sequential processes - Multiple Payment Crashing 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Sum 

Sum 

-1 -1 -1 

-1 

Table C.44:  values for the placement of bottleneck activities assuming sequential processes. 

 Mixed processes - Multiple Payment Crashing 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

60 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Sum 

Sum 

-1 -1 -1 

-1 

Table C.45:  values for the placement of bottleneck activities assuming mixed processes. 

 



 

201 

Random processes 

 

Mixed processes 

 

Sequential processes 

 

Table C.46: Distribution of reworks for back-loaded processes with nff=120 and nfb=60. 

Random processes 

 

Mixed processes 

 

Sequential processes 

 

Table C.47: Distribution of reworks for medium-loaded processes with nff=120 and nfb=60. 

Random processes 

 

Mixed processes 

 

Sequential processes 

 

Table C.48: Distribution of reworks for equally-loaded processes with nff=120 and nfb=60. 
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 Random processes – Once Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.05 -1.11 -1.17 -1 -1.28 -1.90 -3.12 -1 -2.15 -3.84 -4.94 

60 -1 -1.07 -1.14 -1.24 -1 -1.75 -4.18 -6.02 -1 -3.84 -5.46 -6.86 

90 -1 -1.08 -1.18 -1.32 -1 -2.92 -5.96 -7.53 -1 -4.86 -6.68 -8.37 

120 -1 -1.09 -1.23 -1.42 -1 -4.17 -6.83 -8.57 -1 -5.64 -7.76 -9.63 

Average 

Average 

-1.131 -3.639 -4.627 

-3.133 

Table C.49:   values for the base case of P4 assuming random processes. 

 Sequential processes – Once Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.06 -1.13 -1.21 -1 -1.34 -1.97 -2.91 -1 -2.44 -3.84 -4.96 

60 -1 -1.07 -1.16 -1.26 -1 -1.93 -4.46 -6.08 -1 -4.07 -5.55 -6.93 

90 -1 -1.08 -1.19 -1.33 -1 -3.21 -6.05 -7.50 -1 -4.95 -6.70 -8.30 

120 -1 -1.10 -1.23 -1.43 -1 -4.32 -6.85 -8.56 -1 -5.69 -7.71 -9.57 

Average 

Average 

-1.141 -3.699 -4.669 

-3.170 

Table C.50:  values for the base case of P4 assuming sequential processes. 

 Mixed processes – Once Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.05 -1.11 -1.17 -1 -1.28 -1.83 -2.87 -1 -2.18 -3.75 -4.80 

60 -1 -1.07 -1.14 -1.24 -1 -1.80 -4.27 -6.08 -1 -3.95 -5.49 -6.87 

90 -1 -1.08 -1.18 -1.32 -1 -3.07 -6.01 -7.52 -1 -4.90 -6.70 -8.37 

120 -1 -1.09 -1.23 -1.43 -1 -4.21 -6.87 -8.58 -1 -5.68 -7.79 -9.64 

Average 

Average 

-1.132 -3.649 -4.633 

-3.138 

Table C.51:  values for the base case of P4 assuming mixed processes. 
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 Random processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1.01 -1.01 -1 -1.01 -1.03 -1.04 -1 -1.04 -1.08 -1.13 

60 -1 -1 -1 -1 -1 -1.02 -1.05 -1.08 -1 -1.10 -1.14 -1.17 

90 -1 -1 -1 -1.01 -1 -1.04 -1.09 -1.12 -1 -1.13 -1.17 -1.19 

120 -1 -1 -1 -1.01 -1 -1.07 -1.11 -1.14 -1 -1.15 -1.18 -1.20 

Average 

Average 

-1.003 -1.05 -1.105 

-1.053 

Table C.52:   values for the base case of P4 assuming random processes. 

 Sequential processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1 -1 -1 -1 -1.01 -1.02 -1 -1.02 -1.05 -1.08 

60 -1 -1 -1 -1 -1 -1.01 -1.04 -1.07 -1 -1.09 -1.11 -1.14 

90 -1 -1 -1 -1 -1 -1.04 -1.09 -1.10 -1 -1.12 -1.14 -1.16 

120 -1 -1 -1 -1 -1 -1.07 -1.11 -1.13 -1 -1.15 -1.16 -1.18 

Average 

Average 

-1 -1.043 -1.088 

-1.044 

Table C.53:  values for the base case of P4 assuming sequential processes. 

 Mixed processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1.01 -1.01 -1 -1.01 -1.02 -1.04 -1 -1.04 -1.08 -1.12 

60 -1 -1 -1 -1 -1 -1.02 -1.05 -1.08 -1 -1.09 -1.14 -1.16 

90 -1 -1 -1 -1.01 -1 -1.04 -1.09 -1.11 -1 -1.13 -1.16 -1.19 

120 -1 -1 -1 -1.01 -1 -1.07 -1.11 -1.14 -1 -1.16 -1.18 -1.20 

Average 

Average 

-1.003 -1.049 -1.103 

-1.051 

Table C.54:  values for the base case of P4 assuming mixed processes. 
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 Random processes – Once Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.05 -1.11 -1.18 -1 -1.29 -1.95 -3.43 -1 -2.28 -4.24 -5.68 

60 -1 -1.07 -1.15 -1.25 -1 -1.86 -4.66 -6.80 -1 -4.34 -6.33 -8 

90 -1 -1.08 -1.19 -1.33 -1 -3.32 -6.95 -8.87 -1 -5.86 -7.96 -9.84 

120 -1 -1.10 -1.24 -1.44 -1 -5.20 -8.69 -10.6 -1 -7.13 -9.40 -11.4 

Average 

Average 

-1.137 -4.226 -5.404 

-3.589 

Table C.55:   values for the base case of P5 assuming random processes. 

 Sequential processes – Once Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.06 -1.13 -1.22 -1 -1.36 -2.05 -3.14 -1 -2.54 -4.02 -5.27 

60 -1 -1.07 -1.16 -1.27 -1 -2.07 -4.85 -6.66 -1 -4.46 -6.08 -7.58 

90 -1 -1.08 -1.19 -1.34 -1 -3.64 -6.98 -8.67 -1 -5.77 -7.65 -9.33 

120 -1 -1.10 -1.24 -1.46 -1 -5.44 -8.56 -10.4 -1 -7.08 -9.18 -10.9 

Average 

Average 

-1.145 -4.239 -5.241 

-3.541 

Table C.56:  values for the base case of P5 assuming sequential processes. 

 Mixed processes – Once Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1.05 -1.11 -1.18 -1 -1.29 -1.90 -3.14 -1 -2.32 -4.15 -5.49 

60 -1 -1.07 -1.15 -1.25 -1 -1.93 -4.67 -6.75 -1 -4.46 -6.33 -7.96 

90 -1 -1.08 -1.19 -1.33 -1 -3.50 -6.94 -8.82 -1 -5.85 -7.87 -9.69 

120 -1 -1.10 -1.24 -1.45 -1 -5.32 -8.62 -10.6 -1 -7.12 -9.32 -11.3 

Average 

Average 

-1.138 -4.218 -5.366 

-3.574 

Table C.57:  values for the base case of P5 assuming mixed processes. 
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 Random processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1.01 -1.01 -1 -1.02 -1.04 -1.08 -1 -1.07 -1.16 -1.22 

60 -1 -1 -1 -1.01 -1 -1.04 -1.11 -1.16 -1 -1.17 -1.25 -1.30 

90 -1 -1 -1.01 -1.01 -1 -1.09 -1.18 -1.23 -1 -1.25 -1.31 -1.35 

120 -1 -1 -1.01 -1.02 -1 -1.16 -1.24 -1.28 -1 -1.30 -1.35 -1.39 

Average 

Average 

-1.001 -1.102 -1.195 

-1.100 

Table C.58:   values for the base case of P5 assuming random processes. 

 Sequential processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1 -1 -1 -1 -1.02 -1.05 -1 -1.05 -1.10 -1.14 

60 -1 -1 -1 -1 -1 -1.03 -1.10 -1.14 -1 -1.15 -1.19 -1.22 

90 -1 -1 -1 -1 -1 -1.10 -1.17 -1.21 -1 -1.22 -1.25 -1.28 

120 -1 -1 -1 -1 -1 -1.16 -1.23 -1.26 -1 -1.28 -1.31 -1.34 

Average 

Average 

-1 -1.092 -1.158 

-1.083 

Table C.59:  values for the base case of P5 assuming sequential processes. 

 Mixed processes – Single Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -1 -1.01 -1.01 -1 -1.01 -1.04 -1.07 -1 -1.07 -1.14 -1.21 

60 -1 -1 -1 -1.01 -1 -1.03 -1.11 -1.16 -1 -1.17 -1.24 -1.29 

90 -1 -1 -1 -1.01 -1 -1.09 -1.18 -1.22 -1 -1.24 -1.29 -1.33 

120 -1 -1 -1.01 -1.02 -1 -1.16 -1.24 -1.27 -1 -1.30 -1.34 -1.38 

Average 

Average 

-1 -1.10 -1.19 

-1.10 

Table C.60:  values for the base case of P5 assuming mixed processes. 
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 Random processes – Multi Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 1.4 3.6 6.1 0 10.5 42.5 132 0 70.7 211 305 

60 0 2 5.3 9.1 0 38 219 377 0 198 341 461 

90 0 2.7 6.8 12.4 0 114 354 491 0 276 438 568 

120 0 3.2 8.7 16.8 0 202 437 591 0 341 520 663 

Average 

Average 

4.881 188 274.5 

155.8 

Table C.61: Number reworks for the base case of P3a assuming random processes. 

 Sequential processes – Multi Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 2 5 8.1 0 14.8 50 117 0 97.3 214 308 

60 0 2.2 6 10.3 0 50.8 240 376 0 224 360 478 

90 0 3 7.2 13.1 0 137 361 447 0 294 451 581 

120 0 3.3 8.9 17.4 0 220 446 597 0 356 533 676 

Average 

Average 

5.41 191 285.8 

160.7 

Table C.62: Number reworks for the base case of P3a assuming sequential processes. 

 Mixed processes – Multi Payment Crashing 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 0 1.4 3.6 6.1 0 11 40 111 0 73 203 290 

60 0 2 5.3 9.3 0 40.9 224 376 0 209 346 463 

90 0 2.8 6.9 12.6 0 124 357 492 0 283 442 572 

120 0 3.3 8.7 17 0 208 441 594 0 346 526 668 

Average 

Average 

4.94 188.7 276.3 

156.6 

Table C.63: Number reworks values for the base case of P3a assuming mixed processes. 
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D: Simulation results for section 5.3.3 

 Random processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1.20 -1.23 -1.23 -1.24 -1.20 -1.27 -1.44 -1.76 -1.20 -1.39 -1.04 -1.16 

60 -1.05 -1.07 -1.09 -1.10 -1.05 -1.33 -1.40 -1.04 -1.05 -1.05 -1.20 -1.33 

90 -1.01 -1.04 -1.08 -1.14 -1.01 -1.51 -1.04 -1.08 -1.01 -1.15 -1.37 -1.42 

120 -1.00 -1.06 -1.12 -1.23 -1.00 -1.15 -1.07 -1.23 -1.00 -1.27 -1.53 -1.60 

Average 

Average 

-1.118 -1.224 -1.236 

-1.191 

Table D.64:   values for the base case of P3b assuming random processes. 

 Sequential processes  

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -0.96 -0.93 -0.91 -1 -0.91 -0.99 -1.17 -1 -1.04 -0.96 -0.98 

60 -1 -0.98 -0.96 -0.96 -1 -1.20 -1.25 -1.02 -1 -1.05 -1.18 -1.22 

90 -1 -0.99 -1.00 -1.04 -1 -1.35 -1.00 -1.08 -1 -1.18 -1.35 -1.41 

120 -1 -1.02 -1.07 -1.15 -1 -1.08 -1.09 -1.25 -1 -1.27 -1.51 -1.58 

Average 

Average 

-0.998 -1.087 -1.171 

-1.085 

Table D.65:  values for the base case of P3b assuming sequential processes. 

 Mixed processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1.14 -1.14 -1.13 -1.14 -1.14 -1.15 -1.32 -1.66 -1.14 -1.30 -1.03 -1.11 

60 -1.03 -1.03 -1.04 -1.05 -1.03 -1.30 -1.35 -1.04 -1.03 -1.04 -1.20 -1.30 

90 -1.02 -1.03 -1.06 -1.12 -1.02 -1.47 -1.00 -1.07 -1.02 -1.14 -1.36 -1.42 

120 -1.01 -1.05 -1.11 -1.21 -1.01 -1.14 -1.08 -1.24 -1.01 -1.28 -1.53 -1.59 

Average 

Average 

-1.081 -1.189 -1.219 

-1.163 

Table D.66:  values for the base case of P3b assuming mixed processes. 
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 Random processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 1.40 3.63 6.09 0 10.7 42.9 134 0 70.8 211 306 

60 0 2.05 5.24 9.10 0 38.3 220 378 0 201 343 463 

90 0 2.75 6.84 12.4 0 116 356 491 0 278 439 569 

120 0 3.27 8.70 16.9 0 199 439 591 0 340 523 664 

Average 

Average 

4.898 188 275 

156 

Table D.67:  Number reworks before overlapping for the base case of P3b. 

 Sequential processes  

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 2.00 4.97 8.23 0 14.7 49.5 117 0 96.5 213 307 

60 0 2.25 5.97 10.3 0 50.9 242 377 0 225 362 479 

90 0 2.91 7.17 13.1 0 137 360 494 0 293 450 579 

120 0 3.30 8.91 17.2 0 215 443 594 0 353 530 673 

Average 

Average 

5.394 193 285 

161.1 

Table D.68: Number reworks before overlapping for the base case of P3b. 

 Mixed processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 0 1.36 3.55 6.01 0 10.5 39.0 111 0 69.9 201 289 

60 0 2.08 5.37 9.33 0 41.6 224 375 0 209 346 464 

90 0 2.79 6.90 12.5 0 123 357 493 0 283 444 573 

120 0 3.30 8.74 17 0 208 439 593 0 346 524 666 

Average 

Average 

4.933 188 276 

156.3 

Table D.69: Number reworks before overlapping for the base case of P3b. 
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 Random processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 1.38 3.62 6.08 0 10.4 39.4 118 0 64.7 206 296 

60 0 2.02 5.22 8.99 0 34.7 203 374 0 198 337 446 

90 0 2.72 6.74 12.1 0 105 360 504 0 275 424 546 

120 0 3.21 8.52 16.1 0 196 451 596 0 334 498 626 

Average 

Average 

4.793 187 266 

152.6 

Table D.70:  Number reworks after overlapping for the base case of P3b. 

 Sequential processes  

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 2 4.97 8.23 0 14.6 47.1 106 0 90.8 205 296 

60 0 2.26 5.94 10.2 0 46.4 227 375 0 224 357 470 

90 0 2.91 7.11 12.8 0 126 370 506 0 291 440 562 

120 0 3.29 8.68 16.6 0 215 455 599 0 349 509 638 

Average 

Average 

5.31 193 276 

158.1 

Table D.71: Number reworks after overlapping for the base case of P3b. 

 Mixed processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 0 1.36 3.52 5.96 0 1.39 36 97.5 0 63.9 194 278 

60 0 2.08 5.31 9.20 0 37.6 207 372 0 207 340 449 

90 0 2.77 6.80 12.2 0 112 364 507 0 281 430 552 

120 0 3.27 8.54 16.2 0 205 450 596 0 339 499 629 

Average 

Average 

4.825 186.6 266.4 

152.6 

Table D.72: Number reworks after overlapping for the base case of P3b. 
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 Random processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 0 0.06 0.68 0 1.43 9.23 45.7 0 20.8 119 246 

60 0 0 0 0.3 0 7.8 90 211 0 126 248 368 

90 0 0 0 0.4 0 48.4 210 300 0 232 348 452 

120 0 0 0 0.9 0 125 295 378 0 338 450 550 

Average 

Average 

0.146 108 219 

109 

Table D.73:  Number partial reworks before applying overlapping for the base case of P3b. 

 Sequential processes  

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 0 0 0 0 0.01 5.6 28 0 19.6 76.7 150 

60 0 0 0 0 0 9.1 89.3 177 0 115 188 265 

90 0 0 0 0 0 56.6 187 255 0 207 287 362 

120 0 0 0 0.3 0 134 273 342 0 322 400 476 

Average 

Average 

0.019 97.3 179 

92.2 

Table D.74: Number partial reworks before applying overlapping for the base case of P3b. 

 Mixed processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 0 0 0 0.5 0 1.2 7.9 36.6 0 19.4 112 238 

60 0 0 0 0.1 0 8.2 89.8 204 0 129 238 351 

90 0 0 0 0.1 0 51.7 205 292 0 227 336 435 

120 0 0 0 0.8 0 133 290 370 0 342 443 532 

Average 

Average 

0.094 106 213 

106 

Table D.75: Number partial reworks before applying overlapping for the base case of P3b. 
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 Random processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 0 0.07 0.72 0 1.72 9.46 42.4 0 21.4 128 284 

60 0 0 0.01 0.54 0 8.48 89.0 238 0 155 367 614 

90 0 0 0 0.93 0 50 267 468 0 346 627 928 

120 0 0 0.67 1.39 0 152 468 698 0 550 878 1211 

Average 

Average 

0.271 156 382 

179.4 

Table D.76:  Number partial reworks after applying overlapping for the base case of P3b. 

 Sequential processes  

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 0 0 0 0 0.2 5.69 26.4 0 20.2 86.5 186 

60 0 0 0 0 0 9.36 90.8 212 0 149 282 444 

90 0 0 0 0 0 59.7 259 420 0 313 500 711 

120 0 0 0 1 0 167 442 631 0 509 756 1022 

Average 

Average 

0.063 145 311 

152 

Table D.77: Number partial reworks after applying overlapping for the base case of P3b. 

 Mixed processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 0 0 0.02 0.41 0 1.39 8.09 33.9 0 19.6 118 263 

60 0 0 0 0.29 0 8.80 89.2 232 0 159 356 589 

90 0 0 0 0.72 0 53.5 267 460 0 342 601 877 

120 0 0 0.41 1.12 0 159 461 672 0 544 848 1161 

Average 

Average 

0.189 153 367 

173.4 

Table D.78: Number partial reworks after applying overlapping for the base case of P3b. 
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 Random processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 14.8 15.8 16.7 17.4 14.8 17.8 17.3 14.0 14.8 16.9 19.3 18.9 

60 18.5 19.5 20.4 21.2 18.5 18.7 17.1 22.0 18.5 22.6 25.0 25.4 

90 19.8 20.9 21.8 22.2 19.8 17.3 26.1 30.1 19.8 26.3 27.1 28.5 

120 20.4 21.5 22.3 22.2 20.4 23.6 31.2 31.5 20.4 27.3 27.5 28.5 

Average 

Average 

19.71 21.26 22.95 

21.31 

Table D.79: Percental change in process cost due to overlapping for the base case of P3b. 

 Sequential processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 20.9 22.2 23.2 24 20.9 24.1 23.2 19.9 20.9 21.9 23.4 23.7 

60 20.9 22.2 23.2 24 20.9 20.2 19.4 24.6 20.9 25.3 26.3 27.4 

90 20.9 22.2 23.2 23.7 20.9 19.2 28.9 31.0 20.9 26.7 27.5 28.8 

120 20.9 22.3 23.0 23.1 20.9 25.5 31.5 31.3 20.9 27.3 27.7 28.7 

Average 

Average 

22.49 23.9 24.89 

23.76 

Table D.80: Percental change in process cost due to overlapping for the base case of P3b. 

 Mixed processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 16.3 17.2 18.1 18.8 16.3 19.3 18.4 14.7 16.3 17.7 19.0 18.2 

60 19.3 20.4 21.3 22.0 19.3 19.0 17.7 22.5 19.3 23.3 25.5 25.9 

90 20.0 21.2 22.1 22.4 20.0 17.7 27.1 30.5 20.0 26.8 27.4 28.7 

120 20.3 21.6 22.4 22.3 20.3 23.7 31.1 31.2 20.3 26.9 27.2 28.4 

Average 

Average 

20.36 21.8 23.18 

21.78 

Table D.81: Percental change in process cost due to overlapping for the base case of P3b. 

 



 

213 

 Random processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -17.8 -19.4 -20.6 -21.7 -17.8 -22.6 -24.9 -24.7 -17.8 -23.5 -20.0 -22.0 

60 -19.4 -20.8 -22.1 -23.3 -19.4 -24.8 -23.8 -22.9 -19.4 -23.6 -30.1 -33.8 

90 -20.0 -21.8 -23.6 -25.3 -20.0 -26.2 -27.1 -32.6 -20.0 -30.3 -37.3 -40.9 

120 -20.4 -22.7 -25.1 -27.3 -20.4 -27.0 -33.5 -38.6 -20.4 -34.1 -41.6 -45.1 

Average 

Average 

-21.96 -25.39 -28.74 

-25.36 

Table D.82: Percental change in process duration due to overlapping for the base case of P3b. 

 Sequential processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -20.9 -21.2 -21.5 -21.7 -20.9 -22.0 -22.9 -23.3 -20.9 -22.7 -22.5 -23.1 

60 -20.9 -21.6 -22.3 -23.0 -20.9 -24.2 -24.4 -25.1 -20.9 -26.4 -30.9 -33.5 

90 -20.9 -22.1 -23.4 -24.7 -20.9 -25.9 -28.9 -33.7 -20.9 -31.6 -37.2 -40.5 

120 -20.9 -22.7 -24.7 -26.7 -20.9 -27.5 -34.5 -39.2 -20.9 -34.7 -41.7 -45.5 

Average 

Average 

-22.45 -25.95 -29.61 

-26 

Table D.83: Percental change in process duration due to overlapping for the base case of P3b. 

 Mixed processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -18.5 -19.6 -20.6 -21.4 -18.5 -22.1 -24.3 -24.5 -18.5 -23.1 -19.6 -20.2 

60 -19.9 -21.0 -22.1 -23.2 -19.9 -24.7 -23.9 -23.4 -19.9 -24.3 -30.5 -33.8 

90 -20.3 -21.9 -23.4 -25.1 -20.3 -26.0 -27.4 -32.8 -20.3 -30.6 -37.1 -40.8 

120 -20.5 -22.6 -24.8 -27.1 -20.5 -27.0 -33.5 -38.8 -20.5 -34.3 -41.6 -45.2 

Average 

Average 

-22 -25.48 -28,8 

-25.43 

Table D.84: Percental change in process duration due to overlapping for the base case of P3b. 
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 Random processes 

Alpha=1 

Number Feedbacks 

Alpha=0.25 

Number Feedbacks 

Alpha=0 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 -0.08 -0.08 -0.17 -3.55 -4.54 -2.85 -2.92 -inf. 14.8 -71.7 -27.3 

60 0 -0.14 -0.33 -0.44 -3.16 -2.50 -2.33 -2.40 -inf. -12 -6.16 -6 

90 0 -0.30 -0.49 -0.59 -3.03 -2.19 -2.36 -2.31 -inf. -5.30 -4.87 -4.29 

120 0 -0.40 -0.60 -0.70 -3.01 -2.21 -2.48 -2.47 -inf. -4.58 -4.70 -4.35 

Average 

Average 

-0.27 -2.769 -infinity 

-infinity 

Table D.85:  values for different alpha values assuming a feedback probability 0.5. 

 Sequential processes 

Alpha=1 

Number Feedbacks 

Alpha=0.25 

Number Feedbacks 

Alpha=0 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 0 -0.04 -0.06 -0.09 -3 -3.28 -2.68 -2.52 -inf. 26.7 -51.1 -19.2 

60 0 -0.17 -0.29 -0.36 -3 -2.37 -2.37 -2.30 -inf. -8.69 -6.73 -5.60 

90 0 -0.30 -0.48 -0.57 -3 -2.29 -2.42 -2.37 -inf. -5.67 -5.36 -4.73 

120 0 -0.40 -0.59 -0.68 -3 -2.29 -2.54 -2.54 -inf. -4.91 -5.04 -4.68 

Average 

Average 

-0.252 -2.623 -infinity 

-infinity 

Table D.86:  values for different alpha values assuming a feedback probability 0.5. 

 Mixed processes 

Alpha=1 

Number Feedbacks 

Alpha=0.25 

Number Feedbacks 

Alpha=0 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 0 -0.06 -0.05 -0.11 -3.38 -4.31 -3.00 -2.98 -inf. 14.9 87.5 -141 

60 0 -0.15 -0.32 -0.43 -3.08 -2.43 -2.32 -2.38 -inf. -10.8 -6.15 -5.60 

90 0 -0.30 -0.48 -0.57 -3.05 -2.17 -2.35 -2.32 -inf. -5.12 -4.88 -4.34 

120 0 -0.40 -0.59 -0.68 -3.02 -2.28 -2.53 -2.50 -inf. -4.79 -4.91 -4.46 

Average 

Average 

-0.259 -2.756 -infinity 

-infinity 

Table D.87:  values for different alpha values assuming a feedback probability 0.5. 
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 Random processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -1.20 -1.63 -1.08 -1.07 -1.20 -1.45 -1.03 -1.10 -1.20 -1.23 -0.98 -1.08 -1.20 -0.99 -0.79 -0.82 

60 -1.05 -1.03 -0.96 -0.97 -1.05 -1.00 -1.06 -1.12 -1.05 -1.08 -1.24 -1.40 -1.05 -0.84 -0.86 -0.91 

90 -1.01 -1.08 -1.04 -0.98 -1.01 -1.04 -1.14 -1.13 -1.01 -1.24 -1.49 -1.65 -1.01 -0.91 -0.97 -1.04 

120 -1.00 -1.16 -1.13 -1.08 -1.00 -1.11 -1.23 -1.23 -1.00 -1.40 -1.71 -1.89 -1.00 -1.02 -1.12 -1.19 

Sum -1.092 -1.119 -1.291 -0.983 

Sum -1.121 

Table D.88:  values for different lambda values assuming a feedback probability 0.5. 

 Sequential processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -1 -1.33 -1.10 -1.10 -1 -1.15 -1.02 -1.04 -1 -0.89 -0.82 -0.81 -1 -0.75 -0.64 -0.58 

60 -1 -0.99 -1.03 -1.02 -1 -1 -1.10 -1.13 -1 -1 -1.05 -1.08 -1 -0.78 -0.71 -0.68 

90 -1 -1.12 -1.12 -1.06 -1 -1.09 -1.19 -1.19 -1 -1.20 -1.31 -1.39 -1 -0.86 -0.83 -0.83 

120 -1 -1.17 -1.19 -1.14 -1 -1.14 -1.27 -1.28 -1 -1.36 -1.57 -1.71 -1 -0.97 -0.99 -1.02 

Sum -1.086 -1.1 -1.137 -0.853 

Sum -1.044 

Table D.89:  values for different lambda values assuming a feedback probability 0.5. 

 

 Mixed processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -1.14 -1.57 -1.12 -1.05 -1.14 -1.38 -1.03 -1.07 -1.14 -1.14 -0.95 -1.00 -1.14 -0.92 -0.75 -0.76 

60 -1.03 -1.02 -0.99 -0.99 -1.03 -1 -1.07 -1.13 -1.03 -1.04 -1.19 -1.31 -1.03 -0.82 -0.82 -0.84 

90 -1.02 -1.08 -1.05 -1 -1.02 -1.05 -1.15 -1.14 -1.02 -1.22 -1.44 -1.58 -1.02 -0.91 -0.93 -0.97 

120 -1.01 -1.17 -1.17 -1.12 -1.01 -1.13 -1.25 -1.25 -1.01 -1.41 -1.69 -1.85 -1.01 -1.01 -1.09 -1.14 

Sum -1.096 -1.116 -1.251 -0.948 

Sum -1.103 

Table D.90:  values for different lambda values assuming a feedback probability 0.5. 
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 Random processes 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1.14 -1.30 -1.07 -1.36 -1.22 -1.38 -1.04 -1.14 -1.21 -1.49 -1.03 -1.02 

60 -1.02 -0.97 -1.17 -1.42 -1.06 -1.11 -1.30 -1.42 -1.06 -1.17 -1.20 -1.25 

90 -0.99 -1.05 -1.25 -1.36 -1.00 -1.27 -1.53 -1.63 -1.02 -1.24 -1.37 -1.43 

120 -1.00 -1.13 -1.35 -1.43 -1.00 -1.39 -1.68 -1.78 -1.01 -1.30 -1.52 -1.63 

Sum 

Sum 

-1.188 -1.309 -1.247 

-1.248 

Table D.91:  values for the placement of bottleneck activities assuming random processes. 

 

 Sequential processes 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1.00 -1.04 -1.05 -1.18 -1.00 -1.07 -0.96 -0.95 -1.00 -1.03 -0.97 -0.96 

60 -1.00 -0.99 -1.16 -1.31 -1.00 -1.08 -1.19 -1.26 -1.00 -1.16 -1.20 -1.18 

90 -1.00 -1.08 -1.27 -1.34 -1.00 -1.23 -1.42 -1.50 -1.00 -1.31 -1.35 -1.39 

120 -1.00 -1.15 -1.37 -1.44 -1.00 -1.29 -1.61 -1.75 -1.00 -1.35 -1.51 -1.62 

Sum 

Sum 

-1.149 -1.207 -1.189 

-1.182 

Table D.92:  values for the placement of bottleneck activities assuming sequential processes. 

 

 Mixed processes 

Front-loaded 

Number Feedbacks 

Medium-loaded 

Number Feedbacks 

Back-loaded 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1.09 -1.23 -1.10 -1.30 -1.12 -1.33 -1.05 -1.07 -1.14 -1.33 -0.98 -0.95 

60 -1.02 -0.99 -1.19 -1.43 -1.02 -1.11 -1.28 -1.40 -1.04 -1.15 -1.20 -1.24 

90 -1.01 -1.04 -1.26 -1.36 -1.02 -1.26 -1.51 -1.61 -1.02 -1.25 -1.35 -1.42 

120 -1.01 -1.16 -1.37 -1.44 -1.01 -1.35 -1.66 -1.77 -1.01 -1.34 -1.54 -1.64 

Sum 

Sum 

-1.188 -1.286 -1.225 

-1.233 

Table D.93:  values for the placement of bottleneck activities assuming mixed processes. 
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 Random processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 15 14.3 17 17.1 15 16.1 18.5 18.2 15 18 20.1 20.2 15 19.5 22.9 22.6 

60 18.4 20.5 24.7 25.8 18.4 22.5 26.2 27.2 18.4 21.6 22.8 22.7 18.4 23.9 24.3 23.9 

90 19.8 23.4 26.5 28.8 19.8 27 29.3 31.7 19.8 23.1 23 23.1 19.8 24.7 24.6 24.3 

120 20.3 23 26.4 28.5 20.3 27.4 29.7 31.6 20.3 23.6 23.1 23 20.3 24.4 24.4 24.4 

Sum 21.84 23.68 21.11 22.33 

Sum 22.24 

Table D.94: Percental change in process cost for different lambda assuming feedback probability 0.5. 

 Sequential processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 20.9 16.8 17.4 16 20.9 19.7 20.6 19.7 20.9 25 27.3 28.2 20.9 28.2 32.7 35.5 

60 20.9 24.1 26.3 27.3 20.9 26.1 28 29.3 20.9 23.9 24.8 25.3 20.9 27 29.2 30.8 

90 20.9 24.4 26.9 29.3 20.9 28 29.9 32.1 20.9 23.4 24.2 24.9 20.9 25.8 27.4 28.6 

120 20.9 23.8 26.6 28.8 20.9 27.9 30 31.9 20.9 23.5 23.8 24.2 20.9 25.3 26.3 27.1 

Sum 23.21 25.43 23.88 26,72 

Sum 24.81 

Table D.95: Percental change in process cost for different lambda assuming feedback probability 0.5. 

 Mixed processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 16.4 14.7 16.1 16 16.4 16.6 18 17.2 16.4 19.3 20.8 20.7 16.4 21.3 24.7 24.6 

60 19.3 21.3 25 25.9 19.3 23.3 26.7 27.5 19.3 22.4 23.3 23.8 19.3 24.9 25.4 25.5 

90 20 23.9 26.6 28.8 20 27.5 29.6 31.8 20 23.3 23.3 23.6 20 24.7 25.2 25.4 

120 20.3 23.4 26.5 28.6 20.3 27.2 29.4 31.5 20.3 23.4 23.1 23.2 20.3 24.6 24.8 25.1 

Sum 22.05 23.89 21.64 23.26 

Sum 22.71 

Table D.96: Percental change in process cost for different lambda assuming feedback probability 0.5. 
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 Random processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -17.9 -23.4 -18.3 -18.3 -17.9 -23.3 -19.1 -20 -17.9 -22.1 -19.7 -21.8 -17.9 -19.4 -18.1 -18.5 

60 -19.4 -21.1 -23.8 -24.9 -19.4 -22.5 -27.7 -30.3 -19.4 -23.3 -28.4 -31.8 -19.4 -20.2 -21 -21.8 

90 -20 -25.3 -27.6 -28.3 -20 -28.1 -33.4 -35.8 -20 -28.6 -34.3 -38.2 -20 -22.4 -23.8 -25.3 

120 -20.4 -26.7 -29.8 -30.7 -20.4 -30.4 -36.4 -38.9 -20.4 -32.9 -39.5 -43.5 -20.4 -25 -27.3 -29.1 

Sum -23.49 -26.48 -27.61 -21.85 

Sum -24.86 

Table D.97: Percental change in process time for different lambda assuming feedback probability 0.5. 

 Sequential processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -20.9 -22.3 -19.4 -17.6 -20.9 -22.7 -20.9 -20.4 -20.9 -22.2 -22.4 -22.9 -20.9 -21.1 -20.8 -20.6 

60 -20.9 -23.8 -27.2 -27.9 -20.9 -26 -30.9 -33 -20.9 -24.1 -26 -27.8 -20.9 -20.9 -20.8 -21 

90 -20.9 -27.4 -30.1 -30.9 -20.9 -30.6 -35.7 -38.1 -20.9 -28 -31.7 -34.6 -20.9 -22.2 -22.9 -23.7 

120 -20.9 -27.9 -31.6 -32.9 -20.9 -31.9 -38.1 -40.9 -20.9 -32.1 -37.5 -41.4 -20.9 -24.4 -26.1 -27.6 

Sum -25.16 -28.3 -27.14 -22.31 

Sum -25.73 

Table D.98: Percental change in process time for different lambda assuming feedback probability 0.5. 

 Mixed processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 -18.6 -23 -18.1 -16.8 -18.6 -22.9 -18.6 -18.4 -18.6 -21.9 -19.7 -20.8 -18.6 -19.6 -18.6 -18.7 

60 -19.9 -21.7 -24.7 -25.7 -19.9 -23.3 -28.5 -30.9 -19.9 -23.3 -27.7 -30.5 -19.9 -20.4 -20.9 -21.5 

90 -20.3 -25.9 -28.1 -28.8 -20.3 -28.8 -33.9 -36.3 -20.3 -28.5 -33.5 -37.2 -20.3 -22.4 -23.5 -24.8 

120 -20.5 -26.8 -30.2 -31.2 -20.5 -30.8 -36.8 -39.4 -20.5 -32.9 -39 -43 -20.5 -24.8 -27 -28.7 

Sum -23.77 -26.74 -27.33 -21.89 

Sum -24.93 

Table D.99: Percental change in process time for different lambda assuming feedback probability 0.5. 
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 Random processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 30.2 144 322 413 30.2 106 206 254 30.2 60.1 85.8 97.9 30.2 45.8 54.8 59.1 

60 37 326 485 604 37 210 291 351 37 86.5 104 117 37 56.5 63.5 68.9 

90 39.2 413 600 748 39.2 258 349 421 93.2 98.2 115 129 39.2 61.4 68.6 74.7 

120 40.9 478 695 861 40.9 294 400 480 40.9 106 125 139 40.9 64.2 72.4 79.4 

Sum 389.7 235.5 91.6 57.3 

Sum 193.5 

Table D.100: Cost for overlapping events for different lambda assuming feedback probability 0.5. 

 Sequential processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 42.1 201 341 418 42.1 148 232 280 42.1 86.9 116 139 42.1 66.2 82.8 97.7 

60 42.1 374 520 635 42.1 238 318 379 42.1 100 124 145 42.1 66.2 78.9 90.3 

90 42.1 444 627 776 42.1 275 369 444 42.1 107 130 149 42.1 67 78.6 88.8 

120 42.1 505 714 883 42.1 309 414 497 42.1 113 135 153 42.1 68.3 79.2 88.6 

Sum 412.9 254.4 104.1 70 

Sum 210.4 

Table D.101: Cost for overlapping events for different lambda assuming feedback probability 0.5. 

 Mixed processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 33.1 146 368 395 33.1 109 203 248 33.1 64.2 89 101 33.1 49.5 58.9 63.9 

60 38.9 341 491 608 38.9 219 297 355 38.9 91.2 109 123 38.9 59.5 67.4 74.1 

90 40.3 421 607 756 40.3 262 354 427 40.3 100 119 134 40.3 62.5 71.3 78.4 

120 40.9 481 705 865 40.9 299 402 484 40.9 108 127 142 40.9 64.9 73.9 81.3 

Sum 396.1 238.3 91.29 59.93 

Sum 196.4 

Table D.102: Cost for overlapping events for different lambda assuming feedback probability 0.5. 
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 Random processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 0 72.1 210 293 0 69.7 209 295 0 58.6 185.8 293 0 42 168 268 

60 0 207 341 446 0 204 340 446 0 183 328 444 0 152 300 421 

90 0 278 428 548 0 278 426 547 0 264 418 544 0 236 400 531 

120 0 331 500 629 0 334 500 628 0 327 498 628 0 299 483 624 

Sum 267.9 267.3 254.5 245.3 

Sum 258.8 

Table D.103: Number of overlapping events for different lambda assuming feedback probability 0.5. 

 Sequential processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 0 97.8 208 279 0 95 209 288 0 86 200 297 0 71.5 180 274 

60 0 239 361 462 0 234 360 465 0 209 344 462 0 182 318 435 

90 0 296 441 560 0 296 440 560 0 280 433 560 0 252 410 539 

120 0 348 508 638 0 350 509 638 0 340 509 643 0 313 489 631 

Sum 277.5 277.8 272.7 255.9 

Sum 270.9 

Table D.104: Number of overlapping events for different lambda assuming feedback probability 0.5. 

 Mixed processes 

Lambda=0.9 

Number Feedbacks 

Lambda=0.7 

Number Feedbacks 

Lambda=0.3 

Number Feedbacks 

Lambda=0.1 

Number Feedbacks 

0 20  40 60 0  20 40 60 0 20  40 60 0 20 40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 30 0 70.9 209 285 0 68.7 197 276 0 60 187.8 278 0 44 162 255 

60 0 207 341 446 0 214 343 446 0 194 333 447 0 164 304 424 

90 0 283 435 558 0 278 430 547 0 264 418 544 0 241 402 536 

120 0 331 500 635 0 340 500 638 0 318 507 638 0 301 487 626 

Sum 268.8 267.4 261.8 246.6 

Sum 261.2 

Table D.105: Number of overlapping events for different lambda assuming feedback probability 0.5. 
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 Random processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1.20 -1.24 -1.26 -1.29 -1.20 -1.28 -1.38 -1.56 -1.20 -1.29 -1.20 -1.22 

60 -1.05 -1.08 -1.11 -1.15 -1.05 -1.25 -1.57 -1.44 -1.05 -1.18 -1.27 -1.40 

90 -1.01 -1.05 -1.11 -1.19 -1.01 -1.46 -1.46 -1.49 -1.01 -1.24 -1.57 -1.70 

120 -1.00 -1.06 -1.15 -1.28 -1.00 -1.37 -1.41 -1.58 -1.00 -1.32 -1.82 -2.03 

Average 

Average 

-1.139 -1.344 -1.344 

-1.276 

Table D.106:   values for the base case of P4 assuming random processes. 

 Sequential processes  

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -0.96 -0.93 -0.91 -1 -0.90 -0.90 -1.03 -1 -0.96 -1.08 -1.12 

60 -1 -0.98 -0.97 -0.97 -1 -1.05 -1.38 -1.41 -1 -1.12 -1.27 -1.41 

90 -1 -1 -1.01 -1.07 -1 -1.33 -1.37 -1.46 -1 -1.22 -1.54 -1.73 

120 -1 -1.02 -1.08 -1.19 -1 -1.29 -1.38 -1.60 -1 -1.31 -1.78 -2.05 

Average 

Average 

-1.00 -1.194 -1.287 

-1.160 

Table D.107:  values for the base case of P4 assuming sequential processes. 

 Mixed processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1.14 -1.14 -1.16 -1.17 -1.14 -1.16 -1.23 -1.43 -1.14 -1.20 -1.15 -1.15 

60 -1.03 -1.04 -1.05 -1.08 -1.03 -1.20 -1.52 -1.43 -1.03 -1.16 -1.27 -1.40 

90 -1.02 -1.04 -1.08 -1.15 -1.02 -1.43 -1.43 -1.48 -1.02 -1.23 -1.54 -1.70 

120 -1.01 -1.06 -1.13 -1.27 -1.01 -1.37 -1.41 -1.59 -1.01 -1.34 -1.83 -2.05 

Average 

Average 

-1.098 -1.305 -1.326 

-1.243 

Table D.108:  values for the base case of P4 assuming mixed processes. 

  



 

222 

 Random processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1.20 -1.20 -1.18 -1.16 -1.20 -1.20 -1.33 -1.66 -1.20 -1.35 -0.92 -0.90 

60 -1.05 -1.02 -0.99 -0.99 -1.05 -1.27 -1.34 -0.89 -1.05 -0.99 -0.91 -0.90 

90 -1.01 -0.97 -0.96 -0.97 -1.01 -1.86 -0.98 -0.88 -1.01 -1.02 -0.98 -0.93 

120 -1.00 -0.96 -0.96 -1.00 -1.00 -1.76 -1.00 -0.95 -1.00 -1.09 -1.03 -0.97 

Average 

Average 

-1.039 -1.211 -1.016 

-1.089 

Table D.109:   values for the base case of P5 assuming random processes. 

 Sequential processes  

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
  

Fe
ed

-f
o

rw
a

rd
s 

30 -1 -0.95 -0.91 -0.89 -1 -0.89 -0.94 -1.09 -1 -1.00 -0.90 -0.87 

60 -1 -0.95 -0.92 -0.89 -1 -1.17 -1.18 -0.91 -1 -0.97 -0.93 -0.91 

90 -1 -0.95 -0.92 -0.91 -1 -1.65 -1.00 -0.92 -1 -1.03 -0.98 -0.94 

120 -1 -0.95 -0.93 -0.97 -1 -1.63 -1.02 -0.97 -1 -1.10 -1.03 -0.98 

Average 

Average 

-0.946 -1.086 -0.978 

-1.033 

Table D.110:  values for the base case of P5 assuming sequential processes. 

 Mixed processes 

Feedback probability 0.1 

Number Feedbacks 

Feedback probability 0.3 

Number Feedbacks 

Feedback probability 0.5 

Number Feedbacks 

0 20  40 60 0 20  40 60 0 20  40 60 

N
u

m
b

er
 

Fe
ed

-f
o

rw
a

rd
s 

30 -1.14 -1.12 -1.10 -1.08 -1.14 -1.12 -1.25 -1.54 -1.14 -1.26 -0.94 -0.90 

60 -1.03 -0.99 -0.96 -0.95 -1.03 -1.26 -1.31 -0.90 -1.03 -0.97 -0.92 -0.91 

90 -1.02 -0.97 -0.95 -0.95 -1.02 -1.81 -0.99 -0.89 -1.02 -1.03 -0.97 -0.93 

120 -1.01 -0.97 -0.95 -1.01 -1.01 -1.69 -1.01 -0.95 -1.01 -1.11 -1.04 -0.98 

Average 

Average 

-1.013 -1.183 -1.01 

-1.068 

Table D.111:  values for the base case of P5 assuming mixed processes. 
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E: Additional data for the UCAV process case study 

 

 

Figure E.10: Pareto-front and random solutions for the UCAV process assuming work policy P5 and 

neither crashing nor overlapping. Thus, only effects of different process architectures are illustrated. 

 

Figure E.11: Pareto-front and random solutions for the UCAV process assuming the original process 

architecture and work policy P5 but no crashing. Thus, only effects of overlapping are illustrated. 
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Figure E.12: Pareto-front and random solutions for the UCAV process assuming the original process 

architecture and work policy P5 but no overlapping. Thus, only effects of crashing are illustrated. 

 

Figure E.13: Pareto-front and random solutions for the UCAV process assuming work policy P4 and 

neither crashing nor overlapping. Thus, only effects of different process architectures are illustrated. 

 

Figure E.14: Pareto-front and random solutions for the UCAV process assuming the original process 

architecture and work policy P4 but no crashing. Thus, only effects of overlapping are illustrated. 
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Figure E.15: Pareto-front and random solutions for the UCAV process assuming the original process 

architecture and work policy P4 but no overlapping. Thus, only effects of crashing are illustrated. 

 

Figure E.16: Pareto-front and random solutions for the UCAV process assuming the original process 

architecture and work policy P5 but no overlapping. Thus, only effects of crashing are illustrated. 

 

Figure E.17: Pareto-front and random solutions for the UCAV process assuming the original process 

architecture and work policy P5 but no crashing. Thus, only effects of overlapping are illustrated. 
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Figure E.18: Pareto-front and random solutions for the UCAV process assuming the original process 

architecture and work policy P5 but no overlapping. Thus, only effects of crashing are illustrated. 

 

Figure E.19: Comparison of Pareto-fronts for the UCAV process assuming work policies P1-P5 

without crashing and overlapping. 

 

Figure E.20: Comparison of random solutions for the UCAV process assuming work policies P1-P5 

without crashing and overlapping. 
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F: Additional data for the hood development process 
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Figure F.21: DSM M2 for the hood development process. 
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Figure F.22: DSM M3 for the hood development process. 
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Figure F.23: DSM M4 for the hood development process. 
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Figure F.24: DSM M5 for the hood development process. 
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Figure F.25: DSM M6 for the hood development process. 
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Activity Name 
Continuous 

or Discrete? 
Intensity () 

Maximum 

Crashing 
Resource 

Strategies for product, mkt, mfg, supply, design, and reusability 

confirmed (Est. PDL) 
C - 0% - 

Select powertrain lineup C - 0% - 

Select materials for all system components C Medium = 6 25% Staff 

Freeze proportions and selected hardpoints C Medium = 6 25% Staff 
Verify that hardpoints and structural joint designs are compatible 

w/ program targets 
C High = 12 10% Staff 

Approve master sections C High = 12 10% Staff 

Develop initial design concept (preliminary CAD model) C High = 12 30% Staff 

Estimate blank size C Medium = 6 10% Staff 

Estimate efforts C Medium = 6 10% Staff 

Develop initial attachment scheme C High = 12 25% Staff 

Estimate latch loads C Medium = 6 10% Staff 

Cheat outer panel surface C Medium = 6 30% Staff 

Define hinge concept C High = 12 10% Staff 
Get prelim. mfg and asy feas. (form, holes, hem, weld patterns, 

mastic locations, adhesive) 
C High = 12 15% Staff 

Perform cost analysis (variable and investment) C High = 12 20% Staff 

Perform swing study C High = 12 20% Staff 
Theme approval for interior and exterior appearance (prelim surf 

available) 
C High = 12 10% Staff 

Marketing commits to net revenue; initial ordering guide available C Medium = 6 10% Staff 

Program DVPs and FMEAs complete C Medium = 6 5% Staff 
Approved theme refined for craftsmanship execution (consistent 
w/ PA objectives) 

C High = 12 10% Staff 

PDN0 - Interior and exterior Class 1A surfaces transferred to 

engineering (+/- 01mm) 
C High = 12 20% Staff 

Conduct cube review and get surface buyoff C High = 12 10% Staff 
Verify mfg and asy feas. (form, holes, hem, weld patterns, mastic 

locations, adhesive)  
C High = 12 15% Staff 

Evaluate functional performance (analytically) C High = 12 15% Staff 
PDN 1 - Release system design intent level concept to 

manufacturing 
C High = 12 20% Staff 

Develop stamping tooling C High = 16 25% Machinery 

Develop hemming tooling (if applicable) C High = 16 25% Machinery 

Develop assembly tooling C High = 16 25% Machinery 
PDN2 - Last Class 1surface verified and released for major 

formed parts 
C High = 12 20% Staff 

PDN3 - Final math 1, 2, & 3 data released C High = 12 20% Staff 

CAD files reflect pre-CP verification changes C Medium = 6 5% Staff 
Make "like production"  part and asy tools / ergonomics / process 

sheets (to extent feasible) 
C High = 12 10% Staff 

First CPs available for tuning and durability testing C High = 6 10% Staff 

Complete CMM analysis of all end items & subassemblies C High = 16 10% Staff 

Perform DV tests (physical) C High = 12 20% Staff 

Verify manufacturing and assembly process capability C High = 16 15% Staff 

Complete prelim. ESO for: CP durability testing C Medium = 6 10% Staff 

Complete prelim. ESO for: Initial set of road tests completed C Medium = 6 10% Staff 
Complete prelim. ESO for: Known changes from CP containable 

for 1PP 
C Medium = 6 10% Staff 

Complete prelim. ESO for: Design is J1 level - no further changes 

except No-Blds 
C Medium = 6 10% Staff 

Supplier commitment to support 1PP w/ PSW parts C Medium = 6 10% Staff 
Complete prelim. ESO for: Eng. confidence that objectives will be 

met declared 
C Medium = 6 10% Staff 

Readiness to proceed to tool tryout (TTO), 1PP and Job #1 C Medium = 6 10% Staff 

Table F.112: Crashing related data for the hood development process. 
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