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Abstract

A complex manipulation task for a robot has to be planned on different
levels of abstraction before it can be executed on a real system. At a
high-level of abstraction, a task planner generates a sequence of sub-
tasks from a given abstract command, its pre- and postconditions and
a current world model. To restrict the already huge search space of
the task planner, aspects like geometric information are not contained
in the world model at this level. The task planner then assigns the
subtasks to planners on a lower level of abstraction like path plan-
ners or grasp planners. These planners rely on geometric information
to compute their solutions. However, without considering geometric
information the task planner cannot determine good parameters for
these low-level planners. Therefore, the derived plans may not be valid
for a given situation and may require backtracking.
Knowledge representations can bridge the gap between these planning
levels and thereby enable scene reasoning. The kinematic capabilities
of a robot are one aspect the task planner has to be aware of. Therefore
this thesis introduces a novel general representation of the kinematic
capabilities of a robot arm. The versatile workspace is defined to de-
scribe in which orientations the end effector attached to a robot arm
can reach a position. The capability map is a calculable representation
of the versatile workspace that allows to determine how well regions
of the workspace are reachable. It accurately represents the versatile
workspace of arbitrary arm kinematics and enables autonomous task-
specific reasoning. Furthermore, its visualization scheme is intuitively
comprehensible for the human.
The versatile applicability of the capability map is shown by examples
from several distinct application domains. In human-robot interaction,
the capability map is used to objectively evaluate a bi-manual interface
for tele-operation. The results can also supplement the design process
for humanoid robot design. In low-level geometric planning, the ca-
pability map is used to reduce the search space and to parameterize
path planners and grasp planners. Thus, in a manipulation task for a
humanoid robot more human-like motion is planned while simultane-
ously the computation time is reduced. In high-level task reasoning,
the capability map is used to evaluate how well a robot is suited for a
task. In an example a humanoid robot has to perform a task involving
3D trajectories. Regions are extracted from the capability map that
permit the task execution and the suitability of the robot is inferred.
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Zusammenfassung

Eine komplexe Manipulationsaufgabe für einen Roboter muss auf ver-
schiedenen Abstraktionsebenen geplant werden, bevor sie auf dem rea-
len System ausgeführt werden kann. Auf einer hohen Abstraktions-
ebene generiert ein Aufgabenplaner eine Sequenz von Unteraufgaben
basierend auf einem gegebenen abstrakten Kommando, seinen Vor-
und Nachbedingungen und dem aktuellen Weltmodell. Um den ohne-
hin schon großen Suchraum des Aufgabenplaner zu beschränken, ist
z.B. geometrische Information auf dieser Ebene nicht im Weltmodell
enthalten. Der Aufgabenplaner weist die Unteraufgaben dann Planern
auf niedrigeren Abstraktionsebenen, z.B. Greifplanern oder Bahnpla-
ner, zu. Diese Planer verwenden geometrische Information um ihre Lö-
sungen zu berechnen. Ein Aufgabenplaner kann jedoch keine guten
Parameter für diese untergeordneten Planer bestimmen, ohne geome-
trische Information zu berücksichtigen. Daher ist es möglich, dass die
für eine gegebene Situation ermittelten Pläne ungültig sind und Back-
tracking erforderlich ist.
Wissensrepräsentationen können die Kluft zwischen den genannten
Planungsebenen überbrücken und Schlussfolgerungen aus Szenen-
zusammenhängen ermöglichen. Ein Aufgabenplaner sollte insbeson-
dere die kinematischen Fähigkeiten eines Roboters berücksichtigen.
Diese Arbeit stellt daher eine neuartige, allgemeingültige Repräsenta-
tion der kinematischen Fähigkeiten eines Roboterarms vor. Der Ver-
satile Workspace wird definiert und beschreibt in welchen Orientie-
rungen der Endeffektor eines Roboterarms Positionen erreichen kann.
Die Capability Map ist eine berechenbare Repräsentation des Versatile
Workspace. Mit ihr kann ermittelt werden, wie gut Regionen des Ar-
beitsraumes erreichbar sind. Sie kann den Versatile Workspace belie-
biger Armkinematiken repräsentieren und ermöglicht aufgabenspezi-
fische Schlussfolgerungsprozesse. Desweiteren ist ihr Visualisierungs-
schema intuitiv für den Menschen verständlich.
Die vielseitige Einsetzbarkeit der Capability Map wird anhand von Bei-
spielen aus verschiedenen Anwendungsbereichen gezeigt. Im Bereich
Mensch-Roboter Interaktion wird die Capability Map für die objektive
Evaluierung einer zweihändigen Eingabestation für Teleoperationsex-
perimente benutzt. Die Ergebnisse dieser Untersuchung können den
Entwurfsprozess für die Entwicklung humanoider Roboter unterstüt-
zen. In geometrischen Planungprozessen auf Ebenen mit niedrigem
Abstraktionsgrad wird die Capability Map benutzt um den Suchraum
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einzuschränken und um Bahnplaner und Griffplaner zu parametrisie-
ren. Für eine Manipulationsaufgabe eines humanoiden Roboters wer-
den dabei menschenähnlichere Bewegungen geplant, während gleich-
zeitig die Rechenzeit reduziert wird. In aufgabenspezifischen Schluss-
folgerungsprozessen, die auf Ebenen mit hohem Abstraktionsgrad statt-
finden, wird mittels der Capability Map beurteilt, wie gut ein Roboter
für eine Aufgabe geeignet ist. Ein humanoider Roboter muss beispiels-
weise eine Aufgabe ausführen, die bestimmte vorgegebene 3D Trajek-
torien beinhaltet. Mit Hilfe der Capability Map werden Bereiche des Ar-
beitraumes ermittelt, in denen die Aufgabe möglicht ist. Daraus kann
die Eignung des Roboter fÃijr die Aufgabe abgeleitet werden.
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1
Introduction

Current humanoid robots are mostly deployed in laboratory environ-
ments. However they are envisioned as helpful assistants in future
households that e.g. enable elderly citizens to live independently in
their homes by supporting them in their daily life. Possible service
tasks are clearing the dish washer or setting the table. In this thesis
a model of a robot arm’s workspace is developed. It is used to analyze
the scene and a robot’s capabilities. In planning processes it serves as
a source of information that supports the decision process.

1.1 Problem Statement

A human learns during his life to use his arms as well as to grasp
and use tools and objects. He relies on knowledge about the world
and about himself to decide which regions are reachable, how to ap-
proach objects, which places or objects are easily reached and which
are difficult to approach. In the survey by Kawato [49] the existence
of internal models for human motor control is reported. It can be as-
sumed that the human also relies on knowledge representations in a
variety of other contexts, in particular when determining the next ac-
tion to be performed. In computer science, knowledge representations
model information for the use in knowledge-based systems or planning
systems. A model is an image of the reality. However, the reality is not
represented in every detail. Rather, a compact representation of the
information is desired.
In the household, humanoid robots are envisioned to relieve the hu-
man of repetitive or annoying tasks. Therefore, humanoid robots have
to be able to perform a variety of tasks autonomously. This requires
that the knowledge of how to perform a certain task is provided to
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(a) (b)

(c) (d)

Figure 1.1: Illustration of several challenges during the planning of a service task. A humanoid
robot is shown in a kitchen performing several tasks. (a) The position where the plate and the
glass are to be placed is not exactly defined. (b) With a multi-fingered hand, a glass can be
grasped or approached in different ways. (c) The robot has placed itself to open the microwave.
(d) Two robot placements are shown for grasping the plate on the table. (Kitchen model source
[32]

the robot. The robot can learn from the human [122], [18]. The hu-
man demonstrates the task and the robot observes the execution. The
robot extracts the important aspects and imitates the human. How-
ever, the segmentation of the task is difficult. Furthermore, the robot
and the human kinematics differ. Therefore the observed task cannot
be directly mapped onto the robot. Due to these issues generalization
to previously unseen tasks and objects is complicated. However, it is
important that a robot can cope with new situations. Therefore, an
alternative approach is possible that involves various planner types.
The planners determine grasps or provide collision-free movement for
the robot. The planners have to be coordinated to successfully realize
a given service task.
In general a service task like setting the table can be further resolved
into several subtasks. When objects have to be grasped, choosing
grasps and approach directions are problems that have to be solved.
In Figure 1.1 several service tasks and potential challenges are illus-
trated. A number possibilities for grasping a glass are shown in Fig-
ure 1.1 (b). Furthermore, objects have to be moved from one location
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Figure 1.2: Different levels of abstraction during the planning and execution of a service task
are shown. The task of fetching a cup from a closet is used as an example. High-level planning
is equivalent with task planning. Possibly parallel running actions are mapped to low-level
planners. The planning results are then executed by divers robot controllers.

to another. If a plate should be positioned on the table, the question is
at which exact position to place it (Figure 1.1 (a)). Closets, a refrigera-
tor or a microwave have to be opened to be able to insert or extract an
object (Figure 1.1 (c)). The robot has to decide where to place itself to
be able to reach an object. The number of robot placements is infinite.
Figure 1.1 (d) shows two possible placements of a robot for grasping
a plate. These issues have to be addressed by a task planner when
planning a task.
Logical planners (also called task planners) are expected to divide a
task into a set of subtasks, e.g. first the closet is opened, then the
dishes are taken out of the closet, the closet is closed and the dishes
are transported to the table. Path planners are used for moving the
robotic arm without collisions between two positions. A grasp plan-
ner provides a good grasp for handling an object. A robot placement
planner positions a robot for performing a grasp or a trajectory. The
logical planner has to trigger the execution of the subtasks by appro-
priately using the low-level planners, i.e. the path planner, the grasp
planner and the robot placement planner. The mapping from the high-
level abstraction layer of the task planner onto the low-level planners
is illustrated in Figure 1.2. Depending on the parameterization, e.g.
the start and the goal robot arm configuration, a low-level planning
problem is not always solvable. Furthermore, a solution is possibly
unavailable because no collision-free path is found or because the ob-
ject cannot be grasped from the queried direction.
However, a logical planner has no knowledge about the geometry of the
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scene and works with an abstract scene model where objects are repre-
sented by labels. It does not know e.g. from which direction an object
can be approached best. Therefore a chosen subtask may not be exe-
cutable. Furthermore, a low-level planner cannot provide information
concerning the reason for its failure. For high-dimensional planning
problems determining whether a solution exists is computationally too
expensive. A brute force approach lets the logical planner propose a
plan and test whether the plan is valid. In this process the low-level
planners try to find a solution for assigned subtasks. This is repeated
until a solution is found or a termination criterion is met. Since each of
the low-level planning problems is already very complex, even simple
tasks can take a long time to be solved.
Furthermore, for objects like a coffee mug, directions exist from which
the object is better graspable. To open a closet door or a dish washer
not every placement of the humanoid robot results in successful task
execution. The humanoid robot may place itself so that it can grasp
the door handle. However, the trajectory for opening the door is not
possible.
In the reachable workspace volume of the robot arm, positions can be
reached in at least one orientation. In the dexterous workspace volume
positions can be reached in all orientations [19]. However, in general
seldom all orientations are needed. In this work, the so-called versatile
workspace of a robot indicates with which orientations a position can
be reached. A representation of the versatile workspace for a robot arm
can be exploited by high-level and low-level planner types. A suitable
representation of the versatile workspace enables a task planner to
predict whether an object is graspable or whether a certain trajectory
is executable for the robot. This information helps to estimate whether
the proposed plan is executable without triggering the low-level plan-
ners. Given a set of grasps for an object and a scene description, the
representation can be used to estimate the difficulty of the planning
problem. For instance, if a lot of grasps are unreachable it is possible
that the scene is very crowded and the target object is difficult to reach.
This information can be used by the task planner to e.g. consider a re-
arrangement of the scene to make the planning problem easier, or to
reposition the robot in the scene.
Therefore this thesis provides a representation of the versatile work-
space of a robot arm that contains information that can be used on dif-
ferent planning levels. Using the knowledge representation the search
is focused on promising regions, good parameterizations for planners
are determined or the search space is reduced. The representation
of the versatile workspace of robotic arms describes how well regions
of the workspace are reachable. A visualization of the versatile work-
space facilitates analysis and interactive planning. The representation
is used to guide planning processes, make reliable predictions about
the feasibility of tasks and avoid unsuccessful planning runs. The de-
veloped model is used to parameterize path and grasp planners and
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Figure 1.3: Knowledge about the world and about the robot is used to guide and parameterize
planning processes at different levels of abstraction. A knowledge base is used by task planners,
path planners and grasp planners. Furthermore, the low-level planners are used by the high-
level planner.

enable them to solve a problem more quickly. The generation of the
model is performed offline. However, fast access to the data saved in
the representation allows usage in online algorithms. In Figure 1.3, a
knowledge base contains the representation of the versatile workspace
and information about the environment. In future robot operating sys-
tems a knowledge base could be used by task planners, path planners
and grasp planners. Furthermore, the low-level planners could be used
by the high-level planner.

1.2 Contributions of the thesis

In this thesis, the capability map, a model of the versatile robot arm
workspace is developed. The focus is on manipulators with serial kine-
matics but the model is not limited to these manipulator types. This
thesis shows how knowledge about the versatile workspace of robot
arms is exploited in planning and evaluation processes. The use of the
capability map makes search processes much more effective. It fur-
thermore helps to make reliable predictions about the feasibility of a
task.
The contributions of this thesis are summarized in the following:

1. Multiple models for representing the workspace are compared.
Strengths and weaknesses of these models are discussed. Their
suitability for the representation of a robot arm’s versatile work-
space is evaluated.
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2. The capability map, a representation of the versatile robot arm
workspace, is developed. In contrast to current state of the art
workspace representations, the capability map represents posi-
tion and orientation information.

3. An intuitive visualization scheme is provided for the capability
map. It allows the detailed visual inspection and analysis of the
kinematic capabilities of the robot arm in the workspace.

4. The capability map permits the functional comparison of arm
kinematics. To evaluate different setups for bi-manual human-
robot interaction, the workspaces of the human arm and a robot
arm are compared.

5. The capability map is used in planning tasks such as path plan-
ning and robot positioning for the humanoid robot Justin and
other systems. In robot placement planning, the search is fo-
cused and solution regions containing valid robot positions are
extracted. In path planning, computation time is reduced and
the planned robot motion appears more human-like.

1.3 Outline of the thesis

First, current research results with respect to the presented problem
formulation are examined in the state of the art (Chapter 2). A focus
is placed on whether and how knowledge encapsulated in models is
currently used in planning. Criteria and performance indices used
in robot design are analyzed in Chapter 3. It is examined whether they
can be used to derive a model of the robot arm’s versatile workspace
and thus describe the robot arm’s capabilities. As a conclusion of this
chapter, requirements for a model of the kinematic capabilities of a
robot arm are derived. The capability map proposed in this thesis
is developed in Chapter 4 using the identified requirements. Informa-
tion that planning processes need, is ensured to be contained in the
model. Information access is fast. A concept for visualizing the capa-
bility map is also provided. The dependencies of the capability map on
parameters and their choice is discussed. The usability of the model
for visualization and setup evaluation is presented in Chapter 5. In
Chapter 6 the capability map is applied in planning tasks. This thesis
is concluded with Chapter 7. An outlook on future research directions
is presented.



2
Review of the Literature

In this chapter, the technical terms relevant for this work are intro-
duced. Furthermore, on different levels of abstraction, components
are described that are necessary for a service robot to solve manipu-
lation tasks. The state of the art in high-level logical planning, also
called task planning, is analyzed. Here the focus is on robotic manip-
ulation problems. In the subsequent sections, it is analyzed how low-
level planners like path planners, grasp planners and robot placement
planners are used to solve the subtasks involved in manipulation, e.g.
moving to an object, grasping it, and transporting it to a different po-
sition. It is examined whether knowledge representations are used to
speed up or facilitate planning processes. Furthermore, it is outlined
how the high-level and low-level planning can benefit from the use of
knowledge representations.

2.1 Robotics technical terms

Since the 1980’s, a robot is understood to be a system that is able to
move in the environment and/or a system able to manipulate objects
in the environment. There are robots with parallel or serial kinemat-
ics. Some robots are mobile. Robot arms that are mounted on a mobile
platform are called mobile manipulator. Actuators move the mechan-
ical components of the robots. Using sensors, the environment and
state of the robot itself is perceived [98]. Today, the most widely used
robots are industrial manipulators (Figure 2.1 (a)), also called robotic
manipulator arms, or just manipulators. In this thesis the focus lies
on manipulators with serial kinematics, i.e. with a serial chain of links.
The maximum and minimum values that are possible for a link are de-
fined by its link limits. The number of links a manipulator has, defines

7
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its degrees of freedom (DOF). Furthermore, each link spans one axis
of a multi-dimensional space, the configuration space or C-Space of
the robot [60]. Together the links move a tool attached to the end of
the robot, the so-called end-effector. The reference coordinate system
attached to the tool is the tool center point coordinate system, or TCP
in short. In general, a coordinate system is also referred to as a frame.
The TCP is defined as the coordinate system TBaseTCP that is reached by a
homogeneous transformation TnTCP (Appendix Chapter B.1) multiplied
onto the last link’s coordinate system. It is the reference frame for ma-
nipulation tasks. For a robot with n DOF in a configuration q, the pose
of the TCP is computed by the forward kinematics K(q) [19].

K(q) = TBaseTCP = TBase0 · T 0
1 (q0) · T 1

2 (q1) · T 2
3 (q2)...Tn−1

n (q(n− 1)) · TnTCP (2.1)

Using the link parameters the individual link transformation matrices
T i−1
i can be computed. The link transformations are multiplied to com-

pute the transformation TBaseTCP that relates the TCP frame to the base
coordinate system of the robot. Thus, the frame TBaseTCP describes the
TCP pose in the base coordinate system. If the TCP should be posi-
tioned at a pose TBaseTCP , the inverse kinematics determines whether a
configuration q exists to reach the pose.
Currently, robots are mostly used in industrial applications to auto-
mate factory processes. In the future, service robots may become part
of every day life. Service robots could work as the human’s assistant
that performs repetitive tasks in the household.

2.2 Robots in industrial applications

In an industrial application, a task is a sequence of steps the manipu-
lator has to perform to obtain a specific result, e.g. two pieces of metal
have to be welded together. An industrial task is precisely defined. For
the robot arm, each step in the task is specified in terms of exact posi-
tions or velocities. A trajectory is a sequence of steps that describe the
movement of the end-effector of the manipulator. The human operator
uses a teach-in panel to define each step of the task [82] by controlling
the Cartesian pose of the TCP or by controlling an individual axis of
the robot. The strength of industrial manipulators lies in repetitive,
fast and accurate execution. Special tools are attached to the robot
manipulator to perform welding or gluing tasks. In general, the tool
is chosen according to the task and the manipulator is responsible for
the execution of the given trajectory.

2.3 Service robots

Increasingly, mobile systems like the Kärcher Saugbot (Figure 2.1 (b)),
an autonomous vacuum cleaner, or the mobile manipulator youbot,
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(a) (b) (c)

Figure 2.1: Several robots are shown that are commercially available. (a) The Kuka KR 16
industrial manipulator [58], (b) the saugBot by Kärcher [47], (c) the youbot by Kuka [57].

a manipulator attached to a mobile platform (Figure 2.1 (c)), become
commercially available and begin to find their way into everyday life or
industrial applications. However in the longterm, humanoid robots
(Figure 2.2) are envisioned as the human’s helpful companion. Hu-
manoid robots are designed after the model of the human. They re-
semble a human in their build, appearance and/or their abilities. A
complete humanoid robot is equipped with two legs, two arms with
hands or grippers, an upper body and a head. A humanoid robot
could serve as as a household assistant [7], that e.g. supports elderly
citizens in their homes [92]. Compared to tasks in an industrial sce-
narios, tasks in the household are not precisely defined and are often
given as a natural language description like put the dishes on the table.
In the task of setting the table, it is not defined which dishes are to be
put at which exact position on the table or in which time and with what
velocity the task should be performed. The humanoid robot has a lot
of possibilities concerning how a task can be performed. And exactly
that is the challenge when a humanoid robot has to perform tasks in
the household autonomously.

2.4 Solving complex tasks autonomously

A complex task is considered to be a task that consists of a number of
subtasks which possibly are further decomposable into another set of
subtasks. As Figure 1.2 shows several levels of abstraction are involved
in planning a manipulation task. The subtasks need different planner
types to be successfully fulfilled. In Figure 2.3, the example of setting
the table is used to illustrate possible components of a complex task.
Dishes have to be extracted from closets, transported to the table and
placed in their designated locations.
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(a) (b) (c)

Figure 2.2: Several humanoid robots are shown. (a) Armar III by KIT [5], (b) HRP2 by Kawada
Industries [45], (c) Rollin’ Justin by DLR [29].

Figure 2.3: A complex task and its subdivision into subtasks enclosed by rectangles. The task
is decomposed by a task planner until elementary subtasks can be defined. The elementary
subtasks are mapped to low-level planners shown in italic. The low-level planners compute
trajectories or poses for a robotic arm or hand.
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2.4.1 Overview of planner types

The task planner decomposes a high-level task into a set of possibly
parallel executed subtasks that achieve the goal situation, e.g. to set
the table. A task planner is given a description of the initial situation,
e.g that the table is empty and all dishes are in the closet. It is also
given a number of goal specifications describing the goal state to be
achieved, e.g. the table is set for a number of persons. The task plan-
ner has knowledge about the structure of the problem domain, i.e. the
prerequisites and results of actions [30]. It has however no knowledge
about the scene geometry, i.e. whether objects are reachable. To solve
the individual subtasks, the task planner triggers low-level planners.
A path planner computes collision free paths. a grasp planner provides
grasps for handling objects. And a robot placement planner positions
a robot for a task. These low-level planners use the exact geometric
information of the scene to solve the task, e.g. to grasp a cup, or to
move a cup to a different location. It is a challenge to combine the
different planner types which work on different levels of abstraction to
achieve the task goal.

2.4.2 Planning benchmarks

The domains of task planning, path planning and grasp planning each
represent an area of active research and therefore have separate bench-
marks. The task planners measure their quality e.g. in planning and
scheduling competitions. The focus is on knowledge engineering tech-
nology and not on solving robotics problems. Tools, translators and
planning techniques are evaluated. They are provided with a model in
a domain independent language and output a solver-ready problem-
specific domain model [12] for the underlying automated task planning
system. The main focus lies on the improvement of input and output
languages, planning and search algorithms, and heuristic interfaces.
The path planners especially strive to excel at solving narrow passage
problems like the Alpha puzzle problem proposed by Amato et al. [4] or
the piano mover’s problem proposed by Reif [90]. In both cases a single
3D rigid object can rotate and translate in a 3D environment. The task
of the path planner is to compute a path that brings the object from its
start to its goal pose successfully navigating tight spaces, the narrow
passages.

2.4.3 Household tasks

In contrast a humanoid robot performs household tasks in a real phys-
ical world. Manipulation problems on the table rarely encompass nar-
row passages where the robot arm has to move through tight spaces
to get to its destination [115]. Thus the benchmarks in the individ-
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Figure 2.4: The task of extracting a cup from a closet and putting it on the table is illustrated.
The ellipses represent states of the world. The arrows are labeled with actions which cause
transitions between states. The initial state is light gray. The final state is dark gray.

ual planning research areas do not address the specific problems one
faces in the realization of an autonomous humanoid robot working in
the household. Here, one of the main issues is the variability of the
problem specification, the possible solutions and the associated huge
search space for the different planner types. To solve tasks like set-
ting the table all planner types are needed and they must interact.
Therefore, the state of the art in high-level and low-level planning is
presented in the next sections.

2.5 High-level planning

In this section it is examined how task planners work in general and
how they are currently used for solving manipulation problems. State
of the art task planning is presented mainly with respect to its input,
its output and the information it needs in the decision process. Since
the logical deduction mechanisms and languages involved in deriving
a plan are not relevant for this thesis, they are only roughly outlined.

2.5.1 Classical task planning

For solving a particular problem, a task planner takes as input the
problem specification and knowledge about its domain. Most plan-
ning systems rely on the model of state-transition systems [30]. Such
a system is denoted by Σ = (S,A, γ). States S = {s1, s2, ..} describe
the current situation. Through actions A = {a1, a2, ..} the transition to
new states is triggered. Transitions are described by a state-transition
function γ : S × A → 2S. The action a is applicable in state s, if a is
an action and γ(s, a) is not empty. In Figure 2.4, a sequence of transi-
tions is illustrated for the task of extracting a cup from a closet. The
ellipses represent states of the world. The arrows are labeled with ac-
tions which cause transitions between states.
The situation calculus [74] is a predicate calculus formalization of
states, actions and the effect of actions on states. It is a planning lan-
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Figure 2.5: Labeled blocks are shown at two positions on the floor. The task planner has to
determine an action sequence that transform the initial state into the goal state.

guage for representing a domain and reason in this domain. Resolution
theorem proving is applied to solve the planning problem. This means
that iteratively resolution rules are applied to determine whether a
propositional formula is satisfiable, i.e. resolves to true or false. If
a proof can be found, a plan can be derived thereof. In Figure 2.5, the
initial and the goal states of a block stacking task are shown. In Equa-
tion 2.2, the initial state of the block stacking task is specified using
situation calculus. On(B,A, s0) describes that in state s0 block B is on
block A and Clear(B, s0) means that the place on block B is free.

On(B,A, s0) ∧On(A,C, s0) ∧On(C,F loor, s0)
∧ Clear(B, s0) ∧ Clear(Floor, s0)

(2.2)

A well known planning system that relies on deduction is the STRIPS
system [27]. In STRIPS, the initial state of the world (Equation 2.3) and
the final state of the world (Equation 2.4) are given.

s0 = On(B,A), On(A,C), On(C,F loor), Clear(B), Clear(Floor) (2.3)

g = On(C,F loor), On(B,F loor), On(A,B) (2.4)

move(x, y, z) :

pre :On(x, y) ∧ Clear(x) ∧ Clear(z)
del :On(x, y), Clear(z)

add :On(x, z), Clear(y)

(2.5)

A set of operators is given to change the state of the world. In Equa-
tion 2.5, the operator move(x, y, z) is given for moving an object x stacked
on an object y onto an object z. Its preconditions are specified pre. The
changes invoked in the environment are given in the del and add lists.
States and planning operators are described with First-Order logic.
A resolution theorem prover is used for verifications of preconditions
and to direct the search [64]. In current task planning competitions
the planning domain definition language (PDDL) [75] is used to stan-
dardize planning domain and problem description languages. PDDL is
based on the STRIPS formalism.
The search for a possible plan can also be formulated as a graph search
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problem as done in Graphplan [13]. A graph is iteratively expanded
level by level until a solution is found or a termination condition is
met.
In classical task planning, a lot of aspects of the environment are not
represented to restrict the search space which is already large. Thus
derived plans are not adapted to a given situation and it is difficult to
obtain an efficient plan. Furthermore, for a derived plan all steps are
assumed to be possible. It is not taken into account that a subtask
may fail. Also, the quality of plans can not be determined. A plan is
valid or not. However, a valid plan may be very inefficient [79]. Fur-
thermore, even restricted planning domains and associated problems
can be intractable due to combinatorial complexity. Planning a com-
plex task like setting the table only with the afore mentioned classical
planning methods is too time consuming for online application where
immediate system responses are expected. The planning system has
to operate on a huge search space and one of its biggest challenges is
to efficiently search this space. However, planning can also be seen
as a search problem in which steps include refinement, branching and
pruning [30]. If a node-selection heuristic ranks a set of nodes in the
order of their desirability, the search is accelerated because the search
space is reduced. In the Fast-Forward Planning system [39], the for-
ward search is guided by an heuristic that estimates goal distances.
Only through the introduction of heuristic search it is possible to apply
methods from automated planning to a robotic task planning problem.

2.5.2 Planner integration

In the context of service tasks the robot must be able to open clos-
ets, grasp objects and transport them to the target positions. To solve
these real world robotics problems, task planners and low-level plan-
ners have to be combined. This can be done in a hierarchical manner
that preserves the independence of the individual planning modules,
or the diverse planners can be tightly interleaved.
Using a hierarchical top-down approach, a plan is generated first and
then mapped onto low-level planners assuming that the symbolic ab-
straction, i.e. the world model and selected actions, are correct [24].
The problem with this approach is that a particular choice on the task
planner level can cause the low-level planner to fail, e.g. an object can-
not be grasped with the robot at its current position.
Using a hierarchical bottom up approach, all information that is possi-
bly relevant to the task planner is precomputed by the low-level plan-
ners, e.g. all possible paths are determined and provided to the task
planner which then determines a set of valid actions [24]. This is un-
feasible for planning problems involving articulated manipulators.
A further possibility to combine task planners and low-level planners
is to tightly integrate them. The tight integration of different planner
types results in a monolithic and possibly inflexible system. While the
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planners may be able to work well together for a specific problem, ex-
changing a module for a newer development is difficult.

2.5.3 Task planning for robotics applications

Current research approaches deal with the problem of combining dif-
ferent planners to achieve a robotic manipulation task as described in
the following. Task planning is also called symbolic planning. Gravot
et al. tightly integrate path and task planning in the planning system
Asymov [33] in an non hierarchical manner. Symbolic representations
and predicates are defined to link the symbolic and the geometrical
parts. The symbolic representations describe the state of the envi-
ronment. Heuristics guide the alternation between task planning and
exploration of the path planners. Gravot et al. do not try to identify a
general interface between task planning and path planning, but pro-
vide a very specialized solution to their planning task.
Dornhege et al. take first steps towards making symbolic planners
applicable to real-world problems [24], [25]. A robotic manipulation
planning problem is decomposed into a symbolic and a geometric part.
The symbolic view is formulated as a representation that can easily
be solved by classical symbolic planners. The manipulation planning
problem itself is addressed by hierarchically integrating symbolic and
geometric reasoning. The low-level geometric planners provide infor-
mation concerning the success of their assigned tasks to the high-level
symbolic planners during the planning process through so-called se-
mantic attachments. A semantic attachment works like a callback
function. Through a semantic attachment, e.g. a path planner is re-
quested to solve a problem and return true or false upon completion.
By trying out plans, different plans are tested till a successful one is
found.
Kaebling et al. [44] hierarchically integrate a path planner. To save
time and reduce backtracking, they use a simplified path planner to
simulate a path planning task and predict its success. For the execu-
tion of the plan a state of the art path planner is used.
Beetz et al. [8] propose to use task planning only for unknown situa-
tions. They use the flexibility of the reactive planning language (RPL)
to deal with failures e.g. of the path planner or the navigation system,
and schedule recovery actions.
To adapt plans to a situation during execution, Ziparo et al. [121] use
a probabilistic prediction of the expected action duration.
Hauser et al. [38] tightly integrate task and path planning. The transi-
tion space denotes the configurations that connect two subtasks. The
feasible space is the part of the configuration space used for solving
a subtask. Subtasks are selected and a subtask graph is built in the
feasible space. Subtasks are connected by drawing samples in transi-
tion space. Jain et al. [42] couple a task planner with a probabilistic
knowledge representation system. Using the example of setting the ta-
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(a) (b)

Figure 2.6: Precision grasping is illustrated. (a) A human hand grasps a wrench with all five
fingers. (b) Five point contact on a wrench are shown [16].

ble, a knowledge representation is used to infer who sits where and
requires which dishes. It is shown that the use of knowledge repre-
sentations facilitates the planning process by constraining the search
space and providing valid parameterizations. The derived plan is per-
formed in simulation on the robot. Conceptually, task planner and
low-level planners are hierarchically integrated. The low-level planners
reside on the lower levels of the hierarchy. However, low-level planners
are not queried and the simulation is only of symbolic nature.

2.5.4 Summary

Path planners either find a plan or terminate upon meeting their ter-
mination condition without finding a path. They can not determine
whether a path planning problem is difficult, or how far they are from
finding a solution. However, a task planner needs to determine whether
a path can be found.
For difficult task planning problems the current manner of integrat-
ing task planning and low-level planning without the use of knowl-
edge representations can result in an inefficient time-consuming trial
and error process where new plans are deduced and the path planner
is constantly triggered with different parameter sets. Therefore, fast
heuristics are needed to restrict the search space. They need to be able
to reliably predict the solvability and difficulty of a planning problem.
These heuristics should use scene analysis methods and knowledge
provided a-priori. They would enable task planners to choose good pa-
rameters, or start and target configurations for the low-level planner.
In general, they would enable the task planner to predict the success
of a subtask, or low-level planning problem. This would significantly
reduce the amount of backtracking or error recovery and speed up the
planning process. Furthermore, the quality of plan could be improved.
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(a) (b)

Figure 2.7: (a) A precision grasp with a four finger hand is shown for a coffee cup. (b) Potential
disturbances acting on an object are shown. The arrows symbolize the direction and size of the
disturbing force [16].

2.6 Grasp planning

The main objective of a planned grasp is to hold an object firmly and
safely, also in the presence of disturbances acting on the object. Power
grasps and precision grasps are distinguished [20]. A precision grasp
is a grasp where only the finger tips are in contact with the object. It
is described by a set of point contacts on an object and the pose of
the hand base. In Figure 2.6 an example of a precision grasp is shown.
Given the kinematics of a hand, the configurations of the individual fin-
gers can be computed. Precision grasps are used for fine manipulation
and for grasping small objects. If a grasp has the force closure prop-
erty, a set of valid contact forces exists that allows a grasp to balance
any occurring disturbance forces or torques [70]. In Figure 2.7 (right)
forces acting on a glass are displayed as arrows. Precision grasps are
often used in manipulations tasks.
For a power grasp, the human hand molds itself to fit the object. The
whole hand is used to grasp the object. The finger links and the palm
are in contact with the object. The aim of a good power grasp is to
maximize the number of contacts or contact areas.
Most existing robotic hands have inflexible palms. Imitating human
power grasps with them is difficult because the components of the
hand can not fit themselves to the shape of the object. The hands are
more fit for precision grasps than for realistically executing a power
grasp. Therefore, in this thesis the focus lies on the state of the art in
precision grasping. A grasp planner computes a valid grasp for a given
object automatically.
In humanoid robot manipulation tasks, grasp planners are seldom
used online. Instead often fixed manipulation points on the objects
[83], [100] are defined to be able to move objects around and avoid
grasp planning. Further, predefined grasps [52] or simple rules for
grasp generation are used [9]. Miller et al. presented the grasp syn-
thesis and analysis tool GraspIt! [76]. With this system, grasps can be
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evaluated. It can be used to build a set of valid grasps.
In automated grasp planning two directions are pursued. One direc-
tion tries to generate optimal grasps. The other directions generates
grasps that are good enough to accomplish the task. Finding an opti-
mal grasp is e.g. reported by Watanabe et al. [108]. Mishra [78] shows
that in a planar case an optimal three finger grasp can can be com-
puted efficiently. However, for the 3D case yet no general and efficient
algorithm is known. In general, methods for finding optimal grasps
have the disadvantage of high processing times and require a perfect
geometrical object model. They are therefore not eligible for an online
grasp planner. Computing optimal grasps that are in addition reach-
able for an attached robot arm is even more complex.
Given an object’s 3D model the grasp planner by Borst et al. [15]
computes force-closure precision grasps for multi-fingered hands. The
computation time is very low for simple objects. The returned grasp
is a valid force-closure grasp, but not optimal. It is not considered
whether the object is reachable for a robot arm.
Comparable state of the art grasp planners are proposed by Lopez-
Damian et al. [65], Miller et al. [77], or Harada et al. [36]. Grasps
computed by these systems are reachable by the robot arm and also
consider additional obstacles. However some manual segmentation of
the objects to be grasped is needed [36] or manually providing a set
of grasp starting positions and pregrasp shapes [77] is required before
grasps can be generated.

Figure 2.8: Two challenges with respect to grasp planning for object manipulation. (left) The
grasp that is returned by the grasp planner grasps the tea kettle handle with the hand base
facing the wall. This grasp is unreachable for the robot. (right) The robot determined that to
approach the tea kettle from the front is the best way. However a grasp from this direction has
poor quality and the kettle might slip from the robot’s hand.
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2.6.1 Summary

Grasp planners are either given a TCP pose and return a valid reach-
able grasp or compute grasps for an isolated robotic hand that is not
attached to a robotic arm. In Figure 2.8, two challenges are shown for
grasp planning in the context of object manipulation. An object is not
graspable equally well from all directions. In Figure 2.8 (right) grasps
for the requested approach direction may be unable to hold the object
firmly. In Figure 2.8 (left) the grasp itself can hold the tea kettle but is
not reachable for the robotic arm.
A task planner needs to be able to request a grasp for a given TCP pose
with respect to the object. Therefore, a representation is needed that
provides information concerning where good grasps on an object are
found and from which directions an object is approachable. This en-
ables the task planner to correctly parameterize a grasp planner and
avoid unnecessary plan iterations or modifications.

2.7 Path planning

In the context of humanoid robots and manipulation planning, path
planners determine collision-free movement from a given start config-
uration to a target configuration [3]. Since this thesis is focused on the
representation of the workspace of a robot arm, the state of the art in
path planning is presented with a focus on robot arms. However the
same algorithms can be used to plan paths for mobile robots.

2.7.1 Planning algorithms

Paths are a sequence of points in the configuration space of the robot
arm [60]. Most often, the points are connected by straight line seg-
ments. Two classes of path planners can be distinguished, local path
planners and global path planners.
Local path planners [109, 6] locally distort the direct path connecting a
given start and goal configuration of a robot arm. The local distortions
are used to avoid obstacles. The potential field method is a popular
example of a local planner [60]. Obstacles have a repulsive potential,
the goal configuration has an attractive potential. A path is found by
avoiding the repulsive forces and moving towards the attractive force.
Local planners can work well in scenarios composed of only few objects
and often generate smoother paths than global planners. However, in
connection with robot arms they are seldom used because it is difficult
to define potentials for each object whose combination does not have
local minima. In general, local planners cannot guarantee to find a
solution even if one should exist.
Global path planners search the whole configuration space of the robot
arm for valid paths. The most widely used planners of this category
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Figure 2.9: (left) Illustration of a bidirectional RRT-planning run. A tree is grown from the start
configuration qinit and from the goal configuration qgoal. When the two trees are connected a
path is found. (right) Illustration of an PRM-planning run. In the exploration phase the graph
(PRM) is built to represent the connectivity of the configurations space. Graph search methods
are used to find a path from qinit to qgoal. (Source [62])

are probabilistic path planners. A robot arm configuration is ran-
domly sampled from configuration space. It is valid if it is collision-
free. Most often, it is connected to other valid configurations by us-
ing collision-free straight line segments in configuration space. The
rapidly-exploring random tree (RRT) planner by Lavalle et al. [61] and
the probabilistic roadmap (PRM) planner by Kavraki et al. [48] are the
most widely used probabilistic path planners in the state of the art.
In searching for a path, the RRT planner iteratively grows a tree in
configuration space. The search is successful when the goal config-
uration qgoal is reached. In Figure 2.9 (left) two trees are grown, one
from the start and one from the goal configuration. Once the two trees
are connected, a path is found. The PRM planner has an exploration
and a planning phase. In the exploration phase, the PRM planner first
tries to capture the connectivity of the configuration space in a graph
structure, the PRM. In Figure 2.9 (right) a PRM is shown for a sim-
ple 2D planning problem. Given a start and a goal configuration, a
path is searched in the PRM using graph search methods. Both, PRM
and RRT path planners are probabilistically complete, i.e. guarantee
to find a solution whenever one exists provided enough samples and
time. RRT-planners are best used for single query problems where the
environment changes between two planning requests. Since PRM plan-
ners invest much effort in capturing the connectivity of the C-space,
they are best used for multi query problems. Here, the environment
does not change and the investment pays off. Only the start and goal
configurations for the robot change.
In manipulation tasks, the robot constantly changes its environment
by removing and placing objects. Therefore, the RRT path planners are
the best choice for manipulation planning.

2.7.2 Path planner inputs

At first glance it seems as if path planners are ready for use by the task
planners. The problem of approaching and grasping an object seems
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solved by using a state of the art path planner to get the arm to the
desired grasp configuration. Every path planner needs collision-free,
reachable start and goal configurations of the robot arm to be able to
plan a geometric trajectory. However, the configurations have to be
determined and provided to the path planner before the start of plan-
ning. When grasping an object, there is a huge number of possibilities
where and how to grasp it. Thus there is an undetermined number of
goal configurations, one of which has to be chosen for use by the path
planner. Using the best grasp for an object might lead to an unreach-
able arm configuration (Figure 2.8 left) while defining a certain arm
configuration might lead to bad grasps (Figure 2.8 right). Therefore
the choice of start and goal configurations for a path planner has to be
addressed.

2.7.3 Selection of goal configurations

Lozano-Perez et al. [66] recognize that to solve pick-and-place tasks,
choosing how to grasp an object is crucial for the success of a task.
They state that the selection of a good target position depends on the
environment. The hand position and resulting arm configuration have
to be free of collision and reachable. In principle, also the availability of
a path between start and goal configuration should be checked. How-
ever there are a huge number of goal configurations, a path planner’s
worst-case time-complexity is exponential and the path planning prob-
lem is PSpace-hard [91]. Therefore checking the availability of a path
for each possible goal configuration is computationally too expensive.
Lozano-Perez et al. [66] grasp objects with a parallel jaw gripper. The
set of possible grasps for an object is limited. Lozano-Perez et al. pick a
grasp location and try to plan a path, repeating the process if no path
can be planned to the grasping location. For redundant robots with
multi-fingered hands, the set of grasps for an object is infinite. There-
fore, a brute force method of iterating over the whole set of grasps is
not feasible.
Wösch et al. [109] use an 8-DOF robot arm and a parallel jaw gripper.
They define by hand a set of approach TCPs and sample the TCP orien-
tation. Performing inverse kinematics computations it is determined
whether there is one among them that results in a collision-free robot
arm configuration. Depending on the number of poses, they report
that the determination of an optimal approach TCP in this brute force
manner takes longer than the actual path planning. Thus a feasible
solution is needed to close this gap.
The approach presented by Terasaki et al. [106] again operates with
a parallel jaw gripper on objects taken from an assembly scenario. To
ensure the availability of a path, the target object is analyzed to ob-
tain a set of candidates for grasping positions. The space around each
grasping position is described by a so-called open space characteriza-
tion. It represents approach directions by pyramidal slices labeled with
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a measure of the available free space in that direction. This character-
ization is used to select among the grasp candidates. If no grasp could
be found, the method stops.
Diankov et al. [23] use a set of grasps and incorporate the choice of the
grasp into an RRT path planner. Multiple goal trees are grown, one for
each grasp. A path is found if one of the goal trees is connected to the
start configuration. This approach is extended by Berenson et al. [11].
Workspace goal regions describe where an object can be grasped. From
these goal regions grasps are sampled and used to seed goal trees in a
RRT path planner. Therefore, the selection of the grasp used in a task
is performed by the path planner and not by a task planner.

2.7.4 Summary

In summary, from where to grasp an object is either decided by testing
individual grasps or by integrating the choice of grasp into the path
planner. Knowledge representations and scene analysis are not used
to determine good start and goal configurations. Diankov et al. [23]
even incorporate the choice of which object to move first into the path
planners. However, if the choice of the grasp or which object to move
is incorporated into the probabilistic path planner, a huge inflexible
monolithic system emerges. Its decisions are not deterministic or com-
prehensible. It has no information about the structure of the task (i.e.
that the cup should be placed on the saucer). It is difficult to combine
with a task planner because the system already assumes some of the
duties of a task planner, i.e. the selection of the grasp to use.

2.8 Robot placement

For tasks such as setting the table, cleaning the kitchen or filling the
dishwasher, different manipulation tasks have to be executed. In this
context, one of the main challenges to be addressed is where the robot
should place itself to be able to execute a given task. In Figure 2.10
(left) a bad placement is shown for grasping a glass on the table. For
opening doors or drawers this question is even more difficult to an-
swer (Figure 2.10 (right)). Here, the motion of the end-effector and its
attached TCP is constrained to follow the motion of the closet door or
the drawer. The trajectory of the TCP is constrained.

2.8.1 Selection of fixed base positions

Stulp et al. [103] learn where the robot can place itself to grasp an
object using a support vector machine approach. However only one
orientation of the cup is used. It may be difficult to generalize the re-
sult to other objects, or objects placed not on the table but in the closet.
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Figure 2.10: Examples for robot placement are shown. (left) The robot has placed itself badly.
It cannot reach the glass it wanted to grasp. (right) The robot placed itself before the microwave.
To open it the hand is constrained to follow the circular trajectory of its door.

The approach is also not yet expanded to constrained trajectories. With
respect to choosing a fixed mobile base position to execute constrained
trajectories, few approaches are known. Neo et al. [81] present an in-
teractive operation system for commanding an HRP-2 humanoid robot
to open a fridge. To choose a standing position for HRP-2 from which
it is able to execute the task, a heuristic approach is used. Yoshida
et al. [112] reach for target end-effector positions with an HRP-2 hu-
manoid robot. An inverse kinematics for the complete humanoid is
combined with an heuristic approach for support polygon reshaping
and stepping. Konietschke [53] uses genetic algorithms and gradient-
based optimization to position a medical robot for operation in a given
region of interest. However, only one solution is computed. Thus it
cannot be deduced how well the robot is suited for a task.

2.8.2 Base movement during task

Robot placement planning for constrained trajectories determines po-
sitions for a mobile manipulator to execute the task. Most approaches
combine the positioning of the robot with the search for feasible tra-
jectories for the robot arm in the configuration space (C-space). Opti-
mization and path planning techniques are used.
Optimization techniques are applied to the whole kinematic chain.
When using multi-criteria optimization for positioning a mobile ma-
nipulator to reach a point, choosing criteria weights, competing criteria
and the resulting local minima are a great challenge [88]. Multi-criteria
optimization can get stuck in local minima due to unfavorable start po-
sitions, and fail to find a solution.
Existing path planning techniques, e.g. the PRM approach or the RRT
approach are adapted to search for constrained trajectories.
Given a start configuration, a goal frame and task constraints, Yao et
al. [111] search a collision-free path for a fixed base robot arm by al-



24 CHAPTER 2. REVIEW OF THE LITERATURE

ternating Cartesian space and configuration space exploration. Valid
path segments in Cartesian space are tracked in C-space using trajec-
tory tracking methods from control theory, e.g. Jacobian-based meth-
ods. If tracking is not possible due to the kinematics and link limits,
the path segment is discarded and another segment is tested.
Oriolo et al. [84] label the n DOF of the mobile manipulator as re-
dundant (n − 6 DOF) or non-redundant (6 DOF). Random samples are
drawn from the C-space of the redundant DOF, i.e. from the 3 DOF C-
space of the mobile base. The RRT path planning approach is adapted
and combined with inverse kinematics algorithms. The resulting path
is a combination of motion of the redundant and the non-redundant
joints, i.e. the mobile base and the robot arm. Since no knowledge
is used about which regions are reachable from what direction, many
platform positions are examined from which executing the trajectory is
impossible.
Yang et al. [110] adapt PRMs to plan task-consistent collision-free
motion for mobile manipulators with a holonomic base in dynamic en-
vironments. This approach is able to plan the mobile manipulator
motion but always moves the mobile base.
Stilman [99] and Berenson et al. [10] plan task-constrained, collision-
free motion for a mobile manipulator. A task formalism is proposed to
indicate constrained motion directions in Cartesian space. The Jaco-
bian and its pseudo-inverse are used in the extension of an RRT path
planner to find joint space displacements that resolve Cartesian space
errors and then use these to generate samples for a RRT path planner
in C-space. A Cartesian start and end frame of the trajectory is known
as well as an initial grasping configuration of the robot arm. However,
the system always moves the mobile base to accomplish a task. For
simple tasks this may not always be necessary.

2.8.3 Summary

In summary, few approaches deal with placing the robot for grasp-
ing tasks. Concerning placement for constrained trajectories, two di-
rections are pursued. An inverse kinematics is applied to the whole
kinematic chain. It is assumed that the task can be completed if the
redundancy is adequately exploited. Or a start configuration of the
mobile manipulator is given from which the task is feasible and path
planning techniques are adapted to use the complete kinematic chain.
In both cases the redundancy provided by the mobile base is used.
However this may complicate the task execution, since the use of the
mobile base may not be necessary to achieve the task.
Using current approaches, a task planner can only try out whether a
chosen placement allows the execution of the trajectory or trust an ex-
tended path planner that includes the mobile base to choose correct
positions. In the latter case, the low-level planner changes the states
of the environments without the knowledge of the task planner. Pre-
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conditions of subsequent actions planned by the task planner can be
invalidated. Therefore, this method is difficult to combine with a task
planner.

2.9 Motion Primitives

Motion primitives describe stereotypical trajectories that a human per-
forms during a specific task. The trajectories can be compactly and
efficiently represented e.g. by Dynamic Movement Primitives proposed
by Schaal et al. [95]. They represent parametric, standard models of
behavior or movement that can be adapted to an altered task context.
Stulp et al. [104] learn dynamic movement primitives for human reach-
ing motions with and without obstacles. Through the use of the model
knowledge represented by the dynamic movement primitives Stulp et
al. are able to produce predictable and human-like reaching motions
for a humanoid robot. The motor primitives by Matarić [71] are another
example of motion primitives. Motor primitives are modular, compu-
tationally efficient representations of behaviors. They can be used to
generate and classify movement as reported by Drumwright et al. [26].
Hauser et al. [37] use motion primitives that represent walking mo-
tions to guide the sampling strategy of a PRM path planner and thus
reduce the search space. The use of motion primitives results in a re-
duction in planning time and an increase in motion quality especially
when the robot walks over uneven terrain.
In summary, model-based knowledge can support movement genera-
tion and planning for robots.

2.10 Robot-specific knowledge

Robot-specific knowledge describes characteristics and capabilities of
a specific robot, e.g. what weights it can lift in which regions of the
workspace. It can be encapsulated in knowledge representations and
be used to formulate heuristics to guide planners, facilitate decision
processes, and significantly speed up planning processes in general.
The use of models encapsulating robot-specific knowledge is recently
taken up by several research groups. Pettré et al. [87] make the an-
imation of a digital actor more efficient by dividing the large number
of degrees of freedoms of a humanoid into functional units providing
the locomotion and the manipulation capabilities. Diankov et al. [23]
use a similar functional structure for a humanoid robot to plan a path
from a given start position to an object to be manipulated. In the pro-
cess they furthermore consider a model of the reachable workspace of
the robot arm to decide where the robot may stand to grasp an object
and thus focus the search. Gienger et al. [31] use an object-specific
model of the grasping capabilities of their humanoid robot to optimize
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the whole body motion to reach and grasp an object. Stulp [102] et al.
show that significantly fewer learning examples are needed if knowl-
edge encapsulated in models is used to guide the learning process.
In summary, exploitation of prior knowledge facilitates and speeds up
planning.

2.11 Summary

The current manner of combining high-level and low-level planners is
inefficient. In general, robot-specific knowledge is not used in plan-
ning. To bridge the gap between high-level and low-level planning,
methods are needed that reduce the search space based on knowledge
encapsulated in models. These methods could help predict the success
of subtasks or find parameters for planners that permit them to solve
a task faster.
This thesis emphasizes the speed up and flexibility in decision making
gained through the use of robot specific knowledge encapsulated in a
model. If the robot has a model of the workspace of its arms, that de-
scribes which region is reachable form which direction, a task planner
can use this information. It can determine from which direction an
object can be grasped or how difficult it is to grasp it. Thus predictions
about the success of a subtask can be made.



3
Robot performance indices

Robot performance indices evaluate how well a robot can apply forces
or move in a specific task or throughout the whole workspace. Hence,
they potentially contribute to a general description of the versatile
workspace that is the focus of this thesis. In this chapter, criteria
used in robot arm design are compared and evaluated with respect
to their objectives. It is identified whether these criteria provide mea-
sures to evaluate a robotic arm’s kinematic capabilities with respect to
reachability and manipulation of objects throughout the workspace. It
is determined whether they can be used to represent the robot arm
workspace. Furthermore state of the art approaches to model the
workspace are analyzed and evaluated.

3.1 Robot Design Criteria

In the design stage, a robot manipulator is optimized with respect to
kinematic and dynamic criteria. In this thesis, the focus is on the
kinematic aspects since the methods to be developed are intended to
support static planning methods. The kinematic design can be divided
into task-oriented robot design criteria and general purpose design cri-
teria.

3.1.1 Task-oriented design

For some application areas, a robot needs to guarantee a certain set
of crucial tasks without having to perform many other kinds of tasks.
Such areas include e.g. medical applications. In task-oriented design,
the robot arm is designed for a set of specified tasks. A number of task
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points [86] or a task volume [55] is given that has to be reached by the
robot. Park et al. [86] present a task-oriented design method based on
an optimization method used in heat transfer/fluid analysis. Multiple
objective optimization of the kinematic parameters of the robot manip-
ulator is performed. The kinematic parameters determine the pose of
the link axes. The method receives a number of task points, the num-
ber of degrees of freedom and the position of the robot base. It strongly
depends on the given initial solution and the chosen weights.
Konietschke et al. [55] present a method for optimal design of a med-
ical robot for minimal invasive surgery. Optimization is carried out
using genetic algorithms and a subsequent gradient-based optimiza-
tion step. Several optimization criteria are added as constraints on
the optimization process, such as minimum positioning accuracy to
be acheived and the avoidance of singularities. Optimization is carried
out for a number of small workspace volumes. These are discretized
and the robot setup is evaluated at each discretization step.
Both methods are constructive and aim at comparing different robot
designs for very restricted regions of the workspace. The aim of this
thesis, however, is to characterize the performance of the robot in dis-
cretized regions of the whole workspace. The two methods are compu-
tationally too expensive to use them for the whole workspace. Even if
each region of the workspace is evaluated, only single evaluation values
are reported, that represent the quality of the region. The information
from which direction a region is reachable is lost.

3.1.2 General purpose robot design

In general, the robot kinematics are optimized to maximize the work-
space volume or to maximize various dexterity indices at specific posi-
tions or with respect to the entire workspace. A dexterity index evalu-
ates how well a manipulator is able to move and apply forces in arbi-
trary directions.
Lenarčič et al. [63] use the workspace volume and the ”compactness”
of the workspace as design criteria. The dispersion of the reachable
workspace is the average quadratic distance between elements of the
workspace volume and its arithmetical center. A spherical workspace
is the most compact workspace. Therefore, the workspace compact-
ness is defined as the ratio between the dispersion of the reachable
workspace elements and the dispersion of a sphere with the same vol-
ume as the robot workspace.
Park et al. [85] introduce general performance criteria for workspace
volume and dexterity using differential geometry. Their aim is to derive
performance criteria that are independent of a particular coordinate
transformation. Global indices are obtained through integration of lo-
cal criteria. These global indices are used to compare different robot
arm designs or to derive optimal parameters e.g. for link lengths or
actuator dimensioning. However, they are not aimed at characterizing



3.1. ROBOT DESIGN CRITERIA 29

individual subspaces of the robot workspace.
Sturges et al. [105] define a dexterity measure that relates the diffi-
culty of an assembly task to the capabilities of a planar robot arm and
gripper. It is proposed that the effective dexterous ability of a system
should be mapped as a function of position of the end-effector within
the workspace. A two-dimensional peg-in-hole assembly task is used
to illustrate task-dependent difficulty measures. A task index of dif-
ficulty and an effector index of difficulty are defined. To be able to
complete the task the effector index of difficulty has to equal or ex-
ceed the task index of difficulty. However, for general tasks and spatial
robots, these indices are difficult to derive. Especially if a redundant
robot arm and a multi-fingered hand are used, many factors influence
the success of a task. The robot has to be positioned for the task, or
the scene geometry has to allow the execution of the task. Often there
are also interactions between the factors that enable the task success.
Therefore, the method by Sturges et al. cannot be used for service
robot tasks.

Analysis of the Jacobian Matrix

A popular means used in robot arm design is the analysis of the Ja-
cobian matrix. The Jacobian matrix J at a configuration ~q relates the
joint velocities ~̇q with the total end-effector velocity in Cartesian space
(consisting of angular velocity ~ωE and translational velocity ~̇pE).(

~̇pE
~ωE

)
= J(~q)~̇q (3.1)

J = UΣV T (3.2)

The principal axes and singular values σi (i = 1..n) of the Jacobian
matrix are obtained by singular-value decomposition [89] of the Jaco-
bian matrix (Equation 3.2). Here n is the number of links of the robot
arm. U and V T are orthogonal matrices, and Σ is a diagonal matrix
containing the singular values σi of J . σ1 marks the largest singular
value and σn marks the smallest. In the following, several indices are
described that have been derived thereof. Klein et al. [50] examine dex-
terity measures with the aim to optimize the robot arm configuration
for a given end-effector position. They analyze the relationship of the
determinant, the condition number and the smallest singular value of
the Jacobian. A determinant equal to zero marks the presence of a
singularity. The condition number of the Jacobian

cond(J) =
σ1

σn
(3.3)

evaluates the isotropy of movement of the TCP. If its value is one, the
TCP can move in all directions of the principle axes equally well.
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With the goal to obtain a global measure for the isotropy movement,
Stocco et al. [101] optimized the ratio of the global maximum and the
global minimum singular value of the Jacobian in the entire workspace
to obtain a global version of the condition number.
However, the smallest singular value varies radically in the presence
of singularities thus dominating the behavior of the condition num-
ber and the determinant. Each presented measure only allows con-
clusions for infinitesimal small environments. Non of the examined
dexterity measures is superior over the others as each has a slightly
different purpose. All have in common however to promote a robot de-
sign that can move the TCP in all directions equally well. This thesis is
interested in capturing directional preferences rather than in finding
configurations where directionally uniform movement is possible. The
manipulability ellipsoid and derived measures proposed by Yoshikawa
[113] are often examined to evaluate directional preferences. They re-
ceive a closer inspection in the following sections.

The manipulability measure

The manipulability ellipsoid in the n-dimensional Euclidean space in-
troduced by Yoshikawa [113] is intended to quantify the ease of ar-
bitrarily changing the position and orientation of the end-effector. It
is derived by analyzing the Jacobian matrix of a manipulator (Equa-
tion 3.1) and its singular value decomposition (Equation 3.2). The prin-
cipal axes and singular values σi are taken to define the orientation and
the shape of the so-called manipulability ellipsoid. The size of the ellip-
soid and its major and minor axes are assumed to represent an ability
of manipulation at a certain configuration. In the direction of its major
axis the TCP can move at high speed. In the direction of its minor axis,
the TCP can only move at low speed. A singular value σi is interpreted
as the radius of the ellipsoid in the direction of the corresponding prin-
cipal axis. The ratio of the minimum and maximum singular value
of the ellipsoid (Equation 3.3) can be used to describe the directional
uniformity of the ellipsoid and thus the directional uniformity of pos-
sible movements at the considered configuration. The volume of the
ellipsoid is known as the manipulability measure w (Equation 3.4)

w = σ1 · σ2 · · · σn (3.4)

and can be interpreted as the distance of the manipulator from a sin-
gular configuration. In Figure 3.1 the distribution of the minimum
value of the manipulability measure is shown across the workspace of
the DLR LWR arm. The TCP position for a randomly sampled robot
arm configuration is mapped to a voxel of the discretized workspace.
The manipulability measure for the configuration is compared to the
current minimum of the voxel and the new minimum is determined.
Red voxels indicate possible singular configurations. In blue voxels
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Figure 3.1: Distribution of the minimum value of manipulability measure across the workspace
of the DLR LWR arm. For computing the Jacobian and the singular values, the link lengths are
in mm. The value of the manipulability measure is color-coded. Red voxels have a minimum
manipulability measure near zero and therefore contain singular configurations.

the distance to singular configurations is high according to the ma-
nipulability measure. Thus the worst-case manipulability is shown in
Figure 3.1 for voxels of the workspace.

Characteristics of the manipulability measure

Since the Jacobian (Equation 3.1) relates link velocities to Cartesian
translational and rotational velocities, all manipulability criteria for the
Cartesian space are unit dependent. Ma et al. [69] propose to divide
the translational components by a so-called characteristic link length
to remove this inhomogeneity. Still, this remains a heuristic solution
to the problem of inhomogeneity and only defines a scaling between
the rotation and translation.
Furthermore the principal axes of the manipulability ellipsoid mix ro-
tational and translational components because they are derived from
the Jacobian. This reduces the interpretability of the ellipsoid and the
manipulability measure.
Since manipulability values are derived from the Jacobian matrix at
a given configuration they are purely local measurements valid only
for an infinitesimal small neighborhood. Furthermore, link limits are
not taken into account. Thus, attested good movability at a configu-
ration may not be possible in the desired direction due to link limits.
Abdel-Malek et al. [2] augmented the Jacobian with joint limit criteria.
However, through these additional criteria, the manipulability measure
is even harder to interpret due to the additional unit dependency.
Due to the above mentioned problems this thesis refrains from using
the manipulability ellipsoid or measures derived thereof to represent
the robot arm capabilities. Instead, the next section concentrates on
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existing approaches to analyze the robot workspace in Cartesian space.

3.2 Workspace analysis

Workspace analysis tries to represent the Cartesian workspace of a
manipulator. The most basic kind of workspace analysis is the extrac-
tion of the inner and outer borders of the workspace [63] by iterating
through the complete link ranges. This can be used to roughly compare
robot arm kinematics. But also quantitative analysis of the reachable
workspace has been reported. Gupta [35] sketches a global and a local
evaluation method. It is reported for six DOF manipulators with a wrist
where the last three axes intersect in one point, that the dexterous
workspace decreases monotonically as the size of the hand increases.
The hand size is taken to be the distance between the intersection of
the wrist axis and the tool tip point. They also propose a local analy-
sis at single points across the workspace in terms of approach angles
and approach lengths. The approach angle describes the orientations
that are possible around the tool tip point, i.e. the possible angles of
the tool axis. The approach length describes the linear axial motion of
the tool away from the considered tool tip point. This analysis is only
done for few points across the workspace and the results are stored. A
similar analysis of whole regions of the workspace with respect to the
directional reachability potentially results in a suitable representation
of the reachable workspace.
Another approach to analyze the topology of the workspace is given by
Lück et al. [68]. They analyze topology of the self-motion manifolds
of a redundant robot manipulator. Self-motion manifolds represent
the null-space motion of the manipulator. They argue that singularity
manifolds partition the configuration space as well as the workspace.
Furthermore, they claim that a mapping can be found between these
regions and can be expressed in a connectivity graph. For an 8 DOF
spatial manipulator with link limits the connectivity graph is shown to
be highly complex and is split in several parts. In another work, Lück
et al. [67] propose to discretize non-uniformly the topology-defined
partitions and use this discretization in path planning resulting in a
bidirectional map between a discretized configuration space and work-
space. However, this is possible for a 3 DOF manipulator, but it is
infeasible for a manipulator with more DOF. The complexity of the con-
nectivity graph for the 8 DOF manipulator shows this [68]. Even with
this topology-based approach it is infeasible due to memory require-
ments and computation power.
A monte carlo approach to represent the reachable workspace was in-
troduced by Guan et al. [34]. The workspace is enveloped by a cube
and discretized. Via forward kinematics a randomly sampled configu-
ration is mapped to the discretized workspace. In the visualization only
those cubes are shown that are hit at least once. Klopčar et al. [51]
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compute a kinematic model for the human arm. They iterate through
the value range of the arm links and map the position of the TCP to
cubes of different granularity. To visualize the reachable workspace
they only show those cubes containing at least one point. The visual-
ized workspace is used to compare the reachable workspace between
patients with different arm injuries. However, in both papers only the
reachable workspace is represented.
To sum up, the information contained in most current representations
of the workspace is not detailed enough to enable exploitation by high-
level or low-level planners. No directional structure can be extracted
from the representations. However, the approach by Gupta et al. [35]
examined for specific points how they can be approached. If this ap-
proach is adapted and extended to cover the whole workspace it could
lead to a suitable representation of the workspace.

3.3 Naive sampling based approach

In this section a naive sampling based approach is examined which is
first reported by Zacharias et al. [116]. The workspace of the robot arm
is discretized as explained in detail in Section 4.2.1. The configuration
space is randomly sampled with a uniform distribution. The TCP frame
is computed and mapped to a voxel of the Cartesian workspace. The
number of randomly sampled configurations mapped to a voxel is used
as a measure of reachability for the voxel that correlates with the voxel
being easily reachable. Easily reachable means that the redundancy
can be exploited and versatile manipulation is possible. A representa-
tion based on this measure appears to be an intuitive representation of
the workspace. However, when a robot is in a singular configuration,
large steps in the configuration space for the links causing the singu-
larity result in small motions of the TCP in the Cartesian workspace.
Therefore the TCP poses for configurations which are far apart in the
configuration space are mapped to the same voxel in the Cartesian
space. A large amount of sampled configurations accumulate in these
voxels. The distribution of the number of randomly sampled config-
urations in the workspace is shown in Figure 3.2. In voxels that the
robot arm can reach by singular configurations, samples accumulate
represented by blue or green voxels. Therefore, the number of config-
urations mapped to a voxel cannot be used to find voxels that allow
for versatile manipulation. Furthermore directional information is not
represented.

3.4 Model requirements

As discussed in previous sections, existing criteria and methods are
not suitable to represent the robot arm workspace. Most discussed
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Figure 3.2: Color encodes the number of randomly drawn configurations attributed to the dis-
cretized Cartesian voxels. In total 6 · 106 random configurations are drawn. The workspace is
cut in half along the arm center axis. In voxels that the robot arm can reach with singular
configurations, samples accumulate (blue and green voxels).

criteria are not able to represent directional information. The manip-
ulability ellipsoid is defined to evaluate the ability of the TCP to move
in arbitrary directions. However, the axes of the manipulability ellip-
soid mix rotational and translational components. Therefore they are
difficult to interpret. In previously presented representations of the
workspace, only the reachable workspace was modeled. It can be de-
termined that regions are reachable but not from which directions.
Therefore this section extracts a set of requirements that a represen-
tation of the robot arm workspace has to fulfill.
In humanoid robot tasks, objects have to be grasped and manipulated
preferably using both arms. A high-level planner has to evaluate which
arm can best grasp objects (Figure 3.3) and has to decide when to use
which arm. Moreover, a humanoid robot with multi-fingered hands
has to choose among an infinite number of alternative configurations
that can be used to approach and grasp an object. Considering a mo-
bile manipulator a further problem is the positioning of the mobile
platform with respect to the operating area.
In general, a representation of manipulator capabilities is required that
can be used to characterize which places are easily reached. If a spe-
cific direction is of interest, this direction is mapped to its discretized
counterpart and its reachability is determined using the representa-
tion. Since different sensors have different accuracies and the posi-
tions of obstacles can change during a task, these issue should have
no influence on the representation. They have to be addressed in al-
gorithms that analyze the scene and the robot capabilities based on
the representation. Furthermore, a visualization scheme is needed for
the representation. It should enable to focus alternatively on regions
of interest or on the whole workspace. The directional information rep-
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Figure 3.3: Justin has to decide which object to grasp with which arm and hand.

resented for individual workspace regions might show similarities with
other workspace regions. If areas with the same structural charac-
teristics exist, a visualization of the representation should make this
identifiable. The requirements are summarized in the following list.

• Direction and position information has to be represented.

• Data access has to be fast to enable use in online algorithms.

• The reachability of arbitrary poses has to be determinable.

• The memory requirement should be low to be able to keep the
model in main memory.

• A 3D visualization scheme has to be provided.

• The visualization should enable inspection of the data at different
levels of detail.

• The visualization should enable the focus on regions of interest.

• The visualization should enable to identify areas with the same
structural characteristics.

3.5 Summary

The recent and existing performance criteria and workspace models
can only be used to decide whether a position in the Cartesian work-
space is reachable or whether a workspace region can be reached
with a singular configuration. Directional information is not repre-
sented. Also the naive workspace representation examined in Sec-
tion 3.3 proved to be unsuitable.
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Therefore, requirements are extracted for a model of the workspace.
The most important issue is the representation of directional informa-
tion. For manipulation tasks, a region does not need to be reachable
from all directions. However the model should show from which di-
rection a region is reachable and how close a region is to belonging
to the dexterous workspace, i.e. that it is reachable with arbitrary
poses. In the next chapter, a new model is presented that fulfills the
requirements defined in Section 3.4. The ideas of randomized sam-
pling, workspace discretization, and the examination of a region from
various directions are combined.



4
Modeling the robot workspace

In general, every robot arm is designed differently, and therefore has
different kinematic capabilities. These capabilities can result in di-
rectional structures specific to workspace regions. The robot’s ability
to manipulate objects depends on the relative position of the objects.
Two-handed manipulation is limited to a region where the workspaces
of both arms overlap. The best performance is achieved in an even
smaller subspace. In the previous chapter, requirements were iden-
tified that a representation of the reachability throughout the work-
space has to fulfill. The reachability sphere map is a representation
that meets these requirements. The choice of this name becomes clear
later.
As a first step, the construction of the reachability sphere map is de-
scribed. A visualization scheme is introduced for the representation.
It allows the detection of structure in the workspace and enables its
visualization. In a second step, a compact abstraction is proposed for
the data of the reachability sphere map. The approach is illustrated
using a DLR light weight arm (LWR ).

4.1 The Tool Frame (TCP)

The tool frame, also called TCP frame, is the reference frame for ma-
nipulation tasks where the robot uses the end effector to grasp or
transport objects. The pose of the TCP is described by a homogeneous
matrix F (Equation 4.1). It is also referred to as the TCP frame. In
Figure 4.1 the TCP pose is indicated by the coordinate system at the
end of the robot arm. The space containing all homogeneous matrices

37



38 CHAPTER 4. MODELING THE ROBOT WORKSPACE

is called H in this thesis.

F : SE(3)→ H; (R,~t) 7→ F (R,~t) := F =

(
R ~t
~0T 1

)
(4.1)

The function F (R,~t) constructs the homogeneous matrix F from the
rotation matrix R ∈ SO(3) (Equation 4.2) and the position vector ~t ∈
IR3 (Equation 4.3). SO(3) is the set of rotation matrices in IR3 (see
Section A.3 or Murray et al. [80]).

R = (~x ~y ~z) (4.2)

~t = (tx, ty, tz) (4.3)

A homogeneous matrix is often used to describe rigid motion or to de-
fine the pose of an object in the Cartesian space.
Let K(~q) describe the direct kinematics from Equation 2.1 which de-
termines for a configuration ~q ∈ C the TCP pose TBaseTCP in the robot base
coordinate system.

K(~q) := TBaseTCP (4.4)

4.2 The Reachability Sphere Map

The reachable workspace WR is the volume of space that the robot can
reach in at least one orientation [19]. It is described in Equation 4.5
using set notation.

WR :=
{
~x ∈ IR3| ∃~q ∈ C ∧R ∈ SO(3) : K(~q) = F (R, ~x)

}
⊂ IR3 (4.5)

However, in planning tasks a model of the reachable workspace is in-
sufficient. Regions in the workspace have to be approached with spe-
cific orientations of the TCP. The dexterous workspace WD describes
the volume of space that the robot can reach in all orientations.

WD :=
{
~x ∈ IR3| ∀R ∈ SO(3)∃~q ∈ C : K(~q) = F (R, ~x)

}
⊂ IR3 (4.6)

The dexterous workspace is a very small subset of the reachable work-
space. For some robots its volume is empty. In real manipulation
tasks, orientations are important but seldom all are needed. In this
thesis, the versatile workspace WV indicates with which orientations
R ∈ SO(3) a position ~x ∈ IR3 can be reached by the end effector and
thus how far a position is from being a part of the dexterous work-
space. This concept is formalized using W (~x), the set of orientations in
which the TCP can reach ~x.

W (~x) :=
{
R ∈ SO(3)|~x ∈ IR3,∃~q ∈ C : K(~q) = F (R, ~x)

}
(4.7)

The versatile workspace WV is then defined as

WV : =
{

(~x,R)|~x ∈ IR3, R ∈W (~x)
}

=
{

(~x ∈ IR3, R ∈ SO(3))|∃~q ∈ C : K(~q) = F (R, ~x)
}
⊂ SE(3)

(4.8)
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Figure 4.1: A homogeneous partitioning of the robot workspace is performed. The maximum
workspace of the DLR LWR is overestimated by the axis-aligned bounding box. For visualization,
a coarse voxelization is chosen. The workspace is divided into voxels of 300 mm edge length.

The versatile workspace is a continuous space that can not be de-
scribed analytically. The workspace representation introduced in this
theses, hereafter called reachability sphere map represents the ver-
satile workspace WV by discretizing IR3 and SO(3). It is presented in
the following sections.

4.2.1 Discretization of IR3

The physical workspace of a robot arm can be encapsulated by an
axis oriented bounding box with an edge length lws equal to two arm
lengths. However, the reachable workspace of the arm is thereby over-
estimated. The axes of the bounding box are aligned with the robot
arm base coordinate system situated at the position of the first link
axis. The center of the bounding box is the position of the robot arm
base (Figure 4.1). The bounding box is partitioned into an axis-aligned,
regular grid of cubes. The homogeneous partitioning is called voxeliza-
tion of IR3, the discrete volume elements are named voxels. A so-called
single-resolution voxel space is used, i.e. all voxels have the same edge
length lc, lc << lws. In Figure 4.1, a coarse voxelization is shown for
illustration.
Using this discretization, specific regions of the workspace can be ana-
lyzed in task planning processes. Each voxel stores information related
to the covered volume. Each dimension of the Cartesian workspace is
subdivided into nc voxels.

nc = dlws/lce (4.9)
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dxe denotes the ceiling operator which always rounds to the smallest
integer that is not less than x (Equation 4.10).

dxe = min {n ∈ ZZ|n ≥ x} (4.10)

The whole voxel space VRobot has n3
c voxels and is described by Equa-

tion 4.11.
VRobot :=

{
~g ∈ IN3| ‖~g‖∞ ≤ nc

}
⊂ IN3 (4.11)

Each voxel is mapped to a unique grid coordinate ~g ∈ IN3 that repre-
sents the center of the voxel. In the following, the term voxel and grid
coordinate are used synonymously. In this thesis, the origin of VRobot is
the lower left corner of the bounding box. Therefore, a grid coordinate ~g
is element of IN3. This is reflected in Equation 4.12 and Equation 4.13.
The mapping of a Cartesian position ~t = (tx, ty, tz) ∈ IR3 is given as

v : IR3 → IN3;~t 7→ ~g := v(~t) = d 1
lc
· ~t e+ (nc2 − 1) ·~1

=

 d
tx
lc
e

d tylc e
d tzlc e

+

 nc
2 − 1
nc
2 − 1
nc
2 − 1

 (4.12)

If ~t is outside of the bounding cube with length lws encasing the robot
workspace, it is not part of the robot workspace and thus by construc-
tion not in its representation. Correspondingly, the coordinate ~t ∈ IR3

of a voxel with grid coordinate ~g is w(~g).

w : IN3 → IR3; ~g 7→ ~t := w(~g) = (~g + (1− nc
2

) ·~1) · lc −
lc
2
·~1 (4.13)

In this work, the voxels are stored in an one-dimensional, connected
field called linear voxel space, which provides fast random access to
each element [14]. The memory requirements are proportional to n3

c .
For fast access the whole representation is kept in main memory.
Therefore, the size of the main memory restricts the minimum possible
edge length lc of the voxels. If arbitrarily small voxels are required, the
representation of the voxel space through an octree allows to keep only
the currently relevant parts of the workspace in main memory. How-
ever, for manipulation tasks as considered in this thesis, the linear
voxel space implementation is sufficient.

4.2.2 Construction of the model

In this section, the construction of the reachability sphere map based
on the voxel space VRobot is described. The pose of the TCP is described
by a homogeneous matrix F (Equation 4.1). Using Equation 4.12, it is
determined which voxel a TCP pose belongs to. The Cartesian position
~t is mapped to the reachability sphere map position ~g, i.e. to the voxel
located at this position.
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(a) (b)

Figure 4.2: Shows (a) a sphere inscribed into a voxel and (b) two exemplary frames Fi,αk
for

a point on the sphere. The blue arrow corresponds to the z-axis, which is the same for both
frames. The x-axis is shown in red and the y-axis is shown in green.

The voxels serve as containers for the data represented in the reach-
ability sphere map. The aspect that distinguishes the reachability
sphere map from other representations of the workspace is the rep-
resentation of position and orientation information. In this thesis, the
voxels store for each member of a set of TCP poses whether it is reach-
able and an inverse kinematics solution exists. The set of TCP poses
represents a discretization of SO(3) and is generated as follows. Into
each voxel, a sphere with a diameter equal to the edge length lc of a
voxel is inscribed (Figure 4.2(a)). The center of the sphere is identical
with the center of the voxel. Using the spiral point algorithm proposed
by Saff et al. [94], on a sphere a set P of np uniformly distributed points
~pi is generated.

P :=
{
~p0, .., ~pnp−1

}
⊂ IR3 (4.14)

~pi denotes the position vector in a coordinate system placed at the
center of the sphere. The set Np denotes the set of point indices i.

Np := {0, .., np − 1} ⊂ IN (4.15)

For each point ~pi on the sphere, homogeneous coordinate frames are
constructed. −~pi serves as the z-axis of the rotation matrix Ri,0 of the
frame Fi,0. The x and y axes of Ri,0 are chosen to form a right hand
coordinate system.

Fi,0 := F (Ri,0, ~pi) =

(
Ri,0 ~pi
~0T 1

)
(4.16)

The resulting frame is then rotated by αk around its z-axis according
to a fixed stepsize ∆o. Let No denote a set containing mo = b360◦

∆o
c

orientation indices k.

No := {0, ..,mo − 1} ⊂ IN (4.17)

bxc denotes the floor operator which always rounds to the largest inte-
ger not greater than x (Equation 4.18).

bxc = max {m ∈ ZZ|m ≤ x} (4.18)
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Thus, the orientations αk are defined

αk = k ·∆o; k ∈ No (4.19)

and used to describe the frames Fi,αk ∈ H as

Fi,αk = Fi,0 · Fz(αk) = F (Rot(i, k), ~pi) (4.20)

Rot(i, k) is the rotation matrix component of Fi,αk and Fz(αk) is a ho-
mogeneous matrix that performs a rotation by αk about the z-axis.

Fz(αk) =

(
Rz(αk) ~0
~0T 1

)
(4.21)

The np · mo frames Fi,αk represent poses given in a coordinate system
placed at the sphere center and are the same for all voxels. The result-
ing set of frames is referred to as OS.

Os := {F (Rot(i, k), ~pi)|~pi ∈ P, i ∈ Np, k ∈ No} ⊂ H (4.22)

In Figure 4.2(b) two exemplary frames are shown with the x-axis (red)
and the y-axis (green) tangential to the sphere and the z-axis (blue)
pointing towards its center. The parameters (lc, np, ∆o) determine how
well the model represents the versatile workspace. The effect of the
parameter selection is examined in Section 4.3.
The inverse kinematics for the arm is used to determine for each voxel
~g ∈ VRobot which frames Fi,αk can be reached by the TCP of the arm.
Let TBaseSphere be the transformation from the robot base frame to the co-
ordinate system placed at the center of the voxel ~g which is also the
center of the inscribed sphere. The TCP frame FBaseTCP in the robot base
coordinate system is computed given transformation TBaseSphere and the
individual frames Fi,αk ∈ Os.

TBaseSphere(~g) = F (I, w(~g)) =

(
I w(~g)
~0T 1

)
(4.23)

FBaseTCP = TBaseSphere(~g) · Fi,αk (4.24)

I is a 3 × 3 identity matrix. A frame Fi,αk in voxel ~g is represented by
a tuple (~g, i, k) in the reachability sphere map. Thus the reachability
sphere map is described by the set MS.

MS =
{

(g1, g2, g3, i, k) ∈ IN5| ~g = (g1, g2, g3)T ∈ VRobot, i ∈ Np, k ∈ No

}
(4.25)

(g1, g2, g3, i, k) and (~g, i, k) are used synonymously. If the inverse kine-
matics returns a valid solution for FBaseTCP , the corresponding frame Fi,αk
is reachable. In the model this is represented by setting the respective
entry (~g, i, k) in the data structure to true.
For most non-redundant robot arms an analytic inverse kinematics is
available [19]. If the inverse kinematics problem is not solvable, the
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TCP pose is definitely not reachable. Using an analytical inverse kine-
matics the voxel space is traversed systematically and each sphere is
examined only once.
However, the inverse kinematics of redundant arms cannot be solved
analytically. Optimization procedures are applied in order to determine
the value of the redundant degrees of freedom. Therefore, different ini-
tial configurations influence the success of the inverse kinematics al-
gorithm. Its failure does not guarantee that the TCP pose is not reach-
able. In this thesis random configurations ~qr ∈ C are drawn. Via the
direct kinematics K(~qr) the TCP pose is computed which determines
the voxel ~g = v(K(~qr)) ∈ IN3 to be examined next. Furthermore, ~qr is
used to start the inverse kinematics with different initial solutions and
thus start the search for a solution in different parts of the C-Space.
This effectively serves to explore the nullspace of the robot arm. Oth-
erwise, the map represents only the strengths and weaknesses of the
inverse kinematics algorithm in specific areas of the workspace. The
configuration space is randomly sampled according to a uniform dis-
tribution by a pseudo random number generator. Here, it is important
that the pseudo random number generator has a large period. There-
fore, the Mersenne Twister random number generator [72] is used.
The algorithm describing the map construction for a redundant robot
is summarized in Algorithm 4.1.
The spheres represent the reachability of a voxel. Therefore, they are
called reachability spheres. The reachability sphere map is the ag-
gregation of all spheres. Two measures called the reachability index
D (Equation 4.28) and the reachability index with z-orientation Do

(Equation 4.31) are assigned to each sphere characterizing the reach-
ability of the region enclosed by the sphere ~g. In Equation 4.26, np is
the total number of points on a sphere. For each point ~pi, if one of the
rotated frames Fi,αk is reachable, R(~g) is increased by one.

R(~g) =

np−1∑
i=0

IsReachable(~g, ~pi) (4.26)

IsReachable(~g, ~pi) =


1 if ∃k ∈ No : (~g, i, k) ∈Ms is reachable

in reachability sphere map
0 otherwise

(4.27)

The reachability index D(~g) represents the percentage of points on the
sphere ~g that have an inverse kinematics solution.

D(~g) =
R(~g)

np
· 100 with R(~g) ≤ np; D(~g) ∈ [0, 100] (4.28)

It is used when the rotation about the z-axis of the frame Fi,0 (com-
pare Equation 4.20) is not important. The reachability index with
z-orientation Do(~g) measures how far the region is from being in the
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Algorithm 4.1 BuildSphereMap(sphereMap,nrOfSamples)

/* np points on a sphere */
pointsPerSphere←sphereMap.GetPointsPerSphere()
/* mo orientations about z */
zOrientations←sphereMap.GetZOrientationsPerPoint()
for j ∈ nrOfSamples do

/* draw random configuration */
qr ← randomConfiguration()
/* compute TCP pose */
frame4TCP←directKinematics(qr)
/* see Equation 4.12 */
sphereNr←sphereMap.map2Sphere(frame4TCP)
for i ∈ pointsPerSphere do

for k ∈ zOrientations do
/* see Equation 4.20 */
frame4IK←sphereMap.getTCPFrame(sphereNr, i, k)
/* solve inverse kinematics */
ikResult←solveIK(qr, frame4IK, qsolution)
/* if IK solution found */
if ikResult then

/* set entry in map to true */
sphereMap.setPointAndOrientation(sphereNr, i, k)

end if
end for

end for
end for
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dexterous workspace. To compute Do(~g), Ro(~g) is increased by one for
each reachable frame Fi,αk .

Ro(~g) =

np−1∑
i=0

mo−1∑
k=0

IsReachable(~g, ~pi, αk) (4.29)

IsReachable(~g, ~pi, αk) =


1 if (~g, i, k) ∈MS is reachable

in reachability sphere map
0 otherwise

(4.30)

The reachability index with z-orientation Do(~g) represents the percent-
age of frames on the sphere ~g that have an inverse kinematics solution.

Do(~g) =
Ro(~g)

np ·mo
· 100 with Ro(~g) ≤ np ·mo; Do(~g) ∈ [0, 100] (4.31)

A sphere where all frames are reachable receives D(~g) = 100 and Do(~g) =
100. A region with a value Do(~g) = 100 belongs to the dexterous work-
space if lc → 0.

4.2.3 Reachability predictions

The reachability sphere map can directly be used to predict the reach-
ability of a given TCP pose. The TCP pose is assumed to be pre-
sented as a homogeneous matrix. According to the reachability sphere
map a frame F is reachable if the discretized correspondent in the
map is reachable. Therefore frame F is mapped to its representation
(~g, i, k) ∈MS in the reachability sphere map.
First, the translation component ~t of the homogeneous matrix F is used
to determine to which sphere with grid coordinate ~g (Equation 4.12)
the frame belongs. Next, the point index i on the sphere is determined
that best represents the frame. This is performed by searching for the
point ~pi on the sphere that has the smallest angle with the z-axis ~z of
the frame F . In Equation 4.32, −~z is used because the frames Fi,αk are
constructed with −~pi as their z-axis.

i = argminj( arccos(<
~pj
‖ ~pj ‖

,
−~z
‖ −~z ‖

>)) (4.32)

<,> denotes the inner product between two vectors. In a last step, the
best fitting discretized rotation about the z-axis is determined. Let Pxy
be a matrix that projects onto the xy-plane.

Pxy =

 1 0 0
0 1 0
0 0 0

 (4.33)

Let Ri,0 be the rotation matrix component of the homogeneous frame
Fi,0 describing the frame for point pi and rotation αk = 0. The x-axis
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(a) (b) (c)

Figure 4.3: Spheres with different reachabilty indices are shown. The reachable points are
shown as line segments. (a) The sphere has a reachability index D = 5. (b) The sphere has a
reachability index D = 45. (c) The sphere has a reachability index D = 98.

~x of frame F is projected onto the xy-plane of the coordinate system
given by Ri,0 using Equation 4.34.

~̂x = Ri,0 · Pxy ·R−1
i,0 · ~x (4.34)

Then the angle β between the projected x-axis ~̂x and the x-axis ~xi,0 of
Ri,0 is determined (Equation 4.35).

β = arccos(<
~̂x

‖ ~̂x ‖
,

~xi,0
‖ ~xi,0 ‖

>) (4.35)

The index k ∈ INo of the discretized angle ( Equation 4.36) represents
the discretized rotation about the z-axis of frame Fi,0 that best matches
frame F .

k = b β
∆o

+
1

2
c; k ∈ No (4.36)

As a result, frame F has its correspondence in the sphere with coordi-
nate ~g ∈ VRobot in the sphere map, point ~pi and rotation αk in the map.
If the tuple (~g, i, k)T ∈ Ms is marked reachable in the map, the exam-
ined frame F is reachable.

4.2.4 Visualization of the model

The information stored in the reachability sphere map is 3D informa-
tion, i.e. positions from IR3 and rotations from SO(3). Due to the
amount of data represented by the reachability sphere map not every
component of the 3D information can be visualized. For visualization
of the reachability for each voxel, a point on the sphere is considered
reachable if one of the corresponding TCP frames Fi,αk is reachable. A
sphere with diameter lc is drawn in the voxel. For each reachable point
on a sphere, a line segment originating in the sphere center is drawn
(Figure 4.3). It perforates the sphere at the corresponding point. The
reachability index can be used to visualize some structure inherent to
the robot arm workspace. This is achieved by coloring the spheres with
respect to their reachability index D or with respect to their reachability
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Figure 4.4: The reachability spheres across the workspace colored with respect to the reacha-
bility index D. The workspace representation is cut as shown in Figure 4.6 for better visibility of
the structure. The regions in the center of the workspace (blue regions) can be reached with the
largest number of different poses.

index with z-orientation Do. In Figure 4.4, the change of the reacha-
bility index across the robot arm workspace is presented. Towards the
interior of the workspace, the index increases and reaches its optimum
in the blue region. Moving then towards the robot arm base, decreases
the index. In Figure 4.5, the spheres are colored with respect to Do.
Again, voxels in the middle of the workspace can be reached with the
most orientations. Compared to Figure 4.4, it can be seen that voxels
in the lower, middle part of the workspace can be reached with fewer
poses than other voxels in middle of the workspace. The visualiza-
tion using Do therefore better reflects the effect of the link limits. The
reachability index Do has a minimum value Do = 0 and a maximum
value Do = 74 for the used robot arm. This shows that the dexterous
workspace for the chosen TCP is empty. The pose of the TCP in Fig-
ure 4.5 is illustrated by the coordinate system attached to the flange of
the robot. The z-axis is drawn as a blue arrow and the y-axis is drawn
as a green arrow.
For better visibility, in some figures the full workspace is cut in half
along the arm as shown in Figure 4.6. Figure 4.7 (top) shows all
spheres with an index D ∈ [0, 10] across the workspace. As expected
spheres with a low value are found on the border of the workspace. Fig-
ure 4.7 (bottom) shows spheres with an reachability index D ∈ [89, 99]
across the workspace. It can be seen that spheres with a high value for
index D lie on a sphere shell around the robot arm base (also compare
with Figure 4.4) with a diameter of approximately half the robot arm
length. Without link limits, a complete sphere shell would be obtained.
The visualization validates the plausibility of the reachability sphere
map. The kinematic capabilities of the robot arm at the border and
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Figure 4.5: The reachability spheres across the workspace colored according to the reachability
index with z-orientations Do. It can be seen that regions at the bottom of the workspace can be
reached with fewer poses due to link limits.

Figure 4.6: The workspace of the robot arm is cut in half along the center axis of the arm. Only
the left half-space is visualized.
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Figure 4.7: The spheres with an index D in the lowest 10% of the reachability index (top) and
in the upper 10% of the reachability index (bottom). The spheres where the most frames are
reachable lie in the center of the workspace. At the border of the workspace only few frames are
reachable per sphere.
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in the center of the workspace appear as expected because the set of
reachable poses in center regions is much larger than at the border of
the workspace.
For Figure 4.4 to Figure 4.7, the map is constructed with 106 random
samples. The spheres have a diameter of 50 mm and 200 points are
distributed on a sphere. The stepsize ∆o for turning the frame around
its z-axis is 30◦. In the next section, the effects of the parameters on
the reachability sphere map are examined.

4.3 Characteristics of the representation

One of the fundamental assumptions of the developed model is that
each reachability sphere describes the reachability characteristics for
the corresponding voxel. For a pose, the voxel and the representative
frame on the sphere are determined using the method described in
Section 4.2.3. If the representative (~g, i, k) ∈ MS in the map is reach-
able, the original pose is predicted to be reachable. The correctness of
this prediction depends on the chosen sphere diameter (voxel size) and
the number of points per sphere. Furthermore for redundant robots,
it is influenced by the number of samples drawn during map build-
ing. In the following the effect of the parameters on the quality of the
reachability sphere map is examined. The number of samples, the
sphere diameter lc, the number of points np on the sphere and the
z-orientation step size ∆o are varied.

4.3.1 The number of samples

For a redundant robot arm, the number of samples affects how well
the reachability sphere map represents the capabilities of the robot
arm throughout the workspace. To examine the influence, maps are
built for the DLR LWR with different numbers of samples. The kine-
matics description of this arm can be found in Section B.2 and the TCP
frame is listed in Section B.7.1. In Figure 4.8 (a) it is shown how many
formerly unknown spheres are examined and added to the map when
the number of samples is increased from 2 · 105 to 2 · 106. The number
of newly introduced spheres decreases strongly once 106 samples are
drawn. Newly added spheres are mostly located at the outer and in-
ner border of the workspace (Figure 4.9). As the number of samples
approaches infinity, the number of newly added spheres approaches
zero. This is shown in Figure 4.8 (a). An evaluation of the representa-
tion quality is provided in Section 4.3.5.
Manipulation tasks take place in the center of the workspace where
the possibilities to reach a region are manifold. The border regions can
only be reached in few poses and are therefore not important for ma-
nipulation tasks. No manipulation will take place there. Nevertheless,
the border of the workspace is well represented.
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(a)

(b)

(c)

Figure 4.8: For the DLR light weight robot, the reachability sphere map is built with different
numbers of samples. (a) The number of new spheres is plotted that are explored when the
number of samples is increase from 2 · 105 to 2 · 106 in steps of 1 · 105. (b) The development of
the mean reachability index Do including z-orientations is shown as the number of samples is
increased. (c) The mean number of visits per sphere is shown for increasing numbers of samples.
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Figure 4.9: The location of new spheres, that are added to the model, is shown. In both cases,
spheres are only added at the inner and outer border of the workspace. (left) The spheres are
shown that are added for a reachability map build with 4 · 105 samples compared to a map build
with 2 · 105 samples. (right) The spheres are shown that are added for a reachability map build
with 1 · 106 samples compared to a map build with 8 · 105. The number has decreased strongly.

In Figure 4.10 color encodes how often spheres are visited during map
building. The map is built with 106 samples. A large number of sam-
ples falls into regions that contain singular configurations of the robot
arm. In singular configurations, large link movements result in small
Cartesian displacements. Spheres that are visited less than 10 times
are only found at the inner and outer border of the workspace. It is
concluded from this analysis that a sample size of 106 is sufficient to
build a valid reachabilty sphere map for the 7 DOF LWR robot arm.

4.3.2 The sphere diameter lc

The dependency of the prediction correctness on the sphere diameter
i.e. voxel size is examined. The reachability sphere map for the DLR
LWR is build as described using six different sphere diameters. All
other parameters remain fixed. np = 200 points are distributed on the
sphere and ∆o = 30◦. Six versions of the capability map result.
105 frames are randomly sampled. A frame is randomly generated at
a random position with a random orientation in the robot workspace.
A random position vector ~t = (x, y, z) ∈ IR3 is drawn from the volume
of a sphere with radius lws

2 containing the workspace. The sphere’s
center equals the center of the voxelization, i.e. the robot arm base.
The position is obtained via drawing random spherical coordinates.
The sphere radius r is drawn from [0, lws]. The angle θ is drawn from
[0, 180◦] and angle φ is drawn from [0, 360◦]. Using these parameter a
Cartesian position can be computed from the spherical coordinates as
described in Equation 4.37.

x = r · sin θ · cosφ
y = r · sin θ · sinφ
z = r · cos θ

(4.37)
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Figure 4.10: The color encodes how often spheres are visited during building the reachability
sphere map for the DLR LWR with 106 samples. Regions that contain singularities are often
visited.

Table 4.1: The prediction accuracy is shown for different reachability sphere maps of the DLR
LWR . The sphere diameter lc is varied. All other parameters remain fixed. 200 points are
distributed on each sphere and ∆o is 30◦. The prediction accuracy degrades with increasing
sphere diameter.

sphere diameter lc in mm 50 80 110 140 170 200
prediction accuracy in % 94.6 93.5 91.9 90.0 89.2 88.3

mean Do 38.2 37.0 34.6 33.7 31.0 29.6

To generate an uniformly distributed random orientation, 1000 points
are equally distributed on another sphere. A point index j is randomly
drawn. A z-orientation γz is randomly drawn from [0, 360◦]. These pa-
rameters are used to construct the rotation part of the frame Fj,γz as
described in Section 4.2.2. Thus frames are obtained, that are uni-
formly distributed across the workspace.
Using the different reachability sphere maps it is predicted whether
the generated frame is reachable. The prediction is compared with the
result of the inverse kinematics. Here, the inverse kinematics iterates
the value in the initial configuration that corresponds to the link la-
beled redundant. Thus, different parts of the C-space are searched for
a solution. The prediction accuracy measures the correctness of pre-
dictions made by the reachability sphere map. The number of correct
predictions is divided by the total number of predictions. To obtain a
percentage, the result is multiplied by 100.
Table 4.1 shows the prediction accuracy for different sphere diam-
eters. The accuracy degrades as the sphere diameter is increased.
Also, the mean reachability index Do is not representative anymore as
the sphere diameter is increased. The highest prediction accuracy is
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Table 4.2: The prediction accuracy is shown for the reachability sphere map of the DLR LWR for
different numbers of points np per sphere. The sphere diameter is lc = 50mm.

np 50 100 150 200
prediction accuracy in % 93.4 94.1 94.5 94.6

achieved with a sphere diameter of 50 mm. With the current imple-
mentation, the diameter cannot be further decreased as the memory
requirements for the reachability sphere map increase cubically with
the decrease of the sphere diameter.

4.3.3 The number of points np per sphere

While keeping all other parameters fixed, the number of points np per
sphere is varied. The sphere diameter lc with the best prediction ac-
curacy as determined in the previous section is chosen. The sphere
diameter is lc = 50mm and the orientation stepsize ∆o = 30◦. The reach-
ability sphere map for the DLR LWR is build with four different values
for np. 105 frames are randomly sampled as described in the previous
section. For each reachability sphere map the prediction accuracy is
computed. In Table 4.2 the dependency of the prediction accuracy on
the points on the sphere is shown. The prediction accuracy does not
change strongly as the number of points is increased from 50 to 200.
To achieve optimal representation, the reachability sphere map is built
with 200 points per sphere for the examined robot arm.

4.3.4 The z-orientation step size ∆o

The step size ∆o for the rotation αk around the z-axis (Equation 4.19)
is varied. It determines the resolution of the angle αk and thus the
number of frames examined per point on the sphere. If ∆o = 360◦

the z-orientation is neglected and only one frame Fi,αk is examined per
point index i. For very small ∆o, the z-orientation is finely sampled and
many frames Fi,αk result.
All other parameters are fixed. The sphere diameter is lc = 50mm and
np = 200 points are distributed on the sphere. The reachability sphere
map for the DLR LWR is build with four different values for ∆o. 105

frames are randomly sampled. For each reachability sphere map the
prediction accuracy is computed. In Table 4.3 the dependency of the
prediction accuracy on the z-orientation step size ∆o is shown. The
prediction accuracy does not change strongly as the number of points
is increased from 15◦ to 60◦. The step size ∆o = 30◦ is determined to be
most preferable. It provides a good compromise between the memory
consumption of the representation and the prediction accuracy.
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Table 4.3: For the reachability sphere map of the DLR LWR , the prediction accuracy is shown for
different values of ∆o (in degrees). The sphere diameter is 50 mm and 200 points are distributed
on a sphere. The prediction accuracy degrades slightly as ∆o is increased.

∆o 15 30 45 60
prediction accuracy in % 94.8 94.6 94.4 94.0

Figure 4.11: The reachability sphere map for the Kuka LWR . The reachability spheres across
the workspace colored with respect to the reachability index Do. The regions in the center of the
workspace (blue regions) can be reached with the largest number of different poses. The TCP
frame is visualized as a coordinate system with the z-axis shown as a blue arrow.

4.3.5 Reachability of TCP poses

The reachability sphere map is developed to predict the reachability of
a TCP pose and thereby facilitate scene reasoning. In this section it
is evaluated in more detail how accurate predictions by the reachabil-
ity sphere map are. The best parameters are extracted from the last
sections, the sphere diameter lc = 50mm, points per sphere np = 200
and ∆o = 30◦. The maps of two redundant robot arms are examined,
that of the Kuka LWR arm (Figure 4.11) and that of the DLR LWR arm
(Figure 4.5). The kinematics description of the Kuka LWR is listed in
Appendix B.3. The two robots use the same modular links but dif-
fer in their arrangement. Furthermore the last axis of the DLR LWR
performs a rotation about the y-axis of the world whereas the Kuka
LWR performs a rotation about the axis aligned with the center axis of
the robot arm. The TCP frames with respect to the world coordinate
system are chosen to be identical for both robot arms (Section B.7.1).
Furthermore the reachability sphere maps for two non-redundant 6
DOF robot arms are examined, the Schunk PowerCube arm and the
Kuka Kr16 industrial robot arm. The kinematics parameters for both
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Table 4.4: The prediction accuracy of the reachability sphere maps is evaluated for two 7 DOF
robot arms and two 6 DOF robot arms using 100000 randomly sampled frames.

DLR LWR Kuka LWR PowerCube arm Kuka Kr16
true pos. 23.1 33.0 19.9 33.0
true neg. 71.5 61.5 73.3 61.5
accuracy 94.6 94.5 93.3 94.5
false pos. 2.5 2.5 3.0 2.5
false neg. 2.9 3.0 3.8 3.0

are listed in Appendix B. A visualization of their reachability sphere
maps can be found in Section 5.1. The Kuka Kr16 is twice as long as
the other arm, therefore a sphere diameter of lc = 100mm is chosen.
105 frames are randomly sampled from the workspace. True positives
are frames that are predicted to be reachable and can also be reached
by the inverse kinematics. If a frame is predicted to be reachable but
the inverse kinematics does not find a solution, this is a false posi-
tive. A true negative is a frame that is predicted to be unreachable
and where the inverse kinematics solver fails to find a solution. A false
negative is a frame predicted to be unreachable but where an inverse
kinematics solution can be found. The sum of the true positives and
the true negatives describes the percentage of correct predictions. The
reachability sphere map has a prediction accuracy of 94.6% for the DLR
LWR and 94.5% for the Kuka LWR (Table 4.4). Therefore the kinematic
capabilities of both redundant robot arms are accurately represented
by the reachability sphere map. The prediction accuracy for the maps
of the PowerCube arm is 93.3% and for the Kuka Kr16 it is 94.5%. Thus
the workspace of all examined robot arms is well represented.

4.4 Visualization of workspace structure

The reachability indices D and Do are directionless measures. They
help to recognize some basic structure, like which voxels are reach-
able in a versatile manner. The visualization scheme using spheres
and lines introduced in Section 4.2.4 represents the simplest manner
of visualizing the data. However, geometric structure present in the
workspace cannot directly be recognized due to the huge amount of
visualized data. In the following, it is examined how the geometric
structure can be made visible.

4.4.1 Analyzing the structures in the workspace

To examine the structure typical for regions of the workspace, a line
of spheres is extracted from the reachability sphere map. The line tra-
verses the whole workspace. In Figure 4.12 (a) reachability spheres
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(a) (b) (c)

Figure 4.12: (a) A line of sphere is extracted from the reachability sphere map of the robot arm.
The line begins on the border of the workspace and moves towards the robot base. (b) A close up
of the spheres with corresponding color table (c) for the reachability index D. The lines occupy
continuous regions. They form structures which change gradually across the workspace.

are shown in a line across the workspace marked by a box. For better
recognizability, a zoomed view is shown in Figure 4.12 (b). When mov-
ing into the workspace (starting with the orange sphere) the number
of points with valid inverse kinematics solutions increases. In detail,
a cone like structure for the orange and light green spheres is ob-
served. Moving further inward, these cones open up and the structure
changes. A ring structure can be observed for the dark blue spheres.
Double cone structures are also possible but not shown in Figure 4.12.
Capturing and approximating the structures using shape primitives
such as cones and cylinders results in immense data reduction. Test-
ing directions with these shape primitives is faster than testing single
inverse kinematics solutions. To determine whether a TCP pose lies
in a cone and thus is reachable, reduces to one computation of the
angle between the shape’s axis and the z-axis of the TCP frame. In
Figure 4.13, the test of a TCP frame with a cone is shown.
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Figure 4.13: For a TCP frame it is tested whether it is represented by the shape primitive.

(a) (b) (c)

Figure 4.14: Cones (a) and two cylinder types to capture structures. (b) Cylinder type C1, (c)
Cylinder type C2

4.4.2 Capturing the structure to construct a map

In this section, it is described how and what shape primitives are fitted
to the data. A measure is introduced for the relative error of an ap-
proximation. It is used to evaluate whether a shape primitive is a valid
representation of the structure captured by the reachability sphere.
Resulting from the observations from the previous section, the shape
primitives presented in Figure 4.14 are proposed. Cones can be used to
approximate cone-like structures (Figure 4.14 (a)). The circular cone
base area is used to represent the data. A cylinder of type C1 (Fig-
ure 4.14 (b)) can capture double cone structures and a cylinder of type
C2 (Figure 4.14 (c)) can capture ring structures. The cylinder of type
C1 uses the two circular base areas to represent the data. The cylinder
of type C2 uses the cylinder shell to represent the data. The process
of fitting the shape primitives to the data involves optimizing the main
axis of the shape primitive and its opening angle to best approximate
the data. The axis is optimized using principal component analysis.
Principal component analysis (PCA) [43] is a powerful tool for analyz-
ing and identifying patterns in data. Given a 3D dataset A, the eigen-
vectors of the dataset A are the principal axes of the data. The first
principal axis describes the direction of the maximum data variation.
The last principal axis is the direction of minimum data variation. Fig-
ure 4.15 shows the principal axes belonging to the two principal com-
ponents for the given 2D data set. To determine which shape primi-
tive best describes the present structure, the PCA is computed for the
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Figure 4.15: A set of data points is distributed in the xy-plane. Principal Component Analysis is
used to perform a dispersion analysis of the data. The resulting main axes of the dispersion are
shown as red arrows.

reachable points on the sphere. If they form a cone like structure, the
principal axes for the first two components span the circular base of
the cone. The last component collects the least variation. Its principal
axis is taken to be the shape’s axis. To fit a cylinder of type C1 to the
data, the eigenvector for the largest eigenvalue is taken as the cylin-
ders axis. To fit a cylinder of type C2 to the data, the eigenvalue for the
smallest eigenvalue is assumed to be the cylinder’s axis. For different
opening angles, it is evaluated how well a shape primitive represents
the data.
The representation quality of a shape primitive is determined by the
number of valid inverse kinematics solutions that the shape captures
(reachable points), and the number of points on the sphere that are
covered, where no inverse kinematics solution can be computed (un-
reachable points). These observations are combined in the computa-
tion of the shape fit error (SFE). The SFE is computed for a shape primi-
tive with axis ~a and opening angle γ (compare Figure 4.16). It is derived
from the relative error made by the shape fitting process to capture all
inverse kinematics solutions available for a sphere. The ideal shape
covers all R(~g) (Equation 4.26) inverse kinematics solutions available
for a sphere ~g ∈ VRobot. Compared to an ideal approximation, a sub-
optimal shape fails to cover r reachable points and wrongly covers u
unreachable points. The relative error of an approximation is defined
by subtracting the ideal approximation value R(~g) from the value for a
suboptimal shape and divide the result by the ideal value R(~g) (Equa-
tion 4.38). The scale factor 100 is introduced to obtain a percentage.

∣∣∣∣(R(~g)− u− r)−R(~g)

R(~g)

∣∣∣∣ =
u+ r

R(~g)
; u, r,R(~g) ≥ 0 (4.38)
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The shape fit error is then defined using this relative error.

SFE(~g,~a, γ) =

{ u+r
R(~g) · 100 if u+ r ≤ R(~g)

100 if u+ r > R(~g)
(4.39)

The SFE is limited to [0, 100]. If a shape has a relative error greater than
1, it is no better approximation than a shape with a relative error of
1. Both are unacceptable. Therefore both receive the maximum SFE
of 100. The SFE allows to classify the data into the given structure
categories.
Figure 4.16(b), (c) show a cylinder of type C1 with two different axes
and opening angles fit to the same data set. While C1 collects all lines,
it also covers many unreachable points distributed across the original
sphere and receives the highest SFE of 100 as a result. The data is op-
timally represented by the second cylinder (Figure 4.16(c)) receiving the
optimum SFE=0. Algorithm 4.2 details the process of fitting a shape to

Algorithm 4.2 FitShape2SphereData(sphere)

/** sphere - contains reachablity information for frames */
/** extract the coordinates of all reachable points on the sphere */
currentData=ExtractReachablePoints(sphere)
/** for a number of iterations */
for i<maxIterations do

/** compute the axis of the shape type to be fitted to the data */
axis=ComputeShapeAxisUsingPCA(currentData)
/** determine the opening angle of the shape
for which the SFE is lowest*/
angle,SFE=FindAngleWithBestSFE(currentData, axis)
diffSFE=SFE-SFElastIteration
/** if the SFE is improved, continue iterating, ε = 1e−8 */
if diffSFE<-ε then

/** remember best values */
bestAxis=axis
bestAngle=angle
SFElastIteration=SFE

else
break

end if
/** The best opening angle does not necessarily cover
all data points. Using the reduced dataset a new shape
axis is computed in the next iteration */
currentData=GetFilteredDataset(currentData, axis, angle)

end for

the data. First the shape axis is extracted using PCA. Then the opening
angle is computed that results in the lowest SFE. Since the previously
computed axis is not correct for the shape with the current opening
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(a) (b) (c)

Figure 4.16: (a) A cone with axis ~a and opening angle α. (b) The Cylinder with a SFE=100 is not
fitted well to the data. (c) The cylinder is optimally fitted to the data used in (b) and has a SFE=0.

Figure 4.17: In the shown map, the best fitting cone replaces the reachability sphere. The color
encodes the SFE. Cones with a high SFE are red. Cones with a low SFE are blue.

angle, the process is repeated until a maximum number of iterations
is exceeded or the SFE value for the shape does not improve anymore.
The shape fitting process can also be seen as a classification of the
data. If the SFE for a shape is near zero, the data has a structure
that is best represented by the respective shape class. The spheres
are replaced by the best fitting cone or the best fitting cylinder of type
C2. In Figure 4.17 and Figure 4.18, a cone shape map and cylinder
shape map is shown. The color encodes the SFE. Shapes with a high
SFE are red and shapes with a low SFE are blue. In the outer zones
of the workspace cones are good approximations and have a low SFE
shown by the blue coloring. In the inner workspace regions cones
have high SFEs. Here, cylinders receive low SFEs (Figure 4.18). For
the remaining workspace, the cylinder hypothesis is inadequate and
the SFE is maximum. Hence, cone and cylinder representations com-
plement each other. These results suggest that it is best to take the
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Figure 4.18: In the map best fitting cylinder (type C2) replaces the reachability sphere. The color
encodes the SFE. Cylinders with a high SFE are red. Cylinders with a low SFE are blue.

shapes with the lowest SFE from all three shape fitting processes. A
mixed map optimally represents all structures found in the workspace
for the DLR LWR .

4.4.3 Evaluation of the shape maps

In this section the quality of the derived reachability shape maps is
evaluated. The reachability sphere map for the DLR LWR computed in
Section 4.2.2 is used. The cone map is a shape map where all reach-
ability spheres are replaced by cone approximations. A cylinder map
of type C1 or C2 is a shape map where all reachability spheres are
replaced by cylinders of type C1 or C2. In the mixed map, the reach-
ability spheres are replaced by the shape with the smallest SFE. The
mean and the standard deviation of the SFE across the shape maps
serves as performance measures. In Table 4.5, the mean SFE is
shown for representing the workspace regions of the DLR LWR with
spheres, cones, cylinders or a mix of shapes.
Using cones to approximate the structure in the workspace already
provides a low mean SFE. Both cylinder maps have a mean SFE sig-
nificantly higher than the cone map. Compared to the cones, only the
inner part of the workspace can be represented well by cylinders, re-
sulting in this high mean SFE. The mean SFE is lowest for the map that
mixes cones and cylinders. The standard deviation has also decreased
strongly. In Figure 4.19, the histogram of the absolute frequency of the



4.4. VISUALIZATION OF WORKSPACE STRUCTURE 63

Table 4.5: The SFE is evaluated for the shape maps for the DLR LWR . The reachability spheres
are replaced by sphere, cones, cylinders C1, cylinders C2, or the best fitting shape. The mean
and the standard deviation of the SFE rounded to one decimal is shown for the resulting shape
map representations. The mean SFE for the mixed map is the lowest. The mixed map represents
the data of the reachability map well. The reachability sphere map is built with sphere diameter
lc=50 mm, 106 samples, np=200 point per sphere and ∆o = 30◦.

SFE spheres cones cylinder C1 cylinder C2 mixed optimal

mean 64.3 19.1 63.6 62.7 8.3 0

std. dev. 39.1 19.9 39.0 40.0 9.9 0

Figure 4.19: Absolute frequency of the SFE for the mixed shape map of the DLR LWR is visual-
ized as a histogram. The occurrence of values of the SFE is counted based on all shape primitives
of the map. The majority of shapes have a low SFE. Therefore the mixed shape map represents
the data well.
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Figure 4.20: The mixed shape map for the DLR LWR robot arm. The color encodes the SFE.
Shapes with a high SFE are red. Shapes with a low SFE are blue. The mean SFE is low and
the data is well represented. Shapes with SFE near 100 are only found at the outside and inside
borders of the workspace and are very rare as Figurefig:histogram shows. They are not present
in this figure.

SFE is shown. The occurrence of values of the SFE is counted based
on all shape primitives of the map. The histogram confirms that the
majority of the shapes fit the data well and have a low SFE. The mixed
map is shown in Figure 4.20.
For the DLR LWR , it can be concluded that the mixed map is a suit-
able representation of the workspace structure and therefore the robot
capabilities in its workspace. In Figure 4.21, a teabox is placed in dif-
ferent parts of the robot arm workspace. From the mixed shape map it
is immediately evident from which direction the teabox is reachable. In
Figure 4.21 (a), the teabox is placed near the border of the workspace
and is only reachable from the front. In Figure 4.21 (b) it is placed in
the center of the workspace and can be reached from the top, the sides
and from below. Therefore the mixed shape map is an adequate tool
for analysis and visualization involving the DLR LWR .
However, the workspace of other robot arms is not as well structured.
In Table 4.6, the mean and the standard deviation of the SFE is shown
for the shape maps fitted to the reachability sphere map of a 6 DOF
Schunk PowerCube arm. The mean SFE for the mixed shape map is
about double the value of the mixed map of the DLR LWR . Therefore,
larger prediction error are expected than for the DLR LWR arm. The
prediction accuracy is shown in Table 4.7. For the Schunk PowerCube
arm, the reachability sphere map is the better representation of the
data as Table 4.4 shows.
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(a) (b)

Figure 4.21: A yellow teabox is placed in different parts of the workspace. Using the mixed
shape map it can immediately be seen from which directions it is reachable. (a) The teabox is
placed at the border of the workspace. It can only be reached from the front. (b) The teabox is
placed in the middle of the workspace. It can be reached from the right and left side and from
above.

Table 4.6: The SFE is evaluated for the shape maps of the Schunk PowerCube arm. The reacha-
bility spheres are replaced by sphere, cones, cylinders C1, cylinders C2, or the best fitting shape.
The mean and the standard deviation of the SFE rounded to one decimal is shown for the re-
sulting shape map representations. The mean SFE for the mixed map is the lowest. However,
it is nearly twice the value for the DLR LWR . Therefore, prediction errors can be expected. The
reachability sphere map is built with sphere diameter lc=50 mm, 106 samples, np = 200 point
per sphere and ∆o = 30◦.

SFE spheres cones cylinder C1 cylinder C2 mixed optimal

mean 99.9 16.1 95.1 97.6 14.0 0

std. dev. 0.1 22.9 13.2 8.4 17.5 0
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4.4.4 Reachability estimation using the mixed shape map

The mixed shape map also describes the capabilities of the robot arm.
It can be used to predict the reachability of a given TCP pose and
thereby facilitate scene reasoning. In this section, the suitability of the
mixed shape map to predict the reachability of frames is examined.
First, Equation 4.12 is used to determine the shape ~g ∈ VRobot, that the
frame belongs to. Then it is determined whether the pose belongs to
the shape. Using Equation 4.40 the angle ζ between the z-axis −~z of
frame F and the center axis ~vs of the shape primitive is computed.

ζ = arccos(<
~vs
‖ ~vs ‖

,
−~z
‖ −~z ‖

>) (4.40)

If the shape is a cone or a cylinder of type C1, the frame F is repre-
sented by the shape if the angle ζ is smaller than the opening angle
β of the cone or the cylinder. To test if a frame is represented by a
cylinder of type C2, also ζ is computed. If ζ is smaller than the opening
angle of the cylinder of type C2 this means that the tested vector ~z is
element of the ground area of the cylinder and not part of the cylinder
shell. Therefore it is not represented by the cylinder of type C2.
The prediction accuracy for the mixed shape map of the DLR LWR ,
Kuka LWR , the PowerCube arm and the Kuka Kr16 is examined. 105

frames are randomly sampled from the workspace. The prediction of
the shape map is compared against the output of the inverse kinemat-
ics.
As shown in Table 4.7, the mixed shape map prediction is less accurate
than the reachability sphere map prediction (Table 4.4) for all robots.
The prediction accuracy of the map for the DLR LWR is reduced by
8%. The prediction accuracy of the Kuka LWR is reduced by 1.6%. The
prediction accuracy of the map for the PowerCube arm is reduced by
4.2% and that of the map for the Kuka Kr16 is reduced by 5.2%.
During the shape fitting process the rotation about the z-axis is dis-
carded. If the last link rotation is not identical with a rotation about
the z-axis of the TCP frame, greater prediction errors are expected as
with the use of the reachability sphere map. This is affirmed by the
results in Table 4.7. The prediction accuracy for the mixed shape map
of the DLR LWR has degraded the most. For the PowerCube arm and
the Kuka Kr16 the predictions by the mixed shape maps are less accu-
rate than those by the reachability sphere map. While the last link of
both robots rotates the z-axis of the TCP, the mean SFE of the mixed
shape maps shows that the reachability structure of the workspace is
not accurately represented by the shapes.
Because of these results and because not every robot has a mixed
shape map with a low SFE, the reachability sphere map is used to
predict the reachability of frames.
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Table 4.7: For 100000 randomly sampled frames, the prediction of reachability by the mixed
shape maps for the DLR LWR , the Kuka LWR , the 6 DOF PowerCube arm and the Kuka Kr16
is compared. The shape fitting process discards the reachability information concerning the
rotation by αk around the z-axis of the frame Fi,0. The predictions for the Kuka LWR , the
PowerCube arm and the Kuka Kr16 are more accurate because its last axis rotates the z-axis of
the TCP frame. The accuracy is highest for the Kuka LWR because the mean SFE of its map is
the lowest.

DLR LWR Kuka LWR PowerCube arm Kuka Kr16
true pos. 23.3 32.2 17.7 21.6
true neg. 62.3 60.7 71.3 67.7
accuracy 86.6 92.9 89.0 89.3
false pos. 11.7 3.3 5.0 5.3
false neg. 2.8 3.8 6.0 5.4

Table 4.8: The computation time for computing reachability sphere maps and reachability shape
maps are shown for different robot kinematics. Furthermore, the memory sizes for the maps
saved in a human readable file are shown.

DLR LWR Kuka LWR PowerCube arm Kuka Kr16
sphereMap

time 3.7 h 1.8 h 3.9 h 4 h
memory 62MB 64MB 40MB 125MB

shapeMap
time 3 min 4 min 2 min 3 min

memory 2.3MB 2.3MB 1.6MB 3.6MB

4.4.5 Memory and computation time

The reachability sphere maps and reachability shape maps are com-
puted offline once for each robot kinematics and a chosen TCP frame
and saved on the hard drive. In Table 4.8, the computation time and
the memory sizes for the maps saved in a human readable file are
shown. The computation time of the reachability sphere map depends
on the time needed to compute an inverse kinematics solution. The
computation time for the reachability shape maps is the time to com-
pute all shape map types based on a given reachability sphere map.
For all four robots, the memory sizes for reachability shape maps are
smaller than those for the reachability sphere maps by a factor be-
tween 20-30.
The sphere maps for the redundant robot arms, DLR LWR and Kuka
LWR , are built with 106 samples, lc = 50 mm, np = 200 and ∆o = 30◦.
The reachability sphere map for the Schunk PowerCube arm is built
with the same sphere map parameters (lc, np,∆o). However, since the
inverse kinematics has an analytical solution, the voxel space can be
traversed iteratively. The same is true for the Kuka Kr16. However, for
the Kuka Kr16 a sphere diameter lc = 100 mm is used. The computa-
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tion times were obtained on a computer with two Intel(R) Xeon(R) CPU
W3520 2.67GHz processors and 6 GB main memory.

4.5 Summary

In this chapter, two representations of the versatile workspace were
presented and analyzed, the reachability sphere map and the reacha-
bility shape map. Both representations are based on the voxelization
of the workspace. To construct the reachability sphere map, voxels of
the workspace are examined using inverse kinematics. For each voxel,
the set of rotations SO(3) in IR3 is discretized and a set of frames is
generated. The reachability of each frame is determined and noted in
the representation. For the DLR LWR , a reachability sphere map build
with 106 samples, a sphere diameter of lc = 50mm, np = 200 points per
sphere and ∆o = 30◦ is a valid representation of the versatile work-
space. The visualization of the reachability sphere map allows the
inspection of the workspace.
By capturing the data with shape primitives, it was shown that direc-
tional structure exists in the workspace of the DLR LWR robot arm.
Continuous regions with similar structural properties can be recog-
nized. However, representing the reachability sphere map by the mixed
shape map is only possible when structure exists in the workspace,
and when this structure can be represented by shape primitives with
a low approximation error.
The capability to predict the reachability of frames was analyzed for
both representations. It was shown that the reachability sphere map
is an accurate representation of the kinematic capabilities of a serial
link robot arm. It provides more accurate predictions than the reach-
ability shape map.
In the following chapters, several applications of the reachability sphere
map to different domains are presented. Furthermore, the reachability
sphere map will be referred to as the capability map of the robot arm,
since it describes a robot arm’s capabilities in its workspace.



5
Visualization and setup evaluation

One field of application for the capability map is the visualization and
inspection of the robot arm workspace. In this chapter, the workspace
is visualized for several robot arms and discussed with respect to po-
tential tasks. Furthermore, the capability map is used to objectively
evaluate the quality of a setup for human robot interaction.

5.1 Robot arm workspace visualization

When no task specification is given, the capability map can be used
to identify categories of tasks the robot is suitable for. Given a task
description, the suitability of the robot can be determined. The visu-
alization of the capability map can be used for workspace and failure
analysis. It can be determined which regions the robot can reach in a
versatile manner.

5.1.1 Visualization of industrial robots

Kuka KR16 The Kuka KR16 [58] is an industrial robot. It is designed
to have a big workspace and to be able to accomplish manufacturing
tasks in its whole workspace. The KR16 is a general purpose robot and
its capability map reflects this. In Figure 5.1, the capability map for
the 6 DOF Kuka KR16 industrial robot is shown. The color encodes
the reachability index D. The index D is high (blue region) throughout
the whole workspace. The TCP frame is shown as a coordinate system
at the flange of the robot. The last axis of the robot performs a rotation
about the z-axis of this TCP. Because of the link limits of ±350◦ for this
axis, the indices D and Do are identical throughout the workspace.
The maximum length of the KR16 is 2.5 times that of the DLR LWR .

69
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Figure 5.1: Capability map is visualized for the Kuka KR16, a general purpose industrial robot.
The color encodes the reachability index D. The reachability index is high (blue region) through-
out the whole workspace. The coordinate system at the flange of the robot shows the pose of the
TCP frame. The x-axis is shown by the red arrow, the y-axis by the green arrow and the z-axis
by the blue arrow.

Due to memory limitations, the sphere diameter for the capability map
of this robot arm is lc = 0.1 m.

Schunk PowerCube arm The capability map for the Schunk 6 DOF
PowerCube light weight robot arm [96] is significantly different. The
workspace is smaller due to the shorter arm length (0.9 m) and the
arm’s capabilities in its workspace are much more restricted. In Fig-
ure 5.2, the capability map is shown. The color encodes the reacha-
bility index Do. The arm can be attached to a mobile base as shown
in Figure 5.3. To indicate the workspace to the front of the robot, the
first rotation axis of the robot arm is shown by a white arrow. The map
for the Kuka KR16 has a mean reachability index Do of 52.8, while the
map for the PowerCube robot arm has only Do = 19.5. Also the maxi-
mum value of this index differs significantly. The KR16 robot has many
regions (dark blue, Do = [78−87]) that it can reach in a nearly dexterous
manner, i.e. from all possible directions. In contrast the PowerCube
arm, has a reachability index of 52 at maximum. As seen in Figure 5.2
the best reachable region for the Schunk arm is at shoulder height. If
the arm should serve as the arm of a humanoid robot and accomplish
human-like manipulation tasks this is clearly undesirable. The hu-
man often manipulates with the arm bend at 90◦. Therefore, the best
reachable region for a manipulator intended for human-like manipu-
lation should be in the region in front of the body. The capability map
is built with sphere diameter lc = 0.05 m, np = 200 points per sphere,
and ∆o = 30◦ z-rotation step size. The last axis of the robot performs a
rotation about the z-axis of this TCP. Because of the discretization and
the link limits of ±170◦ for this axis, the indices D and Do are identical
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Figure 5.2: Capability map for the Schunk 6 DOF light weight robot is shown. The first rotation
axis of the robot arm is shown by a white arrow. The color encoded the reachability index with
z-orientations Do. The mean reachability index is low.

Figure 5.3: Two Schunk 6 DOF light weight robot arms are attached to a mobile base. The TCP
of the right arm is indicated by the coordinate system.
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Figure 5.4: For orbital servicing, the DEOS robot is attached to a carrier satellite. Its purpose is
to capture other satellites. The capability map of the DEOS robot is visualized. It shows where
with respect to the robot arm a satellite is kinematically reachable with the most poses and can
be used for design analysis.

throughout the workspace.

5.1.2 Visualization for specific tasks

DEOS The DEOS robot is attached to a carrier satellite. In orbital
servicing scenarios, the carrier satellite approaches and captures tar-
get satellites either to deorbit them or to prolong their life-time. To
accomplish this task, the robotic arm has to be attached to the car-
rier satellite so that the target satellite can be grasped. In Figure 5.4
the workspace of the DEOS robotic arm is shown for an exemplary at-
tachment of the arm to the carrier satellite. It shows how close the
satellite has to be to the carrier. In the blue region the most TCP poses
are kinematically reachable. Therefore deviations can be compensated.
Especially in space, the dynamics of the robot and satellites have to be
considered because the TCP poses that allow for grasping of the satel-
lite depend on the current robot configuration and the dynamics of the
system.

Justin The humanoid robot Rollin’ Justin’ [29] consists of an hu-
manoid upper body system mounted on a mobile base with variable
footprint. The humanoid upper body is composed of a 3-DOF torso,
two 7-DOF arms, two 4-finger hands and a 2-DOF head. The 7-DOF
DLR light weight robot arm serves as the left and the right arm of the
robot Rollin’ Justin. One task of the humanoid robot Rollin’ Justin is
to perform human task at the table, e.g. to prepare coffee. Using both
arms, various objects have to be grasped, moved, and used in individ-
ual subtasks. Hereby it is necessary to decide which arm to use to
grasp an object. Furthermore, it is necessary to decide where in the
workspace to execute two-handed manipulation tasks. In Figure 5.5
(left) the border of the left and the right arm on the table surface is
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Figure 5.5: The humanoid robot Rollin’ Justin performs tasks at the table. (left) The borders of
the workspaces of the left and the right arm are shown on the table surface using the capability
map. (right) The combined workspace volume is shown that the left and the right arm can reach.

shown using the capability map. The region where two-handed ma-
nipulation is possible lies in the intersection of the two circles. The
whole workspace volume that can be reached by the left and the right
arm is shown in Figure 5.5 (right). It can be seen that the attachment
of the arms is not ideal for two-handed manipulation at table height.
At shoulder height the volume for two-handed manipulation has the
biggest diameter. These kind of insights are valuable for the future
design of humanoid robots.
When each arm of the humanoid robot works in a region that can only
be reached by the respective arm, path planning for each arm can be
done separately and in parallel. The arms do not interfere with each
other. If both arms work in the workspace volume shown in Figure 5.5
(right) their motion has to be coordinated. A task planner can use this
knowledge to structure the task and its execution.

5.2 Workspace Comparisons for Human-Robot In-
teraction

Systems designed to be operated by a human have to provide a human-
machine interface for the user. Systems built for applications like vir-
tual reality simulations or teleoperation require operators to interact
intuitively with the system. Interfaces are needed that display the vir-
tual environment as realistically as possible. For virtual assembly veri-
fication or remote maintenance tasks with haptic feedback, the quality
of a haptic interface is crucial for successful task completion. The
interface should allow flexible interaction with the operator. In the
bi-manual human-robot interface (HRI) [41] shown in Figure 5.6, the
operator uses both hands to directly control the robotic arms by at-
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Figure 5.6: A system with two robot arms attached to a common base provides bimanual haptic
feedback. Two fundamentally different setups can be distinguished (left) the standard configu-
ration, and (right) the ergonomic configuration of the bi-manual haptic interface.

tached handles. The robots can be moved around and provide haptic
feedback from a virtual environment to the user. Assuming a setup
with two robotic arms, it has to be determined how the arms have to
be attached to a base to allow for the best interaction with the opera-
tor. A simple approach is to evaluate various setups using a number
of subjects who judge which system they are more comfortable with.
Alternatively, the setups can be analyzed using functional criteria. In
this section, a method is presented to objectively evaluate the quality
of a setup. The workspaces of the robot and the operator’s arm are
represented using the capability map. Additional statistical data ob-
tained with a portable tracking system allows to restrict the workspace
comparison to the most significant regions.

5.2.1 Detailed problem analysis

Different attachments of the robot arms to a base are possible. Two
fundamentally different setups can be distinguished. Either the hu-
man interacts head-on with the system (Figure 5.6 left) in scenario 1,
or the human is enclosed by the system (Figure 5.6 right) in scenario
2. To evaluate the quality of one scenario with respect to the other, the
most important question is how and what aspects can be compared.
The first method of comparison that comes to mind is to determine
which scenario is easier to use. Psychological questionnaires and ex-
perimental trials carried out by human subjects are typically used to
perform this kind of evaluation. However this method is time consum-
ing, requires a significant number of subjects and provides no quanti-
tative measures of performance.
An objective comparison should evaluate how well the bi-manual hap-
tic interface is able to mimic typical bi-manual manipulation move-
ments. These enable a broad range of applications for the haptic inter-
face. A key point of the interaction is that the bi-manual interface does
not hinder the operator’s desired movements during task execution.
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When the operator wants to reach a position in a certain orientation,
e.g. to install a car battery or turn a screw, the interface should accom-
modate that movement. This requires that the robotic interface covers
the workspace of the human arm as well as possible. For the sys-
tems shown in Figure 5.6, a complete coverage is not possible due to
collisions between the robot arms and the human. Therefore the work-
space overlap has to be quantified. The simplest method of comparison
is to compute the maximum volume that can be swept by the robotic
arm or the operator’s arm e.g. using methods such as presented in
[1] or [93]. One could then determine how much of the volume for
the operator’s arm is covered by the robotic arm. However, a swept
volume only specifies the positions that can be reached. No informa-
tion regarding orientations is represented. This method is inadequate
for cases where, for a set of positions, only certain orientations are of
interest or where a certain region should be reachable in a versatile
manner. Therefore, the workspace is represented using the capability
map.

5.2.2 Kinematic descriptions

In this section the kinematics for the robot arm and the human arm
are specified. They are used for the computation of the capability map.
Special emphasis is placed on the choice of the TCP frame i.e. the
reference frame for the grasp contact.

Robot Arm Kinematics

In both setups, the bimanual haptic interface is composed of two DLR-
Kuka Light-Weight Robot arms. Each arm has seven DOF, mimicking
the human arm kinematics and is therefore well suited for use in hu-
man robot interaction. Both arms have an identical kinematics and
only differ in their attachment to the base. The kinematics parameters
and a visualization of the rotation axes can be found in the appendix
in Table B.2 and in Figure B.2.

Human Arm Kinematics

This section details how the human arm kinematics is modeled. Two
possibilities are discussed. The shoulder link is a spherical joint that
is usually approximated by three serial axes. Tondu et al. [107] and
Klopčar et al. [51] choose the first axis to point normal to the plane of
the back of the human. This version is labeled kinematics 1. In con-
trast, Abdel-Malek [1] chose the first axis to point outwards to the side
of the human shoulder. This version is labeled kinematics 2. Both ver-
sions are shown in Figure 5.7. The position and orientations of the link
coordinate frames is shown. The coordinate axes are color-coded with
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Figure 5.7: Positions of the coordinate systems for the kinematics of the human right arm.
In kinematics 1 (left), the first rotation axis points normal to the plane of human’s back. In
kinematics 2 (right), the first axis points to the side. (The graphics model of the virtual human
provided by LAAS-CNRS was adapted for the individual kinematics.)

the x-axis in red, the y-axis in green and the z-axis (=the rotation axis)
in blue. One difference between these two kinematics is the location of
their singularities. Singularities can be detected using the volume of
the manipulability ellipsoid as discussed in Section 3.1. In Figure 5.8
bright red regions signify Cartesian regions where corresponding con-
figurations can be singular, i.e. the volume of the manipulability ellip-
soid is zero. For kinematics 1, Cartesian regions with singular configu-
rations lie to the front of the human body. For kinematics 2, they lie on
the right side of the right shoulder. For both kinematics identical link
limits are used. The link limits are set as proposed by Kapandji [46].
To determine which kinematics better represents the human arm kine-
matics, the capability map is computed for both versions. Figure 5.9
shows the regions that received a reachability index D in the top 20%
of the value range (blue) of the reachability sphere map for kinematics
1 and 2. It can be seen that whereas kinematics 2 conveniently turns
the singularities out of the area where manipulation most commonly
occurs, it also rotates the best reachable region out of that area. This
is clearly undesirable especially since Howard et al. [40] showed that
the region the human hand moves in during every day tasks mostly
lies to the front of the body. It is plausible to assume that the human
arm’s abilities are best in this region.
The wrist is also a spherical joint that has to be modeled by a sequen-
tial alignment of axes. The same analysis as for the shoulder can be
performed. However due to the resolution of 0.05 m of the capability
map and a comparably small distance from the wrist to the palm of
the hand, different types of wrist kinematics do not introduce signifi-
cant changes with respect to the general location of the best reachable
region. Therefore this analysis is not performed. For the workspace
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Figure 5.8: For human arm kinematics, Cartesian regions that contain singularities are visual-
ized using the minimum volume of the manipulability ellipsoid. A small value is shown in red,
large values are represented by blue. If the volume is zero, the corresponding arm configuration
is singular. The human is viewed from above. The workspace is cut in half at shoulder height.
(Left) Singularities for human arm kinematics 1 are shown. (right) Singularities for human arm
kinematics 2 are shown.

Figure 5.9: The best reachable regions are shown for the human right arm modeled with kine-
matics 1 or kinematics 2. Regions that received a reachability index D in the top 20% (blue) of
the value range are visualized for (left) kinematics 1 and (right) kinematics 2.
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Table 5.1: DH parameters and link limits for the human arm kinematics 1.

i αi−1 ai−1 di θi ll ul
0 0 0 0 0 -30 180
1 0 90 0 -90 -50 180
2 0 90 0.27 m 0 -110 80
3 0 -90 0 0 0 145
4 0 90 0.22 m 0 -85 90
5 0 -90 0 90 -45 15
6 0 90 0 90 -85 85

analysis, kinematics 1 is chosen. It corresponds to the sequence and
orientation of the link coordinate systems as detailed in Tondu et al.
[107]. The kinematics (Table 5.1) are expressed using the Denavit-
Hartenberg (DH) parameters as given by Craig [19]. The length of the
limbs is provided by Ian Howard. It was computed from real data using
the method proposed by Howard et al. [40].

The Selection of the Tool Center Point

The selection of the TCP is essential for the comparison of the work-
spaces. The importance of its selection can be easily recognized when
considering the task of hitting a nail with a hammer. The structure
and shape of the workspace of the arm with a tool attached is different
from the workspace of the arm alone. The reason for this is the differ-
ent location of the frame of manipulation, the TCP. The selection of the
TCP is reflected in the structure of the capability map.
For both scenarios the TCP for the human operator is chosen so that it
lies at the point in the palm where the handle (compare with Figure 5.6)
is grasped. The TCP of the robot arm differs between the two setups.
The goal of the workspace comparison is to evaluate how well the robot
arm is able to achieve the positions and orientations requested by the
human operator. Therefore the pose of the robot TCP has to match the
pose of the human arm TCP at the point of contact (Figure 5.10 a). The
robot arm TCPs are shown as coordinate systems in Figure 5.10 (c) for
scenario 1 and in Figure 5.10 (d) for scenario 2. The human arm TCP
is visualized in the human’s palm.

5.2.3 Workspace comparison

Using the TCPs defined in the last section, the capability maps are
computed for the human arm and the robot arm. A visualization of a
map for the robot arm is shown in Figure 5.11 and the map for the hu-
man arm is shown in Figure 5.12. The color encodes the reachability
index D. The capability map for the right arm of the human matches
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(a) (b)

(c) (d)

Figure 5.10: To interact with the robot, the human hand grasps a handle attached to the robot.
(a) A hand grasps the handle in scenario 1. (b) The base coordinates system is shown for the
workspace analysis. The TCPs of the robot and the human arm are shown for (c) scenario 1 and
(d) scenario 2 .

Figure 5.11: The capability map of the Kuka LWR robot arm in scenario 1 is shown. The spheres
are colored according to their reachability index D.
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Figure 5.12: The capability map of the human right arm kinematics 1 is shown. The map is cut
in half for better visualization. The observer sees the human from the side and looks at the best
workspace for the right arm. The spheres are colored according to their reachability index D.
The human is best able to grasp objects with the elbow bent at 90◦.
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the intuitive expectations. The space where the most frames are reach-
able, lies in front of the body and can be reached with the elbow link
bent at 90 degrees.
In the following analysis it is assumed that the pose of the human arm
base TworldH and the pose of the robot arm base TworldR in the world co-
ordinate system are known. In order to compare the workspaces each
TCP frame, i.e. (~g, i, k) ∈ Ms, that is labeled reachable in the human
arm’s capability map is transformed into the respective robot arm’s
coordinate system resulting in the TCP frame FRTCP .

FRTCP := FRTCP (~g, i, k) = (TworldR )−1 · (TworldH · THsphere(~g) · Fi,αk) (5.1)

THsphere(~g) is specified in Equation 4.23. FRTCP is then mapped to the best
fitting frame in the robot arm’s capability map. Let fR(F ) perform the
mapping of a frame F ∈ H given in the robot base frame to its capability
map representation (~g, i, k) ∈MS as detailed in Section 4.2.3.

fR : H →MS ;F 7→ fR(F ) := (~g, i, k) (5.2)

The function h(~a)

h : MS → {0, 1} ;~a 7→ h(~a) :=


1 if ~a reachable according

to capability map
0 if ~a not reachable

(5.3)

is 1 if the tuple ~a ∈ MS is reachable according to the capability map
and 0 if it is not reachable. The percentage of reachable frames for the
human that can also be reached by the robot quantifies the overlap
between the workspaces of the human and the robot arm. Let VHuman
be the voxelization of the capability map for the human arm, then the
overlap OV is expressed in Equation 5.4.

OV =

∑
~g∈VHuman

∑
i∈Np

∑
k∈No hH(~g, i, k) · hR(fR(FRTCP (~g, i, k)))∑

~g∈VHuman
∑

i∈Np
∑

k∈No hH(~g, i, k)
· 100 (5.4)

The subscripts indicate on which capability maps the functions are
based, H for human and R for robot. The (~g, i, k) is only drawn from
the capability map of the human. The capability maps of the human
and the robot have the same parameters (lc, np, ∆o). A method for
computing the overlap is summarized in Algorithm 5.1. The robotic
system itself is stationary. However the position of the human ~tH ∈ IR3

can vary with respect to the position of the robot system ~tR ∈ IR3. The
comparison is performed for a discrete set of positions of the human
with respect to the robotic system. Both arms of the human should
be able to interact with their corresponding robot arms equally well.
Therefore the human shoulders are parallel to the robot system and
the orientation of the human with respect to the robot is not changed.
For the same reason the human is centered with respect to the base
where the robots are attached.
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Algorithm 5.1 CompareWS(rMapHuman,rMapRobot,TworldH ,TworldR )

/** rMapHuman - reachability map for human arm
rMapRobot - reachability map for robot arm
TworldH , TworldR - pose of human and robot in the world
FHTCP , FRTCP - homogeneous matrices to represent

poses of the human or robot TCP */

nrOfRobotReachableFrames←0
nrOfHumanReachableFrames←0
/** for all spheres of the capability map of the human */
for all spheres Si of rMapHuman do

/** for each frame contained on the sphere
in a coordinate system placed at human arm base */
for FHTCP ∈ Si do

/** is the frame reachable */
reachable4Human←rMapHuman.IsReachable(FHTCP )
if reachable4Human then

nrOfHumanReachableFrames++
/** transform into robot coordinate system */
FRTCP ← (TworldR )−1 · TworldH · FHTCP
/** map to its representation in the robot capability map */
F̃RTCP ← rMapRobot.MapFrame(FRTCP )
reachable4Robot←rMapRobot.IsReachable(F̃RTCP )
if reachable4Robot then

nrOfRobotReachableFrames++
end if

end if
end for

end for
/** compute workspace coverage */
coverageValue→ nrOfRobotReachableFrames

nrOfHumanReachableFrames · 100
return coverageValue
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Figure 5.13: The human is symbolized by the skeleton. The TCP frames of the robot arm and
the human arm are shown as coordinate systems. The human arm TCP is in the human’s palm.
The human interacts with the two armed robot system in (left) scenario 1 and in (right) scenario
2.

5.2.4 Evaluation

In this section the method is evaluated. First the comparison is per-
formed across the whole reachable workspace of the human arm. Re-
cently, experiments as reported by Howard et al. [40] have shown that
the locations of the wrists during daily tasks are concentrated in a
subspace of the reachable workspace. The influence on setup com-
parisons when using this subspace is also demonstrated. Scenario 1
(Figure 5.13 left) and scenario 2 (Figure 5.13 right) are evaluated using
Algorithm 5.1. The main difference between the two scenarios is the
pose of the human operator’s shoulder with respect to the robot arms
and the attachment of the handle to the end of the robot arm. Between
the two scenarios, the handle is rotated by 90 degrees.

Comparison without workspace restrictions

In scenario 1 the right arm of the human interacts with the left arm
of the two-arm robotic system. In scenario 2 the right arm of the hu-
man interacts with the right arm of the robotic system. The base of
the two-arm robotic system is positioned at the origin of the global or
extrinsic reference coordinate system. The extrinsic coordinate system
is displayed in Figure 5.10 (b). It is placed in the center of the base
block below the robotic arms, i.e. 0.29 m below the robot arms’ bases.
The human’s shoulder is repositioned in the xy-plane of the extrinsic
coordinate system with respect to the robots. Movement in the x di-
rection is equivalent with the human shoulder being displaced normal
to the line connecting the two robot bases, i.e. moving away from the
robot bases. Movement in the y direction is equivalent with varying
the height of the human shoulder with respect to the robot bases. For
each position of the human’s shoulder, it is determined how well the
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Figure 5.14: Coverage of the workspace of the human right arm by the robot arm. The analysis
is performed for different positions of the human in the xy plane of the global coordinate system
(Figure 5.10 (b)). (top) The workspace coverage values are shown for scenario 1. (bottom) The
workspace coverage values are shown for scenario 2. The maximum value of coverage (dark red)
is nearly the same as shown by the color scale maximum. However, the (x,y) position of the
maximum differs.
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Figure 5.15: The human is placed in the scenario 1 for optimal workspace overlap. The bases
of the robot arm and the human arm are at the same position. The robot and the human are in
constant collision. Therefore this placement is impossible.

robot arm covers the human arm’s workspace.
The results for scenario 1 (Figure 5.14 (top)) are compared with the
results for scenario 2 (Figure 5.14 (bottom)). Although the maximum
workspace coverage value does not differ significantly between the two
scenarios, its peak location does. In scenario 1 at maximum 59 % of
the human workspace can be covered by the robot arm. In scenario 2,
63% coverage is obtained. So far, collisions between the human and
the robot are not taken into account. However, such collisions affect
the results of the analysis. In scenario 1 the maximum coverage oc-
curs when the human shoulder is placed at location (x, y) = (0m, 0.29m)
as shown in Figure 5.15. This is to be expected since the bases of
the robot arm and the human arm coincide and the coverage is opti-
mal. However at this location both arms are permanently in collision.
Therefore the human operator cannot be positioned at the location of
this maximum. The x-component of the human’s shoulder position has
to be greater than x = 0.5m to avoid collisions with the robot and still
be able to interact with the robot arms as shown in Figure 5.13. Thus,
the maximum coverage decreases to ≈ 43% at (0m, 0.5m). In scenario
2 the maximum coverage occurs for the human shoulder at location
(0.35m, 0.35m). Figure 5.13 (right) shows the human assuming this po-
sition. No collisions occur. In fact any position with an x-component
x ≥ 0.2m is feasible and the human can operate the system as shown in
Figure 5.13 (right). The z-component in extrinsic coordinates is fixed in
these analyzes. It was chosen so that the human is centered between
both robotic arms.

Comparison with a restricted human workspace

The previous section evaluated the coverage of the entire reachable
workspace of the human arm by the robotic arm. However, as recent
research shows [40] only a limited portion of the human arm’s work-
space is used in every day life. When analyzing virtual manufacturing
scenarios, additional ergonomics aspects can also be considered. Es-
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Figure 5.16: The distribution of the wrist position was recorded with a portable tracking system
as the subject went about his daily routines outside of a laboratory setting. (Source: Howard et
al. [40])

pecially situations where a person manipulates above the head should
rarely occur in manufacturing tasks. The postures that the human
would have to assume in these cases receive bad ergonomic scores
[73]. If they are executed often, they result in damage to the muscu-
loskeletal system of the person involved.
For these reasons the comparison of the workspaces is restricted to
that region primarily used by the human. Howard et al. [40] col-
lected data from subjects who wore a portable motion tracking system
to record their arm movements as they went about their daily routines
outside of a laboratory setting. No specific instructions were given and
the system allowed the subject to engage spontaneously in normal ev-
eryday tasks. The results show that the majority of wrist positions
fall within a region close to the body and also mostly to the front of
the body. In Figure 5.16 two views of the dataset for one subject are
shown.
For the following comparison, the dataset is used with the permis-
sion of Howard et al. [40]. The position of the palm is extrapolated
from the wrist position. Therefore, the region shown in Figure 5.16 is
slightly enlarged for the comparison. The comparison is restricted to
that part of the human arm’s workspace that overlaps with the natu-
ral movement data. Only the corresponding spheres from the human
arm capability map are used. They are shown in Figure 5.17. Thus,
the robot arm only has to cover this restricted workspace. For the re-
stricted workspace, comparison results are shown in Figure 5.18 (top)
for scenario 1 and in Figure 5.18 (bottom) for scenario 2. It can be seen
that again the height of the maximum (region in dark red) does not dif-
fer significantly. In scenario 1 the maximum coverage is 66.8% and in
scenario 2 the maximum coverage is 64.4%. The Cartesian region where
the human can be positioned to reach these maxima is collision free
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Figure 5.17: The capability map for the human right arm is restricted to the volume that overlaps
with the natural human movement data. The resulting filtered capability map is shown in two
views.

in both cases. Scenario 2 is recommended, since the area of the region
where the maximum coverage occurs is larger. Furthermore its exten-
sion in the y-direction is larger. This implies that the shoulder height of
the operator is allowed to vary over a greater range without the need to
reposition the user. Thus different operators can more easily achieve a
good performance with the system if they are located at a fixed position
with respect to the robotic system. Additionally, in scenario 2 the dan-
ger of the robot hindering the human by being in the way is reduced.
In conclusion, the ergonomic scenario 2 is more attractive. Especially
since the location of the maximum coverage is approximately the same
in the comparison across the whole workspace and in the comparison
using the workspace filtered by the natural human movement data.
Therefore, this system setup has greater potential for more general
tasks.

5.3 Summary

This chapter demonstrated the application of the capability map for
visualization of robot workspaces and setup evaluation. It was shown
that the capability map supplements the design process for human or
robot arm kinematics. The results concerning which serialized human
arm kinematics better represents a human’s capabilities can be used
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Figure 5.18: The coverage of the commonly used workspace of the human right arm by the robot
arm is shown. The analysis is performed for different positions of the human in the xy plane of
the global coordinate system (Figure 5.10 (b)). The workspace coverage values are shown for the
human in (top) scenario 1 and (bottom) scenario 2.
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when building humanoid robots.
Furthermore, a method was presented to objectively evaluate robotic
setups in which a human operator directly interacts with two robotic
arms. The method was applied to two scenarios. The choice of data
for the comparison was discussed and its effect on the evaluation was
demonstrated. The placements of the human shoulder can be iden-
tified for which good performance is achieved. The proposed method
can therefore be used as a quality criterion for optimizing human-robot
interaction setups.



90 CHAPTER 5. VISUALIZATION AND SETUP EVALUATION



6
Application in planning

This chapter demonstrates the use of the capability map in planning
tasks. In the first application a robot is placed to perform a given
trajectory. Its suitability for the task is evaluated. In the second ap-
plication the capability map is used to obtain good parameters for a
path planner and bias the path planning process. The methods are
evaluated using the mobile humanoid robot Rollin’ Justin (Figure 6.1).

6.1 Placement for 3D trajectories

Kitchen tasks require fetching and carrying things, as well as manip-
ulating and interacting with the environment. To accomplish these
tasks, the robot has to use knowledge about the specific environment
and knowledge about its own capabilities. It has to know how to open
a cupboard or how well it can grasp objects. The robot also has to
decide when to use which part of its body. Not only the question when
to use the upper body is important but also when to use the mobil-
ity of the base. To execute simple trajectories with the robot arm it
is not always necessary to use the mobile base. On the contrary, if
the mobile base is unnecessarily used, e.g. while opening a kitchen
closet, additional forces have to be compensated. These forces are due
to the fixed grasping of the door handle and the navigation errors of
the mobile base.

6.1.1 Detailed Problem Analysis

In service robotic applications, unconstrained pick and place tasks are
often encountered. In these tasks, the robot moves an object from a
start to a goal position. To perform these tasks, standard path plan-

91
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Figure 6.1: The DLR mobile humanoid robot Rollin’ Justin. Two DLR LWR arms are attached to
an upper body. The omni-directional mobile base has a variable foot print.

(a) (b)

Figure 6.2: When opening a closet, the hand that grasps the door handle is constrained to move
on a specific trajectory. In the images, a coordinate system is fixed in a specific pose on the
door handle. When the door is opened, it constantly changes its orientation while moving on a
circle segment. The images show two views of this trajectory. (a) Trajectory for opening a closet
is shown. (b) A zoomed view is shown.
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ning algorithms can be queried for a suitable path. However, not only
unconstrained, freely planable paths are needed. Interaction with the
environment is subject to physical constraints. For opening a closet,
the TCP of a robot arm is constrained to move on a circular path (Fig-
ure 6.2). If the TCP frame is attached to the handle of the closet, the
orientation of its z-axis (blue arrow) constantly changes. The radius
and orientation of this path depend on the design of the closet. The
trajectory that the TCP has to follow is called a constrained trajectory.
Due to the robot arm kinematics and link limits, executing constrained
trajectories is not possible at arbitrary positions in a robot arm’s work-
space. Depending on a robot arm’s capabilities or the arm’s attach-
ment to an upper body, some mobile manipulators may not be able to
perform certain tasks at all. A method is needed to analyze the capa-
bilities of a robot given an environment and typical tasks performed
therein. Therefore, a method is needed that works for generic 3D tra-
jectories ∈ IR3 × SO(3) of the robot arm TCP and determines where
these trajectories are situated in a robot arm’s workspace. Given this
information, a mobile manipulator can be placed easily. In this sec-
tion, the capability map is used to determine for given 3D trajectories,
where these trajectories are possible in a robot arm’s workspace.

6.1.2 The search pattern

If a closet has to be opened, the end-effector grasps the handle and
moves on an arc (Figure 6.2). The trajectory followed by the TCP is
assumed to be given as a sequence of frames Fl, l > 0. A frame Fl is
represented as a homogeneous matrix

Fl =

(
Rl ~tl
~0T 1

)
(6.1)

with Rl = (~xl ~yl ~zl) ∈ SO(3) and ~tl ∈ IR3 describing rigid body rotation
and translation. The frames are defined with respect to a local ref-
erence system. The set of frames {Fl|l = 1..n} is mapped to an equal
number of discrete representations in the capability map. For sim-
plicity it is assumed that the trajectory lies in the first octant of a 3D
reference frame. Thus, the discretized representation pl of a frame is
element of IN5. Hence, the set of frames is mapped to a search pattern
p =

{
pl|l = 1..n, pl ∈ IN5

}
using M(Fl),

M(Fl) = pl = (s1, s2, s3, i, k)T ∈ IN5

with (s1, s2, s3)T ∈ IN3, i ∈ Np, k ∈ No
(6.2)

which is an adaptation of the method specified in Section 4.3.5. The
pattern is derived in the following manner.
For each position ~tl of the Cartesian trajectory it is first determined
which voxel and accordingly which sphere it maps to with respect to
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Figure 6.3: Discretization of a trajectory. (Left) 2D view of mapping positions along the trajectory
on the sphere map grid. (Right) Mapping of the frame orientation to a point on the sphere.

the reference point of the trajectory. Figure 6.3 (left) shows a trajec-
tory superimposed on the workspace discretization of the reachability
sphere map. The 2D projection is chosen for illustration. The filled
spheres symbolize the spheres the trajectory is mapped to. Let f be the
function that maps ~tl to a sphere in the pattern given the discretization,
i.e. the sphere diameter lc of the underlying the reachability sphere
map. Each sphere is represented by an offset (s1, s2, s3)T with respect
to the reference point of the pattern as shown in Figure 6.3 (left) for a
2D case.

f(~tl) : IR3 → IN3 ~tl 7→ f(~tl) = (s1, s2, s3)T (6.3)

In a second step, the z-axis ~zl of frame Fl is mapped to the best fitting
point with index i on the sphere.

i = argminj∈Np(arccos(< ~zj ,−~zl >)) (6.4)

Let Fi,0 be the coordinate system attributed to the point with index i
and nominal orientation α0 = 0 around ~zi,0. Note that ~zi,0 = ~zi,mo =
~zi and ‖ ~zi ‖=‖ ~zl ‖= 1. The mapping described by Equation 6.4 is
illustrated in Figure 6.3 (right).
For the computation of the reachability sphere map the orientation
around the z-axis of a frame (Figure 4.2(b)) is discretized into mo steps.
In the last part of the mapping process the orientation around the z-
axis ~zl of frame Fl is mapped to one of these mo orientations. The x-axis
~xl of frame Fl is projected onto the xy-plane of the coordinate system
defined by the frame Fi,0.

~̂xl = Ri,0 · Pxy ·R−1
i,0 · ~xl (6.5)

Let Pxy be the projection matrix for projection onto the xy-plane. The
angle β between the projected axis ~̂xl and the x-axis of frame Fi,0 is
then computed.

β = arccos

(
<

~̂xl

‖ ~̂xl ‖
,

~xi,0
‖ ~xi,0 ‖

>

)
(6.6)

The angle β is discretized using the discretization step width ∆o of the
orientation around the z-axis.

k = b β
∆o

+
1

2
c; k ∈ No (6.7)
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Figure 6.4: The trajectory is represented as a sequence of frames which is mapped to its discrete
representation in the sphere space. (Left) The large coordinate systems represent the original
trajectory frames. The smaller frames represent the mapped frames in the sphere space. (Right)
In a zoomed view, the red lines on the spheres show which points the frames are mapped to.

In Figure 6.4 an example trajectory is shown for opening a cupboard
and the search pattern in the space of spheres. In Figure 6.4 (left) the
large coordinate frames represent the original trajectory frames. The
smaller frames represent the mapped frames in the sphere space. In
Figure 6.4 (right), the red lines show to which lines on the sphere the
frames are mapped.

6.1.3 The search for the trajectory in the workspace

Cross-correlation is a standard technique in signal processing to de-
termine the shift between two signals. The signals are specified over
the same domain, e.g. IR → IR for audio signals over time or IR2 → IR
for gray images. The result of a correlation is a signal in the same
domain, showing peaks at those locations where the two signals best
match each other. This idea is used to find the search pattern p in
the reachability sphere map MS. The search is done by correlating the
capability map with the given search pattern p. Figuratively speaking
the pattern is moved across the capability map and compared with
the data present. MS is the 3D data structure which represents the
capability map (Equation 4.25). A discretized frame is represented by
~a ∈MS. The function h(~a),

h : MS → {0, 1} ;~a 7→ h(~a) :=


1 if ~a reachable according

to capability map
0 if ~a not reachable

(6.8)

is 1 if the tuple ~a is reachable according to the capability map and 0 if it
is not reachable. (Equation 5.3 is repeated here for convenience.) The
search pattern p is obtained as described in the last section. Equa-
tion 6.9 defines the correlation between the capability map and the
pattern if the pattern is added to voxel ~g, i.e. the reference point of
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the pattern is placed there. Let ~pmin ∈ IN3 be the lower left corner
and ~pmax ∈ IN3 be the upper right corner of the smallest axis-aligned
bounding box enclosing the pattern p in the voxel space.

(MS ∗ p)(~g) =

|p|∑
l=0

h(fs(g1, g2, g3) + ~pl) (6.9)

fs : IN3 → IN5;~g 7→ fs(~g) = (g1, g2, g3, 0, 0)T ∈ IN5 (6.10)

To get a description of how well the pattern fits across the whole capa-
bility map, g1, g2, g3 iterate over the whole capability map MS minus
the dimension of the bounding box for the 3D search pattern p. The
pattern is moved across the whole capability map by adding the pat-
tern element pl to the current starting point (sphere) ~g ∈ VRobot in the
3D sphere space and thus trying to fit the pattern there. The result
(MS ∗ p) is a 3D representation that describes how well the trajectory
fits across the capability map. The places are searched in the robot
arm workspace where the pattern fits completely and the correlation
value equals the pattern length. In Figure 6.5 the correlation result
is shown for opening a closet at a certain height. Justin’s torso is in
its zero position where all active torso link values are zero. The trajec-
tory is at about shoulder height (Figure 6.5 (top)). Since the trajectory
is composed of 20 frames, the correlation result ranges from 0 to 20.
To open a closet only correlation results are of interest that lie on the
plane that also contains the closet handle. In Figure 6.5 (middle) and
(bottom) the correlation results for this plane are interpolated and color
coded. Note that the positive x-axis indicates the front of the robot. A
value of 20 (dark red) means all frames of the trajectory are predicted
to be reachable if the trajectory is started at the corresponding point
in the robot arm workspace. It can be seen that the region in which
the trajectory can be performed completely is composed of two parts,
which lie to the front and to the back of the robot Justin.
Note that with this method, the pattern will not be found if it occurs
in the image in a different orientation. The standard solution to this
is to rotate the pattern using a fixed stepsize. Accordingly, the original
Cartesian space trajectory can be rotated before being mapped to the
pattern.

6.1.4 Computing the robot base position

The capability map is computed with respect to the robot arm base.
Thus if the base is moved, the map moves accordingly. Once the posi-
tion of the trajectory is computed in the workspace with respect to the
robot arm base, the position of the mobile manipulator with respect to
the world can be determined easily.
The z-axis of the world system is assumed to point upwards. The trans-
formation from the old to the new robot base position involves only a
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Figure 6.5: The humanoid robot has to open a kitchen closet. (top) The trajectory is drawn
beginning at the closet handle. Only correlation results are of interest that lie on the plane
that also contains the closet handle. The correlation results for this plane are interpolated and
color-coded. (middle) A relief view of the correlation result is shown. (bottom) A contour view of
correlation result is shown.
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rotation R around the z-axis of the world system and a translation ~t in
the xy plane. Let ~t = (x, y, z)T be a translation and R be a orientation
of the search pattern with respect to the map space for which the cor-
relation of Equation 6.9 reaches the maximum. Equation 6.11 gives
the target position of the arm base in a reference frame world, e.g. the
world base. The placement of the mobile base follows directly.

Tworldarm = Tworldobject · (T armobject)
−1 = Tworldobject

(
R ~t
~0T 1

)−1

(6.11)

TAB are homogeneous matrices that describe the pose of frame B in
coordinates of reference frame A.

6.1.5 Computational complexity

The computational costs of performing the trajectory search in position
space are compared with the costs of performing the search in the fre-
quency domain. For cross-correlation in image processing two images
are first transformed into frequency domain using the Fourier transfor-
mation. In frequency domain, the spectra are multiplied component-
wise and the result of the multiplication is transformed back using
the inverse Fourier transformation. The capability map and the search
pattern are the correspondences of the images. It is known that the
fast discrete Fourier transform (FFT) using Cooley-Tuckey’s radix-2
algorithm has a time complexity of O(N log(N)), where N is a power
of factor 2. Let N3

D = n3
c denote the volume of the discretized robot

workspace. The complexity is highest if the search pattern has the di-
mension of the workspace, i.e. NPA = ND. According to the number
of multiplications for a single FFT [17], the total cost for two Fourier
transformations and for the multiplication in the frequency domain
involved are

Costfreq = |O|N3
D log2(N3

D) + |O|N3
D (6.12)

where |O| = np · mo with np points on the sphere and mo the number
of discretized orientations around ~z. Note that the cost of the Fourier
transformation of the reachability map is neglected because it can be
computed once and used for different planning tasks. In the case of
the discretization of Justin’s arm workspace with side length ND = 40
spheres and |O| = 200 · 12 orientations (np = 200, mo = 12), a total
number of Costfreq = 2.6 · 109 multiplications is needed.
In contrast, the number of multiplications for general cross-correlation
in the space domain is |O| ·N3

D ·N3
PA = 1.5 · 1011, whereas a side length

NPA = 10 spheres of the pattern is assumed. Contrary to the general
case, significant optimizations can be applied here because only a few
entries in the trajectory volume are non-zero. Let |p| denote the length
of the discretized trajectory, i.e. the number of pattern elements then
the multiplications amount to

Costspace = (ND −NPA)3 · |p| . (6.13)
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Figure 6.6: The trajectory has to be correctly discretized. Otherwise, it is indistinguishable from
one of lower frequency. This effect is called aliasing. From this follows that the correlation results
of the trajectory search are not valid for the original trajectory. (Left) The aliasing effect is shown
for a 2D trajectory where the sampling violates the Nyquist Shannon sampling theorem. The
squares represent sampling points. When reproducing the trajectory the gray line is obtained
instead of the original trajectory. (Right) A trajectory is shown that has an amplitude that is
smaller than the sphere diameter.

Only a sub volume of the robots capability map (ND − NPA) is consid-
ered, because the trajectory is requested to be completely within the
workspace of the robot. Whenever |p| = NPA, the costs reach their max-
imum at NPA = ND/4. In the case of Justin’s arm, this corresponds
to NPA = 10 and only Costspace = 2.7 · 105 multiplications1, which are
four orders of magnitude fewer then assessed for the correlation with
the Fourier transformations. Therefore, the correlation is done in the
space domain.

6.1.6 Discretization issues

To unambiguously represent the task-specific 3D trajectory template,
the trajectory has to be sampled according to the Nyquist-Shannon
sampling theorem [97]. If this theorem is violated and too few frames
characterize the trajectory, the trajectory cannot be correctly repro-
duced and the pattern does not correctly represent the trajectory. In
this case the trajectory is aliased with a less frequent one. In Figure 6.6
(left) a 2D trajectory is represented by too few samples. When repro-
ducing a continuous trajectory from the sample points, the gray line is
obtained instead of the original trajectory. Using only the three sam-
ples indicated by squares, the two trajectories cannot be distinguished.
From this follows that the search results for the sampled trajectory are
not valid for the original trajectory and prediction errors occur.
For trajectories with low amplitude i.e. amplitude < sphere radius (Fig-
ure 6.6 right) it is assumed that the interpolation assumption holds
which underlies the capability map. This states that at each point of
a voxel the same orientations are reachable as on the sphere located
at its center. Thus, the pattern can be generated as described in Sec-
tion 6.1.2 provided that the trajectory is correctly sampled.

6.1.7 Brute-force search vs. model-based search

Without a capability map, a brute force search can be used to deter-
mine whether a given trajectory can be performed by the robot. The

1since both volumes are binary, the multiplication can be replaced with a simple
binary AND operation.
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Table 6.1: Results of the brute force search are compared with the capability map-based ap-
proach. The terms samples and predicted are synonymous with potential candidates. The brute
force search wastes time in regions where the trajectory does not exist. The ratio of evaluated to
valid trajectories is much better for the search based on the capability map.

brute force search capability map search
samples valid % predicted valid %

1 · 106 39807 3.98 119 96 80.7

start point for the trajectory is randomly sampled using a uniform dis-
tribution. However a sampled start point only contributes to the com-
puted success rate if the position of the first and last frame of the
trajectory lies within the hull of the reachable workspace of the robot
arm. Each trajectory is checked for reachability using inverse kinemat-
ics. A relative success measure is computed by determining how many
trajectories are predicted by the capability map to be reachable and
how many are reachable as determined by the inverse kinematics. In
Table 6.1 the likelihood is reported to find the arc for opening a closet
at the height shown in Figure 6.5 (top) for the torso in its zero position.
Results are reported for the brute force search and the capability map
based search for the trajectory in one orientation. Both approaches
are evaluated on the same computer. The results for the brute force
approach show that a lot of effort is wasted on regions where the tra-
jectory does not exist. While the presented efficient approach needs
1.6 s to find and verify the 96 trajectories, the brute-force approach
finds the same number of valid trajectories in 20 s. Considering that
the trajectories may still be inconsistent or colliding, the advantages of
the model-based approach are emphasized.

6.1.8 Validation of solutions

The correlation process itself is very efficient. It needs 25 ms on a
computer with Intel Pentium D 3 GHZ processor and 2 GB main mem-
ory to find all occurrences of an arc trajectory with 20 frames in one
orientation within the capability map. Only the correlation results are
considered that lie in an area of the workspace that is of interest for
the given task, i.e. at the height of the closet handle. However, the
solutions have to be validated because of the following reasons:

Generalization assumption

The correlation process provides a number of starting points (the cen-
ter of a voxel) for trajectories. The trajectory started at these positions
needs to be checked for actual reachability since the capability map
assumes that entries in the map generalize over the complete voxel.
It is assumed that at each point of a voxel the same orientations are
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Figure 6.7: The algorithm for the search of trajectories in the capability map is shown at a
glance. Inputs and outputs are listed.

reachable as on the sphere located at its center, i.e. that the reacha-
bility structure does not change for small increments in space. How-
ever at the inner and outer border of the workspace or at the border of
structurally different regions, this assumption may be violated. As Sec-
tion 4.3 shows the prediction accuracy is 94.6% for single TCP frames.
For sequences of frames, the prediction accuracy may be lower.

Collision-free and consistent trajectories

Using the capability map, the reachability of the trajectory is indepen-
dently evaluated for the individual frames. It is not guaranteed that the
robot is able to follow a smooth trajectory between these frames, e.g.,
in the vicinity of singularities reconfigurations of the robot arm will oc-
cur. Therefore each trajectory is checked for consistency by setting a
threshold on the allowed link-wise change between two configurations
for two adjacent path steps. Currently, the threshold is empirically
chosen and is set to 23◦ (0.4 rad). However if an execution time is given
for the trajectory, the threshold should be dependent on the maximum
link velocities and the time. Additionally, the trajectory is checked for
collisions of the robot with the environment and for collisions of the
robot arm with the head or the upper body.
The complete algorithm for searching 3D trajectories ∈ IR3 × SO(3) in
the capability map is summarized by Figure 6.7.
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Table 6.2: The arc trajectory is searched for the torso in configuration C1 and C2. The same
closet is opened. For C1 about half the number of solutions are predicted as for configuration
C2. Only a third of the number of valid solutions found for C2 is valid for C1. The column reconf.
states how many solutions involve reconfigurations of the arm. The column colliding reports the
number of solutions that are in collision with the environment.

nr. of solutions
torso conf. predicted real reconf. colliding valid

C1 119 96 70 82 7
C2 204 195 97 157 27

6.1.9 Robots working in the kitchen

In a kitchen, a robot should above all be able to open closets, to extract
dishes, or fill the dishwasher. Placements of the mobile manipulator
(Figure 6.1) are computed using the presented method and validated
for opening the door of a closet (Figure 6.2). The trajectory search is
only performed for the original orientation of the trajectory. In Ta-
ble 6.2 results are reported for two different configurations C1 and C2
of the movable upper-body of the robot Rollin’ Justin. The results show
significant differences for the two torso configurations. For configura-
tion C2 more reachable solutions are found. Therefore the presented
approach is able to determine a beneficial torso configuration for a
given task. In Figure 6.8 a robot placement for each torso configuration
is shown. After the validation step, a task planner can choose from a
set of valid solutions. For both configurations, the number of collisions
is striking. Since the workspace of the arm is nearly symmetric (com-
pare Figure 6.20) solutions are found in front of and behind the torso
of Justin. In the latter case Justin has to be placed inside the kitchen
closets to execute the trajectories. Furthermore, often collisions of the
arm and the head occur. The results for the check for consistency and
freedom of collision are a proof of concept. The inverse kinematics cur-
rently computes independent solutions for the individual frames and
does not exploit the null space of the 7-DOF robot arm to avoid col-
lisions. For trajectories that are currently invalid, it is expected that
there exist alternative arm configurations that lead to consistent and
collision-free solutions. The time consumption is measured for each
part of the algorithm for the torso in configuration C1. The compu-
tation times are summarized in Table 6.3. The test is performed on
a computer with Intel Pentium D 3 GHZ processor and 2 GB main
memory.

6.1.10 Following the motion of a tumbling satellite

In the future, robot arms could be attached to carrier satellites to per-
form servicing missions (Figure 6.9) in space for defect satellites or
satellites that have run out of fuel. At the DLR, the ESS demonstrator
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(a) (b)

Figure 6.8: Rollin’ Justin is placed to open a closet. Solutions are shown for two configurations
of the torso. (a) The torso is in configuration C1. (b) The torso is in configuration C2.

Table 6.3: Computation times for the steps of the algorithm to search for 3D trajectories ∈
IR3 × SO(3). The test is performed on a computer with Intel Pentium D 3 GHZ processor and 2
GB memory.

correlation reachability reconfiguration collision total
25 ms 1564 ms 0.113 ms 31 ms 1620 ms

[59] simulates the capture of a tumbling target satellite using a robot
mounted on a carrier satelite. However, the Kuka industrial robot used
in the ESS demonstrator cannot be mounted on a real satellite because
it is too heavy. A Kuka LWR weights only 14 kg. Therefore, it presents
an alternative which could be mounted on a satellite.
In the following the capability of the Kuka LWR to follow the motion
of a tumbling satellite is examined. The presented method for 3D tra-
jectory search is used to determine whether the Kuka LWR arm can
follow the motion of a tumbling satellite. A coordinate system attached
to the center of gravity of the satellite is assumed to tumble on a circu-
lar path as depicted in Figure 6.10. The trajectory of the satellite can
appear in different orientations with respect to the robot. Therefore,
50 representative orientations are generated. On a sphere, 50 points
are distributed uniformly using the algorithm by Saff et al. [94]. The
points are used for the generation of frames Fi, (i = 1..50) that de-
scribe the orientation i of the trajectory in the 3D Cartesian space. The
frames are generated as already detailed in Section 4.2.2. The result-
ing frames are shown in Figure 6.11. Each frame Fi is used to reorient
the trajectory T = {Tj |j = 1..n} before the search.

∀ Tj : Ti,j = Fi · Tj (6.14)

The trajectory is searched in each of the orientations. In Figure 6.12
the number of reachable trajectories is shown that are found for each
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Figure 6.9: The ESS demonstrator simulates the approach and docking of a robot arm to a
tumbling satellite. A Kuka industrial robot approaches a satellite and captures it using the
capture tool developed at the DLR.

Figure 6.10: To capture a defect satellite, a robot arm attached to a carrier satellite has to be
able to follow the tumble motion of the defect satellite. A coordinate system is attached to the
center of gravity of the tumbling satellite. The trajectory of the center of gravity is shown.
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Figure 6.11: The trajectory is searched in 50 different orientations. (left) The new base frames
for the trajectory are visualized as coordinate systems. (right) The TCP frame of the robot is
shown attached to the robot arm. It is used to build the capability map. The base frame of the
robot is located in the first link. It is also shown by a coordinate system.

orientation i of the trajectory with respect to the robot arm base. It
can be seen that for orientations 10 to 13 of the trajectory with respect
to the robot arm only a quarter of the solutions are found compared
to orientation 16 to 19. In Figure 6.13 the number of consistent tra-
jectories are shown, i.e. trajectories without reconfigurations. From
the results, it is evident that the task can be performed with the given
robot. The orientation of the tumbling satellite with respect to the
robot has significant influence on the number of solutions. Possibili-
ties extracted from Figure 6.13 are to position the robot arm so that
the trajectory appears in orientation 16 to 19 or 41 to 44 in the robot
arm’s workspace. It should be noted that also the dynamics of the
robot and the satellite have to be considered. In space, the movement
of the robot causes the carrier satellite to move. Therefore, not all con-
sistent trajectories will fulfill the dynamics constraints. However, the
results can directly be used to construct a new demonstrator for the
laboratory that includes the Kuka LWR .

6.2 Human-like Path Planning

People have strong expectations of how other persons act and move in
a given situation. This may be a source of confusion when a human
interacts with humanoid robots, and the robot does not move in a pre-
dictable or expected manner. If a humanoid robot like Rollin’ Justin
(Figure 6.14) uses awkward arm configurations (Figure 6.15), or trajec-
tories to perform tasks, the human may feel uncertain and insecure.
The principles of path planning, especially probabilistic path planning
have been extensively examined in the last decade. However, the paths
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Figure 6.12: For each orientation i (x axis) of the trajectory the number of voxels of the capability
map is counted (y axis) where the trajectory can be executed.

Figure 6.13: For each orientation i (x axis) of the trajectory, the number of consistent solutions
is counted (y-axis). Large differences in the number of solutions exist. Therefore the orientation
of the robot with respect to the trajectory is very important to successfully capture the satellite.
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Figure 6.14: DLR humanoid robot Justin looks quite human-like and friendly when the arms are
in a configuration that appears comfortable for a human. Justin can move in a very human-like
manner, but it can also perform movements that look very awkward for a human observer.

Figure 6.15: Justin places cubes on the table using both arms. While the left arm is able to put
the cube on the table, it is in an awkward configuration. The elbow is bent inwards. This arm
configuration is impossible for a human.

that the planner computes are unpredictable and may seem awkward.
While the problem of getting to an object is solved, the solution may not
be comprehensible for the human observer or coworker. This section
shows that the choice of an arm’s target configuration strongly effects
planning time and how human-like a planned path appears. Human-
like goal configurations are found using a criterion from ergonomics
research, the rapid upper limb assessment (RULA ) [73]. By restrict-
ing the planning process to the regions of the robot arm workspace
where human-like manipulation is possible, planning times and mo-
tion quality are enhanced. The knowledge of which pose of the TCP can
be reached in a natural manner is encapsulated in a restricted capa-
bility map for the robot arm. This map is also used to determine which
grasps from a given grasp set are usable for human-like manipulation.
The proposed concepts are evaluated on the humanoid robot Justin.
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6.2.1 The RULA evaluation criterion

Rapid Upper Limb Assessment (RULA ) is a survey method for the fast
and easy evaluation of ergonomic conditions at manual workplaces
[73]. RULA introduces a scoring system which investigators employ
for a selection of possibly critical work postures in order to assess the
resulting stresses and strains on the human musculoskeletal system.
Here, RULA is used to identify human-like arm postures for humanoid
robots under the assumption that natural and convenient human arm
postures try to avoid stresses and strains and thus feature good RULA
scores. The Institute of Man-Machine Interaction (MMI) at RWTH Uni-
versity Aachen implemented RULA for the Virtual Human in order to
evaluate ergonomic conditions at manual workplaces. The assess-
ment is carried out for a single work posture, yielding a score Srula
∈ {IN|1 . . . 7}, where a lower score stands for an ergonomically better
posture. For the assessment, the positions of the upper arm, lower
arm and the wrist position are evaluated in terms of rough angles
between the arm segments and anatomical planes of the body. The
angles yield intermediate scores for each of the positions, based on
which the summarized RULA score Srula is extracted from tables. The
anthropomorphic multi-agent approach [28] provides the basis to cal-
culate RULA scores for humanoid kinematics. The Virtual Human and
other humanoid kinematics are modeled as kinematic trees. An an-
thropomorphic multi-agent system model of Justin was implemented
for ergonomic evaluation (see Figure 6.16) by MMI. This system is used
to evaluate robot arm configurations of Justin using RULA .
For the adaption of RULA to anthropomorphic robot arm kinematics,
arm configurations are penalized which operate beyond the scope of
human joints. If the joint values grow beyond human-like limits, the
strict function Pstrict instantly yields a penalty of 7. The penalties are
combined with regular RULA scores based on the maximum function:

Sstrictrula = max {Srula, Pstrict} (6.15)

The joint limit penalties are an artificial extension to the original as-
sessment, and are not necessary for the evaluation of human workers
at manual workplaces. In Figure 6.16-Figure 6.18, the upper arm,
lower arm and wrist scores are shown as well as the final RULA scores
Srula (first green value), Sstrictrula (second green value) for some exemplary
arm postures. Only the RULA score for the arm is computed and the
configuration of the upper body does not influence the RULA score.
An arm configuration with the elbow bent at 90◦ and the upper arm
and wrist as shown in Figure 6.16 receives the best RULA value 1. In
Figure 6.17 the robot grasps something from above. The RULA score 5
indicates an awkward arm configuration. In Figure 6.18 the robot arm
is in a configuration that is impossible for a human arm. Therefore,
the RULA score with strict penalty of 7 is assigned.
To verify the adaptation of the RULA scores for Justin, the mean RULA
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Figure 6.16: MMI’s anthropomorphic multi-agent model of Justin in an ‘Acceptable’ posture. An
arm configuration with the elbow bent at 90◦ receives the best RULA value 1. The scores of the
upper arm, the lower arm and the wrist are combined to obtain the final RULA value for the right
arm of Justin.

Figure 6.17: MMI’s anthropomorphic multi-agent model of Justin in an ergonomically strenuous
posture. The RULA score 5 indicates an awkward arm configuration.
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Figure 6.18: MMI’s anthropomorphic multi-agent model of Justin in a posture beyond the scope
of human joints. Therefore, the RULA score with strict penalty of 7 is assigned. The normal
RULA scoring system is not able to deal with this configuration because the human arm is not
able to assume this configuration.

value is computed for the voxels of the workspace discretization intro-
duced in Section 4.2.1. During the computation of the capability map
at maximum 100 configurations are saved per voxel and evaluated us-
ing the adapted RULA implementation by MMI. For each configuration,
the corresponding TCP pose is mapped to a voxel of the workspace dis-
cretization. With the computed RULA score, a new mean is computed
for the voxel. As expected the regions with the best mean RULA val-
ues lie around the arm configuration where the elbow is bend at 90◦.
The mean RULA value across the robot arm’s workspace is shown in
Figure 6.19. From studying the RULA scoring system, the mean RULA
value 3 is expected for natural looking arm configurations.

6.2.2 Combining RULA and capability maps

Combining RULA and capability maps is straightforward. In the map
building process, the reachability of a set of TCP frames is determined
using an inverse kinematics solver. If the inverse kinematics is suc-
cessful and returns a robot configuration as solution, its RULA score
is computed. If the score is above a given threshold the configura-
tion is ignored. After the map is built, the TCP frame is labeled un-
reachable if no configuration was found with a RULA score below the
threshold. The resulting map is called RULA restricted capability map
(rulaCapMap).
Figure 6.20 (right column) provides two views of the rulaCapMap. The
map is build by restricting the data to frames reachable with config-
urations that have RULA values between 1 and 4. In Figure 6.20 the
original capability map (left) is compared with the rulaCapMap (right).
The manipulation capabilities predicted with the rulaCapMap are less
versatile. In Figure 6.20 (c) and (d) the best reachable regions in the
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Figure 6.19: For arm configurations with a TCP pose distributed across the whole workspace
the RULA score is computed. The TCP pose is mapped to a voxel of the workspace discretization.
Using the RULA score a new mean is computed for the voxel. The mean RULA value is shown for
voxels across the robot arm’s workspace. The color encodes the mean RULA value multiplied by
100.
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capability map and the rulaCapMap are compared. In the first case,
the region is symmetric about the robot arm since the robot arm has
no muscles or tendons inducing discomfort or strain. In the second
case, the robot bends the elbow at 90◦ to reach the best region. This
reflects the intuition with respect to the preferred region a human ma-
nipulates in. The region is a subset of the preferred region a human
uses during every day tasks [40].

6.2.3 RULA and the inverse kinematics

The inverse kinematics solver [54] for the 7 DOF arm of Justin starts
its search and optimization from a given initial configuration. Pro-
viding the inverse kinematics with a configuration with a good RULA
value should result in its solution receiving similar RULA values. Dur-
ing the creation of the rulaCapMap a database of configurations with
good RULA values is created. This database uses the same voxeliza-
tion of the workspace as the capability map. For each of these voxels at
maximum 10 configurations with RULA values in a given value range
[min,max] are stored.
Given the pose of the TCP, the rulaCapMap is used to determine if it
can be reached with a configuration with a RULA value ∈ [min,max]. If
that is the case, a configuration is retrieved from the respective voxel of
the database and provided as initial configuration to the inverse kine-
matics. The TCP corresponding to this initial configuration is close to
the desired solution, therefore a solution is likely also natural looking.
This approach is called RulaIK and is summarized in Algorithm 6.1.
The RulaIK is compared with the same inverse kinematics algorithm
provided with arbitrary initial configurations, called the iteratedIK. The
link of the robot arm declared as redundant is randomly sampled. The
resulting configuration is provided as initial solution to the inverse
kinematics. Since the inverse kinematics involves local optimization
and search, no solution may be found if the initial configuration is too
far from a solution. Therefore, the process is repeated n times. In Al-
gorithm 6.2 the iteratedIK is defined.
To compare the two approaches, 104 frames are randomly sampled and
the rulaIK and the iteratedIK are used to compute inverse kinematics
solutions. For the corresponding robot arm configurations, the RULA
value is computed. For the whole set of configurations the occurance
of each RULA value is determined. In Figure 6.21 it is shown that
inverse kinematics solutions obtained with Algorithm 6.1 have signifi-
cantly improved RULA values. In Figure 6.21 (a) the mean RULA values
are reported for the iterated inverse kinematics where RULA values are
not considered. In Figure 6.21 (b) the used database contains only con-
figurations with RULA values ∈ [1, 4] and in Figure 6.21 (c) it contains
only configurations with RULA values ∈ [1, 3]. As can be seen, not for
all TCP poses the good RULA value for the configuration found during
the map building process can be reproduced. Out of the configuration
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(a) (b)

(c) (d)

Figure 6.20: For the robot’s right arm, the original capability map (left column) is compared
with the rulaCapMap (right column). To build the rulaCapMap, configurations that do not have
a RULA score between 1 and 4 are ignored. This restriction has the effect that the number of
reachable voxels and their reachability index is reduced. (c) The best reachable region in the
capability map is symmetric about the arm’s longitudinal axes. (d) For the rulaCapMap the best
reachable region lies in front of the body. It can be reached with the elbow bent at 90◦.
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Algorithm 6.1 RulaIK(T, sol, rMap, rConfDB)

/** T - Tcp Pose
sol - ik solution
rMap - RULA restricted capability map
rConfDB - configurations with RULA score ∈ [min,max] */
/** if pose is reachable */
if rMap.IsReachable(T) then

/** get voxel coordinates */
index←rConfDB.GetVoxelIndex(T)
/** get nr of configurations saved in voxel */
nrOfConfs←rConfDB.GetNrOfConfs4Voxel(index)
/** for a random configuration in voxel
(each configuration only used once) */
for nr ∈ range(nrOfConfs) do

/** get configuration */
initConf ← rConfDB.GetConf4Voxel(index, nr)
/** solve IK with configuration as initial solution*/
solFound ← ikSolver.Solve(initConf, T, sol)
/** if solution found, report success */
if solFound then

return true
end if

end for
end if
return false

Algorithm 6.2 IteratedIK(T, sol, nrOfRedundantLink)

/** T - Tcp Pose
sol - IK solution
nrOfRedundantLink - index of the redundant link */
/* vector of length robot DOF */
initSol←defaultInitSol
for i=1 to nrIterations do

/** sample redundant DOF */
initSol[nrOfRedundantLink]←getRandomLinkValue()
/** solve IK with initial solution*/
solFound ← ikSolver.Solve(T, initConf, sol)
/** if solution found, report success */
if solFound then

return true
end if

end for
return false
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(a) iteratedIK

(b) rulaIK with RULA values ∈ [1, 4]

(c) rulaIK with RULA values ∈ [1, 3]

Figure 6.21: The RULA scores for configurations computed with the iteratedIK and the rulaIK
are compared. For each inverse kinematics the percentage of configurations with a RULA score i
(i = 1..7) is shown. (a) The solutions of the iteratedIK are evaluated. About 59% have RULA scores
≥ 5. (b) The solutions of the rulaIK are evaluated that uses a rulaCapMap and configuration
database with RULA values ∈ [1, 4]. About 40% of the solutions have RULA scores ≥ 5. (c) The
solutions of the rulaIK are evaluated that uses a rulaCapMap and configuration database with
RULA values ∈ [1, 3]. Only 20% have RULA scores ≥ 5.
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set saved for the respective voxel not necessarily the configuration is
used that leads to the best possible RULA evaluation. A solution for
this can be to compute a configuration with the inverse kinematics and
then evaluate it using RULA . Several initial solutions for the inverse
kinematics can be tried till a certain quality threshold is met. Further-
more, the RULA score can be included as an optimization criterion in
the inverse kinematics algorithm. That however is a matter for future
work. Here, it is shown that the presented concept already leads to
substantial improvements.

6.2.4 RULA sampling for path planners

Not only the start and goal configuration of a task should be human-
like. Also the path should resemble a path a human would take. Nor-
mally, a RRT path planner uses a sampling routine that uniformly
samples robot arm configurations from the configuration space. With-
out smoothing, the paths often are awkward and take roundabout
routes. Even with smoothing and due to the fact that the whole range
of valid link configurations is sampled, the found paths are often not
human-like. Therefore, the sampling routine is adapted to use the
database of configurations with RULA values in a given value range
[min,max]. Instead of directly drawing a configuration from configura-
tion space, a voxel of the database is drawn randomly. From the set of
associated configurations, one is drawn randomly and represents the
return value of the sampling routine. This sampling method is referred
to as RULA sampling. It represents a non-uniform sampling strategy in
configuration space. The advantages and disadvantages of this method
are examined in the next section.

6.2.5 Evaluation

The task of the robot is to place cubes in a predefined pattern on the
table. Equally sized cubes are chosen to concentrate on the concepts
to be explored instead of on grasping and object recognition issues.
For each cube the position to which it is moved is predetermined by
the given sequence of subtasks. A subtask where the robot arm moves
to the next cube is called transit task. A subtask where the robot arm
transports a cube to its destination is called transfer task [3]. A set of
40 precision grasps is generated for a cube placed on a table surface
using the method described by Borst et al. [16]. This method com-
putes grasps by only considering the isolated hand. In Figure 6.22,
two grasps out of this set are shown. The reachability of the respective
grasps is checked when the specific task is known, i.e. from where to
move a cube to which location.
The rulaCapMap and the configuration database are used to enhance
path planning speed and facilitate the choice of goal configurations for
a robotic arm. In all experiments, the mobile humanoid robot Rollin’
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Figure 6.22: An object can be grasped from different directions and with a variety of finger
configurations. Two precision grasps are shown for the DLR 4-fingered hand and a cube. The
colored spheres represent the point contacts of the fingers.

Figure 6.23: Justin has to transport the cubes from their initial to their goal positions. (left) The
initial state of the task is shown. (right) The right arm has transported the cubes to their goal
positions. The red cube indicates the cube moved last.

Justin is used. For path planning, the BiRRT planner [56] implementa-
tion in OpenRAVE [22], an open source planning architecture, is used.
The RULA values are assessed with the help of MMI’s anthropomor-
phic multi-agent model of Justin. For the planning experiments the
rulaCapMap based on configurations with RULA values ∈ [1, 4] is used.
While the map restricted to RULA values ∈ [1, 3] leads to more natural
arm configurations, it is also very restrictive, i.e. fewer poses are con-
sidered reachable. To be able to use this map, a task planner is needed
that determines the subtask sequence e.g which cube is put where or
whether to reposition the upper body. For the experiments reported
here, it is assumed that a sequence of subtasks is given and the torso
configuration is fixed.

A rough outline of the arrangement of planning steps is shown in
Algorithm 6.3. In Figure 6.23 the initial and the final state of the task
are shown. Only the right arm moves in this task. The initial position
of the cubes and their target positions are assumed to be given. For
each cube the reachable grasps are determined. Here, the rulaIK fil-
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Algorithm 6.3 PlanTask(cubes2Move, goal4Cubes, graspSet)

/** cubes2Move - current positions of cubes
goal4Cubes - goal positions for cubes
graspSet - a set of precision grasps for a cube */

/** for each cube */
for cube ∈ cubes2Move do

/** determine the reachable grasps */
graspList← getReachableGrasps(graspSet,cube)
/** get the number of reachable grasps*/
nrOfGrasps← graspList.size()
/** for each reachable grasp */
for grasp ∈ graspList do

/** plan path to grasp cube */
solTransit=planTransitPath(grasp, cube)
if not solTransit then

/** if no path found, discard grasp */
continue

end if
/** perform grasp */
applyGrasp(grasp,cube)
/** plan transport to goal position */
solTransfer← planTransferPath(cube, goal4Cube)
if solTransfer then

/** if successful proceed to next cube */
break

end if
if not solTransfer and isLastGrasp(grasp) then

return false
end if

end for
/** release cube */
releaseObject(cube)

end for
return true
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ters out grasps that are estimated to be unreachable with a human-like
arm configuration. The grasp has to be reachable at the initial cube
position and at its target position as no regrasp operation is allowed.
However, the path planning task to reach a grasping position can fail.
Therefore, potentially all grasps from the list of reachable grasps are
tried to complete the task, i.e. move to, grasp and transport all cubes.
The choice of the grasp can also be integrated in the path planner [23],
however the focus in this section is on a proof of concept and not on
obtaining the fastest system possible. Moreover, the aim is to let a task
planner decide which grasp to try first. If only few grasps are available
because of collisions this can be an indicator for a difficult path plan-
ning problem. A task planner can then decide to remove a disruptive
obstacle to gain more freedom of action.
The results shown in Figure 6.24 and Figure 6.25 are averaged over
50 runs of the individual transit and transfer subtasks. The task is
solved with four different setups of the planner. In the first setup the
task is solved with a planner using the iteratedIK and the standard
sampling (dark blue bars). Standard sampling here means uniform
random sampling. The inverse kinematics is used to determine start
and goal configurations to reach a selected grasp at the initial and the
final position for a cube. In the second setup, the IKFast method [21]
from OpenRAVE is used as inverse kinematics and standard sampling
is used (cyan bars). To use IKFast one link of the arm is declared
to be redundant. For the remaining 6 DOF, IKFast solves the inverse
kinematics analytically. If necessary, samples for the redundant link
are drawn from configuration space to find a solution and the inverse
kinematics algorithm is restarted. However, the current robot arm con-
figuration is tried as initial solution first. If this is already a human-like
configuration the IKFast solution is probably also human-like. There-
fore, this method is conceptually in between the iteratedIK and the
rulaIK. In the third setup, the rulaIK and standard sampling is used
(yellow bars). In the fourth setup, the rulaIK and RULA sampling is
used (red bars). In Figure 6.24, it can be seen that in all cases the
proposed rulaIK with RULA sampling outperforms the iteratedIK with
standard sampling. Only for cube4 transfer and cube5 transfer do IK-
Fast with standard sampling and rulaIK with RULA sampling perform
comparable. For all other cases rulaIK with RULA sampling is faster
and provides better mean RULA values for the trajectories. Computa-
tion time here denotes the sum of path planning time and the path op-
timization time. Both are shown in the graph. The computation times
were obtained on a computer with two Intel(R) Xeon(R) CPU W3520
2.67GHz processors and 6 GB main memory. In Figure 6.25 the mean
RULA values are averaged over the length of the transfer and transit
trajectories. Each configuration of the trajectory and its RULA value
contribute to the mean RULA value of the trajectory. It can be seen
that the best trajectory has a mean RULA value of 3. The plausibility
of this result is verified by Figure 6.19. Here, it is shown that the mean
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Figure 6.24: The task is solved with four different setups of the planner. For each setup and
each subtask the computation times are shown. The computation time is split in planning
and optimization time. The colors symbolize the individual setups. (Blue) Standard sampling
and iteratedIK are used. (Cyan) Standard sampling and the IKFast are used. (Yellow) Standard
sampling and the rulaIK are used. (Red) RULA sampling and the rulaIK are used. In all cases the
rulaIK with RULA sampling outperforms the iteratedIK with standard sampling.

RULA value is always above 2. The region with a mean RULA value up
to 3 is quite small. Therefore at best a mean RULA value of 3 or 4 can
be expected.
The trajectories computed with the method rulaIK with RULA sampling
have the best mean RULA values. The results for the setup rulaIK and
standard sampling (yellow bars) show that RULA sampling definitely
needs to complement the rulaIK. Both, the planning and the smooth-
ing step of the path planning algorithm are sped up. Results for the
combination iteratedIK and RULA sampling are not shown here. If
the inverse kinematics chooses an unnatural goal configuration, it can
happen that no path is found because of the workspace restrictions
introduced through the RULA sampling.
In general, guiding the planning with knowledge representations re-
sults in a speed up of the planning process and an improvement of the
quality of manipulation motions. This effect is also observed by Hauser
et al. [37] for planning the walking motions for a humanoid robot on
uneven terrain.

6.3 Summary

This chapter demonstrated the use of the capability map in planning
applications. First, an algorithm was presented that used the capa-
bility map to position a mobile manipulator to execute 3D trajectories.
Trajectories are localized in the capability map using correlation and
then validated. Once a trajectory is found, the corresponding mobile
manipulator position is computed. To illustrate the method the hu-
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Figure 6.25: The mean RULA value is averaged over the length of the trajectories and over
all planning runs of a subtask. The colors symbolize the individual setups. (Blue) Standard
sampling and iteratedIK are used. (Cyan) Standard sampling and the IKFast are used. (Yellow)
Standard sampling and the rulaIK are used. (Red) RULA sampling and the rulaIK are used.

manoid robot Rollin’ Justin was positioned to open a kitchen closet. In
general, the trajectory search method can be used to evaluate how well
a robot is suited for specific environments or tasks. The determined
number of solutions for the trajectory can be assumed to correlate with
the ability of the robot to cope with disturbances e.g. objects left be-
hind by a human, or a human standing in the way.
The method is especially suited to decide whether or not a task can
be performed without using the mobile base. This information can be
used by a task planner to decide which planner or execution compo-
nent to trigger.
In a path planning task, the RULA criterion from ergonomic research
was used to determine the naturalness of robot arm configurations.
More natural start and goal configurations and the RULA sampling
routine were provided to a state of the art RRT path planner. The path
planner was then able to plan more human-like robot arm motion. The
computation times and the mean RULA value along the trajectory were
significantly improved. By restricting the planner to human-like start
and goal configurations the humanoid robot’s movement capabilities
are restricted. It may be that no human-like start or goal configuration
is found due to obstacles. In these cases, a task planner is needed to
determine which obstacles to displace.
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7
Conclusion and Outlook

This chapter provides concluding remarks on the achievements of this
thesis as well as an outlook on potential future applications and future
research.

7.1 Conclusion

In this thesis, the versatile workspace of a robot arm describes with
which orientations of the end effector a position can be reached. A
general representation of the versatile workspace, the capability map,
was introduced. The capability map discretizes the workspace into
voxels and determines for each voxel how it can be reached and how
close it is to the dexterous workspace. For each voxel, a set of repre-
sentative TCP frames is generated. The capability map represents the
reachability of each of these TCP frames. Therefore, the capability map
represents position and orientation information in contrast to current
state of the art workspace representations. The capability map is at-
tached to the base frame of a robot arm. Thus if this base frame moves
because e.g. the robot torso is moved, the map is moved along.
An intuitive visualization scheme reveals the capabilities of the robot
arm in its workspace and thus allows the graphical inspection of the
capability map. The robot-specific map has to be built only once and
allows fast random access. Through parameter analysis a recom-
mended set of parameter values for the capability map construction
was extracted. Using four different robot arms, it was verified that the
workspace of arbitrary arm kinematics can be modeled and the reach-
ability of TCP frames can be predicted accurately.
The capability map is specifically designed to support planning and
scene analysis processes as shown by examples from several distinct

123



124 CHAPTER 7. CONCLUSION AND OUTLOOK

application domains. The capability map was used to visualize and an-
alyze robot workspaces. In this context, it was used to evaluate which
serialized human arm kinematics better represents a human arm’s
capabilities. The results of this analysis can supplement the design
process for humanoid robot design.
In setup evaluation, the capability map was used to evaluate an inter-
face for human-robot interaction. The presented bi-manual human-
robot interface allows the operator to use both hands to directly control
two robotic arms by attached handles. An algorithm was presented
that uses the capability map to objectively evaluate different attach-
ments of the robotic arms to a base and the quality of the interaction.
In planning tasks the capability map was used to parameterize path
planners and select grasps. During a manipulation task for a hu-
manoid robot, the capability map was used to bias the path planner
and obtain more human-like start and goal configurations for the robot
arm. The capability map focused the search and enabled the path
planner to plan more human-like motion while simultaneously reduc-
ing the planning time.
In task reasoning the capability map was used to determine how well
a robot is suited for a task. In an example a humanoid robot had
to perform a task involving 3D trajectories. Regions that enable the
execution of the task were extracted from the capability map and the
suitability of the robot was inferred. This information can also be used
by a task planner for the selection of the appropriate planner type.
In summary, the capability map is a representation that can be ma-
chine processed and used in automatic planning. Its visualization is
intuitively comprehensible for the human. The capability map and de-
rived algorithms are a valuable source of information for task planners,
path planners or robot base placement planners. The selection of good
parameters for low-level planners is facilitated and good parameteriza-
tions for planners can be determined.

7.2 Future work

This thesis introduced a novel representation of a robot arm’s work-
space. Its benefits were exemplarily shown in several applications.
The capability map was used for scene analysis and as an information
source for various planners. However, many more fields of application
can be considered. Three are outlined in the following paragraphs.

Capability maps with arbitrarily small discretization For the cur-
rent implementation of the capability map, the minimum possible voxel
edge length depends on the total length of the robot arm and the avail-
able main memory. The linear voxel space implementation of the capa-
bility map does not allow arbitrarily fine-grained workspace discretiza-
tions that can still be be kept in main memory. For minimally inva-
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sive surgery analysis involving entry point constraints, arbitrarily fine-
grained capability maps or capability maps with different granularity
levels could be desirable. Hence an implementation of the capability
map could be beneficial that allows this and can be partially kept in
main memory for fast access. For instance, hierarchical spatial data
structures like Octrees are an alternative to the linear voxel space.
They allow the representation of different granularity levels and keep
only part of the tree in main memory. The whole tree is located on the
hard drive and the respective parts are loaded on demand.

Estimation of task difficulty A task planner divides a task in ele-
mentary subtasks. For each of these elementary tasks it has to be de-
termined whether they are solvable. The capability map could be used
to estimate the difficulty of a planning problem or of a scene in gen-
eral. The task planner could then use this information to estimate the
probability of the success of a task. For instance, a task to approach
and grasp a glass could have a low probability of success because of
many obstacles standing close. The task planner could then trigger a
rearrangement planner that displaces some obstacles and thus make
the associated path planning problem easier to solve. This approach
would avoid time consuming trail and error processes.

Compensation of uncertainty The trajectory search method provides
a continuous region of solutions based on the capability map. To com-
pensate uncertainty it is recommended to choose a solution in the cen-
ter of the region of solutions. This will enable the compensation of
variations. A robot with a mobile base that has as certain positioning
error would still be able to open a closet door. However, in the future
uncertainties could be explicitly modeled given the capability map and
the task description. It could be estimated what type and amount of
uncertainty occurs and what can be counterbalanced. This would en-
able a task planner to choose a manipulation strategy that is able to
cope with these issues. If large uncertainties are present, the task ex-
ecution could be observed closely and replanning could be triggered if
necessary.
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A
Abbreviations and glossary

A.1 Abbreviations

arccos arccosine
BiRRT Bidirectional rapidly growing random tree
C-space Configuration space
DH Denavit-Hartenberg
DLR German aerospace center
DOF Degree of freedom
FFT Fast fourier transformation
IK Inverse kinematics
HRI Human-Robot interface
LWR Light weight robot
MMI Institute of Man-Machine interaction
PCA Principal component analysis
PRM Probabilistic road map
RRT Rapidly growing random tree
rulaCapMap Rula-restricted capability map
RULA Rapid upper limb assessment
SFE Shape fit error
TCP Tool center point
OV workspace overlap
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A.2 Mathematical symbols

C configuration space
K(~q) direct kinematics
H set of all homogeneous matrices
WR reachable workspace
WD dexterous workspace
WV versatile workspace
F (R, ~x) function that maps to a homogeneous matrix
VRobot voxel space for the robot arm
VHuman voxel space for the human arm
P set of points on the sphere
Np set of point indices for the points on the sphere
No set of orientation indices
OS set of all homogeneous frames distributed on a sphere
MS capability map

A.3 Mathematical notations

a scalar value
~a vector
~aT vector transposed
A matrix
AT matrix transposed
< ~a,~b > inner product
SO(3) group of rotation matrices ∈ IR3

SO(3) :=
{
R ∈ IR3×3| RRT = I,detR = +1

}
SE(3) IR3 × SO(3)
TAB reference frame B given in coordinates of reference frame A
dae ceiling function
bac floor function

A.4 Random Sampling

In this thesis, the drawing of random samples is often used. Unless
otherwise stated, the samples are always drawn from an uniform dis-
tribution. The Mersenne Twister random number generator [72] is
used to generate uniformly distributed random numbers.



B
Kinematics descriptions

This section describes homogeneous matrices and gives the specifica-
tions of arm kinematics used in this thesis in Denavit-Hartenberg (DH)
parameters as proposed by Craig [19].

B.1 Homogeneous matrices

Once a base coordinate system A is chosen, any point in the 3D Carte-
sian space can be denoted by a 3x1 vector.

~tA = (tx, ty, tz)
T (B.1)

The orientation of a body in Cartesian space is described by a 3x3
rotation matrix R ∈ SO(3). One way to describe the body-attached co-
ordinate system B, is to write the unit vectors of its principal axes in
terms of the coordinate system A. Let ~x, ~y, ~z, be the unit vectors that
give the principal directions of coordinate system B in terms of coordi-
nate system A. If they are inserted as the columns of a 3x3 matrix, a
rotation matrix results.

R = (~x ~y ~z) (B.2)

The information needed to completely specify the pose of a manipulator
hand is a position and an orientation. The point on the manipulator
hand whose position is described is chosen as the origin of the body-
attached frame. A frame is a set of four vectors defining the position
and orientation of an attached body in space. A homogeneous matrix
is a 4x4 matrix

T =

(
R ~t
~0T 1

)
(B.3)

used to describe a frame. A frame is a coordinate system where in
addition to the orientation, a position vector is given which locates its
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Table B.1: DH parameters for the DLR LWR robot arm. Link lengths are in m. Angles are given
in degrees. The robot base frame is identical with the frame of the first link.

i αi−1 ai−1 di θi ll ul
0 0 0 0 0 -170 170
1 0 90 0 0 -120 120
2 0 -90 0.4 -90 -170 170
3 0 90 0 0 -120 120
4 0 -90 0.39 180 -170 170
5 0 90 0 90 -45 80
6 0 -90 0 90 -45 135

Table B.2: DH parameters for the Kuka LWR robot arm. Link lengths are in m. Angles are given
in degrees.

i αi−1 ai−1 di θi ll ul
0 0 0 0 0 -170 170
1 0 90 0 0 -120 120
2 0 -90 0.4 0 -170 170
3 0 -90 0 0 -120 120
4 0 90 0.39 0 -170 170
5 0 90 0 0 -130 130
6 0 -90 0 0 -170 170

origin relative to some other embedding frame [19]. Using frames the
rigid body motion of objects in Cartesian space can be described.

B.2 DLR LWR kinematics

In Table B.1 the kinematics is described using DH-parameters. The
lower limits are shown in column ll and the upper limits in column
ul. In Figure B.1 the individual positions and directions of the rotation
axes are shown. The rotation axis of a link is always the z-axis shown
as a blue arrow.

B.3 Kuka LWR kinematics

In Table B.2 the kinematics is described using DH-parameters. The
lower limits are shown in column ll and the upper limits in column
ul. In Figure B.2 the individual positions and directions of the rotation
axes are shown. The rotation axis of a link is always the z-axis shown
as a blue arrow.
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Figure B.1: Visualization of the kinematics of the DLR LWR robot arm that serves as the right
arm for the humanoid robot Justin. The positions and directions of the link frames are shown.
Each link rotates about its z-axis (blue arrow). A circle with a dot signifies that the respective
axis is normal to the picture plane and is pointing at the observer. A circle with a cross signifies
that the respective axis is normal to the picture plane and is pointing away from observer.

Figure B.2: Visualization of the kinematics of the Kuka LWR robot arm. The positions and
directions of the link frames are shown. Each link rotates about its z-axis (blue arrow).
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Table B.3: DH parameters and link limits for the 6 DOF PowerCube arm. The DH parameters
for the transformation to the robot arm TCP are shown in the last row of the table. Link lengths
are in m. Angles are given in degrees.

i ai−1 αi−1 d θi ll ul
1 0 0 0 0 -270 270
2 0 -90 0.26 -90 -270 270
3 0 -90 0 180 -135 135
4 0 -90 0.31 180 -270 270
5 0 -90 0 180 -120 120
6 0 -90 0 180 -270 270

TCP 0 0 0.265 0

Table B.4: DH parameters and link limits for the 6 DOF Kuka Kr16 industrial robot arm. The
DH parameters for the transformation from the last link to the robot arm TCP are shown in the
last row of the table. Link lengths are in m. Angles are given in degrees.

i ai−1 αi−1 d θi ll ul
1 0 180 -0.675 0 -185 185
2 0.26 90 0 0 -155 35
3 0.68 0 0 -90 -130 154
4 -0.035 90 -0.67 0 -350 350
5 0 -90 0 0 -130 130
6 0 -90 0.158 90 -350 350

TCP 0 0 0 0

B.4 Schunk PowerCube arm kinematics

In Table B.3 the DH parameter and link limits are listed for the 6 DOF
Schunk PowerCube arm. The kinematics is e.g. used in Section 4.4.3.
The TCP used for the generation of the reachability sphere map is listed
in the last row.

B.5 Kuka Kr16 kinematics

In Table B.4, the DH-parameters are given for the industrial robot arm
Kuka Kr16. It is significantly larger than the other robot arm’s used in
this thesis. Fully extended it has a length of about 2 m.

B.6 Human kinematics

In Table B.5 the DH parameters are listed for the kinematics 2 that
is examined in Section 5.2.2 as a candidate for the kinematics of the
human right arm.
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Table B.5: DH parameters and link limits for the human arm kinematics 2. Link lengths are in
m. Angles are given in degrees.

i αi−1 ai−1 di θi ll ul
0 0 0 90 0 -50 180
1 0 -90 0 -90 -30 180
2 0 90 0.27 -90 -110 80
3 0 -90 0 0 0 145
4 0 90 0.22 0 -85 90
5 0 -90 0 90 -45 15
6 0 90 0 90 -85 85

B.7 TCP frames

B.7.1 TCP frames used in Section 4.3

The TCP used in Section 4.3 for the DLR LWR arm which serves as
the right arm for the robot Justin is given in DH-parameters in Equa-
tion B.4. The TCP frame is placed at the end of the robot arm.

(αi−1, ai−1, di, θi) = (0,−90, 0.118 m,−180) (B.4)

The TCP used in Section 4.3 for the Kuka LWR arm is given in DH-
parameters in Equation B.5.

(αi−1, ai−1, di, θi) = (0, 0, 0.118 m, 0) (B.5)

The TCPs have the same pose with respect to the robot arm base to
have arms with comparable length and comparable kinematics. Only if
the TCPs are chosen like this can the capability maps directly be com-
pared because in this case the robots try to reach the same poses. Oth-
erwise, kinematics can be compared only with respect to given tasks.

B.7.2 TCP frames used in Section 5.2.2

The TCP for the human arm kinematics used in Section 5.2.2 is given
in DH-parameters in Equation B.6.

(αi−1, ai−1, di, θi) = (0,−90, 0.065 m, 180) (B.6)

The TCP for the robot arm in kinematics 1 is given in Equation B.7. For
the robot arm in kinematics 2 the TCP frame is given in Equation B.8.

(αi−1, ai−1, di, θi) = (0, 180,−0.23 m, 0) (B.7)
0 0 1 0
0 −1 0 0
1 0 0 0.23 m
0 0 0 1

 (B.8)
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