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Abstract—It is an intriguing fact that the array gain of densely
packed antenna arrays can be much larger than the number of
antennas which comprise the antenna array. However, their large
array gain seems to be inaccessible in practice, for it tends to be
all eaten up by a loss of e�ciency that accompanies such super-
gain e�ects. In this paper, the authors argue that the assertion
given above is based on a less than optimum choice of antenna
separation inside the array as well as on less than optimum an-
tenna excitation currents. We demonstrate that if both those is-
sues are addressed optimally super-gain actually can be obtained
with high e�ciency. Compact antenna arrays therefore deserve
to be given more attention in both the antenna-, and the signal
processing layers of abstraction, for the successful application of
such arrays requires optimum design in both layers.

I. Introduction

It is well known that arrays of closely spaced antennas can
provide array gain which grows super-linearly with the num-
ber N, of antennas [1], and approaches N 2 from below as the
distance between neighboring antennas is reduced more and
more [2], [3]. However, such »super-gain« arrays have a bad
reputation of being excessively ine�cient [4]. The reason for
the bad e�ciency lies in the fact that the optimum antenna ex-
citation currents which are necessary for achieving high array
gains can have comparatively huge magnitude, which causes
excessive dissipation in lossy antenna elements. This means
that almost all power which is supplied to the array is dissi-
pated into heat, and only but very little (as little as a fraction
of 10−14, is exempli�ed in [4]) can actually be radiated, render-
ing super-gain arrays essentially useless [5].
In this paper, we argue that such bad e�ciency reputation

of super-gain arrays comes about because of two e�ects: non-
optimum antenna spacing, and non-optimum excitation cur-
rent. In fact, when both the separation between antennas, and
the currents that are used to excite them are chosen optimally,
high array gains actually can be obtained from lossy anten-
nas with high e�ciencies (like 90%). Indeed, recent results by
Yaghijan et al., show that highly e�cient super-gain arrays can
be realized in practice [6]. We suggest that super-gain arrays
should be given more attention from both the antenna-, and
the signal processing communities, for optimum solutions in
both �elds are necessary.

II. Super-Gain with Lossless Antennas

Let us consider a uniform linear array (ula) of N isotropic
radiators. It can be described as a linear N-port. With loss-
less radiators, the radiated power is equal to the electric input
power: Prad = Re{vH i}, where v ∈ CCN×1

⋅V, and i ∈ CCN×1
⋅A,

are the complex voltage and current envelopes, respectively,
while Re{.}, and (.)H are the real-part, and the Hermitian
operations, respectively. Due to linearity, we have that v = Zi,

where Z ∈ CCN×N
⋅Ω is the impedance matrix of the antenna

array. Because of reciprocity, there is Z = ZT, and hence, the
radiated power can be written:

Prad = Rr ⋅ i
H
Ci, (1)

where C = Re{Z}/Rr , and Rr = (Re{Z})k ,k , is the so-called
radiation resistance [5]. Let the ula be aligned with the z-axis
of a Cartesian coordinate system. The strength of the electric
far-�eld which is excited at a point in the direction of the
elevation angle θ, is given by (see e.g., [5] on pp 250 and 258):

E = α̃ ⋅ aH
i, where a = [ 1 e jµ ⋯ e j(N−1)µ ]T, with µ = kd cos θ,

where d is the distance between the radiators, k = 2π/λ, with
λ denoting the wavelength, and α̃ is a constant. The receive
power Prx, extractable by an antenna at a point in the far-�eld,
is proportional to ∣E ∣2, such that

Prx = α ⋅ iHa(θ)aH(θ)i, (2)

where α is another constant. The optimum excitation current
for beamforming into the direction θ, and lossless (ideal) an-
tennas, is given by:

i
ideal
opt = argmax

i

Prx

Prad
=
¿ÁÁÀ Prad/Rr

aH(θ)C−1a(θ) ⋅ C−1a(θ). (3)

With Pmax
rx = Prx ∣i=i idealopt

, the array gain is de�ned as:

Aideal = Pmax
rx(Pmax

rx ) ∣N=1 ∣Prad=const= N
a
H(θ)C−1a(θ)
aH(θ)a(θ) , (4)

that is, as the ratio of the maximum receive power using all N
antennas and the receive power obtainable by using only one
antenna, while the radiated power is the same in both cases.
For a ula of isotropic radiators, (C)n ,m = j0 (kd(n −m)), [2],
[7], where j0(x) = sin(x)/x. The array gain depends on the di-
rection (θ) of beamforming, and on the antenna separation d
(mostly via C). The largest array gain is obtained in the direc-
tion θ = 0, the so-called »end-�re« direction, and approaches
N 2, for small antenna separation [2], [3].

III. Super-Gain with Lossy Antennas

When the antennas are not lossless, the approach from Sec-
tion II can be disastrous. From (3), we have

∣∣iidealopt ∣∣22 = Prad

Rr

⋅

a
H(θ)C−2a(θ)

aH(θ)C−1a(θ) , (5)

which grows unboundedly as d → 0. Let each lossy antenna
have a dissipation resistance Rd. The power Pd = Rd ⋅ ∣∣iidealopt ∣∣22 ,
which is dissipated in the array then also grows unboundedly
as d → 0, hence, causing excessively low e�ciency. To illus-
trate, consider an array of N = 4 antennas with Rd/Rr = 10−3,
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spaced a distance d = λ/128 apart, and excited for beamform-
ing into the »end-�re« direction. We obtain Pd ≈ 3 × 107Prad.
Hence, to radiate just one Microwatt, we would have to dis-
sipate 30 Watts in the antennas. This translates into an array
e�ciency of approximately 3 × 10−8. Clearly, such an array is
useless, despite it has a high array gain of Aideal ≈ 16. The prob-
lem here is that we should not have placed the antennas so
closely as λ/128. Furthermore, the excitation current vector
should have taken into account that the antennas are lossy:

i
lossy
opt = argmax

i

Prx

Ptot

=
¿ÁÁÁÁÀ

Ptot/Rr

aH(θ)(C + Rd

Rr

IN)−1a(θ)
⋅ (C + Rd

Rr

IN)−1a(θ),
(6)

where Ptot = Prad + Pd, is the total power that is supplied into
the array. With Pmax

rx = Prx∣i=i lossyopt
, the array gain for lossy an-

tennas is de�ned as:

Alossy = Pmax
rx(Pmax

rx ) ∣N=1,Rd=0
∣
Ptot=const

= N ⋅

a
H(θ)(C + Rd

Rr

IN)−1a(θ)
aH(θ)a(θ) .

(7)
This quanti�es how much more receive power we can obtain
when all N lossy antennas are used, compared to the case of
having only one, but lossless, antenna, while the total supplied
power is the same in both cases.

Figure 1 shows the array gain in »end-�re« direction, for a
ula of N = 4 isotropic radiators, for several values of Rd/Rr,
as function of the antenna separation d. For lossless antennas
(Rd = 0), the largest array gain is achieved as d → 0, and ap-
proaches N 2 from below. However, as Rd > 0, we see that too
small values of d are disastrous for the array gain, because
of the huge loss of e�ciency. On the other hand, we see that
there is an optimum antenna separation, which depends on
Rd/Rr, for which the array gain is maximized. We can see
from Figure 1, that this optimum distance is always less than
half of the wavelength. Moreover, provided the antennas are
spaced this optimum distance apart, the array gain is always
larger than it would be for uncoupled isotrops (large, or half
wavelength spacing). In other words, when done sensibly, the
super-gain always outweights the antenna loss, and an array
gain larger than that obtainable for uncoupled antennas can
be obtained. This is true regardless of the amount of loss, that
is, for every value of Rd/Rr. To analyze the array e�ciency,
note that from (6), we have

∣∣i lossyopt ∣∣2
2
= Ptot

Rr

⋅

a
H(θ)(C + Rd

Rr

IN)−2a(θ)
aH(θ)(C + Rd

Rr

IN)−1a(θ)
, (8)

which is �nite for any d. To illustrate, consider again our array
of N = 4 lossy antennas with Rd/Rr = 10−3. This time, however,
the antenna spacing is not chosen as λ/128, but instead equals
the optimum distance d = 0.212λ. Using (8), we see that the

power Pd = Rd ⋅ ∣∣i lossyopt ∣∣22 , which is dissipated in the array, is
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Figure 1. Array gain (as function of antenna separation) of a uniform linear
array of N = 4 lossy isotrops, when beamforming in »end �re« direction is
applied. The di�erent curves correspond to di�erent amounts of antenna loss,
quanti�ed by the ratio Rd/Rr .

now given by Pd ≈ 0.06 × Ptot, which translates into an array
e�ciency of more than 94%. With this array, we can radiate
a large power of, say, 10 Watts, while dissipating only about
0.6 Watts power in the antennas. At the same time, we see
from (7), that we have an array gain of Alossy ≈ 12.85, which is
less than 1dB below the maximum array gain of 16, but more
than 5dB larger than the number of antennas. This example
clearly demonstrates that by optimum spacing of the anten-
nas, and by optimum beamforming (excitation current), one
can extract a fairly large amount of super-gain without losing
much of array e�ciency. These claims are backed by recent
experimental results [6].

IV. Conclusion

The common belief that super-gain is regularly »eaten up«
by the simultaneous loss in antenna e�ciency is found to be
true only if the antenna separation is chosen to be too small.
Optimum antenna separation in conjunction with optimum
antenna excitation (beamforming), makes it possible to obtain
a large amount of super-gain while still maintaining a reason-
ably large array e�ciency. Consequently, compact antenna ar-
rays deserve more attention in future research.
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