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“Life — the way it really is — is a battle not between good and bad, but between bad and

worse.”

Joseph Brodsky





Abstract

Tomographic imaging has revolutionized the medical domain over the last 50 years. Imaging

modalities like CT, PET or SPECT have enabled non–invasive diagnosis, patient–specific

modeling as well as more accurate treatment, and are increasingly establishing themselves

also for interventional use.

The theoretical basis for tomographic imaging has been developing over the last century as

well, with series expansion methods quickly being adopted as the method of choice for many

modalities due to their flexibility. This work explores series expansion based methods for

two novel, emerging imaging modalities.

Diffuse Optical Tomography together with new fluorescent tracers enables visualization of

molecular processes in vivo using non–ionizing radiation. In this work an implementation

for full–projection free–space Fluorescence Molecular Tomography based on series expansion

methods was developed along with a thorough analysis of the system design for the new

acquisition geometries. The system was evaluated on phantoms as well as on mice, both ex

vivo and in vivo.

While functional imaging is standard–of–care for many pathologies today, interventional

use has been hampered by imaging system requirements incompatible with operating room

realities. Over the course of this work, a new imaging modality called Freehand SPECT

has been developed to overcome this incompatibility. By using tracked functional detectors

and series expansion methods adapted to sparse ad–hoc acquisition geometries, Freehand

SPECT enables localized intra–operative SPECT imaging. Experiments and evaluations

were performed on phantoms as well as on patients both pre– and intra–operatively, and

validated the feasibility of this new approach to imaging.





Zusammenfassung

Tomographische Bildgebungsverfahren haben in den letzten 50 Jahren die Medizin revolu-

tioniert. Modalitäten wie zum Beispiel CT, PET oder SPECT ermöglichen nicht–invasive

Diagnosen, patientenspezifische Modelle sowie präzisere Therapien und etablieren sich zu-

nehmend auch im interventionellen Bereich.

Die theoretische Basis tomographischer Verfahren wurde über das letzte Jahrhundert hinweg

entwickelt, wobei sich algebraische Methoden dank ihrer Flexibilität in vielen Modalitäten

etabliert haben. Diese Arbeit behandelt algebraische Methoden für zwei neuartige Bildge-

bungsverfahren.

Diffuse Optical Tomography ist ein Verfahren, welches zusammen mit neuen fluoreszierenden

Markern die Visualisierung von molekularen Prozessen in vivo mittels nicht–ionisierender

Strahlung ermöglicht. In dieser Arbeit wurde eine Implementation von full–projection free–

space Fluorescence Molecular Tomography basierend auf algebraischen Methoden entwickelt,

zusammen mit einer gründlichen Analyse des System–Designs für die neuen Aufnahme–

Geometrien. Das System wurde anhand von Phantomen und sowohl ex–vivo als auch in–vivo

Mausmodellen evaluiert.

Während funktionale Bildgebung der aktuelle Standard für viele Pathologien ist, hat sich

der interventionelle Einsatz als schwierig herausgestellt, aufgrund der Anforderung der

Bildgebungs–Systeme, die inkompatibel mit den Realitäten im Operationssaal sind. Im

Laufe dieser Arbeit wurde eine neue Bildgebungs–Modalität genannt Freehand SPECT ent-

wickelt, um diese Inkompatibilität zu beseitigen. Mittels getrackter funktionaler Detektoren

und algebraischer Methoden adaptiert auf nicht dichte, ad–hoc Aufnahme–Geometrien,

ermöglicht Freehand SPECT lokalisiertes, intra–operatives SPECT. Experimente und Eval-

uationen wurden sowohl an Phantomen als auch an Patienten pre– und intra–operativ

durchgeführt, und die Realisierbarkeit dieses neuen Bildgebungsverfahren validiert.
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Chapter 1

Introduction

1.1 Looking Inside

Looking inside a patient or an object is often helpful or even required for many tasks. The

diagnosis of many diseases for example requires knowledge of what is happening inside the

patient. In a more industrial context, looking inside is also very useful, for example to check

the structural integrity of a manufactured product part, or to investigate the internal struc-

ture of a raw crystal. However, it is also often not desirable to actually open up the patient

or the object to look inside, as it might cause unnecessary harm or damage, or in extreme

cases it might even lead to death of the patient or destruction of the object. Therefore many

methods have been developed over time to look inside non–invasively. Some methods are in-

direct, trying to infer interior properties by outside observations. An example from medicine

is electrocardiography (ECG, developed for medical use by Willem Einthoven (1860–1927)

between 1894 and 1908 [1], for which he was awarded the Nobel prize in Medicine 1924

[2]) to determine the heart rhythm and detect cardiovascular disorders. For industry, ex-

ample indirect methods are the Rockwell hardness test to determine the tensile strength

of metals like steel (original invention by Hugh M. Rockwell (1890–1957) and Stanley P.

Rockwell (1886–1940) in 1919 [3], later standardized by ISO 6508-1 in 2005), or goniometry

in crystallography to determine the atomic structure in crystals, as introduced by Arnould

Carangeot in 1782 [4].

In 1895 Wilhelm Conrad Röntgen (1845–1923) discovered X–rays [5], for which he received

the first Nobel prize in Physics 1901 [6]. Looking inside in a direct, non–invasive manner

with X–rays quickly established itself as the prime method in multiple fields. Material tests

and quality control for industrial manufacturing, but also geology, archeology, astronomy

and crystallography are just some examples where X–ray imaging quickly established itself.

1
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Figure 1.1: X–ray image of the hand of Anna Bertha Röntgen, one of the first X–ray images
taken in 1895.

The field of medical imaging can trace its roots to the first X–ray picture of the hand of

Röntgen’s wife Anna Bertha in 1895, see Figure 1.1. X–rays are now routinely used in

medical diagnostics, from imaging bone structure, visualizing disease processes in soft tissue

to detecting tumors. Since X–rays are ionizing radiation, there are also adverse effects to

X–ray exposure, necessitating protective measures and limitation of the radiation dose to

patients. On the other hand, this property also enables X–rays to be used for treatment in

radiotherapy, in order to destroy unwanted tissue like cancer cells.

However, planar X–ray images can only show a sum of the information gathered as the X–

rays transverse the patient. While this is enough for many purposes and is used commonly

for example to diagnose pneumonia in patients, the lack of any depth information is often

detrimental and can be misleading, potentially resulting in a wrong diagnosis. To overcome

this defect, Alessandro Vallebona (1899–1987) in 1930 proposed a method using projective

geometry to image a single slice of a patient body by moving a connected X–ray tube and

film synchronously in opposite directions. He called this method Stratigraphy [7], it produces

images which are sharp in the target slice and blurred otherwise. This technique is still used

today for example in Orthopantomography to create panoramic dental X–ray images.

In 1971, Sir Godfried Hounsfield (1919–2004) developed the first Computed Tomography

scanner [8], based on theoretical work of Allan M. Cormack (1924–1998) published in 1963

and 1964 [9, 10]. Both received the Nobel Prize in Medicine 1979 [11] for the development

of computer assisted tomography, in short CT. The invention of CT and the subsequent

storm of developments enabled the visualization of near–perfect slices of the full body and

later on even whole 3D volumes. This has found ample application in medical diagnosis



Chapter 1. Introduction 3

572 Physiology or Medicine 1979

Fig. 5. First clinical picture obtained from prototype machine.Figure 1.2: First clinical CT slice of a woman with a suspected brain lesion, taken in 1972
by the group of Sir Godfried Hounsfield. Image Copyright: The Nobel Foundation.

(see for example the first clinical CT slice in Figure 1.2), with ten thousands of CT scan-

ners installed in hospitals all over the world [12], as well as in other science fields. More

recent developments like C–arms with cone–beam reconstruction even allow intra–operative

tomographic imaging.

1.2 Formulating the Tomographic Problem

Tomographic imaging generally acquires a series of observations of some physical effect (like

the passage of X–rays through an object or patient) and tries to compute some physical

property at each location inside the object or patient (like the X–ray attenuation coefficient)

from these observations. This process is typically called an Inverse Problem.

Mathematically this can be formulated for example as

g(x)︸︷︷︸
effect

=

∫
k(x, y)︸ ︷︷ ︸

cause

f(y)︸︷︷︸
cause

dy,

where g denotes the observation of the effects and k and f are a parametrization of the

causes. In the case of X–ray CT, g(x) would be the measurements of the X–ray detectors,

k(x, y) models the process of X–rays passing through the object or patient and f(y) denotes

the to–be–determined attenuation coefficients inside the object or patients.
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Conversely, the determination of effects from a complete description of their causes is called

Forward Problem. In the case of X–ray CT, if we had a map of attenuation coefficients

f(y) as well as a model k(x, y) of X–rays passing through the objects or patient, the forward

problem allows to compute (simulated) measurements g(x) of the X–ray detectors.

The formulation of the inverse problem and the subsequent (usually approximate) solution

to it is the heart of every tomographic imaging modality. X–ray CT is just one of many

examples of imaging modalities employed for medical use, some of the other common imaging

modalities for medical purposes are outlined in section 1.3.

In 1902, Jaques Hadamard (1865–1963) introduced the notions of well–posed and ill–posed

mathematical problems [13].

Definition 1.1 (Hadamard). A mathematical problem is well–posed if all of the following

criteria are true:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data (in some topology).

A mathematical problem is called ill–posed if one (or more) of these criteria are not met.

Unfortunately, most of the tomographic inverse problems fall into the ill–posed category.

The main cause for this is the discrete sampling of the observations along with typically

incomplete observations to keep imaging time in an acceptable range, as well as noise and

other errors in the detection and reconstruction process. Thus most (if not all) practical

tomographic imaging modalities have no unique solution, or their solution has some non–

continuous dependencies on the data. In quite a few cases a solution does not even exist,

and only an approximation to something resembling a solution can be computed.

Nevertheless, tomographic imaging has been a huge success so far both in medical and

industrial applications, as even those imperfect approximate “solutions” allow to visualize

an unprecedented wealth of information about what is inside of patients or objects, without

the detrimental side–effects of the established invasive or destructive investigation methods.

While the tomographic inverse problems pose considerable difficulty in dealing with them,

they are also an exciting field of research with many interesting and unsolved questions.



Chapter 1. Introduction 5

1.3 Imaging Modalities

Most imaging modalities use a specific part of the electromagnetic spectrum (see Figure 1.3)

to image the object of interest or patient. The most popular example is X–ray Computed

Tomography (CT) [8], which sends in X–rays from a dedicated source through the object

and detects the modified X–rays at the detector. Other modalities may use one particular

part of the spectrum first to excite a certain reaction in the object, and then a different

part of the spectrum to detect that reaction, which is what happens for example in near–

infrared fluorescence imaging [14]. Some imaging modalities do not use the electromagnetic

spectrum, but use for example sound waves like in Ultrasound [15]. There are also hybrid

imaging modalities, the most prominent example being Magnetic Resonance Imaging (MRI)

[16] where modulated radio waves excite hydrogen nuclei so that their magnetic moments

can be detected. Another recent example is photo-acoustic imaging [17], where absorption

of electromagnetic energy (for example near–infrared laser light) induces acoustic pressure

waves, which in turn are detected by ultrasound transducers.

All the previously mentioned imaging modalities can be classified as transmission modal-

ities, where some signal is sent in and another signal is detected coming out. Emission

modalities however skip the sending in of some signal and only detect the signal coming

out, see Figure 1.4 for an illustration. The two most prominent examples for this are

Positron Emission Tomography (PET) [18] and Single Photon Emission Computed Tomog-

raphy (SPECT) [19], which both detect gamma rays (of different energies) coming out from

the object or patient. These gamma rays are created by the radioactive decay of some

radioactive material inside the object or patient, for example β+ radiation which in turn

produces high–energy gamma rays through annihilation in the case of PET. Typically the

object or patient does not contain radioactive material naturally, so in most cases that

material has to be administered or implanted in some fashion before the imaging process.

These materials are usually called tracers or probes, or more generally imaging agents.

While most of the transmission modalities image the structure of the patient or object, the

usage of imaging agents is not only limited to emission modalities. Imaging these tracers

allows visualization of physiological activities or molecular processes, which is why this

process is called functional imaging as opposed to structural or anatomical imaging.

The beginning of this tracer principle can be attributed to George de Hevesy (1885–1966),

for which he received the Nobel prize in Chemistry in 1943 [20]. Functional imaging opens

up new horizons of what can be imaged, examples ranging from visualizing blood flow,

identifying specific kinds of tumors to imaging disease progression. Various imaging agents

exist for almost every imaging modality, a brief summary can be found for example in [21]

in the context of small animal imaging. Typically, functional imaging is combined with



Chapter 1. Introduction 6

Figure 1.3: The electromagnetic spectrum. (Image source: http: // en. wikipedia. org/ wiki/

File: Electromagnetic-Spectrum. png . Author: User Materialscientist. License: CC-by-sa/2.5.)

Transmission Emission

source

detector detector

Figure 1.4: Illustration of transmission and emission imaging modalities.

http://en.wikipedia.org/wiki/File:Electromagnetic-Spectrum.png
http://en.wikipedia.org/wiki/File:Electromagnetic-Spectrum.png
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Translate rotate Rotate only Stationary circular detector
array

Fig. 7. Three different methods of scanning the patient.
Figure 1.5: Illustration of early slice-scanning geometries by Sir Godfried Hounsfield, 1979.
Image Copyright: The Nobel Foundation.

some form of anatomical imaging where possible, to allow co–localization of the functional

information within the anatomical context.

In the following subsections there are brief outlines of three of the clinically well–established

imaging modalities for patients as well as one emerging modality that so far is mostly limited

to animal models.

1.3.1 X–ray Computed Tomography

X–ray computed tomography uses X–rays to image three–dimensional absorption contrast

inside a patient or object in a transmission geometry. The first system was developed in

1971 by Sir Godfried Hounsfield [8], able to visualize slices of a 3D volume using a parallel

scanning geometry with translation and rotation as illustrated in Figure 1.5. The fan–beam

geometry to reduce scanning times is also illustrated in Figure 1.5, and since then has been

expanded into the cone–beam geometry by using two–dimensional detectors, necessitating

fully 3D reconstruction methods as opposed to slice–based methods. Modern full body

CT devices typically employ a cone–beam geometry with detectors arranged in an imaging

gantry, and do spiral or helical scans for full body imaging with scanning times in the range of

seconds, with sub–millimeter accuracies (for example down to 0.24mm on a current Siemens

SOMATOM Sensation device).

Other developments include correcting for motion (like breathing or heartbeat) by using

gating techniques, or the use of contrast agents to visualize vessels in angiography. Some of

the new scanners include dual energy sources to image a second contrast simultaneously, for

example allowing acquisition of non–contrast images of a patient undergoing angiography at

the same time. Due to the imaging gantry and the patient bed, almost all the medical CT
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Figure 1.6: Schematic drawing of a modern CT scanner. Image courtesy Alexandru Duliu.

Figure 1.7: Photograph of a C–arm system used intra–operatively. Image courtesy of Leijing

Wang.

scanners have a relatively large footprint (see the schematic drawing in Figure 1.6) which

along with the cooling, stability and shielding requirements necessitate the installation in

separate rooms specifically designed for those scanners. For interventional use, there exist

smaller C–arm systems (see Figure 1.7), which typically consist of a (semi–)robotic arm

in a C–shape with an X–ray source and a detector plate mounted opposite each other.

This allows X–ray snapshots of the patient (when acquired in video rate this is also called

fluoroscopy), and with movement of the C–arm (typically in a 120◦ to 210◦ arc) it also allows

tomographic reconstruction.
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x1 x2
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ray L

x1 x2

x3 x4
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detector g2

ray L
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x1 x2

x3 x4

detector g3

ray L

Figure 1.8: Illustration of a very simplistic two–dimensional CT setup.

To illustrate image reconstruction in CT, Figure 1.8 demonstrates a very simplistic two–

dimensional CT setup. Let V denote the volume of interest discretized into four voxels,

V = {x1, x2, x3, x4}. The function f : V → R denotes the attenuation coefficient in each

voxel, which is to be determined by CT. Given the three measurements g = {g1, g2, g3} and

source strength I0, the task is then to compute f , an inverse problem.

More generally, a two–dimensional CT setup can be described using the following simple

forward model: Let V ⊂ R2 again denote the volume of interest, f : V → R the unknown

attenuation coefficient. With I0 the source intensity and L denoting the ray of measurement

as illustrated in Figure 1.8, then the detector g is measuring

g = I0 e
−

∫
L f(x) dx,

or

ln
I0

g
=

∫
L
f(x) dx.

The right hand side of this equation is also known as the 2D Radon Transform. Several

analytic methods exist how to directly invert this integral transform, some of them are

outlined in chapter 2. This simple model is enough to produce pleasing CT reconstructions.

However, while it does consider the attenuation process, several other physical effects in

the detection process are ignored, like for example photon statistics, beam hardening or

partial volume effect (see [22] for more details). While these effects can be integrated into

the forward model, solving the corresponding inverse problem quickly becomes impractical

to impossible. Instead, one approach is to avoid analytically solving the inverse problem
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and instead discretize immediately, which leads to the series expansion methods outlined in

chapter 3, using for example ART for inversion (see section 3.3.1).

Extensions to 3D setups with more complicated source–detector geometries, while employing

very similar concepts, are in most cases not straightforward to approach analytically. For the

sake of brevity this work does not consider 3D analytical methods, the interested reader is

referred to standard literature instead [22–24]. However, using the series expansion methods

introduced in chapter 3 the extension to the 3D case utilizing arbitrary source–detector

geometries is straightforward.

1.3.2 Single Photon Emission Computed Tomography

Single Photon Emission Computed Tomography (or in short: SPECT) is a functional emis-

sion imaging modality, requiring the use of radioactive tracers emitting gamma rays. One of

the common radioactive tracers for SPECT is based on the radioactive isotope Technetium–

99m (or 99mTc) attached to some radio–ligand, which defines what function can be imaged.

99mTc has a half–life of 6.01 hours and emits gamma rays mainly at an energy of 140.51keV .

One of the first SPECT devices can be attributed to David E. Kuhl and Roy Q. Edwards in

1963 [19]. As with CT, the system hardware has developed fast and is still developing. Most

systems today include also a CT scanner (see Figure 1.9), to allow attenuation correction

as well as anatomical co–localization. Since the emission signal has to be relatively weak

to ensure the health of the patients, scanning times are in the 20 to 60 minutes region to

collect enough data. SPECT is also a lot less accurate than CT, the typical resolutions of

modern systems range from 4.4mm to 11mm. Due to the long acquisition times, breathing

and other patient motions are a big issue, combatted with gating and motion compensation

techniques.

To illustrate image reconstruction in SPECT, Figure 1.10 demonstrates a very simplistic

two–dimensional SPECT setup. Let V denote the volume of interest discretized into four

voxels, V = {x1, x2, x3, x4}. The function f : V → R denotes the distribution of radioac-

tivity in each voxel, which is to be determined by SPECT. Given the three measurements

g = {g1, g2, g3} the inverse problem is then to compute f .

More generally, a two–dimensional SPECT setup can be described using the following simple

forward model: Let V ⊂ R2 again denote the volume of interest, f : V → R the unknown

activity distribution and µ : V → R the attenuation coefficient (as for example reconstructed

by CT). Let L denote the ray of measurement and L(x) the section of L between x ∈ V and

the detector, then

g =

∫
L
f(x) e

−
∫
L(x) µ(y) dy

dx.
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Figure 1.9: Schematic drawing of a modern SPECT scanner. Image courtesy Alexandru Duliu.

x1 x2

x3 x4

detector g3

x1 x2

x3 x4

detector g1

x1 x2

x3 x4

detector g2

Figure 1.10: Illustration of a very simplistic two–dimensional SPECT setup. Yellow pixels
are radioactive, no collimator is displayed for simplicity.

The right hand side of the equation is also known as the 2D attenuated Ray Transform.

Like for CT, this transform is not considering all the physical effects actually occurring in

the detection process, like photon statistics, scattering and partial volume effect (see [25] for

more details). Early SPECT systems assumed µ = 0, thus reducing the forward problem

to the Radon transform, treatable with CT reconstruction methods. However, attenuation

is non–negligible in patients, and modern hybrid SPECT/CT scanners can supply an es-

timation of µ in form of a CT reconstruction. Analytical methods to directly invert the

attenuated Ray Transform were discovered relatively recently in 2001 [26, 27]. Nevertheless,

series expansion methods are the method of choice for most modern scanners due to their
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Figure 1.11: Illustration of electron–positron annihilation. The emitted positron “annihi-
lates” with a nearby electron and emits two gamma rays in opposite directions at an energy
of 511keV each. Image courtesy Jens Langner.

flexibility of modeling physical effects, often using Maximum Likelihood Expectation Max-

imization (MLEM) or Ordered Subsets Expectation Maximization (OSEM) for inversion,

see section 3.4 for details.

1.3.3 Positron Emission Tomography

Positron Emission Tomography (in short: PET) is another functional emission imaging

modality. Here, the employed radioactive tracers are labelled with a positron emitter. The

most popular one is fluorodeoxyglucose (or 18F–FDG) with a half–life of 110 minutes; it is a

glucose analog and tends to aggregate in any body area actively using glucose (for example

growing tumors). These emitted positrons however are not directly detectable unless they

originate from directly below the surface with the detector being close to the surface, as

positrons annihilate with nearby electrons. The typical travel distance before annihilation

occurs in tissue is less than 1mm. As illustrated in Figure 1.11, during annihilation two

gamma rays are emitted in opposite directions at an energy of 511keV . PET devices are

detecting these two “coincident” gamma rays, so the source is known to be localized along

the so–called line of response (LOR).

One of the first PET scanners was developed by Michel M. Ter–Pogossian (1925–1996)

and Michael E. Phelps (born 1939) in 1975 [18]. Like in SPECT, modern PET devices

also include a CT scanner (see Figure 1.12) for attenuation correction and anatomical co–

localization. Scanning times are in the 30 minute range and the typical resolution of modern

PET scanners is 4.2mm to 7mm. Due to the long acquisition times, compensating for

breathing and other patient motions is very important, one more recent approach is to

reconstruct both the motion and the activity simultaneously [28].
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Figure 1.12: Photograph of a modern PET/CT device, a Siemens Biograph 64.

source

detector ring

annihilation
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Figure 1.13: Illustration of a two–dimensional PET setup.

A simple two–dimensional PET setup is demonstrated in Figure 1.13. Let V ⊂ R2 denote

the volume of interest, f : V → R the unknown radioactivity distribution and µ : V → R the

attenuation coefficient. Let L denote the line of response and L−(x), L+(x) the half–lines

of L with endpoint x ∈ V , then

g =

∫
L
f(x) e

−
∫
L−

µ(y) dy−
∫
L+

µ(y) dy
dx.

This can be simplified to

g = e−
∫
L µ(y) dy

∫
L
f(x) dx,

which is the 2D Radon transform multiplied with an attenuation term. Again, this transform

is ignoring many of the physical effects occurring, like photon statistics, scattering or false
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coincidences (see [25] for more details). In practice, very early PET systems assumed µ = 0

in order to use reconstruction methods like for CT. Nowadays most PET systems perform

attenuation correction and employ series expansion methods to model all the physical effects,

in many cases utilizing MLEM or OSEM for inversion (see section 3.4).

1.3.4 Optical Tomography

Employing the visible spectrum to observe objects is natural for human beings as it corre-

sponds to what our eyes see. The visible spectrum however does not penetrate solid objects

very well, making it difficult to visualize anything beyond the surface. This is mainly due

to high absorption and high scattering of visible light. Moving to the near–infrared as well

as investigating objects of smaller size and depth (like mice or human extremities) however

enables visualizing the interior using optical techniques.

Diffuse Optical Tomography is such a technique for macroscopic imaging, mainly employed

for small animals, but also for human extremities like the breast. Illumination is typically

provided by a laser, and imaging is often performed using sensitive, high–resolution cameras.

As in other imaging modalities, the use of imaging agents allows to visualize functions like

molecular processes. In the case of optical imaging, these agents typically are fluorescent.

Fluorescent molecules, when excited by light at the appropriate wavelength emit fluorescent

light at another particular wavelength.

This principle is used in the modality called Fluorescence Molecular Tomography (in short:

FMT). Mainly used for small animal imaging, a laser emitting at the excitation wavelength of

the employed fluorochrome is scanned across the animal, and the corresponding fluorescence

emissions are captured using a camera with appropriate filters. While tomography can

already be performed without rotating the animal (or the source–detector setup) thanks to

the diffusivity of photon propagation through tissue, better depth resolution is possible with

full–projection system like those employed for the CT, SPECT or PET modalities presented

earlier. An example full–projection setup is displayed in Figure 1.14 and presented in more

detail in chapter 4.

Combining FMT with anatomical imaging modalities like CT is advantageous, both for

anatomical co–localization and for improving the FMT reconstruction performance, as for

example demonstrated in the FMT–XCT system introduced in [29]. Depending on the setup

and the fluorochrome employed, scanning times range from 5 to 30 minutes, the achievable

resolution is below 1mm.

The forward model for FMT is unfortunately quite complicated. The commonly used model

is the radiative transfer equation (RTE), which is introduced and discussed in greater detail
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Figure 1.14: Photograph of a FMT system built in 2005 at CMIR, Boston, USA.

in section 4.1.1. Using the notation of section 4.1.1, the RTE reads as follows:

n

c

∂I(r, ŝ)

∂t
+ ŝ · ∇I(r, ŝ) + µtI(r, ŝ) =

µt
4π

∫
4π
p(ŝ, ŝ′)I(r, ŝ′) dΩ′ + ε(r, ŝ). (1.1)

Except for special cases, there is no analytic solution to this equation. The inverse prob-

lem for FMT and related optical tomographic modalities is thus usually tackled via series

expansion methods, as described in chapter 3.

1.4 Thesis Outline

In this thesis we present mathematical methods for tomographic image reconstruction, along

with two applications of these methods to two novel, emerging imaging modalities: full–

projection free–space Fluorescence Molecular Tomography and Freehand SPECT. Tomo-

graphic reconstruction methods can be classified into two types, chapter 2 presents the first

type called analytical methods (or transform methods) for two–dimensional CT–like setups,

while chapter 3 presents the second type, series expansion methods (or algebraic methods)

for general tomography setups. Series expansion methods have quickly been adopted as the

method of choice for many modalities due to their flexibility. It is thus no surprise that

the two applications presented in chapters 4 and 5 are based on series expansion methods.

Chapter 4 presents the full–projection free–space FMT imaging modality for use in small

animal imaging, describing the system setup and methods as well as validation experiments

of the system design using phantoms and mice. In chapter 5 the intra–operative Freehand

SPECT modality is presented, from the system setup and methods to validation experiments

on phantoms and patients. The last chapter 6 contains a short conclusion.





Chapter 2

Analytic Reconstruction Methods

Tomographic reconstruction methods can be classified into two types, analytical and series

expansion methods. Analytical methods (also called transform methods) attempt to model

the inverse problem and solve it analytically, only discretizing at the very end to implement

the reconstruction method. Series expansion methods (also called algebraic methods, see

chapter 3 for more details) discretize the problem right away and try to solve it that way.

In this chapter we present some of the analytical reconstruction methods for modalities

based on the 2D Radon transform using parallel scanning geometry. 3D reconstructions can

be achieved by stacking several 2D slices. Extensions to different transforms and different

source–detector geometries are possible as well as fully 3D reconstructions, but matters

quickly get complicated and for the sake of brevity this is not considered in this work,

instead we refer to [22–24].

While this section attempts to be mathematically precise in its formulations, we do not

provide the most general conditions on the involved functions and parameters (for example

we generally settle on a vague “f sufficiently nice”) and neither do we provide proofs. Again

the interested reader is referred to standard literature [23, 30] and references therein.

2.1 The Radon Transform

Johann Radon (1887–1956) introduced an integral transform mapping a function into inte-

grals over the hyperplanes in Rn in 1917, which was named after him.

Definition 2.1 (Radon transform, n–dimensional version). Let f : Rn → R be sufficiently

nice, then the mapping Rf :
(
f : Rn → R

)
−→

(
Rf : Sn−1 × R→ R

)
defined by

Rf(u, t) :=

∫
u⊥
f(tu+ y) dy

17
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is called the Radon Transform for u ∈ Sn−1 ⊂ Rn, t ∈ R and u⊥ :=
{
y ∈ Rn : 〈y, u〉 =

0
}

.

We will also use the short–hand notation: fu : R→ R, fu(t) := Rf(u, t).

Mapping a function into integrals over straight lines has a different name:

Definition 2.2 (Ray transform, n–dimensional version). Let f : Rn → R be sufficiently nice

and define Tn :=
{

(u, x) : u ∈ Sn−1, x ∈ u⊥
}

, then the mapping Pf :
(
f : Rn → R

)
−→(

Pf : Tn → R
)

defined by

Pf(u, x) :=

∫
R
f(x+ tu) dt

is called the Ray Transform for (u, x) ∈ Tn.

For the case n = 2 the Radon transform and the Ray transform are identical save for

notational differences.

An inversion formula for Rf was first shown by Radon in 1917 [31] (English translation

[32]), stated here for the two–dimensional case:

Theorem 2.3 (Radon inversion formula, n = 2). Let f : R2 → R be sufficiently nice, then

f(x) = − 1

4π2

∫
S1

∫
R

f ′u(〈x, u〉+ t)

t
dt du.

The integral in t is in the Cauchy principal value sense.

Unfortunately this inversion formula is not very useful for practical reconstruction. The

operations are complex to implement, and all line integrals are needed to calculate f(x),

even for lines far away from x, which conflicts with practical scanning schemes. More

practical inversion formulas are presented in the following sections.

The 2D parallel scanning geometry we are employing here can be discretized using 2q + 1

detectors equidistantly spaced at tl = 1
q l, l = −q, . . . , q, rotated by p projection angles

u1, . . . , up uniformly distributed over the half–circle, see Figure 2.1 for an illustration. That

means Rf is sampled at Rf(uj , tl). Other scanning geometries are not considered in this

chapter.

Acquiring images using this 2D parallel scanning geometry, that is, computing or measuring

the 2D Radon transform, is often called taking sinograms. As illustrated in Figure 2.2,

the Radon transform of a simple point looks like a sine wave, hence the name sinogram.

For demonstration purposes the so–called “Shepp–Logan phantom” will be used in this

chapter (see Figure 2.3a), it is named after L.A. Shepp and B.F. Logan, who introduced
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2q+1 detectors tl

2q+1 detectors tl
p angles uj

Figure 2.1: Illustration of 2D parallel scanning geometry employed in this chapter.

Figure 2.2: Left: image with three points, right: sinogram of those three points created
using a parallel scanning geometry.

this simplified head phantom in 1974 [33]. The Radon transform of this phantom calculated

for the angles 0◦ to 180◦ in 1◦ steps, its sinogram, is shown in Figure 2.3b. All the images

shown here were generated using Matlab.

2.2 Fourier Reconstruction

The Fourier reconstruction method is taking advantage of the following relationship between

the Radon transform and the Fourier transform, also called the Fourier Slice Theorem or

the Central Slice Theorem [23, 34]:

Theorem 2.4 (Central Slice Theorem, n–dimensional version). Let f : Rn → R be suffi-

ciently nice.Then for u ∈ Sn−1 and t ∈ R

F1

(
Rf(u, ·)

)
(t) = (2π)

n−1
2 (Fnf)(tu),
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(a) (b)

Figure 2.3: (a) Shepp–Logan simplified head phantom, (b) sinogram of Shepp–Logan phan-
tom created using parallel scanning geometry.

Figure 2.4: Coordinate system change in step 2 of the Fourier reconstruction algorithm.

where Fn denotes the n–dimensional Fourier transform.

Calculating Fourier transforms on a computer is very efficient thanks to the Fast Fourier

Transform algorithm (FFT), thus a practical inversion algorithm called Fourier Recon-

struction employs the Central Slice Theorem. Here is the algorithm for the case n = 2:

Algorithm 1 Fourier Reconstruction

f = F−1
2

(
1√
2π
F1

(
Rf(u, t)

))
.

1. Compute 1D DFT of Rf(uj , tl),

f̂jl ≈ F1

(
Rf(uj , tl)

)
.

2. Find nearest k ∈ Z2 for πluj ∈ R2 (see Figure 2.4).

3. Compute 2D IDFT of f̂k,
fm ≈ f

(
1
qm
)
.

The complexity of this algorithm is O(q2 log q).
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(a) (b)

Figure 2.5: Sample reconstructions of the Shepp–Logan phantom using the Fourier recon-
struction method, (a) using nearest–neighbor and (b) cubic spline interpolation.

The deciding reconstruction quality factor here is the coordinate system change in step

2 of the algorithm. The naive approach of nearest–neighbor interpolation works, Figure

2.5a shows an example reconstruction of the Shepp–Logan sinogram from Figure 2.3b using

Matlab. A reconstruction using cubic spline interpolation is shown in Figure 2.5b. There are

several more sophisticated methods available to increase the reconstruction quality, these

include oversampling, filtering and smoothing, or implementing a one–dimensional FFT that

directly evaluates onto the cartesian grid, see for example [34–38].

2.3 Filtered Backprojection

A backprojection operator R∗ can be defined for sufficiently nice g : Sn−1 × R → R and

x ∈ Rn,

R∗g(x) =

∫
Sn−1

g
(
u, 〈x, u〉

)
du.

If g = Rf , then (R∗g)(x) is the average of all hyperplane integrals of f through x. It can

be shown [23] that R∗ is the adjoint operator of R, that is for f, g sufficiently nice∫
Sn−1

∫
R

(gRf)(u, t) dt du =

∫
Rn

(R∗g)f(x) dx.

The following theorem is the basis for the Filtered Backprojection (FBP) reconstruction

method [23, 30]:

Theorem 2.5. Let f : Rn → R, g : Sn−1 × R→ R be sufficiently nice, then

(R∗g) ∗ f = R∗(g ∗ Rf).



Chapter 2. Analytic Reconstruction Methods 22

The idea of FBP is now to find a function g such that R∗g ≈ δ is an approximate identity,

then
(
(R∗g) ∗ f

)
(x) ≈ (δ ∗ f)(x) = f(x). As convolution is also called filtering in certain

fields, g is typically called a filter, which explains the name of the filtered backprojection

algorithm. The FBP algorithm can then be stated as:

Algorithm 2 Filtered Backprojection

1. Choose filter g such that R∗g ≈ δ.

2. Apply filter g to Rf(uj , tl), i.e. compute

vjl =
(
g ∗ Rf(uj , tl)

)
(uj , tl).

3. Calculate discrete backprojection of the vjl,

f(x) ≈
(
R∗disc(vjl)

)
(x).

The complexity of FBP is O(q3).

Besides a proper implementation of the discrete backprojection operator, the choice of the

filter g is the crucial parameter for reconstructed image quality. Step 2 of the FBP algorithm

(computing g∗Rf) is typically performed in the Fourier domain, as ĝ ∗ Rf =
√

(2π)nf̂ ·R̂f .

Thus it is convenient to specify the filter g in the Fourier domain as ĝ. One family of filters

typically employed for FBP [24] is

ĝb(σ) =
1

2
(2π)

1
2
−n |σ|n−1 Φ̂

(σ
b

)
,

where b is the cut–off frequency and Φ̂ is the filter factor that has to be chosen.

One of the more popular choices is the so–called Ram–Lak filter developed by G.N. Ra-

machandran and A.V. Lakshminarayanan in 1971 [39], it is an ideal low–pass,

Φ̂(σ) =

1 σ ∈ [0, 1]

0 else.

This filter is also called Ramp filter, due to the shape shown for example in Figure 2.6.

Another filter, also shown in Figure 2.6, was suggested by L.A. Shepp and B.F. Logan in

1974 [33],

Φ̂(σ) =

sinc
(
σπ
2

)
σ ∈ [0, 1]

0 else,
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Figure 2.6: Potential filters for use in FBP, Ram–Lak (red), Shepp–Logan (blue), Cosine
(green) and Hamming (black), plotted in the Fourier domain.

where sinc(x) := sin(x)
x for x 6= 0 and sinc(0) = 1. There are many more variants, Figure 2.6

is showing two more, the Cosine filter mentioned for example in [24]

Φ̂(σ) =

cos
(
σπ
2

)
σ ∈ [0, 1]

0 else,

and the Hamming filter mentioned for example in [40]

Φ̂(σ) =

0.54 + 0.46 cos(σπ) σ ∈ [0, 1]

0 else.

Example reconstructions of the Shepp–Logan phantom from Figure 2.3a using FBP are

shown in Figure 2.7, first the unacceptable result without any filter and then using the

ramp, cosine and Hamming filter.

2.4 Summary

In this chapter we presented the Radon transform as well as two methods on how to invert

the Radon transform with practical and efficient algorithms: Fourier reconstruction and

Filtered Backprojection. Algorithms were specified for the two–dimensional parallel scan-

ning geometry along with example reconstructions of the Shepp–Logan phantom using these

algorithms, see Figure 2.8.
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(a) (b)

(c) (d)

Figure 2.7: Sample reconstructions of the Shepp–Logan phantom using the Filtered back-
projection method (a) without any filter, (b) with the ramp filter, (c) the cosine filter and
(d) the Hamming filter.

While the Fourier Reconstruction algorithm is slightly more efficient computationally, the

Filtered Backprojection method is more popular. The main reason for that is not recon-

structed image quality, as it is comparable if the parameters of the algorithms are chosen

carefully. However, the method can be easily understood by anyone with an engineering

background as the employed concepts are familiar, which is one of the main reasons for the

popularity of the FBP method.

Extensions of both methods to more complex scanning geometries can be performed for

example by resampling the acquired data into a parallel scanning geometry (this is typi-

cally called “rebinning”). Better results however can be achieved by adapting the methods

for the particular scanning geometry which can range in difficulty from straightforward to

complicated, see for example [24].

Extending the reconstructions of the 2D slices to three dimensions can be achieved by

processing several slices and stacking them together into a 3D volume. However, performing

a fully 3D reconstruction is often more desirable, or in case of for example the cone–beam

scanning geometry, necessary. While the concepts remain the same, the actual extensions
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(a) (b)

Figure 2.8: Comparison of sample reconstructions of the Shepp–Logan phantom using (a)
Fourier reconstruction and cubic spline interpolation and (b) Filtered Backprojection with
the Hamming filter.

for n = 3 are often not straightforward. The popular Feldkamp method for cone–beam

scanning geometries [41] for example is a 3D extension of the FBP method presented in this

chapter.





Chapter 3

Series Expansion Methods

In this chapter we present some of the series expansion methods for tomographic recon-

struction. As opposed to the analytic methods from chapter 2 which attempt to solve the

inverse problem analytically and discretize only at the end for computations, here the prob-

lem is discretized straight away, yielding a linear system that has to be solved to obtain the

reconstruction.

This chapter presents the general series expansion principle and several standard approaches

to compute a solution of the resulting linear system. As in chapter 2, an exhaustive treatment

of all available series expansion methods is not possible within the scope of this work, the

interested reader is referred to for example [22, 30] as starting points to the literature.

3.1 General Series Expansion Principle

In tomographic reconstruction we are typically interested in recovering a function f : V → R,

mapping a volume of interest V ⊂ Rn to some real–valued property like the attenuation

factor in CT (vector–valued properties are not considered in this work).

The series expansion approach is to discretize f immediately. Let {bi}i∈I denote a finite set

of basis functions bi : V → R chosen such that there exists a linear combination f̂ of the

basis functions bi which is a suitable approximation of f in some metric,

f̂ =
∑
i∈I

xibi with {xi}i∈I ⊂ R. (3.1)

Then the coefficient vector x = {xi}i∈I is the discretized version of the quantity to be

reconstructed, f . If the basis functions are linearly independent, then the mapping of f̂ to

x is bijective.

27
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A common example of discretization is a k × k–pixel grid overlaid over a two–dimensional

rectangular image, or a k × k × k–voxel grid overlaid over a three–dimensional rectangular

volume. Then in the two–dimensional case I = {1, . . . , k2} and the basis functions are

bi(c1, c2) =

1 if (c1, c2) is inside the i–th pixel

0 else,
(3.2)

while I = {1, . . . , k3} for the three–dimensional case and

bi(c1, c2, c3) =

1 if (c1, c2, c3) is inside the i–th voxel

0 else.
(3.3)

Let y = {yj}j∈J ⊂ R denote the finite set of physical measurements performed in the

tomographic imaging modality, and let Mj :
(
f : Rn → R

)
−→ R be the physical model

of the measurement process (also called forward model) such that Mjf = yj . The major

assumption in the series expansion method is now the validity of

Mjf ≈ Mj f̂ =
∑
i∈I

xi Mjbi. (3.4)

This is automatically true if Mj is a continuous linear functional.

In the example of chapter 2, the case of two–dimensional CT with parallel scanning geometry,

we have Mjf = Rf(ukj , tlj ) and y =
{
Rf(ukj , tlj )

}
.

Finally, denoting aji =Mjbi and A = (aji) ∈ R|J |×|I|, the series expansion approach results

in a linear system

Ax = y. (3.5)

A is usually called the system matrix. The final step is now to determine a solution (or

an approximate solution) x∗ via some solving procedure, resulting in a reconstruction of f ,

f∗ =
∑
i∈I

x∗i bi.

In summary, the series expansion method can be written as algorithm 3.

Algorithm 3 Series Expansion Method

1. Discretize using a set of basis functions {bi}.

2. Compute the system matrix A = (aji) using the forward model aji =Mjbi.

3. Solve Ax = y.
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Typically, most of the “intelligence” of this method is in the forward model, which depends

on the imaging modality and the actual device setup. Any modality can be modeled here (as

long as equation (3.4) holds), which explains the flexibility of the series expansion method.

Choosing the basis functions appropriately can help in increasing the reconstruction quality

as well. While the most common choice of basis functions are the regular, rectangular grid

basis functions defined in equations (3.2) and (3.3), another popular choice are the gener-

alized Kaiser–Bessel window functions, also called spherically–symmetric volume elements

or in short blobs [22, 42–44]. Blobs have a bell–shaped profile, falling off smoothly in radial

direction with continuous derivatives, leading to a smoother reconstruction, useful for imag-

ing modalities with noisy data. However, in practice several parameters of the blobs have

to be fixed, and choosing them optimally for the problem at hand to enable image fidelity

is not a trivial process [45, 46]. Furthermore there is a significant computational overhead.

The choice of the solution method for the linear system Ax = y also factors into reconstruc-

tion quality. Some of the commonly used methods are outlined in the following sections

of this chapter. Due to different origins and properties, some methods might be better

suited than others for a specific imaging modality, like MLEM (see section 3.4) for emission

tomography modalities.

To note here is that the system Ax = y does not necessarily have a solution. Measurement

errors, noise, insufficient data or deficiencies in the forward modelM may lead to the system

having no unique solution or no solution at all. Thus step 3 of the series expansion method

is also formulated using an error vector e ∈ R|J | [22]

Ax+ e = y. (3.6)

e is however typically unknown, so the problem of computing a solution to (3.6) becomes an

optimization process to compute an estimate of the “solution” depending on chosen criteria.

The most common example here is finding the least squares solution,

min
x
‖y −Ax‖2.

Extensions include adding additional terms to the optimization criterion like for example

the total variation or other prior knowledge, or adding constraints like for example forcing

the reconstruction to be non–negative. Another possibility is to model x and e as samples of

a random variable and then use a Bayesian approach with priors or a maximum likelihood

approach. A brief overview over possible optimization criteria can be found in [22].

The computational complexity of the series expansion methods is typically higher than for

analytic methods. Using the simple line–based 0, 1 approach as a forward model for CT as
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0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 1 1 0 0

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

source

detector

volume of interest

Figure 3.1: Illustration of a simple forward model for a 2D CT setup with one line integral
passing from source through the volume of interest to the detector. Any pixel that is hit by
the line is assigned a 1, all others a 0. Linearized into a row vector these values form one
row of the system matrix A.

outlined in the following example along with the ART inversion method (see section 3.3.1

below) yields a complexity of O(q3) using the notations from chapter 2. This is comparable

to the FBP reconstruction method. However, the strength of the series expansion methods

lies in the flexibility and accuracy of the forward model, and it is not uncommon to have

a forward model with a computational complexity an order of magnitude higher than the

inversion process (an example is optical tomography, see chapter 4).

To illustrate the series expansion approach, a simple two–dimensional parallel scanning

geometry CT setup serves as an example, see Figure 3.1. More complicated examples

can be found in the two following chapters 4 and 5 detailing the Fluorescence Molecular

Tomography and Freehand SPECT imaging modalities.

Figure 3.1 displays a volume of interest V ⊂ R2 discretized into 10 × 10 pixels using the

basis functions bi(c1, c2) from (3.2), with a source projecting X–rays along a line to the

detector. The reading of the detector corresponds to yj for some j. According to how the

X–rays are passing through V , the pixels are marked with 0 (no intersection of pixel and

line) or 1 (intersection of pixel and line). These zeros and ones correspond to Mjbi = aji,

and together form the j–th row of the system matrix A,


· · · · ·
aj1 · · · aj100

· · · · ·


︸ ︷︷ ︸

A


x1

...

x100


︸ ︷︷ ︸

x

=


...

yj
...


︸ ︷︷ ︸
y

.

Repeating this process for all measurements j ∈ J yields the system equation Ax = y.
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Figure 3.2: Shepp–Logan phantom used for example reconstructions throughout this chap-
ter, the resolution is lower than in chapter 2 due to computational limitations.

As an example, this simple forward model was used to generate the system matrix A for

the Shepp–Logan phantom from chapter 2 using Matlab, albeit at a lower resolution due

to computational limitations. The phantom was discretized into 64 × 64 pixels, see Figure

3.2, the system matrix A was created using 4096 simulated measurements y in a parallel

scanning geometry.

3.2 SVD–based Solvers

Let A ∈ Rm×n with m ≥ n (for m < n use At instead of A). The Singular Value Decompo-

sition (SVD) of A is defined as

A = UΣV t =

n∑
i=1

uiσiv
t
i ,

where U = (u1, . . . , un) ∈ Rm×n and V = (v1, . . . , vn) ∈ Rn×n are orthogonal matrices,

U tU = V tV = In (In is the n × n identity matrix). Σ = diag(σ1, . . . , σn) is a diagonal

matrix with non–negative elements sorted in non–increasing order, σ1 ≥ σ2 ≥ . . . σn ≥ 0.

The SVD exists for any matrix A.

If A is invertible, then σi > 0 for all i = 1, . . . , n and we can use SVD to calculate

A−1 = V Σ−1U t with Σ−1 = diag(σ−1
1 , . . . , σ−1

n ). Thus the solution to our series expan-

sion reconstruction problem Ax = y would read as

x∗ =

n∑
i=1

utiy

σi
vi. (3.7)
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Figure 3.3: Example singular value spectra of the system matrix A of several Freehand
SPECT acquisitions, see chapter 5.

If A is not invertible, that is rank(A) < n, then leaving out the terms with σi = 0 in (3.7)

leads to

x∗ =

rank(A)∑
i=1

utiy

σi
vi, (3.8)

which is the least squares solution of minx ‖Ax − y‖2 with minimum 2–norm [47]. Inci-

dentally, A+ =
∑rank(A)

i=1 viσ
−1uti is called the pseudoinverse or Moore–Penrose inverse [48].

Using A+, the condition number of A according to the 2–norm is defined as

cond(A) = ‖A‖2‖A+‖2 =
σ1

σrank(A)
.

However, the system matrices A from series expansion methods are typically not rank–

deficient. Instead, the singular values σi decay gradually to zero with no particular gap in

the spectrum. Figure 3.3 shows an example of the singular value spectrum of A in case

of several different Freehand SPECT acquisitions (see chapter 5). Thus, A is also highly

ill–conditioned [47].

While the SVD allows computing a solution x∗ to Ax = y as outlined above, this solution is

in most cases not pleasing, both in mathematical terms (for example a too high norm ‖x‖)
and in terms of visual quality, see Figure 3.4a. A common remedy is including additional

terms or constraints to select a more desirable solution, this is called regularization. Two

regularization approaches are outlined in the following sections, for a more complete overview

see [47].
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(a) SVD (b) T–SVD

(c) Tikhonov λ = 0.1 (d) Tikhonov λ = 0.9

Figure 3.4: SVD–based reconstructions of the Shepp–Logan phantom from Figure 3.2, using
(a) plain SVD inversion, (b) truncated SVD with k = m

2 , (c) and (d) Tikhonov regularization
with λ = 0.1 and λ = 0.9.

In practice, even regularized SVD–based solvers are not in common use. As the system

matrices A of series expansion methods tend to be huge sparse matrices, the SVD calculation

is very costly in terms of memory requirements and computation time, furthermore it can

take no advantage of the sparsity of A.

3.2.1 Truncated SVD

The truncated SVD solution to Ax = y is

x∗k =
k∑
i=1

utiy

σi
vi, (3.9)

using the notation of the previous section and k ∈ N [49, 50]. This is essentially identical

to (3.8), except that k is now a parameter instead of the fixed rank(A). x∗k is in fact

the minimum 2–norm solution to the least squares problem minx ‖Akx − y‖2, where Ak =∑k
i=1 uiσiv

t
i is the matrix created from A by setting the small singular values σk+1, . . . , σn
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to zero. An example reconstruction of the phantom from Figure 3.2 using k = m
2 is shown

in Figure 3.4b.

One way to select the parameter k according to a given tolerance ε is to use the numerical

ε–rank, which can be defined as the smallest integer k such that σ2
k+1 + · · ·+ σ2

n ≤ ε2 [51].

3.2.2 Tikhonov Regularization

Tikhonov regularization [52, 53] for our series expansion problem Ax = y takes the form

min
x

(
‖Ax− y‖22 + λ2‖Lx‖22

)
(3.10)

for some parameter λ > 0 and L ∈ Rn×n. L controls the additional desired properties

of the solution x∗, while λ regulates the relative weight of the regularization compared to

the minimization of the residual norm. For this section we choose the simplest case of

L = In. Other choices include diagonal weighting matrices or derivative operators and

require calculation of the generalized SVD (GSVD) of the pair (A,L), see [47] for more

details.

For L = In the regularized Tikhonov solution is

x∗ =

n∑
i=1

fi
utiy

σi
vi, (3.11)

where the

fi =
σ2
i

σ2
i + λ2

are called filter factors.

This is similar to the truncated SVD, except that here the filter factors are not a hard

cut–off, but diminishes the contribution of the smaller σi depending on the value of λ. In

fact, the truncated SVD solution can be written as (3.10), but with filter factors

fi =

1 i ≤ k

0 i > k,

and is close to the Tikhonov solution for certain λ [54].

The parameter λ can be chosen heuristically, but there are also methods like Generalized

cross–validation [55, 56] or L–curve analysis [57, 58], which plots log ‖Axλ − y‖2 versus

log ‖Lxλ‖2 for different λ values, resulting in an L–shaped curve which allows selecting an
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optimal λ. For a more detailed overview the reader is referred to [47]. Example reconstruc-

tions of the phantom from Figure 3.2 can be found in Figures 3.4c and 3.4d for λ = 0.1 and

λ = 0.9.

3.3 Constraint–based Solvers

The linear system Ax = y employed in series expansion methods can be viewed as a special

case of the convex feasibility problem (CFP). Given closed convex subsets Ci ⊂ Rn, i =

1, . . . ,M , the CFP is to find a point x∗ ∈
⋂M
i=1Ci. This definition can also be extended to

general Hilbert spaces instead of Rn. Each row aj1x1 + . . .+ajnxn = yj of the linear system

Ax = y defines a hyperplane in Rn, which is a closed convex subset of Rn, and the solution

x∗ is the intersection of all these hyperplanes.

This section presents an overview of several methods to approach the convex feasibility

problem, which we loosely sub-summed under the general heading of “constraint–based”

solvers. References to the literature are given as a starting point for more detailed studies

of the various methods. General overviews can be found for example in [59–62].

3.3.1 Algebraic Reconstruction Technique and Variants

The Algebraic Reconstruction Technique (ART) is one of the most popular solvers used in

series expansion methods. Based on the Kaczmarz method [63] first published in 1937 by

S. Kaczmarz, the method was termed Algebraic Reconstruction Technique in the context of

tomographic reconstruction by R. Gordon, R. Bender and G.T. Herman in 1970 [64].

Consider the linear system Ax = y with A ∈ Rm×n, let aj denote the j–th row of A. The

system is interpreted as a set of hyperplanes Hj for j = 1, . . . ,m,

Hj =
{
x ∈ Rn : 〈aj , x〉 = yj

}
.

The Algebraic Reconstruction Technique is an iterative algorithm which successively projects

the starting vector x0 orthogonally onto the next hyperplane Hj , iterating over all rows of

the matrix A repeatedly. With PHj denoting the orthogonal projection operator onto Hj

the k–th iterative step of ART is

xk+1 = PHj(k)(x
k) (3.12)
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a3x=y3

a2x=y2

a1x=y1

x0=0

Figure 3.5: Illustration of ART for a linear system
(
at1, a

t
2, a

t
3

)t
x =

(
y1, y2, y3

)t
with start

vector x0 = 0.

with j(k) = (k mod m) + 1. Each iteration step is updating the solution using one row of

A, this is why this method is also called a row–action method [65]. The iteration process is

illustrated for a simple example in Figure 3.5.

In more practical terms the k–th iterative step of ART is

xk+1 = xk +
yj(k) − 〈aj(k), x

k〉
‖aj(k)‖22

aj(k) (3.13)

with j(k) = (k mod m) + 1.

If the system Ax = y has solutions (this is also called consistent), ART converges to the

solution closest to x0 (see for example [61] for a proof). When there are no solutions, ART

does not converge. However, for t ∈ {1, . . . ,m} the subsequence (xlm+t)l∈N converges to a

vector zt, and the set
{
zt : t = 1, . . . ,m

}
is called limit cycle [66].

There are various modifications to the algebraic reconstruction technique. A popular one is

the introduction of a relaxation factors λk ∈ (0, 2) into the iteration step,

xk+1 = xk + λk
yj(k) − 〈aj(k), x

k〉
‖aj(k)‖22

aj(k). (3.14)

This amounts to cutting short the hyperplane projection in case of λk < 1, or elongating

it in case of λk > 1. The original ART uses λk = 1 for all k. Especially small relaxation

parameters have turned out beneficial in practice (see for example [22]), the intuition is that

a small λk can minimize the influence of a noisy or erroneous hyperplane in exchange for
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sacrificing convergence speed. The convergence of the relaxed ART was proven in [67] for

consistent systems, in the case of inconsistent systems the existence of a limit cycle was

shown in [68] if the relaxation factors are periodic. It was shown in [69] that with λk → 0

the limits of the cyclic subsequences converge to a weighted least squares solution of Ax = y

with minimum norm, confirming the intuition.

Another modification to ART is the choice of j(k). Regular ART is just iterating through A

from the first row to the last row repeatedly. If however the projections in each iterative step

could be chosen somehow optimally, the convergence speed could be increased. A scheme

choosing the next projection to be as “orthogonal as possible” was explored in [70] and [71].

The most common scheme is to choose projections randomly, which has proven beneficial in

many practical cases (see for example [22, 72]). A certain random projection access order

scheme was shown to have exponential convergence rate in [73] for certain cases, however

that is not true in general [74].

A third common modification is to restrict the solution to a closed convex set C ⊂ Rn in

each iterative step, like for example enforcing non–negativity on the estimates xk [22, 61].

There exist various other variants of like blocked versions of ART [61, 75] or regularized

ART [68, 76]. A short review with further references to the literature is available in [77].

ART can also be seen as a special case of the general Projection onto Convex Sets method

(POCS) used in signal and image processing [78].

Example reconstructions of the phantom from Figure 3.2 using ART with different param-

eters can be found in Figure 3.6. As opposed to the row–action method ART, the following

section presents an overview of iterative methods using a simultaneous update step.

3.3.2 Landweber Methods

Let A = (aji) ∈ Rm×n and let C ⊂ Rn and Q ⊂ Rm be closed convex sets. The problem of

finding c ∈ C with Ac ∈ Q is called the split feasibility problem (SFP) [79], a special case

of the convex feasibility problem. The CQ algorithm is a method to solve the SFP [80],

it has the k–th iterative step

xk+1 = PC
(
xk − γAt(Im − PQ)Axk

)
, (3.15)

where PC , PQ are the projection operators onto C and Q and γ ∈
(

0, 2
ρ(AtA)

)
with ρ(AtA)

denoting the spectral radius of AtA, which equals the largest eigenvalue.
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(a) 20 iterations (b) 80 iterations

(c) 80 iterations, λ = 0.5 (d) 80 iterations, λ = 0.1, randomized

Figure 3.6: ART reconstructions of the Shepp–Logan phantom from Figure 3.2, using (a) 20
iterations, (b) 80 iterations, (c) 80 iterations and λ = 0.5 and (d) 80 iterations with λ = 0.1
and randomized projection access order.

If a solution of the SFP exists, the CQ algorithm converges to it for any starting vector

x0 ∈ Rn [61]. If there is no solution, the CQ algorithm converges to a minimizer of

min
x∈C

1

2

∥∥PQAx−Ax∥∥2

2
.

The convergence of the CQ algorithm is a consequence of the Krasnoselskii/Mann theorem

[81] using fixed point iteration of an averaged operator, see also [62] for more details on the

proof.

In the following we present a few special cases of the CQ algorithm, which conveniently have

assured convergence as noted above.

The first example is the Landweber algorithm introduced by L. Landweber in 1951 [82].

Set C = Rn and Q = {y}, then the SFP is equivalent to solving the linear system Ax = y.

The Landweber iteration is

xk+1 = xk + γAt(y −Axk), (3.16)
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with again γ ∈
(

0, 2
ρ(AtA)

)
and arbitrary x0 ∈ Rn. A strategy to choose γ is outlined for

example in [61].

If we choose C $ Rn closed and convex, the CQ algorithm specialization is called the

Projected Landweber algorithm and calculates a solution of Ax = y requiring x ∈ C.

A typical example would be C =
(
R+

0

)n
:= {x ∈ Rn : xi ≥ 0 ∀i = 1, . . . , n} to restrict the

solution to non–negative images, which is usually desired in most imaging modalities. The

projected Landweber iteration is

xk+1 = PC
(
xk + γAt(y −Axk)

)
, (3.17)

with again γ ∈
(

0, 2
ρ(AtA)

)
and arbitrary x0 ∈ Rn.

The Simultaneous Algebraic Reconstruction Technique (SART) introduced in [83]

is a variant of the Landweber algorithm with γ = 1 as demonstrated for example in [80].

Here Ax = y is solved for the case of A ∈
(
R+

0

)m×n
using the k–th iteration step

xk+1
i = xki +

1∑m
j=1 aji

m∑
j=1

aji∑n
i′=1 aji′

(
yj − (Axk)j

)
(3.18)

for i = 1, . . . , n and arbitrary x0 ∈ Rn.

Another variant of the Landweber algorithm with γ = 1
m is Cimmino’s algorithm intro-

duced by G. Cimmino in 1938 [84], here the k–th iteration step is

xk+1 = xk +
1

m
At(y −Axk) (3.19)

for any x0 ∈ Rn. The idea of this method is to project the current solution estimate xk onto

all the hyperplanes of Ax = y and taking the arithmetic mean. Unfortunately convergence is

typically very slow. This method is also referred to as Simultaneous Iterative Reconstruction

Technique (SIRT) and has several other variants, see [85, 86].

A method called component averaging (CAV) to accelerate the convergence of Cim-

mino’s algorithm while keeping its convergence properties was suggested by Y. Censor et al.

in 2001 [87]. The general idea is to introduce a diagonal weighting matrix in the iteration

step. Let ‖x‖2G := 〈x,Gx〉 for a symmetric positive definite matrix G ∈ Rn×n, let si denote

the number of nonzero elements aji in the i–th column of A and set S := diag(s1, . . . , sn).

Assuming that si 6= 0 for all i = 1, . . . , n we can define DS := diag
(

1
‖a1‖2S

, . . . , 1
‖am‖2S

)
. The

k–th CAV iteration step is then

xk+1 = xk + λkA
tDS(y −Axk) (3.20)
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(a) Landweber (b) Cimmino

Figure 3.7: Reconstructions of the Shepp–Logan phantom from Figure 3.2 using (a) the
Landweber method with 80 iterations and γ = 0.0004, (b) Cimmino’s method with 80
iterations.

with λk > 0 denoting relaxation factors and x0 ∈ Rn. A block–iterative variant of CAV

called BiCAV with even quicker convergence was introduced shortly afterwards in [88]. Both

methods parallelize well.

Example reconstructions of the phantom from Figure 3.2 using the Landweber method and

Cimmino’s method can be found in Figure 3.7. There exist many more methods and variants

of iterative reconstruction methods that can be loosely classified as constraint–based solvers,

however the interested reader is referred to the literature, a good starting point is [61].

3.4 Statistics–based Solvers

Statistics–based solvers treat the series expansion problem Ax = y (or Ax + e = y with

an error term) with statistical methods. Assuming x (or x and e) is a sample of a random

variable, a Bayesian framework can be used to obtain a reconstruction, for example employed

a Maximum A Posteriori (MAP) estimator. The necessary prior information can be supplied

for example by Gibbs priors or Markov Random Field (MRF) image models, see [89]. A

more thorough introduction of the Bayesian methods for image reconstruction can be found

in [22].

This section however is focusing on the so–called Maximum Likelihood Expectation

Maximization (in short MLEM or EMML) method as introduced by L.A. Shepp and Y.

Vardi in 1982 [90]. This method assumes each voxel to be an emitter according to a Poisson

distribution, which is one of the widely accepted models for radioactive decay, explaining

the popularity of this method in emission tomography.
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(a) 20 iterations (b) 80 iterations

Figure 3.8: MLEM reconstructions of the Shepp–Logan phantom from Figure 3.2 using (a)
20 iterations and (b) 80 iterations.

Using the series expansion notations as introduced earlier in this chapter, the voxels bi

are assumed to be independent Poisson–distributed random variables φi with expectation

xi = E(φi), representing the unknown activity in voxel bi. The measurements yj represent

the realization of random variables γj denoting the counts detected in the detector j. Finally,

the matrix elements of A = (aji) denote the probability that an event in bi is detected in

detector j. Then

E(γ) = Ax.

The likelihood function of x is then

L(x) =
m∏
j=1

Ax
yj
j

yj !
e−(Ax)j ,

and x can be determined using the expectation maximization (EM) method [91], yielding

the MLEM algorithm with the k–th iterative step

xk+1
i =

xki∑m
j=1 aji

m∑
j=1

yj
(Axk)j

aji ∀i = 1, . . . , n. (3.21)

Here it is required that x0 > 0 element–wise, and that A ≥ 0 element–wise as well as∑m
j=1 aji > 0 for all i = 1, . . . , n. This algorithm was derived in [90], convergence was

proven in [92]. Example reconstructions of the phantom from Figure 3.2 are shown in

Figure 3.8.

It was found that the statistically motivated MLEM method can be brought into the setting

of the projection onto convex sets (POCS) methods mentioned in the previous section. For

this the distance measure used in the projections needed to be generalized from metrics

to so–called Bregman distances [93, 94]. Iterative algorithms can then be created just as

with the POCS method [75]. A particular example of a Bregman distance is the Shannon
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entropy–based Kullback–Leibler distance [95], which for x, z ∈ Rm is defined as

KL(x, z) =
m∑
j=1

xj log

(
xj
zj

)
+ zj − xj .

The projection onto convex sets iteration using the distance KL(y,Ax) and the weighted

arithmetic mean of these projections is identical to MLEM as shown in [96].

Using the distance KL(Ax, y) instead yields the Simultaneous Multiplicative ART

(SMART) method [97],

xk+1
i = xki exp

 1∑m
j=1 aji

m∑
j=1

aji log
yj

(Axk)j

 (3.22)

with x0 > 0 element–wise again. Like MLEM, SMART can also be derived via likelihood

maximization [61].

The convergence rate of the MLEM method is not particularly fast, as a remedy a block–

iterative variant was developed [98, 99]. This variant is called Ordered Subsets Expec-

tation Maximization (OSEM). Let B = {1, . . . ,m} and define a partition {Bt} of T

non–empty subsets Bt such that

B =
T⋃
t=1

Bt.

The iterative step of OSEM sums up only over the subsets Bt and reads as

xk+1
i =

xki∑
j∈B[k]

aji

∑
j∈B[k]

yj
(Axk)j

aji, (3.23)

where [k] := (k mod T ) + 1 and the iteration from k = lT to k = (l + 1)T is called one

ordered subset cycle. Careful arrangement of the subset order can speed up the convergence

rate just like with ART and the projection access order. Convergence has been proven

only for consistent systems Ax = y in a special case with the subset balance property [99].

OSEM does not converge in the inconsistent case, but like ART exhibits limit cycles [100].

To eliminate those limit cycles a modification of OSEM was introduced in [100] using strong

under–relaxation, it is called Row–Action Maximization Likelihood Algorithm (RAMLA).

A similar modification is the rescaled block–iterative version of MLEM, introduced as RBI–

EMML in [101, 102].

The OSEM algorithm has been implemented in several modern commercial emission tomog-

raphy systems [77] due to similar reconstruction quality compared to MLEM while being a

lot more computationally efficient.
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(a) Tikhonov (b) ART

(c) MLEM (d) LSQR

Figure 3.9: Example reconstructions of the Shepp–Logan phantom from Figure 3.2 using
(a) Tikhonov regularization with λ = 0.1, (b) ART with λ = 1, (c) MLEM and (d) LSQR.
The iterative methods all employed 80 iterations.

3.5 Summary

In this chapter we presented the series expansion method for tomographic reconstruction,

from choosing suitable basis functions for discretization to calculating the system matrix

according to the forward model and solving the resulting linear system Ax = y. Furthermore

we presented an overview of different solving methods, ranging from SVD–based methods

to the popular Algebraic Reconstruction Technique (ART), but also presenting Landweber–

based methods as well as statistics–based methods like the MLEM algorithm, which is very

popular in emission tomography.

Typical numerical solvers like the conjugate gradient (CG) method were omitted as they

are rarely used as solvers for the series expansion approach, even though the mathematical

aspects are very well understood. For a review of CG and related methods see [60]. How-

ever, the so–called LSQR algorithm introduced in [103] can also be classified as a CG–type

method, and it has recently found application in the field of optical tomography, see for

example [29, 104] or section 4.5.
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Figure 3.9 compares example reconstructions of the Shepp–Logan phantom from Figure

3.2 using Tikhonov regularization, ART, MLEM to one using LSQR. Examples of series

expansion methods in actual imaging modalities will be presented in chapters 4 (Fluorescence

Molecular Tomography employing ART) and 5 (Freehand SPECT employing both ART and

MLEM).



Chapter 4

Application: Optical Tomography

One of the many potential applications of the series expansion methods from chapter 3

is presented in this chapter — optical tomography. There are many different variants of

doing optical tomography, with key differences on the detection side using for example

interferometry, microscopes or cameras, as well as on how to deal with the high scattering

of light in tissue, for example by acquiring time–resolved or frequency domain data. In this

chapter one such method is presented: Fluorescence Molecular Tomography (or in short:

FMT), based on imaging fluorescence using the diffusion approximation and continuous–

wave sources. The work in this chapter was supervised by Prof. Vasilis Ntziachristos.

4.1 Imaging Fluorescence

Imaging fluorescence in living tissue can provide valuable information about tissue oxygena-

tion, pH and glucose. Bio–molecules have been developed that are able to target molecular

markers specific to cancer cells or certain processes like apoptosis (programmed cell death),

and by conjugating fluorochromes to these molecules, biochemical processes at the molec-

ular and cellular level can be imaged by fluorescent imaging techniques in living subjects

(in–vivo molecular imaging). Besides these so–called “targeted probes”, there is another

type of probes called “activatable” probes. These are not excitable in their normal state,

however as soon as they attach to their target, structural changes within these molecules

enable them to fluoresce. Utilizing these markers, specific biochemical processes at cellular

and sub–cellular levels are detectable via fluorescence imaging that could not be imaged by

conventional imaging techniques [105–107].

The main interest is in fluorescent dyes that emit in the near–infrared window (NIR), that

is at wavelengths above 600nm. Figure 4.1 shows that the main absorber in tissue —

45
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Detecting early cancers. A variety of reporter probes have been
used for enhanced detection of early cancers, including somato-
statin receptor–targeted probes32–34, folate receptor–targeted
agents35, tumor cell–targeted agents36–39, agents that incorporate
into areas of calcification, bone formation or both40, and agents
being activated by tumor-associated proteases41–43. Many of these
agents accumulate in (and thus enhance) tumors to a certain de-
gree; however, FRET-based agents can yield particularly high
tumor/background signal ratios because of their nondetectabil-
ity in the native state. For example, recent work has shown that
highly dysplastic tumoral precursors are readily detectable by
targeting cathepsin B (ref. 23), a protease capable of activating a
model reporter (Table 2). In this particular study, the sensitivity
and specificity of optical detection of intestinal polyps were each
>95%. Similar approaches may be particularly useful for early en-
doscopic detection and characterization of polypoid lesions as
well as laparoscopic detection of residual or recurrent tumors
such as ovarian cancer. These probes have also been used to de-
tect host response, inflammation and invasion (Fig. 3).

Assessment of molecular therapy.
One particularly interesting applica-
tion of enzyme-activatable imaging
agents has been to use them as tools
for objective target assessment of
new therapeutic agents. In one
study, the efficacy of a matrix met-
alloproteinase-2 (MMP-2) inhibitor
at varying dosing and timing was
assessed with an MMP-2-targeted
imaging probe44. Small molecule–
induced target inhibition could be
externally imaged as shortly as 8 h
after therapeutic drug administra-
tion. It is clear that other classes of
imaging agents will be developed to
image the growing array of different
drug targets.

Clinical imaging. Indocyanine
green (ICG), an NIR fluorochrome,
is approved for clinical retinal an-
giography and liver function test-
ing45. It is a safe imaging agent,
having been used in tens of thou-
sands of patients with a reported

side effect rate of <0.15%, an extremely favorable index as
compared with other reporter agents46. In addition, it has been
used in at least one clinical study as an absorber (not a fluo-
rochrome) for enhanced tumor detection31. Near-infrared fluo-
rochromes with improved biophysical properties (solubility,
quantum yield, stability, synthetic yield, conjugatability) have
recently been developed47–49 and open new avenues for high-
efficiency labeling of affinity molecules. Before they can enter
routine clinical use, however, these fluorochromes will need to
undergo testing and receive approval from the US Food and
Drug Administration.

Table 1  Optical in vivo imaging systemsa

Technique Contrastb Depth Commonly used Clinical 
wavelength potential

Microscopic resolution
Epi A, Fl 20 µm Visible Experimental
Confocal Fl 500 µm Visible Experimental
Two-photon Fl 800 µm Visible Yes

Mesoscopic resolution
Optical projection tomography A, Fl 15 mmc Visible No
Optical coherence tomography S 2 mm Visible, NIR Yes
Laser speckle imaging S 1 mm Visible, NIR Yes

Macroscopic resolution, intrinsic contrast
Hyperspectral imaging A, S, Fl <5 mm Visible Yes
Endoscopy A, S, Fl <5 mm Visible Yes
Polarization imaging A, S <1.5 cm Visible, NIR Yes
Fluorescence reflectance imaging (FRI) A, Fl <7 mm NIR Yes
Diffuse optical tomography (DOT) A, Fl <20 cm NIR Yes

Macroscopic resolution, molecular contrast
Fluorescence resonance imaging (FRI) A, Fl <7 mm NIR Yes
Fluorescence molecular tomography Fl <20 cm NIR Yes
(FMT)
Bioluminescence imaging (BLI) E <3 cm 500–600 nm No

aNote that the combination of reporter probes (Table 2) and imaging system often imparts molecular specificity. bA,
Absorption; E, emission; S, scattering; Fl, fluorescence. cIn cleared specimen.
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Fig. 1 Interaction of light with tissue. The absorption coefficient of light
in tissue is dependent on wavelength and results from absorbers such as
hemoglobins, lipids and water. The graph is calculated assuming nor-
mally oxygenated tissue (saturation of 70%), a hemoglobin concentra-
tion of 50 mM, and a composition of 50% water and 15% lipids. The
graph also lists the emission range of several common fluorochromes and
luciferases used for imaging. The insert shows autofluorescence spectra
obtained in vivo at different excitation wavelengths (obtained from ref.
84). The excitation range, denoted as !x, is from 337 to 610 nm, and the
emission range (!m) is from 360 to 750 nm. Note the much lower tissue
autofluorescence at longer wavelengths. The mouse images at the bot-
tom show experimentally measured photon counts through the body of a
nude mouse at 532 nm (left) and 670 nm (right). The excitation source
was a point illumination placed on the posterior chest wall. Signal in the
NIR range is "4 orders of magnitude stronger for illumination in the NIR
compared with illumination with green light under otherwise identical
conditions, illustrating the advantages for imaging with NIR photons. 
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Figure 4.1: Absorption coefficients of light in typical tissue plotted against wavelength.
Also shown: emission spectra of several fluorochromes and tissue autofluorescence spectra
at different excitation wavelengths. Reprinted by permission from Macmillan Publishers Ltd: Nature

Medicine [14], copyright 2003.

hemoglobin — allows for imaging in the NIR window, starting from 600nm up to 900nm,

as water has increased absorption above 900nm. Within this spectral window light can

propagate through tissue for distances on the order of multiple centimeters, e.g. through

large human organs [108]. Two excellent reviews of imaging fluorescence can be found in

[14, 109].

The most simple technique of imaging fluorescence is fluorescence reflectance imaging, used

for example extensively in histology. Here a light source provides the excitation light, and

the fluorescent light emitted is detected by a camera or microscope with appropriate filters

placed on the same side of the object, see Figure 4.2. The detected signal is a superposition of

fluorescent light emitted at different depths in the object, with the lower depths contributing

less and less to the signal due to scattering and attenuation of the photons.

Tomographic techniques can overcome this limitation and enable three–dimensional quan-

titative visualization of the fluorescence bio–distribution. In the presented implementation,

FMT collects photons at the emission wavelength of fluorochromes distributed in tissues

at multiple projections in a transmission geometry, and combines these measurements to-

mographically with photons collected at the excitation wavelength to obtain fluorescence

images of deep tissues. To achieve this, FMT typically employs a mathematical model of
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Figure 4.2: Schematic of Fluorescence Reflectance Imaging: a fluorescent molecule is excited
by source light and emits fluorescence at emission wavelength, which is captured by a camera.

photon propagation in diffusive media and constructs a forward model which is then solved

for the unknown fluorochrome bio–distribution.

Due to the limitations of light penetration depth in tissue even in the near–infrared part of

the spectrum, FMT is mostly used to image small animals like mice [110, 111]. The ability

to image several engineered fluorochromes with specificity to various molecular processes

in–vivo has so far been applied to resolving tumor–related protease activity, responses to

chemotherapy, inflammation and angiogenesis [112–115] and is expected to find increasing

further application to pre–clinical research and drug discovery. However, systems for imaging

human extremities have also been demonstrated, for example imaging the breast or the brain

[116]. One key issue here, besides limited depth penetration of photons in tissue, is also the

scarcity of fluorescent tracers approved for use in humans.

4.1.1 Modeling Light Propagation

In order to enable tomography of the captured projection images of fluorescence, a model

for light propagation in tissue is required.

One common approach to model light propagation in scattering and absorbing media is the

Radiative Transport Equation (RTE, for a more detailed explanation and a derivation see

for example [117, 118])

n

c

∂I(r, ŝ)

∂t
+ ŝ · ∇I(r, ŝ) + µtI(r, ŝ) =

µt
4π

∫
4π
p(ŝ, ŝ′)I(r, ŝ′) dΩ′ + ε(r, ŝ). (4.1)

Here I(r, ŝ) denotes the specific intensity, which represents the average power flux at point r

in the direction ŝ (power per unit area and unit solid angle), n is the refractive index of the

medium, c the speed of light in vacuum and µt = µs + µa are the transport coefficient, the

scattering and absorption coefficients respectively (depending on the wavelength λ). Finally

p(ŝ, ŝ′) denotes the scattering phase function (the probability of scattering in the direction
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ŝ from the direction ŝ′) and ε(r, ŝ) denotes the radiant source function, the power that is

radiated by the medium at point r per unit volume and per unit solid angle in the direction

of ŝ. Assuming a small element of space at position r with a small solid angle in direction of

ŝ, the left–hand–side terms describe the photons entering the element, the flux of photons

in direction of ŝ and the scattering and absorption inside the element. On the right–hand

side the first term accounts for photons at position r being scattered from all directions ŝ′

into the direction ŝ and the last term describes the photon source.

There are no results available on how to apply Radon–like methods as in chapter 2 for to-

mographic reconstruction based on the Radiative Transfer Equation 4.1, however the series

expansion framework in chapter 3 is perfectly suited to this problem. To derive a model

to calculate the system matrix, a solution of equation 4.1 has to be derived. Unfortunately

analytical solutions are only available in special cases, whereas numerical solutions are usu-

ally very computationally intensive. Thus several approximations have been considered,

such as expanding the specific intensity into spherical harmonics truncated to first order, or

assuming media which has much higher scattering coefficients than absorption coefficients

(as usually occurred in living tissue) and assuming isotropic light sources (for more details

see [119]). This yields the Diffusion Equation

1

c

∂U(r)

∂t
−Dλ∆U(r) + µaU(r) = E(r) +∇Dλ · ∇U(r), (4.2)

where U(r) =
∫

4π I(r, ŝ)dΩ denotes the average intensity at point r (photon fluence),

Dλ = 1
3µ′s

is called the diffusion coefficient for wavelength λ with µ′s = µs(1− g) the reduced

scattering coefficient and g the anisotropy factor, and finally E(r) denotes the source power

at point r. These approximations typically hold in the context of actual implementations

of FMT devices, it is for example required that the system size is much bigger than the

transport mean free path ltr = 1
µ′s

, and in turn that ltr is much bigger than the employed

photon wavelength. In particular, the diffusion approximation breaks down when encounter-

ing non–diffusive regions, which is why first–generation FMT systems employed matching

fluids and why non–contact systems without matching fluids require a modified forward

model (see section 4.2).

Two further assumptions can be made to further simplify the diffusion equation in case

the FMT system operates in continuous–wave mode (CW), that is the laser beam is not

modulated (thus eliminating the time dependence), and by assuming that the medium is

homogeneous, which implies that Dλ is constant. This yields

−Dλ∆U(r) + µaU(r) = E(r). (4.3)

To solve this equation for objects of limited size, certain boundary conditions have to be
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introduced for U , where light is leaving the object at its boundaries into non–diffusive

medium, disturbing the process of diffusion, see [119–121] and section 4.2. For now we will

assume the simplest case of performing FMT with matching fluids, where we can assume

an infinite homogeneous medium using no boundary conditions.

Assuming an infinite homogeneous medium and setting E(r) = δ(r − r′) (a Dirac pulse at

position r′) the diffusion equation (4.3) is solved by the Green’s function Gλ for wavelength

λ,

Uλ(r) = Gλ(r − r′) =
e−kλ|r−r

′|

4πDλ|r − r′|
,

where kλ =
√
−µa/Dλ describes the photon wave propagation (see [122]). Applying this

for E(r) = Θs(rs)δ(r − rs), that is a point source at location rs with strength Θs(rs) (for

example a laser source), we receive

Uλ0 (rs, r) = Θs(rs)Gλ(r − rs)

as a solution to equation (4.3), describing the photon wave induced at point r by the source

at point rs.

Let λ1 denote the excitation wavelength of the fluorochrome considered (for example 673nm

in the device presented in section 4.2). If Θd(rd) accounts for detection gain and losses at

detector position rd and QEλ1 is the detector quantum efficiency at wavelength λ1, then

the incident photon field induced by source rs detected at position rd is

Uinc(rs, rd) = QEλ1 ·Θd(rd) · Uλ10 (rs, rd). (4.4)

Let λ2 denote the emission wavelength of the fluorochrome (in this case 692nm). When

considering a fluorescent molecule at position r as a light source, its emission can be char-

acterized by (see [123])

Efluo(r) = n(r) · Uλ1(r),

where

n(r) = γc(r)

is the product of the fluorochrome concentration c(r) at position r at the quantum yield of

the fluorochrome γ. n(r) is actually the quantity we will reconstruct as a result of FMT.

Thus the fluorescence field induced at point r by a source at position rs is

Ufluo(rs, r) =

∫
V
Gλ2(r − r′) · n(r′) · Uλ10 (rs, r

′) dr′

=

∫
V
Gλ2(r − r′) ·Θs(rs)Gλ1(r′ − rs) · n(r′) dr′,
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where V denotes the volume under consideration. Let finally denote Θf the attenuation

of the filter used to collect the fluorescent field and QEλ2 the quantum efficiency of the

detector at wavelength λ2, the fluorescent field induced by source rs at detector rd is

Ufluo(rs, rd) =

∫
V

ΘfΘs(rs)Θd(rd)QE
λ2 ·Gλ2(rd − r′)Gλ1(r′ − rs) · n(r′) dr′. (4.5)

This model of the fluorescent field is of the same form as the first–order perturbative model

for a scattering medium with inhomogeneous absorption (see [124]), the so–called “first–

order Born approximation”.

In order to reconstruct the fluorochrome distribution n the factors Θs(rs), Θd(rd) have to

be known for each source–detector pair rs, rd. To alleviate this situation the “normalized

Born” ratio UnB was introduced in [123],

UnB(rs, rd) =
1

Θf
· QE

λ1

QEλ2
· Ufluo(rs, rd)

Uinc(rs, rd)

=
1

Θf
· QE

λ1

QEλ2
·
∫
V

Gλ2(rd − r′)Gλ1(r′ − rs)
Gλ1(rd − rs)

n(r′) dr′. (4.6)

The terms Θf and QEλ1

QEλ2
can be determined experimentally for a given setup, and usually

we have QEλ1

QEλ2
≈ 1 due to the proximity of λ1 and λ2.

Discretizing the volume V into N voxels r1, . . . , rN allows reformulation of equation (4.6)

into a linear equation for the source–detector pair rsi , rdi (i = 1, . . . ,M)

UnB(rsi , rdi) =
(
Wi1 · · · WiN

) 
n(r1)

...

n(rN )

 ,

where

Wij =
1

Θf
· QE

λ1

QEλ2
·
Gλ2(rdi − rj)Gλ1(rj − rsj )

Gλ1(rdi − rsi)
.

The resulting linear system for all M source–detector pairs is thus the standard series

expansion formulation
UnB(rs1 , rd1)

...

UnB(rsM , rdM )

 =


W11 · · · W1N

...
. . .

...

WM1 · · · WMN



n(r1)

...

n(rN )

 ,

or in short

m = Wn, (4.7)

with m being the measurements, W the system matrix and n the fluorochrome distribution.
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Fluorescent proteins
Fluorescent proteins offer another possibility for extracting
molecular information in small animals but have a less defined
role in clinical applications. The green fluorescent protein
(GFP) from the jellyfish Aequorea victoria was one
of the first fluorescent proteins to be used for in
vivo imaging. A drawback of GFP is its low emis-
sion wavelength (!510 nm), which overlaps with
the autofluorescence of many tissues. This is one
of the reasons that mutants of GFP with red-
shifted emission have been engineered, but the
maximum shift attained is only !25 nm. With any
GFP, imaging is limited to a few millimeters (Fig.
1). More recently, a new red fluorescent protein
(DsRed) that emits fluorescence at 583 nm has
been isolated from tropical Discosoma corals50.
Another red fluorescent protein that is potentially
even more suitable for in vivo imaging is HcRed,
generated by site-directed and random mutagene-
sis of a nonfluorescent chromoprotein isolated
from the reef coral Heteractis crispa, which emits
light at 618 nm51,52. Unlike bioluminescent pro-
teins (discussed below), fluorescent proteins do
not require cofactors or chemical staining before
in vivo imaging. Much like small-molecule fluo-
rochromes, red fluorescent proteins can be im-
aged quantitatively in deep tissues by FMT
imaging. The ability to quantify fluorescence ac-
curately and repeatedly will be essential in differ-
ent biological applications.

Currently one of the main imaging applica-
tions of fluorescent proteins is in monitoring
tumor growth53,54 and metastasis formation55,56, as

well as occasionally gene expression57. Although GFP imaging
of surface tumors is feasible and experimentally useful, deep-
seated tumors and organ structures have to be accessed surgi-
cally for observation. For this reason, serial bioluminescence
imaging of tumor burden, metastasis formation and gene ex-
pression has become more widespread. GFP-expressing tumors
are particularly useful for intravital microscopy because they

Table 2 Selected optical imaging probes

Reporter Comment

Enzyme-activatable fluorochromes
Cathepsin B Cancer and inflammation marker
Cathepsin K Osteoclasts
Cathepsin D Cancer progression
Prostate-specific antigen (PSA) Prostate cancer
Matrix metalloproteinases (MMP-2, -9, -13) Cancer
Cytomegalovirus (CMV) Infection
Human immunodeficiency virus (HIV) protease Infection
Herpes simplex virus (HSV) protease Infection
Thrombin Thrombosis
Caspase-1 Apoptosis
Caspase-3 Apoptosis

Targeted fluorochromes
Phosphatidylserine Apoptosis
Somatostatin receptor Cancer
Anti-tumor monoclonal antibody Cancer
Hydroxyapatite (HA) Calcification
Glucose transporter Cancer
Folate receptor Cancer

Fluorescent proteins
Green fluorescence proteins (GFPs) 480–510 nm
DsRed (from Discosoma) 520–580 nm
HcRed (from Heteractis crispa) 600–650 nm

Bioluminescent proteins
Firefly luciferase + benzothiazole luciferin 560–610 nm emission, high QY
Renilla reniformis luciferase + coelenterazine 460–490 nm, lower QY

See text for references. QY, quantum yield.
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Excitation light Fig. 2 Fluorescence molecular tomography. FMT is a relatively new to-
mographic imaging technique based on the use of target-specific molec-
ular fluorescent reporters and volumetric reconstruction of light emitted
from the probes. The imaging technique involves principles similar to X-
ray CT but uses a theoretical mainframe that accounts for the diffuse na-
ture of photons in tissues. a, As a single point source illuminates into
tissue, the photon field will distribute as shown (isocontour lines), and
excite a given distribution of fluorochromes in tissues. b, In each illumi-
nation position, the fluorochromes act as secondary sources at a higher
wavelength, with an intensity that depends on the position of the light
source. Excitation and fluorescence light are both collected from multi-
ple points of the surface, using appropriate filters. The source then ro-
tates around the boundary, effectively illuminating the fluorochrome
distributions at different projections. c, The measurements are tomo-
graphically combined to yield quantitative maps of 3-dimensional (3D)
fluorochrome distribution. Although the examples presented are shown
in 2 dimensions only, photons propagate 3-dimensionally and thus FMT
imaging is by nature 3D. d, An example of a cylindrical FMT imaging sys-
tem for mouse imaging. Excitation (blue) and collection fibers (black) are
arranged around an optical bore to deliver and collect light. FMT cur-
rently can detect nanomolar concentrations of fluorochromes at spatial
resolutions of 1–2 mm in the case of small animals. Considerable pene-
tration depths (several centimeters) can be achieved in the NIR. e,
Modeling of the distance that NIR light can propagate into different tis-
sues before it attenuates by an order of magnitude. Fluorochromes can
be detected up to several logs of attenuations, that is, in up to 7–14 cm
depth.
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collect photons. Reprinted by permission from Macmillan Publishers Ltd: Nature Medicine [14], copyright

2003.

4.2 Tomographic Reconstruction of Full–Projection FMT

Several tomographic systems developed so far for the near–infrared have typically utilized

fibers to deliver and collect photons from the animal periphery (see Figure 4.3) or are

implemented using charged coupled device (CCD) cameras in the slab geometry, occasionally

using matching fluids to simplify theoretical assumptions [123, 125–127].

Central to improving FMT imaging performance over fiber–based systems or slab–geometry

based systems is the collection and utilization of data sets that offer high information con-

tent and symmetrical sampling of the volume imaged. This can be achieved by allowing

complete–angle (360◦) projection illumination and detection with high spatial sampling of

photons propagating through diffuse media. Such an approach is expected to yield the new

generation of performance for optical tomography systems. Key features of this development

are the implementation of non–contact illumination, for example by using beam scanning

techniques for light delivery on the tissue surface and direct non–contact imaging with CCD

cameras, which allows for high spatial sampling of photon fields propagating through tis-

sues. Similarly, the development of free–space geometries, i.e. implementations that do not

utilize immersion of the animal in matching fluids, are essential for obtaining appropriate

experimental simplicity and avoid unnecessary diffusion through scattering matching media.

To facilitate these developments it is important to retrieve the three–dimensional surface

and a common coordinate system for the illumination system, the detection system and

the animal. Methodologies developed in the past for non–contact and free–space imaging

assuming limited projection angle (∼ 90◦) geometries [121, 128] utilized photogrammetry

for obtaining surfaces over ∼ 150◦ view angles. Limited–projection systems however com-

promise the resolution along the depth axis and do not offer symmetric volume coverage.
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In this section, we instead report on the integration of a silhouette–based 3D surface recon-

struction method into a 360◦ free–space system. The geometry of the system falls under

the general design of evolving systems where the mouse is rotated over 360◦ in front of a

CCD camera while intersecting a laser scanning beam (or the optical system around the

mouse) [129, 130]. We examine the accuracy of the surface extraction method considered

for the small animal imaging case and demonstrate how this surface extraction method can

be utilized in an FMT inversion scheme. With this ability to capture three–dimensional

animal surfaces we further characterize the statistics of the movement of anesthetized mice

and investigate the effect of this movement in FMT reconstructions.

The results of this section have also been published in [131].

4.2.1 Methods

4.2.1.1 Experimental setup

To implement 360◦–projection FMT, a free–space system was developed as shown in Figures

4.4 and 4.5. This system is used to acquire the three–dimensional (3D) surface of the

object imaged as well as FMT raw measurements in the same geometry and under identical

placement conditions. The central part of the system is the rotational stage that is used

for mouse placement and rotation over 360◦ angles. The rotational stage is a custom made

device where two mounting stages at the top and the bottom of a rigid frame are identically

rotated taking motion from a central shaft mounted on a stepper motor (model PR50PP,

attached to an ESP300 Universal Motion Controller, both from Newport Corp., Irvine CA)

with a 0.01◦ resolution and a maximum speed of 20◦/s. The dual rotational system allows

for securing the top and bottom parts of the mouse body using appropriate cylinders and

cups to support its weight. This way motion is minimized compared to a freely pendant

mouse while the use of connecting rods that could obstruct the field of view is avoided.

Photon detection is based on a VersArray 16bit CCD camera (Princeton Instruments Inc.,

NJ 08619, Trenton, USA; 1024× 1024 pixels) cooled to −70◦ C for reduced dark noise, and

a Nikkor 50mm f/1.2D lens (Nikon Corp. Imaging Company, Tokyo, Japan). For FMT

acquisitions a filter wheel was employed containing two band–pass filters to separate the

excitation channel (Andover Corp. filter 671ES10–50, NH 03079, Salem, USA) from the

emission channel (Chroma Technology Corp. filter HQ710/50, VT 05101, Rockingham,

USA).

Two sources of illumination were used. For FMT, a continuous wave (CW) diode laser

emitting at 665nm with up to 200mW output power (B & W TEK Inc., Newark, USA)

is coupled via an optical fiber and a two–way optical switch to a laser scanhead (Nutfield
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Figure 4.4: Schematic of experimental setup for 3D surface reconstruction and FMT.

Figure 4.5: Photograph of the experimental setup for 3D surface reconstruction and FMT.
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Technology Inc., Windham, NH) using a tele–centric lens for focusing the laser beam on

the object imaged over a depth of field of ∼ 4mm (300µm spot size, 50µm positional

accuracy or better). To acquire the surface silhouettes a photo–luminescent acrylic plate

(GloTech International, GTA3BG, Auckland, New Zealand) was employed and could be

placed between the object imaged and the scan–head as an alternative photon source, while

the laser light was off. This plate was used to provide homogeneous back–illumination.

The timing and data acquisition process for both 3D surface reconstruction and FMT data

collection was controlled by a custom made software developed in Microsoft Visual C, run-

ning on a 2GHz Pentium4 PC with 256MB RAM.

4.2.1.2 Surface Reconstruction

A variant of the volume carving method [132] was employed to reconstruct the three–

dimensional (3D) surface of an object A from its silhouettes. Consider a set of viewing

angles R from which we observe the silhouettes of A. In short, for each viewing angle r ∈ R
the silhouette sr is back–projected using the known camera geometry yielding a viewing

cone vhr of half–lines starting from r and intersecting the silhouette sr. Each viewing cone

vhr contains the object A and the intersection of all the cones vhr, V HR(A) =
⋂
r∈R vhr

(see Figure 4.6) yields a reconstruction of the surface of A, the Visual Hull [133]. It has

been shown that V HR(A) is the closest approximation to A that can be obtained using the

silhouettes sr, r ∈ R, and that V HR(A) contains A and is contained in the convex hull of

A, A ⊆ V HR(A) ⊆ conv(A), see [134] for proof.

It is obvious that for convex objects A a near perfect approximation of A can be achieved

using the Visual Hull V HR(A), provided the viewpoints R are chosen appropriately. How-

ever, it is less obvious how concavities in A affect V HR(A); concave areas of A can be

reconstructed in case they provide silhouette–active surfaces, but a deep dent in one of the

surfaces of a cube for example will have silhouette–inactive surfaces that cannot be recon-

structed. For an in–depth study of the limitations of silhouette based object reconstruction

with the Visual Hull see [134, 135]. This feature is not generally restrictive in small animal

imaging of the head and torso (see also Figure 4.10), but could yield some inaccuracy when

imaging the lower abdomen due to the concavities formed at the pelvis by the lower limbs.

In this case photogrammetry methods, as described in [128], may be necessary.

Images of the back–illuminated object were acquired from multiple viewing angles R (typ-

ically using 72 angles with a 5◦ step) using the experimental setup of Figure 4.4. These

images sr, r ∈ R were converted into binary images br based on a segmentation algorithm

employing adaptive thresholding. The threshold is determined for each image captured by
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Figure 4.6: 2D schematic of intersecting viewing cones (generated by back–projecting the
silhouettes) to generate the Visual Hull.

averaging the intensity of pixels with high gradient values [136] and applied to each of the

images respectively.

The Visual Hull V HR(A) was computed employing a recursive volume carving algorithm,

which removes (carves away) unoccupied regions of the volume containing the object A. The

initial three–dimensional bounding box B is supposed to contain A. For each viewing angle

r ∈ R the box B is back–projected onto the segmented silhouette br using an orthographic

camera model, yielding the 2D image bp(B, r). Depending on the intersection bp(B, r) ∩ br
the volume B is 1) marked as empty, 2) marked as opaque or 3) B is subdivided into 8

subvoxels, on each of which the algorithm is applied again recursively. If bp(B, r) ⊂ br for

all r ∈ R the voxel B is marked opaque, if bp(B, r) ∩ br = ∅ the voxel B is marked empty

and in all other cases the recursive subdivision takes place. The algorithm terminates either

when no more voxels have to be subdivided, that is when all voxels in any level of subdivision

have been marked as empty or opaque, or it terminates when the desired resolution has been

reached (here typically 8 levels corresponding to 256×256×256 voxels). The initial bounding

box B and all its subdivisions are represented as a data-structure octree (a tree where each

internal node has 8 child nodes).

For implementation purposes this algorithm was transformed into an iterative variant to

enable computational efficiency.

As a final step the 3D octree model is meshed to a regular grid (256× 256× 256 voxels) and

the triangulated surface is computed via a Marching Cubes type algorithm [137].
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Algorithm 4 compute vh(B)

Require: B — bounding box to be investigated.
Ensure: octree(B) marked as empty or opaque.

for all r ∈ R do
bp(B, r) = backproject B onto br
calculate intersections bp(B, r) ∩ br

end for
if bp(B, r) ⊂ br for all r ∈ R then
octree(B) = opaque;
return

end if
if bp(B, r) ∩ br = ∅ for all r ∈ R then
octree(B) = empty;
return

end if
if maximum level(octree) reached (i.e. desired resolution) then
octree(B) = opaque;
return

end if
B1, . . . , B8 = subdivide(B)
for i = 1 to 8 do

compute vh(Bi)
end for
return

4.2.1.3 Fluorescence Reconstruction

For tomographic reconstructions of the fluorescence distribution the normalized Born ap-

proximation was employed (see section 4.1.1 and [123]), which utilizes a synthetic mea-

surement generated as the ratio of the measured fluorescence intensity Ufluo(rs, rd) to the

corresponding measured intensity U0(rs, rd) at the excitation wavelength for each source

position at rs and detector position at rd,

UnB(rs, rd) =
Ufluo(rs, rd)

U0(rs, rd)
.

As in [123] we generated a forward model to predict photon propagation in a diffuse medium,

however to accommodate for the non–contact sources and detectors we included free space

photon propagation in our model using the first order Kirchhoff approximation to implement

arbitrary boundaries (as reconstructed from the silhouettes), see [120, 121, 128], as well as

[138] for a detailed derivation of the appropriate weight functions. The resulting weight

matrix is then inverted with a randomized ART algorithm (see section 3.3.1 and [72]).

Alternatively to the diffusion equation based solutions employed herein, solutions to the

radiative transfer equation can be utilized, which is theoretically more accurate at or near
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boundaries. However, due to the computational burden associated with the use of more

accurate propagation models, but also because of the proven efficacy of the diffusion ap-

proximation for in-vivo imaging [112], we limited ourselves to diffusion based imaging in

this work, even though imaging using the radiative transfer equation in planar geometry

systems has been reported in [139].

4.2.1.4 Experimental Procedures

For surface reconstruction, the photo–luminescent plate was inserted into the chamber so

that the object or the animal imaged was placed between the photo–luminescent plate and

the CCD camera. 72 silhouettes (1024 × 1024 pixel images) of the subject were acquired,

rotating 5◦ in each step. Each camera pixel in this setup corresponds to a 0.011cm×0.011cm

square on the imaging plane. For surface reconstructions, an eight–level octree was used

(corresponding to 256 × 256 × 256 voxels). The initial bounding box covered a volume of

2.2cm width × 2.3cm depth × 5.1cm height.

FMT data acquisition was performed using 30 rotations (12◦ each step) and an evenly

spaced 7× 3 source pattern over a 1.47cm vertical and 0.29cm horizontal field–of–view. To

register the source positions of the sources in space, this pattern scan was repeated on a

mock diffusive layer placed in the chamber after mouse measurements were completed. The

center of the photon distribution pattern collected was then used to determine the exact

location of each source in the horizontal and vertical axes, while the third dimension of the

intersection of the laser beam with the imaged surface is calculated based on the known

geometry of the device along the axis that is perpendicular to the CCD detection plane and

the reconstructed surface metrics (see section 4.2.1.2 and [140]).

All diffuse photons propagating through tissue or mock diffuse plate were acquired at the

emission and excitation wavelengths using 2×2 CCD chip hardware binning. For fluorescence

reconstructions, the forward problem assumed a regular 18 × 18 detector grid spanning

2.5cm vertically and 1.8cm horizontally and a regular 18 × 18 × 18 mesh grid spanning

2.6cm vertically × 2.2cm horizontally × 2.3cm depth. All voxels that were found outside

the surface were included in the inversion but were assigned zero values. For inversion, 50

iterations of a randomized ART inversion algorithm was utilized, as previously reported in

[72]. The inversion time in all reconstructions was kept within 5min.

4.2.1.5 Phantoms

Two phantoms were employed to examine the accuracy of the surface reconstruction.
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Figure 4.7: Cross–sectional view of the two phantom shapes as used in the accuracy exper-
iments.

The first phantom was a solid, three-dimensional octagonal shape made of black Delrin, as

seen in the schematic of Figure 4.7a. The second phantom consisted of four cylindrical tubes

of different diameters, as reported in Table 4.1, the tubes were attached on the top and the

bottom on two circular holders made out of black Delrin, as shown in Figure 4.7b. The

two small tubes were capillary tubes with slightly different diameters, the two other tubes

were made out of plastic, and all tubes were painted black. Both phantoms had a height of

5.33cm.

In order to test the ability to implement three–dimensional surface information into a non–

contact FMT scheme, we employed a third phantom shaped similarly to that of Figure 4.7a,

but made out of polyester resin mixed with TiO2 spheres and India ink at concentrations

that simulate the optical parameters of tissue, i.e. absorption coefficient of µa = 0.58cm−1

and reduced scattering coefficient of µ′s = 10cm−1. This phantom block contained two

hollow cylinders (by drilling) as indicated by the two white circles in Figure 4.7a with

0.19cm diameter and 2.8cm length. The cylinders were filled with the fluorescent dye Cy5.5

at a concentration of 250nM .

4.2.1.6 Characterization of animal motion

To characterize animal motion and its effects on FMT performance, we acquired 64 images

of the silhouette of an anesthetized nude mouse at each of 0◦, 45◦ and 90◦ viewing angles

over a period of 2min. at CCD camera exposure time (integration time) of 10ms. With these

settings different instances of the breathing and cardiac cycles were randomly captured for

statistical analysis. The acquired silhouettes were segmented into fore– and background

using the adaptive thresholding method outlined in section 4.2.1.2.
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(a) (b) (c)

Figure 4.8: (a) Raw image of octagon silhouette (b) Segmented binary silhouette (c) Surface
rendering of the reconstruction.

Phantom Actual diameter Diameter measured Error

Tubes (tube 1) 0.336cm 0.331cm 0.005cm
Tubes (tube 2) 0.210cm 0.209cm 0.001cm
Tubes (tube 3) 0.168cm 0.160cm 0.008cm
Tubes (tube 4) 0.142cm 0.139cm 0.003cm

Octagon (side 1) 1.774cm 1.771cm 0.003cm
Octagon (side 2) 1.762cm 1.765cm 0.003cm
Octagon (side 3) 1.772cm 1.779cm 0.007cm
Octagon (side 4) 1.766cm 1.762cm 0.004cm

Table 4.1: Expected and reconstructed diameters of the two studied phantoms.

4.2.2 Results

4.2.2.1 Accuracy of Surface Reconstruction

Figure 4.8 shows the silhouettes captured from the octagonal phantom at 0◦ angle as well

as the reconstructed surface. Figure 4.8a shows a raw image captured by the experimental

setup, Figure 4.8b depicts the result of the segmentation of the raw image into a binary

fore– and background image, and Figure 4.8c shows a rendered image of the 3D surface as

reconstructed from the binary silhouettes.

Similar reconstructions were obtained with the four–cylinder phantom (results not shown

for brevity). To evaluate the accuracy of the method a vertically centered slice of the recon-

structed surface was extracted and measured against the known manufactured dimensions

of the phantoms, the results are summarized in Table 4.1.

The performance described in Table 4.1 was obtained using reconstruction parameters that

were optimized for accuracy and computational efficiency, as derived by repeating surface

reconstructions using a significantly wider selection of the viewing angles and the octree
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Figure 4.9: 3D reconstruction of two tubes of fluorescent dye in the resin octagon phantom.

level employed. We found that using less than 72 viewing angles (5◦ steps) degraded the

reconstruction accuracy (> 2% error at 60 viewing angles), whereas increasing the number

of angles beyond 72 yielded asymptotically changing surface with error of < 1%. Similarly

using an octree with less levels for reconstruction (e.g. seven levels corresponding to 128×
128 × 128 voxels) resulted in noticeably lower accuracy of the surface (∼ 5% error), while

increasing the octree depth beyond eight levels (corresponding to 256 × 256 × 256 voxels)

effected no change at all — since the voxel size in this setting was smaller than the equivalent

size of the object imaged corresponding to a single CCD pixel.

4.2.2.2 Free–space fluorescence tomography

Figure 4.9 shows the results of surface reconstruction of the resin octagon and the overlaid

fluorescence reconstruction of fluorescent dye distribution, rendered from different viewing

angles. The registration of surface and tomographic data is straightforward since the surface

and the diffuse data are acquired under the same geometrical frame. The simultaneous ren-

dering generally enables more accurate orientation because some high resolution anatomical

information is viewed together with the fluorescence tomography data.

The fluorescent tubes were accurately reconstructed along a length of 1.7cm. The cross–

sectional positional accuracy of the reconstructed tubes in this case is within the voxel

dimension utilized.

4.2.2.3 In–vivo Accuracy — a Study of Breathing

Figure 4.10 shows representative images acquired from the mouse at the 0◦, 45◦ and 90◦

viewing angles and the corresponding reconstructed surface rendered three–dimensionally.

Silhouettes were used as raw data for animal motion characterization. We measured the

mean horizontal thickness of the segmented animal silhouette in pixels (one camera pixel



Chapter 4. Application: Optical Tomography 61

Figure 4.10: Instances of mouse silhouettes acquired in–vivo at 0◦, 45◦, 90◦ and a corre-
sponding rendering of a reconstructed surface. The dashed lines in the left most picture
indicate the positions where the measurements of Table 4.2 were acquired from.

Table 4.2: Standard deviations and maximum deviation from mean of horizontal thickness
at different heights of the animal silhouette (in pixels; 1 pixel = 110µm2).

σ (max. dev.) 0◦ view 45◦ view 90◦ view

Lower abdomen 0.93px (5.33px) 0.61px (1.58px) 0.62px (1.03px)
Upper abdomen 0.63px (3.72px) 0.80px (1.80px) 0.76px (2.11px)

Lower thorax 0.77px (4.72px) 0.57px (2.08px) 0.70px (1.66px)
Upper thorax 0.91px (5.33px) 0.76px (2.75px) 0.84px (2.34px)

corresponds to 0.011cm2) at different heights for each time series and the corresponding

standard and maximum deviations due to breathing are displayed in Table 4.2 for three

viewing angles. Generally the values recorded depend on the state of anesthesia. Corre-

spondingly, the values in Table 4.2 reflect measurements from an animal towards the end of

anesthesia where some more motion was observed; at the peak of anesthesia even smaller

deviations were recorded. Generally, standard deviations of less than 100µm were observed

at all different locations measured.

To study the effects of breathing on the FMT performance, we reconstructed the data set

from section 4.2.2.2, first using the originally reconstructed 3D surface, see Figure 4.11a,

and afterwards using an artificially modified 3D surface, shrunk by 0.011cm (corresponding

to the length of one camera pixel) as seen in Figure 4.11b and expanded by 0.011cm in

Figure 4.11c. To observe finer changes, a smaller volume (2.2cm × 2.3cm × 0.5cm) along

the y–axis was reconstructed, compared to the one used in Figure 4.9, so that a finer mesh

could be practically implemented at 30×30×7 voxels. In this case, one row of three sources

(spanning 0.29cm horizontally) and a detector grid of 7× 30 detectors over 0.5cm vertically

and 1.8cm horizontally was employed.

The effects of surface deformation on the image performance appear to be within the resolu-

tion limits of FMT. For the reduced diameter surface the reconstructed tubes appear slightly

larger by one voxel, i.e. ∼ 0.07cm2. Correspondingly, the inflated surface also reconstructs
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(a) (b) (c)

Figure 4.11: Slice reconstruction of two tubes of fluorescent dye in the resin octagon phantom
(a) using surface as reconstructed (b) using surface artificially deflated by 0.011cm (c) using
surface artificially inflated by 0.011cm.

tube diameters that are slightly smaller by again about 0.07cm2. The induced deformation

does not appear to change however the shape or the position of the objects reconstructed

with the geometrical metrics assumed herein.

4.2.3 Discussion

In this section we presented a method for reconstructing 3D surfaces from silhouettes to

facilitate free–space FMT. We studied the accuracy of the surface reconstruction technique

employed for the small animal dimensions, characterized the respiratory movement of a

small animal placed in the experimental setup developed, and demonstrated the effect of

this movement on image reconstruction.

The surface reconstruction accuracy of the herein described method was found to be within

the limits of the camera resolution (i.e. 110µm). Using such a surface description it was

possible to reconstruct two fluorescent tubes inside a solid phantom with tissue–like prop-

erties using the non–contact illumination and detection scheme as well as free–space theory

[138]. A limitation of surface reconstruction from silhouettes over previously employed pho-

togrammetry methods [128] is that certain concave surfaces cannot be captured. As outlined

in section 4.2.1.2, concavities with silhouette–inactive surfaces are not visible using silhou-

ettes and as such cannot be reconstructed. Generally, mouse bodies do not offer significant

concave surfaces but in the pelvis and possibly some skin–folds. As such, the methodology

presented herein is appropriate for imaging in the torso and animal head, especially after

care is taken to appropriately extend the limbs away from the field–of–view as seen in Figure

4.9.

With respect to utilizing these techniques for in–vivo small animal experiments, we charac-

terized the motion of nude mice and demonstrated the effects of the corresponding surface
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movement on 3D fluorescence reconstructions. Mouse motion, due to breathing, cardiac

function and other physiological processes yielded changes with ∼ 100µm standard de-

viation, whereas no absolute deviation from the mean that was larger than 600µm was

observed. The upper thorax consistently yielded the highest motion in all views compared

to the movement observed for other parts of the animal. These deviation metrics did not

significantly affect image reconstruction performance yielding spatial errors that were within

the resolution accuracy of the reconstruction method [126] (∼ 0.07cm) when reconstructing

two fluorescent tubes in a diffusive mouse–like medium, although the effects were larger than

the actual standard deviation observed. Correspondingly the quantification errors in this

case were < 7%. While only 10ms averaging time per measurement was employed to yield

the observations of Table 4.2 and Figure 4.11, practical FMT measurements are typically

acquired over longer integration times (0.1–1s). Such integration times far exceed the car-

diac and breathing cycle of a mouse and correspond to standard deviations of animal motion

that are significantly smaller than in Table 4.2 due to further averaging effects. Therefore,

in–vivo experiments are generally less sensitive to high–frequency motion since the surfaces

mean can be acquired with greater certainty, and are expected to offer reduced effects on

FMT image reconstructions compared to the findings in this study. Therefore, the results

in this study represent a worst case scenario within the approximations of diffusion theory.

While technologically more complex methods like X–ray CT or 3D laser scanning for sur-

face reconstruction will offer higher accuracy than the proposed method, they cannot be

integrated into an FMT imaging device as seamlessly. The necessary calibration and reg-

istration steps to match the surface reconstruction and FMT coordinate systems impose

additional computational overhead and may introduce registration errors. Conversely, the

silhouette–based volume carving method employed herein is inherently registered with the

tomographic data captured under identical viewing conditions. We note however that the

particular vertical geometry implemented herein was guided by experimental simplicity and

does not propose a preferred imaging geometry. Based on these developments, we anticipate

that future FMT devices will accommodate horizontal placement of animals and appropriate

rotation of the optics in order to simplify experimental procedures and minimize possible

physiological changes of the vertical placement. Such developments can also facilitate the

straightforward integration with another modality like X–ray CT.

Overall we have shown the capacity of capturing complete mouse surfaces and implementing

them in 360◦–projection non–contact free–space FMT acquisition schemes. The surface cap-

ture approach yields the diffuse–air boundary of each animal examined in three dimensions

and it is necessary for computing appropriate forward models for FMT reconstructions.

The accuracy of the surface capture achieved is well below the FMT resolution and it was

experimentally confirmed that it is appropriate for FMT reconstructions. This approach

therefore yields a robust method for implementing 360◦–projection FMT systems.
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4.3 Acquisition Optimization via Singular Value Analysis

Original tomographic systems for small animal imaging utilized only a small number of

measurements and often employed matching fluids for simplifying methodological and the-

oretical requirements, yielding images of compromised performance [111, 141]. Recently,

systems that operate without the need to bring fibers in contact with tissue or to use

matching media have simplified experimental procedures and produce superior imaging per-

formance [128, 131]. These new technologies now enable the implementation of complete

projection 360◦ tomographic approaches using CCD cameras in non–contact detection mode

and similarly non–contact illumination using appropriately oriented light beams [129]. Such

implementations are common to most other tomographic imaging modalities (for example

PET and SPECT) and in particular for X–ray CT, which also utilizes a two dimensional

array of detectors for signal collection.

While 360◦ geometries using CCD cameras can maximize the information content avail-

able in the measurements, there has been little experience with such implementations for

optical tomography applications through tissues. Cylindrical geometries have been imple-

mented in the past for diffuse optical tomography applications [142–144] and their benefit

over other geometrical implementations has also been demonstrated [145]. However these

implementations considered sparse surface measurements, using a relatively small number

of fibers placed symmetrically around the tissue boundary and in contact with the diffuse

medium. Alternatively, slab geometry systems with direct CCD camera coupling have been

considered, however such systems offered limited projection viewing [126, 127, 146]. There-

fore limited knowledge has been available on the optimal implementation of experimental

parameters for developing and utilizing the data obtained with a CCD camera based 360◦ to-

mographic imaging system, i.e. a complete projection system offering high spatial sampling

of photon patterns propagating through tissue.

An important consideration in the design of 360◦ CCD camera based systems is the vast

amount of data that can be collected. An FMT system developed in our laboratory using

this technology [131, 140] typically collects 108 – 1010 measurements, when considering the

size of a single CCD camera measurement (106) further multiplied by the number of pos-

sible projections (10–100) and light sources utilized (10–100). In addition, FMT requires

a theoretical model (the forward model) that predicts photon propagation from a given

source position through a diffusive medium to a given detector position. In most common

implementations today this involves an approximation of the radiative transfer equation and

yields a linear system m = Wn, where a weight matrix W couples the fluorochrome distri-

bution n to the measurements m. This system is then solved for n by inverting the weight

matrix W . The size of the weight matrix W is determined by the product of the number

of measurements utilized and the number of voxels employed to discretize the fluorochrome
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distribution n in the volume of interest. For example, more than 232 matrix elements need

to be computed and stored even when using moderate sampling parameters, for example by

using 7× 7 sources, 20× 20 detectors, a 20× 20× 20 discretization grid and 36 projections.

It follows that such inversion problems can yield very high memory and computational re-

quirements, which todays computers cannot satisfy. This is particularly true when high

spatial resolution and better image fidelity is pursued as this involves increasing the number

of sources and detectors as well as the discretization step of the reconstruction grid. There-

fore, optimization of experimental parameters which maximizes the information content of

the acquired measurements while minimizing the associated memory storage requirements

and computational expense, is an important step towards achieving practical computation

schemes. Besides the computational considerations, this optimization is equally important

for minimizing acquisition times and suggesting optimal designs for hardware development.

In this section we address several open questions as to the optimal design and operation of

new potent FMT systems employing complete projection (360◦) illumination and detection

in constant wave (CW) mode, i.e. using illumination of constant intensity. We employ the

Singular Value Analysis (SVA) [147] as a tool for analytically assessing optimal experimental

parameters. The SVA analysis has been employed in optimizing optode arrangement and the

field of view in parallel plate geometries [148], for comparing parallel plate transmission and

remission geometries [147] and for optimizing the placement of fibers for a hybrid magnetic

resonance imaging / near infrared imaging device for small animal brain studies [149]. SVA

generically evaluates the relative performance of different parameter sets (for example the

spatial sampling of sources and detectors, or the field of view employed), and can be used

to draw generic conclusions on optimal parameter sets. In this section, we employed SVA

to study the 360◦ geometry in two assumed systems; the first considering a parallel plate

system that can freely rotate for implementing 360◦ projection capacity and the second

implementing a free–space system also using 360◦ non–contact rotation as explained in

methods. The difference between these two systems is that the first describes an approach

where a mouse is rotated within a slab geometry containing a matching fluid, whereas

the second system reflects an implementation where a mouse is rotated in the absence of

matching fluid (free–space) or equally, where the optical system is rotated around a mouse.

SVA analysis was confirmed with experimental data from two corresponding experimental

setups. We were particularly interested in identifying the optimal number of projections that

should be employed for small animal imaging and whether a fan bean versus a scan beam

illumination would be more appropriate for imaging purposes. In addition, we optimized the

spatial sampling and the field of view for the sources, detectors and mesh points employed. In

the following we present the methods used in our analysis, the theoretical and experimental

results obtained and discuss the major findings and the limitations of this study.

These results have also been published in [150].
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4.3.1 Methods

4.3.1.1 Forward model generation

The forward model used to predict photon propagation in a diffuse body was based on the

normalized Born approximation to the diffusion equation (see section 4.1.1 and [123]). The

normalized Born average intensity

UnB(rs, rd) =
Ufluo(rs, rd)

U0(rs, rd)

is the ratio of the average intensities Ufluo(rs, rd) at emission wavelength λ2 and U0(rs, rd)

at excitation wavelength λ1, each measured at detector position rd for a source at position

rs. The normalized Born approximation then equates

UnB(rs, rd) =
S0

U
(
rs, rd, kλ1

) ∫
V
U
(
rs, r, k

λ1
)
G
(
rd − r, kλ1

) n(r)

Dλ2
d3r, (4.8)

where U
(
rs, r, k

λ1
)

denotes the analytically calculated average photon intensity at excitation

wavelength λ1 induced at position r by a source at position rs in a medium with wave number

kλ1 . G
(
rd − r, kλ2

)
is the Greens function which solves the diffusion equation for photon

propagation from position r to the detector position rd at emission wavelength λ2. Dλ2 is the

diffusion coefficient of the medium at emission wavelength λ2 and n(r) is the fluorochrome

concentration at position r multiplied by fluorescent yield. The factor S0 is a unit–less,

experimentally determined factor that calibrates the equation for various system gain and

attenuation factors, while V denotes the volume of investigation. Discretizing that volume

V into N voxels r1, . . . , rN allows reformulation of equation (4.8) into a linear equation for

the source–detector pair rsi , rdi (i = 1, . . . ,M):

UnB(rsi , rdi) =
(
Wi1 · · · WiN

)
n(r1)

...

n(rN )


where

Wij =
S0 U

(
rsi , rj , k

λ1
)
G
(
rdi − rj , kλ2

)
U
(
rsi , rdi , k

λ2
)
Dλ2

.

The resulting linear system for all M source-detector pairs is thus
UnB(rsi , rdi)

...

UnB(rsM , rdM )

 =


W11 · · · W1N

...
. . .

...

WM1 · · · WMN



n(r1)

...

n(rN )


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or in short

m = Wn, (4.9)

the standard algebraic formulation with m being the measurements, W the weight matrix

and n the fluorochrome distribution.

4.3.1.2 Singular–value decomposition and noise threshold

To study generic characteristics of the weight matrix, the singular value decomposition W =

USV t was considered, where U , V are orthonormal matrices (U−1 = U t, V −1 = V t) and S

is a diagonal matrix consisting of the singular values of W [151]. Using this decomposition

equation (4.9) can be rewritten as

U tm = SV tn,

thus the columns of U can be thought of as the detection–space modes of W , and the columns

of V as the image–space modes of W . In this sense, the singular values of W specify the

degree to which a given image–space mode is coupled to the corresponding detection–space

mode, or in other words, how effectively a given image–space mode is detected by the

experimental setup.

To obtain experimentally relevant conclusions, it is useful to determine a noise threshold in

the singular-value domain that determines which singular values are important in the recon-

struction outcome. We followed the method described by [148], where the noise threshold

is determined as the cut–off point of a regularization process that yields optimal recon-

struction results in control experimental reconstructions based on phantom measurements.

We employed the same threshold value of 10−4 reported in [148] since similar experimental

components and devices were employed here. The low sensitivity of the SVA to this cut–off

value was confirmed by repeating the analysis described in the following using a range of

threshold values.

4.3.1.3 Singular values above threshold

To observe general trends as a function of the various parameters studied, we focused on

determining the number of useful singular values above the noise threshold (SVAT) for each

of the parameters studied. To calculate the SVAT number, a weight matrix is computed for

each of the different parameters studied and then decomposed by SVA to yield the SVAT.

This number is used throughout the study and represents a measure of the useful information

contained in the data under different implementation schemes.
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4.3.1.4 Experimental setup

We examined two different complete projection implementations. In the first implementation

we considered a parallel plate geometry that offers 360◦ rotation. This system corresponds

to a parallel plate system, which contains a matching fluid, similar to the ones developed

by [126, 127], with the exception that here the object is rotated within the chamber. In the

second implementation, we studied the performance of a true cylindrical geometry where

360◦ illumination–detection can be achieved in free–space mode, i.e. in the absence of

matching fluids. Both these systems have been implemented in our laboratory and pro-

vided experimental measurements. We note that in contrast to cylindrical geometries that

use fiber–based point measurements around the boundary, herein we consider high spatial

sampling of photon fields as can be offered by non–contact detection using CCD cameras.

Parallel–plate rotational geometry. This geometry implicates immersion of a sub-

ject in a parallel–plate (slab) chamber that contains a fluid that matches the average optical

properties of the imaging sample. The sample is rotated inside the slab so that 360◦ pro-

jections can be achieved. This is not a preferred experimental geometry, especially for 360◦

implementations, but simplifies experimental requirements since simple theoretical models

developed for photon propagation in diffusive slabs [152] can be employed. In addition,

relaxed requirements for the dynamic range of the detection system are required in the slab

geometry. To study the rotating parallel–plate geometry, we modeled the weight matrices

after an existing FMT system previously reported [126] employing a single horizontal row

of sources, a two-dimensional grid of detectors and a three-dimensional mesh as shown in

Figure 4.12. The dimensions selected for the slab width (2cm) are settings commonly used

for in–vivo imaging in our laboratory and represent average dimensions for mouse torso or

head imaging in the rotating geometry.

We optimized parameters for five basic questions associated with the design and operation

of the system and subsequent inversion performance as follows:

A1. Optimal number of projections. The number of projections (evenly distributed

over the full circle) was varied while keeping the other parameters constant. This was done

twice, first for a single centered source with 10× 10 detectors and a 10× 10× 10 mesh, and

second for a single centered source with 16× 16 detectors and a 16× 16× 16 mesh.

A2. Optimal arrangement of sources (fan beam versus scan beam geometry).

The number of sources was varied from one to seven, distributing them on a vertically

centered horizontal line with a constant spacing of 0.33cm. The detector and mesh density
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Figure 4.12: Diagram of the parallel–plate FMT setup used in the singular–value analysis
(top view and three–dimensional side view). In a three–dimensional slab geometry, we study
up to seven sources in a horizontal line (centered vertically, default FOV 2cm), a square
matrix of detectors (default FOV 2cm for both x– and y–directions) and a rotating mesh
grid of dimensions 2cm× 2cm× 2cm embedded in a diffuse medium.

were kept constant at 14× 14 and 14× 14× 14 respectively. This step was examined for 1,

5, 9 and 18 projections.

A3. Optimal detector spatial sampling. The density of the detectors was varied while

keeping the number of projections (18) and sources (one centered source) constant. This

was studied for 10× 10× 10 and 20× 20× 20 mesh density.

A4. Optimal mesh resolution. The density of the mesh was varied while the number

of projections (18) and sources (one centered source) were kept fixed. This experiment was

repeated for 10× 10 and 20× 20 detectors.

A5. Optimal detector field–of–view. The field–of–view (FOV) of the detectors (i.e.

the area sampled by the detectors) was varied while keeping the FOV of the sources (i.e. the

area illuminated by the sources) and all the other parameters constant at 18 projections,

14× 14 detectors density and 14× 14× 14 mesh density. This was repeated four times for

varying the source FOV from 1cm to 4cm for seven equidistantly spaced sources.

Cylindrical rotational geometry. The cylindrical rotational geometry differs from

the planar geometry considered above in that less diffusion is present in the data since no

matching fluid is present. Therefore, a modified set of optimal parameters can be expected.

To study the cylindrical geometry setup, we modeled the weight matrices after a cylindrical

FMT system with a diameter of again 2cm, see Figure 4.13. Due to the larger amount

of data that can be collected in the fluid–free setup and because of the larger viewing
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Figure 4.13: Diagram of the cylindrical FMT setup used in the SVA. Shown here are seven
sources (crosses) equidistantly arranged at a FOV of 120◦, an array of detectors (circles)
equidistantly arranged at a FOV of 120◦ and a mesh grid of 2cm diameter. Several other
configurations were studied.

angles that are available, we restricted this analysis to assuming that all measurements

and fluorescence activity are contained within the same horizontal surface. The problem

considers three–dimensional modeling of photon propagation (i.e. three–dimensional Green’s

functions solutions are assumed) but that the fluorochrome distribution is contained within

a two–dimensional plane in order to achieve computationally manageable problems. This

simplification is expected to generally preserve the trends observed in studies B1 to B4 due

to the symmetric nature of the imaging problem along the y–axis, although some differences

could be expected for truly three–dimensional arrangements.

Here we optimized parameters for the following four basic design decisions:

B1. Optimal number of projections. The number of evenly distributed projections

was varied while keeping other parameters constant. The experiment was repeated twice;

for a single source, 16 detectors arrayed in a 150◦ arc and 145 mesh points, and for a single

source with 31 detectors arrayed in a 150◦ arc and 601 mesh points.

B2. Optimal number of sources (fan beam vs. scan beam geometry). The

optimal number of sources distributed over an arc of 120◦ was studied, while the other

parameters remained constant at 31 detectors arrayed in a 150◦ arc and 601 mesh points.

This study was repeated for 1, 5, 9 and 15 projections.

B3. Optimal detector density. We studied a range of detector densities ranging from

20◦ to 5◦ spacing on a 150◦ arc and a 90◦ arc respectively. The remaining parameters were

kept constant at a single source, 15 projections and 601 mesh points.



Chapter 4. Application: Optical Tomography 71

B4. Optimal arrangement of sources and detectors. Finally, the optimal arrange-

ment of sources and detectors was studied. To achieve this, the number of sources was kept

constant, while their FOV varied from a 30◦ arc to a 120◦ arc. The same was done for the

detector arrangement, the arc ranging from 60◦ to 180circ. The remaining parameters were

fixed at 15 projections and 601 mesh points.

We did not include our results on choosing the mesh resolution for the cylindrical rotational

geometry, as they exhibited the same trends as observed in study A4, where we optimized

mesh resolution for the parallel–plate 360◦ geometry.

4.3.1.5 Experimental measurements

To confirm the findings of the singular value analysis, we further obtained experimental data

from two phantoms, one in the parallel–plate rotational geometry and one in the free-space

360◦ geometry.

The first phantom consisted of three parallel tubes of 3.6mm diameter arranged in a trian-

gular shape with a separation of 2.5mm, 2.5mm and 7.0mm on the far side, see Figure 4.14a.

The tubes were filled with a 500nM solution of Cy5.5 fluorescent dye (Amersham Bioscience,

Piscataway NJ, USA) and placed in a 2cm deep imaging chamber filled with an intralipid

and ink matching fluid with absorption coefficient µa = 10cm−1 and reduced scattering

coefficient of µ′s = 1.16cm−1. The phantom was rotated in the chamber using a motorized

rotation stage (stepper motor PR50PP, Newport Corp., Irvine CA, USA). Reconstructions

were performed on key findings of the SVA analysis, i.e. those of study A2. Data inversion

was performed using a randomized Algebraic Reconstruction Technique (ART, see section

3.3.1) employing 50 iterations. Measurements with less than 20 counts/s (16–bit camera,

maximum 65, 536 counts) in both the fluorescent or intrinsic channel were not considered

for the inversion procedure.

The second phantom was a solid resin block, machined to an octagonal shape with optical

properties those of the mid–torso of small animals, i.e. µa = 0.58cm−1 and µ′s = 10cm−1.

The radius of the phantom was 1.8cm and it contained two drilled tubes (0.19cm diameter,

3mm separation) that were filled with Cy5.5 fluorescent dye at a concentration of 250nM .

Reconstructions were done to confirm the findings of study B2, the maximum number of

sources employed however was limited to three for experimental simplicity. The necessary

boundary conditions for modeling the non–contact acquisitions were incorporated into the

normalized Born ratios using the Kirchhoff approximation as described in [138, 153]. The

data was inverted using 50 iterations of randomized ART. Measurements below 20 counts/s

in either the fluorescent and intrinsic channels were discarded.



Chapter 4. Application: Optical Tomography 72

(a) (b)

Figure 4.14: (a) Schematic of the three tube phantom placed in the imaging chamber.
Fluorochrome concentration in each tube was 500nM of Cy5.5. (b) Schematic of the two
tube phantom used for the non–contact experiment. Fluorochrome concentration in each
tube was 250nM of Cy5.5.

4.3.2 Results

4.3.2.1 Singular-value analysis, slab geometry

The SVA focused on determining the number of useful singular values above the noise

threshold (SVAT) assuming a threshold of 10−4 in the singular–value spectrum for each of

the experimental setups in the parallel–plate geometry. An example of the singular–value

spectra associated with the weight matrices for Study A1 is shown in Figure 4.15a, plotted

on a logarithmic scale. The noise threshold of 10−4 is plotted as a horizontal dashed line and

it has been calculated for the system employed based on experimentally determined noise

characteristics as discussed in [148]. The analyses shown were repeated with thresholds

ranging from 10−2 to 10−6, corresponding to system with different noise levels than the one

employed herein. This study demonstrated that the general trends in imaging performance

observed were independent of the singular–value cutoff chosen, especially for thresholds

within the 10−3 to 10−6 range, even though the absolute number of useful singular values

changed with different thresholds.

Study A1: Figure 4.15b depicts the effect of multiple projections on the SVAT. As de-

scribed in section 4.3.1.3, this data was generated by first calculating the SVA of different

weight matrices, each constructed for a different number of projections and then plotting the

SVAT as a function of the number of projections used. There is an initial steep increase of

the number of useful singular values up to 12 projections for the 10×10 detectors, 10×10×10

mesh configuration and up to 18 projections for the 16 × 16 detectors, 16 × 16 × 16 mesh

configuration. Further increasing the mesh sampling yielded small improvements with in-

creasing number of projections. An increasing number of SVAT corresponds to an increasing
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(a) (b) (c)

(d) (e) (f)

Figure 4.15: (a) Singular values (log scale) as a function of the number of projections used
(evenly distributed over the full circle) for slab geometry. Singular–value spectra for weight
matrices representing setups with one centered source, 16 × 16 detectors, a 16 × 16 × 16
mesh and 1 projection (crosses), 12 projections (squares), 18 projections (triangles) and 24
projections (circles). The intersections of each spectrum with the empirically determined
noise threshold (10−4) yielded the number of non–noise, or useful, singular values for that
experimental setup. (b) SVA of the effects of number of projections used (evenly distributed
over the full circle) for slab geometry. Plot shows number of useful singular values (SVAT),
extracted as shown in (a), versus number of projections for setups with one centered source,
10 × 10 deteectors with a 10 × 10 × 10 mesh (triangles) and one centered source, 16 × 16
detectors and 16×16×16 mesh (circles). (c) SVA of the effects of number of sources (arrayed
on horizontal line) for slab geometry. Plot for setups with 14× 14 detectors, a 14× 14× 14
mesh and 1 projection (crosses), 5 projections (squares), 9 projections (triangles) and 18
projections (circles). (d) SVA of the effects of detector density for slab geometry. Plot for
setups with one centered source, 18 projections and a 10 × 10 × 10 mesh (triangles) and
a 20 × 20 × 20 mesh (circles) respectively. (e) SVA of the effects of mesh density for slab
geometry. Plot for setups with one centered source, 18 projections and 10 × 10 detectors
(triangles) and 20 × 20 detectors (circles) respectively. (f) SVA of the effects of detector
FOV for slab geometry. Plot for setups with 18 projections, 14×14 detectors, a 14×14×14
mesh and 7 sources (arrayed on a vertical line) with FOV 1cm (crosses), 2cm (squares), 3cm
(triangles) and 4cm (circles).
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number of image–space modes available for reconstruction, indicative of improving imaging

performance. However, a further increase in the number of projections does not yield a

corresponding gain in the SVAT, but it linearly increases the data size and computational

burden as a function of projections. Therefore this result indicates that the range of 12–18

projections is optimal for CW 360◦ reconstructions. For this reason we chose 18 projections

as the baseline for the following optimization studies.

Study A2. Figure 4.15c summarizes results from the study that examined the SVAT as a

function of the number of sources in the slab geometry, for different numbers of projections.

Adding more sources in a scan configuration generally increases the number of useful singular

values. The relative gain observed however as a function of the number of sources employed

is stronger when only five projections are used, but becomes less important as the number

of projections increases to 9 or 18. Generally, a very low SVAT number is found for single

projection systems. It is further observed that the addition of projections yields higher

SVAT gain than the addition of more sources. This confirms the advantage of full–projection

tomography over non–rotating slab FMT systems. It further indicates that a small number

of sources in a scan beam configuration (i.e. three to five sources) is preferred over a purely

fan beam configuration, i.e. a single source per rotation.

Study A3. The effects of detector density on SVAT are shown in Figure 4.15d. The de-

tector density was varied from 10×10 to 25×25, over a 2×2cm2 FOV, which corresponded

to spatial sampling of 2mm to 0.8mm. Two meshes were considered at 10 × 10 × 10 and

20× 20× 20 voxels. The analysis demonstrated that increasing the detector density yields

little to no improvement for the 10× 10× 10 configuration. The curve for the 20× 20× 20

configuration, however, demonstrated a marked improvement with increasing detector den-

sity. Less improvement is seen, however, for sampling densities higher than one detector

per millimeter. We note that this observation is linked to the selection of a moderately

spaced grid of 1mm3. In a previous study on the parallel–plate geometry without rota-

tion, improvements were observed for finer detector sampling when a correspondingly finer

discretization mesh was used [148].

Study A4. In Figure 4.15e we summarize the results of study A4, which studied the effects

of increasing the mesh density from 10×10×10 up to 25×25×25, corresponding to spatial

sampling of 0.2cm to 0.08cm, once each for a 10 × 10 and a 20 × 20 detector matrix. As

in Study A3, increasing the mesh density increases the SVAT, which flattens out after the

mesh sampling becomes smaller than the detector spacing.
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Study A5. Finally, Figure 4.15f represents the optimization of FOV scanned by detectors

and sources assuming 18 projections. 14 × 14 detectors were employed over a 0.5cm2 to

4cm2 FOV. This resulted in 0.036cm to 0.29cm spatial sampling. Correspondingly, the

source FOV also varied from 1cm to 4cm using seven equidistantly spaced sources (i.e.

0.14cm to 0.57cm spatial sampling). The maximum SVAT was observed for a detector FOV

of 2cm to 2.5cm. In this case, the source FOV was of lesser importance since results are

weighted towards detector characteristics due their larger number compared to the number

of sources employed. These findings suggest that keeping the source and detector FOV

similar to the mesh dimensions yields the best SVAT number.

4.3.2.2 Experimental reconstructions, slab geometry

Figure 4.16 depicts the experimental verification of the most important finding of the SVA

study with regard to improvements obtained as a function of the projections and the number

of sources employed. The reconstructions employed a detector matrix and a mesh grid of

0.1cm resolution each. Confirming the results of the SVA analysis, the number of projections

yields higher imaging performance gains as opposed to adding more sources. However,

having more than one source seems equally advisable, similarly to the predictions seen in

Figure 4.15c. Imaging performance here is significantly underperforming when only one

projection is used. However, configurations developed for imaging in the slab geometry

typically employ finer source sampling and elongated fields of view to partly compensate for

the lack of complete projections and yield improved imaging performance compared to the

one projection results obtained herein.

4.3.2.3 Singular-value analysis, cylindrical geometry

Study B1. Figure 4.17a represents the optimization of the number of projections for the

free–space approach, yielding similar observations to the ones of Figure 4.15b. When 16

detectors are arranged over a 150◦ arc (10◦ step), the SVAT shows an asymptotic saturation

for more than 12 projections. Conversely at 31 detectors (5◦ step), the SVAT saturates

above ∼ 18 projections. Interestingly, some oscillations in the SVAT are observed in this

case. The ‘”dips’” of the oscillation are observed at 12, 18, 24, 36 and 48 projections, which

represent symmetries in the inversion problem that yield data correlations and lower the

SVAT values. For example, at 36 projections, all source–detector pairs for each projection at

angle x are mirrored by one source–detector pair of the 15 subsequent projections starting

from x + 110◦. This behavior does not occur in the parallel–plate geometry (see Study

A1), as the sources and detectors are not arranged in a circular fashion and thus this exact

symmetry of rotational step and source/detector step is not observable.
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1 proj. 6 proj. 9 proj. 18 proj.

7 src.

5 src.

3 src.

1 src.

Figure 4.16: Reconstruction of three tubes using 1–18 projections, 1–7 sources. For each
reconstruction, we used a 20 × 20 detector grid and a 20 × 20 × 20 mesh, the inversion
employed a randomized ART algorithm with 50 iterations.

Study B2. Figure 4.17b depicts the SVAT as a function of the number of sources and

projections employed. Similar to the results of Study A2, significant gains are observed

when increasing the number of projections compared to increasing the number of sources.

In addition, the use of more than one source is shown to give a significantly higher SVAT

value compared to a single source.

Study B3. The effects of detector density on the SVAT are shown in Figure 4.17c. Herein

the singular values are plotted as a function of detector spacing in degrees for two configu-

rations with a detector arc of 90◦ and 150◦ respectively. The configuration with the wider

detector arc (and thus higher number of detectors) yields higher SVAT numbers throughout,

as further elaborated in study B4 below. In both configurations, increasing the detector res-

olution yields virtually a linear dependence to the SVAT number. Although some saturation
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(a) (b)

(c) (d)

Figure 4.17: (a) SVA of the effects of number of projections used (evenly distributed over
the full circle) for cylindrical geometry. Plot shows the number of useful singular values,
extracted as shown in Figure 4.15a, versus number of projections for setups with one centered
source, 16 detectors arrayed on a 150◦ arc and 145 mesh points (triangles) and one centered
source, 31 detectors on a 150◦ arc and 601 mesh points (circles). (b) SVA of the effects
of number of sources (arrayed on a 120◦ arc) for the cylindrical geometry. Plot for setups
with 31 detectors on a 150◦ arc, 601 mesh points and 1 projection (crosses), 5 projections
(squares), 9 projections (triangles) and 15 projections (circles). (c) SVA of the effects of
detector density for the cylindrical geometry. Plot for setups with one centered source, 15
projections, 601 mesh points and the detectors arrayed on a 90◦ arc (triangles) and a 150◦

arc (circles) respectively. (d) SVA of the effects of source and detector arc for cylindrical
geometry. Plot for setups with 15 projections, 31 detectors, 601 mesh points and 7 sources
arrayed on a 30◦ arc (crosses), 60◦ arc (squares), 90◦ arc (triangles) and 120◦ arc (circles).

should be expected in finer degree sampling, this was not observed for arc sampling up to

5◦ (i.e. ∼ 0.9mm detector to detector distance).

Study B4. Finally, Figure 4.17d shows the SVAT obtained as a function of source and

detector FOV. As already suggested in study B3, widening the detector arc from 60◦ to 150◦

shows a large increase in the SVAT number, which follows a linear increase as a function

of the arc, except for the last step from 150◦ to 180◦, where some saturation is observed.

This is the reason that several of the tests were performed assuming a 150◦ detector arc

as a baseline. Regarding the source arc, moving from a 30◦ arc up to a 120◦ arc increases
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1 proj. 5 proj. 15 proj. 30 proj.

3 src.

1 src.

Figure 4.18: Reconstruction of two tubes using 1–30 projections, 1–3 non–contact sources.
For each reconstruction, we used a 7 × 30 detector grid and a mesh of 0.07mm resolution,
the inversion employed a randomized ART algorithm with 50 iterations.

the expected imaging performance noticeably with each step, which led us to use the 120◦

source arc for studies involving multiple sources (study B2).

4.3.2.4 Experimental reconstructions, cylindrical geometry

Figure 4.18 summarizes the results obtained for the phantom measurements as a function of

number of projections and number of non–contact sources employed. The reconstructions

were performed using 7 × 30 non–contact detectors and a mesh grid of 0.07cm resolution,

the source arc had to be limited to ∼ 20◦ because of experimental limitations. As in the

results of study B2, increasing the number of projections yields significantly better imaging

performance while adding more sources produces a smaller, but still very noticeable effect.

Again, as in Figure 4.17b, it is confirmed that using more than one source is advised.

4.3.3 Discussion

As Fluorescence Molecular Tomography is evolving towards the new generation of non–

contact, free–space imaging systems, it is important to optimize several of the design, data

acquisition and reconstruction parameters to gain an understanding of the necessary ex-

perimental parameters that yield optimal imaging performance while maintaining efficient

computational problems. In this section, we studied several of the most relevant parameters

and studied the general importance of various experimental considerations.
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For measurements using the matching fluid, it was found that 18 symmetrically arranged

projections are a reasonable upper limit. This limit indicates data redundancy when ex-

ceeded. This is because of the correlation expected between adjacent measurements and

projections due to the diffusive nature of photon propagation in the associated projections.

Furthermore, the optimal spatial sampling was found to be 0.1cm for mesh and detector

densities when considering the perturbative analytical method used and current computa-

tional limits. Reducing the density leads to noticeable worsening of imaging performance,

whereas increasing the density yields currently unmanageable computational problem sizes

without achieving significant image improvements. Figure 4.15d and 4.15e further suggest

that similar sampling of mesh and detector (or source) densities yields optimal imaging

performance. Similar conclusions can also be derived from Figure 4.15f.

Due to the added symmetries in data collection in the absence of matching fluids, 15 pro-

jections yielded a balanced choice for the free–space cylindrical geometry. Figure 4.17b

indicated that a small number of in–plane sources (three to five) suffice to yield optimal

illumination and the optimal spread was found to be over a 120◦ arc. Correspondingly, as

seen in Figure 4.17c, optimal detector placement is best over a 150◦ arc where even at fine

5◦ detector spacings (∼ 0.9mm distance between detectors) significant information gain was

obtained.

Generally, both the two geometrical approaches considered — one at free–space imaging and

one when using matching fluids — yielded similar trends. However, the free–space geometry

offers more flexibility in the arrangement of sources and detectors, and an increasing SVAT

for increasing arc measurements, as shown in Figure 4.17d. This implies not only more

user–friendly systems than slab geometries but better imaging performance as well. It is

therefore the preferred implementation geometry for new generation FMT systems.

Singular–value analysis reveals bulk characteristics that can lead to generic optimal pa-

rameters. Specific problems may require more accurate optimization that goes beyond the

capacity of the current analysis. In addition, while this optimization was performed for

the CW domain, different illumination–detection domains will possibly yield different op-

timal parameters. This is particularly true for systems utilizing early photons in complete

projection tomography, as the photon propagation characteristics and corresponding corre-

lation and redundancy in adjacent data is markedly different from the ones studied herein

[129, 154].

Overall, we have shown that 360◦ projection collection schemes offer significant ability to

improve the information available for image reconstruction and offer to yield systems of

superior imaging capacity than current state of the art implementations. Importantly, they

also outline a computational bottleneck in improving FMT performance for small animal

imaging. Using the findings of this SVA analysis, optimal image parameters have therefore
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been found that optimize imaging performance within our current computational ability.

This also allows us to predict that improved imaging performance is to be expected in

the future with improvements in computational efficiency of the diffuse optical tomography

problem.

4.4 Ex–vivo and In–vivo Studies

For small animal imaging, it has been shown that high spatial sampling (i.e. < 0.5mm)

of the photon fields propagating through an animal offers image improvements over coarser

sampling [148] and leads to submillimeter tomographic resolution [126]. To achieve such

high spatial sampling, it is imperative to utilize CCD cameras that offer high–density arrays

of parallel detectors. Implementations of fluorescence tomography based on CCD camera

measurements were developed for small animal imaging, but in the slab geometry [126–

128, 155]. These systems have demonstrated the ability to resolve protease and receptor

up–regulation, chemotherapeutic responses, or fluorochrome accumulation in-vivo [127, 156,

157], but with compromised resolution along the axis perpendicular to the detector plane

due to the limited projection angles employed.

In analogy to X–ray CT, measurements obtained over 360◦ illumination and detection ge-

ometries are fundamental for achieving optimal three–dimensional performance compared

with parallel–plate (slab) geometries. Photon measurements in the 360◦ geometry have been

so for performed with fiber–based systems, typically by bringing fibers into physical con-

tact with tissues or through the use of matching fluids (see for example Figure 4.3). In this

section we consider the combination of 360◦ projection geometries with direct CCD–camera–

based detection for the development of a new generation of FMT systems that combine the

advantages of high spatial photon sampling with those offered by complete projection mea-

surements, as already presented in section 4.2. This approach can enable (i) experimental

simplicity, since no matching fluids are utilized and no fibers are brought into contact with

tissue, and (ii) high–quality data sets, due to the high spatial sampling of photon fields

allowed at any projection. Ultimately, this approach could fully capitalize on the potential

of diffuse fluorescence tomography methods and seamlessly integrate with other imaging

modalities such as X–ray CT.

The results of this section were also presented at [158, 159] and published in [140].

4.4.1 Methods

The system shown in Figure 4.19 was developed, where the animal imaged is placed on a

rotation stage so that it intersects a laser beam being scanned on its surface. The scanner
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Fluorescence molecular tomography (FMT) is an im-
aging method that can resolve the biodistribution of
fluorescence reporters associated with cellular and
subcellular function through several millimeters to
centimeters of tissue in vivo.1–3 For small animal im-
aging, it has been shown that high spatial sampling
(i.e., !0.5 mm) of photon fields propagating though
the animal offers image improvements over coarser
sampling4 and leads to submillimeter tomographic
resolution.5 To achieve such high spatial sampling, it
is imperative to utilize CCD cameras that offer high-
density arrays of parallel detectors. Implementations
of fluorescence tomography based on CCD camera
measurements were developed for small animal im-
aging but in the slab geometry.5–8 These systems
have demonstrated the ability to resolve protease
and receptor upregulation, chemotherapeutic re-
sponses, or fluorochrome accumulation in vivo6,9,10

but with compromised resolution along the axis per-
pendicular to the detector plane due to the limited
projection angles employed.

In analogy to x-ray computed tomography (CT),
measurements obtained over 360° illumination and
detection geometries are fundamental for achieving
optimal three-dimensional performance compared
with parallel plate (slab) geometries. Photon mea-
surements in the 360° geometry have been so far per-
formed with fiber-based systems, typically by bring-
ing fibers in physical contact with tissues or through
the use of matching fluids. We consider herein the
combination of 360° projection geometries with direct
CCD-camera-based detection for the development of
a new generation of FMT systems that combine the
advantages of high spatial photon sampling with
those offered by complete projection measurements.
This approach can enable (i) experimental simplicity,
since no matching fluids are utilized and no fibers are
brought in contact with tissue, and (ii) high-quality
data sets, due to the high spatial sampling of photon
fields allowed at any projection. Ultimately, this ap-
proach could fully capitalize on the potential of dif-
fuse fluorescence tomography methods and seam-

lessly integrate with other imaging modalities such
as x-ray CT.

To accomplish this performance, the system shown
in Fig. 1(a) was developed, where the animal imaged
is placed on a rotation stage so that it intersects a la-
ser beam being scanned on its surface. The scanner

Fig. 1. (Color online) (a) Schematic of the experimental
setup utilizing noncontact illumination and detection. A
photoluminescent plate, indicated by the dotted line, can be
inserted as shown to facilitate surface capturing. (b) Sche-
matic of the rotational device implementing 360° projection
capacity.
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Figure 4.19: Schematic of the experimental setup utilizing non–contact illumination and
detection. A photo–luminescent plate, indicated by the dotted line, can be inserted as
shown to facilitate surface capturing.

employed a 748nm diode laser (B & W Tek, Newark, Delaware) coupled to a system of

two galvanometer–controlled mirrors and a tele–centric scan lens (Nutfield Technology Inc.,

Windham, New Hampshire), which focused and scanned the laser beam onto the back

surface of the animal imaged. The beam diameter at the focus plane was 300µm, and the

positional accuracy of the beam at the focus plane was better than 50µm. The beam focus

was maintained over 4mm of depth of field, as appropriate for irregular mouse shapes and

some surface curvature present within the scanned field of view pursued here (i.e. 6mm

horizontally across the mouse). The total power delivered to the object was approximately

20mW . A Princeton Instruments Inc. (Trenton, New Jersey) VersArray CCD camera

with a 10242 pixel CCD array cooled to −70◦ C was placed on the opposite side of the

animal to collect photon fields propagating through the animal in transillumination mode.

Two three–cavity bandpass interference filters (Andover Corp., Salem, New Hampshire)

were sequentially employed in front of the camera to capture photons at the excitation

(750 ± 10nm) and emission (800 ± 20nm) wavelengths. Additional laser diodes and filters

at different spectral bands have been added to this system but were not employed herein.

The custom–made animal chamber, shown in Figure 4.20, consisted of two rotating cylin-

drical chambers that housed the animal’s extremities. Both chambers were rotated by a

common shaft to achieve synchronous movement and avoid the application of torque on the

animal. Rotation is facilitated by a stepper motor driven rotation stage (Model PR50PP,

Newport Corp., Irvine, California) that can rotate the mouse with a resolution of 0.01◦

(< 0.1◦ absolute accuracy). The use of a vertical chamber is not a preferred implemen-

tation, but was directed by experimental hardware simplicity. Yet the vertical placement

combined with the independent movement of the top and the bottom chambers and slow ro-

tation at speeds of < 5◦/s ensures that no skew or internal organ movement occurred during
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Fluorescence molecular tomography (FMT) is an im-
aging method that can resolve the biodistribution of
fluorescence reporters associated with cellular and
subcellular function through several millimeters to
centimeters of tissue in vivo.1–3 For small animal im-
aging, it has been shown that high spatial sampling
(i.e., !0.5 mm) of photon fields propagating though
the animal offers image improvements over coarser
sampling4 and leads to submillimeter tomographic
resolution.5 To achieve such high spatial sampling, it
is imperative to utilize CCD cameras that offer high-
density arrays of parallel detectors. Implementations
of fluorescence tomography based on CCD camera
measurements were developed for small animal im-
aging but in the slab geometry.5–8 These systems
have demonstrated the ability to resolve protease
and receptor upregulation, chemotherapeutic re-
sponses, or fluorochrome accumulation in vivo6,9,10

but with compromised resolution along the axis per-
pendicular to the detector plane due to the limited
projection angles employed.

In analogy to x-ray computed tomography (CT),
measurements obtained over 360° illumination and
detection geometries are fundamental for achieving
optimal three-dimensional performance compared
with parallel plate (slab) geometries. Photon mea-
surements in the 360° geometry have been so far per-
formed with fiber-based systems, typically by bring-
ing fibers in physical contact with tissues or through
the use of matching fluids. We consider herein the
combination of 360° projection geometries with direct
CCD-camera-based detection for the development of
a new generation of FMT systems that combine the
advantages of high spatial photon sampling with
those offered by complete projection measurements.
This approach can enable (i) experimental simplicity,
since no matching fluids are utilized and no fibers are
brought in contact with tissue, and (ii) high-quality
data sets, due to the high spatial sampling of photon
fields allowed at any projection. Ultimately, this ap-
proach could fully capitalize on the potential of dif-
fuse fluorescence tomography methods and seam-

lessly integrate with other imaging modalities such
as x-ray CT.

To accomplish this performance, the system shown
in Fig. 1(a) was developed, where the animal imaged
is placed on a rotation stage so that it intersects a la-
ser beam being scanned on its surface. The scanner

Fig. 1. (Color online) (a) Schematic of the experimental
setup utilizing noncontact illumination and detection. A
photoluminescent plate, indicated by the dotted line, can be
inserted as shown to facilitate surface capturing. (b) Sche-
matic of the rotational device implementing 360° projection
capacity.
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Figure 4.20: Schematic drawing and photograph (with inserted euthanized nude mouse) of
the rotational device implementing 360◦ projection capacity.

experiments, which was important for facilitating these proof–of–concept experiments.

Diffuse fluorescence tomography is based on the use of physical models of photon propagation

in tissues (see section 4.1.1). In this case, knowledge of the animal surface is required to

separate photon propagation in air and tissue and accurately model photon propagation

in the diffusive medium. For surface acquisitions, a 10cm× 10cm photo–luminescent plate

was placed between the animal and the laser source, with the laser beam switched off.

This allowed visualization of the contours of the animal, as shown in Figure 4.21(a) for

various representative projections. The axis of rotation was calculated along with the three–

dimensional surface reconstruction using volume carving with 72 projections and the Visual

Hull approximation to the real object [132]. Details on the surface extraction procedure

are described in section 4.2 and [131]. A typical example of a three–dimensional surface

reconstructed is shown in Figure 4.21(b). The accuracy of this method, experimentally

measured on phantoms, was found to be of the order of 50µm at an 11cm field of view.

4.4.2 Experiments and Results

4.4.2.1 Ex–vivo

To demonstrate the ability of the method to three–dimensionally resolve fluorescent distri-

butions, we implanted two plastic semi–translucent tubes filled with fluorescent dye in the

torso of a euthanized nude mouse. Both tubes were 9mm long and 0.75mm in diameter.

Tube 1 (T1, see Figure 4.22) was placed subcutaneously outside the ribcage on the right

ventral side, and tube 2 (T2) was inserted in the esophagus parallel to T1. The tubes
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employed a 748 nm diode laser (B&W Tek, Newark,
Delaware) coupled to a system of two galvanometer-
controlled mirrors and a telecentric scan lens (Nut-
field Technology, Inc., Windham, New Hampshire),
which focused and scanned the laser beam onto the
back surface of the animal imaged. The beam diam-
eter at the focus plane was 300 !m, and the posi-
tional accuracy of the beam at the focus plane was
better than 50 !m. The beam focus was maintained
over 4 mm of depth of field, as appropriate for irregu-
lar mouse shapes and some surface curvature
present within the scanned field of view pursued here
(i.e., 6 mm horizontally across the mouse). The total
power delivered to the object was approximately
20 mW. A Princeton Instruments, Inc. (Trenton, New
Jersey) VersArray CCD camera with 10242 pixel
CCD array cooled to −70°C was placed on the oppo-
site side of the animal to collect photon fields propa-
gating through the animal in transillumination
mode. Two three-cavity bandpass interference filters
(Andover Corp., Salem, New Hampshire) were se-
quentially employed in front of the camera to capture
photons at the excitation !750±10 nm" and emission
wavelengths !800±20 nm". Additional laser diodes
and filters at different spectral bands have been
added in this system but were not employed herein.
The custom-made animal chamber, shown in Fig.
1(b), consisted of two rotating cylindrical chambers
that housed the animal’s extremities. Both chambers
were rotated by a common shaft to achieve synchro-
nous movement and avoid the application of torque
on the animal. Rotation is facilitated by a stepper
motor driven rotation stage (Model PR50PP, Newport
Corp., Irvine, California) that can rotate the mouse
with a resolution of 0.01° ("0.1° absolute accuracy).
The use of a vertical chamber is not a preferred
implementation but was directed by experimental
hardware simplicity. Yet the vertical placement com-
bined with the independent movement of the top and

bottom chambers and slow rotation at speeds of
"5° /s ensured that no skew or internal organ move-
ment occurred during experiments, which was impor-
tant for facilitating these proof-of-concept experi-
ments.

Diffuse fluorescence tomography is based on the
use of physical models of photon propagation in tis-
sues. In this case, knowledge of the animal surface is
required to separate photon propagation in air and
tissue and accurately model photon propagation in
the diffusive medium. For surface acquisitions a
10 cm#10 cm photoluminescent plate was placed be-
tween the animal and the laser source, with the laser
beam off. This allowed visualization of the contours
of the animal, as shown in Fig. 2(a) for various rep-
resentative projections. Then the axis of rotation was
calculated and the three-dimensional surface recon-
struction was calculated via volume carving using 72
projections and the Visual Hull approximation to the
real object.11 Details on the surface extraction proce-
dure are described in Ref. 12. A typical example of a
three-dimensional surface reconstructed is shown in
Fig. 2(b). The accuracy of this method, experimen-
tally measured on phantoms was found of the order
of 50 !m at an 11 cm field of view.

To demonstrate the ability of the method to three-
dimensionally resolve fluorescent distribution we im-
planted two plastic semi-translucent tubes, filled
with fluorescent dye, in the torso of a euthanized
nude mouse. Both tubes were 9 mm long and
0.75 mm in diameter. Tube 1 (T1; see Fig. 3) was

Fig. 2. (a) Contours from various projections of a mouse
against the photoluminescent plate, (b) reconstructed
three-dimensional surface.

Fig. 3. (Color online) (a) Reconstructed FMT slice ob-
tained from a euthanized nude mouse implanted with two
fluorescent tubes, (b) corresponding x-ray CT slice, and (c)
three-dimensional rendering of the tubes inside the animal
surface. Arrows indicate the positions of the tubes.
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Figure 4.21: (a) Contours from various projections of a mouse against the photo–luminescent
plate, (b) reconstructed three–dimensional surface.

contained 13 and 64× 10−12mol, respectively, of Alexa Fluor 750 (Invitrogen Corp., Carls-

bad, California; absorption maximum 749nm, emission maximum 775nm), with a ratio of

concentration T2/T1 = 5.

360◦ was performed utilizing 36 projections every 10◦. For each projection the laser beam

was scanned at an equidistant rectangular 12 × 3 pattern over a 14.5mm × 3.3mm field

of view. Thus for each projection 36 images were collected at each of the emission and

excitation wavelengths. On each image we assumed a sampling of 11× 12 virtual detectors

over a 1.1cm × 1.3cm field of view; each detector using herein a 4 × 4 CCD camera pixel

binning. The complete measurement lasted 30min.

For image reconstruction, the volume of interest, measuring 2.4cm × 1.8cm × 2.3cm, was

discretized to 21 × 16 × 22 mesh points. This mesh is virtually rotated with the mouse

around the axis of rotation. Using the calculated mouse surface, the mesh voxels can then

be separated into the ones residing within or outside the mouse volume, the latter assumed

as having no value after reconstruction. The sources and detectors were projected along

the z axis (see Figure 4.19) to the surface of the mouse and the intersection points are

calculated to find the geometrical coordinates of the virtual sources and detectors for the

FMT problem.

The fluorescence measurements that are collected are divided by spatially corresponding

measurements at the excitation wavelength and an analytical model based on a normalized
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Figure 4.22: (a) Reconstructed FMT slice obtained from a euthanized nude mouse implanted
with two fluorescent tubes, (b) corresponding X–ray CT slice, and (c) three–dimensional
rendering of the tubes inside the animal surface. Arrows indicate the positions of the tubes.

Born solution of the diffusion equation [123] was employed to calculate the sensitivity func-

tions of each voxel to each source–detector pair. Modeling of the boundary effects was based

on the Kirchhoff approximation [128]. When written for the entire data set collected, this

procedure results in a system of linear equations that is inverted for the unknown fluores-

cence concentrations in each voxel using the algebraic reconstruction technique (see section

3.3.1) after 50 iterations.

Following FMT imaging, X–ray micro CT imaging was performed on a X–SPECT system

(Gamma Medica, Northridge, California) to anatomically confirm the location of the tubes.

Figure 4.22 summarized the results most pertinent to the study. Figure 4.22(a) shows a

reconstructed axial FMT slice passing through the tubes level. Figure 4.22(b) demonstrates

a corresponding X–ray CT, where the tubes are indicated by arrows. Finally, figure 4.22(c)

shows a three–dimensional rendering of the surface reconstruction and the underlying FMT

rendering. We note that since the FMT and X–ray CT have been acquired on different

systems, some shape and co–registration inaccuracies are present, but generally a good

correspondence is observed between the results of the two modalities. Although the size of

T2 is larger than that of T1, due to the noted drop in resolution as a function of depth

[160], the sum of the reconstructed values in the T2 area is 3.9 times higher than the sum

of the dye in the T1 area. This ratio of the reconstructed values is close to the original

concentration ratio of T2/T1 = 5, which demonstrates the capability of the method for

quantitative measurements. Such performance can be improved with spatially dependent
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Figure 4.23: FMT and CT of a nude mouse with implanted lung tumor. Left: reconstructed
mouse surface marked with FMT slice locations, middle: FMT slices at different heights,
right: corresponding CT slices, tumor marked with red arrows.

regularization [160].

4.4.2.2 In–vivo

The same setup was used to perform in–vivo imaging of lung tumors in nude mice. 1× 106

Lewis Lung Carcinoma (LLC) cells were administered intercostally into the right lung

parenchyma of a nude mouse. Eight days after implantation, 2nmol of Angiosense 750

(VisEn Medical, Bedford, Massachusetts) were injected via the tail vein. The mouse was

imaged 36 hours later using 36 projections every 10◦. For each projection the laser beam

was scanned in a 7×3 pattern, while each image was sampled using 11×12 virtual detectors.

The volume of interest was discretized into 24×14×22 voxels using a 1mm mesh resolution.

The FMT reconstruction was generated using the same procedure as in the previous sec-

tion. Following FMT, X–ray micro CT imaging was performed as well to confirm the FMT

findings. Figure 4.23 shows the reconstructed mouse surface on the left as well as indicating

the slice positions of the FMT reconstruction shown in the middle. The corresponding CT

slices are shown on the right, the tumor is marked with red arrows. Again, some registration

inaccuracies are present, but overall there is a good correspondence for the tumor in both

modalities.
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4.4.3 Discussion

We have demonstrated that free–space 360◦ tomography through entire animals is possible

in the near infrared, both ex–vivo and in–vivo. This approach offers data that probes the

animal volume more symmetrically than possible in slab geometry systems and offers high

spatial sampling of photon fields as well as significant experimental simplicity compared

with 360◦ fiber–based systems. This implementation can be further improved by the use

of multiple cameras or systems of mirrors that allow concurrent viewing and sampling of

photon fields over a wider angle of animal circumference per projection. However, even

in the current implementation, imaging performance is limited by computational efficiency.

Nevertheless, free–space 360◦ schemes as shown herein can offer data sets of maximum

information content compared to other geometries or data–collection schemes and have the

potential to bring out the best possible imaging performance for FMT as well as yield the

next generation of small animal imaging systems.

4.5 Recent Developments

The results presented in this chapter were developed in the timeframe between 2005 and

2007. All the instrumentation and experimentation was performed at the Laboratory for

Bio–optics and Molecular Imaging of Prof. Vasilis Ntziachristos at the CMIR, Massachusetts

General Hospital, Harvard University in Boston, USA (Prof. Ntziachristos has moved to

Technische Universität München in 2007). The software development and experimental

evaluations were performed both at CMIR and from 2006 on at the chair I–16 of Prof.

Nassir Navab at the Technische Universität München. Since that time, many developments

have taken place.

While optical tomography is still a relatively young discipline, several groups are working in

this field. As an example, parallel developments of a non–contact free–space FMT system

very similar to the one presented in section 4.2 took place at FORTH in Heraklion Crete,

Greece, see for example [161, 162]. The main differences here were in surface extraction

(a filtered back–projection approach was used instead of volume carving) as well as in the

design of the rotation stage.

Meanwhile, commercial implementations of the FMT imaging modality are also available

for example by VisEn Medical (Bedford, Massachusetts). Their currently available products

(FMT 1500 and FMT 2500 LX, as of October 2010) utilize free–space modeling without

matching fluids by acquiring the mouse surface using photogrammetry, but do not employ

full 360◦ projection tomography as presented in this chapter.
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Advances have also been made on the theoretical side. Noise characteristics in the acquired

data used by the normalized Born ratio have been largely ignored for the works in this chap-

ter. It was shown in [163] that this noise can be incorporated into a stochastic model used in

the forward problem, which is then inverted within a maximum likelihood framework based

on fixed point iteration. Finite element modeling allows inclusion of prior-knowledge about

the tissue being imaged. In the method presented in this chapter a major simplification

was made in assuming that the tissue being imaged is homogeneous. This is not true in

reality, but to overcome this deficiency the prior knowledge about tissue heterogeneity has

to be acquired by a different imaging modality. One solution was presented in [164], where

photo–acoustic imaging generated optical absorption maps which are included in the FMT

forward problem via a finite element approach. Another solution is to use micro X–ray

CT data (XCT) for anatomical priors. A hybrid system integrating XCT with FMT was

recently developed [29], including the prior information using a finite element method and

regularized LSQR inversion. The difficulty here is the automatic segmentation of the XCT

[165] as well as modeling the optical parameters correctly from the segmented XCT data

[166]. This hybrid FMT–XCT approach enabled for example the imaging of an Alzheimer

mouse model [167] and lung inflammation [168]. To avoid biasing the solution by the prior

information, data specific spatially varying regularization was introduced in [169].

Developments have of course also taken place in the development of fluorescent tracers. In-

travascular probes have been shown to determine the vascular volume fraction [113], while

combined MRI and fluorescent probes like CLIO–Cy5.5 allowed imaging of the myocar-

dial macrophage infiltration [114]. In [170], biocompatible upconverting nanoparticles were

employed to enable autofluorescence–free transillumination images of mice. The system

presented in section 4.2 was used to image brain tumors in murine mouse models using a

novel fluorescent protein [171] as well as an Alzheimer mouse model [167, 169]. Multispec-

tral sources enable simultaneous visualization of several tracers, as demonstrated with the

dual–wavelength approach to investigate breast cancer progression in [172].

A different approach to optical tomography is using time–resolved detection. Here, the

laser source is synchronized with the detection cameras with an accuracy in the picoseconds

range, allowing for example to detect the so–called early photons, that is the photons that

transversed the imaged object largely without any scattering effects. This allows to use

simple analytic inversion approaches as showcased in [129], but of course series expansion

methods perform at least comparably if not better [173]. Early photon tomography has also

successfully imaged protease activity in mice with lung cancer [174]. A favorable comparison

of early photons with quasi–continuous–wave was performed in [175]

While FMT is a macroscopic imaging modality, mesoscopic optical imaging is also possible

(mesoscopic is in between microscopic and macroscopic). The main difficulty here is that
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the diffusion approximation of the FMT forward problem is not valid, as imaging is per-

formed within a few lengths of the transport mean free path ltr. One solution is to use

Monte Carlo simulations based on the radiative transport equation (RTE, equation 4.1)

to enable mesoscopic epifluorescence tomography [176]. Another solution is to employ the

Fermi simplification to the Fokker–Planck solution of the RTE to enable in–vivo mesoscopic

fluorescence tomography (MFT) as demonstrated in [177, 178]. In the case where meso-

scopic ex–vivo samples can be cleared (made transparent), tomographic reconstruction of

transmission images at several projections is called Optical Projection Tomography (OPT).

Here, absorption can be reconstructed like in X–ray CT using analytical methods, for ex-

ample with filtered back–projection (see section 2.3) implemented using CUDA for high

throughput [179]. Fluorescent probes can be imaged simultaneously using Born–normalized

fluorescence [180], demonstrated for example on an infarcted mouse hearts [181, 182].

Yet another different approach to optical imaging is a hybrid approach called photo–acoustic

or optoacoustic imaging. Here ultrasound waves are generated by short laser pulses (due

to transient thermoelastic expansion of light–absorbing structures), and then recorded by

ultrasonic detectors placed around the sample, taking advantage of the high resolution of ul-

trasound which is unaffected by light diffusion. One of the systems performing multispectral

optoacoustic tomography (MSOT) using finite element solvers was presented in [183–186],

a review of MSOT can be found in [187]. Several improvements have been made since, like

visualizing polarization contrast [188] or mesoscopic scale imaging using selective–plane illu-

mination [189]. New algorithms have been developed to extract both absorption coefficient

and photon density using sparse decompositions [190] or to iteratively correct for light atten-

uation [191]. Finally, physical models have been developed to also use the series expansion

framework for example using LSQR for inversion [104], enabling video rate tomography of

mouse kidney perfusion [192] and real–time visualization of cardiovascular dynamics in mice

[193].

A very recent review of current optical imaging modalities across different photon penetra-

tion scales, including those mentioned in this chapter, is available in [194]. It confirms again

the usefulness of series expansion techniques for any tomographic optical imaging modality.



Chapter 5

Application: Freehand SPECT

This chapter presents another application of the series expansion method explored in chap-

ter 3 — Freehand SPECT. The SPECT functional imaging modality was already briefly

introduced in section 1.3.2. The physical requirements of SPECT or SPECT/CT scanners

necessitate specifically designed rooms with controlled temperatures and vibrations to house

the bulky devices. Along with relatively long scanning times, this naturally limited the use

of SPECT to pre–operative diagnostics and treatment planning. Unless one is willing to

build an operating room around such a device (a costly and impractical undertaking), intra–

operative use of SPECT requires a new approach. Freehand SPECT is such a new approach,

employing tracked gamma detectors on a mobile system with low scanning times to enable

localized, intra–operative 3D SPECT reconstructions. This chapter introduces the Freehand

SPECT imaging modality and presents phantom studies as well as pre– and intra–operative

patient studies to characterize its performance.

5.1 Freehand SPECT — A New Approach to Intra–operative

3D Nuclear Imaging

The improvements in PET/CT and SPECT/CT and their integration into the clinical rou-

tine have enabled the localization of small tumors and lymph nodes in several oncologic

applications [195, 196]. The clinical impact of such precise localization has however been

limited as the surgical excision of such structures is often impossible. The reason for this

is twofold. On the one hand, the structures to be excised are small and there is no re-

liable method capable of localizing them precisely in the operating room (OR), that can

be integrated easily into the surgical workflow. On the other hand, due to deformation of

soft tissue during surgery the use of the pre–operative images as it is done in conventional

navigated surgery is extremely hard and error prone [197].

89
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Figure 5.1: Schematic representations of a SPECT device (left) and a gamma probe (one–
dimensional gamma detector) with a mounted tracking target (right). Images courtesy of

Alexandru Duliu.

The development of solutions for this specific problem is in perfect congruence with the

strong trend in medicine towards quality assurance and patient tailored treatment. In order

to exploit the advantages of state–of–the–art imaging technology, the use of intra–operative

imaging has been proposed in neurosurgery and orthopedic surgery (for example [198] and

[199] respectively). There, intra–operative 3D US, intra–operative MRI and X–ray C–arm

based 3D imagers are transferring the precise diagnostics of US, MRI and CT into the OR

with increasing spatial and temporal resolution and in full 3D. This is however not the case

in nuclear imaging. Although the first 2D imagers have been made available commercially

and there are increasingly reports of different applications (e.g. in laparoscopic sentinel

lymph node biopsies, SLNBs, in prostate cancer [200], in SLNBs for difficult–to–find SLNs

[201] or in radio–guided occult lesion localizations in breast cancer [202]), intra–operative

nuclear imaging is only in its initial stages and has not made it into the clinical routine yet.

Intra–operative localization of labelled tumors, lymph nodes and metastases requires 3D

imaging. The availability of depth information can play an important role in clinical pro-

cedures like sentinel lymph node biopsies in the breast, pelvis or neck, where improper

localization may result in considerable morbidity and failure of the surgical procedure [203].

In this chapter, we present the technical background for our novel approach for intra–

operative, 3D nuclear imaging called Freehand SPECT. In Freehand SPECT conventional

hand–held 1D gamma probes (as used in state–of–the–art radio–guided surgery) are tracked

with spatial positioning systems (as the ones used in navigated neurosurgery). Novel algo-

rithms are employed to generate tomographic imaging data from sparse, limited–angle and

irregularly sampled data acquired during a two to five minute ad–hoc freehand scan.

In typical full–body imaging modalities like SPECT, several detectors are mounted inside

a moving gantry in a fixed, optimized geometry with full angular coverage (see Figure 5.1).

In Freehand SPECT, only one detector (a hand–held 1D gamma probe, see Figure 5.1) is

moved manually in a “freehand” scan over the localized object of interest (see Figure 5.2),
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Figure 5.2: Illustration of freehand scan with 1D gamma detector (also called gamma probe).

resulting in a sparse, non–uniform and non–symmetric ad–hoc geometry with limited angular

coverage. With a duration of two to five minutes, the freehand scan is also shorter than a

typical SPECT scan, which can last between 15 to 60 minutes. Thus, while conventional

SPECT systems record on the order of billions of gamma rays, Freehand SPECT records

only on the order of a few hundred thousand events.

However, as an intra–operative imaging modality, it is sufficient for Freehand SPECT to

only image a limited region of interest, and not the full body. Due to the localized nature of

the scan, the detector is also typically closer to the actual sources of activity and thus has

better sensitivity compared to the gantry–mounted detectors in conventional SPECT. To be

useful in a clinical setting, Freehand SPECT has to provide an accuracy and resolution of

around 5mm to 10mm, which is comparable to the SPECT resolution manufacturers quote

for their modern full–body SPECT/CT scanners.

Since the hand–held gamma probe is already present in the OR for typical radio–guided

surgeries, the additional overhead of a Freehand SPECT system, notably the tracking system

and a computing workstation with a touchscreen for visualization and interaction, is minimal

and cost–effective. Furthermore, thanks to the short scanning times of two to five minutes

and fast reconstructions in around one minute, it only requires small changes in the workflow

of a procedure and can be integrated smoothly.

5.2 Materials and Methods

5.2.1 Hardware Setup

The Freehand SPECT system used in this work was a prototype of the CSS300 cart sys-

tem (SurgicEye, Germany) attached to a Gamma-Probe System gamma detector (Crystal
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Figure 5.3: The Freehand SPECT hardware setup: (1) CSS300 cart system, (2) Tracking
system, (3) Gamma detector, (4) Phantom.

Photonics, Germany). Spatial positioning was facilitated by an integrated Polaris Vicra

infrared optical tracking system (Northern Digital, Canada) and reflective markers attached

to the gamma detector, see Figure 5.3. A regular PC (Intel i7 920, 2.66GHz, 6GB RAM)

integrated into the cart acquired and synchronized the data and provided augmented reality

feedback during the scans as well as online reconstructions. The final reconstructions for

the evaluation studies were performed on another PC (Intel i7 920, 3.33GHz, 12GB RAM)

using custom software in C++.

5.2.2 Reconstruction Pipeline

Reconstructions for Freehand SPECT are performed using the series expansion method,

see chapter 3 for an overview. For each measurement session, a reconstruction pipeline

is executed to obtain the reconstructed image, the steps are illustrated in Figure 5.4 and

described in more detail in the following.

First, a rectangular volume of interest Y ⊂ R3 is selected by pointing a tracked instrument

to defined landmarks. This volume is discretized into n isotropic voxels X = {xi : i =

1, . . . , n} ⊂ Y . Here, each xi ∈ R3 denotes the center of the corresponding voxel, i =

1, . . . , n.
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Figure 5.4: The reconstruction pipeline for Freehand SPECT.

The input are m measurements M =
{

(bj , pj , oj) : bj ∈ R, oj , pj ∈ R3, j = 1, . . . ,m
}

,

where bj denotes the count rate measured by the one–dimensional gamma detector and pj , oj

denote the synchronized position and orientation of the gamma detector as determined by

the tracking system. The gamma detector used in this work is rotationally symmetric in

the z–axis (see Figure 5.3), so the tracking data is effectively only five–dimensional.

A system matrix A = (aji) ∈ Rm×n is built successively, where each row corresponds to

one measurement (bj , oj , pj) ∈ M and each column corresponds to one voxel xi ∈ X. The

entries of the system matrix A are computed using a custom physical model of the detection

process, aji = model(pj , oj , xi) for i = 1, . . . , n and j = 1, . . . ,m. The model employed here

is defined as follows:

model(pj , oj , xi) =


cos(a)

2

(
1−

(
r2det

‖pj−xi‖22

)− 1
2

)
catt a ≤ amax

0 a > amax,

(5.1)

where a denotes the angle between −oj and pj − xi, amax denotes the maximum angle of

the field of view of the collimator of the gamma detector, rdet is the radius of the detector

element inside the gamma probe and catt is the attenuation factor of the medium, modeled

as a constant [204].

The model parameters were set according to the specifications of the employed gamma probe

(Crystal Photonics, Germany), amax = 60◦ and rdet = 3mm (shielding 3.15mm) with the

constant attenuation coefficient set as catt = 1 to model air.

Let x : X → R denote the unknown activity to be reconstructed and b = (bj) ∈ Rm the

vector of measured activities, then the resulting linear system can be written as

Ax = b. (5.2)

This system is then filtered and run through an iterative reconstruction algorithm.

Filtering is performed in two steps. First, all rows j of the system (5.2) where
∑n

i=1 aji ≤ tr
are discarded as well as all columns i with

∑m
j=1 aji ≤ tc with tr, tc ≥ 0. This ensures that
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there are no zero rows or columns in A. Since the acquisition is performed freehand, both

situations frequently occur: zero rows correspond to measurements (bj , pj , oj) that did not

“touch” the region of interest X according to model(pj , oj , xi) for all i = 1, . . . , n, whereas

zero columns correspond to voxels xi that have not been scanned at all, i.e. typically

voxels outside the object of interest. Furthermore, choosing tr, tc > 0 allows to discard

measurements or voxels with very low relevance or confidence [205]. The second filtering

step removes all voxels xi that intersect with the detector during the scan, meaning those

voxels are not located inside the object of interest but in the air, and can thus be discarded

for reconstruction. This filtering is performed by geometric intersection of the region of

interest X with the detector at (pj , oj) modeled as a cylinder (j = 1, . . . ,m).

Let If denote the set of indices of voxels xi that are not filtered out, and Jf the indices of

the measurements bj that are not filtered out. The filtered versions of A, x and b, where only

the columns If and rows Jf are kept will be called A, x and b again for notational simplicity,

along with their respective sizes n,m. The approximate solution x of the filtered system

equation (5.2) is calculated using one of two iterative schemes described in the following.

The resulting (unfiltered) reconstruction x is then set as

x = (xi)i=1,...,n =

xi i ∈ If

0 i 6∈ If .
(5.3)

One of the iterative schemes is the the standard maximum likelihood expectation maximiza-

tion (MLEM, see section 3.4), which is very popular in emission tomography and used in

variants in modern SPECT devices (for example with ordered subsets, OSEM). The MLEM

iteration step for Freehand SPECT is defined as

x0 = (1, . . . , 1)t (5.4)

xk+1
i =

xki∑m
p=1 api

m∑
j=1

bj∑n
l=1 ajlx

k
l

aji ∀i = 1, . . . , n,

where k = 1, . . . , k̂, and k̂ denotes the fixed number of iterations.
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The other scheme is the Algebraic Reconstruction Technique (ART, see section 3.3.1), em-

ployed as a variant using randomized projection access order and a relaxation factor λ > 0,

x0 = (0, . . . , 0)t (5.5)

for k = 1, . . . , k̂

x̂0 = xk−1

for l = 1, . . . ,m

select j ∈ {1, . . . ,m} randomly

x̂l = x̂l−1 + λ
bj − 〈x̂l−1, aj·〉
‖aj·‖22

xk = x̂m

where k̂ denotes the number of iterations and aj· denotes the j–th row of A. x̂l is forced

to be positive in each iteration, any negative entry is set to 0. The probability for choosing

projection j is set to be proportional to ‖aj·‖22. The strategy of choosing the projection

access order in ART is decisive for reconstruction performance, see for example [70]. The

selected randomization scheme is one of the potential strategies which can guarantee expo-

nential convergence in certain cases [73], but not in general [74]. Lacking a fixed acquisition

geometry, this seems to be one of the best available projection access schemes. Finally, the

relaxation parameter λ also plays a crucial role especially for inconsistent systems as in our

case, where a variable scheme with λ→ 0 as k̂ →∞ has been shown to be optimal [69]. For

simplicity we settled on a constant λ = 0.1, a common choice justified for example in [206].

As each acquisition has a random geometry due to manual scanning of the detector, the

system matrix A cannot be pre–computed as is common for conventional SPECT and other

modalities with a fixed detector geometry in an imaging gantry. Thus the system matrix is

computed on the fly during the acquisition process, inversion is performed only at the end.

To ensure timely reconstructions the entire reconstruction pipeline was implemented as a

library in C++ (NanuLib, see section 5.6 for more details), using the Eigen linear algebra

library [207] for automatic vectorization and OpenMP for parallelization.

5.2.3 Acquisition Guidance

As each acquisition is performed freehand by the operator, it is entirely up to the operator to

ensure that the volume of interest is adequately covered in terms of positions and angles by

moving the detector around. While a good coverage as in tomographic modalities utilizing an

imaging gantry can never be achieved, certain steps can be taken to ensure enough coverage

for satisfying reconstruction quality. In this work we employed a two–step approach:
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Figure 5.5: Screenshot of the augmented reality view during an acquisition. Note the
rendered quality indicator volume overlaid over the picture.

1. Definition of a scanning scheme before the acquisition.

2. Online guidance display during the acquisition.

Generally the geometry of the object to be scanned is known in advance, as well as a guess

as to a broad region where the activity is supposed to be. With that knowledge a scanning

scheme is defined as a first step before the acquisition, one that is both practically realizable

as well as ensuring the best coverage.

The second step is an on–screen, online guidance of the operator while he is performing

the measurements. In an augmented reality view, the scene is shown with an overlay of the

volume of interest and a visualization of how much attention each of the voxels xi ∈ X in the

volume has already received by the measurements. To that effect, the column of the current

system matrix A (which is built up row by row during the measurements) corresponding to

xi is summed up,

qi =
m∑
j=1

aji, (5.6)

and the resulting quality indicators qi, i = 1, . . . , n, are rendered onto the augmented reality

view screen, see Figure 5.5. As the later reconstruction process is using the same system

matrix entries as a coupling factor of the voxel activity to the measurements, we found this

to be an excellent indication of the current scan coverage, see section 5.4 or [208].

Other potential strategies. Other strategies of acquisition guidance have been studied

over the course of this work as well. The two approaches outlined in the following seem

promising, but so far we have not been able to provide a feasible implementation, mainly

due to computational limitations.
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(a) (b)

Figure 5.6: Singular value analysis performed in a phantom experiment with Freehand
SPECT. Six general angular directions were scanned subsequently (labelled 1 to 6), (a) shows
the singular value spectrum of the system matrix A computed using data from direction 1,
1 and 2 and so on up to 1–6. (b) shows the singular values above threshold (SVAT) as a
function of the directions scanned, averaged over six scans.

The first strategy picks up the idea of section 4.3 and attempts to analyze the current

acquisition geometry via singular value analysis of the current system matrix on–the–fly.

The general validity of this approach for the Freehand SPECT imaging modality has been

demonstrated in [209] in a phantom study. Let A = USV t be the singular value decompo-

sition of A. As in other discrete ill–posed problems, the singular value spectrum S = (σi)

of the system matrix A evinces the typical shape, see Figure 5.6a. Consider the system

equation Ax = b using the SVD as

V tx = S · U tb,

then the singular values S specify how the detection–space modes of A are coupled to the

image–space modes of A. Selecting a noise threshold tσ and counting the singular values

above the threshold σi > tσ gives a measure of useful information contained in the current

acquisition geometry. In the phantom study of [209] adding measurements from additional

general angular directions showed clear improvement in the number of singular values above

the threshold (SVAT), see Figure 5.6b.

The strategy for acquisition guidance is to analyze the current system matrix A during the

acquisition procedure using SVD, and then to simulate adding a set of projections from

different potential angles, calculating the SVAT for each set using an incremental SVD

update. The set of projections with the highest SVAT would then be displayed in an

augmented reality view as guidance where to scan next.

Unfortunately computing the SVD of big matrices like A, even incrementally, is quite com-

putationally intensive, even when using massively parallel computing like CUDA on the



Chapter 5. Application: Freehand SPECT 98

GPU [210, 211]. Thus this guidance strategy had to be abandoned at that time. We be-

lieve however that this strategy may become viable within a year for several reasons. The

second version of our reconstruction library (see section 5.6) will allow a multi–resolution

voxel grid, so the singular value analysis can be performed on a coarser grid than the actual

reconstruction. Furthermore, the lookup–table forward model (see section 5.6) will allow

much faster simulation of additional projection angle sets when computing the incremental

SVDs. Last but not least, tremendous advances have been made (as usual) in the last two

years in terms of available computing power, with current desktop processors providing up

to 12 logical cores (for example the Intel i7 980X) along with graphics cards now providing

up to 512 computing cores capable of double precision floating point operations (for example

NVidia Geforce GTX580), that can be leveraged simultaneously and seamlessly using the

new OpenCL heterogeneous computing standard [212].

The second strategy idea for acquisition guidance is to provide a live, real–time reconstruc-

tion during the acquisition process. The operator thus would be able to directly see the

reconstruction develop and decide himself which areas need more attention for scanning

until a satisfactory result is achieved. This however also poses the danger of introducing

operator–based bias into the reconstructions, so to assure comparable reconstruction quality

levels this approach will most likely have to be combined with other guidance measures or

some quality indicator.

Again though, we have not been able to provide an actual working implementation of this

approach yet due to computational limits. We have been working on two implementations

of this approach so far. The first employs massively parallel computing on the GPU using

CUDA, implemented by Alexandru Duliu [211, 213]. The entire reconstruction pipeline

has been moved onto the graphics processor to minimize costly bus transfers, however this

comes at the cost of not being able to store the entire system matrix A = (aji) in local GPU

memory. Thus when inverting the system Ax = b, all values aji had to be computed on–

the–fly. Realistic parameters of 643 voxel discretization and ∼ 3000 simulated measurements

using 20 iterations of MLEM for inversion yielded computation times of 17s on a NVidia

GTX260, while reducing the discretization to a 323 grid the process only took 2s as shown

in [211].

The second implementation attempts to leverage the vectorization units and parallel pro-

cessing units on modern multi–core CPUs like the Intel Core i7 series, see section 5.6 for

more details on the reconstruction library called NanuLib. Reconstructions with parameters

typical for SLN mapping procedures in breast cancer (see section 5.5) that used to take sev-

eral minutes to reconstruct, now reliably reconstruct in under one minute with the current

version of the NanuLib. This version of the NanuLib can also be found in the commercially

available declipseSPECT cart system from SurgicEye (Munich, Germany).
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A combination of both implementations using the OpenCL heterogeneous computing stan-

dard [212], improvements in the second version of the reconstruction library (see section 5.6)

along with the above–mentioned performance increases in desktop computing hardware is

expected to yield near real–time reconstruction capabilities in the coming year.

5.3 Phantom Studies

In a series of controlled phantom experiments the accuracy and the performance character-

istics of Freehand SPECT as an imaging modality were studied and evaluated. The results

of these studies are presented in this section, they have also been submitted as part of an

article to the IEEE Transactions on Medical Imaging journal on September 17th, 2010, the

paper is currently under review (as of October 2010).

5.3.1 Phantom Design

A common base was used for the phantoms studied in this section. A rectangular metal plate

with several drilled holes served as a base for two Micro Hollow Spheres (9.86) (van Gahlen,

Netherlands), which could be screwed into the plate in several different configurations. The

spheres have an outer diameter of 9.86mm and a volume of 250µl, which can be filled with

a radioactive solution via the bottom. The centers of the spheres are located at a height of

24mm above the plate. There is no attenuating medium around the spheres. Additionally a

target with three infrared reflective balls (SurgicEye, Germany) was mounted on the plate

in the top left corner to facilitate optical tracking. Finally, a cardboard box was attached

to the plate to cover the spheres in order to avoid bias in the scan, and to provide a guide

for performing the proposed scanning scheme in Figure 5.7.

We tested three diagonal configurations of the spheres, C1 to C3, see table 5.1. Figure 5.8a

shows a picture of phantom configuration C3 with the cardboard box open, and Figure 5.8b

shows a CT of phantom configuration C1 acquired using a Biograph 64 system (Siemens

Healthcare, Germany).

Let B1 denote the sphere to the right hand side and B2 the one on the left hand side, see

Figure 5.7 or 5.9b for an illustration.

For Series 1 of the experiments, both spheres were filled with a solution of Tc–99m–

pertechnetat with a measured activity of 100kBq in both B1 and B2. 10 scans were per-

formed for each phantom configuration C1 to C3.
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Table 5.1: Phantom configurations with distances between centers of spheres B1 and B2
and separation at center height of B1 and B2.

Phantom distance of sphere centers sphere separation

C1 14.6mm 3.7mm

C2 19.2mm 9.4mm

C3 22.6mm 12.8mm

B1!

B2!

1!

3!

2!

Figure 5.7: Top view of scanning scheme for the phantom (rectangle with two radioactive
balls, B1 and B2), measurement positions from directions 1 (from right), 2 (orthogonally
into the phantom) and 3 (from bottom).

For Series 2 of the experiments, both spheres were again filled with a solution of Tc–99m–

pertechnetat, however the measured activity in B1 was 100kBq and the activity in B2 was

990kBq. 10 scans were performed for each phantom configuration C1 to C3.

5.3.2 Scanning Scheme

The scanning scheme was defined in advance. As the activity was known to be towards the

lower right corner of a rectangular box, it was chosen accordingly. To keep the scans realistic,

we selected only three planes of scan directions (similar to what is possible for example in

breast scans), two from the sides and one from the top of the phantom, see Figure 5.7 for an

illustration. Each plane is set to receive a certain number of measurements (dependent on

the target scan duration), and the operator is asked to adhere to that scheme. The scheme

however is not enforced.

5.3.3 Acquisition and Reconstruction

The region of interest Y was discretized as a 60 × 60 × 60 volume with an isotropic voxel

size of 1.25mm, containing the entire cardboard box enclosing the phantom. Each phantom
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(a) (b)

Figure 5.8: (a) photo of phantom configuration C3 with open cardboard cover. (b) rendering
of CT of phantom configuration C1.

(a)

B1B2

y axis

x axis

z axis

(b)

Figure 5.9: (a) 3D rendering of sample Freehand SPECT reconstruction for phantom C1.
(b) Slice locations in Freehand SPECT volume: in red the horizontal slice S from Figure
5.10 used for the evaluations, in blue the slice T along the z axis from Figure 5.11.

configuration in both series was scanned 10 times by the same operator with the scan scheme

outlined in Figure 5.7, where the three planes to be scanned were supposed to be scanned

using approximately 1000 measurements each. The scan duration ranged from 2.35min

to 2.44min (average 2.37min) and each acquisition contained 3005 to 3097 measurements

(average 3028) with a sampling rate of 20Hz.

The acquisition was guided by the real–time visualization of qi for each voxel xi ∈ X, see

equation (5.6) and Figure 5.5. For all acquisitions the mean quality of each scan Q =
1
n

∑n
i=1 qi ranged from 5.94 to 6.63 (average 6.29). No decay correction was applied, as the

scans were performed close enough in time.

The average size of the system matrix A was 4.99GB, with the filtering stage removing 30.3%

of that data on average. In detail, the first filtering step with tr = tc = 0.0001 removed on

average 1.50 rows and 56.13 columns of A, while the second filtering step removed 65307

voxels in Y on average, modeling the gamma detector as a cylinder of 15mm diameter

according to its physical dimensions. For MLEM, the number of iterations used was k̂ = 20,
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(a) MLEM, series 1

(b) MLEM, series 2

(c) ART, series 1

(d) ART, series 2

Figure 5.10: Image slice S of the Freehand SPECT reconstruction (red slice in Figure 5.9b)
of example data sets using MLEM and ART, configurations from left to right: C1, C2
and C3. Series 1: B1 and B2 both containing a 100kBq Tc-99m solution. Series 2: B1
containing a 100kBq and B2 a 990kBq solution of Tc-99m.

for ART we set k̂ = 20. The mean time consumed to perform the entire reconstruction

pipeline using MLEM was 46.66 seconds and 78.95 seconds for ART on a 3.36GHz Intel

Core i7-920 with 12GB RAM.

The resulting reconstruction x was then passed through a standard 3D Gaussian filter with

σ = 1.25mm. An example reconstruction is shown as a 3D rendering in Figure 5.9a. Ex-

ample image slices S of the 3D reconstruction from one of the data sets each for phantom

C1 to C3 for both series 1 and 2 are shown in Figure 5.10 using MLEM and ART, the

corresponding image slice T is shown in Figure 5.11. The image slice locations of S and T

are illustrated in Figure 5.9b.
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5.3.4 Evaluation

First, the CT volumes of the phantom configurations C1 to C3 were registered to the

Freehand SPECT coordinate system using point–based registration of the tracking target

mounted on the phantom plate (see Figs. 5.8a and 5.8b). The metal mounting posts of

the reflective spheres were automatically segmented in the CT and registered to the known,

fixed geometry of the tracking target. Finally, the known transformations from the tracking

target calibration and the volume of interest definition were applied to compute the final

transformation from CT coordinates to Freehand SPECT coordinates.

All of the following evaluations were applied to the same 2D slice S of the reconstructed

Freehand SPECT volume, as the centers of both spheres B1 and B2 were at the same

height (see the red slice in Figure 5.9b). The location of slice S was selected via the CT by

segmenting using fixed thresholds and region growing, and then calculating the centroids of

B1 and B2.

In the Freehand SPECT slice S, the spheres B1 and B2 were segmented by thresholding.

For 7 and 6 data sets of phantom C1 and C2 in series 2 using MLEM the two spheres were

not segmentable, respectively, as B2 with ten times the activity of B1 overshadowed B1

with no drop in reconstructed intensity in between. All other data sets could be segmented

properly. The centroids of B1 and B2 were calculated on the segmented slice S, and region

growing determined the area of B1 and B2 in pixels as well as the minimum, maximum

and mean intensity values of the pixels in those areas. The maximum intensity ratios of B2

and B1 were calculated from these values. Profiles cS were plotted through the centroids

of B1 and B2 of slice S in that order, and the relative drop in intensity values between

B1 and B2 was calculated as mp(cS)−v(cS)
mp(cS) , where v(cS) is the valley intensity between B1

and B2 for profile cS and mp(cS) is the minimum of the peak intensities of B1 and B2

for profile cS . Furthermore the profile cS was fitted using a sum of two Gaussians with

means µ1, µ2 and standard deviations σ1, σ2. The distance d(B1, B2) was then calculated

as d(B1, B2) = |µ1 − µ2| and the full width at half maximum (FWHM) of B1 and B2 as

FWHM(Bi) = 2
√

2 ln 2 σi. To sum the reconstructed events in slice S at the real locations

of B1 and B2, all pixels in a 9.86mm disc centered around the registered CT positions of

B1 and B2 were summed up.

Finally, another slice T of the reconstructed 3D Freehand SPECT volume was extracted

orthogonal to slice S through the centroids of B1 and B2, see the blue slice in Figure 5.9b.

All the evaluations were performed using Matlab.
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intensity drop C1 average C2 average C3 average

series 1 MLEM 44.1%± 9.9 32.3%± 12.6 78.3%± 4.7

series 2 MLEM 5.8%± 1.0 7.3%± 9.7 12.9%± 5.1

series 1 ART 92.1%± 6.1 78.8%± 22.4 95.3%± 4.8

series 2 ART 45.1%± 22.4 51.6%± 26.5 83.8%± 18.3

Table 5.2: Relative drop in intensities between B1 and B2, measured from Freehand SPECT
slice S (averaged over 10 data sets for each configuration in series 1 for both MLEM and
ART as well as series 2 for ART, over 3, 4, 10 data sets for C1,C2,C3 in series 2 for MLEM).

5.3.5 Results

Freehand SPECT reconstructions were performed both with MLEM and ART for all 60

data sets, with 10 data sets each for phantom C1, C2 and C3 in series 1 (100kBq of Tc-99m

solution in both B1 and B2) as well as in series 2 (100kBq of Tc-99m solution in B1 and

990kBq in B2). A 3D rendering of the reconstruction using MLEM of an example data set

of phantom C1, series 1 is shown in Figure 5.9a. The reconstructed image slices S and T

as illustrated in Figure 5.9b are shown for phantoms C1, C2 and C3 in both series using

MLEM and ART in Figure 5.10 and 5.11 respectively. MLEM is producing more visually

pleasing reconstructions, while ART reconstructs the spheres more sharply, however also

showing more artifacts, especially in slice T .

Example profiles cS plotted through the centroids of B1 and B2 of slice S are shown in

Figure 5.12 for all the phantoms and series for both MLEM and ART. Again ART evinces

a more clear separation of B1 and B2, especially for series 2, which is also confirmed by the

average relative drop in intensities between B1 and B2 as listed in Table 5.2. Configuration

C3 with the widest separation of the spheres (12.8mm) is showing a higher relative intensity

drop than the two close configurations C1 and C2 with only 3.7mm and 9.4mm separation,

respectively. In series 2 using MLEM, the peak in the profile cS corresponding to B1 is

barely noticeable especially for phantom C1 and C2, showing an average relative drop in

intensity of only 5.8% and 7.3%, respectively. To note, phantom C1 and C2 in series 2

using MLEM are also the phantoms where only 3 and 4 out of the 10 data sets each allowed

segmentation of B1 and B2, respectively, as in the remaining 7 and 6 data sets there was no

peak for B1 in the profiles cS , respectively. ART with its tendency to more sharply delineate

the spheres produced segmentable reconstructions for all data sets.

The absolute localization error of B1 and B2 in slice S compared to CT is shown in Figure

5.13 for MLEM and in Figure 5.14 for ART. MLEM and ART both yielded similar results,

with more variation for ART. In x axis direction, the error ranged between 0.76mm to

3.21mm on average for both spheres B1 and B2. In y axis direction, B1 in series 1 showed
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(a) MLEM, series 1

(b) MLEM, series 2

(c) ART, series 1

(d) ART, series 2

Figure 5.11: Image slice T of Freehand SPECT reconstruction (blue slice in Figure 5.9b) of
example data sets using MLEM and ART, configurations from left to right: C1, C2 and C3.
Series 1: B1 and B2 both containing a 100kBq Tc-99m solution. Series 2: B1 containing a
100kBq and B2 a 990kBq solution of Tc-99m.

errors between 1.49mm to 2.44mm on average, while in series 2 the sphere B1 (with one tenth

of the activity of B2) was less accurately positioned with an error of 2.65mm to 5.36mm on

average. However, for B2 the y axis localization error was consistently high, ranging from

5.30mm to 6.52mm on average for series 1 and from 3.91mm to 4.64mm on average for series

2. This indicates a systematic error. Indeed it turned out that for the second scanning plane

(see Figure 5.7) the tracking data was less accurate than usual, as the gamma detector and its

tracking target were almost perpendicular to the tracking cameras, an unfavorable situation

where tracking was even lost completely a few times (during which no data was recorded).

It is also notable that the absolute localization errors are all consistently off in the same
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(a) MLEM, series 1

(b) MLEM, series 2

(c) ART, series 1

(d) ART, series 2

Figure 5.12: Profiles through the centroids of B1 and B2 of the Freehand SPECT image
slice S of example data sets using MLEM and ART. Series 1: B1 and B2 both containing
a 100kBq Tc-99m solution. Series 2: B1 containing a 100kBq and B2 a 990kBq solution of
Tc-99m.

direction compared to CT, again indicating a systematic error in the tracking information

and thus in the detector positions used for the reconstruction.

In terms of relative positioning, the distance between B1 and B2 in slice S compared to

CT is listed in Table 5.3. For series 1, MLEM showed average errors between 1.88mm and

3.21mm, while ART fared slightly worse with average errors between 1.99mm and 4.76mm.

For series 2 MLEM and ART returned similar results with average errors between −0.54mm

and 1.99mm. In all cases B1 and B2 were placed too far apart compared to CT, except for

phantom C2 in series 2.
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Figure 5.13: MLEM: Difference in the positions of B1 and B2 between CT and Freehand
SPECT slice S using MLEM in x axis and y axis (averaged over 10 data sets for each
configuration in series 1, over 3, 4, 10 data sets for C1,C2,C3 in series 2).
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Figure 5.14: ART: Difference in the positions of B1 and B2 between CT and Freehand
SPECT slice S using ART in x axis and y axis (averaged over 10 data sets for each config-
uration in both series).

The FWHM of B1 and B2 is shown in Figure 5.15 for both MLEM and ART. In series 1

and MLEM, B2 showed 1.06 to 1.58 times the FWHM of B1 on average, while for ART the

ratio was closer to 1, ranging from 0.94 to 1.14 on average. In series 2 with B2 containing

ten times the activity of B1, the ratios ranged from 1.73 to 2.78 on average for MLEM and

from 1.49 to 1.72 for ART.

Table 5.4 shows the reconstructed intensity in slice S summed up over the discs of B1 and

B2 located at the reference positions obtained from CT. In series 1 with both B1 and B2

containing the same activity, the activity reconstructed at the location of B1 was about 2 to

3 times higher than at B2 using MLEM, with ART this increased to roughly 4 to 6 times.
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dist(B1, B2) from fhSPECT from CT difference

(in mm) (average) (average)

C1 series 1 MLEM 17.26± 3.65 14.70 2.56

C2 series 1 MLEM 21.09± 3.36 19.21 1.88

C3 series 1 MLEM 25.82± 2.13 22.61 3.21

C1 series 2 MLEM 15.51± 1.26 14.70 0.81

C2 series 2 MLEM 18.67± 2.90 19.21 −0.54

C3 series 2 MLEM 24.60± 1.75 22.61 1.99

C1 series 1 ART 19.46± 5.79 14.70 4.76

C2 series 1 ART 23.24± 2.60 19.21 4.03

C3 series 1 ART 26.27± 1.88 22.61 3.66

C1 series 2 ART 15.39± 1.88 14.70 0.69

C2 series 2 ART 18.85± 2.47 19.21 −0.36

C3 series 2 ART 23.90± 2.22 22.61 1.29

Table 5.3: Distances of the centers of B1 and B2 in mm, measured from Freehand SPECT
slice S and from CT (averaged over 10 data sets for each configuration in series 1 for MLEM
and ART and series 2 for ART, over 3, 4, 10 data sets for C1,C2,C3 in series 2 and MLEM).
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(a) MLEM
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(b) ART

Figure 5.15: FWHM of B1 and B2 in Freehand SPECT slice S (averaged over 10 data sets
for each configuration and both series for MLEM and ART).
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intensity in intensity in max. intensity real activity

area of B1 area of B2 ratio B2/B1 ratio B2/B1

C1 series 1 MLEM 56.07± 12.04 28.84± 5.08 78.71% 100%

C2 series 1 MLEM 68.67± 8.22 22.89± 2.53 39.35% 100%

C3 series 1 MLEM 59.88± 8.12 19.38± 2.96 86.39% 100%

C1 series 2 MLEM 82.27± 14.03 319.52± 28.93 469.52% 1000%

C2 series 2 MLEM 47.38± 6.43 241.21± 22.90 819.78% 1000%

C3 series 2 MLEM 41.35± 10.20 227.15± 37.46 1163.79% 1000%

C1 series 1 ART 67.51± 28.63 15.63± 8.49 72.78% 100%

C2 series 1 ART 85.27± 17.63 15.20± 5.70 52.17% 100%

C3 series 1 ART 71.14± 13.77 16.92± 8.91 117.35% 100%

C1 series 2 ART 128.65± 37.81 439.06± 80.78 335.45% 1000%

C2 series 2 ART 74.29± 21.49 335.88± 54.58 383.52% 1000%

C3 series 2 ART 71.40± 22.85 292.20± 69.14 399.01% 1000%

Table 5.4: Amount of reconstructed intensity in Freehand SPECT slice S contained in the
area of B1 and B2 at the real positions as indicated by CT as well as maximum intensity ratio
of B2 to B1 compared to real activities (averaged over 10 data sets for each configuration in
both series, maximum intensities only over 3, 4, 10 data sets for C1,C2,C3 in series 2 using
MLEM).

This relates to the absolute positioning errors observed in Figs. 5.13 and 5.14. Between

phantoms C1, C2 and C3 in series 1, the reconstructed activity at both B1 and B2 is very

consistent, with ART yielding slightly higher values for B1 and slightly lower values for B2.

In series 2 with B2 containing ten times the activity of B1, the reconstructed activity at the

reference position of B2 is about 5 times that of B1 for MLEM and about 4 times in the

case of ART. Again ART is showing higher absolute values than MLEM.

The relative quantification using the maximum intensity ratios of the segmented spheres B2

and B1 in slice S is also listed in Table 5.4. In series 1 the configuration C3 with the farthest

sphere separation, relative quantification with 86.39% for MLEM and 117.35% for ART was

close to reality (100%), while in the closer configurations C1 and C2 the sphere B1 showed a

higher maximum intensity than B2. Averaged over the entire series 1, relative quantification

was off by 25%. For series 2, ART showed B2 having a 3 to 4 times higher maximum activity

than B1, while in reality it was 10 times. MLEM fared better here, placing B2 at about 8

times the maximum intensity of B1 on average.

5.3.6 Discussion

The key factor in reconstructed image quality for Freehand SPECT is of course the quality

of the acquired freehand data. Lacking a fixed detector geometry on an imaging gantry
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with full angular coverage, the proposed online acquisition guidance has to ensure a suf-

ficient coverage for image reconstruction. The quality of the reconstructed images would

be improved by prolonging the scanning duration to acquire more measurements, provid-

ing better detection statistics along with potentially better angular coverage. However, the

intra–operative workflow is already tight, and longer scanning times are difficult to fit in.

Other relevant factors include the accuracy of the spatial positioning system, which can

degrade during a scan due to unfavorable viewing angles of the tracking system to the

tracking target. This is seemingly the main cause for a systematic error observed in the

absolute positions in Freehand SPECT compared to CT. As with all navigated solutions

using optical tracking, unfavorable angles or occlusions hindering tracking performance can

also occur in the operating room. Compensating for this issue is thus an ongoing topic of

research.

Furthermore, the inversion method used to compute the reconstruction proved to be in-

fluential. In this work we evaluated the popular choice for emission tomography, MLEM,

against a variant of randomized ART, which is commonly used in several tomographic imag-

ing modalities. Qualitatively, MLEM produces more visually pleasing reconstructions, while

ART is more prone to produce annoying artifacts and has higher computational demands.

Quantitative performance was roughly similar in most areas, however ART reconstructs ob-

ject more sharply, which proved to be highly beneficial in the close configurations C1 and

C2 in series 2. Here MLEM was able to resolve the two spheres only in a part of the data

sets. Nevertheless, MLEM has been the inversion method of choice for all of our patient

experiments to date due to the qualitatively better reconstructions.

In a series of 60 controlled phantom experiments, we have studied the limitations and

performance characteristics of Freehand SPECT. The setting of these experiments was kept

realistic and clinically relevant with a scan duration of less than 2.5min while only covering

three orthogonal planes around the object of interest, which is about the maximum one can

expect while scanning some local body part intra–operatively. Our phantom experiments

validated the claim of achieving an accuracy and resolution of 5mm to 10mm, which is

necessary for clinical usefulness. Even two radioactive spheres separated only by 3.7mm

could be resolved.

5.4 Pre–operative Patient Studies in Sentinel Lymph Node

Mapping

The sentinel lymph node (SLN) concept is now part of standard routine care in patients

with invasive breast cancer [214]. A combination of pre–operative lymphatic mapping using
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radio–colloids and blue dye labeling during surgery has been demonstrated to be a practi-

cable approach for accurate localization of SLNs. This procedure has been shown to reduce

morbidity and is now an integral part of European and American guidelines for patient

management in early-stage breast cancer [214, 215].

Although most sentinel nodes can be identified during surgery with a hand-held gamma

probe, SLN localization may be impracticable in certain cases. The overall success rate of

the procedure exhibits a considerable range, resulting in an average false negative rate of

7% [216]; as a consequence, undetected nodal spread and inadequate adjuvant treatment

may account for a significant number of breast cancer–related deaths.

Recently, hybrid SPECT/CT scanners have been suggested to increase the success rate

of SLN identification. Husarik and Steinert highlighted the added value of SPECT/CT in

breast cancer patients [217]. In 41 consecutive patients, findings from planar scintigrams and

SPECT/CT were identical in only seven patients (17%). SPECT/CT indicated the correct

anatomic localization in 29 patients (70%), according to the American Joint Committee on

Cancer staging system (levels IIII). In six patients, additional SLNs were detected. Similar

findings have been described previously by Lerman et al. [218]. In a pilot study by van der

Ploeg et al., SPECT/CT was superior to SPECT for SLN detection, leading to a change in

management in 5% of patients [219]. SPECT/CT has been shown to be especially useful

in overweight patients [220]. The major disadvantage of hybrid imaging is that the intra–

operative positioning of the patient prevents a direct correlation of pre–operative images

and the operative situs. Consequently, there is an increasing need to be able to transfer the

results of preoperative imaging technologies into the operating room (OR).

Intra–operative gamma imaging has been suggested for image–guided biopsy of SLNs. Sev-

eral groups have introduced gamma camera systems permitting 2D scintigraphy in the OR

[221–225]. These devices allow generation of images of a resolution up to 5mm, with ac-

quisition times of approximately 30s. One of the major limitations of this approach is the

requirement to hold the camera still during the acquisition in order to generate valid images.

Furthermore, flexibility is an issue as the weight of the device is relatively high, at approx.

1.2kg for high– and 800g for low–resolution devices. Moreover, the limitation of missing

anatomic information is still not solved. Finally, the effects of “shadowing” (SLNs masked

by a nearby injection site) and “shine–through” (lymph nodes mistakenly considered as

SLNs owing to sources above or below) and the cost compared with gamma probes have

prevented the successful entrance of this technology into clinical practice.

In this section we evaluate the feasibility of Freehand SPECT for 3D nuclear imaging and

present first pre–operative results regarding the detection and localization of SLNs in 85

breast cancer patients. The first 50 patients formed a pilot study to determine imaging

parameters, the remaining 35 patients formed a validation study. As the acquisition protocol
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strongly affects the performance of Freehand SPECT, the goal of this investigation was also

to define thresholds and quality criteria that allow determination of an appropriate Freehand

SPECT image quality.

The results of this section have been published in [208].

5.4.1 Methods

Inclusion and exclusion criteria. Inclusion and exclusion criteria were the same as

used for routine SLN biopsy in breast cancer patients, as described in the guidelines for

SLN diagnosis of the “Deutsche Gesellschaft für Senologie” [226]. Criteria therein are essen-

tially equivalent to those of the American Society of Clinical Oncology [214]. Among these,

the key inclusion criteria were the initial diagnosis of invasive breast cancer or advanced

ductal carcinoma in situ (size > 50mm, confirmed by core needle biopsy), the lack of prior

anticancer treatment, and age over 18 years. Key exclusion criteria were pre–operatively

confirmed multi–centric tumor growth, clinically suspicious axillary lymph nodes, and preg-

nancy [226].

Clinical and histopathological characteristics of patients. A total of 85 consecu-

tive patients (age 29–88 years, mean 59.5 years) undergoing conventional SLN biopsy were

additionally scanned using Freehand SPECT and SPECT/CT, which served as reference.

Six patients were not included during the final evaluation, due to missing information for

a proper comparison (three during the pilot study and three during the validation study).

According to the pre–operative clinical staging procedures, 71 out of 76 patients (93%) had

a core needle biopsy confirming cT1 or cT2 invasive–ductal or invasive–lobular breast cancer

(size 4–44mm) and no clinical suspicion of axillary lymph node involvement. Five patients

had a locally advanced ductal carcinoma in situ (size 50–140mm). No metastatic disease was

evident at the time of surgery. 58 patients (78%) received breast–conserving surgery; in 18

patients (24%) radical or subcutaneous mastectomy was performed owing to an unfavorable

ratio of tumor and normal breast tissue. A single patient underwent a primary standard

axillary dissection, due to the intra–operative presence of suspicious axillary lymph nodes.

In 15 patients (20%), the SLN showed tumor cells in the frozen section and a standard

axillary dissection of lymph nodes (levels I and II) was performed. Five patients had a

tumor–free SLN in the histological frozen section but micro–metastases were described in

the final pathology report following secondary axillary dissection (levels I and II).

Lymphatic mapping of sentinel lymph nodes. For lymphatic mapping, patients re-

ceived a 99mTc–Nanocoll injection of approximately 0.2ml, distributed equally in four spots,
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either periareolar (76 cases) or peritumoral (9 cases). The amount of radioactivity ranged

from 35 to 87MBq (mean 57.9 ± 5.5MBq). All but one patient underwent a 2–day pro-

tocol, which is the standard procedure at our institution. The injected activity was in the

range of 10–20MBq for the 1–day protocol and 50-90MBq for the 2–day protocol. In all

patients, dynamic planar lymphoscintigraphy representing the standard imaging protocol

for lymphatic mapping at TUM was performed. Delayed planar images were used only in

case of a negative early scan. For intra–operative identification of sentinel nodes, planar

scintigraphy was used as reference method.

SPECT/CT. The SPECT/CT protocol consisted of 45 projections (180◦ using two op-

posing heads) of 7s each using a Symbia T6 hybrid scanner and LEHR collimators (Siemens

Healthcare, Germany). For image reconstruction, an OSEM reconstruction algorithm with

16 subsets, 8 iterations, collimator blur, and attenuation and scatter correction (Flash3D

software, Siemens Healthcare, Germany) was used. Post–processing was performed us-

ing an 8.4mm Gaussian filter; attenuation correction was performed using CT data. The

reconstruction volume included the injection site and the axilla and neck region. The recon-

struction voxel size was 4.7mm in each direction. For CT scanning, a low–dose procedure

was used with a 3mm slice thickness (20–40mA tube current, 130keV tube voltage, shal-

low breathing, and expected absorbed dose of 0.2–0.4mSv, depending on patient size). In

all patients, SPECT/CT was performed within 15min after planar scintigraphy. The level

assignment (levels I III) of SLNs was determined using the SPECT/CT images according

to the current guidelines [214].

Freehand SPECT. For the Freehand SPECT acquisition (performed shortly before or

after SPECT/CT), a gamma probe system (NodeSeeker, IntraMedical Imaging, USA) and

an infrared optical tracking system (Polaris Vicra, Northern Digital, Canada) were combined

in one system. Furthermore, a data processing unit was included in order to: (a) acquire

the readouts of the probe and the position synchronously, (b) process the readings into

a 3D image, and (c) display it for visualization. Infrared markers were attached to the

gamma probe in order to acquire its position. To reference a common coordinate system, a

configuration of optical markers (“patient target”) was used to determine the position of the

patient, see Figure 5.16. The hardware was designed and adapted to be completely mobile

so as to be suitable for application in the OR. The gamma probe was calibrated to include

the 140keV peak of 99mTc with an energy window of 50keV . The collimator opening of the

probe was measured using a point source and yielded approximately 50◦.

The Freehand SPECT acquisition consisted of three steps. Initially, a volume of interest

(VOI) was defined interactively by putting the tip of the tracked gamma probe over prede-

fined anatomical landmarks; from the position of the landmarks a rectangular VOI was fixed
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Figure 5.16: Freehand SPECT system in intra–operative setting consisting of (1) infrared
tracking system, (2) touch screen monitor for display and interaction, (3) a hand–held
gamma probe with mounted tracking target and (4) a patient tracking target to determine
the position of the patient in a common coordinate system.

Figure 5.17: Scan protocol used for the Freehand SPECT acquisition. The arrows indicate
the general direction of the probe during the scan, the rectangular volume on top of the
patient is the volume of interest.

relative to the patient tracking target. Subsequently, the region of interest (axillary region)

was scanned by moving the gamma probe. Finally, visualization of reconstructed images was

performed. Reconstruction was performed as detailed in section 5.2.2 using MLEM. The

output was generally filtered with a 6mm 3D Gaussian filter and visualized. In the event of

node localization in close proximity to the injection site, the filter was set down to 4mm to

determine whether there was a clear separation between node and injection site. Additional

voxels were added in the required direction a posteriori if the volume of reconstruction did

not cover the complete VOI as indicated by SPECT/CT imaging.
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Figure 5.18: Acquisition guidance system used for 35 patient validation study. The accumu-
lated information density in the VOI is displayed, as seen in the dorsal and medial direction.
The denser the information, the greener the color. Red areas indicate very low information
density. The blue dot shows the current position of the gamma probe relative to the VOI.
Dark green was chosen to be the threshold for a good scan as defined during the 50 patient
pilot study.

The scanning protocol consisted of a scan of the injection site and was divided into 1–2min

acquisitions in the medial direction, 1–2min pointing in the dorsal direction, and 1–2min in

a craniodorsal direction (see Figure 5.17). The scanning protocol was validated by several

phantom acquisitions. For the first 50 patients (pilot study), no feedback on the quality of

the acquisition was given during the scan. For the second group of 35 patients (validation

study), the information density accumulated in each single voxel of the VOI was displayed

during the acquisition (see Figure 5.18). The scan was only stopped when the complete

volume reached a sufficient information density and thus a sufficient quality. Quantitative

thresholds on this quality measure were derived from the data of the pilot study with 50

patients.

Comparison of Freehand SPECT and SPECT/CT. In order to compare SPEC-

T/CT and Freehand SPECT images in an identical coordinate system, a tracking target

was attached to the patient. The target consisted of a fixed configuration of optical markers

(1cm diameter) that could be easily identified on CT images, enabling a point–based regis-

tration of the coordinate system of the optical positioning system and CT. SPECT images

were co–registered with CT images according to the information in the DICOM tag. The

Freehand SPECT images were generated in the coordinate system of the optical markers
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of the patient target. The registration error of the target was calculated to be 0.6–3.1mm

(average 1.1mm).

Data analysis. Each anonymized SPECT/CT image was reviewed by two expert nuclear

medicine physicians in random order. The number of detected SLNs or lymph node conglom-

erates and their position were documented. Lymph node conglomerates were considered as a

single entity. This information was used to calculate the uptake in each node/conglomerate

using attenuation–corrected SPECT data. The uptake was expressed as percentage of total

activity in the reconstruction area and calculated from the counts inside the manually seg-

mented lymph node and the total counts in the attenuation–corrected SPECT image. The

complete injection site and the drainage area of the breast were included in all SPECT im-

ages in order to obtain the true relative uptake. The segmentation was done directly in the

3D images to avoid errors resulting from projections. Subsequently, two nuclear medicine

physicians evaluated Freehand SPECT images in random order and in a combined visual-

ization together with the video stream of the procedure or CT data in order to correlate

functional data with anatomy (see Figure 5.19). The number of lymph nodes and lymph

node conglomerates was recorded together with their respective anatomic position.

Statistical evaluation. The results of the blinded analyses of SPECT/CT and Freehand

SPECT were considered together with the uptake calculated from attenuation–corrected

SPECT. In addition, for the first 50 patients, the quality of the scan was assessed using

the positions and orientations measured and the position of the lymph nodes as segmented

manually by the physicians.

For each position and orientation of the gamma probe during a scan, the expected count

rate (expressed in cps/kBq) was calculated as if a point source of 1kBq was located in the

position of the segmented SLN, according to a model based on the geometric information

(see Figure 5.20). This count rate was averaged over all measurements which included the

lymph node in the corresponding scan. This value was used as information density and

consequently quality value Q of the scan for the lymph node. A small value of Q means

that the scan did not fully cover the position of the SLN, such that the average information

acquired coming from its position was very low. A high value of Q means that the position

of the SLN was inside the field of view of the probe in several of the measurements, leading

to accumulation of a higher amount of information.

Accuracy was calculated using SPECT/CT findings as reference. It was calculated for the

overall patient group, as well as for each scan quality level and also with respect to the

relative and absolute tracer uptake in the SLNs. In order to give a measure for the available
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Figure 5.19: Examples of a poor quality scan (A–C) and a good quality scan (D–F). The
lines shown in A and D represent the positions and orientations of the gamma probe during
the scan. In A and D, the injection site and the SLNs as seen in the SPECT image are
also shown, co–registered in the correct position. In B and E, the Freehand SPECT images
are co–registered with CT data derived from SPECT/CT data. In C and F, co–registered
visualization is rendered from an arbitrary point of view. One SLN can be seen in 3D fused
visualization for the good scan (F) together with the injection site. In the poor quality scan,
only the injection site is visible (C). The poor scan clearly misses the SLN (A), while several
readings cover the SLN in the case of the good scan (D).
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Figure 5.20: Mock–up of the methodology used to calculate the quality of a scan. In A the
tracked gamma probe (tip red, back green) receives information from the radioactivity in
its field of view (FOV). Using the position of the SLN segmented manually by the physician
and the position and orientation of the gamma probe, the distance d and the angle α can
be calculated. Subsequently, these values are used to calculate the expected count rate
measured by the probe assuming 1kBq at the position of the SLN. For calculation, the solid
angle and the parameters of the gamma probe were used. In B, a measurement is shown
where the probe does not include the SLN in its FOV. Accordingly, there is no contribution
with respect to the quality of the scan.

information for the reconstruction, the mean number of readings per voxel was calculated

from the quotient of the total amount of readings and the total amount of voxels.

5.4.2 Results

Findings of SPECT/CT. A total of 125 SLNs were detected on SPECT/CT (83 and

42 in each part of the examination, respectively). At least one SLN was detected in 96.2%

of the patients (76/79); see details in Table 5.5.

The average relative uptake in the SLNs was 0.86 ± 1.3% (range 0.003–14.1%) of the total

radioactivity administered at attenuation–corrected SPECT. The absolute uptake presented

a similar distribution, being in the range of 1.3–7882.3kBq (mean 499.5 ± 741.0kBq). No

radioactivity beyond the injection site and lymphatic draining region could be detected in

all of the patients. Out of 125 SLNs, 64 nodes were located in level I, 15 in level II and 4 in

level III, respectively (pilot study). In the validation study, 34, 5 and 3 SLNs were located in

levels I, II and III, respectively. SPECT/CT images were acquired approximately 78±37min

(pilot study) or 66 ± 15min (validation study) after injection of the radiopharmaceutical.
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Pilot study (n = 50) Validation study (n = 35)

SPECT/CT fhSPECT SPECT/CT fhSPECT

Patient dropouts 3 3 3 3

Patients without SLNs 3 27 0 4

Patients with 1 SLN 23 17 23 20

Patients with 2 SLNs 12 2 8 7

Patients with 3 SLNs 4 1 1 1

Patients with 4 SLNs 3 0 0 0

Patients with 5 SLNs 0 0 0 0

Patients with 6 SLNs 2 0 0 0

SLNs in level I 64 21 34 29

SLNs in level II 15 2 5 3

SLNs in level III 4 1 3 3

Table 5.5: Detection of SLNs in the pilot and validation studies.

The dynamic imaging protocol started approximately 7.8 or 7.7min (range 1–32min or 2–

29min) after injection and was completed 29.6 or 26.3min (range 15–57min or 15–59min)

after injection, respectively.

Acquisition parameters for Freehand SPECT. The mean VOI defined for recon-

structing Freehand SPECT images had 27349 voxels (range 15200–65664) with a standard-

ized voxel size of 5 × 5 × 5mm3 for most patients. In 22 patients, the voxel size had to be

increased to 6×6×6mm3 owing to the large VOI needed to cover the injection site and axilla.

The dimensions of the volume were on average 39×26×27 voxels in the longitudinal, medial,

and transverse axis, respectively. The scan duration was documented to be 4.3± 1.2min on

average (range 0.9–11.5min) and the mean number of data acquired during the scan was

3004±701 (range 542–7078). The average number of readings per voxel was calculated to be

0.126 (i.e. 126 readings per 1000 voxels), ranging from 0.024 to 0.408 readings/voxel, with

a standard deviation of 0.038 readings/voxel. The time interval for the overall procedure

(including patient positioning, volume definition, scanning, and visualization) ranged from

3 to 12min (mean 6.5min). This time frame was considered acceptable with respect to an

application in the OR.

The requirement of acquiring data in such a way that the complete VOI had a minimum

quality resulted in an increased scanning time. While for the first patient group (pilot study)

the mean time interval was 3.5min (range 0.9–7.4min), in the validation study, scan time

ranged from 1.9 to 11.5min with an average of 5.5min. This also entailed a higher amount

of readings per voxel of 0.187 versus 0.126 for the first patient group, respectively.
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On average, Freehand SPECT images were acquired 72± 40min after injection in the pilot

study and 62±26min in the validation study. Freehand SPECT images were acquired within

14.4min (range 2–26min) or 15min (range 4–29min) prior to or after SPECT/CT acquisi-

tion (before SPECT/CT, 21% and 35% of Freehand SPECT acquisitions, respectively).

Definition of quality thresholds. For evaluation of the scan quality (pilot study), the

quality of the acquisition based on each detected node was calculated. The average was

1.37 ± 1.12cps/kBq, ranging from 0.31 to 8.25cps/kBq. Taking only those measurements

into account yielding Q values higher than 2cps/kBq, an accuracy that was similar to that

of conventional SLN mapping was achieved (“good quality” group). The lower threshold

was selected to divide the low–quality range equally. Thus, the quality of scan Q was ranked

in three levels: good (Q > 2cps/kBq), intermediate (1cps/kBq < Q < 2cps/kBq), or poor

(Q < 1cps/kBq). According to this quality assessment, 9 nodes in the pilot study were

scanned with a quality that fulfilled the criteria of a good scan. In 35 nodes the scans were

rated as intermediate and in 39 as poor quality.

Mapping performance of Freehand SPECT. Pilot study: In the subgroup of SLNs

with a good scan quality, Freehand SPECT detected 77.8% of the SLNs (7/9), while for

intermediate and poor quality scans, 34.3% (12/35) and 12.8% (5/39) of the nodes were

detected, respectively. No false positive findings were reported, making sensitivity and

accuracy equal in the pilot study. Accordingly, the positive predictive value was 100%. Both

relative and absolute uptake (see Figure 5.21) affected the accuracy of Freehand SPECT. In

general, the results showed that the higher the uptake, the lower the required quality of scan

needed to map the SLN. For example, three of the five nodes which were scanned with a poor

quality but were correctly mapped had an absolute uptake above 600kBq corresponding to

1% of relative uptake. On the other hand, with a good quality of scan, Freehand SPECT

was able to map two nodes with an uptake of below 50kBq corresponding to 0.1% of relative

uptake. Freehand SPECT mapped successfully 21/64 level I nodes, 2/15 level II nodes and

1/4 level III nodes.

Validation study: In a total of 35 patients, three patients dropped out of the study. In the

remaining 32 patients, Freehand SPECT detected 83.3% of the nodes (35/42). There were

seven false negative findings in five patients and two false positive findings in two patients.

Thus the accuracy was 80%, the sensitivity 83%, and the positive predictive value 95%. As

expected, the accuracy for the validation study was in the range of the 77.8% obtained for

the good quality scans of the pilot study. The influence of the uptake was also consistent

with the results in this group of patients (see Figure 5.22). Here, the seven nodes missed

by Freehand SPECT had a small relative uptake (mean 0.19%, range 0.07–0.49%), as well
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scans of the pilot study. The influence of the uptake was
also consistent with the results in this group of patients
(Fig. 5). Here, the seven nodes missed by freehand SPECT
had a small relative uptake (mean: 0.19%, range: 0.07–

0.49%) as well as absolute uptake (mean: 107 kBq, range:
38–285 kBq). For the correctly mapped SLNs, the mean
uptake was 0.9% or 522 kBq, respectively. There were,
however, cases where nodes with uptake as low as 0.003%
and 1.33 kBq were correctly mapped. Regarding the level
assignment, freehand SPECT managed to map 29 of 34 level
I nodes, 3 of 5 level II nodes and 3 of 3 level III nodes.

Discussion

Lymphatic mapping and SLN biopsy have become the
standard of care for patients with invasive breast cancer [1].
Meta-analyses of results published in recent years have,
however, shown a considerable range in the overall success
rate of the procedure [3]. This results in an average false-
negative rate of 7% and thus in suboptimal postoperative
treatment planning that may give rise to undetected nodal
spread and eventually death. There is growing interest in
improving the procedure, as well as in providing enhanced
tools for optimal detection, localization and resection of
SLNs.

This is the first study to evaluate the feasibility of the
novel technology freehand SPECT for the detection and
localization of SLNs in breast cancer. The aim of the study
was twofold and consequently two consecutive patient
groups were investigated. First, in a pilot study, the
feasibility of freehand SPECT was tested and thresholds
on a selected quality criterion were set in order to guarantee
a good image quality. Second, the thresholds employed
were evaluated in a validation study in a second group of
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Figure 5.21: Scatter plot of the results for the first patient group (pilot study). Nodes
mapped with Freehand SPECT (blue) and nodes missed (red) are placed according to re-
spective quality of scan (x–axis) and relative or absolute uptake (y–axis). Two vertical lines
separating good, intermediate and poor scan qualities are also shown (Q = 1cps/kBq and
Q = 2cps/kBq). Both axes are logarithmic and nodes with a quality of scan equal to zero
are not displayed. The higher the uptake, the lower is the required quality of scan in order
to map a node correctly.

as absolute uptake (mean 107kBq, range 38–285kBq). For the correctly mapped SLNs, the

mean uptake was 0.9% or 522kBq, respectively. There were, however, cases where nodes

with uptake as low as 0.003% and 1.33kBq were correctly mapped. Regarding the level

assignment, Freehand SPECT managed to map 29/34 level I nodes, 3/5 level II nodes and

3/3 level III nodes.

5.4.3 Discussion

Lymphatic mapping and SLN biopsy have become the standard of care for patients with

invasive breast cancer [214]. Meta–analyses of results published in recent years have however

shown a considerable spread in the overall success rate of the procedure [216]. This results

in an average false negative rate of 7% and thus in suboptimal post–operative treatment

planning that may give rise to undetected nodal spread and eventually death. There is

a growing interest in improving the procedure, as well as in providing enhanced tools for

optimal detection, localization, and resection of SLNs.
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Figure 5.22: Histograms of nodal uptake in the validation study. Nodes that were not
mapped are indicated in red and successfully mapped nodes in blue. Although the average
uptake in missed nodes is lower than in detected nodes, there is a significant overlap. This
demonstrates that uptake and scan quality do not sufficiently explain the ability to detect
the SLN.

This is the first study to evaluate the feasibility of the novel technology Freehand SPECT for

the detection and localization of SLNs in breast cancer. The aim of the study was twofold

and consequently two consecutive patient groups were investigated. First, in a pilot study,

the feasibility of Freehand SPECT was tested and thresholds on a selected quality criterion

were set in order to guarantee a good image quality. Second, the employed thresholds were

evaluated in a validation study in a second group of patients to guide the acquisition and

permit evaluation of the effect of these thresholds on the overall performance of Freehand

SPECT.

The navigated system described here aims to improve the intra–operative detection rate

of SLNs. In principle, by enabling image–guided resection of SLNs, a standardization of

the procedure can be achieved that will allow high detection rates even in less experienced

institutions, and thus minimize the spread in overall success rate between less experienced

and experienced physicians; this would represent a significant step towards quality assurance

in SLN biopsy.

A sensitivity of 83.3% and a positive predictive value of 95% with respect to the gold

standard (SPECT/CT) as reported in the validation study are at least within one standard

deviation of the average values of gamma probe–based intra–operative detection [216]. Thus,
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given a sufficient quality of scan, the accuracy of SLN detection may approach levels of

clinical applicability.

Freehand SPECT may aid the process of surgical resection of the SLN in various fashions.

First, due to its freehand nature and the flexible, mobile hardware required, it can be inte-

grated into the OR without considerably changing the standardized workflow. In practical

terms, the instrumentation already present in the OR is extended by a positioning system

and the processing means in order to generate images. In a future application of SLN biopsy,

the system will enable the generation of 3D images with the patient already lying on the OR

table. As a consequence, in situ planning of the biopsy will be possible. Second, the possi-

bility of generating images in the OR could be used again after the end of the procedure,

but before closing the wounds, in order to confirm biopsy of all labeled structures. This

opportunity in combination with the potential to reduce the risk of damaging vulnerable

structures such as nerves and blood vessels in the axilla aids in improving the safety at the

level of surgery, as well as at the level of overall treatment. In this preliminary study, the

lymphatic mapping procedure in breast cancer was selected as an initial indication. The

motivation for this was the relative simplicity of the procedure, the minimal modifications

required in the current clinical workflow, and also the fact that this technique is a standard

of care in most industrialized countries.

Of particular interest is the availability of 3D information to identify deep lying nodes. In

particular, level II and III nodes in the axilla may be difficult to detect and to extract in

a minimal invasive way. The performance of Freehand SPECT in this regard, with 75%

detected level II and III nodes in the validation study, is promising. An even larger impact

is expected from the use for localizing deep lying nodes in the abdomen or the pelvis which

seems useful in prostate, colorectal or cervix carcinoma [200].

Other possible applications of this modality include procedures that are already based on

SPECT isotopes like lymphatic mapping and SLN biopsy in melanoma or prostate cancer,

but also other radio–guided procedures such as localization of neuroendocrine tumors and

related metastases using 111In–octreotide [227, 228]. Of particular relevance are ROLL

techniques (radio–guided occult lesion localization) [229] in which impalpable tumors seen

at mammography or MRI are labeled using stereotactic MRI–guided needle placement and

the deposition of a highly concentrated dose of 99mTc–MAA. This hot spot is then used in

the OR for localization and precise resection of the lesion. Here, the availability of Freehand

SPECT would allow an image–guided procedure.

Several technical aspects, however, remain to be addressed. Despite the considerable im-

provements shown by using an online feedback during the acquisition, Freehand SPECT

still yields false negative and false positive findings. Accordingly, further research should
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be directed at optimizing methods to classify good and bad acquisitions and thus provide

better feedback on the quality of the scan.

The proximity to the injection site apparently played an important role in the false negative

findings of the validation study. In particular, in three patients with peritumoral injection,

the injection site extended to the position of the SLN in the Freehand SPECT images.

Unfortunately, neither changing the thresholds nor altering the defined filter range made

it possible to separate the SLN from the injection site. In the results presented here, the

iteration number was fixed. There might be the option of gaining resolution by using a larger

iteration number. Furthermore, periareolar injection and fixation of the breast towards a

medial direction during the SLNB are options to be explored.

Further issues to be considered are automatic quality control and improved quality criteria,

denser scan of the axillary and subclavicular regions, and optimization of reconstruction pa-

rameters, such as number of iterations, post–processing filter, etc. Another important issue

is the relative uptake of the radiopharmaceutical within the SLN. Scans with only intermedi-

ate or even poor quality yielded good results if SLNs presented high uptake. Quantification

in attenuation–corrected SPECT has not generally been validated, but our results are in

accordance with uptake values reported in the literature. Although absolute uptake behaved

very similar to the relative uptake, one issue to be addressed in future is to test if Freehand

SPECT performs better using a 1–day protocol. The influence of timing regarding diffusion

of the radio–tracer was considered to be minimal, as the average difference between SPEC-

T/CT and Freehand SPECT acquisitions was in the range of 15min and approximately 1h

after injection.

In summary, there are still ways to improve the Freehand SPECT technology. Neverthe-

less, the results obtained adding only the guided acquisition in the version used during the

validation study demonstrate its great potential.

5.5 First Intra–operative Patient Studies

After the promising results of the pre–operative study, a series of intra–operative studies of

SLNB in breast cancer and in melanoma was started by Thomas Wendler at the Women’s

Hospital at Technische Universität München to evaluate the feasibility of Freehand SPECT

in the operating room. Preliminary results have been presented in [230, 231].

Figures 5.23 and 5.24 present two example patients from that series, illustrating how intra–

operative Freehand SPECT reconstructions can support the surgeon during the procedure.

Figure 5.23a shows the intra–operative Freehand SPECT reconstruction pre–excision in an

augmented reality view, while Figure 5.23b shows the pre–operative 2D scintigraphy for
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(a) (b)

Figure 5.23: (a) Intra–operative Freehand SPECT reconstruction during SLNB of a patient
with a tumor in the right breast rendered in an augmented reality view, red arrow marking
injection site, green arrow the active nodes in the axilla (b) Pre–operative scintigraphy of
same patient with a homogeneous cobalt flood phantom as background, top row: anterior–
posterior images, bottom row: lateral images; in the two images on the right the injection
site was covered with a lead plate.

comparison. The tumor was located in the right breast, and the huge radioactivity injection

site is visible along with two active nodes in the axilla, both in the scintigraphy and in the

intra–operative Freehand SPECT.

Another example patient from that series is shown in Figure 5.24: the left image is showing

the Freehand SPECT reconstruction in an augmented reality view pre–excision, the right

image post–excision. The tumor was located in the right breast, and the big radioactivity

injection site is visible along with two active nodes in the axilla pre–excision and no nodes

post–excision.

As presented in [230], 29 breast cancer patients were scanned intra–operatively until Septem-

ber 2010. Freehand SPECT was able to detect SLNs with 91% sensitivity, compared to a

sensitivity of 72% when just using the regular gamma probe. In fact, Freehand SPECT led

to seven additionally resected SLNs due to the post–excision scan, increasing the patients’

prognosis.
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Figure 5.24: Intra–operative Freehand SPECT reconstruction during SLNB of a patient
with a tumor in the right breast in an augmented reality view. Left: pre–excision, Right:
post–excision. The red circles indicates two active nodes in the axilla that were resected
during the procedure.

5.6 NanuLib: the Engine of Freehand SPECT

Since its inception in 2007 [232], Freehand SPECT has undergone a lot of developments

in terms of software as well as in hardware. In 2009, the freehand reconstruction stand–

alone software library called NanuLib was created to implement the reconstruction pipeline

outlined in section 5.2.2. It was employed for all the reconstructions shown in this chapter.

It has also been integrated into the commercially available “declipseSPECT” cart system

by SurgicEye (Munich, Germany).

In the following two sections the NanuLib is described in more detail. The first section

describes the design and implementation of the current, first version of the NanuLib. The

second section gives an overview of the newly designed second version, started in mid 2010

and currently nearing completion.

5.6.1 Design and Implementation: first version

The NanuLib is a fully templated, header–only library written in portable C++, making

use of the Eigen linear algebra library [207] for automatic vectorization and OpenMP for

parallelization. A schematic drawing illustrating the major parts of the library is shown in

Figure 5.25.

The interface to the user is provided by the class TomographicSystem. Besides setting the

necessary parameters, the main interaction occurs via the two methods pushbackMeasure-

ment() pushing a new Measurement into the system, and getReconstruction() to receive a

ReconVolume containing the current reconstruction. Another method is getColumnSums()

to return the current qi values from equation (5.6) for online acquisition guidance.
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Figure 5.25: Schematic drawing of NanuLib components (first version).

Internally, the class MeasurementSet is storing all the recorded measurements. Employing

the selected forward model encoded in AcqModel, each new Measurement pushed into To-

mographicSystem causes the calculation of a new row of the system matrix A to be pushed

into the class SystemMatrix. When a reconstruction is requested, using the filtering methods

outlined in section 5.2.2 a separate copy of the filtered system matrix A is created in con-

tiguous memory. The selected inversion procedure from class TomoRecon is then applied to

this filtered A, using the b vector from MeasurementSet to produce a reconstruction, which

is stored in the class ReconVolume.

Several different variations of the forward model from equation (5.1) are implemented in

AcqModel. For inversion, SVD–based solvers, ART with a constant relaxation factor, ran-

domization and non–negativity constraints, MLEM as well as LSQR are implemented (for

algorithm details see chapter 3). SystemMatrix is extensible to use different filtering algo-

rithms.

The major weakness of this design is the need to create a filtered copy of the system matrix.

This almost doubles the memory requirements of the reconstruction process, and with system

matrices typically the size of a few gigabytes, the time taken for the copying itself is non–

trivial as well. However, not creating a filtered copy would require calculating the system

matrix twice, once for acquisition guidance and filtering, once for inversion, which in terms

of computation time is the bigger trade–off in most cases. Another approach would be to

filter rows before they get stored in SystemMatrix and mask out filtered columns only after

the reconstruction is complete. However this introduces inaccuracies in the reconstruction

for non–zero columns as activity gets distributed among voxels which should not have any,

and creates issues with some of the inversion methods that cannot deal with zero columns.

This version of the NanuLib has been in use in several iterations over the last year, it was

employed for all the reconstructions shown in this chapter. It is also used in the current
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Figure 5.26: Schematic drawing of NanuLib components (second version).

version of the commercially available “declipseSPECT” (formerly called CSS300) cart system

by SurgicEye (Munich, Germany).

5.6.2 Advancing the Design: second version

With the experience gained from the first version of the NanuLib, a second more powerful

version was designed mid 2010, it is currently close to completion. The main new features

are the support of a dynamic ReconVolume (for example using multi–resolution), support

of sparse and on–the–fly SystemMatrix as well as the support of caching schemes obviating

the necessity of creating a filtered copy of the system matrix. The new design also enables

the creation of a specialized version having the reconstruction pipeline fully implemented

on the GPU using for example CUDA or OpenCL, with maximum code reuse of the CPU

version. A schematic drawing of the new design of the library is shown in Figure 5.26.

The public interface is almost identical to the first version, however the inlined templates

are now limited to only the performance–critical parts of the library, making instantiation

and extensions of TomographicSystem more user–friendly.

The major change, which enables the new features, is that SystemMatrix no longer acts

as data storage, but instead just provides proxies to access parts of the system matrix,

either as a dense or sparse matrix, or as on–the–fly computed coefficients. Instead, the

class DataManager is managing all the incoming data, while CoeffCache provides a caching

interface to system matrix coefficients. It provides an option to use a filtered copy of the

system matrix, just like in the first library version, but it also allows avoiding that copy,

necessitating calculating the system matrix coefficients twice in the worst case. Caching

algorithms are employed to minimize the performance impact. This is particular interesting



Chapter 5. Application: Freehand SPECT 129

for the look–up table forward model variant of AcqModel, where instead of having to calculate

the forward model for a system matrix coefficient, a pre–calculated value is stored in a look–

up table, typically generated by extensive reference measurements with the specific gamma

probe on a positioning table. CalcProxy provides the inlined, templated functor to ensure

maximum performance in all calculations.

ReconVolume now also supports dynamic volumes of interest (VOI). One variant for example

represents the VOI as an octree (a tree where each internal node has 8 child nodes), enabling

different detail levels in different regions of the volume. Thanks to CoeffCache changes in the

representation cause minimal changes in the already computed system matrix coefficients.

A suitable application for this would be automatic selection of the VOI: starting with the

maximum tracking volume, each incoming Measurement would cause the field–of–view of

the probe to be rendered in more detail, while leaving the rest of the VOI as is. Another

application would be iterative refinement of the reconstruction: first a reconstruction is

calculated at the default resolution level of the octree, and would then be iteratively refined

in only the regions where activity was reconstructed, the previous reconstruction serving as

an initial value for the subsequent inversion. Last but not least, with sufficiently reduced

levels of the octree this should enable live real–time reconstructions during the acquisition

process.

We hope this design will be flexible enough to support another year of research in freehand

reconstructions.

5.7 Conclusion and Outlook

In summary, in this chapter we have introduced Freehand SPECT, a new approach for intra–

operative 3D nuclear imaging. We presented the technical background and the novel fast

algorithms developed for tomographic imaging from sparse, limited–angle and irregularly

sampled data acquired using ad–hoc random detector geometries. We also presented a pre–

operative evaluation of Freehand SPECT for lymphatic mapping in breast cancer patients

along with first intra–operative patient reconstructions. The small and mobile Freehand

SPECT system fits easily into the operating room, while the low scanning time and the fast

computations do not hinder the workflow in clinical routine, thus enabling a practical and

efficient solution for intra–operative 3D nuclear imaging.

The Freehand SPECT idea was first developed by my colleague Thomas Wendler, a lot of

the work presented in this chapter has been his contribution, especially the connection to

the medical side of things. When Thomas Wendler together with my colleague Jörg Traub

founded the company SurgicEye, new possibilities opened up. Suddenly a whole team was
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working on providing a usable, polished device for Freehand SPECT, allowing us at the

research side of things to concentrate on the relevant parts. The cooperation with the

company has been very fruitful for us both and I hope it will continue to do so.

Freehand SPECT has a lot of exciting possibilities for future development. For developments

in the medical application area, the reader is referred to [230]. On the technical side, one

uncomfortable necessity so far has been the need to manually select the volume of interest

(VOI) before a scan. An automatic way to determine the VOI from the measurements

would be very comfortable. In fact, the recent version of “declipseSPECT” implements

such a method, starting with a huge volume encompassing the entire trackable area, and

subsequently reducing it to the area that is actually scanned. However, without anatomical

knowledge this can be risky in terms of reconstruction quality. In SLN mapping procedures

for example, the injection site at the breast is not necessarily scanned in particular, but

rather the axillary area containing the SLNs. Since the injection site has very high activity

compared to any SLN, the gamma detector will likely pick up some readings from it in its

field of view, but if the injection site is not included in the VOI due to not being explicitly

scanned, artifacts will occur as the inversion procedure tries to place the measured activity

somewhere. A constantly changing VOI also plays havoc with many of the acquisition

guidance approaches.

A multi–resolution approach as outlined in section 5.6 however could cover the entire track-

ing volume automatically with no need to choose a separate VOI at little computational

cost. Meanwhile, the savings in empty, low–resolution areas can be turned into a resolution

advantage in the more active areas of hotspots like SLNs, doing away with the need to select

a specific resolution of the VOI in advance as well. Live, real–time reconstructions would

also be easier to implement using the multi–resolution approach.

Connected to this is also the development of more sophisticated online guidance schemes of

the acquisition procedure. An option currently being discussed is the inclusion of miniatur-

ized robot arms (for example mounted on the patient bed) performing the scan, allowing

for better and more regular coverage, guided in real–time by the software. While this might

detract from the simplicity of the hardware, it might prove beneficial enough to be worth

the drawback.

On the more theoretical side, better forward models of the physical detection process inside

the gamma probe are currently under development, potentially increasing reconstruction

quality. New models are also being developed for portable gamma cameras, which provide

a 2D detector grid instead of the 1D detector of the gamma probe. While portable gamma

cameras are still quite heavy and too unwieldy for freehand scans, hardware miniaturization
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is proceeding at a steady pace. Once they reach practical dimensions, the wealth of infor-

mation acquired in a scan would multiply, either enabling shorter scanning times or higher

reconstruction accuracy.

In a similar vein, the development of an inversion method even better suited to the limited–

angle, sparsely sampled data inverse problem is an interesting topic. Models of the error

propagation in the tracking data could be adapted to the reconstruction process, for example

by weighting data known to be less accurate accordingly in the inversion method.

Another topic that came up in the clinical studies of Freehand SPECT is the ability to

update the reconstruction during the procedure. For example in the SLN procedure, right

now there are two scans pre– and post–excision, with the Freehand SPECT image remaining

static during the excision process. During the operation, tissue is being cut away and

deformed, invalidating the pre–excision Freehand SPECT reconstruction, so once the actual

SLN is found and excised, the Freehand SPECT image overlay may no longer be accurate.

A gamma camera watching the scene during the procedure would allow for updates of the

Freehand SPECT reconstruction. Another option is the combination with another imaging

modality like multi–spectral optical cameras [233], so procedure guidance switches to live,

optical images once the Freehand SPECT reconstruction is no longer valid. Due to the

limited depth penetration of optical imaging, the Freehand SPECT is still needed for pre–

excision planning and post–excision validation.

Last but not least, the freehand concept of image reconstruction seems also adaptable to

other imaging modalities. One example is the navigated beta–probe surface imaging shown

in [234], another example currently being pursued is Freehand PET, an extension of Free-

hand SPECT to high–energy gamma probes. A more ambitious project called EndoTOF-

PET (EU FP7) starting 2011 is trying to detect γ–coincidences from β+–tracers with a

tracked, endoscopic PET probe combined with an external plate detector, utilizing picosec-

ond time–of–flight data as well.





Chapter 6

Conclusion

This work presented an overview of tomographic imaging in chapter 1. Solution approaches

to inverse tomographic problems were explored, analytical methods (chapter 2) as well as

series expansion methods (chapter 3). Series expansion methods have established themselves

as the method of choice in many imaging modalities, thus it is only consequent that the

two novel imaging modalities presented in this work, Fluorescence Molecular Tomography

(chapter 4) and Freehand SPECT (chapter 5) are employing series expansion methods.

Fluorescence Molecular Tomography (FMT) allows visualization of molecular processes in

vivo using non–ionizing radiation. This work presents a full–projection free–space FMT

approach along with a thorough analysis of the system design for the new acquisition ge-

ometries. The system was evaluated on phantoms as well as on mice, both ex vivo and in

vivo.

Freehand SPECT is a novel imaging modality transferring 3D functional imaging capabil-

ities to the operating theater. Thanks to tracked, hand–held gamma detectors, localized

SPECT reconstructions are possible using sparse ad–hoc acquisition geometries. Exper-

iments and evaluations were performed on phantoms to characterize the performance of

Freehand SPECT, and pre– as well as intra–operative patient experiments demonstrated

the feasibility of this new approach to imaging.

While I am no longer actively working on optical tomography, valuable experience was gained

during the time spent working on FMT. Freehand SPECT is now my current research focus,

providing an exciting, relatively unexplored field of tomographic reconstruction using sparse,

ad–hoc acquisition geometries. Now that the concept has been proven both on phantoms

and on patients, there will be ample opportunities in the future to improve the Freehand

imaging technique both in terms of practical, intra–operative usability as well as imaging

quality. Exciting times are ahead!
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