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Abstract

This thesis is concerned with the control of quantum systems. Given
a Hamiltonian model of a quantum system, we are interested in find-
ing controls—typically shaped electromagnetic pulses—that steer the
evolution of the system toward a desired target operation. For this
we employ a numerical optimisation method known as the GRAPE
algorithm. For particular experimental systems, we design control
schemes that respect constraints of robustness and addressability, and
are within the reach of the experimental hardware.

A general procedure is given for specifying a Hamiltonian model of
a driven N -level system and converting it to an appropriate rotating
frame. This is then applied together with the numerical algorithm
to design improved schemes for two different systems, where laser
fields manipulate orbital and hyperfine states of Pr3+ and Rb. The
generation of cluster states in Ising-coupled systems is also studied.
We find that, in the ideal case, the solution of evolving only under
the coupling Hamiltonian is not time-optimal. This surprising result
is in contrast to the known cases for unitary gates. For a symmetrised
three-qubit example, we provide a geometrical interpretation of this.
Numerically optimised control schemes are then developed for a non-
ideal coupling topology, modelling an experimental configuration of
trapped ions.

Controls for the implementation of the two-qubit Deutsch and
Grover algorithms are designed for a pair of 13C nuclear spins at a
nitrogen vacancy center in diamond. These implementations are ro-
bust to experimental errors, and found to be reproduced with high
accuracy on a VFG-150 pulse generator. We also consider two-qubit
gate synthesis in a system of superconducting qubits coupled by mi-
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crowave resonators known as the cavity grid. We find that the optim-
ised schemes allow two-qubit operations to be performed between an
arbitrary qubit pair on the grid with only a small time overhead, with
speedups of 2-4 over the existing schemes. The methods applied here
are fairly general and can be adapted to a variety of other physical
systems and tasks.



Zusammenfassung

Die vorliegende Arbeit behandelt die Kontrolle von Quantensystemen.
Ausgehend von einem Hamiltonian-Model des Quantensystems wollen
wir Kontrollen – typischerweise geformte elektromagnetische Pulse –
finden, die das System zu einer gewünschten Zieloperation steuern.
Dafür benutzen wir eine numerische Optimierungsmethode namens
GRAPE. Für gegebene experimentelle Systeme entwerfen wir Kon-
trollschemata, die die Robustheits- und Adressierbarkeitsbedingungen
berücksichtigen und in der experimentellen Hardware umsetzbar sind.

Wir beschreiben eine allgemeine Technik, um das Hamiltonian-
Modell eines gesteuerten N -Niveau-Systems herzuleiten und es in ein
passendes rotierendes Bezugssystem zu konvertieren. Zusammen mit
dem numerischen Algorithmus wird diese Technik angewandt, um ver-
besserte Schemata für zwei verschiedene Systeme zu entwerfen, in
denen Laserfelder Orbital- und Hyperfeinzustände von Pr3+ und Rb
manipulieren. Ebenfalls wird die Erzeugung von Clusterzuständen in
Ising-gekoppelten Systemen untersucht. Für den idealen Fall ergeben
unsere Untersuchungen, dass eine zeitoptimale Lösung nicht dadurch
gefunden wird, das System nur unter dem Kopplungshamiltonian evol-
vieren zu lassen. Dieses überraschende Resultat steht im Widerspruch
zu bekannten Untersuchungen für unitäre Gatter. Anhand eines sym-
metrisierten 3-Qubit-Beispiels geben wir eine geometrische Interpret-
ation hierfür. Numerisch optimierte Kontrollschemata werden dann
für eine nicht-ideale Kopplungstopologie entwickelt, wodurch eine ex-
perimentelle Konfiguration von gefangenen Ionen modelliert wird.

Für ein Paar 13C Kernspins an einem Stickstoff-Fehlstellenzentrum
in Diamant werden Kontrollen für die Implementierung des Deutsch-
und des Grover-Algorithmus’ auf jeweils zwei Qubits entwickelt. Die
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Implementierungen sollen robust gegenüber experimentellen Fehlern
sein und werden auf einem VFG-150 Pulsgenerator erfolgreich re-
produziert. Wir betrachten auch die Synthese von Zwei-Qubit-Gattern
in einem als

”
Cavity Grid“ bekannten System aus supraleitenden

Qubits, die durch Mikrowellenresonatoren gekoppelt sind. Die op-
timierten Schemata erlauben es, Operationen auf einem beliebigen
Paar von Qubits des Rasters auszuführen, wobei nur ein kleiner zeit-
licher Overhead entsteht und die erreichten Operationszeiten 2-4 mal
schneller sind als bei existierenden Schemata. Die hier eingesetzten
Methoden sind allgemeingültig und können an eine Vielzahl anderer
physikalischer Systeme und Anwendungen angepasst werden.
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angefertigt, die benutzten Quellen und Hilfsmittel vollständig an-
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Herbrüggen,Optimal Control of Circuit Quantum Electrodynam-

ics in One and Two Dimensions, Phys. Rev. B 81, 085328
(2010)

v



vi



Acknowledgements

I would like to thank the people who helped contribute to this thesis:
my supervisor Steffen Glaser; my office-mates Uwe Sander, Andreas
Spörl, and Franz Schilling; my colleagues Robert Zeier, Thomas Schul-
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Chapter 1

Introduction

How does laser light change the electronic states of atoms? How do
microwave photons interact with current loops in a superconducting
circuit? How do radio waves excite the nuclei in human tissue during
an MRI scan? These are all examples of physical processes governed
by quantum mechanics, the theory that describes how the world be-
haves on the scale of atoms, electrons, and molecules, and forms the
basis of our understanding of microscopic phenomena. This thesis ad-
dresses the question of how to manipulate and control systems of this
kind.

Figuring out how to control quantum mechanical systems is cur-
rently an active field of research. Aside from the fact that these sys-
tems are interesting in their own right, this is largely due to their
potential to be used for new technological applications. In the follow-
ing we introduce some examples of particular interest.

1.1 Quantum computation

In the last century, concepts from quantum theory were instrumental
in the development of semiconductor devices, in particular the tran-
sistor, the device at the heart of modern computer technology. Com-
puters are classical, however, in the sense that the physical states in
which they encode information are classical. The voltage across a
transistor can be 0 or V , corresponding to a logical state 0 or 1, re-
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2 CHAPTER 1. INTRODUCTION

spectively, called a ‘bit’. In 1982, Richard Feynman proposed the idea
of building computers which instead encode information in quantum
states [1]. The quantum analogue of the bit is the state of a two-
dimensional quantum system, written

|ψ〉 = c0|0〉+ c1|1〉

and referred to as a ‘qubit’.
There are several reasons to use quantum mechanical systems for

computation. Firstly, there are lower limits to the size of the etched
silicon structures which existing computer chips are composed of [2].
If the current trends in miniaturisation are to continue, quantum ef-
fects must inevitably play a role. Secondly, a quantum computer may
be able to perform certain tasks significantly faster than a classical
one of the same size. Integer factorisation is perhaps the most fam-
ous example; in 1994 Peter Shor discovered a quantum algorithm for
finding the prime factors of an integer, where the number of steps re-
quired scales polynomially with the number of digits of the integer to
be factored [3]. This is believed to be a ‘hard’ problem on a classical
computer, requiring exponentially more steps. Another quantum al-
gorithm of interest is the Grover algorithm for unstructured database
search [4]. This offers a quadratic speedup, and is discussed in more
detail in Section 5.2.2.

Building a quantum computer poses many experimental challenges.
For instance, qubits are hard to isolate; they can interact with their
surrounding environment and lose the information they carry. Trying
to control them as accurately and efficiently as possible is one of the
problems considered in this work. For an excellent general introduc-
tion to quantum computation and related fields, see Ref. [5].

1.2 Quantum simulation

There are a number of open questions in physics concerning large
and complex quantum systems. These include how high-temperature
superconductors work, how large proteins behave, and even how clas-
sical mechanics emerges from quantum mechanics in the limit of large
system size. Part of the reason these questions are still open is that we
essentially do not know what quantum mechanics predicts for large
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systems. While we can often write down a model for a system, we
cannot necessarily solve it.

This is because the dimension of a composite quantum system
scales exponentially with the number of subsystems it consists of.
For example, the total dimension of a system of n interacting spin- 12
particles is N = 2n. To see how the system behaves we need to solve
the Schrödinger equation, which has the form

d

dt



c1
...
cN


 =


 N×N matrix






c1
...
cN


 .

We therefore need to solve a system of N linear first-order differential
equations, or, equivalently, calculate the exponential of aN×N matrix.
The only general way to do this is to use a computer. As the number
of particles is increased, however, and N gets very large, this becomes
unfeasible.

When we use computers to solve the Schrödinger equation, we
are essentially simulating the evolution of a quantum system with
a classical one. The idea of instead simulating a quantum system
with another quantum system was Feynman’s proposed solution to
this problem, and was in fact his original motivation for considering
quantum computers. A n-qubit quantum computer could in principle
simulate any 2n-dimensional quantum system, which is arguably their
most important known application. Further discussion of quantum
simulation can also be found in Ref. [5].

1.3 Magnetic resonance spectroscopy and

imaging

Magnetic resonance spectroscopy and imaging are two examples of ex-
isting applications of controlling quantum systems. Nuclear magnetic
resonance (NMR) spectroscopy, for example, is one of the principle
methods used in chemistry to obtain information about molecular
structure. This involves sending radio waves at a sample and measur-
ing the resulting precession of the atomic nuclei, yielding information
about the atoms and chemical bonds that are present [6]. In magnetic



4 CHAPTER 1. INTRODUCTION

resonance imaging (MRI), additional magnetic field gradients are used
to encode spatial information in the precession of the nuclei, allowing
for the creation of an image of the sample [7].

1.4 What this thesis is about

The examples mentioned so far make a case for controlling quantum
systems as accurately and efficiently as possible. Developing and ap-
plying methods for doing this is the main focus of this thesis. The
problems we address all boil down to the same question: how can
the evolution of a quantum system be steered in such a way that a
desired target state can be a reached, or a target operation implemen-
ted. This is the central question of control theory. Typically there are
many solutions to this problem; those which are the best1 are referred
to as optimal controls.

1.4.1 Outline

The rest of the thesis is structured as follows:

• Chapter 2: We introduce some techniques for finding the con-
trols to steer a quantum system. While a few of the problems
we consider in this thesis permit analytical solutions, the most
general method is a numerical optimisation algorithm, which we
describe in some detail.

• Chapter 3: Before applying the optimisation techniques, it is
of course important to have a good model of the system to begin
with. With this in mind, we provide a Hamiltonian framework
for the driving of anN -level quantum system by electromagnetic
fields, which covers a broad variety of experimental cases. Some
examples are also provided.

• Chapters 4-6: We apply our techniques to design control sche-
mes for some quantum systems of interest. What these systems
have in common is a low dimension. This means their evolution

1It is up to us to specify additional criteria for what ‘best’ means. Often this is
the requirement that the implementation is fast, i.e. the controls are time-optimal.
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can be simulated on a computer, which is an essential part of
the optimisation algorithm. An introduction to the particular
system and its applications is provided in each chapter.
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Chapter 2

Optimal control

techniques

In this chapter an introduction will be given to optimal control theory
and the optimisation tools which are applied in this thesis. The term
‘quantum control’ encompasses a diverse field of research, from the
control of molecular dynamics and chemical processes [8, 9, 10], to
quantum feedback control [11] and its application in cavity quantum
electrodynamics [12]. Here we focus on a particular approach which
has been developed in the context of nuclear magnetic resonance
(NMR) spectroscopy, where the nuclear spin states of ensembles of
molecules are manipulated by radio frequency (RF) pulses. Due to
the relatively long timescales involved and the advanced state of RF
pulse-shaping technology, NMR spectroscopy is an ideal setting for
numerically optimised pulses [13]. Intricate and complex RF pulse
shapes have so far been applied to a variety of tasks in NMR, includ-
ing the implementation of broadband pulses which are robust to a
wide range of magnetic field inhomogeneities [14], and the removal of
unwanted couplings during the measurement process [15].

After first sketching some basic principles of optimal control theory
in Section 2.1, we will then introduce in detail the numerical gradient-
based approach in Section 2.2 and survey the various optimisation
tasks of interest.

7
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2.1 The optimal control framework

We begin with a general definition of the optimal control problem.
Consider a system with state vector x(t), influenced by controls u(t)
over the time interval [0, T ]. The scalar, real-valued objective func-
tional φ (also called the ‘quality function’ or ‘fidelity’) is written in
the form

φ = Ψ(x(T )) +

∫ T

0

L (x(t), u(t)) dt . (2.1)

Note that the first term in the above equation depends only on the
state at the final time T , while the second term integrates up a running
cost. The task is to maximise φ subject to the condition that the
equation of motion of the system

dx

dt
= f (x(t), u(t)) (2.2)

is satisfied, with x(0) = x0 and u(t) restricted to the set of admissable
controls. A solution is said to be time-optimal if φ is maximised for
the minimum value of T , denoted by Tmin.

2.1.1 Pontryagin’s maximum principle

Through the introduction of a Lagrange multiplier vector λ(t), a con-
dition for maximising (2.1) can be derived known as Pontryagin’s
maximum principle (PMP). In the following we simply sketch PMP
for real vectors, for a thorough account see Refs. [16, 17]. Introducing
the scalar functional

h = λtf + L , (2.3)

where λt denotes the transpose, the principle requires that the follow-
ing criteria are satisfied:

∂h

∂u
= 0 , (2.4a)

h(T ) = 0 , (2.4b)

dλ

dt
= − ∂h

∂x
, (2.4c)
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dx

dt
≡ f =

∂h

∂λt . (2.4d)

These criteria form a sufficient condition that the variation in h is zero,
which itself is a necessary (but not sufficient) condition for global
optimality. In certain special cases, these equations can be solved
analytically and, additionally, global optimality can be established.
For a recent example see Ref. [18], in which time-optimal controls
are derived analytically for a resonantly-driven spin- 12 particle in a
dissipative environment. For the majority of problems considered in
this thesis, however, a numerical approach will be required.

2.1.2 Optimal control in the quantum setting

Throughout this thesis we will be concerned withN -dimensional quan-
tum systems which have Hamiltonians of the form

H = Hd +

m∑

k=1

uk(t)Hk , (2.5)

where the drift Hamiltonian Hd, and the m control Hamiltonians Hk

are time-independent, and uk(t) are the time-dependent control func-
tions. As the controls are usually shaped electromagnetic pulses, they
are also referred to as ‘pulse shapes’. Time evolution in the absence
of dissipation is governed by the Schrödinger equation

d|ψ〉
dt

= −iH |ψ〉 , (2.6)

while open systems will be treated completely analagously in Sec-
tion 2.2.5 using the superoperator formalism.

2.1.3 Controllability

The subject of controllability concerns the existence of solutions. In
the quantum setting this boils down to the following question: given
the drift and control Hamiltonians of a system, what is the set G
of unitary operations which can be implemented? This set has the
mathematical structure of a Lie group, and is a subgroup of the special
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unitary group SU(N)1. The Lie algebra associated to G is

g := i 〈Hd, H1, ..., Hm〉Lie , (2.7)

where 〈·〉Lie denotes the linear span of the closure of {Hd, H1, ..., Hm}
under commutation. The set of available unitaries is then G = e g.
If the dimension of g is equal to its maximal value of N2 − 1, then
g = su(N) and G = SU(N). In this case the system is said to be fully
(operator) controllable.

Informally speaking, g provides the set of all effective Hamiltonians
(or rotation axes) available to the system. A simple example is the
N = 2 case with the drift Hamiltonian proportional to σz and a single
control Hamiltonian proportional to σx (where σj are the usual Pauli
matrices). In this case the commutator yields σy, all 3 rotation axes on
the Bloch sphere are available, and the system is fully controllable. For
a rigorous account of controllability in the quantum setting, including
a numerical method for establishing full controllability, see Ref. [19]
and the references therein.

2.2 Numerical optimisation and GRAPE

We now introduce a powerful numerical optimisation method known
as the Gradient Ascent Pulse Engineering (GRAPE) algorithm. This
can be applied to any N -dimensional quantum system whose Hamilto-
nian can be written in the form of (2.5). Given the Hd and Hk’s that
specify the quantum system, the objective of GRAPE is then to find
optimal controls uk(t) to perform a desired task.

2.2.1 Transfer of a pure quantum state

We consider as a first example the steering of a pure quantum system
from an initial state |ψ0〉 to a target state |ψc〉 over a time interval
[0, T ]. The quality function to be maximised is

φ1 := Re{〈ψc|ψ(T )〉} . (2.8)

1This is the set of allN×N unitary matrices U with det(U) = 1. The constraint
det(U) = 1 arises due to the convention that the Hamiltonians are traceless, since
det(eA) = etr(A). If the determinant was instead allowed to vary freely, we would
take the full unitary group U(N).
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Further optimisation tasks will be discussed in Sections 2.2.2 to 2.2.6.
Note that φ1 achieves a maximum of 1 if and only if |ψ(T )〉= |ψc〉,
which follows from

‖(|ψ(T )〉 − |ψc〉)‖2 = 2− 2Re{〈ψc|ψ(T )〉} , (2.9)

and the property of the Hilbert-Schmidt norm ‖x‖ = 0 ⇔ x = 0. The
controls are restricted to a piecewise-constant form, as illustrated in
Fig. 2.1. This allows us to decompose the evolution into M timeslices
of length ∆t = T/M , where in the j’th slice the Hamiltonian is

H(j) = Hd +

m∑

k=1

u
(j)
k Hk . (2.10)

As H is constant over each ∆t, the unitary propagator U(T ) can be
obtained via direct integration of U̇ = −iHU with U(0) = 1l, yielding

U(T ) = UM UM−1 ... U2 U1, (2.11)

with

Uj = exp
{
−i∆tH(j)

}
= exp

{
−i∆t

(
Hd +

m∑

k=1

u
(j)
k Hk

)}
. (2.12)

The quality function becomes

φ1 = Re{〈ψc| UM UM−1 ... U2 U1 |ψ0〉} , (2.13)

¢t

u
k

(j)

1 j M

Figure 2.1: The k’th control function is represented by a piecewise-constant

pulse sequence consisting of M scalar control amplitudes u
(j)
k

.
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where 〈A|B|C〉 is shorthand for 〈A| · (B|C〉). The derivative of this

with respect to u
(j)
k is

∂φ1

∂u
(j)
k

= Re

{
〈ψc|UMUM−1...Uj+1

∂Uj

∂u
(j)
k

Uj−1...U2U1 |ψ0〉
}
. (2.14)

As Uj is a function of non-commuting operators, its derivative follows
from the general formula

∂

∂x

{
ef(x)

}
=

∫ 1

0

e sf(x) ∂f

∂x
e(1−s)f(x) ds , (2.15)

a proof of which is given in Appendix A. This yields

∂Uj

∂u
(j)
k

= −i
(∫ ∆t

0

Uj(τ)Hk Uj(−τ) dτ
)
Uj , (2.16)

where

Uj(τ) = exp
{
−iτH(j)

}
. (2.17)

We now consider the limit where

∆t≪ ‖H(j)‖−1 (2.18)

for all timeslices. The unitaries inside the integral in (2.16) can then
be expanded to first order in τ , leading to

∫ ∆t

0

Uj(τ)Hk Uj(−τ) dτ ≈
∫ ∆t

0

(
1l− iτH(j)

)
Hk

(
1l + iτH(j)

)
dτ

≈
∫ ∆t

0

Hk − iτ
[
H(j), Hk

]
dτ . (2.19)

Integrating and dropping the term in ∆t2 we find

∫ ∆t

0

Uj(τ)Hk Uj(−τ) ≈ ∆tHk . (2.20)

Thus, to first order in ∆t the derivative (2.16) reduces to

∂Uj

∂u
(j)
k

≈ −i∆tHk Uj . (2.21)
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Inserting this into (2.14) we obtain an approximate gradient of

∂φ1

∂u
(j)
k

≈ Re{−i∆t 〈ψc| UMUM−1...Uj+1Hk Uj ...U2U1 |ψ0〉} . (2.22)

The quality function will increase if we choose

u
(j)
k → u

(j)
k + ǫ

∂φ1

∂u
(j)
k

, (2.23)

where ǫ is a small stepsize. This is referred to as direct ascent. Altern-
atively, the gradients can be added to the controls in more sophist-
icated ways, some of which will be discussed briefly in Section 2.2.8.
Gradient formulae such as (2.22) form the basis of the GRAPE al-
gorithm. For this example of direct ascent of φ1, the algorithm can
be summarised as follows:

1. Guess the M×m initial control amplitudes u
(j)
k .

2. Calculate the forward-propagated states

|ψj〉 := Uj ... U1|ψ0〉 (2.24)

for j = 1, ...,M .

3. Calculate the back-propagated states

|λj〉 := U †
j+1 ... U

†
M |ψc〉 (2.25)

for j = 1, ...,M .

4. Calculate the gradients (2.22), and update according to (2.23).

5. With these as the new controls, go to step 2.

If the stepsize ǫ is sufficiently small at each iteration, and exact gradi-
ents are used, the algorithm is guaranteed to converge monotonically
to a local maximum of φ1. For the problems considered in this thesis,
(2.18) is a good approximation and the convergence is satisfactory.
In other cases where it may not hold, exact gradients can be calcu-
lated to machine precision using other approaches, see for example
Refs. [20, 21].
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Remark on Pontryagin’s maximum principle

For the case of the controls being smooth, continuous functions, a
gradient formula of the same form as (2.22) can be obtained quickly
from PMP. Transferring (2.3) to the quantum setting, with the iden-
tification x(t) → |ψ(t)〉 and L = 0, we have

h = Re{−i 〈λ(t)|H |ψ(t)〉} . (2.26)

The optimality condition (2.4a) requires that

∂h

∂uk(t)
= Re{−i 〈λ(t)|Hk |ψ(t)〉} = 0 , (2.27)

while the boundary conditions (2.4b-d) yield

d|λ〉
dt

= −iH |λ〉 ,
|λ(T )〉 = |ψc〉 . (2.28)

For a generic piecewise-constant function to closely approximate a
continuous one we require ∆t → 0, and thus it is not surprising that
the form of (2.27) coincides with the approximate gradients in (2.22).

2.2.2 Insensitivity to global phase

While the quality function (2.8) serves to illustrate how the GRAPE
algorithm works, in practice we are usually interested in other optim-
isation tasks. The simplest extension of (2.8), for example, is a quality
function which is maximised if

|ψ(T )〉 = e−iθ|ψc〉 , (2.29)

for any θ ∈ [0, 2π]. For this purpose we define

φ2 := |〈ψc|ψ(T )〉|2 , (2.30)

which is insensitive to the global phase of the final state. As in Sec-
tion 2.2.1, the gradients are calculated to be

∂φ2

∂u
(j)
k

≈ 2Re{−i∆t 〈λj |Hk |ψj〉 〈ψj |λj〉} , (2.31)

where |ψj〉 and |λj〉 are defined in (2.24) and (2.25) respectively.
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2.2.3 Synthesis of unitary gates

Some of the applications studied in this thesis require the synthesis of
unitary gates, for example in the implementation of algorithms in the
circuit model of quantum computation. To obtain maximum overlap
with a target gate Uc up to an arbitrary global phase, the quality
function is

φ3 :=
∣∣tr
{
U †
c U(T )

}∣∣2 . (2.32)

The gradients are then

∂φ3

∂u
(j)
k

≈ 2Re{−i∆t 〈Pj |HkXj〉 〈Xj |Pj〉} , (2.33)

where

Xj := Uj ... U1 , Pj := U †
j+1 ... U

†
M Uc , (2.34)

and the inner product of two matrices A and B is defined as 〈A|B〉 :=
tr{A†B}.

2.2.4 Subspace to subspace transfer

In addition to state to state transfer and unitary gate synthesis, we
can specify any number d of initial and target states. This can be
done via the quality function

φ4 :=

∣∣∣∣tr
{[

|ψ(1)
c 〉 |ψ(2)

c 〉 ... |ψ(d)
c 〉

]†
U(T )

[
|ψ(1)

0 〉 |ψ(2)
0 〉 ... |ψ(d)

0 〉
]}∣∣∣∣

2

=
∣∣∣〈ψ(1)

c |U(T )|ψ(1)
0 〉+ ...+ 〈ψ(d)

c |U(T )|ψ(d)
0 〉
∣∣∣
2

, (2.35)

where [ |a〉 |b〉 ] denotes two column vectors a and b stacked together
in a matrix. The | · |2 operation can alternatively be inserted around
each term separately, if the relative phase of each target state is un-
important. The choices d = 1 and d = N recover the previous cases
(strictly speaking, unitary gate synthesis is recovered if {|ψ0〉} is the
standard basis and the |ψc〉 are orthogonal). The gradients of φ4 are
a trivial variation of those in Section 2.2.3.
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2.2.5 Optimising in open quantum systems

To extend the treatment in Section 2.2.1 to open systems, we con-
sider a density matrix ρ(t) in the superoperator formalism with |ρ̂〉 :=
vec(ρ). The master equation is

d|ρ̂〉
dt

=
(
−iĤ + Γ̂

)
|ρ̂〉 , (2.36)

where the Hamiltonian superoperator is Ĥ := 1l⊗H −HT ⊗ 1l, and Γ̂
characterises the dissipation model. The task of transferring an initial
state ρ0 to a target state ρc corresponds to the quality function

φ5 := tr{ρc ρ(T )} = 〈ρ̂c|ρ̂(T )〉 . (2.37)

Defining

|ρ̂j〉 := L̂j ... L̂1|ρ̂0〉 , |λ̂j〉 := L̂†
j+1 ... L̂

†
M |ρ̂c〉 , (2.38)

with

L̂j := exp
{
∆t
(
−iĤ(j) + Γ̂

)}
, (2.39)

the gradients are then

∂φ5

∂u
(j)
k

≈ −i∆t 〈λ̂j |Ĥk|ρ̂j〉 , (2.40)

i.e. the procedure is completely analagous to a pure state transfer, but
with vectors and matrices of higher dimensions. The quality function
for unitary gate synthesis in the presence of dissipation can be defined
along exactly the same lines. In the applications in the following
chapters, open systems are not considered. For examples where they
are, see Refs. [13, 22].

2.2.6 Robustness

The GRAPE algorithm can be configured to search for controls which
are robust under the variation of any system parameters. Consider
a parameter δr which appears in the Hamiltonian and therefore in-
fluences the resulting unitary at time T , Ur(T ). Let us assume the
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quality function φ{U(T )} is normalised to have a maximum of 1. The
average

φ̄(T ) :=
1

R

R∑

r=1

φ{Ur(T )} (2.41)

then achieves a maximum of 1 if and only if φ{Ur(T )} is maximised
for each and every choice of δr. Any of the previous quality functions
can be extended in this fashion to search for robust controls. It may
be that T must be increased for such controls to exist, however, or
that some compromise between maximum fidelity and robustness is
necessary.

In principle one can also let the target state vary with r. Controls
for this task have been optimised and implemented experimentally in
the NMR setting, where they are referred to as ‘pattern pulses’ [23].

2.2.7 Bandwidth and amplitude restrictions

In many applications it is desirable to restrict the optimisation to
controls which respect certain bandwidth and amplitude constraints.
This is implemented by cutting back the controls to the allowed ranges
immediately after the gradients are added, as illustrated in Fig. 2.2a.
The constraints are characterised by two variables, a maximum amp-
litude umax and a maximum frequency component νmax. In the time
domain, the controls are cut back if they exceed the envelope function

uenv(t) = umax ×





e−(πνmax[t−tr ])
2/ ln(100) 0 ≤ t < tr

1 tr ≤ t < (T − tr)

e−(πνmax[t−T+tr ])
2/ ln(100) (T − tr) ≤ t ≤ T

where the rise-time is defined as tr := ln(100)/(πνmax). This en-
velope function is illustrated in Fig. 2.2b. In cases where both x
and y controls are present, this envelope is usually applied only to
Ω =

√
(u2x + u2y), which amounts to restricting the intensity or in-

stantaneous power of the control field. A discrete Fourier transform is
then applied to each control vector, and all components with ν > νmax

are set to zero. This removes all high frequency components, but does
not enforce that the controls start and end at zero, which is why the
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Figure 2.2: (a) Restrictions on the controls are incorporated in the algorithm
by calling a filter function each time the controls are updated. (b) The envelope
includes Gaussian edges which force the controls to start and end at zero, with a
rise-time tr determined by νmax.

Gaussian edges are included (truncated at u = umax/100). The width
of this Gaussian is defined so that 99% of its frequency components
are within the interval [−νmax, νmax].

It should be noted that constraints on the controls can be incor-
porated in a more rigorous fashion by adding penalty terms to the
quality function. In practice, however, we have found that for the
applications considered in this thesis the cut-back approach performs
equally well.

2.2.8 Gradient methods and other parameters

To obtain a numerical estimate of the minimal time required to per-
form a particular operation, we plot the maximum fidelity achieved
by the GRAPE algorithm for a range of different pulse durations T .
This is referred to as a time-optimal pulse (TOP) curve. The minimal
time Tmin is then defined as the smallest time at which a threshold
fidelity is reached. In the numerical context Tmin is strictly speaking
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only an upper bound to the actual minimal time, since there is no
guarantee that the GRAPE algorithm will find the global maximum
of the fidelity. To increase the likelihood of this, the optimisation is
repeated for a range of random initial conditions. Throughout this
thesis, when a system is optimised the following settings are specified:

• Gradient method

We consider two different approaches. The first alternates between
direct ascent as in (2.23), and a simple conjugate gradient imple-
mentation (see Ref. [24], Section 7.8). This approach is referred
to as ‘first-order’. The second employs a quasi-Newton method,
specifically an interior point algorithm using a limited-memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) approximation to
the Hessian matrix [25]. This is implemented via the function
fmincon in MATLAB’s optimisation toolbox, and referred to as
‘second-order’.

• Pulse digitisation

The number M of timeslices that the pulse is decomposed into.

• Iteration limit

The maximum number of iterations the algorithm is allowed to
make before it terminates.

• Optimisations per point

The number of initial conditions sampled at each value of T in
the production of a TOP curve. The first initial condition is
a constant, low amplitude pulse and the others are randomly
generated.

• Bandwidth and amplitude range

The restrictions, if any, which are placed on the bandwidth and
amplitudes of the controls, specified by the cutoff values νmax

and umax in Section 2.2.7.

• Error tolerance

If the implementation is designed to be robust under the vari-
ation of certain error parameters, we specify these and the range
over which the quality function is averaged, as in Eqn. (2.41).
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While the GRAPE algorithm exists in various incarnations including
C++ and Fortran, all numerical optimisations discussed in this thesis
were coded in MATLAB.



Chapter 3

Driven multi-level

systems

In this chapter we describe a Hamiltonian framework for the driving
of an N -level quantum system by electromagnetic fields via the dipole
interaction. This covers a variety of controllable quantum systems,
including for example:

• Nuclear spins manipulated by radio frequency (RF) pulses.

• Electronic transitions in atoms manipulated by lasers.

• Superconducting current loops (flux qubits) controlled with mi-
crowave pulses.

We begin in Section 3.1 with a derivation of the Hamiltonian, while
in Section 3.2 we discuss the various rotating frame transformations
which allow the dynamics to be computed efficiently. These tech-
niques will be crucial for the applications we consider in the follow-
ing chapters. In Section 3.3 we present a simple example, using this
framework to explain some counterintuitive features of a coupled two-
spin system. In Sections 3.4 and 3.5, we illustrate how the techniques
are applied to multi-level atoms, using Pr and Rb atoms as examples
drawn from recent quantum information experiments.

21
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3.1 Driving of a quantum dipole by a clas-

sical field

Consider an N -dimensional quantum system which, in the absence
of driving, is described by a free Hamiltonian H0. We work in the
eigenbasis of H0, representing states of the system as

|ψ〉 = c1 |1〉+ c2 |2〉+ ...+ cN |N〉 , (3.1)

where

H0 |n〉 = En |n〉 , (3.2)

cn = 〈n|ψ〉, and n = 1, 2, ..., N . The energy eigenvalues are ordered
according to

E1 ≤ E2 ≤ ... ≤ EN . (3.3)

In matrix form, H0 is diagonal by construction:

H0 =



E1

. . .

EN


 , (3.4)

and the zero of energy is chosen so that H0 is traceless. Now suppose
the quantum system has a dipole moment µ, and is irradiated by a
driving field

F = F0 cos (ωt+ φ) n̂, (3.5)

with amplitude F0, carrier frequency ω, and phase φ. The polarisation
is chosen to be linear in the direction of unit vector n̂, with other cases
discussed in Appendix B. Note that the field does not depend on any
spatial coordinates. This is a consequence of the dipole approximation,
where the size of the quantum system is assumed to be orders of
magnitude smaller than the distance scale over which the field varies.
For instance in the case of electronic states of an atom manipulated by
laser light, the size of the atom (∼ 0.1 nm) is much smaller than the
wavelength of the laser (∼ 500 nm). The interaction energy is given
by

Uint = F · µ. (3.6)
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In our treatment the field is classical, while the dipole moment µ is a
quantum mechanical operator whose matrix elements determine the
nature of the interaction. These matrix elements can in some cases
be calculated theoretically (e.g. via the Wigner-Eckart theorem for
atomic dipoles [27, 28]), or determined by experiment. Zero matrix
elements correspond to transitions which are forbidden by dipole se-
lection rules. If the system is invariant under parity, for example, then
for nondegenerate eigenstates |n〉 the diagonal elements 〈n|µ|n〉 are
zero1.

3.1.1 Two-level case

For the case N = 2 and E2 > E1, the interaction Hamiltonian is

Hint = F0 cos (ωt+ φ) n̂·µ

= ~Ωcos (ωt+ φ)

[
0 e−iχ

eiχ 0

]
, (3.7)

where the matrix elements of the complex operator n̂ ·µ have been
written in polar form as

〈1|n̂·µ|2〉 = µ12 e
−iχ

〈2|n̂·µ|1〉 = µ12 e
iχ (3.8)

and the Rabi frequency Ω := µ12 F0/~ has been introduced. In what
follows we set ~ equal to 1 for simplicity. We remove the phase χ via
the basis transformation

|1〉 −→ e−iχ/2|1〉
|2〉 −→ e+iχ/2|2〉 , (3.9)

so that the interaction Hamiltonian becomes

Hint = Ωcos (ωt+ φ) σx. (3.10)

1For a proof see e.g. [26], p. 260.



24 CHAPTER 3. DRIVEN MULTI-LEVEL SYSTEMS

3.1.2 General case

In the general multi-level case there are
(
N
2

)
= 1

2N(N − 1) possible
transitions. The interaction Hamiltonian is

Hint = F0 cos (ωt+ φ)

N∑

n,n′=1

n′>n

µnn′ σx
nn′ , (3.11)

where we have fixed n′>n so as to count each transition only once.
Throughout this thesis, the summation range in (3.11) will be denoted
by the shorthand notation

∑
n′>n. The dipole matrix elements are

real, and denoted

〈n|n̂·µ|n′〉 = µnn′ , (3.12)

and the generalised Pauli matrices are

σx
nn′ := |n〉〈n′|+ |n′〉〈n| ,
σy
nn′ := −i (|n〉〈n′| − |n′〉〈n|) ,
σz
nn′ := |n〉〈n| − |n′〉〈n′| . (3.13)

We have assumed here that the states have no permanent dipole mo-
ment, i.e. µnn = 0. The expansion of n̂ ·µ into generalised Pauli
matrices means that each term in the sum in (3.11) corresponds to a
driven transition, which is illustrated in Figure 3.1. We can rewrite

E
N

E
n

E
1

E
n

¾ 

x  =
nn

(n)

(n) (n )

(n ) 1

1
¶

¶

¶

¶

Figure 3.1: The driving of transitions between levels |n〉 and |n′〉 in a multi-level
system is associated with the generalised Pauli matrices (σx

nn′ for example) as a
natural extension of the two-level case.
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this as

Hint = Ωcos (ωt+ φ)
∑

n′>n

gnn′ σx
nn′ , (3.14)

where Ω gnn′ := F0 µnn′ . The Rabi frequency Ω is then defined by
fixing gnn′ = 1 for a particular reference transition.

3.2 Rotating frame transformations

As it stands, simulation of the Hamiltonian (3.14) is inefficient due
to the fast oscillation at the carrier frequency ω. However, efficient
simulation of a system is essential in order to be able to optimise
pulses for it, as we simulate the evolution once per iteration of the
GRAPE algorithm (see Section 2.2). To eliminate this fast-oscillating
time-dependence, we can transform to a new basis which rotates at
or near ω.

3.2.1 Singly-rotating frames in a two-level system

Consider again a two-level system driven near resonance, with E2 −
E1 = ω0. Using interaction Hamiltonian (3.10), the laboratory frame

Hamiltonian is

Hlab = −1

2
ω0σ

z +Ωcos (ωt+ φ) σx. (3.15)

We apply a basis transformation into a rotating frame2 at ω0

|ψ〉lab −→ |ψ〉rot = e−
1
2 iω0t σ

z |ψ〉lab . (3.16)

States in the rotating frame evolve according to

d|ψ〉rot
dt

= −1

2
iω0σ

z |ψ〉rot + e−
1
2 iω0t σ

z d|ψ〉lab
dt

=
1

i
Hrot|ψ〉rot , (3.17)

2In this special case where we have chosen to rotate at ω0, this is also the
interaction picture, since |ψ〉rot = eiH0t|ψ〉lab.
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where the rotating frame Hamiltonian has been introduced:

Hrot = e−
1
2 iω0t σ

z {Ωcos (ωt+ φ) σx} e 1
2 iω0t σ

z

=
1

2
Ω { cos [(ω − ω0)t+ φ]σx − sin [(ω − ω0)t+ φ]σy }

+
1

2
Ω { cos [(ω + ω0)t+ φ]σx + sin [(ω + ω0)t+ φ]σy } . (3.18)

Here we have made use of the identity (see Ref. [29], Eqn. (120))

e−iφBAeiφB = A cosφ− i[B,A] sinφ (3.19)

which holds if and only if [B, [B,A]] = A, as is the case for A = σx and
B = 1

2σ
z . The terms in (3.18) oscillating at ω+ω0 can be neglected, as

they oscillate so quickly relative to Ω that their contribution averages
to approximately zero. Dropping these terms is called the rotating-

wave approximation. We then transform back to the lab frame, and
into a new frame rotating at ω:

|ψ〉rot = e−
1
2 iωt σz |ψ〉lab , (3.20)

yielding a Hamiltonian in our new rotating frame of

Hrot =
1

2
∆ωσz +

1

2
Ω [ cos(φ)σx − sin(φ)σy ] (3.21)

where ∆ω := ω − ω0. Those familiar with other conventions (e.g.
NMR) may be surprised to see a minus sign in front of the sine func-
tion in (3.21). This is merely due to our convention thatH0 = − 1

2ω0σ
z

(and thus E1 < E2 for ω0 positive) and not H0 = 1
2ω0σ

z as is some-
times the case in other literature.

3.2.2 Neglecting off-resonant transitions

If the field is far-off resonance from a particular transition, it is pos-
sible to neglect the contribution from this transition by dropping the
corresponding driving term. To find a rough criterion for doing this,
we consider Rabi oscillation (i.e. setting Ω constant) in a two-level
system. If the system is in state |1〉 at t = 0, Schrödinger’s equation
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with Hamiltonian (3.21) yields a probability to be in state |2〉 at time
t of

|c2(t)|2 =
1

2

(
Ω

Ω′

)2
sin2(Ω′t) , (3.22)

where Ω′ =
√
Ω2 + (∆ω)2. If Ω ≪ ∆ω, the maximum excitation is

then
(
Ω

Ω′

)2
≈ Ω2

(∆ω)2
. (3.23)

This scenario is depicted in Fig. 3.2. We therefore assume that if
Ω ≪ ∆ω holds for a particular transition, it can be neglected. Note
that this analysis was made using a Hamiltonian in the rotating-wave
approximation, so it only strictly holds for Ω ≪ ∆ω ≪ ω. Of course
for detunings ∆ω ∼ ω or greater, the transition can also be neglected
to a very good approximation.

»Ω2/(¢!)2

jc
2
(t)j2

t

Figure 3.2: Rabi oscillation in an off-resonantly driven two-level system. The
maximum excitation probability is of the order Ω2/ (∆ω)2.

3.2.3 Singly-rotating frames in a N-level system

For a general multi-level system driven by a single field, the full
Hamiltonian in the laboratory frame is

Hlab = H0 +Ωcos (ωt+ φ)
∑

n′>n

gnn′ σx
nn′ . (3.24)

The summation here is over all 1
2N(N − 1) possible transitions. Typ-

ically, however, only a subset of transitions will be actively driven. As
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we have discussed in Section 3.2.2, transitions which are far-off res-
onance can be neglected, while other transitions may be completely
forbidden by dipole selection rules (gnn′ = 0). Labelling the trans-
ition between levels |n〉 and |n′〉 by the pair (n, n′), we define the set
S = {(n, n′)} as the set of transitions which are to be included in the
model. The laboratory frame Hamiltonian is then written

Hlab = H0 +Ωcos (ωt+ φ)
∑

S

gnn′ σx
nn′ , (3.25)

where the summation is only over transitions (n, n′) ∈ S. Further-
more, we drop the counter-rotating components of each driving term
in (3.25), replacing them with terms in the rotating wave approxima-
tion:

Hlab ≈ H0 +
Ω

2

∑

S

gnn′{cos(ωt+φ)σx
nn′−sin(ωt+φ)σy

nn′} , (3.26)

As in the two-level case, we seek a basis transformation that will
remove the fast oscillation at ω. We make the ansatz

|ψ〉rot = e−iR |ψ〉lab , (3.27)

where R is a diagonal matrix to be determined later. Taking the
derivative of this, we find that the transformed Hamiltonian is

Hrot = e−iRHlab e
iR +

dR

dt
. (3.28)

Note that all terms in the sum in (3.26) are orthogonal to each other,
and our diagonal transformation does not change this. The oscilla-
tion at ω must therefore be removed from each term separately. Our
desired transformation is

e−iR {cos (ωt+ φ)σx
nn′− sin (ωt+ φ) σy

nn′} eiR
=cos(φ)σx

nn′− sin(φ)σy
nn′ , (3.29)

which must hold for all (n, n′) ∈ S, i.e. for all terms in the sum (3.26).
The question is how we can find an R to achieve this, or even if one
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exists at all. Let us assume for the moment that we have determined
R so that (3.29) is satisfied. Eqn. (3.28) then yields

Hrot = H0 +
dR

dt
+

1

2
Ω
∑

S

gnn′{cosφσx
nn′ − sinφσy

nn′} . (3.30)

This is the rotating frame Hamiltonian. Note that the driving terms
no longer oscillate with the carrier frequency ω, which will instead
appear in the generalised detuning term H0 +

dR
dt . This term reduces

to 1
2∆ωσ

z in the two-level case.

How to determine the transformation matrix R

Our task now is to find a diagonal matrix R which satisfies (3.29)
for all (n, n′) ∈ S. We will now show that finding R is equivalent to
solving a linear matrix equation of the form Ax = b. Using identity
(3.19), and the fact that R and σz

nn′ commute, we can simplify (3.29)
to

e−iR σx
nn′ eiR = cos (ωt)σx

nn′ + sin (ωt)σy
nn′ . (3.31)

To see how the left-hand side transforms, we need to evaluate the
commutator [R, σx

nn′ ]. Any diagonal, traceless3, Hermitian matrix
can be expanded as

R =
∑

cnn′σz
nn′ (3.32)

where cnn′ are real, scalar coefficients. The sum can in principle ex-
tend over all transitions, not just those in S. The commutator is

[R , σx
nn′ ] =

∑
cmm′ [σz

mm′ , σx
nn′ ] . (3.33)

Using definitions (3.13) we find

[σz
mm′ , σx

nn′ ] = [(|m〉〈m| − |m′〉〈m′|) , (|n〉〈n′|+ |n′〉〈n|)] . (3.34)

3This is not a restriction, as any component of R along the identity commutes
with σx

nn′ and therefore vanishes from the left-hand side of (3.31).
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Figure 3.3: Values of the commutator [σz
mm′ , σ

x
nn′ ] for different configurations

of indices. If both upper and lower indices are the same, the commutator is the
usual 2iσy

nn′ . If the either the upper, or the lower indices are the same (sometimes

referred to as “regressive transitions”), we instead have iσy
nn′ . If the upper index

of one is equal to the lower index of the other (“progressive transitions”), we have
−iσy

nn′ . If no indices are the same the operators obviously commute.

Consider first the case m = n, m′ = n′. Remembering that 〈n|n〉 = 1
and 〈n|n′〉 = 0, we obtain

[σz
mm′ , σx

nn′ ] = [(|n〉〈n| − |n′〉〈n′|) , (|n〉〈n′|+ |n′〉〈n|)]
= 2(|n〉〈n′| − |n′〉〈n|)
= 2iσy

nn′ . (3.35)

The other cases can be evaluated similarly, and in the end we find

[σz
mm′ , σx

nn′ ] =





+2iσy
nn′ m=n, m′=n′

+iσy
nn′ m=n, m′ 6=n′,

or m 6=n, m′=n′

−iσy
nn′ m=n′ or m′=n

0 m 6=n, m′ 6=n′ .

(3.36)

The four possible cases are illustrated in Fig. 3.3 for clarity. The first
point to make is that [R, σx

nn′ ] is always proportional to iσ
y
nn′ , i.e.

[R , σx
nn′ ] = θnn′(iσy

nn′) , (3.37)

for some proportionality constant θnn′ . This means we can apply
formula (3.19) to evaluate the left-hand side of (3.31) as

e−iR σx
nn′ eiR = cos (θnn′) σx

nn′ + sin (θnn′)σy
nn′ . (3.38)
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Equating the right-hand side of (3.38) with the right-hand side of
(3.31), we have

cos(θnn′)σx
nn′ + sin(θnn′) σy

nn′ = cos(ωt)σx
nn′ + sin(ωt)σy

nn′ . (3.39)

Eqn. (3.29) is therefore satisfied if and only if θnn′ = ωt for all (n, n′) ∈
S, and thus

[R , σx
nn′ ] = ωt (iσy

nn′) (3.40)

for all (n, n′) ∈ S. This gives a set of simultaneous equations to be
solved for R. Using expansion (3.32) for R, and the commutator res-
ults in (3.36), we obtain a matrix equation to solve for the coefficients
cnn′ .

We now give some concrete examples to illustrate this. The most
trivial case is N = 2 and S = {(1, 2)}, where there is only one equation
to satisfy:

[R , σx
12] = c12 [σ

z
12 , σ

x
12] = c12 (2iσ

y
12) = ωt (iσy

12) , (3.41)

and thus c12 = 1
2ωt as expected. Slightly more interesting is the case

N = 3 and S = {(1, 2), (1, 3), (2, 3)}, where we obtain 3 equations:

c12 (2iσ
y
12) + c13 (iσ

y
12) + c23 (−iσy

12) = ωt (iσy
12)

c12 (iσ
y
13) + c13 (2iσ

y
13) + c23 (iσ

y
13) = ωt (iσy

13)

c12 (−iσy
23) + c13 (iσ

y
23) + c23 (2iσ

y
23) = ωt (iσy

23) . (3.42)

In matrix form this is



2 1 −1
1 2 1

−1 1 2





c12
c13
c23


 = ωt




1
1
1


 . (3.43)

This equation has no solution, meaning that there exists no diagonal
transformation e−iR which can meet condition (3.29) for all 3 trans-
itions. For a case where solutions do exist, consider instead N = 4
and S = {(1, 2), (1, 3), (2, 4), (3, 4)}. The matrix equation analagous
to (3.43) is




2 1 −1 0
1 2 0 −1

−1 0 2 1
0 −1 1 2







c12
c13
c24
c34


 = ωt




1
1
1
1


 . (3.44)
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The solutions are




c12
c13
c24
c34


 = ωt




1− x
x

1− x
x


 (3.45)

where x ∈ R is a free variable. Inserting this into (3.32) yields R =
1
2 (σ

z⊗1l+1l⊗σz)ωt, a familiar result [6]. In general we see that finding
the singly-rotating frame transformation reduces to the problem of
filling out a matrix using the commutator rules in Fig. 3.3 and solving
the associated linear matrix equation.

3.2.4 Additional fields and multiply-rotating fra-

mes

We can also consider the case of multiple driving fields. For an N -level
system driven by M fields, the laboratory frame Hamiltonian is

Hlab = H0 +

M∑

m=1

Ωmcos (ωmt+ φm)
∑

n′>n

gnn′ σx
nn′ . (3.46)

As in Section 3.2.3, we could choose to transform into a singly-rotating
frame oscillating at ω, so that the driving terms oscillate at ωm−ω. In
the following, however, we specify conditions that allow one to elimin-
ate the time-dependence completely in a multiply-rotating frame. For
clear exposition we will consider here the case of two driving fields in
a doubly-rotating frame, which can be trivially generalised to higher
cases. The laboratory frame Hamiltonian simplifies to

Hlab = H0 +

2∑

m=1

Ωmcos (ωmt+ φm)
∑

n′>n

gnn′ σx
nn′ . (3.47)

Criterion for a doubly-rotating frame

We now assume that each fieldm addresses a subset of transitions Sm.
Again we may neglect certain transitions for being far-off resonance,
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or because gnn′ = 0. We rewrite (3.47) as

Hlab = H0 +

2∑

m=1

Ωmcos (ωmt+ φm)
∑

Sm

gnn′σx
nn′ , (3.48)

where the second summation is over all transitions (n, n′) ∈ Sm. Now
suppose that

S1 ∩ S2 = ∅ , (3.49)

i.e. the two fields address disjoint sets of transitions. Only in this case
can we make a doubly-rotating frame transformation to completley
eliminate the oscillation at ω1 and ω2 from the Hamiltonian. An
example where this is possible is illustrated in Fig. 3.4a, whereas in
Fig. 3.4b condition (3.49) does not hold.

(b)(a)

S
1

S
2

S
2

!
1

!
2S

1

!
1

!
2

Figure 3.4: (a) In this example two fields at frequencies ω1 and ω2 drive two
disjoint sets of transitions S1 and S2, respectively, so that no single transition is
addressed by both fields. In this case it may be possible to find a doubly- rotating
frame transformation. (b) If one or more transitions are addressed by the same
field (a situation sometimes referred to as cross-talk), this is not possible.

The doubly-rotating frame transformation

Let us now assume that condition (3.49) holds, and that the driv-
ing terms in (3.48) are rewritten in the rotating wave approximation.
Again we make the transformation (3.27), but this time we require it
to remove the oscillation at ω1 for some transitions and ω2 for others.
Specifically, we require that

e−iR (cos (ωmt+ φm)σx
nn′− sin (ωmt+ φm)σy

nn′) e
iR
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= cos(φm)σx
nn′− sin(φm)σy

nn′ (3.50)

for all (n, n′) ∈ Sm, for m = 1, 2. This is a generalisation of criterion
(3.29). We nowmake the exact same argument as in Section 3.2.3 from
Eqns. (3.32) to (3.38), but instead of (3.39) we have the requirement

cos (θnn′)σx
nn′ + sin (θnn′)σy

nn′

=cos (ωmt)σ
x
nn′ + sin (ωmt) σ

y
nn′ . (3.51)

for all (n, n′) ∈ Sm, for m = 1, 2. Thus

[R, σx
nn′ ] = i(ωmt)σ

y
nn′ . (3.52)

must hold for all (n, n′) ∈ Sm, for m = 1, 2. Again we determine R by
solving a linear system of equations, where the only difference to the
singly-rotating frame case is that we replace ωt with ω1t for transitions
in S1, and with ω2t for transitions in S2. Once R is calculated, the
laboratory frame Hamiltonian (3.48) transforms to (in the rotating-
wave approximation)

Hrot = H0 +
dR

dt

+
1

2

2∑

m=1

Ωm

∑

Sm

gnn′ {cos (φm)σx
nn′ − sin (φm)σy

nn′} . (3.53)

To give an example of how R is determined, we return to the case
N = 4 and S = {(1, 2), (1, 3), (2, 4), (3, 4)}, but we now suppose that
the (1, 3) and (2, 4) transitions are driven by a field at ω1, while the
(1, 2) and (3, 4) transitions are driven by a field at ω2. The matrix
equation for the coefficients cnn′ is




2 1 −1 0
1 2 0 −1

−1 0 2 1
0 −1 1 2







c12
c13
c24
c34


 =




ω2t
ω1t
ω1t
ω2t


 . (3.54)

We label the square matrix on the left-hand side A, and note that it
is identical to that in (3.44). Indeed, if we let ω1 = ω2 = ω we recover
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exactly the singly-rotating frame case. To solve (3.54) for general ω1t
and ω2t we note that any solution must be linear in ω1t and ω2t, i.e.




c12
c13
c24
c34


 = ω1t




x12
x13
x24
x34


+ ω2t




y12
y13
y24
y34


 (3.55)

where xnn′ and ynn′ are some coefficients which are independent of ω1t
and ω2t. Inserting (3.55) into (3.54), we obtain two matrix equations
to be solved independently:

A




x12
x13
x24
x34


 =




0
1
1
0


 , A




y12
y13
y24
y34


 =




1
0
0
1


 . (3.56)

Solving these yields R = 1
2 (ω1σ

z ⊗ 1l + ω21l ⊗ σz)t, another familiar
result [6]. Further worked examples can be found in Sections 3.4 and
3.5.

3.3 Application to a strongly coupled two-

spin system

In this section we consider as a simple example a pair of coupled spin- 12
particles. When the spin pair is viewed as a driven four-level system,
certain subtleties of the problem are illuminated. In particular when
selective pulses are applied, we see how the “rotation angles” required
for maximum excitation deviate from π

2 in the strong coupling regime,
as previously pointed out in [30].

3.3.1 Product and coupled bases

The resonance frequencies of the spins are labelled ω1 and ω2, while
the two eigenstates of each spin are denoted |α〉 and |β〉. The tensor
products of these basis states define the product basis of the composite
system (Fig. 3.5a). If we introduce an isotropic coupling with coup-
ling strength J , the system in the product basis is described by the
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Hamiltonian

H0 = −ω1

2
(σz⊗ 1l)− ω2

2
(1l⊗ σz) +

πJ

2
(σx⊗ σx + σy⊗ σy + σz⊗ σz)

= −ω1 Iz − ω2 Sz + 2πJ (IxSx + IySy + IzSz) , (3.57)

where we have switched to the product operator notation Ij :=
1
2σ

j⊗1l,
Sj :=

1
21l⊗ σj , and IjSk :=

1
4σ

j ⊗ σk. We could alternatively represent
this Hamiltonian in its own eigenbasis, which we term the coupled

basis of the system (Fig. 3.5b). The Hamiltonian is then given by

H ′
0 =




E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4


 , (3.58)

where the single quantum transition frequencies ωnn′ := (En′ − En)
are determined from the eigenvalues of H0 to be

ω12 = ω̄ − πJ −∆/2, ω24 = ω̄ + πJ +∆/2,
ω13 = ω̄ − πJ +∆/2, ω34 = ω̄ + πJ −∆/2,

(3.59)

with

ω̄ :=
ω1 + ω2

2
, ∆ :=

√
(2πJ)2 + (ω1 − ω2)

2 . (3.60)

3.3.2 Spectrum of the coupled spins

We now consider a measurement of the expectation value

M(t) := 〈Ix + Sx〉 . (3.61)

In the case of NMR spectroscopy this is proportional to the bulk mag-
netisation of an ensemble of nuclear spin pairs in a direction transverse
to the B0 field (which we define as the x-direction). This is what is
measured in NMR experiments. In the coupled basis Ix+Sx becomes

I ′x + S′
x :=

1

2




0 v u 0
v 0 0 v
u 0 0 u
0 v u 0


 , (3.62)
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Figure 3.5: (a) The tensor product basis for a pair of spin- 1
2
particles. (b) The

eigenbasis of the coupled Hamiltonian H0. The coupling causes the eigenstates |2〉
and |3〉 to be shifted in energy from |αβ〉 and |βα〉, yielding four distinct transition
frequencies ωnn′ . (c) The resulting spectrum. Equation (3.64) tells us that the
inner peaks are higher than the outer peaks by a factor of (u/v)2.

with

u := cos θ+sin θ , v := cos θ−sin θ , θ :=
1

2
arctan

(
2πJ

ω1 − ω2

)
. (3.63)

As the HamiltonianH ′
0 is diagonal, time evolution in the coupled basis

is easily managed. If the system is initially in the state ρ′(0) = I ′x+S
′
x,

(3.61) evaluates to

M(t) =
1

2
v2{cos (ω12t) + cos (ω24t)}

+
1

2
u2{cos (ω13t) + cos (ω34t)} . (3.64)

Fourier transformation of this signal then yields the spectrum (Fig. 3.5c).
Note that the two inner peaks are higher than the two outer peaks by
a factor of (u/v)2.

3.3.3 Anomalous rotation angles of selective pulses

Suppose the spin pair is dipole-coupled to a driving field with carrier
frequency ω and amplitude Ω, with the phase set to zero for conveni-
ence. In a frame rotating at ω, the driving Hamiltonian in the product
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basis is

HRF = Ω(Ix + Sx) . (3.65)

Transforming to the coupled basis we obtain

H ′
RF =

1

2
Ω




0 v u 0
v 0 0 v
u 0 0 u
0 v u 0




=
1

2
Ω {v(σx

12 + σx
24) + u(σx

13 + σx
34)} . (3.66)

Note that in this basis the transitions have different dipole moments.
Consider for example a pulse applied at carrier frequency ω13, with a
nominal rotation angle of θ := Ωt (where Ω is constant). The complete
Hamiltonian is

H ′ = H ′
d +H ′

RF , (3.67)

where H ′
d := H ′

0+ω13(Iz+Sz). If the pulse is sufficiently off-resonant
with all other transitions (i.e. selective), we can replace H ′

RF with the
single transition operator Ω(12uσ

x
13). The resulting unitary operation

is

U ′ = exp {−iH ′t} ≈ exp

{
−iH ′

dt− i(uθ)
1

2
σx
13

}
, (3.68)

and the effective rotation angle of the selective pulse is thus uθ. This
effect can be observed by applying a selective excitation pulse to the
initial state ρ(0) = Iz + Sz and observing the height of the resulting
spectral peak, as illustrated in Fig. 3.6.

Finally we note that the difference in peak heights and nutation
frequencies is only significant if the coupling is large relative to the
frequency difference of the spins, i.e.

2πJ ∼ |ω1 − ω2| . (3.69)

We will consider selective pulses on a two-spin system approaching
the strong coupling regime in Chapter 5, where 13C nuclear spins are
coupled via a nitrogen-vacancy defect in a diamond lattice.
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Figure 3.6: Simulated spectra of a strongly coupled two-spin system after the
application of selective excitation pulses with different nominal rotation angles
θ = Ωt. (a) The nutation frequency of an inner peak (ω24 or ω13) is scaled by
a factor of u, while (b) for an outer peak (ω12 or ω24) the nutation frequency is
scaled by v. The choice of parameters in this case was 2πJ = ω1 − ω2.

3.4 Qubit rotations in Pr-doped Y2SiO5

We now further illustrate the use of the multi-level framework outlined
in Sections 3.1 and 3.2, with two worked examples drawn from real
experiments. The first of these concerns Refs. [31, 32], where shaped
laser pulses are used to manipulate the hyperfine structure of the 3H4

and 1D2 manifolds of an ensemble of Pr3+ dopant ions in a Y2SiO5

crystal.

3.4.1 Problem description

The relevant energy level structure of Pr3+ is illustrated in Fig. 3.7.
In the experiments, hyperbolic secant pulses [33] were used to per-
form various qubit rotations in the subspace of levels 2 and 3 via level
5. The state-to-state transfer |2〉 → |3〉, for instance, can be achieved
with a π-pulse at ω2 followed by a π-pulse at ω1. This requires that the
driving fields selectively address transitions (3, 5) and (2, 5), thus lim-
iting their amplitude so that the other transitions are untouched. All
operations in Ref. [32] were composed of 4 hyperbolic secant pulses of
length 4.4µs, yielding a total duration of 17.6µs. Due to spontaneous
emission from the 1D2 manifold leading to decoherence, however, the
pulses should be as short as possible. A potential optimisation task,
then, is to design nonselective pulses which incorporate all six levels,
thus allowing for larger amplitudes and shorter durations.
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Figure 3.7: Hyperfine structure of the 3H4 and 1D2 manifolds of Pr3+ dopant
ions in a Y2SiO5 crystal. Linearly polarised laser fields have their carrier frequences
tuned to the (3, 5) and (2, 5) transitions.

For this we require an accurate model of the 6-level system. In
addition to the transition frequencies in Fig. 3.7, the relative dipole
moments gnn′ of each transition must be specified. The oscillator
strengths |gnn′ |2 are provided in Ref. [34] and reproduced here in
Table 3.1. In Ref. [34] it is stated that all transitions are driven by
the linearly polarised fields, and for the moment we assume that the
dipole moments are real and positive. In this case we simply square
root the values in Table 3.1 and insert them into the (laboratory
frame) Hamiltonian

Hlab =



E1

. . .

E6


+

2∑

j=1

Ωj cos(ωjt+ φj)
∑

S

gnn′σx
nn′ , (3.70)

where S = {(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6)},
and Ωj and φj are the controllable amplitude and phase of the j’th
field. As we have 2 fields driving 9 transitions, the interaction part of
this Hamiltonian consists of 18 terms.

3.4.2 Rotating frame Hamiltonian

The next step is to convert (3.70) to an appropriate rotating frame.
Because the two fields can in principle address the same transitions,
only a singly-rotating frame is possible. Following the procedure in
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n\n′ 4 5 6

1 0.55 0.38 0.07
2 0.40 0.60 0.01
3 0.05 0.02 0.93

Table 3.1: Relative oscillator strengths |gnn′ |2 of the optical transitions in the
3H4 and 1D2 manifolds of Pr3+, reproduced from Ref. [34]. All entries have an
absolute uncertainty less than ±0.01.

Section 3.2.3, the rotating frame transformation is

|ψ〉rot = e−iR |ψ〉lab , (3.71)

where we choose ω = 1
2 (ω1+ω2). To determine B we fill out the 9×9

matrix A of commutators according to the rules in Fig. 3.3, obtaining

14 15 16 24 25 26 34 35 36

A =

14

15

16

24

25

26

34

35

36




2 1 1 1 0 0 1 0 0
1 2 1 0 1 0 0 1 0
1 1 2 0 0 1 0 0 1
1 0 0 2 1 1 1 0 0
0 1 0 1 2 1 0 1 0
0 0 1 1 1 2 0 0 1
1 0 0 1 0 0 2 1 1
0 1 0 0 1 0 1 2 1
0 0 1 0 0 1 1 1 2




, (3.72)

where the transition labels nn′ are included as a visual guide. Solving
the associated matrix equation, we find

R =
ωt

6

∑

S

σz
nn′ . (3.73)

The Hamiltonian (3.70) transforms to (in the rotating-wave approx-
imation)

Hrot =



E1

. . .

E6


+ ωB
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+
1

2

2∑

j=1

Ωj

∑

S

gnn′ {cos (∆jt+ φj) σ
x
nn′ − sin (∆jt+ φj)σ

y
nn′} ,

where ∆j = ωj − ω. This is rewritten as

Hrot = Hd + uxH
(x)
c + uyH

(y)
c , (3.74)

with

Hd =



E1

. . .

E6


+ ωB , (3.75)

H(x)
c =

1

2

∑

S

gnn′σx
nn′ , H(y)

c = −1

2

∑

S

gnn′σ
y
nn′ , (3.76)

and

ux =

2∑

j=1

Ωj cos (∆jt+ φj) , uy =

2∑

j=1

Ωj sin (∆jt+ φj) . (3.77)

3.4.3 Effect of off-resonant driving

Now that we have a model of the 6-level system, the first thing we can
examine is the effect of off-resonant driving for the hyperbolic secant
scheme. As a target operation, consider for example an effective π-
rotation in the qubit subspace:

U0 =




0 0
0 0
0 0
1 0
0 1
0 0




−→ Utarget =




0 0
0 0
0 0
0 1
1 0
0 0



. (3.78)

The hyperbolic secant pulses have a complex Rabi frequency profile
given by

Ωeiφ = Ω0 {sech [β (t− t0)]}1+iµ (3.79)
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Figure 3.8: Total field of the hyperbolic secant pulse scheme for a π-rotation in
the qubit subspace. For later comparison with the optimised pulse, we show the
(a) real, and (b) imaginary parts of the total field in a frame rotating at ω - hence
the additional oscillation at |∆j | = 5.1MHz. These are related to the individual
fields by Eqn. (3.77).

where µ = 1.93, Ω0 = 0.55MHz, β = 1.47×106 rad/s, t0 = 2.2µs, and
each pulse has a duration of 4.4µs. Qubit rotations are implemented
by a sequence of four such pulses - for more information see Refs. [32,
33]. The pulses are shown in Fig. 3.8. The ideal 3-level system can be
recovered from the 6-level model by setting gnn′ = 0 for all transitions
except (2, 5) and (3, 5). In this case the hyperbolic secant scheme
achieves a fidelity of

F := | 〈Utarget|U |U0〉 | = 0.997 . (3.80)

Allowing for all 9 transitions in the full 6-level model, we instead
obtain

F = 0.981 . (3.81)

We note that off-resonant driving is itself a significant source of error.
By optimising pulses in the full six-level model, we can account for
this error, in addition to reducing the effect of spontaneous emission
by reducing the pulse length.
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3.4.4 Optimised pulses

We now consider a single field at carrier frequency ω. The field is
allowed to have some detuning ∆ω, as well as a scaling κ of its Rabi
frequency, in order that pulses can be optimised to be robust over
some variation of these (as discussed in Section 2.2.6). The drift and
control Hamiltonians become

Hd =



E1

. . .

E6


+ (ω +∆ω)B , (3.82)

H(x)
c =

1

2
κ
∑

S

gnn′σx
nn′ , H(y)

c =
1

2
κ
∑

S

gnn′σ
y
nn′ . (3.83)

Furthermore, due to limitations in the pulse generating apparatus, we
restrict the amplitude and bandwidth of the pulses via the proced-
ure described in Section 2.2.7. The numerical values of the optim-
isation parameters are given in Table 3.2, while the times required
by the optimised pulses, and their respective fidelities, are presented
in Table 3.3. We find that the optimised pulses offer speedups by
factors of 4 to 8, so the experimental error due to spontaneous emis-
sion should be considerably reduced. The optimised pulse shape for
the π-rotation is shown in Fig. 3.9 as an example.

Pulse digitisation: 256
Maximum amplitude: 1.5MHz
Bandwidth range: ±8MHz
Error tolerance: ∆ω = ±100kHz, κ = ±5%
Gradient method: First-order
Iteration limit: 5× 103

Table 3.2: Parameters used in all of the pulse optimisations in Section 3.4. The
amplitude restriction is due to power limitations, while the bandwidth is restricted
by the response of the acousto-optic modulator which shapes the laser field.
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Effective rotation Pulse duration (µs) 〈F 〉
π 2 0.995
+π/2 x 4 0.997
−π/2 x 4 0.997
+π/2 y 4 0.996
−π/2 y 4 0.997

Table 3.3: Performance of the optimised pulses for five different target opera-
tions. The fidelity F is averaged over the specified range of error parameters ∆ω
and κ.
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Figure 3.9: (a) Real, and (b) imaginary parts of the optimised pulse for a robust
π-rotation in the qubit subspace of Pr3+.

3.5 Population transfer in rubidium

For a second example of a driven multi-level atom we consider the
experiment described in Ref. [35], where optical transitions in 87Rb
are manipulated by two laser fields. One of the long term goals of this
experimental setup is a loophole-free test of Bell’s inequality. Here
we are just interested in the first step in the state-readout procedure,
which involves the 52S1/2 and 52P1/2 manifolds. This is a nice example
of a multi-level system where a doubly-rotating frame transformation
is necessary.
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3.5.1 System description

The hyperfine structure of 87Rb is shown in Fig. 3.10. Let us briefly
motivate this with some basic atomic physics. We are considering the
2S1/2 and 2P1/2 manifolds. In spectroscopic notation, the subscript
refers to the sum of the electron spin and orbital angular momenta,
i.e. J = 1

2 . The nuclear spin of 87Rb is I = 3
2 , so the total angular

momentum F can take the values

{|I − J | , ..., |I + J |} = {1, 2} . (3.84)

This yields 2 × (3 + 5) = 16 possible states. We assume that the
system is initially in an unknown superposition of |F = 1,m = −1〉
and |F = 1,m = 1〉, as is the case in Ref. [35]. Furthermore, the
circularly polarised laser fields only drive transitions for which ∆m =
±1 (for details see Appendix B). This means that certain states (the
dashed lines in Fig. 3.10) can be neglected from the model, as they
will never be populated. The remaining states are labelled from |1〉 to
|8〉 according to Fig. 3.10. The two driving fields have frequencies ωr

and ωb. These are supposed to be left- and right- circularly polarised,

2P
1/2 !

r
!
b

817 MHz
F'=2

m=-2 m=-1 m=0 m=1 m=2

F'=1

F=2

F=1

6.8 GHz
j1i j2i

j3i j4i

j5i

j6i j7i j8i

2S
1/2

Figure 3.10: In Ref. [35], hyperfine states in 87Rb are manipulated by two laser
fields. The field at ωr is predominantly left-circularly polarised, while the field at
ωb is predominantly right-circularly polarised. As the initial state is restricted to
the {|1〉, |2〉} subspace, and only transitions with ∆m = ±1 are allowed, certain
states (represented by dashed lines) are neglected.
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respectively, but they both contain a small component of the opposite
polarisation. We would like to be able to model the effect of this
polarisation error.

So how do we write down the Hamiltonian for this system? Up to
this point we have considered only linearly polarised driving, but the
difference in the form of the Hamiltonian when going to circular polar-
isation is fairly small, with the driving terms derived in Appendix B.
The laboratory-frame Hamiltonian is

Hlab=



E1

. . .

E8




+

√
1− kb
2

Ωb

∑

S
(b)
+

gnn′{cos(ωbt+φb)σ
x
nn′−sin(ωbt+φb) σ

y
nn′}

+

√
1− kr
2

Ωr

∑

S
(r)
−

gnn′{cos(ωrt+φr)σ
x
nn′−sin(ωrt+φr)σ

y
nn′}

+

√
kb
2

Ωb

∑

S
(b)
−

gnn′{cos(ωbt+φb)σ
x
nn′−sin(ωbt+φb) σ

y
nn′}

+

√
kr
2

Ωr

∑

S
(r)
+

gnn′{cos(ωrt+φr)σ
x
nn′−sin(ωrt+φr)σ

y
nn′} (3.85)

where

S
(b)
+ = {(1, 5), (1, 7), (2, 8)} ,
S
(r)
− = {(3, 6), (4, 5), (4, 7)} ,

S
(b)
− = {(1, 6), (2, 5), (2, 7)} ,
S
(r)
+ = {(3, 5), (3, 7), (4, 8)} . (3.86)

The dimensionless parameters kr and kb quantify the amount of ‘un-
wanted’ polarisation in each field, ranging from 0 to ∼ 0.05 (a 5%
error in intensity). The relative dipole moments gnn′ are given in
Table 3.4, reproduced from Ref. [36]. As the maximum Rabi fre-
quency in Ref. [35] is ∼ 250MHz, we neglect transitions that are
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n\n′ 5 6 7 8

1 −1/
√
12 −1/

√
2 −1/

√
12 -

2 1/
√
12 - −1/

√
12 −1/

√
2

3 1/
√
4 −1/

√
6 1/

√
4 -

4 1/
√
4 - −1/

√
4 1/

√
6

Table 3.4: Relative dipole moments gnn′ for all of the transitions included in
Hamiltonian (3.85), taken from [36].

driven off-resonantly by 6.8GHz. This means the two fields drive dis-
joint sets of transitions, i.e. no single transition is addressed by both
fields. Off-resonant driving by 817MHz is not neglected.

3.5.2 Rotating-frame Hamiltonian

We now transform to a new basis according to

|ψ〉rot = e−iR |ψ〉lab . (3.87)

To find R, we follow the procedure in Section 3.2.4. We first fill out
the 12× 12 matrix A of commutators using the rules in Fig. 3.3. This
yields

15 16 17 25 27 28 35 36 37 45 47 48

A =

15

16

17

25

27

28

35

36

37

45

47

48




2 1 1 1 0 0 1 0 0 1 0 0
1 2 1 0 0 0 0 1 0 0 0 0
1 1 2 0 1 0 0 0 1 0 1 0
1 0 0 2 1 1 1 0 0 1 0 0
0 0 1 1 2 1 0 0 1 0 1 0
0 0 0 1 1 2 0 0 0 0 0 1
1 0 0 1 0 0 2 1 1 1 0 0
0 1 0 0 0 0 1 2 1 0 0 0
0 0 1 0 1 0 1 1 2 0 1 0
1 0 0 1 0 0 1 0 0 2 1 1
0 0 1 0 1 0 0 0 1 1 2 1
0 0 0 0 0 1 0 0 0 1 1 2




. (3.88)
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In complete analogy to (3.56), we solve the two matrix equations

A




x15
x16
x17
x25
x27
x28
x35
x36
x37
x45
x47
x48




=




1
1
1
1
1
1
0
0
0
0
0
0




, A




y15
y16
y17
y25
y27
y28
y35
y36
y37
y45
y47
y48




=




0
0
0
0
0
0
1
1
1
1
1
1




, (3.89)

to obtain

R = (ωbt+ φb)
(∑

xnn′ σz
nn′

)
+ (ωrt+ φr)

(∑
ynn′ σz

nn′

)
, (3.90)

where


x15
x16
x17
x25
x27
x28
x35
x36
x37
x45
x47
x48




=
1

48




11
14
11
11
11
14
−5
−2
−5
−5
−5
−2




,




y15
y16
y17
y25
y27
y28
y35
y36
y37
y45
y47
y48




=
1

48




−5
−2
−5
−5
−5
−2
11
14
11
11
11
14




. (3.91)

Note that we have included the phases φb and φr in (3.90). This is
because in the experiment the phases of the fields are fixed, and not
controllable, so we might as well transform them away. The rotating
frame Hamiltonian is

Hrot =



E1

. . .

E8


+

dR

dt
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+
1

2

√
1− kb Ωb

∑

S
(b)
+

gnn′σx
nn′ +

1

2

√
1− kr Ωr

∑

S
(r)
−

gnn′σx
nn′

+
1

2

√
kb Ωb

∑

S
(b)
−

gnn′σx
nn′ +

1

2

√
kr Ωr

∑

S
(r)
+

gnn′σx
nn′ . (3.92)

In the control terminology we have

Hrot = Hd + ubH
(b)
c + urH

(r)
c , (3.93)

with

Hd =



E1

. . .

E8


+

dR

dt
,

H(b)
c =

1

2

√
1− kb

∑

S
(b)
+

gnn′σx
nn′ +

1

2

√
kb
∑

S
(b)
−

gnn′σx
nn′

H(r)
c =

1

2

√
1− kr

∑

S
(r)
−

gnn′σx
nn′ +

1

2

√
kr
∑

S
(r)
+

gnn′σx
nn′ (3.94)

and ub = Ωb, ur = Ωr. The phases φb and φr have disappeared com-
pletely. This is only possible in a doubly-rotating frame. If instead
|ωb − ωr| was small enough so that some transitions were driven by
both fields, then the relative phase |φb − φr| would be significant.
Fortunately this is not the case as, because the fields come from two
independent laser sources, their relative phase is unknown. In con-
trast, in the system in Section 3.4 the fields were only separated by
10.2MHz, but originated from the same laser source.

3.5.3 Optimised pulses for population transfer

In Ref. [35], the STIRAP scheme [37] is used to transfer the population
of state |1〉 to the {|3〉, |4〉} subspace, while keeping the population of
state |2〉 in the {|1〉, |2〉} subspace. The corresponding quality function
for this transfer is

φ(U) =
1

2

(
|〈3|U |1|〉|2+|〈4|U |1|〉|2+|〈1|U |2|〉|2+|〈2|U |2|〉|2

)
, (3.95)
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where, as in Chapter 2, 〈A|B|C〉 is taken to mean 〈A| · (B|C〉) if B
is non-Hermitian. In our simulations the STIRAP scheme achieves a
value of φ̄ = 0.90, where φ̄ is φ averaged over the specified ranges of
the error parameters kb and kr.

The optimisation settings are detailed in Table 3.5. Initially we
place no restriction on the bandwidth of the optimised pulses. In this
case the GRAPE algorithm is able to find solutions with a fidelity
(averaged over the specified ranges of kb and kr) of 0.997. An example
solution is given in Fig. 3.11. The high frequency modulation that
appears in these pulses drives the transitions that are off-resonant
by 817MHz. To see if this modulation is necessary, we enforce a
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Figure 3.11: Sample pulse shapes (a) ub and (b) ur for robust implementation
of the transfer in Eqn. 3.95. This pulse achieves an average fidelity of 99.7%.
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bandwidth restriction in the optimisation. With a frequency cutoff
of 100MHz the maximum fidelity achieved (for 100 random initial
pulses) is 0.907. This fidelity does not significantly increase until the
limit is raised beyond 817MHz, which suggests that the high frequency
modulation is indeed necessary.

Pulse digitisation: 1024
Maximum amplitude: 250MHz
Error tolerance: kb, kr ∈ [0, 0.05]
Gradient method: First-order
Iteration limit: 5× 103

Table 3.5: Parameters used in all of the pulse optimisations in Section 3.5.
Because the optimised pulses contain a modulation at 817MHz, it turns out that
a high digitisation is required.

3.6 Summary

In this chapter we have explained how to construct Hamiltonian mod-
els of driven multi-level quantum systems, in order to optimise them.
With this formalism we are able to include as many levels and trans-
itions as we like, simulate the evolution efficiently (when possible)
in an appropriate rotating frame, and apply the GRAPE algorithm
to find an optimised implementation scheme for a particular opera-
tion. In the examples considered in Sections 3.4 and 3.5, the optim-
ised schemes offered substantial improvements over the existing ones.
Undoubtedly there are many more experiments on low-dimensional
quantum systems which have the potential to be improved upon in
this manner.



Chapter 4

Cluster state

preparation in

Ising-coupled systems

In this chapter we are concerned with the preparation of cluster states,
a class of entangled quantum states which have generated a lot of in-
terest as the cornerstone of a measurement-based model of quantum
computation. The systems considered are qubits coupled via the Ising
(ZZ) interaction. The chapter begins with a short introduction to
cluster states and their important role in one-way quantum computa-
tion. We then investigate cluster-state preparation in an ideal setting
in Section 4.2, using both numerical and analytical approaches, and
find that the intuitive preparation scheme suggested by the definition
of the cluster state is not necessarily time-optimal. In Section 4.3 we
consider a concrete experimental system, namely a string of trapped
ions. In this case the coupling is of also Ising-type, but non-ideal in
the sense that each qubit is coupled to all others, and the coupling
constants vary. Robust implementation schemes are numerically op-
timised to take these non-idealities and other experimental constraints
into account.

53
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4.1 Cluster states and one-way quantum

computation

Cluster states are a class of highly entangled quantum states, with a
particular cluster state being defined (constructively) by its associated
coupling graph G. To prepare the n-qubit cluster state corresponding
to G:

(i) Prepare (locally) the initial state

|In〉 :=
( |0〉+ |1〉√

2

)⊗n

. (4.1)

(ii) Evolve under the Ising Hamiltonian

Hd =
πJ(t)

2

∑

(a,a′)

(1l + σz
a) (1l− σz

a′) (4.2)

for a time such that
∫ T

0
J(t) dt = 1

2 . The sum is over all edges
of G, where each edge connects the qubit pair (a, a′).

Note that the graphG only specifies a particular state, while the graph
which represents the couplings that are physically present in a system
(i.e. in its Hamiltonian) is something else entirely. Some examples of
different graphs are provided in Fig. 4.1.

Cluster states have a high persistency of entanglement, in that, for
an n-qubit cluster state, at least n/2 measurements1 are required to
completely disentangle the state [39]. This can be contrasted to the
generalised GHZ state

|GHZ〉 := |0〉⊗n + |1〉⊗n

√
2

(4.3)

which is reduced to a separable state after only one measurement. The
primary interest in cluster states, however, arises due to their central
role in the so-called one-way model of quantum computation [40, 41].

1By ‘measurement’ here we mean a projective measurement of the state of any
one qubit.



4.1. CLUSTER STATES AND ONE-WAY QUANTUM COMPUTATION 55

(a) (b) (c) (d)

Figure 4.1: A few graphs: (a) K3, (b) C4, (c) K4, (d) G2,3. For a comprehensive
classification of graphs and their properties see [38].

In this model, the qubits are initially prepared in a cluster state. The
computation then proceeds via local operations and measurements
only, where local operations at a particular step may depend on the
outcomes of measurements at a previous step (illustrated in Fig. 4.2).
The advantage over the circuit model is that one only needs to prepare
an entangled initial state, rather than implement entangling unitary
gates. However, this comes at the cost of increased system size. Some
important features of the one-way model are:

(i) Any sequence of unitary gates is equivalent to some set of local
operations and measurements on a cluster state. The circuit
model and the one-way model are computationally equivalent.

(ii) Any one dimensional one-way computation (i.e. on the cluster
state of a linear graph) can be efficiently simulated on a classical
computer.

(iii) Cluster states cannot occur as the ground state of a realistic
Hamiltonian (i.e. one with two-body interactions only.)

Proofs of all three points and a general introduction to the one-way
model can be found in [41]. From (ii) we conclude that, in particular,
two-dimensional cluster states are of interest (e.g. Gn,m), while (iii)
implies that cluster states will not arise naturally by cooling a sys-
tem to its ground state, motivating the search for control schemes to
prepare them.
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U®
1

U¯
1

U§¯
2

U§®
2

step 1 step 2 output

feedforward

Figure 4.2: An example of a one-way quantum computation on a six-qubit cluster
state. In the first step, the two left-most qubits are subjected to local unitaries Uα1

and Uβ1
, respectively, and then measured. These measurement results determine

the choice of local unitaries U±α2 and U±β2
on the middle two qubits, which are

also measured (step 2). This yields a two-qubit output state on the right-most
qubits, which is the result of the computation.

4.2 Time-optimal preparation of cluster

states in their native coupling topo-

logy

In this section we consider the case where the coupling Hamiltonian
of the system is also given by (4.2), i.e. when the coupling graphs of
the system and the target cluster state coincide. We refer to this as
the preparation of a cluster state in its native coupling topology. The
general n-qubit system Hamiltonian is

H = Hd +
∑

k

ukH
(k)
c , (4.4)

where the uk are time-dependent functions to be chosen, and the H
(k)
c

characterise the available controls. One way to prepare the target
cluster state is simply to set uk all zero and evolve under Hd only for
a time of T = 1

2J (setting J(t) constant). In this section we address
the question of whether or not this implementation is time-optimal.
Two control settings will be considered:
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(i) Local x and y control on each qubit:

H(2k−1)
c =

1

2
σx
k , H(2k)

c =
1

2
σy
k (4.5)

where k ∈ {1, 2, ..., n}.

(ii) A single global x control:

H(1)
c = Fx :=

1

2

n∑

k=1

σx
k . (4.6)

In the following we allow for arbitrarily fast local controls, i.e. the
functions uk in (4.4) are unrestricted.

4.2.1 Three completely-coupled qubits

We start by considering a three-qubit system which will prove analyt-
ically tractable. The qubits are coupled according to Fig. 4.1a, with
coupling constants all equal to J . Without loss of generality we will
drop the local terms in (4.2), as, since we have placed no restriction
on the controls, only the entangling part of the operation contributes
to the time required. The K3 cluster state is then defined as

|K3〉 := exp

(
−i 1

2J
Hd

)
|I3〉 , (4.7)

where

Hd =
πJ

2
(σz

1σ
z
2 + σz

2σ
z
3 + σz

1σ
z
3) . (4.8)

Our task is to prepare this state time-optimally under Hamiltonian
(4.4), which corresponds to maximising the fidelity

F (U) := | 〈K3| · (U |I3〉) | (4.9)

in the shortest time T , where U(t) is the solution of the Schrödinger
equation U̇ = −iHU .
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Preliminary numerical analysis via GRAPE

In the first instance we will allow for full local control on the qubits and
thus specifyHc according to (4.5). The minimum time to prepare |K3〉
can be estimated using the GRAPE algorithm introduced in Chapter
2. The numerical TOP curve for this task is given in Fig. 4.3, while the
parameters used in these optimisations are provided in Table 4.1. The
algorithm achieves a minimal time of Tmin ≈ 0.77× 1

2J , demonstrating
that evolving under Hd alone is not a time-optimal solution.
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Figure 4.3: (a) TOP curve for the transfer of |I3〉 to |K3〉. (b) A sample solution
near the minimal time for initial controls ukx(t) = uky(t) = 0. The inset illustrates
that the pulse maintains a constant value of 0.25 for most of the pulse duration.
The y controls are omitted as they remain zero, and the x controls are identical
on each qubit due to the permutation symmetry of the drift Hamiltonian and the
initial and target states.

Pulse digitisation: 512
Optimisations per point: 10
Bandwidth & amplitude range: Full
Error tolerance: None
Gradient method: First-order
Iteration limit: 104

Table 4.1: Parameters used in all of the numerical optimisations in Section 4.2.
As in this section we consider an idealised model, control restrictions and error
tolerances are not enforced. A hybrid of direct ascent and conjugate gradients is
sufficient for fast convergence.
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Analytical solution in a symmetry-adapted basis

We now consider the optimisation problem analytically to provide
some insight into how this speedup is possible. Motivated by the
symmetry of the numerical solutions, we restrict ourselves to control
setting (ii), specifying Hc according to (4.6). This control Hamilto-
nian, in addition to the drift Hamiltonian, commutes with the cyclic
permutation operator

S :=




1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1




(4.10)

and the persymmetry operator

P := (σx)
⊗3
, (4.11)

which themselves commute. The unitary evolution group generated by
the Hamiltonians must also respect these symmetries, and is therefore
a lower-dimensional subspace of SU(8) (i.e. the system is not fully
controllable). To make this explicit, recall that if the initial state |ψ0〉
is an eigenstate of S and P , with SP |ψ0〉 = sp|ψ0〉, then

SP |ψ(t)〉 = SP
(
T
{
e−i

∫
T

0
H(t)dt

}
|ψ0〉

)

= T
{
e−i

∫
T

0
H(t)dt

}
SP |ψ0〉

= sp |ψ(t)〉 , (4.12)

i.e. the state at a later time is also an eigenstate with the same eigen-
value, and the dynamics are therefore restricted to the {s, p} eigen-
space. Here the most general form of the unitary evolution operator
has been inserted, using the Dyson time-ordering operator T . Sub-
sequently if we transform to an appropriately ordered basis composed
of simultaneous eigenstates of S and P , the Hamiltonian becomes
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block-diagonal [42]. A visual representation of this symmetry-adapted
basis transformation is provided in Fig. 4.4. For a thorough account of
how controllability can be understood in a symmetry-adapted basis,
see [19].

js
2
i

change of
basis

js
1
i

js
3
i

je
2
i

je
3
i

je
1
i

Figure 4.4: Schematic of the transformation from a standard basis {|ej〉} to a
symmetry-adapted basis {|sj〉}. In the standard basis, symmetries restrict the
dynamics to a lower-dimensional subspace, but the coefficients of the state vector
may all vary. Rotating to a symmetry-adapted basis, the Hamiltonians become
block-diagonal, and the state vector has nonzero components only along a subset
of basis vectors (|s1〉 and |s3〉 in this picture).

The initial and target states |I3〉 and |K3〉 are symmetric under
S and P , so we need only concern ourselves with the {1, 1} eigen-
space. Transforming everything to the symmetry adapted basis and
considering this eigenspace only, the state-to-state transfer problem
becomes

|I ′3〉 =
1

2

[ √
3
1

]
−→ |T ′

3〉 =
1

2

[ √
3

−1

]
, (4.13)

under the Hamiltonian H ′ = H ′
d + u(t)H ′

c , where

H ′
d =

πJ

2

[
−1 0
0 3

]
, H ′

c =
1

2

[
2

√
3√

3 0

]
. (4.14)

As the Hilbert space has been reduced to only two (complex) dimen-
sions, we can represent the transfer on the Bloch sphere by projecting
onto the axes Ij := σj/2, as illustrated in Fig. 4.5. Note that H ′

d and
H ′

c are not orthogonal - this will turn out to be crucial for the spee-
dup over the u = 0 solution. Motivated by the pulse shape obtained
numerically in Fig. 4.3b, we first restrict u(t) to the following form:
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1. Constant pulse u over time interval [0, T ].

2. Hard pulse of angle φ at time T .

After deriving a time-optimal solution in this setting, we will show
that it remains time-optimal when the restrictions are removed and
general time-varying pulses are considered. The solution is

(u, φ, T ) =

(
πJ

2
,
−π
4
,

2

3
√
3J

)
, (4.15)

which is also illustrated in Fig. 4.5. We will now demonstrate that
this solution is time-optimal, thus accounting for the minimal time of
0.77 × 1

2J obtained numerically. For this we consider the geometric
constructions in Fig. 4.6. Starting from a, the task is to transfer the

state to any point b on the circle b̂ce obtained by rotating about H ′
c.

The hard pulse then transfers b to c in an arbitrarily small time. The
choice of constant u specifies a rotation axis H ′, at an angle θ to H ′

c.

ac

b

H¶ = -2¼J I
zd

H¶ = I
z 
+ √3 I

xc

I
z

I
x

Figure 4.5: Transfer of |I′3〉 to |K ′
3〉 on the Bloch sphere. The initial and target

states are identified with vectors a = 1
2
(
√
3, 0, 1) and c = 1

2
(−

√
3, 0, 1), respect-

ively, while the Hamiltonians H′
d
and H′

c correspond to rotation axes (0, 0,−2πJ)

and (
√
3, 0, 1), respectively. The u = 0 solution (blue line) transfers a to c in a

time of 1
2J

. A time-optimal solution (red line) transfers a to b in 2
3
√

3J
, followed

by a hard pulse (dashed red line) from b to c in negligible time.
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Figure 4.6: Geometric constructions used. All points shown here lie in the Ix-Iz
plane except for b, which lies above it on the upper surface of the sphere.

The transfer time to be minimised is

T =
∠adb

|H ′| , (4.16)

where ∠adb is the angle swept out by the Bloch vector and the length
|H ′| gives its angular velocity of rotation. Using simple geometry
these quantities are expressed in terms of θ as

∠adb = 2 arcsin

( √
3

2 sin θ

)
, |H ′| =

√
3πJ

sin θ
(4.17)

so that the time is

T =
2√
3πJ

sin θ arcsin

( √
3

2 sin θ

)
. (4.18)

Noting that θ must lie in the interval [π3 ,
2π
3 ] for intersection with

the circle, we find the maximum at θ = π
2 . The time required is

Tmin = 2
3
√
3J

. The angle of the final hard pulse is −π
2 in this picture,
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but since |H ′
c| = 2 the angle multiplying Fx in the full three-qubit

space is φ = −π
4 . �

It remains to show that b̂ce cannot be reached in less than Tmin

when allowing for time-varying pulses. For this we introduce

H⊥ :=

√
3πJ

2

(
−
√
3Iz + Ix

)
, (4.19)

which is simply the rotation axis orthogonal to H ′
c. We consider a

generic time-varying control u(t). Our aim is to compare each segment
of this generic path to the optimal one. Let c1 and c2 be two circles
generated by rotating aboutH ′

c, chosen to be close enough so that u(t)
is well approximated by a constant in the interval between them. We
consider the time required to travel from c1 to c2 along two different
paths: our proposed optimal solution a1 → a2, obtained by rotating
purely about H⊥, and a generic path b1 → b2. Suppose the evolution
along b1 → b2 takes a time ∆. This evolution can be decomposed
according to the Trotter formula

e−i∆(H⊥+vH′

c) = lim
n→∞

(
e−i∆

n
H⊥

e−i v∆
n

H′

c

)n
, (4.20)

which is represented graphically in Fig. 4.7a. Note that the time
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c
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Figure 4.7: (a) An arbitrary path can be decomposed into rotation about H′
c

and rotation about the orthogonal axis H⊥ via the Trotter decomposition. (b)
Rotating our viewpoint by 90◦, we see that the optimal trajectory from a1 → a2
minimises the angle rotated through in each segment (red), when compared to a
generic trajectory (blue), ie. θ1 < θ2.
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required for the operation on the right-hand side of (4.20) is still ∆,
as the evolutions along H ′

c can be arbitrarily fast. The time ∆
n in a

single segment is equal to the angle swept out divided by the norm
of H⊥ (a constant). This angle is minimised in every segment when
travelling from a1 → a2, as Fig. 4.7b illustrates. The time-optimal
solution is therefore to rotate purely about H⊥, which corresponds
exactly to (4.15). �

In this example the speedup was enabled by the non-orthogonality
of H ′

d and H ′
c. This is something we can carry over into higher di-

mensional cases where a Bloch sphere analysis is not possible.

4.2.2 Higher dimensional graphs

In this section we numerically determine minimal times to prepare
a variety of different cluster states in their native coupling topolo-
gies. The minimal times obtained via GRAPE are given in Table 4.2,
where the optimisation parameters used are again those specified in
Table 4.1. In the optimisations on three- and four-qubit systens, both
control settings (i) and (ii) were considered, resulting in identical TOP
curves in all cases. As in the case of |K3〉, under control setting (ii) we

Graph d |〈Ĥ ′
d|Ĥ ′

c〉| Tmin ( 1
2J )

K3 2 0.2 0.77
L3 3 0 1.00
K4 3 0 0.91
C4 4 0 1.00
K5 3 0.1 0.70
K6 4 0 1.00
G2,3 14 0 1.00
K7 10 0.07 0.60

Table 4.2: Minimal times obtained by the GRAPE algorithm to prepare a se-
lection of different cluster states, with an estimated numerical accuracy of ±1 on
the last digit. As for the |K3〉 example under control setting (ii), included in the
first row as a reference, the drift and control can be reduced to matrices H′

d
and

H′
c of size d× d. Ĥ′ indicates a rescaling to unit norm. The times listed here hold

not just for the target state but its entire local unitary orbit, which may include
other entangled states of interest [43].
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can transform to a symmetry-adapted basis and throw out all basis
states that are orthogonal to the accessible Hilbert space, yielding a
corresponding H ′

d and H ′
c of reduced dimension d. We can then check

if 〈H ′
d|H ′

c〉 correlates to a speedup over the u = 0 solution. In the
five-, six- and seven- qubit cases the numerical optimsations were per-
formed in this reduced basis for increased performance, so only control
setting (ii) was considered.

To check that all symmetries have been taken into account (so that
the representation is irreducible), we can follow a simple numerical
procedure to calculate d:

1. Construct a basis {H1, ..., HD} for the Lie closure by repeated
commutation of Hd, Hc, and their commutators until no new
linearly independent elements are obtained.

2. The dimension d of the space of states reachable from the initial
state |In〉 is then given by

d = rank{e−i∆H1 |In〉, e−i∆H2 |In〉, ..., e−i∆HD |In〉}. (4.21)

for some appropriate choice of ∆.

We find that, in all cases considered, a speedup is possible if H ′
d and

H ′
c are non-orthogonal. The orthogonality condition is not necessary

for a speedup, however, as the |K4〉 example demonstrates. Minimal
time solutions found by the algorithm for |K5〉 and |K7〉 are shown
in Fig. 4.8. We observe that these pulses have the same form as the
analytical solution for |K3〉, except that the constant part aquires a
bump. Extending the geometric ideas in Section 4.2.1 to explain these
shapes is an interesting avenue for future research.

4.2.3 Summary

In this section we have investigated the lower limits on implementation
times to prepare cluster states in their native coupling topology. We
find that in some cases, evolution under the coupling alone is not a
time-optimal solution. This result is somewhat surprising, and is in
contrast to the implementation of two-qubit unitary gates where the
‘do nothing’ solution is time-optimal, e.g. the implementation of a
swap gate under an isotropic coupling. This highlights the additional



66 CHAPTER 4. CLUSTER STATE PREPARATION IN ISING SYSTEMS

u
    /

 2
¼
J

(a)

20

0

-80
0 0.6

2Jt

(b)

u
 /

 2
¼
J

10

0

-60
0 0.7

2Jt

Figure 4.8: Numerically optimised sequences for the preparation of (a) |K5〉 and
(b) |K7〉.

degrees of freedom available when only a single target state is specified,
compared to a unitary gate which specifies the full basis set.

4.3 Schemes for the experimental realisa-

tion of cluster states in linear ion traps

In a real experiment, an ideal coupling topology of the form con-
sidered in the previous section may not be present. We now consider
such a case: the realisation of cluster states in a system of trapped
ions. Here the coupling topology is of the most general type, with
all qubits coupled to each other, and the coupling constants taking
different numerical values. Schemes for this experiment can be op-
timised numerically, and will be designed to take various experimental
limitations into account. This project is a collaboration with the ex-
perimental group of Christof Wunderlich at the University of Siegen,
Germany, who have already applied optimised pulses to perform basic
single-qubit operations [44].

4.3.1 The ion trap system

We consider a string of ions confined in a linear ion trap as in Fig. 4.9a.
Each ion has two internal degrees of freedom which serve as a qubit;
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in our case these are hyperfine sublevels of the electronic ground state
of 171Yb+. This transition is in the microwave regime and addressed
directly with microwave pulses. Thus, the qubits are not resolved
spatially, but are individually addressable in the frequency domain
with the aid of a magnetic field gradient in the axial direction, as the
Zeeman splitting gives each ion a unique resonance frequency. The
relatively weak confinement in the axial direction compared to the
radial dimension means the motion can be treated as one-dimensional.
This motional degree of freedom serves to couple the internal states of
the ions, and when the temperature is low enough it can be neglected
and only appears as an effective qubit-qubit coupling of Ising form.
This is the regime we will consider. An overview of the use of magnetic
field gradients in ion traps can be found in [45]. Readout of the qubit
state is performed in the conventional manner by applying a laser
to an optical transition and observing the fluoresence with a charge-
coupled device (CCD) camera. An example of a CCD image for a
one-dimensional chain of ions is shown in Fig. 4.9b.

weak axial
confinement

electrodes

strong radial
confinement

(a)

(b)

ions

Figure 4.9: (a) A simplified illustration of the the linear ion trap. Electrodes
hold the ions in place with a combination of static and oscillating fields, resulting
in a strong confinement in the radial direction. Additional electrodes (not shown)
at the endpoints weakly confine the motion in the axial direction. (b) A CCD
image of the resonance fluoresence of a chain of ions (courtesy of C. Wunderlich,
Universität Siegen).
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For a chain of n ions addressed by a single microwave field, the
Hamiltonian is

H =
1

2

n∑

k=1

ωk σ
z
k +

π

2

∑

l>k

Jkl σ
z
kσ

z
l + Ωcos (ωt+ φ)

n∑

k=1

σx
k , (4.22)

where ωk is the Zeeman-shifted transition frequency of the k’th ion,
Jkl is the strength of the coupling between ions k and l, and Ω, ω, and
φ are the Rabi frequency, carrier frequency, and phase of the driving
field, which is linearly polarised. The couplings Jkl are constants
which are determined by the parameters of the trap [45]. The provided
values for these coupling constants for three and four ions are given
in Table 4.3. In the particular setup we consider here, the frequency
separation between two adjacent qubits (∼ 1MHz) is much larger than
the maximum Rabi frequency applied (∼ 200Hz). Thus, a field that
is near resonance with a particular ion will have a negligible effect on
the others, as discussed in Section 3.2.2.

Ion 1 2 3

1 - 25.0874 17.7703
2 25.0874 - 25.0874
3 17.7703 25.0874 -

(a)

Ion 1 2 3 4

1 - 21.7754 15.8692 12.4256
2 21.7754 - 20.8298 15.8692
3 15.8692 20.8298 - 21.7754
4 12.4256 15.8692 21.7754 -

(b)

Table 4.3: Calculated coupling constants Jkl in Hz for a chain of (a) three and
(b) four ions for the particular experimental setup considered here.
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4.3.2 Optimised schemes in the case of full local

control

In this section we will consider the case where each ion is addressed by
its own control field. The fields are assumed to be on resonance, and
to have controllable amplitude and phase. This is a simple extension
of control scheme (i) in Section 4.5, where the only difference is that
the coupling constants are no longer identical. As the control fields
address each ion selectively, the Hamiltonian for n ions can be written
in an n-ly rotating frame as

H =
π

2

∑

l>k

Jkl σ
z
kσ

z
l +

1

2

n∑

k=1

Ωk(cosφk σ
x
k + sinφk σ

y
k ) , (4.23)

where Ωk and φk are the amplitude and phase of the field addressing
the k’th ion, and the rotating wave approximation has been made. In
the control nomenclature the Hamiltonian is

H = Hd +

n∑

k=1

(
uxkH

x
c,k + uykH

y
c,k

)
(4.24)

with

Hd =
π

2

∑

l>k

Jkl σ
z
kσ

z
l , Hx

c,k =
σx
k

2
, Hy

c,k =
σy
k

2
, (4.25)

and

uxk = Ωk cosφk , uyk = Ωk sinφk . (4.26)

Conventional decoupling sequences derived analytically

As a benchmark for the optimised pulses, we first consider analytical
pulses which make use of the spin-echo principle [46]. Consider a
coupling between two qubits of the form σz

1σ
z
2 . It is well known that

a π pulse on one of the spins will invert this coupling, i.e.

Rx
k(π)σ

z
1σ

z
2 R

x
k(−π) = −σz

1σ
z
2 (4.27)

where Rx
k(θ) = exp(−iθσx

k/2), and pulses of any other phase (e.g. y
pulses) will also do the trick. Consequently the coupling evolution
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Figure 4.10: (a) Pulse sequence to prepare the |K3〉 cluster state, where ∆1 =
1/4(1/J12 + 1/J13) and ∆2 = 1/4(1/J12 − 1/J13). (b) The |C4〉 cluster state
is prepared in two steps, separated by the dashed line. This decomposition is
possible due to the fact that the σz

k
σz
l
generators all commute. In the first step, π

pulses on the third and fourth qubits remove all couplings except 1-2 and 3-4. In
the second, all couplings other than 1-4 and 2-3 are removed, with two additional
π pulses effectively reducing the coupling at J23 to the level of J14, requiring
∆3 = 1/8(1/J14 + 1/J23) and ∆4 = 1/8(1/J14 − 1/J23).

over any time interval can be undone via appropriate insertion of π
pulses:

Rx
k(π) exp (−i∆σz

1σ
z
2)R

x
k(π) exp (−i∆σz

1σ
z
2) = −1l . (4.28)

First consider the three-qubit case with J12 = J23, which includes for
example the experimental values specified in Table 4.3a. We would
like to create the cluster state K3. For this we apply π pulses to the
second qubit at appropriate times to partially decouple it, effectively
reducing the couplings at J12 and J23 to the level of J13. The pulse
sequence is illustrated in Fig. 4.10a. In the case of four qubits with
J12 = J34 and J13 = J24, as in Table 4.3b, we consider the C4 cluster
state. The corresponding pulse sequence to generate this state is given
in Fig. 4.10b.

Numerical optimisation results

We now take a numerical approach, applying the GRAPE algorithm to
Hamiltonian (4.23) with the coupling constants of Table 4.3. We use



4.3. SCHEMES FOR EXPERIMENTAL REALISATION IN ION TRAPS 71

the same optimisation parameters here as those specified in Table 4.1.
The minimal times are calculated for the transfer of |I3〉 and |I4〉 to
the |K3〉 and |C4〉 cluster states respectively (up to a global phase),
and compared to the times required by the analytical sequences. The
results are shown in Table 4.4. We find that the numerically optimised
pulses offer a speedup over the analytical schemes by factors of 1.5 in
the three-ion case and 2 in the four-ion case.

Aside from reducing the implementation time, what really makes
the numerically optimised pulses attractive is our ability to (i ) make
the implementation robust against experimental errors, and (ii ) ac-
count for amplitude and bandwidth limitations in the experimental
hardware. This is something we will consider in the next section,
where an implementation scheme will be designed for an existing ex-
perimental ion trap setup, which contains only a single pulse gener-
ator.

Target cluster state Physical system
Implementation time (ms)

Conventional Optimised

J
23

J
12

J
13

28 19

J
23

J
12

J
12J

13

J
14

63 30

Table 4.4: Comparison of the implementation times required by the analytical
decoupling sequences and the numerically optimised pulses for preparation of the
|K3〉 and |C4〉 cluster states.
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4.3.3 Robust optimised schemes in the case of a

single control field

In this section we restrict ourselves to a single control field, in order
that the pulses are easily implementable in the existing experimental
setup. We would also like the implementation to be robust under
variations in certain parameters, namely a detuning of the carrier
frequency and a scaling of the control field (corresponding to so-called
B0 and B1 inhomogeneities in NMR, respectively). Even in this highly
restrictive setting, it turns out that feasible pulses can be obtained.
We consider only the preparation of the |C4〉 cluster state on a four-
ion string coupled according to Table 4.3b, starting from the initial
state |0000〉 (the ground state of the system).

Control setting

In the experiment, pulses are created by a single VFG-150 pulse gen-
erator from Toptica Photonics, which has the ability to switch carrier
frequency ω, amplitude Ω, and phase φ. The piecewise-constant pulse
is decomposed into M timesteps, and the carrier frequency switches
at each timestep according to the sequence

ω1 → ω2 → ω3 → ω4 → ω1 → ω2 → ... (4.29)

where ωk is the resonance frequency of the k’th ion. In the language of
the VFG-150, we are in the phase-continuous switching mode (prop-
erties of the VFG are discussed further in Section 5.3.4). M is chosen
to be an integer multiple of 4 so that the control field spends the same
amount of time at each ion. The Hamiltonian at the j’th time interval
is

H(j) =
π

2

∑

l>k

Jkl σ
z
kσ

z
l +

1

2
Ω (cosφσx

k′ + sinφσy
k′ ) , (4.30)

where k′ = mod(j − 1, 4) + 1.
The maximum allowed value of Ω is 200Hz, while the bandwidth

of the pulse is unrestricted. This is because the switching time of the
VFG-150 (∼ 5 ns) is seven orders of magnitude smaller than the pulse
duration (∼ 50ms). In Chapter 5, however, the same pulse generator
will be used to create pulses with a length of ∼ 5µs in a different
system, and in this case bandwidth restrictions will be necessary.
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Robustness requirements

Introducing a detuning parameter ∆ω and a scaling κ of the control
field, the Hamiltonian at the j’th time interval is extended to

H(j)=
1

2
∆ωσz

k′+
π

2

∑

l>k

Jklσ
z
kσ

z
l +

1

2
κΩ (cosφσx

k′+sinφσy
k′ ) . (4.31)

The detuning error could arise from the pulse generator itself, or be
due to inaccuracies in the field gradient that determines the resonance
frequencies of the ions.2 In the optimisations where robust pulses are
required, the fidelity is averaged over the following values:

∆ω ∈ {−5,−2.5, 0, 2.5, 5}Hz
κ ∈ {95, 97.5, 100, 102.5, 105}% . (4.32)

Optimisation results

Two different pulses are numerically optimised: a non-robust 50ms
pulse (A), and a robust 80ms pulse (B). The goal is to maximise the
fidelity |〈C4|ψ(T )〉|, i.e. as usual the global phase is not specified.
The settings used in both cases are provided in Table 4.5, while the
optimised robust pulse B is provided in Fig. 4.11.

The robustness of both pulses is illustrated in Fig. 4.12. We find
that, at the cost of a slightly increased pulse length, the implement-
ation can be made highly robust. However, in the case of a generic
pulse where robustness is not specifically optimised for (Fig. 4.12a),
the fidelity drops significantly for detunings of∼ 5Hz or RF scalings of
∼ 10%. Thus, incorporating robustness into the optimisation should
lead to significant fidelity gains in the experimental implementation.

4.3.4 Summary

In this section we developed pulses to prepare cluster states in a sys-
tem of ions with a non-ideal coupling topology. In the first part we

2In principle the detunings of each ion could vary independently. This is not
considered here as it is computationally very expensive, but can be implemented
at later date if it turns out to be warranted.
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A B

Pulse duration: T = 50ms T = 80ms
Pulse digitisation: M = 32 M = 64
Maximum amplitude: 200Hz 200Hz
Bandwidth range: Full Full
Error tolerance: None ∆ω = ±5Hz, κ = ±5%
Gradient method: First-order First-order
Iteration limit: 104 2× 103

# of initial conditions: 10 10

Table 4.5: Parameters used in the numerical optimisations in Section 4.3.3 for
the transfer of the |0000〉 state to the cluster state |C4〉 in the ion trap system.

Ω
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Figure 4.11: An optimised pulse for robust preparation of the |C4〉 cluster state,
with amplitude (a) and phase (b). This pulse achieves an average fidelity over the
specified error range of 0.998.
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Figure 4.12: Fidelity |〈C4|ψ(T )〉| as a function of error parameters ∆ω and κ for
(a) a non-robust 50ms pulse, and (b) a robust 80ms pulse. The average fidelity
over the specified robustness range (indicated by the dashed box) for the robust
80ms pulse is 0.998, and the minimum fidelity in this region is 0.995.

compared the minimal implementation times in an unrestricted con-
trol setting to analytical decoupling sequences, and found that the
numerical schemes offered substantial speedups. In the second part
we restricted ourselves to a single control field in order to account
for the limitations of the current experimental setup. Even in this
highly restricted setting, we obtained a robust scheme to prepare the
|C4〉 cluster state in a time of 80ms (which is ∼ 1/J for the smallest
coupling J = 12.4Hz).
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Chapter 5

Quantum algorithms for

nuclear spins in

diamond

The use of dopant atoms to address single spins in the solid state is
a promising approach to scalable quantum computation. The Kane
quantum computer, for instance, is a well known variant of this ap-
proach which employs phosphorus dopant atoms embedded in a sil-
icon lattice [47]. In this chapter we consider another popular variant
referred to as the nitrogen-vacancy (NV) center, which employs ni-
trogen atoms in a diamond lattice. To date a variety of experiments
have been performed on both nuclear [48] and electron [49] spins in
this system, but quantum algorithms are yet to be implemented.

In this chapter we apply our optimal control methods to the design
of schemes for the implementation of two-qubit algorithms on coupled
nuclear spins at the NV center. We begin by introducing NV centers
and their relevant properties in Section 5.1, followed by a review of
the Deutsch and Grover algorithms in Section 5.2. We then discuss
the optimised schemes and their feasibility in Section 5.3. The work
in this chapter is part of a collaboration with the experimental group
of Jörg Wrachtrup at the University of Stuttgart.

77
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5.1 The nitrogen-vacancy center

The NV center refers to a particular kind of substitutional impurity
in diamond. At certain sites in the diamond lattice, the carbon atom
can be replaced by a nitrogen atom, with a vacancy occuring at a
neighbouring site (Fig. 5.1a). The particular configuration which will
be of interest to us is when two of the carbon atoms adjacent to the
vacancy occur as the 13C isotope (Fig. 5.1b), which has nuclear spin
1
2 . The preparation, coupling, and readout of these nuclear spins is
mediated via the electrons at the vacancy.

C

(a) (b)

N V
13Ce-

Figure 5.1: (a) The nitrogen-vacancy center consists of a nitrogen dopant in a
lattice of carbon atoms, where a neighbouring site (V) is unoccupied. (b) 13C
nuclear spins interact strongly with the electrons associated with the vacancy,
which behave as a single spin-1 particle e−.

5.1.1 The electron spin

NV centers come in two charge states: NV0 and NV−. We consider
the more commonly occuring NV− state here, where, in addition to
the two valence electrons from the nitrogen and the three dangling
carbon bonds, there is an additional negative charge present. Thus,
six electrons in total are localised near the vacancy site. The NV
center exhibits a C3v symmetry, i.e. the structure is invariant under
2π/3 rotations about the NV axis (the double bond in Fig. 5.1a)
and under reflections in the planes containing the NV axis and one
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of the three carbons adjacent to the vacancy. This symmetry gives
some insight into the electronic structure (see Ref. [50] for details),
but the complete characterization remains a topic of current research.
It is known that the orbital ground and first excited states are spin
triplets, so we can think in terms of a single spin-1 particle at the
vacancy site.

5.1.2 The nuclear spins

We can envisage a case where two of the carbon atoms adjacent to the
vacancy occur as the 13C isotope, with nuclear spin 1

2 . The natural
abundance of 13C is 1.1%, so the current generation of experiments
use 13C-enriched diamond to increase the likelihood of finding such
a configuration [48]. The surrounding lattice sites are predominantly
occupied by 12C, which has zero nuclear spin, but additional 13C
atoms in the vicinity form a spin-bath which is the main source of
decoherence. However, their influence is small enough that very long
coherence times are possible. The limiting factor here is the trans-
verse relaxation of the electron spin through which the 13C spins are
coupled. This is of the order T2 ∼ 600µs at room temperature [48],
which we will later compare to an effective 1/J ∼ 1µs. The 13C spins
are thus ideally suited to quantum information processing. On the
other hand, the coupling to the nuclear spin of the nitrogen atom is
orders of magnitude lower [51], so it does not play a significant role
and will be neglected here.

5.1.3 Energy-level structure of the NV center

The relevant energy-level structure for the electronic and nuclear de-
grees of freedom is shown in Fig. 5.2. Of primary interest is the
ms = −1 subspace of the orbital ground state, in which we would
like to implement two-qubit operations on the nuclear spin degrees of
freedom using shaped radio-frequency (RF) pulses. The microwave
and optical transitions, on the other hand, facilitate preparation and
readout of the nuclear spin states.

To be more concrete we can consider a model for the coupled
electron and nuclear spins. We label the spin-1 electron S, and the two
nuclear spins I1 and I2. In a static magnetic field Bz, the Hamiltonian
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Figure 5.2: Energy levels of the NV center, including both electronic and nuclear
degrees of freedom. On the left, the electronic states can be viewed as the orbital
ground and excited states of a spin-1 particle, labelled 3A and 3E respectively, with
an additional metastable state 1A. Spin-selective, non-radiative decay processes
via the metastable 1A state drive the electron preferentially to the ms=0 ground
state, as indicated by the thick arrows. The hyperfine structure of the ground
state ms = 0 and ms =−1 subspaces is shown on the right, where the ms =−1
subspace is the 4-level system to which optimal control techniques will be applied.

is

Hfull = geβeBzS
z +D(Sz)2+ gnβnBz (I

z
1+ Iz2) +A (S·I1 + S·I2) ,

where ge and gn are the electron and nuclear g-factors, βe and βn are
the Bohr and nuclear magnetons, and D is the zero field splitting of
the electron spin. The spin operators are given by

Ij = (Ixj , I
y
j , I

z
j ) =

1

2
(σx

j , σ
y
j , σ

z
j ) ,

S = (Sx, Sy, Sz)

=


 1√

2




0 1 0
1 0 1
0 1 0


, 1√

2




0 −i 0
i 0 −i
0 i 0


,




1 0 0
0 0 0
0 0 −1




.

We assume an isotropic coupling between the electron and nuclear
spins, with hyperfine coupling parameter A. The transition frequen-
cies in the ms = −1 subspace can be estimated using the following
reported values for the constants: ge = 2.0018 [52], gn = 1.4048 [53],
D = 2.87GHz [52], A ≈ 150MHz [52], Bz ≈ 83G [48]. Numerical
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diagonalisation of H then yields

{∆56 , ∆67 , ∆78} ≈ {141, 9, 141}MHz , (5.1)

where ∆ij is the transition frequency between the ith and jth eigen-
value, and eigenvalues 5 → 8 correspond to the ms = −1 subspace.
These transition frequencies agree fairly well with those directly meas-
ured in the experimental system we consider [48]:

{∆56 , ∆67 , ∆78} = {131.0, 9.0, 130.1}MHz . (5.2)

In the optimisations we perform later in the chapter, the experimental
values are used.

It is also interesting to consider effective Larmor frequencies and
J-couplings for the two nuclear spins in the ms=−1 subspace. If for
example we calculate the eigenvalues of the two-spin Hamiltonian

Hiso = ω1 I
z
1 + ω2 I

z
2 + 2πJ I1 · I2 , (5.3)

and ask what the values of ω1, ω2, and J are that reproduce the
transition frequencies in Eqn. 5.2, we find corresponding values of

ω1 = 139.5MHz ,

ω2 = 130.5MHz ,

J = 0.9MHz. (5.4)

This gives us a timescale for the nuclear spin coupling of 1/J ∼ 1µs.
Note that the effective Larmor frequencies of the nuclear spins are very
large although the applied field of Bz = 83G is small. In fact, the
nuclear Zeeman terms in Eqn. 5.1 are negligible - they yield Zeeman
splittings of only 88 kHz, while a splitting of 130MHz would require a
field of approximately 12T. Instead, the effective Larmor frequencies
of the nuclear spins result from the strong magnetic field created by
the nearby electron spin, while the purpose of the Bz field is to split
the electronic ms = ±1 levels so that the ms = −1 subspace can be
selectively addressed.

5.1.4 Preparation and readout

Before considering how the 13C nuclear spins are manipulated, we
first give an overview of how their states can be initialised and read



82 CHAPTER 5. QUANTUM ALGORITHMS FOR SPINS IN DIAMOND

out in the experimental setup. This is achieved via confocal micro-
scopy, where a lens is used to focus laser light onto a small region of
the diamond sample. The same lens is used to collect the fluoresced
light and send it to a photodetection setup, while the focal point is
scanned across the sample. This results in images such as the one
shown in Fig. 5.3. To verify that a fluorescence peak corresponds to a
single isolated NV center, the emitted light is split between two pho-
todetectors and the second order intensity correlation function (for a
stationary process)

g(2)(τ) =

〈
a†(0) a†(τ) a(τ) a

〉

〈a†a〉2
(5.5)

is measured. A value of g(2)(0) = 0 (i.e. photon antibunching) guar-
antees that the photons come from a single quantum emitter. In fact,
NV centers have already attracted interest as single photon sources
[54].

Once a single NV center has been identified, broadband optical
excitation prepares the electron spin in the ms=0 ground state. This
occurs because the 3E ↔3A transitions are spin-conserving, while the
metastable 1A state decays preferentially to ms =0, as illustrated in
Fig. 5.2. Thus, after several excitation-emission cycles, the ms = 0
state is populated with high probability. At this point, however, the
nuclear spin states are undetermined. Let us label the eigenstates of

Counts

10
 ¹

m

300k

260k

150k

50k

0

MW strip line

MW strip line

Figure 5.3: Confocal microscopy scan of a diamond sample. Bright spots occur
from the fluorescence of one or more NV centers. Single centers can be verified
via the counting statistics of the fluoresced light. Image courtesy of P. Neumann,
F. Jelezko and J. Wrachtrup, University of Stuttgart.
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the coupled spin Hamiltonian (Eqn. 5.1) as |ms, s1, s2〉, where s1, s2 ∈
{0, 1}. A selective microwave π pulse is then applied to the |0, 0, 0〉 →
|−1, 0, 0〉 transition. Only if the system was originally in the |0, 0, 0〉
state is it excited into the ms=−1 subspace.

The spin-selective decay processes also allow for optical detection
of the electron spin state. Because thems = 0 state is less likely to de-
cay via 1A, the photoluminescence intensity (the intensity of scattered
photons from the 3E →3A transitions) is relatively higher. Thus,
when the electron spin is excited from ms=0 to ms=−1 a dip in the
photoluminescence is observed. The system is now in the |−1, 0, 0〉
state, and ready for optimised RF pulses to be applied. Once these
are completed, a further selective microwave π pulse enables optical
detection of the |−1, 0, 0〉 state. A full density matrix tomography
of the nuclear spin states in the ms=−1 subspace can be performed
by applying further RF pulses before the final microwave pulse and
observing the nuclear spin nutations that result.

5.1.5 Hamiltonian of the nuclear spin subspace

We now consider the application of shaped RF pulses to implement
two-qubit operations in the ms = −1 subspace, restricting ourselves
to the states |s1, s2〉 ≡ | − 1, s1, s2〉. These four states will be our
two-qubit computational basis.1 The RF field drives all four single-
quantum transitions (Fig. 5.4). The transitions have different dipole
moments, which are experimentally measured (relative to the RF1

transition) by applying selective constant-amplitude pulses to each
transition, keeping the RF power constant, and observing the different
Rabi frequencies. This information suffices to completely characterise

1Note that, as we are working in the eigenbasis of the coupled spin Hamiltonian
(Eqn. 5.1), the si’s do not index the ‘up’ and ‘down’ states of uncoupled nuclear
spins. This has led to some discussion about the relevance of preparing entangled
states in this coupled basis [55, 56]. However, to perform a quantum computation
we simply need to be able to prepare, apply unitary gates, and measure in any

convenient basis. Whether our basis states are products of individual nuclear spin
states or not does not affect the outcome of our computation, so these criticisms
do not apply here.
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Figure 5.4: Transition frequencies and relative dipole moments of the single-
quantum transitions in the ms =−1 subspace. The numbers given are the meas-
ured values supplied by the experimental group.

the driven four-level system, with corresponding Hamiltonian

Hlab =




E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4




+Ωcos (ωt+ φ)X − Ω sin (ωt+ φ)Y (5.6)

in the lab frame, where

X =
1

2
(µ1 σ

x
12 + µ2 σ

x
13 + µ3 σ

x
24 + µ4 σ

x
34) ,

Y =
1

2
(µ1 σ

y
12 + µ2 σ

y
13 + µ3 σ

y
24 + µ4 σ

y
34) , (5.7)

and the generalised Pauli matrices σj
nn′ are as defined in equation

(3.13). The driving field is parameterised by its Rabi frequency Ω,
carrier frequency ω, and phase φ. The Rabi frequency is normalised
with respect to the RF1 transition, i.e.

Ω := B µ̄1 , (5.8)

where B is the magnetic field amplitude of the control field, and µ̄1 is
the dipole moment of the RF1 transition. The dimensionless weights
µi are thus relative dipole moments, with µ1 = 1 by construction.
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Power constraints in the experiment limit Ω to a maximum allowed
value of 0.5MHz.

Following the procedure in Section 3.2, the Hamiltonian can be
converted to a rotating frame via the transformation

|ψ〉rot := e−iR |ψ〉lab , (5.9)

with

R :=
ωt

2
(σz ⊗ 1l + 1l⊗ σz) . (5.10)

This yields the rotating frame Hamiltonian

Hrot =




E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4




+
ω

2
(σz ⊗ 1l + 1l⊗ σz) + Ω cosφX − Ω sinφY. (5.11)

Finally, we rewrite this in terms of drift and control Hamiltonians for
input into the GRAPE algorithm:

Hrot = Hd + uxH
(x)
c + uyH

(y)
c , (5.12)

with drift Hamiltonian

Hd =




E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E4


+

ω +∆ω

2
(σz ⊗ 1l + 1l⊗ σz) , (5.13)

and control Hamiltonians

H(x)
c = κX , H(y)

c = κY . (5.14)

The control functions are expressed as

ux = Ω cosφ , uy = Ω sinφ . (5.15)

Note that we have introduced the error parameters ∆ω and κ, cor-
responding to a detuning of the carrier frequency and a scaling of the
Rabi frequency, respectively. We will later optimise for controls which
are robust over the variation of these parameters.
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5.2 Quantum algorithms for two qubits

While two qubits is a rather small system, it serves as a playing ground
to demonstrate that the basic elements of quantum computation are
present for single nuclear spins at room temperature. In this section
we briefly review two different quantum algorithms which can be per-
formed on a two-qubit system - the Deutsch and Grover algorithms.

5.2.1 The Deutsch algorithm

The Deutsch algorithm (also called the Deutsch-Josza algorithm after
its inventors David Deutsch and Richard Josza [57]) addresses the
following problem. Consider a function

f : {0, 1, 2, ..., 2n − 1} → {0, 1} , (5.16)

i.e. a function with an n-bit domain and a 1-bit range. Suppose
the function is guaranteed to be either constant, i.e. taking the same
value for all inputs, or balanced, i.e. equal to 0 for exactly half of
the possible inputs and equal to 1 for the other half. The Deutsch
algorithm determines whether f is constant or balanced using only
one evaluation of f , which is exponentially faster than any determ-
inistic classical algorithm. While the problem is somewhat artificial,
it serves to illustrate the power of so-called ‘quantum parallelism’ [5],
and provided the inspiration for later, more useful algorithms such as
Grover’s algorithm.

Here we consider functions of a single bit. Two of these are con-
stant (Fig. 5.5a) and the other two are balanced (Fig. 5.5b). As in
Ref. [5], we map this problem onto two qubits,2 with the quantum
circuit shown in Fig. 5.6. Starting from the initial computational
basis state |01〉, applying Hadamard gates to each qubit yields the
superposition

|ψ1〉 =
1

2
(|00〉 − |01〉+ |10〉 − |11〉) , (5.17)

2A refined version of the Deutsch algorithm [58] requires only n qubits to encode
functions of n bits. However, the two-qubit instance of the refined version does
not contain entangling gates, and as we are interested in the Deutsch algorithm
as a prototypical example of a quantum circuit, we stick with the implementation
in Ref. [5].
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Figure 5.5: The four possible functions with a single-bit domain and range can
either be (a) constant, or (b) balanced.

where the Hadamard gate is defined as

H :=
1√
2

[
1 1
1 −1

]
. (5.18)

A unitary gate is then applied which encodes the function f according
to the rule |x, y〉 → |x, y⊕ f(x)〉, where ⊕ denotes addition modulo 2.
The four possible unitaries are

U0 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (5.19a)

U1 =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , (5.19b)

Uk =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 , (5.19c)

U1−k =




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 . (5.19d)

After an additional Hadamard gate is applied to the first qubit, the
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Figure 5.6: The textbook implementation of the two-qubit Deutsch algorithm.
A sequence of unitary gates is applied to the initial state |01〉, where Uf encodes
the function to be tested. A measurement on the first qubit yields the output of
the computation.

final state is

|ψ3〉 =





±|0〉 ⊗
( |0〉 − |1〉√

2

)
if f was constant

±|1〉 ⊗
( |0〉 − |1〉√

2

)
if f was balanced

(5.20)

and thus a measurement on the first qubit determines whether Uf

corresponded to a constant or balanced function.

5.2.2 Grover’s search algorithm

Grover’s algorithm [4] addresses the problem of unstructured database
search. Suppose we have an n-bit database of N = 2n elements,
and we can ‘look something up’ by passing the elements to a search

oracle, a black box which compares the given element to a target
element and returns either ‘yes’ or ‘no’. Grover’s algorithm requires
quadratically less calls to this search oracle than any known classical
algorithm (O(

√
N) compared to O(N)). While the speedup here is

less dramatic than for the Deutsch algorithm, the database search
problem is of widespread importance, and the invention of Grover’s
algorithm has fuelled a lot of interest in quantum computation.

With two qubits we can encode a database of four elements, using
the computational basis

{|00〉, |01〉, |10〉, |11〉} . (5.21)
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If the correct state is fed to the search oracle, it returns the state
multiplied by −1, otherwise it returns the state unchanged. If |00〉 is
the target element, for example, the search oracle is the unitary

U00 =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (5.22a)

and similarly for the other three targets we have

U01 =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 , (5.22b)

U10 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1


 , (5.22c)

U11 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 . (5.22d)

The quantum circuit for our two-qubit Grover algorithm is shown in
Fig. 5.7. After arriving at the state

|ψ1〉 =
1

2




1
1
1
1


 , (5.23)

the search oracle Us is applied. In the case where Us = U00, for
example, we obtain

|ψ2〉 =
1

2




−1
1
1
1


 , (5.24)
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Figure 5.7: The textbook implementation of the two-qubit Grover algorithm.
As for the Deutsch algorithm, the initial Hadamard gates prepare a superposition
state |ψ1〉. The search oracle Us then ‘marks’ the target element by multiplying
the associated basis state by −1. The subsequent gates rotate the state back to
the computational basis, and measurement of both qubits yields one of the four
possible database elements 00, 01, 10, or 11.

which is then rotated back to the computational basis, yielding |ψ3〉 =
|00〉. The other three search oracles lead similarly to the other compu-
tational basis states, and a measurement of both qubits allows one to
determine which search oracle was applied, thus ‘locating’ the target
element.

While in the two-qubit case only a single application of the search
oracle is necessary, for larger instances the oracle must be applied mul-
tiple times (O(

√
N) for a database of N elements). This is because

in the two-qubit case the four possible outcomes for |ψ2〉 are ortho-
gonal to each other, while in higher dimensions this does not hold. A
complete description of the n-qubit algorithm can be found in [5].

5.2.3 Algorithm components as target operations

for GRAPE

The algorithms in Figs. 5.6 and 5.7 are specified in terms of basic
circuit components like the Hadamard gate, but it is not necessary to
implement each and every one of these separately. Both algorithms
can be implemented as a series of 3 pulses:

1. State-to-state transfer |00〉 → |ψ1〉, with |ψ1〉 specified by (5.17)
or (5.23) in the Deutsch and Grover algorithms, respectively.

2. Two-qubit unitary gate implementation for the function Uf or



5.3. IMPLEMENTATION SCHEMES 91

the search oracle Us in the Deutsch and Grover algorithms, re-
spectively.

3. Rotation back to the computational basis. In the Deutsch al-
gorithm there are (up to a global phase) only two possible initial
states at the beginning of this step, so only the subspace to sub-
space transfer

1

2




−1 1
−1 −1
1 −1
1 1


→




1 0
0 0
0 1
0 0


 (5.25)

is required. In the Grover algorithm we concatenate all remain-
ing gates together to the two-qubit unitary

U3 = (H ⊗H)U00 (H ⊗H)

=
1

2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 . (5.26)

5.3 Implementation schemes

5.3.1 Selective square pulses

As a reference point, we briefly mention the selective square pulses
used in Ref. [48] for the preparation of Bell states. To create the Bell

state |01〉+|10〉√
2

, for example, the following scheme was applied

|00〉 π/2 (RF12)−−−−−−−→ |00〉+ i|10〉√
2

π (RF13)−−−−−→ |01〉+ |10〉√
2

, (5.27)

where θ (RFnn′) implies a square x-pulse of rotation angle θ applied
selectively to the (n, n′) transition. Since the target here is a super-
position state, we must take into account the relative phase acquired
due to the drift Hamiltonian (5.13). The fidelity of this scheme for dif-
ferent pulse durations is shown in Fig. 5.8a. We see that a high fidelity
can be achieved if an appropriate duration is chosen. The cnot gate
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Figure 5.8: (a) Fidelity F as a function of total pulse duration T for the Bell-
state preparation sequence (5.27). The oscillation is due to the drift term (5.13),
while the smallest duration T = 4µs corresponds to the maximum Rabi frequency
Ω = 0.5MHz. (b) For the cnot implementation, Ω = 0.5MHz corresponds to a
duration of T = 1.8µs.

can also be implemented in this fashion, via a single π (RF34) pulse
swapping levels |10〉 and |11〉. The analagous fidelity plot for the cnot
is shown in Fig. 5.8b.

For a generic two-qubit gate, however, the procedure is more com-
plicated. Consider for example the final step of the two-qubit Grover
algorithm specified in (5.26). Here all four transitions are involved,
and it is not clear how to build the gate from a simple sequence of se-
lective pulses. For this task we will instead use the GRAPE algorithm.
This has some additional advantages. Firstly, we can account for the
limitations of the pulse generator by restricting the bandwidth of the
optimised pulses. Secondly, the implementations can be made robust
to the errors specified in Section 5.1.5.

5.3.2 Drift evolution

In our chosen basis, some diagonal gates can be implemented with
high fidelity by evolving under the drift only. The four search oracle
calls (5.22a-d), for example, can be implemented in this fashion. After
a delay time t (with no control fields applied) the unitary propagator
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in the lab frame is

U(t) =




e−iω1t 0 0 0
0 e−iω2t 0 0
0 0 e−iω3t 0
0 0 0 e−iω4t


 , (5.28)

with ωn := En/~. The fidelity |〈U00|U(t)〉| is simulated and plotted
over a small time interval in Fig. 5.9. For a time delay of t00 =
0.5572µs a value of F > 0.999 is achieved. For the remaining three
gates the appropriate time delays are t01 = 0.5035µs, t01 = 0.4998µs,
and t01 = 0.5535µs. In practice, the level of accuracy to which a delay
time is specified does not apply to the time itself, but to the phase
stability of the control field during the delay - this will be discussed
further in Section 5.3.4.

5.3.3 Optimisation results

Schemes are optimised for all instances of the Deutsch and Grover
algorithms. This amounts to 8 pulse sequences in total. A single
pulse sequence consists of 3 separate parts: the preparation step, one

F

t (¹s)

t
00

0.54 0.545 0.555 0.56
0

1

Figure 5.9: Fidelity F = |〈U00|U(t)〉| over a small time interval when evolving
under the drift only. The smallest time at which a fidelity of F > 0.999 is reached
is t00 = 0.5572 µs.
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Pulse digitisation: M = T/∆t = T/(50 ns)
Amplitude limit: 0.5MHz
Bandwidth range: ±1MHz
Error tolerance: ∆ω = ±10kHz, κ = ±5%
Gradient method: First-order
Iteration limit: 2× 103

# of initial conditions: 100

Table 5.1: Parameters used in the numerical optimisations in Section 5.3.3. For
an explanation of the various terms see Chapter 2. The bandwidth restriction is
imposed so that the pulse shapes can be generated accurately, which will be dis-
cussed further in the following section. This bandwidth restriction leads to poorer
convergence, hence the larger number of initial conditions needed per optimisation.

of 4 possible search oracles / function calls, and the final rotation
step. These parts are treated as separate target operations, so there
are 12 target operations in total. The optimisation parameters used
are provided in Table 5.1, while sample optimised pulse sequences
for particular instances of both algorithms are shown in Fig. 5.10.
As in the ion trap experiments in the previous chapter, the pulses are
produced using the VFG-150 pulse generator from Toptica Photonics.
In the NV center system the transition frequencies range from 130−
140MHz, while the bandwidth limit of the pulses is only ±1MHz.
Thus, pulses cannot drive all four transitions simultaneously, and the
carrier frequency must switch between different values. We choose the
central values of ω1 = 130.5MHZ and ω2 = 139.5MHZ. In the first
steps of each algorithm, both of which are state-to-state transfers, ωc

takes the value of ω1 for the first half and ω2 for the second half of the
step. In all the other steps it alternates in each quarter of the step
according to the sequence ω1 → ω2 → ω1 → ω2 . The VFG-150 should
once again be operated in the phase continuous switching mode.

Pulses for each of the 12 steps are numerically optimised. For the
four search oracle steps, however, the simple time delays described
in Section 5.3.2 perform just as well. The optimised function calls
(5.22b-d) are 10µs long, resulting in a duration of 28µs for the longest
sequence. As this is considerably shorter than the relaxation time of
∼ 600µs, the algorithms should be implementable with high fidelity.
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Figure 5.10: Optimised controls ux (blue) and uy (red) for instances of two-qubit
algorithms on 13C spins at the NV center. (a) All 3 steps (separated by the dashed
lines) of the Grover algorithm instance for the search oracle U00 (5.22a), where
the second step is simply a time delay of 0.5572 µs as discussed in Section 5.3.2.
(b) The Deutsch algorithm for the function call f(x) = 0, corresponding to the
unitary U0 (5.19a).

A tradeoff between bandwidth and robustness

In all cases the optimised pulses achieve a fidelity of F > 0.999 for
κ = 0, ∆ω = 0. However, the bandwidth restrictions come at the
cost of reduced robustness.3 This is most noticeable in the case of
unitary gate implementations, where it is not possible to make the
pulses as highly robust to variations in ∆ω. In Fig. 5.11 we compare

3Allowing for longer pulse durations than 10µs did not significantly increase
robustness, indicating that pulse bandwidth is indeed the limiting factor.
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Figure 5.11: Fidelity F = |〈U3|U(T )〉| as a function of the error parameters κ and
∆ω for the third step of the Grover algorithm. (a) For a bandwidth-limited pulse
(±1MHz) the average fidelity over the required range (dashed box) is 〈F 〉 = 0.981.
(b) With no bandwidth restrictions the average fidelity is 〈F 〉 = 0.996.

the robustness of the bandwidth-limited pulse to an optimised pulse
which can switch arbitrarily every 50 ns. In the latter case a higher
level of robustness is achieved.

5.3.4 Feasibility of the optimised schemes

Our eventual goal is for the optimised pulses to be applied to a real
NV center. With this in mind we now discuss a few issues of exper-
imental feasibility. The first of these is the ability of the VFG-150
pulse generator to faithfully reproduce the desired pulse shapes. Why
do we expect this to be an issue? In the NV center system the coup-
ling and Rabi frequency are in the MHz regime, so the pulse timescale
of µs is very short. In contrast, in the ion trap system the pulses are
3-4 orders of magnitude longer. It turns out that at the µs timescale
it is necessary to restrict the bandwidth of the optimised pulses.

To test our pulse generation capabilities, the optimised pulses are
fed into the VFG-150, and the output shape is then directed to an
oscilloscope and recorded. We simulate the fidelity for this recorded
shape, and compare it to the simulated fidelity of the ideal shape.
There are three points to stress:

(i) The NV center is not involved at all, the only experimental
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component being tested is the pulse generator.

(ii) We cannot isolate the errors that are solely due to the pulse
generation step - additional errors could arise in the recording
process which would not be present in the real experiment.

(iii) We can record the pulse shape, but not the overall scale - this
depends on the dipole strengths of the nuclear spins. The re-
corded shape is scaled in our simulations to achieve maximum
fidelity.

The first pulses that were optimised were not bandwidth constrained.
The recorded pulse shape in these cases was significantly distorted,
and the simulated fidelities were much lower. We therefore restric-
ted the bandwidth to a range of ±1MHz (enough to cover all four
transitions from the two designated carrier frequencies ω1 and ω2)
and found that the pulses could be generated with sufficient accuracy.
An example for the first Grover step is shown in Fig. 5.12.

Secondly, we make a brief comment on the accuracy of the time
delays required in the Grover search oracle implementations. From
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Figure 5.12: Instantaneous field Ω cos(ωct + φ) for the first step of the Grover
algorithm. (a) The ideal pulse shape achieves a fidelity of F = 0.999. (b) The
recorded pulse shape, after rescaling, achieves a fidelity of F = 0.995. The simu-
lations are performed in the lab frame, as the instantaneous field Ω cos(ωct+φ) is
what is recorded. A maximum of 15000 datapoints can be recorded, leading to a
resolution in this case of 8µs/15000 ≈ 0.5 ns. This can be compared to the carrier
oscillation period of 1/ωc ≈ 7 ns.
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Figure 5.13: Fidelity F at the end of the full Grover algorithm for search oracle
U00 for different delay times t. At the end of the delay the phase correction
ωc(t − t00) is added.

the fast oscillation in Fig. 5.9, it appears that the time delay must be
accurate with a resolution of around 0.1 ns. In fact what is important
is the phase of the control field at the end of the delay relative to the
phase at the beginning. In Fig. 5.13 we plot the fidelity at the end of
the full Grover algorithm for the search oracle U00 using different delay
times t for the second step, where at the end of the delay we correct
by adding the phase ωc(t − t00). We find that the time resolution
required is much less stringent when compared to Fig. 5.9. Roughly
speaking, we can imagine that after a time delay t > t00, the system
acquires an additional phase ωc(t − t00), which we then add to the
driving field so that it ‘catches up’ to the system again.

Finally we review the phase-switching modes of the VFG-150 to
avoid any possible confusion. For both the NV center and ion trap
experiments, we have designed optimised pulses for the phase continu-
ous switching mode. This corresponds to the situation in Fig. 5.14a.
The alternative mode, phase coherent switching, corresponds to the
situation in Fig. 5.14b. While the prospect of ‘coherence’ may sound
appealing, this mode merely introduces additional phase jumps which
will lead to incorrect results when used with the optimised pulses.
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Figure 5.14: Phase-switching modes of the VFG-150. (a) The phase-continuous
mode corresponds to the model we have optimised under. (b) In the phase-
coherent mode, additional phase jumps are introduced so that sections oscillating
at the same carrier frequency are in phase. These phase jumps are not included
in our model, but would add nothing to it as the phase is already allowed to vary
freely as a control parameter.

5.4 Summary

In this chapter we have designed schemes to implement two-qubit
quantum algorithms on a pair of 13C spins at an NV center in dia-
mond. While some of the gates involved could be implemented simply
using selective square pulses or delays, our optimal control methods
enabled us to design pulses to implement all of the gates necessary
for the algorithms. We have attempted to cater to the experimental
non-idealities as much as possible, both by limiting the bandwidth of
the pulses and by making them robust to detuning and scaling errors.
We showed that in some cases there is a trade-off between the two.

The next step is to experimentally realise these optimised pulses.
At some point we may have to refine the model (for instance if the
transition frequencies are re-measured more precisely) and further op-
timise the pulses. This can be quite fast if the existing pulses are used
as initial conditions in the GRAPE algorithm. Nevertheless, the cur-
rent pulses should, to the best of our knowledge, yield high fidelities
in the existing experimental setup. This would in fact be the first
experimental realisation of multi-qubit quantum algorithms on single
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spins in the solid state at room temperature. Another potential fu-
ture direction is to introduce a simple (classical) feedback system to
the pulse generator in order to create the pulse shapes as accurately
as possible - this is an approach that has already been successfully
applied in a similar frequency regime in NMR [59].



Chapter 6

Control of

superconducting qubits

in a cavity grid

Another promising approach to scalable quantum computation is the
new field of circuit quantum electrodynamics (QED), where supercon-
ducting qubits are coupled to one another by microwave fields. These
systems consist of superconducting wires, Josephson junctions, and
transmission line resonators fabricated on a chip, and are in this sense
superconducting versions of conventional integrated circuits. Progress
in the field recently culminated in an implementation of the Deutsch
and Grover algorithms on two qubits in a single resonator [60], and a
further step is to couple larger numbers of qubits.

In this chapter we study a particular scheme for scaling up the
number of qubits known as the ‘cavity grid’ [61], applying optimal
control methods to the task of implementing unitary gates between
two arbitrary qubits in the grid. In Section 6.1 we introduce super-
conducting qubits and the cavity grid scheme. In Section 6.2 we then
optimise pulses in an idealised model of the system, with no restric-
tions on the control fields. This is followed in Section 6.3 by a realistic
model which takes some key experimental restrictions into account.
In both settings we are interested in establishing the minimum time

101
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required for each gate operation. The work in this chapter is part
of a collaborative effort together with Ferdinand Helmer and Florian
Marquardt at the Ludwig-Maximillians-Universität in Munich.

6.1 The cavity grid

The cavity grid, a theoretical scheme first introduced in Ref. [61],
is perhaps the most straightforward way to couple large numbers of
superconducting qubits in two dimensions. Before we get to the cavity
grid setup, we first give a very brief introduction to superconducting
qubits and their interaction with microwave fields in a cavity, following
the treatment of Ref. [62].

6.1.1 Superconducting quantum bits

In contrast to the other quantum systems studied in this thesis, su-
perconducting qubits are macroscopic objects. They are essentially
small superconducting wires, interrupted at points by insulating gaps
of 2-3 nm (Josephson junctions). In the superconducting state the
electrons in the wire form Cooper pairs [63], which are described by
a macroscopic wavefunction Ψ(r, t). This wavefunction leads to two
important quantum effects in the wire: flux quantisation and Joseph-
son tunneling. The former is a phenomenon where, when a loop of
wire is cooled through its superconducting transition temperature in
the presence of a magnetic field, the magnetic flux through the loop
becomes quantised. This arises from the requirement that Ψ(r, t) be
single-valued. The latter refers to the ability of Cooper pairs to tun-
nel coherently through a Josephson junction. There are two relevant
energies: the Josephson coupling energy

Ej =
I0Φ0

2π
, (6.1)

where I0 is the maximum supercurrent the junction can sustain and
Φ0 = h/2e is the magnetic flux quantum, and the charging energy

Ec =
(2e)2

2C
, (6.2)
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where C is the junction capacitance. Ec can be regarded as the work
required to move a Cooper pair across the junction.

Flux qubits

When Ej ≫ Ec the energy eigenstates of the system are also eigen-
states of magnetic flux, with the qubit states corresponding to flux
pointing up | ↑ 〉 or down | ↓ 〉 (i.e. a small supercurrent in the loop
circulating in the anticlockwise or clockwise directions). Although the
flux is still quantised without any Josephson junctions present, the an-
harmonicity introduced by the nonlinear inductance of the junction is
crucial to isolate two levels for use as a qubit.

Charge qubits

When Ej ≪ Ec the energy eigenstates of the system are eigenstates
of the difference in the number of Cooper pairs on either side of the
junction. Consider a small section of superconducting wire, connected
to a larger reservoir by two Josephson junctions. This is known as
a superconducting island, or a Cooper-pair box. Cooper pairs can
tunnel on and off this island from the reservoir, with the qubit states
|n〉 and |n + 1〉 corresponding to n and n + 1 Cooper pairs on the
island. Fig. 6.1 shows the charge qubit used in Ref. [64].

Figure 6.1: False-colour electron micrograph of a superconducting charge qubit,
or ‘Cooper-pair box’, coupled to a resonating cavity. A superconducting niobium
layer (beige) sits atop a silicon substrate (green), forming a small section of the
cavity. The superconducting island (thin blue line) in the cavity is connected
to a larger reservoir (blue) by two Josephson junctions. The distance between
the junctions is approximately 3 µm. Image courtesy of the Schoelkopf Lab, Yale
University.
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The resonance frequencies of superconducting qubits are in the
microwave regime. More recent developments known as the ‘transmon
qubit’ and ‘quantronium’ improve upon the original charge and flux
qubit designs; a description of these, in addition to phase qubits,
which we have not discussed here, can be found in Ref. [62] and the
references therein.

6.1.2 Coupling of qubits via microwave cavities

As a current loop, the flux qubit is a magnetic dipole, while the charge
qubit is an electric dipole by virtue of its capacitance. The qubits
therefore interact with electromagnetic fields, which in this case are
in the microwave regime. If the microwave field is coupled to the
qubit inside a cavity we have a solid-state analogue of optical cavity
QED [65]. The tight confinement of the field mode and the large
dipole moment of the ‘atom’ yield extraordinary coupling strengths,
which has led to a variety of experimental achievements including
measurement of the photon number distribution [66] and the nonlinear
response of the vacuum Rabi resonance [67].

This also provides a means of coupling superconducting qubits to
each other over long distances, which was proposed in Ref. [68] and
later experimentally realised in Refs. [69, 70]. Typically the qubits
and the cavity are fabricated together in a single integrated circuit,
as in Fig. 6.1. This is the setup which allowed the recent implement-
ation of the Deutsch and Grover algorithms on two qubits [60]. A
further step, which at this stage is purely theoretical, is to couple
a large number of qubits together in a cavity grid [61]. The idea is
to have a two-dimensional grid of transmission line resonators (hori-
zontal and vertical, in two different layers), and to place qubits at the
intersections, as depicted in Fig. 6.2.

The qubits are operated in the dispersive regime, i.e. tuned far
from the cavity resonance frequency, so that qubits which are brought
into resonance with each other experience a cavity-mediated coupling
of the form σx

1σ
x
2 +σ

y
1σ

y
2 (Heisenberg-XX coupling). An appealing fea-

ture of this scheme is that any two qubits in the grid can be coupled
to one another at will by appropriately tuning their resonance fre-
quencies, in contrast to other systems where only nearest neighbour
interactions are available. A crucial question is how to efficiently per-
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1

2 3

Figure 6.2: The superconducting cavity grid [61], with two layers of vertical
(bottom) and horizontal (top layer) transmission line resonators, coupled to qubits
(small red squares). Two-qubit gates between qubits 1 and 3 are mediated indir-
ectly via qubit 2, employing the dispersive interaction inside the two highlighted
resonators.

form unitary gates on two qubits lying in different cavities (e.g. qubits
1 and 3 in Fig. 6.2), which is the generic case. This is the question we
will address with optimal control in the following sections. Previous
examples of optimal control applied to superconducting qubits can be
found in Refs. [71, 72].

6.2 Time-optimal unitary gates in an ideal-

ised model

In order to establish the lower limits on gate times in this scheme, let
us first consider an idealised model where the control fields are unres-
tricted. A model that respects the limitations in current experiments
more closely will be considered in Section 6.3. After adiabatic elimin-
ation of the cavity [68], the effective qubit-qubit interaction Hamilto-
nian is of the form

Hint = πJ
(
σ+
1 σ

−
2 + σ−

1 σ
+
2

)
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=
πJ

2
(σx

1σ
x
2 + σy

1σ
y
2 ) , (6.3)

where J is an effective coupling constant determined by the qubit-
cavity couplings and detunings. Evolution under Hint for a time of
T = 1

2J yields the so-called iswap operation [73]:

exp

{
−i 1

2J
Hint

}
=




1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1


 , (6.4)

a universal two-qubit gate which can be considered the ‘natural’ gate
of the coupling interaction.

6.2.1 Two qubits in a cavity

If the two coupled qubits are individually addressable by resonant mi-
crowave fields of tunable amplitude and phase, the total Hamiltonian
in a frame rotating with the driving fields is

H
(2)
ideal(t) = Hint +

1

2

2∑

i=1

(uxi σ
x
i + uyi σ

y
i ) , (6.5)

under the assumption that the two qubits are in resonance (i.e. they
are set to the same frequency, but distinct from the cavity frequency).
Note that the coupling J and controls u are normalised as frequencies
and angular frequencies, respectively. This mixed normalisation, while
odd, is in accordance with NMR convention.

One approach to implement a general two-qubit gate is to de-
compose it into a sequence of iswap gates and local operations, as
discussed in Refs. [73, 61]. For example, a cnot gate can be created
from two iswaps, while a swap gate requires three. We refer to this
as the ‘sequential’ approach. In this section we assume that local op-
erations can be performed in a negligible time compared to the time
required by the coupling evolution. Time-optimal pulse sequences for
an arbitrary two-qubit gate can then be determined analytically via
the Cartan decomposition of SU(4) as in Refs. [74, 75]. In Appendix C
we provide a review of this procedure. The iswap implementation sug-
gested in (6.4) is, unsurprisingly, already time-optimal. Time-optimal
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Figure 6.3: Analytical pulse sequences for time-optimal implementations of two-
qubit gates (between two qubits in the same cavity): (a) the cnot gate, where 1
is the control qubit and 2 is the target qubit, and (b) the swap gate.

pulse sequences for the swap and cnot are provided in Fig. 6.3. A
comparison of the times required by the different schemes is given in
Table 6.2; we find that even in this simple case the swap and cnot

can be sped up by a factor of 2.

6.2.2 Three qubits in two cavities

We now consider two qubits, each in a separate cavity, which are
coupled indirectly via an additional ‘mediator’ qubit placed at the
intersection of the cavities. This is the typical situation for two qubits
in the cavity grid. If local controls on all three qubits are available,
the Hamiltonian is

H
(3)
ideal(t) =

πJ

2
(σx

1σ
x
2 + σy

1σ
y
2 + σx

2σ
x
3 + σy

2σ
y
3 )

+
1

2

3∑

i=1

(uxi σ
x
i + uyi σ

y
i ) . (6.6)

Gates can be implemented between the indirectly coupled qubits (1
and 3) in the sequential scheme via the swap operation, as depicted
in Fig. 6.4. For example, an iswap between qubits 1 and 3 could be
implemented as a sequence of seven iswaps between directly-coupled
qubits.
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1

2

3

arbitrary two-qubit gate

SWAP
12

SWAP
12

Figure 6.4: The standard decomposition of an indirect two-qubit gate into direct
two-qubit gates via the swap operation.

Alternatively, these indirect two-qubit gates embedded in a three-
qubit system can be implemented considerably faster using optimised
controls. The analytical methods used for determining time-optimal
two-qubit gates cannot be applied here; instead we use the GRAPE
algorithm. TOP curves are computed in order to estimate the min-
imal time. The optimisation settings used are shown in Table 6.1. As
an example, a plot of maximum fidelity vs. gate time for an iswap13
gate is shown in Fig. 6.5; in this case we find that a time of 1/J is
required to reach the threshold fidelity. Minimal times for other indir-
ect two-qubit gates are similarly calculated and the results included
in Table 6.2, alongside the times required by the corresponding se-
quential schemes of decomposition into two-qubit iswaps.

In order to illustrate how the optimised indirect two-qubit gates
differ from the sequential schemes, we can consider the entanglement
between directly coupled qubits over the time interval during which

Pulse digitisation: 256
Error tolerance: None
Gradient method: Second-order

Table 6.1: Parameters used in all of the numerical optimisations in Sections 6.2
and 6.3. At each pulse duration we generate 50 random intial conditions, iterate
each 100×, select the highest 10 fidelities, iterate 500×, then select the highest
2 fidelities and iterate 1000×. In the more demanding cases (the three-qubit
realistic model, see Section 6.3.2), it turns out that the second-order gradient
method performs significantly better than the first-order one.
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Figure 6.5: (a) Maximum achievable fidelity as a function of pulse duration in
the three-qubit idealised model for an iswap13 gate. (b) On a logarithmic scale
we observe a sharp convergence to the threshold fidelity of 1 − 10−5, where the
algorithm terminates.

Gate Tseq (1/J) Topt (1/J) speedup factor

iswap12 0.5 0.5 -
cnot12 1.0 0.5 2
swap12 1.5 0.75 2

iswap13 3.5 1.00∗ 3.50
cnot13 2.0 1.00∗ 2.00
swap13 4.5 1.15∗ 3.91

Table 6.2: Implementation times for a selection of direct and indirect two-qubit
gates in the idealised model: Tseq is the time required by decomposing the gate
into two-qubit iswaps; Topt is the time required by the optimal control sequence.
The times marked with an asterisk are determined numerically as the shortest
times in which the GRAPE algorithm can reach a fidelity of 1− 10−5, with time
resolution 0.05/J . The time of 2.0/J for the sequential implementation of a cnot13

is a special case, where the two swaps in Fig. 6.4 can be replaced by iswaps [61].

the controls are applied. For this we use the logarithmic negativity
[76], defined as

EN (ρ) = log2
∣∣∣∣ρΓA

∣∣∣∣
1

(6.7)

where ΓA is the partial transpose, ||·||1 is the trace norm, and ρ is the
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reduced density matrix of the two-qubit subsystem. We choose the
initial state |100〉 and apply the iswap13 operation, while observing
the entanglement between qubit pairs 1-2 and 2-3. The results are
illustrated in Fig. 6.6. In the sequential scheme the mediator qubit
is entangled either with qubit 1 or qubit 3. In the optimised case,
as one might expect, the mediator qubit is simultaneously entangled
with both.

(a)

T (1/J) T (1/J)

E
N

0
0 1 2 3 0 0.5 1

0.5

1

E
N

0

0.5

1

1.5

(b)

Figure 6.6: Logarithmic negativity between qubit pairs 1-2 (solid line) and 2-3
(dashed line) for (a) sequential and (b) optimised implementations of an iswap13.

6.3 Time-optimal unitary gates in a real-

istic model

Allowing for unrestricted x and y control on each qubit yields lower
bounds on what implementation times are possible. However we would
also like to consider a restricted model of coupled superconducting
qubits which is more feasible in current experiments. We allow for
individual tuning of the qubit resonance frequencies (z controls), but
restrict ourselves to a single microwave field (x control) per cavity,
where the microwave field is no longer required to have tunable phase.
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6.3.1 Two qubits with restricted controls

Under these structural restrictions, the corresponding two-qubit Hamilto-
nian is

H
(2)
real(t) = Hint +

1

2

2∑

i=1

uzi σ
z
i +

1

2
ux12 (σ

x
1 + σx

2 ) , (6.8)

where ux12(t) is the amplitude of the microwave field and uzi are the
detunings of the qubit frequencies from the microwave carrier fre-
quency. We consider two possible cases for the control functions: (i )
the controls are unrestricted, or (ii ) the controls are restricted to the
following ranges:

|uzi | ≤ uzmax = 2π × 1000MHz

|ux12| ≤ uxmax = 2π × 50MHz, (6.9)

where the coupling constant was taken to be J = 21MHz (as in
Ref. [61]) in our numerical examples. Furthermore, in case (ii ) we re-
quire that the controls start and end at zero with a maximum rise-time
of 4ns, which, according to the supplementary material of Ref. [60],
should be feasible in current experiments.

In case (i ) the results from Section 6.2.1 still apply - we need only
to rewrite the local x and y pulses in terms of our new controls. For
instance a 90◦ x-rotation on the first qubit can be decomposed as

Rx
1 (90

◦) = Rz
2(−180◦)Rx

1,2(45
◦)Rz

2(180
◦)Rx

1,2(45
◦) (6.10)

and the other local x and y pulses can be similarly decomposed. Thus,
the two-qubit times in Table 6.2 also hold in this case, so there is no
loss of time in going to this restricted Hamiltonian when the controls
themselves are unrestricted.

In case (ii ) the analytical methods are no longer applicable, as they
require that local rotations can be applied in negligible time. The
iswap can of course still be implemented by simply evolving under
the coupling, but to find time-optimal implementations for other two-
qubit gates we must again use the GRAPE algorithm, with bandwidth
restrictions in place equivalent to a rise-time of 4 ns. Fig. 6.7 contains
the TOP curves for two-qubit swap and cnot gates. Examples of
the optimised controls for the cnot gate are given in Fig. 6.8.
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Figure 6.7: Maximum fidelity as a function of pulse duration in the two-qubit
realistic model for (a) a cnot gate, and (b) a swap gate. Maxima obtained with
no restrictions on the controls are marked with a ‘•’, while those obtained under
the restrictions in (6.9) are marked with a ‘◦’. The arrows indicate the minimal
times for which the threshold fidelity is reached.
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Figure 6.8: Sample controls obtained by the GRAPE algorithm for the minimal-
time implementation of a cnot in the two-qubit realistic model: uz1 (red, dotted
line), uz2 (green, dashed line), and ux12 (blue, solid line) with (a) unrestricted
controls, and (b) restricted controls. Note that the controls in (a) are palindromic.
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Observe that the cnot gate is self-inverse and the two-qubit Hamilto-
nian (6.8) is real and symmetric. As described in Ref. [71], in such
systems there may be palindromic control sequences as in Fig. 6.8a.
Their practical advantage lies in the fact that they may be synthesised
using capacitances (C) and inductances (L) and no resistive elements
(R) thus avoiding losses. In contrast, since the iswap is only a fourth
root of the identity, it is no longer self-inverse, and therefore palin-
dromic controls are not to be expected (compare, e.g., Fig. 6.10.)

6.3.2 Three qubits with restricted controls

For three qubits coupled via two cavities we allow for three local z
controls and two x controls, with the Hamiltonian

H
(3)
real(t) =

πJ

2
(σx

1σ
x
2 + σy

1σ
y
2 + σx

2σ
x
3 + σy

2σ
y
3 )

+
1

2
ux12 (σ

x
1 + σx

2 ) +
1

2
ux23 (σ

x
2 + σx

3 ) +
1

2

3∑

i=1

uzi σ
z
i . (6.11)

Again we determine optimised controls numerically; TOP curves are
shown in Fig. 6.9, while sample optimized controls for the restricted
case (ii ) are shown in Fig. 6.10. Only the x restriction plays a role here
as the z restriction is an order of magnitude larger. A comparison of
times in the sequential and optimised schemes under the restrictions
in (6.9) is provided in Table 6.3. The times in the sequential scheme
have increased, as each local 90◦ x-rotation now requires a time of
π/(2uxmax) = 0.105/J . The times required by the optimised schemes
also increase, but substantial speedups are still possible.

6.4 Summary

In this chapter we have demonstrated how optimal control methods
provide fast high-fidelity quantum gates for coupled superconduct-
ing qubits. In contrast to conventional approaches that make use
of the coupling evolutions sequentially (i.e., along one dimension at
a time), numerical optimal control exploits the coupling dimensions
simultaneously thereby leading to significant speedups. In particular,
the numerical method provides controls under realistic experimental
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Figure 6.9: Maximum fidelity as a function of pulse duration in the three-qubit
realistic model for (a) a cnot13 gate, and (b) an iswap13 gate. Maxima obtained
with no restrictions on the controls are marked with a ‘•’, while those obtained
under the restrictions in (6.9) are marked with a ‘◦’. The arrows indicate the
minimal times at which the threshold fidelity is achieved.

(a)

t (1/J)

(b)

t (1/J)

-2

0

1

-1

2

3

-1

0

1

2

3

u
x
  (

2
¼
J
)

u
z
  (

2
¼
J
)

0.50 1.0 1.5 0.50 1.0 1.5

Figure 6.10: Sample controls to implement an iswap13 gate in the three-qubit
realistic model with restrictions (ii ) in place: (a) ux12 (green, dashed line), ux23
(blue, solid line). (b) uz1 (blue, solid line), uz2 (green, dashed line), uz3 (red, dotted
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Gate Tseq (1/J) Topt (1/J) speedup factor

iswap12 0.50 0.50 -
cnot12 1.21 0.90 1.34
swap12 1.82 0.80 2.28

iswap13 4.13 1.40 2.95
cnot13 2.21 1.40 1.58

Table 6.3: Implementation times for a selection of direct and indirect two-qubit
gates in the realistic model with the control amplitudes restricted as described in
case (ii ). Tseq is the time required by decomposing the gate into two-qubit iswaps
and local operations; Topt is the time required by the numerically optimised pulse
to reach a fidelity of 1−10−3. The particular values for the minimal times simply
result from our choice of the maximum amplitude relative to J .

conditions, such as (i ) a restriction to controls affecting some qubits
jointly, and (ii ) rise-time and power limitations on the controls. The
method and the general result should also be applicable to other phys-
ical systems consisting of two-dimensional arrays of qubits where in-
direct coupling is necessary, such as optical lattices.
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Chapter 7

Conclusion

In this thesis we addressed the problem of how to steer the evolu-
tion of quantum systems in order to use them for certain tasks. A
variety of finite-dimensional quantum systems have been studied; in
the course of the work we encountered orbital and hyperfine states of
Pr3+ and Rb atoms, hyperfine states of trapped Yb+ ions, the nuclear
spin of 13C atoms adjacent to a nitrogen defect in diamond, and su-
perconducting artificial atoms in a grid of microwave resonators. The
systems were studied using methods of optimal control, which allowed
us to specify any task we like. As interesting examples we typically
chose quantum computing tasks: single-qubit rotations, multi-qubit
gates, or a sequence of these in a basic quantum algorithm. We also
considered the preparation of cluster states as an alternative to the
circuit model.

In Chapter 2 we introduced the numerical optimisation algorithm,
GRAPE, that was the core of our approach. In particular, we dis-
cussed the modifications that allowed us to (i ) make operations ro-
bust under the variation of certain experimental parameters, and (ii )
restrict the search space to controls which are smooth enough to be
generated accurately. The fact that any quantum system that can
be simulated can also be optimised—provided its Hamiltonian can be
written in the general form of Eqn. (2.5)—means that these methods
should be widely applicable. In some cases, specifying an accurate
model of a system in the first place can be just as challenging as find-
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ing optimal controls for it. In Chapter 3 we discussed how to write
down a Hamiltonian description of a N -level quantum dipole driven
by electromagnetic fields. The idea is to have a simple procedure that
will allow an experimentalist to quickly convert their system specific-
ations, such as an energy-level diagram, into a mathematical model
which they can use to simulate and optimise controls. A general pro-
cedure was given for determining a rotating-frame transformation so
that the dynamics are slow enough to be simulated feasibly. The
methods were then illustrated with three different examples.

In Chapter 4 we studied the preparation of cluster states on a gen-
eral class of systems, namely qubits coupled by the Ising interaction.
In the first part we considered an ideal case where we could study
their behaviour both analytically and numerically. We found that the
implementation consisting of drift evolution only was generally not
time-optimal, which is quite surprising and in contrast to the equi-
valent case for unitary gates. We showed that, in all observed cases,
the non-orthogonality of symmetrised drift and control Hamiltonians
enabled a speedup. In the three-qubit case we gave a geometric ex-
planation of this. We then considered a variant of this model where
the coupling constants differed, corresponding to an experimental con-
figuration of trapped ions. The GRAPE algorithm was used to design
fast, robust schemes. In the final part we considered a restricted set of
controls where no implementation was previously known, and found a
feasible scheme. This was designed using the parameters from a par-
ticular experimental setup, and our aim is to implement the scheme
in the future.

Chapter 5 concerned another experimental system: the nitrogen
vacancy center in diamond. This is a particularly promising system
for quantum computation applications. We designed schemes for the
implementation of two-qubit Deutsch and Grover algorithms, consist-
ing of sequences of optimised unitary gates and state-to-state trans-
fers. These pulses were designed to be robust and bandwidth-limited,
and their implementation in the existing experimental setup should
be feasible. If parameters change in future iterations of the experi-
ment, the same framework can still be used, and the pulses quickly re-
optimised. In Chapter 6 we also considered quantum gates, this time
in a theoretical scheme consisting of superconducting qubits coupled
by microwave resonators, the ‘cavity grid’ scheme. We showed that
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two-qubit operations between arbitrary qubits on the grid could be
performed with only a small overhead, a significant improvement over
the existing pulses. Bandwidth limitations were also considered.

In summary, we have shown that a wide variety of quantum sys-
tems could be addressed with optimal control methods. This allowed
us to obtain a better understanding of how these systems behave,
and also to control them more effectively. Implementation schemes
were optimised for a variety of tasks. In some cases, previous schemes
either (i ) did not exist, or (ii ) were not within experimental reach. In
this sense, our study helps bring the long term goal of quantum com-
putation and other such technological applications a tiny step closer
to fruition.
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Appendix A

Scalar derivatives of the

matrix exponential

Here we give a proof of Eqn. (2.15), which is used in Chapter 2 to
calculate the derivative of a matrix-valued function with respect to a
scalar variable. This follows the treatment of Ref. [77], Appendix I,
and Ref. [78], pp. 175. We start by considering the function

X(t) = e t (A+ǫB) , (A.1)

where A and B are operators and ǫ and t scalars. This is defined as
the solution to the operator differential equation

dX

dt
= (A+ ǫB)X , (A.2)

with X(0) = 1l. Changing variables to

Y := Xe−tA , (A.3)

we find

dY

dt
= ǫY etABe−tA . (A.4)

Integrating both sides of (A.4) from 0 to t we obtain

Y (t) = 1l + ǫ

∫ t

0

Y (s) esABe−sA ds . (A.5)
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Changing variables back to X yields a Volterra integral equation of
the second kind,

X(t) = etA + ǫ

∫ t

0

X(s)Be(t−s)A ds . (A.6)

Repeated insertion of (A.6) into itself leads to the infinite series

X(t) = etA + ǫ

∫ t

0

esABe(t−s)A ds+O(ǫ2) , (A.7)

where ǫ is now considered to be vanishingly small. Evaluating this for
t = 1 we arrive at the formula

eA+ǫB − eA = ǫ

∫ 1

0

esABe(1−s)A ds+O(ǫ2) . (A.8)

We now consider an operator-valued function f(x) of a scalar variable
x. The derivative of e f(x) with respect to x is defined by

d

dx

{
ef(x)

}
:= lim

h→0

ef(x+h) − ef(x)

h

= lim
h→0

e {f(x)+h df/dx} − ef(x)

h
. (A.9)

This can be solved using formula (A.8) with the identification A =
f(x), B = df/dx, and ǫ = h, leading to

d

dx

{
ef(x)

}
=

∫ 1

0

e sf(x) df

dx
e(1−s)f(x) ds . (A.10)

Similarly, had we instead chosen the substitution Y := e−tAX at
line (A.3), we would have arrived at

d

dx

{
ef(x)

}
=

∫ 1

0

e(1−s)f(x) df

dx
e sf(x) ds , (A.11)

which is also found in the literature.



Appendix B

Circular polarisation

and selection rules

In Section 3.5 we gave a laboratory-frame Hamiltonian for the case
of circularly polarised driving. Here we justify the form of (3.85) by
considering the selection rules for electric dipole transitions.

B.1 Interaction Hamiltonian and field

In the interaction Hamiltonian

HI = E(t) · µ , (B.1)

the field is given by

E(t) = E0

(
e−iωt n̂+ eiωt n̂

∗) , (B.2)

where E0 is the real field amplitude, ω is the carrier frequency, n̂ is
a complex unit vector specifying polarisation, and the phase is set to
zero for convenience. Thus

HI = E0

(
e−iωt n̂ · µ+ eiωt n̂

∗ · µ
)
. (B.3)

123



124 APPENDIX B. CIRCULAR POLARISATION AND SELECTION RULES

For a field propagating in the +z direction, the choice

n̂ =
1√
2




1
±i
0


 (B.4)

specifies circular polarisation, with the − and + corresponding to left-
and right-circular polarisation respectively. Alternatively, the choice

n̂ =




0
0
1


 (B.5)

specifies linear polarisation in the z direction.
Suppose we want to model the driving of a N -level atom. We

expand HI as

HI =

(
N∑

i=1

|i〉〈i|
)
HI




N∑

j=1

|j〉〈j|




=
∑

i,j

H
(i,j)
I , (B.6)

where

H
(i,j)
I := 〈i|HI |j〉 |i〉〈j|+ 〈j|HI |i〉 |j〉〈i| (B.7)

is the driving term for a particular transition (i, j). To proceed further
we need to say something about the matrix elements 〈i|HI |j〉.

B.2 One-electron atom without spin

We first consider a one-electron atom, and ignore the spin degrees of
freedom. Our basis states |i〉 are then the atomic eigenstates |n, l,m〉,
where n, l, and m are the eigenvalues of |r|, the total angular mo-
mentum |l|, and the z component of angular momentum lz, respect-
ively. The corresponding wavefunctions are

|n, l,m〉 → ψ(r) = Rnl(r)Ylm(θ, φ) (B.8)
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where Rnl(r) are the radial wavefunctions and Ylm(θ, φ) are the spher-
ical harmonics. The dipole operator is simply

µ = −er (B.9)

where −e is the charge of the electron and r is the position operator.
We therefore need to evaluate the matrix element

〈n′, l′,m′| n̂ · r |n, l,m〉

=

∫ ∞

0

∫ π

0

∫ 2π

0

r2 sin(θ) dr dθ dφ [R∗
n′l′Y

∗
l′m′(n̂ · r)RnlYlm] . (B.10)

Suppose we have circular polarisation as in (B.4). Then

n̂ · r =
1√
2
(x± iy) =

1√
2
r sin(θ)e±iφ . (B.11)

If we instead had linear polarisation as in (B.5), then

n̂ · r = z = r cos(θ) . (B.12)

Furthermore, note that Ylm(θ, φ) = Plm(θ) eimφ. As the integrand of
(B.10) is a product of single-variable functions, we can do each integral
separately. The φ integral is what leads to polarisation selection rules:

∫ 2π

0

dφ
[
e−im′φ eiqφ eimφ

]
(B.13)

where q = ±1 for circular x-y polarisation and q = 0 for linear z
polarisation. This is an integral of a periodic function from 0 to 2π,
and is therefore zero unless

m′ −m := ∆m = q . (B.14)

We now return to Eqn. (B.7) and label the two levels i = 1 and
j = 2 for simplicity. We have

H
(1,2)
I =− eE0〈1|

(
e−iωtn̂ · r + eiωtn̂

∗ · r
)
|2〉 |1〉〈2|

− eE0〈2|
(
e−iωtn̂ · r + eiωtn̂

∗ · r
)
|1〉 |2〉〈1| . (B.15)
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Noting that 〈1|HI |2〉 = 〈2|HI |1〉∗ we find

H
(1,2)
I =− eE0〈2|

(
e−iωtn̂ · r + eiωtn̂

∗ · r
)
|1〉∗ |1〉〈2|

− eE0〈2|
(
e−iωtn̂ · r + eiωtn̂

∗ · r
)
|1〉 |2〉〈1| . (B.16)

Note that for circularly polarised fields with q = ±1, the selection
rules will require that at least one of 〈2|n̂ · r|1〉 and 〈2|n̂∗ · r|1〉 are
zero. First suppose m2 −m1 = ∆m = q. This would correspond to a
right-circularly polarised field driving a transition with ∆m = +1, or
a left-circularly polarised field driving a ∆m = −1 transition. Then
the 〈2|n̂∗ · r|1〉 terms drop out of (B.16) and we are left with

H
(1,2)
I = −eE0

[
〈2|e−iωtn̂ · r|1〉∗|1〉〈2|+ 〈2|e−iωtn̂ · r|1〉 |2〉〈1|

]

= −eE0

[
eiωt〈2|n̂ · r|1〉∗|1〉〈2|+ e−iωt〈2|n̂ · r|1〉 |2〉〈1|

]

= −eE0

[
eiωtr∗21|1〉〈2|+ e−iωtr21|2〉〈1|

]
(B.17)

where r21 := 〈2|n̂ · r|1〉. Rewriting r21 as |r21|e−iφr this becomes

H
(1,2)
I = −eE0|r21|

[
ei(ωt+φr)|1〉〈2|+ e−i(ωt+φr)|2〉〈1|

]

= −eE0|r21|
[
cos(ωt+ φr)σ

x
12 − sin(ωt+ φr)σ

y
12

]
(B.18)

using definitions (3.13) for σx
12 and σ

y
12. This is the form of the driving

terms used in Eqn. (3.85).

We now consider the opposite case, where ∆m = −q. This would
correspond to a left-circularly polarised field driving a transition with
∆m = +1, or a right-circularly polarised field driving a ∆m = −1
transition. We keep the 〈2|n̂∗ · r|1〉 terms in (B.16) and drop the
〈2|n̂ · r|1〉 terms instead, ending up with

H
(1,2)
I = −eE0|r12|

[
cos(ωt+ χr)σ

x
12 + sin(ωt+ χr)σ

y
12

]
. (B.19)

where 〈1|n̂ · r|2〉 = r12 = |r12|e−iχr . The transition is not com-
pletely “forbidden”, but driven by counter-rotating terms only (i.e.
off-resonantly by 2ω). This is in accordance with Ref. [79].
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B.3 Many-electron atom with spin

For an atom with K electrons we have

µ = −e
K∑

i=1

ri (B.20)

The atomic eigenstates are |n, F,mF 〉, where F is the total angu-
lar momentum including electron and nuclear spin. While the exact
wavefunctions may not be known, the Wigner-Eckart theorem states
that the mF dependence of the matrix elements of n̂ ·µ is given only
by Clebsch-Gordan coefficients. The polarisation selection rule (B.14)
generalises to

∆mF = q . (B.21)

Thus, the same argument can be applied. See for example Section
2.4.5 of Ref. [80] for more details.
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Appendix C

Analytical solutions for

time-optimal two-qubit

gates

We review the method used in Chapter 6 to analytically determine
time-optimal two-qubit gate implementations. As the solutions take
the form of hard pulses and delays, the method can only be applied
when the time in which the controls can switch is negligible relative
to the timescale of the coupling evolution. Some results from Ref. [74]
are presented in a non-rigorous fashion.

C.1 The control problem

In the following we will be concerned with fully controllable systems
of dimension N = 2n, described by a Hamiltonian of the form

H = Hd +

m∑

k=1

ukHk , (C.1)

where the controls uk are completely unrestricted. The set of possible
unitary gates, i.e. the solutions to U̇ = −iHU with U(0) = 1, is the

129
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full special unitary group SU(N). This is a Lie group, with an associ-
ated Lie algebra su(N).1 Furthermore, the set of control Hamiltonians
{H1, H2, ..., Hm} is assumed to generate the entire subgroup of local
unitaries SU(2)⊗n, which is true for the two-qubit models considered
in Sections 6.2.1 and 6.3.1. As the controls are unrestricted, all oper-
ations in SU(2)⊗n can be implemented in zero time by hard pulses.

C.2 The Cartan decomposition

A crucial concept is the Cartan decomposition of a Lie algebra g,
which is defined as g = p⊕ k, where p = k⊥ and

[k, k] ⊆ k ,

[p, k] ⊆ p ,

[p, p] ⊆ k . (C.2)

The corresponding groups are G = eg andK = ek. The set P = ep, al-
though not a group itself, is identified with the quotient space G/K.
The Cartan subalgebra h ⊂ p of G/K is defined as the subspace
of maximally-commuting elements of p. If G/K is a Riemannian
symmetric space, then one can make use of the fact that (Ref. [74],
Eqn. (2))

G = KehK , (C.3)

i.e. every element U ∈ G can be written in the form U = k1 e
Y k2,

where k1, k2 ∈ K and Y ∈ h.
We now consider the case of G = SU(4), choosing the Cartan

decomposition

k = i span{ σx
1 , σ

y
1 , σ

z
1 , σ

x
2 , σ

y
2 , σ

z
2 } , and

p = i span{ σx
1σ

x
2 , σ

x
1σ

y
2 , σ

x
1σ

z
2 , σ

y
1σ

x
2 , σ

y
1σ

y
2 ,

σy
1σ

z
2 , σ

z
1σ

x
2 , σ

z
1σ

y
2 , σ

z
1σ

z
2 } , (C.4)

so that k are the generators of all local unitaries, with K = SU(2)⊗2,
and p are the generators of ‘entangling’ unitaries. The quotient space

1For an introduction to Lie groups and Lie algebras see Ref. [81].
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G/K is then a Riemannian symmetric space. This does not hold
for larger numbers of qubits, e.g. SU(8)/SU(2)⊗3 is not Riemannian
symmetric. A maximally-commuting subspace of p is

h = i span{ σx
1σ

x
2 , σ

y
1σ

y
2 , σ

z
1σ

z
2 } . (C.5)

C.3 The time-optimal tori theorem

Appealing to (C.3), we can write any target gate Uc ∈ SU(4) as

Uc = k1 e
Y k2 , (C.6)

for some k1, k2 ∈ K (which take no time to implement), and Y ∈ h.
For a drift Hamiltonian iHd ∈ p, a generic Y can be expanded as

Y = −i
p∑

j=1

αj ljHd l
†
j , (C.7)

for some αj ∈ R, and lj ∈ K, where p = dim(h). This is always
possible in SU(4), where one basis element of p can be rotated into
any other by local unitaries, but not in general. The time-optimal tori
theorem (Ref. [74], Theorem 10) essentially states that there exists a
decomposition of the form (C.6) that is time-optimal. This is obtained

by choosing Y , αj , and lj such that the ljHd l
†
j all commute (to keep

Y in h), and such that

T =

p∑

j=1

|αj | (C.8)

is minimised. Proof of this theorem is left to Ref. [74]. The gen-
eral idea is to avoid ‘wasting’ time using Hd to move in directions
which could otherwise be accessed in zero time by the controls. And
since [p, p] ⊆ k, we only move in directions in the subspace h ∈ p of
generators that commute.
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C.4 Examples of time-optimal gates

As an example we consider the two-qubit interaction Hamiltonian
from Chapter 6

Hd =
πJ

2
(σx

1σ
x
2 + σy

1σ
y
2 ) , (C.9)

which is referred to as the Heisenberg-XX interaction. We look for a
time-optimal implementation of the cnot gate, which has the prin-
cipal matrix logarithm

logm




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 = −iπ

4
(σz

1 + σx
2 − σz

1σ
x
2 − 1l) . (C.10)

To put the cnot in SU(4) we drop the component along the identity,
which amounts only to a global phase change. Conveniently, the other
three terms all commute, which immediately gives us a decomposition
of the form (C.6), namely

Uc = exp{−iπ
4
σz
1} exp{iπ

4
σz
1σ

x
2 } exp{−iπ

4
σx
2 }

= exp{−iπ
4
σz
1} exp{−iπ

4
σy
1} exp{−iπ

4
σx
1σ

x
2}

× exp{iπ
4
σy
1} exp{−iπ

4
σx
2}

= k1 exp{−iπ
4
σx
1σ

x
2} k2 , (C.11)

with

k1 = exp{−iπ
4
σz
1} exp{−iπ

4
σy
1} ,

k2 = exp{iπ
4
σy
1} exp{−iπ

4
σx
2} . (C.12)

Making expansion (C.7) and inserting Hd, we have the requirement
that

3∑

j=1

αj lj (σ
x
1σ

x
2 + σy

1σ
y
2 ) l

†
j =

(
1

2J

)
σx
1σ

x
2 . (C.13)



C.4. EXAMPLES OF TIME-OPTIMAL GATES 133

We therefore choose

l1 (σ
x
1σ

x
2 + σy

1σ
y
2 ) l

†
1 = σx

1σ
x
2 + σy

1σ
y
2 ,

l2 (σ
x
1σ

x
2 + σy

1σ
y
2 ) l

†
2 = σx

1σ
x
2 − σy

1σ
y
2 , (C.14)

and α1 = 1
4J , α2 = 1

4J , α3 = 0. After some of the local operations
are absorbed together, this yields the scheme in Fig. 6.3a.2 The swap
gate can be obtained analagously.

2Note that the angles in Eqn. C.12 must be multiplied by 2 to obtain the actual
rotation angles of the pulses, due to the factor of 1

2
that arises in the standard

representation of spin- 1
2
particles.
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[70] M. A. Sillanpää, J. I. Park, and R. W. Simmonds, Nature 449,
443 (2007)
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