
Institut für Informatik
der Technischen Universität München

DeSyRe: Decomposition of Systems and their
Requirements

— Transition from System to Subsystem using
a Criteria Catalogue and Systematic

Requirements Refinement

Birgit Penzenstadler

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Michael Beetz, Ph.D.

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Univ.-Prof. Dr. Barbara Paech, Ruprecht-Karls-Universität Heidelberg

Die Dissertation wurde am 21.10.2010 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 19.12.2010 angenommen.

Abstract

In software systems development, companies try to handle the increasing size
and complexity of their systems by signing up different subcontractors for
subsystems. For distributed development and smooth integration, a major
challenge is to deduce subsystem specifications from system specifications in
order to deliver them to the subcontractors. Thereby, thorough requirements
engineering lays the basis for successful systems’ development in such a
divide-and-conquer approach in order to provide a subcontractor with all
information they need.

Missing information within the subsystem requirements is the pitfall for
successful distributed development, so that either the subsystem requirements
do not fulfill the overall system requirements completely, or there is a mismatch
between subsystems during integration due to inconsistencies between the
specifications for the respective subsystems.

Consequently, the research objective of this work is to investigate how
a requirements engineer can systematically derive subsystem requirements
specifications from system requirements specifications. The guiding questions
are:

• What is a good way for the system architect to obtain the initial system
decomposition?

• What is a good way for the requirements engineer to deduce subsystem
requirements from system requirements?

• How do the requirements engineer and the system architect perform both
the decomposition and deduction during the requirements specification
development process?

Currently, there is no encompassing approach in the literature that provides
guidance to systematic decomposition of systems and refinement of their
requirements to avoid loss of information.

This dissertation provides such guidance by means of a reference catalogue
of decomposition criteria and an approach to requirements decomposition and
refinement. The contributions are:

• A reference criteria catalogue for initial system decomposition that serves
as extensive checklist during the first design step

• An approach to systematically derive subsystem requirements from
system requirements by use of assumption / guarantee reasoning and
decomposition patterns

• A process that exemplarily guides the application of the approach using a
requirements artifact model

The results are demonstrated using a running example from the automotive
domain and evaluated in an industrial case study with respect to applicability.

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Research Questions . 2
1.3 Research Design . 3
1.4 Contribution . 4
1.5 Outline . 6

2 State of the Art 7
2.1 State of Practice in Automotive Software Development 7
2.2 Interview Study on the State of Practice 11

2.2.1 Context . 12
2.2.2 Research Objective . 12
2.2.3 Hypothesis . 12
2.2.4 Design . 12
2.2.5 Results . 14
2.2.6 Analysis . 15
2.2.7 Validity of the Study . 16
2.2.8 Conclusions . 16

2.3 Software Systems Architecture Model 16
2.4 Requirements Engineering Reference Model 18
2.5 The REMsES Project . 20

2.5.1 Structure Concepts . 21
2.5.2 Specification Techniques 24
2.5.3 Artifact Model . 25
2.5.4 Results and Evaluation 38

2.6 Example: Driver Assistance Systems 38

3 Decomposition Criteria 41
3.1 Related Work for the Decomposition of Systems 41
3.2 Overview of the Criteria Catalogue 43

3.2.1 Optimization Factors . 43
3.2.2 Criteria Categories . 44
3.2.3 The Description Template 45

3.3 Directive Criteria . 47
3.3.1 Organization . 48
3.3.2 Legislation . 49
3.3.3 Economics . 49
3.3.4 Directive Criteria of the Running Example 50

i

CONTENTS ii

3.4 Functional Criteria . 50
3.4.1 Clustering According to Services 51
3.4.2 Functional Dependencies 51
3.4.3 Unwanted Feature Interaction 52
3.4.4 Functional Criteria of the Running Example 52

3.5 Quality Criteria . 52
3.5.1 Quality Criteria of the Running Example 54

3.6 Technical Criteria . 55
3.6.1 Communication Requirements 55
3.6.2 Technical Constraints . 56
3.6.3 Legacy Systems . 57
3.6.4 Technical Criteria of the Running Example 57

3.7 Coherence of the Criteria . 58
3.7.1 Dependencies between Criteria 58

3.8 Impact of the Criteria on Decomposition 60

4 Subsystem Requirements 62
4.1 Related Work for Subsystem Requirements 63
4.2 Prerequisites for Requirements Refinement 65

4.2.1 Assumption / Guarantee Specifications 66
4.2.2 Semi-formal View of the Problem 67

4.3 Subsystem Modeling . 68
4.3.1 Definition of a Subsystem Model 69
4.3.2 Subsystem Distribution across Abstraction Levels 71
4.3.3 Subsystem Description across Abstraction Levels 73

4.4 Refinement Application Guideline 74
4.5 Case Differentiation for Requirements Distribution 77

4.5.1 One-to-one Transition of Requirements 77
4.5.2 One-to-many Transition of Requirements 77

4.6 Decomposition and Refinement Patterns 78
4.6.1 Pipeline Decomposition Pattern 80
4.6.2 Subservice Decomposition Pattern 82
4.6.3 General Decomposition Pattern 84

4.7 Discussion: Quality Requirements 87
4.7.1 Definition of Quality Requirements 87
4.7.2 Precondition for Decomposition: Compositionality 88
4.7.3 Decomposition and Alternative Handling of Quality

Requirements . 89
4.8 Tracing . 97

4.8.1 State of the Art of Tracing 97
4.8.2 State of the Practice of Tracing 98
4.8.3 Proposed Tracing Approach 99

5 The DeSyRe Method 102
5.1 Related Work for the DeSyRe Approach 103
5.2 Outline of the DeSyRe Method Phases 104
5.3 Starting Point: Required Artifacts 106
5.4 Decomposition into Subsystems 107

5.4.1 Consideration of the Reference Catalogue 108
5.4.2 Decomposition Realization 109

CONTENTS iii

5.5 Transition to Subsystem Requirements 112
5.5.1 Context . 113
5.5.2 Requirements . 114
5.5.3 Design . 117
5.5.4 Compositionality . 118

5.6 Delivery of Subsystem Specification 118
5.7 Integration and/or Reuse . 119

5.7.1 Integration . 120
5.7.2 Reuse . 120

5.8 Implications . 121
5.8.1 Benefits . 121
5.8.2 Limitations . 123

6 Evaluation and Assessment 125
6.1 Case Study on Applicability . 125

6.1.1 Research Objective . 125
6.1.2 Study Object . 125
6.1.3 Study Design . 126
6.1.4 Execution and Results . 126
6.1.5 Discussion . 143
6.1.6 Threats to Validity . 144
6.1.7 Summary . 144

6.2 Case Study on Usefulness . 144

7 Conclusion and Future Work 148
7.1 Summary of Results . 148
7.2 Current and Future Work . 149

A ACC Appendix 166
A.1 ACC Requirements . 166
A.2 Requirements Dependencies. 168

List of Figures

1.1 Overview of the DeSyRe method. 5

2.1 Software-supported System Components in a Contemporary
Car. [BGG+06] . 9

2.2 The Development Phases of the V-Modell. 9
2.3 Abstraction Levels of the System, Illustration from [BSW+08]. . 17
2.4 REM Artifact Model [GBB+06]. 19
2.5 Structure of the REMsES Artifact Reference Model with

Assigned Specification Techniques. 21
2.6 Abstraction Levels of the System. 22
2.7 The REMsES Model’s Artifacts. 26
2.8 Generic Workflow of the REMsES Tool Prototype 37

3.1 Time-Cost-Quality Triangle and Related Concerns. 44
3.2 Decomposition Criteria Categories and their Stakeholders 44
3.3 Criteria Information Sources within the Artifact Model 46
3.4 Influences between Decomposition Criteria 59

4.1 Transition from System Requirements to Subsystem Requirements. 66
4.2 Formalized System Decomposition. 68
4.3 Subsystem Model. 70
4.4 System Slice based on a Logical Subsystem. 72
4.5 Decomposition and Refinement Process Description. 75
4.6 Case Differentiation for Decomposition Patterns. 79
4.7 Pipeline Decomposition of an Example of the RFW System. . . . 80
4.8 Pipeline Decomposition Pattern. 81
4.9 Subservice Decomposition of an Example of the Navigation System. 82
4.10 Subservice Decomposition Pattern. 84
4.11 Decomposition of an Example from the ACC System. 85
4.12 General Decomposition Pattern. 86
4.13 Traceability Meta Model by Ramesh and Jarke [RJ01]. 98
4.14 Tracing Model for DeSyRe. 99

5.1 Process DeSyRe . 105
5.2 Starting Point of Process DeSyRe 106
5.3 Required Artifacts for Decomposition. 106
5.4 Consideration of Reference Catalogue in Process DeSyRe 108
5.5 Decomposition Realization in Process DeSyRe 109

iv

LIST OF FIGURES v

5.6 Criteria and Application . 110
5.7 Service Graph of DAS. 113
5.8 Transition to Subsystem Requirements in Process DeSyRe 113
5.9 Decomposition of an Example from the Light System. 116
5.10 Service Graph Overview of the RFW 117
5.11 Delivery of Subsystem Specification in Process DeSyRe 119
5.12 Integration and/or Reuse in Process DeSyRe 120

6.1 Operational Environment of DAS. 127
6.2 Service Graph of DAS. 129
6.3 Example Interface Specification. 129
6.4 Operational Environment ACC 134
6.5 Service Graph of the subsystem ACC 136
6.6 Operational Environment RFW 137
6.7 Scenario RFW . 138
6.8 Service Graph of the RFW. 142

List of Tables

2.1 Table of Decomposition Criteria and Assigned Weights. 15
2.2 Mapping of Artifacts to the IEEE SRS Prototype Outline [IEE98] 34

3.1 Description Template for Decomposition Criteria. 45
3.2 Organizational Criteria . 48
3.3 Legislational Criteria . 49
3.4 Economic Criteria . 49
3.5 Directive Decomposition Criteria in DAS 50
3.6 Clustering according to Functional Features 51
3.7 Functional Dependencies . 52
3.8 Unwanted Feature Interaction . 52
3.9 Functional Decomposition Criteria in DAS 53
3.10 Quality Criteria . 54
3.11 Quality Decomposition Criteria in DAS 55
3.12 Communication Requirements . 56
3.13 Technical Constraints . 56
3.14 Legacy Systems . 57
3.15 Technical Decomposition Criteria in DAS 57

6.1 Directive Decomposition Criteria in DAS 130
6.2 Functional Decomposition Criteria in DAS 131
6.3 Quality Decomposition Criteria in DAS 131
6.4 Technical Decomposition Criteria in DAS 132
6.5 Refinement of Functional Requirements of the RFW System . . . 140
6.6 Refinement of Functional Requirement “Reading of Queue”[Ris07,

p.36, RFW576] . 140
6.7 Results of the Questionnaire on Perceived Usefulness 146

vi

LIST OF TABLES vii

Acknowledgements
A big “thank you” to all the wonderful people in my life! When life is rushing,

I feel that I don’t say “thank you” often enough to everybody who deserves it
— this is a good opportunity.

I would like to thank many people for supporting me during the time of
my thesis, either for giving me feedback on ideas, first sketches and written
contents, or for simply being there for me when I had a rough time.

My advisors, Prof. Manfred Broy, for offering advice and providing feedback
whenever I asked for it as well as discussions on my plans for the future, and
Prof. Barbara Päch, for participating as second advisor and for a detailed and
very helpful review of a draft version of the thesis.

My colleagues — about half of the comments are to be read with a big :-)
behind.

• Daniel Méndez Fernández, for putting up with all my moods in the
office, whether exhilarated and giggly or exhausted, for many discussions
and insights on requirements engineering, for calming me down when
something had upset me or made me nervous, for inadvertently teaching
me how to make fun with all industrial research partners to ease the
atmosphere in a stressful project, and for making me laugh a lot.

• Dr. Sabine Rittmann, for discussions about how to approach a PhD,
helping me structure my ideas, for baking great cakes, for having lots of
fun and being a really good friend.

• Silke Müller, for keeping an overview of everything that is going on at
the research group, for managing the appointment schedule and keeping
everybody happy.

• Dr. Stefan Wagner, for teaching me how to do proper research and how
to approach measuring quality, and for good music.

• Dr. Leonid Kof, for giving feedback on my first draft of the thesis and
being a “pain in the ass” so we got that integration of the requirements
engineering approaches at our research group written down.

• Dr. Wassiou Sitou, for sharing a quite intense research project and
discussion on plans for the future. My offer to teach at your future
university in Togo will not be forgotten.

• Dr. Florian Deißenböck, for teaching me about software quality and that
all modeling stuff finally has to be transformed into code if we want to
produce software, for reviewing, and for putting up with my resistance to
dress codes.

• Florian Hölzl, for making me think a lot about how to realize theoretical
or manual approaches in a tool and at least partially automate them and
how to ensure consistency.

LIST OF TABLES viii

• Dr. habil. Bernhard Schätz, for teaching me not to worry about the
sentences “I don’t know yet.” and “I don’t understand that.”, for interesting
discussions on many topics, and for the nice habit of inviting for cocktails
after colleagues helped out with reviews.

• Dr. Martin Feilkas, for supporting me in the newly installed automotive
lab and the related lectures and tutorials and for picking me up for BBQ
when I had a flat tyre on my bike.

• Elmar Jürgens, for providing cautious advice on how I could structure my
thoughts when I didn’t know how to write them down, for inspiring us
with short catchy paper titles, and for a great new year’s eve party.

• Mario Gleirscher, for valuable discussions on research work and the future,
and for a few great hiking trips, best one right in Stubai where we got half
a meter of snow overnight in the middle of July.

• Franz Huber, Dieter Mletzko and their crew, for providing everything we
need in terms of hardware and software support.

• Klaus Lochmann, for accompanying me in a number of research projects
and cheering us up with really dry jokes when we at least expected them.

• Dr. David Cruz, for discussion on software architecture and methodology
in general, for writing a technical report with me and thereby helping me
to put my ideas into a bigger perspective for the first time.

• Christian Leuxner, for reviewing, for telling me that my first draft of the
formalization was really crappy and for patiently explaining why.

• Bernd Spanfelner, for further discussions on formalization and good tea.

• Lars Heinemann, for reviewing, for being enthusiastic about our running
team for the Business Run and for not being angry that I could not come
to his birthday party two years in a row.

• Doris Wild, for discussions about specifications and cheering for us at
Tegernsee half marathon.

• Sascha Schwind, for supporting me with the coordination of the master
course in automotive software engineering and the respective lectures and
tutorials.

• Benjamin Hummel, for reviewing, helpful comments, and incredible
two-colored mousse au chocolat.

• Alik Harhurin, for celebrating my birthday in a strange little bar in Kyoto
on the night before my first conference although he was drop dead tired
from the flight.

• Jorge Fox, for practicing Spanish with me and inspiring me with his
around-the-world post doc.

• Dagmar Koss, for discussions about compatibility, co-authoring my first
main conference paper, and trying out slacklining for the first time with
me, right between the trees behind the faculty.

LIST OF TABLES ix

• Dr. Marco Kuhrmann, for making me reflect about process integration
and taking my mind off stressful thoughts with stupid jokes.

My family, my parents Sabine and Fritz Penzenstadler, for always supporting
but never pushing me, and my brothers Simon and Veit Penzenstadler.

A special “thank you” goes to my friends

• Iris Aue, mi rubia, for calling me in the middle of the night (I mean it!)
to share something important, for discussions on software engineering in
practice, for a great vacation wave riding the French coast, for reviewing
my thesis, for being there whenever I need a friend, and for girly evenings
— they are so important.

• Christina Mohr, for mute understanding, mutual comforting and lots of
laughter since we were kids — we’ll still be sitting together giggling when
we are grandmas!

• Michael Schölz, for founding the Munich Performa Crew1 with me, base
camp for a lot of training and even more fun together, and for deep
thoughts on love and life. Furthermore his wonderful wife Evi Ruhland,
and their kids Elisabeth and David, for great (“adopted”) family time.

• Johannes Maifeld, for teaching me that the world and the people we
interact with are mostly alright just how they are, only sometimes it takes
a little more patience with them. And for great climbing and biking tours
as well as sharing the perfect hammock lounge apartment with Julia and
me.

• Julia Roelofsen, my princess and flatmate, thanks for an incredible trip to
Costa Rica that we will never forget, many hours of shared thoughts, and
fun sports time.

• Martin Glas, for discussions on technology, dissertations, software
development from an engineer’s point of view during many runs through
the English Garden in Munich.

• Jasmin Drescher, for inspiring me, for beautiful stories (keep publishing,
love!), for reminding me of the beauty of the German language, for sharing
my struggle between creativity and business as well as touring the world
and nesting.

• Marion and Oliver Hanke (and now, little Julius), for our shared Passau
university time and for funny game evenings.

• Markus and Barbara Reschka (and now, little Peter), for being great
(former) flatmates and for letting me invite myself every once in a while.

• Julius Donnert, for learning Japanese with me during two years (although
I gave up afterwards), and for a great marathon in Switzerland and an
awesome week of hiking on the camino de Santiago de Compostela.

1http://www.munichperformacrew.de

http://www.munichperformacrew.de

LIST OF TABLES x

• Jens Dobrindt, for always setting up the most adventurous tours — 1000
meters of altitude by mountain bike, then 500 more hiking, then 1000
more climbing? Count me in!

• Janine Simons, for flowing with me on the yoga cloud, for making me feel
at peace with myself and the world, for partying and sharing dreams.

• J. Fernando Zuñiga Navarrez, for my Mexican friend, for teaching me that
love is unconditional — cúidate!

• Kira Montes de Oca, y su familia Pedro y pequeño Fabián, for a wonderful
time in Mexico and proving that friendships last around the world.

• Veit Radkte, for sharing fun runs through all Munich parks — the only
thing that could make us stop was when we nearly dropped to the ground
because of laughing so hard after invented stories (so ridiculous that we
called them “verbal diarrhea”).

• Milo Mayr, who taught me that one can sleep anywhere at any time,
whether it be during the hiking tour, or in front of the chimney while
sharing a bottle of wine with a bunch of friends, but you’re always up for
getting together and doing something.

• Silvia and Harald Irl, and their kids Madita and Moritz, for cookie baking
sessions every Christmas and for fun family time.

• Dr. Daniel König, Dr. Philipp Mai, Dr. Martin Bischoff, and Tobias
Kellner, who I first met on my first summer school of the “Studienstiftung
des Deutschen Volkes” in St. Johann, for great mountain tours and
inspiring thoughts on academic careers and life in general.

• Ruth Eichner, who I met on my second summer school, for starting our
first climbing course together, and for constantly exploring the world at
every chance you get to do so.

• Carolin Heilmann, Herbert Perchtold, Bernd Müller, for sweaty karate
training sessions — you were a great support for the black belt exam.

• Mattias Fuchs, for succeeding in making me lead my first vertical climbs
of 30m of altitude at a time and for helping my conquer the fear with
concentration and patience.

• Sabine and Steff Kratzer, together with their kids Jona and little Luis, for
being friends for a long time and making me feel at home whenever I meet
you.

• Dr. Karl Niederhofer, my godfather, for giving me one really good reason
for doing a PhD: “When you have a doctor’s degree, you can ask stupid
questions any time, and nobody will give you a disapproving look.”

• Thea Tsiklauri, for insights on cultural differences in business and for great
Italian cuisine.

• Christine Koch, for Greek flaire, for teaching me about intercultural
communication before I went to Japan and China, and for funny evenings.

LIST OF TABLES xi

• Martin Mauch, although I’ve already known you since I started university,
now we finally got back in touch and I enjoy it a lot. Thanks for bringing
me back to learning how to play the guitar.

Furthermore, there were research partners and friends who I would like to
thank:

• David Callele, for a great performance at the “RE top model(ing) contest”
and for inspiring talks, mostly via Skype (thanks to you being in Canada),
and thanks for writing the experimentation paper with me and for sharing
the PhD struggle.

• Dr. Mark Müller, Thorsten Weyer, Dr. Ernst Sikora, Jörg Leuser, and
Dr. Peter Braun, my research partners during the REMsES project, for
finishing this project with me successfully. And Mark, for inspiring the
idea of becoming professor.

• Dr. Gerd Beneken, for teaching me on software architecture and
supporting the idea of becoming a professor. We’ll see...

• Dr. Stefan Kriebel, for challenging my ideas and teaching me about
testing.

• Prof. Mike Mannion and Juha Savolainen, for inspiring me during the
REUSE conference, where I had my first main conference paper, and for
a fun party night in Beijing (including Erdinger Weißbier at the Suisse
hotel beer garden).

• Prof. José Luis Barros Justo and Prof. Juan Llorens, for taking me into
the Spanish community at the REUSE conference.

• Dr. Samuel Fricker, for teaching me on advisors and on personal goals
during the PhD.

• Kzrysztof Wnuk, for making funny animal faces in Atlanta, for always
being up for anything, and for good ideas in research — we still have to
write that paper.

• Alejandro Russo Ph.D., for a great Argentinian / Swedish connection with
Munich after the Marktoberdorf summer school. I will definitely come
around to visit Argentina one of these days.

• Dr. Gabriele Haller, Gabriele Frenzel, and Tobias Schlosser, for discussions
on soft skills and practical insights on the topic.

• Björn Saballus, for sharing the CeDoSIA (Center of Doctoral Studies in
Informatics and its Applications) program with me.

• Samira Salman and Andreas Györy, for being great master students and
for setting up an example for others.

LIST OF TABLES xii

Finally, a few of the teachers who have inspired me:

• Lucas Rockwood, Jeffrey Sachs, Lothar Ratschke, Fritz Oblinger, Gabriele
Bozic, Antje Schäfer, Kevin Gianni, and Sara Avant Stover, for inspiring
thoughts and lessons on yoga, karate, lifestyle, and the universe in general.

• Prof. Gregor Snelting [Sne98]: When I said that I didn’t want to do a PhD
I meant it; it took me half a year to change my mind, but you definitely
helped in achieving this change.

Chapter 1

Introduction

Contents
1.1 Motivation and Problem Statement 1
1.2 Research Questions 2
1.3 Research Design . 3
1.4 Contribution . 4
1.5 Outline . 6

The topic of the thesis is the transition from system requirements to
subsystem requirements. This chapter explains the motivation and the problem
(Sec. 1.1), describes the derived research questions (Sec. 1.2), the research design
(Sec. 1.3), and the contribution (Sec. 1.4).

1.1 Motivation and Problem Statement
In systems development, which includes hardware and software, systems are
growing, not only in size in terms of lines of code, but also in complexity, degree
of heterogeneity, number of peripheral devices etc. To handle the increasing
complexity of systems, counter measures are required.

One central counter measure is the decomposition into subsystems. In
explicit, companies try to master the increasing size and costs of their systems by
concentrating on their core competences and signing up different subcontractors
for the development of subsystems. Thereby, the work is distributed in
a divide-and-conquer approach. However, successful conquering implies a
number of preconditions, namely for the initial system decomposition and
for requirements engineering (RE). According to, inter alia, Kotonya and
Sommerville, the basis for successful software development is laid by systematic
RE [KS98], while Cheng and Atlee identified the need to propose adequate
support to handle increasing systems scale in current RE research [CA09].

During systems development, first, a requirements specification is elaborated
for the system, second, an initial decomposition is decided on in order to be able
to develop the subsystems at different sites and, third, respective subsystem
requirements specifications have to be deduced. The central role for the first
step is the requirements engineer ; for the second step it is the system architect ;
for the third step it is again the requirements engineer as the coarse-grained

1

CHAPTER 1. INTRODUCTION 2

system design of the overall system is an input for requirements engineering for
the subsystems.1 This close connection of requirements engineering and system
design implies adequate collaboration between the two developer roles to provide
consistent subsystem requirements specifications.

In this work, the standard IEEE definitions of the terms system and
subsystem, specification and requirements specification [JM90] are used:

Definition 1.1 System. A system is a collection of components organized to
accomplish a specific function or set of functions. 2

Definition 1.2 Subsystem. A secondary or subordinate system within a
larger system. 2

Definition 1.3 Specification. A document that specifies, in a complete,
precise, verifiable manner, the requirements, design, behavior, or other
characteristic of a system or component, and, often, the procedures for
determining whether these provisions have been satisfied. 2

Definition 1.4 Requirements Specification. A document that specifies
the requirements for a system or component. Typically included are
functional requirements, performance requirements, interface requirements,
design requirements, and development standards. 2

For distributed development and smooth integration, a major challenge is
the appropriate deduction of subsystem requirements specifications from system
requirements specifications in order to deliver them to the subcontractors. One
pitfall for successful distributed development is missing information within the
subsystem requirements. Consequently, either the subsystem requirements
do not fulfill the overall system requirements completely, or there is a
mismatch between subsystems during integration due to inconsistencies in the
specifications.

Currently, there is no encompassing approach in the literature that provides
guidance to the systematic decomposition of systems and refinement of their
requirements to avoid such loss of information or inconsistency.

1.2 Research Questions
The goal of this work is to investigate the decomposition of systems and the
refinement of system requirements for subsystems and to provide guidance
to software development organizations and subcontractors for decomposing
systems and specifying subsystems.

The research questions derived from the above problem statement were
elaborated according to the recommendations given by Shaw [Sha03]. The
overall research objective is:

Investigate how a requirements engineer can systematically
derive subsystem requirements specifications from system
requirements specifications.

This objective is structured by means of subordinate questions:
1The two roles of requirements engineer and system architect are used throughout the

work to denote the responsibilities for specific tasks.

CHAPTER 1. INTRODUCTION 3

RQ1 What is a good way for the system architect to obtain the initial system
decomposition?

For system decomposition, an analysis of the potential influence criteria for
system decomposition is required. This research question shows the relation of
the overall research objective to architecture design.

RQ2 What is a good way for the requirements engineer to deduce subsystem
requirements from system requirements?

For systematic deduction of subsystem requirements, the analysis
investigates which cases have to be differentiated as well as which rules and
patterns can be identified. This one is the most important question for the
thesis at hand.

RQ3 How do the requirements engineer and the system architect perform
both the decomposition and deduction during the requirements specification
development process?

A process is required to guide the requirements engineer and system architect
during system decomposition and subsystem requirements deduction on how to
document and process the information contained in the specifications.

1.3 Research Design
Initially, an interview study on the state of practice was conducted to evaluate
the relevance of the research questions. It was performed with participants
from different companies in industry (first and second tier suppliers) either via
a phone call or via email. The questionnaire examined system development,
modeling, architecture, subcontractor relationships, and reuse.

To answer research question 1, the system decomposition, a preliminary draft
version of a decomposition criteria catalogue was gathered from a comprehensive
literature survey. This draft was included in the interview study. The
practitioners approved the criteria categories and listed criteria and gave hints
for further potential criteria. After the analysis of the interviews, deeper
literature research and a number of discussions with fellow researchers, the
catalogue was extended and a template was used to standardize the description
of the criteria. Subsequently, a process for usage of the catalogue was elaborated
and evaluated with case studies.

To answer research question 2, the subsystem requirements deduction,
an extensive literature survey on requirements patterns and subsystem
requirements derivation was performed. As none of the works provided
guidance on the deduction of subsystem requirements in case of a given system
decomposition, the possible cases for the decomposition structures of individual
requirements were captured in patterns. The universal case was added after
elaborating two special cases of the pattern that already capture the majority
of occurring requirements in practice. In parallel, a subsystem model was defined
as reference for the discussions on subsystem distribution and documentation.
It is based on the concepts of the system model in [BSW+08]. To describe

CHAPTER 1. INTRODUCTION 4

how the requirements engineer actually applies the approach during system
development, the decomposition and refinement were illustrated in a process
that uses the requirements artifacts defined in the REMsES project [BBH+09].

To answer research question 3, the application of decomposition and
deduction, the concepts explained above were integrated into one process
describing the tasks from a completed system requirements specification until
a completed subsystem requirements specification. This guidance was then
evaluated with the driver assistance case study and subsequently improved by
illustrating it with a running example. Finally, the usefulness of the approach
was evaluated by a second case study and its limitations were discussed.

Following the classification by Creswell [Cre03], the research design conducted
for this work is a mixed approach of constructive2 and qualitative3 methods,
where the major part is constructive.

The approach in this work was created to solve software development
problems reported by practitioners, namely industrial partners from research
projects. The decomposition criteria catalogue, the systematic requirements
refinement and the guiding process are “innovative constructions” [Luk00] to
help solve these problems.

Within this work, the parts about the study on the state of the art with
the interviews (Sec. 2.2), the case study performed for DeSyRe (Sec. 6.1), and
the questionnaire about the usefulness of the approach (Sec. 6.2) belong to the
area of qualitative research as the small number of samples does not provide
statistical relevance. Further insights were gained due to individual discussions
with participants.

1.4 Contribution
The contribution of this work is to provide an approach to systematically deduce
subsystem requirements specifications from system requirements specifications.

Interview Study. Seven interviews were carried out to further motivate and
account for the relevance of the research objective. The results confirm that
adequate system decomposition and deduction of subsystem requirements are
issues of concern. Furthermore, they give insights on the state of practice
in systems development, requirements engineering and management as well as
system design.

Decomposition Criteria Reference Catalogue. The catalogue lists all
criteria that influence system decomposition according to literature, state of
the art, best practice, and experience from developers in industry. It serves as
a reference when gathering and prioritizing the possibly conflicting criteria for
the decomposition of a system.

2The constructive research approach is a research procedure for producing innovative
constructions, intended to solve problems faced in the real world and, by that means, to
make a contribution to the theory of the discipline in which it is applied [Luk00].

3Qualitative research is a field of inquiry that crosscuts disciplines and subject
matters [DL05].

CHAPTER 1. INTRODUCTION 5

The catalogue contains four main categories: The directive criteria contain
laws and standards, licensing/patents, information politics and business rules.
The functional criteria are concerned with the usage functions the system
shall provide. The quality criteria reflect implications by desired quality
characteristics of the system. The technical criteria are constraints that arise
from the realization platform and surrounding environment. For each criterion,
the catalog lists what its impact on the decomposition is and where the related
project-specific information can be found.

Approach for Subsystem Requirements Deduction. A subsystem model
is defined as foundation for describing the distribution and documentation of a
subsystem across abstraction levels.

On that basis, an approach is presented on how to decompose
and refine system requirements according to their structure by use of
assumption/guarantee specifications. This is achieved by pattern matching
with two special (simpler) cases of decomposition that apply for the majority
of requirements and a general decomposition pattern that applies for all
requirements. Furthermore, the possibilities for decomposition and refinement
of non-functional requirements are discussed.

Process for the Decomposition of Systems and Requirements
(DeSyRe). This process describes the usage of the decomposition criteria
catalogue and the requirements refinement when decomposing systems and
developing subsystem specifications. The process is intended as a guideline
for the developer and is depicted in Fig. 1.1. The system architect receives the
system requirements and derives the system decomposition by use of the criteria
catalogue. The requirements engineer receives the system decomposition and
then derives the subsystem requirements by use of the patterns. The resulting
subsystem requirements specification is realized by a subcontractor (not part of
DeSyRe) and, finally, the subsystem is integrated.4

Figure 1.1: Overview of the DeSyRe method.
4DeSyRe includes a description of the (re-)integration in case of reuse of a subsystem

requirements specification.

CHAPTER 1. INTRODUCTION 6

Case Study on Applicability. A supporting contribution is the case study
on driver assistance systems (DAS), a real-life example from automotive
industry. It serves to evaluate the applicability of the DeSyRe approach.

The DAS represent the overall system under development. From the DAS,
two example subsystems are detailed, namely the adaptive cruise control (ACC)
and the radio frequency warning (RFW) system. The ACC is a speed control
system that automatically maintains a pre-defined speed taking into account a
minimum distance to the car in front. The RFW supports the driver in coping
with the information input from the surrounding environment by use of radio
frequency signals.

Case Study on Usefulness. To evaluate the usefulness of the approach,
a tutorial was held at a software development company and the participating
developers filled out a survey form to report their appraisal.

1.5 Outline
This work is outlined as follows: Chap. 2 explains relevant background
knowledge and presents the study on the state of practice to further motivate the
research objective. In Chap. 3, the decomposition criteria catalogue is presented.
In Chap. 4, the refinement of requirements is presented and in Chap. 5 the
guiding process DeSyRe. In Chap. 6, the evaluation of the approach in the two
case studies is presented. Finally, Chap. 7 concludes by giving an outlook on
future work.

Previously Published Material. Parts of the contribution presented in
this thesis have been published in [BGL+08], [dCP08, Chap. 3+4], [PK08] and
[BFI+09, Chap. 9].

Chapter 2

State of the Art and State of
the Practice

This chapter explains the general background, state of practice, concepts, and
some earlier work on which this work is based on.

The following sections give some background information on software
development in the automotive domain (Sec. 2.1) and present a study on the
state of practice (Sec. 2.2) conducted by the author. The gained insights
from that study help to better understand the problems that contractors
and subcontractors currently face with respect to distributed subsystem
development.

Subsequently, the chapter describes the architecture model and the
requirements engineering reference model (REM). Both provided foundation
for the research project REMsES (Sec. 2.5) which was a basis for this work.

Contents
2.1 State of Practice in Automotive Software

Development . 7
2.2 Interview Study on the State of Practice 11
2.3 Software Systems Architecture Model 16
2.4 Requirements Engineering Reference Model . . . 18
2.5 The REMsES Project 20
2.6 Example: Driver Assistance Systems 38

2.1 State of Practice in Automotive Software
Development

The work for this thesis was inspired by problems and challenges reported by
project partners from original equipment manufacturers (OEMs) and first-tier
subcontractors in the research project REMsES [RDSS09]. As the running

7

CHAPTER 2. STATE OF THE ART 8

example and one case study are from the automotive domain, this section gives
a little background on automotive software development.

To support the driver of a vehicle in his tasks, an increasing amount of
functions has to be provided, therefore the complexity of embedded systems
is increasing, especially in the automotive domain [SB07]. Furthermore,
the development and production of vehicles are organized in product lines,
consequently the required configurability adds another dimension of complexity
to software development. Additionally, strong crosslinking between the
electronic control units makes designing an overall system architecture even
more challenging. An appropriate architecture is one of the foundations for
successful distributed development.

Crucial for the assignment of subsystems to subcontractors is efficient and
precise documentation. Thereby, “efficient” means a balance between concise
and easily understandable, and between capturing the important information
and all possibly relevant information. The need for appropriate architectural
specification and documentation is generally accepted [TA05]. However, in the
automotive domain, this is complicated by strongly and widely distributed
development within an association of subcontractors, where the adequate
information has to be extracted from the whole system specification and
distributed to the subcontractors as self-contained documents.

The current state of practice is to first produce a system specification and
then again to separately produce requirements specifications for the subsystems
that are to be assigned to the subcontractors. This course of action is
time-consuming and costly as systematic reuse is not yet widely applied between
these two process stages.

Context and Conditions. The automotive industry develops large and
complex embedded systems. The original equipment manufacturers assign the
development of subsystems to subcontractors. Therefore they are confronted
with many challenges concerning specification, documentation, and integration
until start of production (SOP).

Since the first pieces of software were introduced into cars in 1976 [PBKS07],
the automotive industry has incorporated more and more software into their
systems, see Fig. 2.1. The number of electronic control units (ECUs) has
increased from less than 10 in 1995 to more than 60 today in some upper class
cars [SB07]. Current cars feature software with up to 1 million lines of code and
by 2010, premium class cars are expected to contain one gigabyte of on-board
software [PBKS07].

Furthermore, the new x-by-wire technologies provide great possibilities but
also great challenges for software development.

There are three major types of development in automotive engineering:
research and the so-called pre-development, pre-serial development, and serial
development. During research and pre-development the processes are less
strict, as developers are aiming at new solutions and apply new concepts
on prototype cars, which will never be released to public traffic. Pre-serial
development prepares and improves the new concepts for serial maturity and
serial development leads to the actual production of the cars for sale.

CHAPTER 2. STATE OF THE ART 9

Figure 2.1: Software-supported System Components in a Contemporary
Car. [BGG+06]

The prescribed process for pre-serial and serial development usually follows
a standardized process model and includes the management of distributed
development.

Development Process. The general automotive system (= vehicle)
development process usually consists of a conceptual phase and a realization
phase (see Fig. 2.2). As already mentioned in the introduction (Chap. 1),
the general automotive development process is often organized according to
that model. The V-Modell [Bun08b] is the obligatory development process for
standard IT-projects by the German government and military service [KNR05].
The specifics of the V-Modell, however, are not of concern for this work.1

The V-Modell is a guideline for the planning and execution of development
projects, which takes into account the whole life cycle of the system. The model
defines the results that have to be prepared in a project and describes the
concrete approaches that are used to achieve these results. It also defines the
responsibilities of the individual participants in the project.

Figure 2.2: The Development Phases of the V-Modell.
1This work does not assume a development process exactly according to the V-Modell.

CHAPTER 2. STATE OF THE ART 10

The in the context of this work most relevant part of the process model,
the system development, consists of two parts: The conceptual phase, which is
depicted on the left hand side of Fig. 2.2, and the realization phase, depicted
on the right hand side of Fig. 2.2.

During the conceptual phase (requirements engineering & design), the
requirements are elicited, and the logical architecture is designed. Then, the
technical system architecture, where the building blocks are the ECUs, and the
networking (i.e., the layout of the wiring harness) are defined, and the software
components are specified. The components are either developed in house or
assigned to subcontractors.

During the realization phase (implementation and integration), the software
and/or hardware components are implemented and tested. The component test
is followed by the integration, system and acceptance tests. The strict deadline
is the start of production. As this development process is performed in iterations
for each new car series, it will be referred to as development cycle during the
rest of this work. The horizontal arrows in Fig. 2.2 indicate that verification
and validation are performed at every design level.

Distributed development. This term has a double meaning and both
aspects are interesting for this work. On one hand, it means distribution of
labour and on the other hand distribution of software [PBKS07]. Due to the
systems’ size and complexity, OEMs perform highly distributed development
within an association of subcontractors. The OEM decomposes the system
into subsystems and assigns them to the subcontractors. Thereby, different
possibilities exist to define subsystems:

1. The OEM specifies the complete system down to the technical architecture
and assigns complete ECUs with the software to be deployed on that ECU
to subcontractors.

2. The OEM divides the system into hardware and software and signs up
different subcontractors for them.

3. The OEM decomposes the system according to functionality and assigns
functional modules as performed in the aircraft domain, e.g. by Airbus2.

4. The OEM distributes a usage function over various ECUs to save
resources.

One of the difficulties lies in the fact that the subcontractor shall develop a
usage function, but has to deliver a component. Another obvious challenge
is the integration of all those distributedly developed components into one
a-hundred-percent reliably working system.

The presently prevalent choices are versions (1) and (2), however, in the
future this will presumably move to (2), (3) and (4) to allow for greater
flexibility. The probably most challenging version of distributed development is
deploying a function on multiple ECUs, because it requires a specified logical
architecture that is completely independent from the technical architecture.
This requires even better support for modeling requirements and design as
the demands for appropriate documentation and communication means become
more complex.

2http://www.airbus.com

http://www.airbus.com

CHAPTER 2. STATE OF THE ART 11

Product Data Model. During systems development, automotive developers
often refer to the captured requirements and design specification information as
product data model. Product data is stored in different ways for requirements
management and system design, and for each of them on different abstraction
levels. According to Györy [Gyö08], it is the goal of requirements engineering
to derive type series specific requirements from company goals. The abstraction
levels for the requirements are brand, product line, series model, and type series.

When the requirements for a type series are documented, the top-level
element is the car system, which is composed by subsystems, again on different
abstraction levels. The system units that are relevant in terms of software
engineering on those abstraction levels are the complete electronic system,
its domain-related subsystems, the usage functions, the modules, and the
components. Each of those units is composed by a number of units from the
abstraction level below, e.g., a usage function is composed by modules.

This logical product data model is filled by the OEM and the subcontractors
and it has to be clearly defined who fills which part of the product data model
and who needs which contents.

Depending on the particular application domain or subdomain, e.g., driver
assistance systems, human machine interface, engine control, the use of models
and description techniques is quite different. The logical product data model
is filled as concrete product data model by use of suitable representations, for
example Doors, Matlab, etc. The representations for the concrete product data
model have to be chosen and agreed upon by OEM and subcontractor as they
need to be able to exchange the data and integrate the different representations.

In that context, AUTOSAR [AUT06] eases integration of the product data
model by offering a standard for the description of a system’s architecture.3
AUTOSAR is already applied successfully by some OEMs [GGRS08].

2.2 Interview Study on the State of Practice
A small field study was performed to gain knowledge about the state of
practice in the automotive domain in terms of system development, modeling,
architecture, subcontractor relationships, and reuse. The major aim of the
interview study was to ensure practical relevance of this work. It is structured
as described and recommended by Perry [PPV00, p. 350-352].

The study was conducted in the form of a questionnaire. The questionnaire
was either sent and answered by email or in an interview, depending on the
availability of the respondent. The knowledge gained through the study has
been used as a basis for the ideas presented in this work and for keeping in
touch with the practitioners to stay aware of their actually relevant problems.
The study therefore also shows the relevance of the approach presented in this
work for embedded systems development.

3An earlier approach, EAST ADL [Lon04] is an architecture description language especially
developed for automotive embedded systems but there is neither an artifact model nor has
the work been continued after a first released version of the ADL in 2004.

CHAPTER 2. STATE OF THE ART 12

2.2.1 Context
The questionnaire was designed with the intention to investigate the state
of practice in current embedded systems development within OEM and
subcontractor companies to get an insight into their processes and habits as well
as challenges and problems. The participants were seven software and system
developers from the OEMs BMW4, Daimler5, Audi6 and MAN7, from the
subcontractors Bosch8 and Siemens VDO9 (later on Continental10) and Berghof
Automationstechnik GmbH11. Due to confidentiality, the original answers have
been made anonymous in this work.

2.2.2 Research Objective
The research objective for the interview study is defined according to the goal
definition template by Wohlin, Runeson and Höst [WRH00]:

Analyze requirements engineering and management
for the purpose of validation
with respect to the state of the practice
from the point of view of the industrial developers
in the context of complex systems development.

2.2.3 Hypothesis
As the embedded systems domain is determined by large, complex systems,
and most development companies are medium to big size, they are not likely
to quickly adapt the latest state of the art from research. Instead, it usually
takes a few years until they consider certain software engineering approaches to
be sufficiently established and evaluated in order to adapt them, plus a certain
amount of time to really perform that shift due to the size and organization of
the development departments.

The hypotheses for the study are:

• For RE specifications, the main demand by the companies is to adhere to
certain document structures.

• A rather low degree of logical modeling is performed during software
development.

• The decomposition criteria (the draft version of the criteria catalogue in
Chap. 3) are rated differently, but tendencies become visible.

2.2.4 Design
The questions were divided in five sections: system development, modeling,
architecture, subcontractor relationships, and reuse. Within the respective

4http://www.bmw.com
5http://www.daimler.com
6http://www.audi.com
7http://www.man-ag.com
8http://www.bosch.com
9http://www.vdo.de

10http://www.continental-corporation.com
11http://www.berghof-automation.de

http://www.bmw.com
http://www.daimler.com
http://www.audi.com
http://www.man-ag.com
http://www.bosch.com
http://www.vdo.de
http://www.continental-corporation.com
http://www.berghof-automation.de

CHAPTER 2. STATE OF THE ART 13

sections, the questions inquired the standard development process and the state
of practice for methods and techniques:

System development:

• What is your general approach for software development?

• Which process do you follow?

• Which artifacts are produced during requirements engineering and
design?

• How are the artifacts related to each other? For example, are specific
system models derived from artifacts?

• Which tools do you use? Is there a continuous tool chain that
supports the development process? Do you have tools or a tool chain
that is prescribed by your company or does every department or
project team handle tooling separately?

• Do you model a logical architecture within your current development
process?12

Modeling:

• Which models or notations are generally used during the development
process?

• Is requirements engineering performed only text-based or do you use
models for support?

• Which methods and diagram types are used for documentation?

• Do you use any domain-specific methods?

• Are there company-specific guidelines that have to be obeyed during
development or do you use external standards?

• Are there defined and assigned roles during development? If yes,
which roles exist? Are there certain guidelines defined for these roles?
Does this lead to problems?

• Is there a standard company terminology that everybody adheres to?

Architecture:

• Who is responsible for the software architecture of a system during
development?

• Is there a central architecture team that plans the overall system
architecture beforehand?

• Which criteria are used to decide on a system’s architecture?

• Do you use templates or guidelines that support the definition of the
architecture?

• How do you identify logical and/or technical subsystems?
12The explanation of the term logical architecture for the participants was: The logical

architecture is a model of the complete functionality of a system in form of logical,
communicating components while still completely abstracting from implementation decisions.

CHAPTER 2. STATE OF THE ART 14

• How would you rate the importance of the criteria given in Tab. 2.1
for system decomposition?

• Are you missing any criteria in the list?

Subcontractor relationships:

• Which parts of the software is developed in-house and how much do
you assign externally?

• Who coordinates the assignment of software to subcontractors?

• What are the decision criteria for the assignment of the development
of subsystems to subcontractors?

• Would you assign the development of cross-cutting functionality to
subcontractors?

• Does the current organizational structure of subcontractor relations
influence the system’s architecture? Or are subcontractors chosen
according to the system’s architecture?

• Which parts of the overall system specification does the subcontractor
get as requirements specification?

• Does the subcontractor get black box specifications with defined
interfaces or do they get to know the internal realization? In case of
black box, does this often lead to call backs or does this work well?

• How do you document feature interaction with subsystems assigned
to other subcontractors?

• Are there currently communication problems or other organizational
challenges with subcontractors?

Reuse:

• Where do you currently perform reuse? To what extent? Which
artifacts are reused?

• Do you have internal guidelines for reuse?

• Do you perform reuse in cooperation with your subcontractors or
separately?

As the participants were concerned about not giving away sensitive
information, their answers and the results from the interviews are presented
in an anonymized fashion.

The data was collected in emails and during interviews, face-to-face and
per telephone, between October 2007 and October 2008. Seven participants
answered the questionnaire. The following section presents the major results.

2.2.5 Results
Before interpreting or analyzing the results, the following bullet list summarizes
the most important statements and answers received from the participants:

• There is a defined software development process in every company.

CHAPTER 2. STATE OF THE ART 15

• RE specifications are mainly text-based, sometimes UML diagrams are
used.

• The tooling is diverse, with products from, inter alia, Microsoft, Telelogic,
and Vector, as well as in-house developed tools.

• The rationale, for example for the decomposition of the system, is usually
not documented at all.

• A logical modeling of the system is often skipped for early modeling of the
technical architecture.

• Influences from the OEM-subcontractor relationships exist in both
directions and efficient communication of requirements and constraints
is a challenge.

The other result of high interest is the prioritization of the different criteria,
that have to be considered when decomposing a system. The weights that the
interviewees assigned to the criteria are summarized in Tab. 2.1. Thereby, the
listing of criteria was given by the questionnaire and the weights to be assigned
were between one and three. The respective part of the questionnaire was filled
out by 5 participants.

Table 2.1: Table of Decomposition Criteria and Assigned Weights.
Functional criteria Logical clustering according to usage 8

Dependencies 11
Interaction 10

Architectural criteria Communication requirements 15
Technical constraints 12
Design rules 9

Directive criteria Laws and standards 10
Patents, licenses, certificates 8
Business rules, information politics 4
Implications from subcontractor relationships 10

Quality criteria Performance 14
Correctness, robustness, reliability 14
Usability 8
Maintainability 12
Security 12
Costs 15

2.2.6 Analysis
All three hypotheses were confirmed within the answers. First, for RE
specifications, the main demand by the companies is to adhere to certain
document structures. Requirements are documented using natural language,
and sometimes UML, but no rationale is captured explicitly. However, the
participants expressed interest in more guidance on that topic.

Second, the hypothesis about a low degree of logical modeling that was being
performed proved to be right. Instead, the companies start straight away with
technical modeling of their systems, thereby strongly restricting the solution
space.

Third, the decomposition criteria catalogue was perceived as complete,
and some participants provided suggestions for further investigation and

CHAPTER 2. STATE OF THE ART 16

encouragement to analyze and describe the criteria in detail. There is an
emphasis on quality and especially on costs. What the listing did not represent
were the dependencies between some of the criteria.

2.2.7 Validity of the Study
The internal validity of the study is given as the results are direct citations
from the answers and the table with the assigned weights for the decomposition
criteria was simply summed up for all participants. The goal of the study was
to get a feeling or general understanding for the practitioners’ views on the
questions mentioned above and their state of practice in system development,
modeling, architecture, subcontractor relationships, and reuse.

The major threat to external validity for the study at hand is that with such
a small number of participants it can not be considered representative. The
author is aware that a study of that size does not have any statistical relevance.
Therefore, the results in Sec. 2.2.5 were not given in statements with percentages
as this would imply assuming statistical relevance.

However, for the purpose of getting an insight into the state of practice
the study was adequately sized as there were interviewees from seven different
companies, both OEMs and subcontractors.

2.2.8 Conclusions
The answers given in the questionnaire and the interviews serve as confirmation
for the practical relevance of this work.

As the decomposition criteria catalogue was perceived as complete, it can be
used as a basis to further investigate on, refine and enhance the decomposition.
The resulting catalogue and the interrelation of the criteria are presented in
Chap. 3.

Proposed modeling approaches will only be successful if they are adaptable
to different tools. Big industrial companies are in general very reluctant to
change their tooling (whether commercial or developed in-house). Therefore,
this work does not prescribe the use of a specific tool, but it can be adapted for
a variety of tools already in use.

2.3 Software Systems Architecture Model
The architecture model by Broy et al. [BSW+08] represents the basic
understanding of model-based development for this work. The concept of
abstraction levels allows for different views onto the same system with emphasis
on certain aspects that have to be considered during development. At the same
time, they still abstract from other aspects that have to be dealt with at lower
levels of abstraction. This separation of concerns makes it easier to concentrate
on one aspect at a time.

A general overview of the model is provided in Fig. 2.3. Three abstraction
levels are in use: The usage level shows the results of requirements engineering
including the functional hierarchy with usage interfaces (black-box view), the
logical architecture level models represent the structure and internal behavior
of the system (white-box view), and the technical architecture level adds

CHAPTER 2. STATE OF THE ART 17

Figure 2.3: Abstraction Levels of the System, Illustration from [BSW+08].

code and task models for the software realization and deals with issues
concerning the hardware realization [BSW+08]. Over the abstraction levels,
the focus shifts from the complete system to function groups to realization
components, providing more detail on each level and moving from abstract and
implementation-independent to concrete and technical. On each level, the model
is enriched by additional information. Similar abstraction levels are used by
Große-Rhode et al. [GRM04].

The partitioning of the levels is conducted in that form to meet the specific
challenges of developing embedded system. Each level uses suitable models
for describing the aspects of those challenges. The abstraction levels focus on
different types of (horizontal) relations and interactions between the respective
entities. Furthermore, the vertical relationships between the levels can be
followed through the use of a tracing model.

The Usage Level. The usage level offers models that allow to formalize
functional requirements, represent them as hierarchical relations and
additionally show dependencies between those functional requirements. The
models on this level reduce the system’s complexity and structure the usage
behavior. This is the basis for detecting interaction early during development.

On the usage level, the system borders of the system to be specified are
defined. This includes the interface definition to the external environment
(driver, road, etc.) and the identification and definition of interfaces to
surrounding systems that interact with the system to be specified. The behavior
of the whole system is specified in a black box view, i.e. the message exchange at
the system border to the environment is determined. Thereby, the behavior of
the system is captured in a structured way as service model, which is composed
by a hierarchy of services and their interrelations.13

Definition 2.1 A service is a partial piece of behavior which can be observed
at the system boundary. [Rit08b]. 2

13The service model is defined in detail by Rittmann [Rit08b].

CHAPTER 2. STATE OF THE ART 18

The Logical Architecture. The logical architecture level offers models that
allow to structure the functionality in logical components. The formalized
functional requirements from the usage level are realized through a network of
hierarchical components, which are still independent of the underlying hardware.
The model of the system on the logical architecture level is executable and
can be simulated. Therefore, the logical architecture is available for early
validation. The modularization and hardware independence of this level reduce
the complexity of the model and create a high reuse potential.

Compared to the usage level, the logical architecture does not concentrate
on the formalization of externally visible functionality but on structuring the
system in terms of logical, communicating units, whose behavior in total realizes
the one defined on the usage level. The structuring into logical components
is, in general, independent from the hierarchical decomposition of the usage
functionality. The components are modular units that per se can be developed
separately and then reassembled as the desired system according to the model of
the logical architecture. A logical component is involved in providing a service
of the usage level. In general, there is an n:m-relationship between services and
logical components.

The Technical Architecture. The technical architecture abstractly
describes the realization, which is composed by hardware and software. It offers
suitable models to describe the behavior of hardware and software and allow for
description of the used hardware’s influence on the system behavior. Thereby,
the level of abstraction is chosen such that statements about the compliance
to realtime requirements are possible and no further changes of behavior occur
during the subsequent transition from technical architecture to implementation,
but only software-related transformations (e.g. middleware procedure calls).

The models of the technical architecture level realize the logical architecture’s
specified behavior in a system of software and hardware. For this purpose, the
model is split into two parts: One part contains the partitions of the model that
shall be realized in hardware, the other one contains the application-specific
parts that shall be realized in software. The application-specific part is divided
into partitions (= cluster) that are executed on the respective component of the
platform. The term platform denominates hardware and software that is used
for application integration (e.g., drivers, middleware, . . .).

The separation of hardware independence and hardware dependency in the
whole model leads to a high reuse potential on every abstraction level. This
architecture model was also used as a basis for developing the artifact model of
the REMsES project [BGG+07] that is presented in Sec. 2.5.

2.4 Requirements Engineering Reference Model
The Requirements Engineering Reference Model (REM) by Geisberger et
al. [GBB+06] is a requirements engineering framework with an artifact model
at its centre. It was developed in cooperation with Siemens Research at
Princeton. The artifacts (see Fig. 2.4) are the work results of the RE activities
in product or product-line development and have refinement relations and

CHAPTER 2. STATE OF THE ART 19

Figure 2.4: REM Artifact Model [GBB+06].

dependencies between them. The framework is completed by a role model for
the responsibilities and a tailoring approach for the set-up.

The integration of the development of business needs, requirements
specification and system specification provides a comprehensive approach
to goal- and system-oriented requirements engineering that includes all
participating stakeholders and their different views on the system. Examples
for those stakeholders are marketing people, managers, system engineers,
mechanics, and future users. Their perspectives on the system result in different
kinds of requirements which are all integrated in the overall artifact model. REM
reflects the influences of different stakeholders on the system and includes all
information that reflects their respective needs and goals. REM was developed in
the domain of embedded systems but is also applicable to other realms of systems
and software engineering. The artifact model (see Fig. 2.4) is structured in three
parts: Business Needs, Requirements Specification, and System Specification.

Business Needs. The Business Needs specify customer and strategic
requirements, including product and business goals of the system development.
It consists of the following artifacts:

• Business Objectives and Customer Requirements: product market
positioning and customer requirements.

• System Vision: a list of main features and assumptions/dependencies of
the planned product or product line.

• General Conditions and Scope & Limitations: high-level non-functional
requirements and the delimited scope of the application domain or product
line.

• ROI and Business Risk: cost/benefit, expected sales revenue, development
and launch costs, and risk analysis

CHAPTER 2. STATE OF THE ART 20

• System Success Factors: how the system is judged to be successful.

Requirements Specification. The Requirements Specification contains the
product functional and non-functional requirements. They are analyzed and
modeled from the customer and user perspective and derived from (and justified
by) the Business Needs. It comprises the following artifacts:

• Functional Analysis Models: analysis and description models of the
business and application processes and scenarios.

• Domain Model: structured specification of the application domain and its
characteristics.

• Non-functional Requirements Model: quality requirements, assumptions,
dependencies, and design constraints.

• Acceptance Criteria: specification of the acceptance criteria for testing the
system.

System Specification. The System Specification contains a detailed
definition of the functional system concept, the required behavior of the
considered system and its integration into the overall system and environment.
It defines constraints to the detailed design and realization of the system
(software, hardware - electrical, mechanical). The artifacts include:

• User Interface Specification / User Documentation: description of how the
user will use the system.

• Functional System Concept: detailed functional system requirements for
services, interaction, behavior, data and usage constraints.

• External Interface Specification: interface specification of interacting
systems / components of the domain or used software and hardware
components.

• Design Constraints: limitations to the further detailed design and
realization of the specified system concept.

• System Test Criteria: acceptance criteria and test cases for system
integration and validation.

The document structure for a specific product development project is usually
tailored to meet the organization’s process definition. The three blocks of REM
are independent from the abstraction levels presented in Sec. 2.3, in contrast,
they differentiate the documented contents. The REM model served as one of
the inspiration sources for the REMsES artifact model (see Sec. 2.5) used in
this work.

2.5 The REMsES Project
The REMsES project [BBH+09] was a research collaboration with partners
from academia and industry. The goal of the project was the elaboration
of a validated, practical guide for systematic requirements engineering and

CHAPTER 2. STATE OF THE ART 21

Figure 2.5: Structure of the REMsES Artifact Reference Model with Assigned
Specification Techniques.

management of embedded systems, especially in the automotive domain, on
the basis of a differentiated product model.

The participating partners were the Technische Universität München, the
Universität Duisburg-Essen, the Daimler AG, the Robert Bosch GmbH, the
Berghof Automationstechnik GmbH, and the Validas AG.

The result is an artifact-based approach with a reference artifact model. The
model combines some of the ideas of the architecture model’s abstraction levels
introduced in Sec. 2.3 and the content categories introduced in Sec. 2.4.

2.5.1 Structure Concepts
The reference model is based on two key concepts: support for abstraction levels
and coverage of three content categories. The structure supports requirements
engineers in determining which type of model they should use and what kind of
abstractions they should create in a particular project situation. The structure
is made up of two conceptual dimensions that are based on the two key concepts
(see Fig. 2.5), resulting in a 3*3-matrix structure with nine artifact classes.

Support for Abstraction Levels

Requirements at different levels of detail and abstraction (see Fig. 2.5),
ranging from business goals (within the system level context) to detailed
technical requirements (within the SW/HW level requirements), need to be
included in the requirements document of an embedded system. High-level
requirements provide a justification of detailed requirements and support
the understandability of the requirements document. Low-level (detailed)
requirements are needed to provide enough information for implementing the
system correctly.14

14Within model-driven development of embedded systems, the Rich Components approach
by Damm [DVM+05] focusses on improving reuse in the embedded domain. The components
are thereby modeled on the abstraction level of technical architecture with explicit assumptions
including confidence levels, but the approach includes neither explicit documentation of
requirements nor higher levels of abstraction. Metropolis (see http://www.gigascale.
org/metropolis/) is a formal design environment for heterogeneous systems, where the
starting point is formal function modeling, therefore no support is provided for requirements

http://www.gigascale.org/metropolis/
http://www.gigascale.org/metropolis/

CHAPTER 2. STATE OF THE ART 22

However, this diversity of requirements at different levels of detail demands
a systematic way for dealing with each requirement adequately according to its
level of detail. The granularity of a requirement influences, for instance, its
importance in a certain stage of system development. Abstraction levels allow
for different views onto the same system with emphasis on certain aspects that
have to be considered during development, while still abstracting from other
aspects that have to be dealt with at lower levels of abstraction.

In the REMsES project, a hierarchy of three abstraction levels was adopted:
System Level, Function Groups Level, and Hardware/Software Level, depicted
as horizontal rectangles in Fig. 2.5. These levels are the result of an extensive
survey on the abstraction levels defined in existing approaches and used in
practice. The abstraction levels form the vertical dimension of the structure
shown in Fig. 2.5. The three abstraction levels used in this work (Fig. 2.6)
are based on [BSW+08] (see Sec. 2.3): The usage level shows the results

Figure 2.6: Abstraction Levels of the System.

of requirements engineering including the functional hierarchy with usage
interfaces (black-box view), the models of the logical architecture level
represent the structure and internal behavior of the system (white-box view),
and the technical architecture level adds the code and task models and deals
with issues concerning the hardware realization. These levels were generally
introduced in Sec. 2.3, and are described in their application within the REMsES
approach in the following.

System Level. At this level, the stakeholders take an outside, i.e., a black
box view of the system. Requirements artifacts modeled at this level focus
on the usage of the system through its human users and other systems. The
artifacts capture usage goals, usage scenarios, and the functions or services that
the system offers to its users via defined interfaces. These services represent
the functionality that is directly visible to the users, i.e. it should not comprise
system-internal or auxiliary functions.

engineering. The services are then bundled in interfaces, decomposed into sequences of
events, and mapped onto a network of media which corresponds to the implementation
platform [SV03]. Both of those works model on a technical architecture level and do not
take into account the requirements engineering part of the process.

CHAPTER 2. STATE OF THE ART 23

Function Groups Level. The function groups level represents a white-box
view on the system. At this level, the system is viewed as a network of
interacting, logical units obtained by a functional decomposition of the system.
These units are referred to as “function groups”. The requirements that are
defined at the system level can be refined at the function groups level and
assigned to individual function groups. Function groups have defined interfaces
and can interact with each other as well as with the system environment. Each
function group exhibits a defined behavior at its interfaces. Function groups are
identified, for instance, through hierarchically decomposing and clustering the
system functions that are defined at the system level. When creating models at
the function groups level, requirements engineers are advised not to perform a
partitioning of the system functionality into hardware and software. Thereby,
the system requirements can be detailed without making premature design
choices about the technical realization of the requirements. Thus, technical
details pertaining to the realization of the functionality in hardware or software
are disregarded at this level.

Hardware/Software Level. At this level, a coarse-grained partitioning of
the system functionality into hardware and software is defined. For this
purpose, the system is decomposed into (coarse-grained) hardware and software
components. This decomposition can be regarded as a preliminary or draft
system architecture. Thus, a high-level software architecture and a hardware
topology (a high-level HW architecture) are modeled at this level. In order
to reduce the complexity of the models at the HW/SW level, the considered
high-level SW architecture is limited to application software components.
Concerning hardware, the models should focus on peripheral devices such as
sensors and actuators, i.e. those HW components that are needed to realize the
interactions of the system with its environment. It should be noted that detailed
design models are not in the scope of the HW/SW level. The main purpose of
the architectural models is to support the detailing of the requirements. The
requirements at the HW/SW level are obtained, for instance, by refining the
requirements defined at the function groups level and assigning the resulting
requirements to individual hardware or software components.

Coverage of three Content Categories

It is common knowledge that it is important to include the views of different
stakeholders for successful requirements engineering [EYA+05]. These views
are not only different views onto the same system idea, but also views with
a different scope. For example, a marketing person, in contrast to a system
architect, has a different view on the system (i.e. the system’s functionality
as perceived by the user as opposed to a structural and behavioral view of the
logical systems units) and a different scope (economics and business goals as
opposed to design ideas).

By analyzing requirements documents in the automotive domain, three main
content categories of such a document were identified to include these different
views and scopes: context, requirements, and (high-level) design, depicted as
vertical rectangles in Fig. 2.5. Therein, the categories context and design contain
important information for the requirements engineering process and therefore
have a considerable influence on the requirements.

CHAPTER 2. STATE OF THE ART 24

The content categories relate to the horizontal dimension of the structure
shown in Fig. 2.5. The three categories are defined orthogonally to the
abstraction levels. In other words, each content category can be considered
at each abstraction level.

Context. The context of the system is the part of the real world that
influences the requirements for the system and therefore the system itself.
Context artifacts are, for example, laws, business goals, general constraints,
environmental conditions, information about adjacent systems etc. Many
requirements for the system respectively its components directly originate from
the demands and constraints imposed by the context. In other words, the
context sets the frame within which the system is developed.

Requirements. Requirements can be expressed using conceptual models such
as goal models (see e.g. [vL08]), scenario models (see e.g. [Coc00]) as well as
models of function, data, and behavior (see e.g. [Dav93]). The industrial project
partners identified goal models, scenario models, and function models as the
most important models needed to support the requirements engineering process
of an embedded system. Hence, these three types of models were included
in the requirements artifact model for documenting system and component
requirements.

Design. In the development of embedded systems, requirements and design
are tightly intertwined. In other words, a certain amount of design information
in the requirements document is inevitable in the embedded systems domain,
because the knowledge about major system components is required to specify
detailed requirements (see [PS07b]). Detailed requirements such as component
requirements must be specified, for instance, to facilitate the integration of
different systems developed by different subcontractors. In addition, in some
cases, the contractor includes design artifacts in the requirements document to
hint at the intended solution, respectively, to outline a feasible solution.

Thus, the included design artifacts in the reference model capture the major
parts of the system, the essential relationships among these parts, and the
behavior of these parts at their interfaces. By introducing design explicitly as a
content category in the reference model, developers are encouraged to document
requirements and design as separate models, rather than intermingling the two.
Traceability over the content categories means the relation of a context artifact
element to the respective requirements artifact element to the correspondent
design artifact element. This is called horizontal traceability.

2.5.2 Specification Techniques
The structure presented in Sec. 2.5.1 defines nine coarse-grained categories of
information to be included in a requirements document (three basic content
categories at three abstraction levels, respectively). In addition, the artifact
reference model suggests six specification techniques that are applied across
all three abstraction levels (depicted as small vertical rectangles with round
corners in Fig. 2.5) that requirements engineers of an embedded system can
use for representing the different types of information. These specification

CHAPTER 2. STATE OF THE ART 25

techniques have been chosen such that they cover all three content categories
(Context, Requirements, and Design) as well as all three abstraction levels
(System, Function Groups, and Hardware/Software). Furthermore, the aim
was to support seamless transitions between the abstraction levels and content
categories as far as possible. The selection of the specification techniques can
thus be seen as a first step to support an integrated model-based requirements
engineering process for software-intensive embedded systems. The guide refers
to specification techniques such as scenario modeling rather than to particular
modeling languages (such as the UML Sequence Diagram). This allows the users
of the artifact model to select a modeling language that corresponds to a chosen
specification technique and, additionally, fits in the organization or project (e.g.
regarding the available tool support and the experience of the developers).

In the reference artifact model, each specification technique is described
using a template that comprises, amongst others, the following items: short
description, advantages, example model.

Context modeling develops a model of the context or surrounding
environment of a planned system, function group, or software component. The
actual content of a context model can vary significantly depending on the type
of context that needs to be modeled for the planned system. The model
distinguishes between business context, stakeholder context, and operational
context (see [WP08]).

Goal modeling provides an overview of the characteristic functional and
quality properties of the system, a function group, or a software component.
Goals are motivated by marketing and justify detailed requirements and
design decisions but are defined independently of a specific technical solution.
High-level goals can be refined hierarchically into sub goals (see, e.g., [vL01]).

Scenario modeling develops sequences of interactions that illustrate the
satisfaction of goals. The technique provides support for integrated modeling of
scenarios on all three abstraction levels (see [PSP09]).

Function modeling documents the functions of the planned system and
their relationships. The detailed definition of a function encompasses the
data on which the function operates, the events that the function reacts to
or triggers, and the valid pre- and post-conditions for the execution of the
function. A function model consists of an overview diagram of the functions
and their relationships and template-based definitions of the individual functions
(see [Grü08]).

Architecture modeling defines the essential structures of the planned
system in terms of components, connectors, and interfaces, first in a logical
model of the system under development, then in the technical architecture (see,
e.g., [MT00]).

Behavior modeling represents a behavioral view of the system operations.
This allows for a comprehensive specification of the desired system behavior.
Each component is, for example, described by a state-transition diagram which
models the behavior as receiving inputs and producing outputs. The latter, in
general, serve as input for the next component (see, e.g., [Dav93]).

CHAPTER 2. STATE OF THE ART 26

Figure 2.7: The REMsES Model’s Artifacts.

2.5.3 Artifact Model
The artifact model presented was developed to serve as an easily applicable
reference model in industrial software development. This section details on
the model with its individual artifacts used for documenting requirements
and system specifications, and furthermore discusses artifact responsibility, a
mapping of the artifacts onto a document structure, and tooling. The artifacts
shown in Fig. 2.7 are the basis for a systematic development of subsystem
specifications.

As the method does not strictly require a specific modeling technique for
the individual artifacts, different notation techniques are proposed for each of
them. Independent from the chosen notation, the guidelines proposed by the
OMG Reusable Asset Specification [OMG04] should be followed to provide the
basis for later reuse. Examples for the artifacts are provided in the case study
in Chap. 6.

Usage Level / System Level

On the Usage Level or System Level (top level in Fig. 2.7), the artifacts for the
content category Context (left column in Fig. 2.7) are the System Vision, the
Goals and Constraints, the Stakeholder Model, and the Operational Context.
The Requirements artifacts (middle column in Fig. 2.7) are the Goal Model
and the Use Cases, and the Design artifacts (right column in Fig. 2.7) are the
Functions Net, the Data Model, and the Interface Model.

CHAPTER 2. STATE OF THE ART 27

System Vision. The system vision is an image of the problem and aim of the
system to be developed which is agreed upon by all stakeholders. It describes
strikingly the alterations of reality that are induced by the system. The system
vision is a textual abstract, optionally illustrated by a picture of the future
system, that describes the system’s core functionality and its main purpose on
a high level of abstraction. It can be realized as plain text or template-based.

Goals and Constraints. The goals capture business goals and quality goals
and constraints. The business goals sum up the economic and customer-related
aims of the system and thereby describe, what shall be achieved through the
system with respect to market and customers. Business goals originate from
the decisions from customers, marketing, and management. Each business goal
can be captured in simple text, so the collectivity of the business goals is a list
of text blocks.

The quality goals determine specific characteristics that the system shall
demonstrate apart from the actual functionality. This includes characteristics
with respect to maintainability, performance, availability, usability, and security
of the system. The analysis and refinement of quality goals can lead to further
quality goals but also operational goals. Quality goals are derived from business
goals and stakeholder demands. They are captured either as plain text or as goal
graphs or goal models in the form of AND/OR trees. For a detailed description
of how to develop such a goal model, see e.g. [vL01].

Stakeholder Model. The ones who typically possess knowledge about
important context aspects and are crucial sources for requirements for the
planned system are the stakeholders. Typical examples of stakeholders
are ordering customers, system users, managers, jurists, marketing experts,
engineers, system architects, system testers, and production supervisors. It
is quintessential to list all relevant stakeholders involved in the requirements
engineering process. Each stakeholder is described by the name of the person,
organization or other group, and their respective role, and is characterized
by a description which relates to his specific interest in the system under
development. Their wishes and requirements can either be documented
separately with the stakeholder description, or the respective artifacts capturing
them can be referenced from the characterization to avoid overhead. This leads
to a list of template-based tables or text blocks with references to other artifacts.

Operational Context. The operational context documents the surrounding
technical and physical context of the system and their operational constraints.
The technical context documents the technical embedment of the system into
its environment. Part of the technical context are adjacent systems and their
relations. The physical context encompasses the physical dimensions of the
environment that are controlled or measured by the system, for example limit
values or events. The operational environment can be captured in UML Object
Diagrams [Obj07] or in a box-and-line diagram. These artifacts build the basis
for developing the concrete requirements specification for the system.

Goal Model. The goal model gives a hierarchical overview over the demanded
functional and quality characteristics of the planned system. The goals are

CHAPTER 2. STATE OF THE ART 28

derived from the system vision and issued by different stakeholders. The goal
model can for example be realized using the KAOS notation.

Use Cases. Use cases describe the use of a planned system from a system
user’s point of view where the system user can be either a human user or another
system. The artifact is usually a use case diagram that characterize the usage
in detail. The description is realized by means of templates. A use case thereby
substantiates one or several goals, as it documents examples for usage operations
that lead to the fulfillment of goals.

A use case groups scenarios: a main scenario and a number of alternative,
error, or exception scenarios. A scenario describes a linear sequence of
interaction of one or more users with the system. In addition to the textual
documentation in a template, the scenarios can also be formalized by Message
Sequence Charts [ITU96] or behavior models.

Functions Net. The functional view is represented as functions net or service
graph that denotes the system’s functional features in a black box manner, where
a service is a formalized use case. The services of the system are depicted as a
net of hierarchically decomposed usage functions and their relations. A service
thereby shows a behavior that is perceivable for the system user. In contrast to a
model of the function, the function net depicts an overview of the interrelations
of the services.

Dependencies between the services are represented through relations as for
example trigger, cancel, and subfunction [Grü08]. The division into subfunctions
does not constitute a system decomposition in interacting components but
merely a hierarchical structuring of the black box functionality. The service
graph is depicted in a net-like shape with nodes that represent the services and
lateral arrows that depict their relations.

Interface Model. The data view is captured in an interface specification for
the system interacting with the operational environment. The system interface
contains all syntactical information about functions and their data types as well
as references to the semantics of the functions. For every externally visible
function, the input and output parameters are described including their types.
Thereby the emphasis lies on “externally visible”, as internal functions are not
described until the logical architecture abstraction level.

Data Model. The data view analyses the data objects and data structures
from the requirements. The analysis of users, system, and participating
components leads to a description of the data interfaces of the data objects and
at the system interface. The data view is captured in form of a data dictionary,
either in a data model, for example an entity-relationship diagram, or by means
of templates.

Function Groups Level / Logical Architecture Level

On the Function Groups Level or Logical Architecture Level (middle level in
Fig. 2.7), the only artifact for the content category Context (left column in
Fig. 2.7) is the Operational Context (FG). The Requirements artifacts (middle

CHAPTER 2. STATE OF THE ART 29

column in Fig. 2.7) are the Functional Requirements, and the Design artifacts
(right column in Fig. 2.7) are the Component Model (FG) and the Behavior
Model.

Operational Context (FG). The operational context for function groups
documents the operational environment of the system functions and components
to be developed. This refinement of the operational context on the complete
system layer also includes logical sensors and actors.

Functional Requirements. The functional requirements can encompass
function requirements, data requirements, and behavioral requirements. It
depends on the type of system which description is considered the most
adequate. In the case of embedded systems, function requirements are most
likely used. As the use cases and scenarios describe only examples for the system
usage, it is important to describe the complete functionality of the system within
the requirements. At this stage, the point of view slowly traverses from the
user’s point of view to the system’s point of view. The requirements can either
be documented as structured text blocks or model-based in activity diagrams.

Component Model. The artifact encompasses a structural view on the
components and their interrelation. Thereby, the collectivity of the logical
components realizes the services described on the usage level. The component
model gives an overview of the logical system’s architecture and specifies
the structure of the architecture and the logical components. In case the
specification technique Focus [BS01] is used, the syntactical interface is defined
by typed ports. Components are connected to each other through these ports
and communication takes place via channels between these ports. Consequently,
the types of the ports show up again in the interface and data specification.

The structural view is composed by the components and the connecting
channels. It can be represented either in form of a hierarchical system structure
diagram, a UML Component Diagram [Obj07], or as a simple box-and-line
diagram with additional explanatory comments.

Behavior Model. The behavior view depicts a state-oriented examination of
the usage processes (mapping of input data to output data), especially of the
considered states and transitions of the system. Based on the relevant operation
modes and the analysis of the usage processes, a state-oriented structuring and
modeling of the usage processes is carried out. This modeling view supports,
especially with regard to security issues, the identification of possible, undefined
and uncontrolled system states and the respective refinement and completion of
the behavior specification.

The behavior view includes a state transition automaton for each logical
component of the artifact Component Model that describes its behavior. Again,
if Focus [BS01] is used, the communication between components is represented
in channels and ports as specified for the Component Model. Inputs to a
component are received via ports; their resolution can alter the state of a
component. Outputs can be generated and transferred on to other channels,
and subsequently they might serve as (altered) input for other components.

CHAPTER 2. STATE OF THE ART 30

A state chart consists of control states and transitions between states. A
transition can have preconditions and postconditions, and the data it requires
can be specified by input patterns and output patterns . For each component,
the behavioral view is represented in state charts for each component, for
example using state transition diagrams.

Hardware/Software Level / Technical Architecture Level

On the Hardware/Software Level or Technical Architecture Level (bottom level
in Fig. 2.7), the artifacts are refined and enriched with realization information
about the technical platform and the deployment. The Context artifacts are
the Operational Context (SW) and the Technical Constraints (left column
in Fig. 2.7), the Requirements artifacts are the Functional Requirements
(SW/HW) (middle column in Fig. 2.7), and the Design artifacts are the
Component Model (SW), the Component Model (HW), and the Deployment
Model (right column in Fig. 2.7).

Operational Context (SW). The operational context on the software
/ hardware layer documents the operational environment of the software
components to be developed. This refinement includes measures and sensors
as well as controlled variables and actuators.

Technical Constraints. The technical constraints contain a compilation of
all relevant technical constraints. This applies for example to external interfaces
that have to be adhered to, and restrictions with regard to the software and
hardware design of the system.

Functional Requirements (SW/HW). The functional requirements
describe the requirements for the software of the planned system in form of
a function model that specifies the functions in detail. They are described using
templates. They refine the function requirements of the function group layer.

Component Model (SW). The software model depicts the technical
software components, also called clusters and their behavior during execution.
A runtime view represents the system behavior as interaction of clusters, events,
timers, and buffers. For each cluster, an event is defined as activating condition,
whose occurrence activates the cluster and makes it runnable. On each hardware
component, there can only be one running cluster at the same time. Therefore,
priorities have to be defined when there exists more than one runnable cluster
simultaneously. An event can be based either on an incident in the environment
or on an incident inside the system, for example the update of a buffer.

Realtime systems are time-critical and these specifics are modeled through
timers. The expiration of a timer can trigger an event and activate a
cluster. Thereby timers and events can model time-controlled processes. The
communication between clusters is realized asynchronously with buffers. All
modeling elements can feature hardware-independent, hardware-dependent, and
context-dependent characteristics (for more detail, see [Wiled]).

The software model is represented in an execution view with graphical
elements for the described elements cluster, event, timer, and buffer. This view

CHAPTER 2. STATE OF THE ART 31

also allows to depict the operational constraints that were still missing on the
logical level.

Component Model (HW). The hardware view describes the topology of
the hardware parts of the platform. All real hardware parts are abstracted
to appropriate hardware components and their most important characteristics
are specified. As the aim is to develop software for embedded systems, only
those characteristics are of interest that directly influence the behavior of the
software. Such characteristics are, for example, for communication busses the
transmission times, for sensors the update rate, and for micro-controllers the
size of the available data storage.

The notation may, for instance, be a box-and-line diagram depicting the
topology of the hardware components with all ECUs, sensors and actors, and
communication devices (data busses and cables), each of them attributed with
their specific relevant characteristics.

Deployment Model. The deployment model describes the mapping of
software to hardware. It maps the software elements cluster, event, timer, and
buffer to their respective hardware components.

The notation is either a graphical mapping between the elements of the two
diagrams for the software model and the hardware model, or a table that assigns
the software components to hardware components, optionally with graphical
support.

Relations between the Artifacts

This section explains the general relations between the artifacts.
The system vision and the stakeholder model build the basis for the definition

of goals and general conditions for the planned system, the operational context
and its development.

Goals and general constraints are the starting point for the goal model, the
refinement and modeling of use cases, as well as the derivation of detailed design
constraints of the operational context.

Use cases are the vital analysis and modeling technique for the derivation of
necessary usage functions of the system and their behavioral specification via a
function net and the adequate data models and interface specifications. They
serve for the definition of roles and interfaces for external actors and components
in the operational context on the function group layer and, furthermore, for the
derivation of function requirements.

The conditions of the operational context, in combination with the function
requirements and the function net, determine the logical architecture of the
component model and its behavioral specification.

The technical constraints influence the derivation of the hardware
components (the topology) and the software components from the logical
component model of the function group layer. The component model for
the software is enriched with a behavioral view through the help of the
behavioral model of the function group layer under consideration of the technical
constraints and the function requirements.

CHAPTER 2. STATE OF THE ART 32

The deployment model maps the software components of the component
model to the hardware topology of the component model hardware, again under
consideration of the technical constraints.

Discussion Aspects

The above definition of the artifact model leads to a number of discussion aspects
that have been analyzed and are dealt with in the following. These issues are
the distinction of logical and technical description of a system, the quality of
the artifacts, possible tailoring, the assignment of artifacts to the responsible
originators, and the mapping of the artifact model onto document structures.

Logical vs. Technical Description. Worth discussion is the difference
between logical (components and connectors) and technical (signals, bus
communication, . . .) description of the system and in what case which level
of abstraction is more suitable.

In the automotive domain, requirements specification documents often
consist of a rather unstructured mixture of logical and technical descriptions.
For example, such a document begins with a logical description in the form
of use cases and provides some quality requirements, but then skips the
logical architecture level completely and instead directly presents a technical
architecture with a lot of detail, that on the one hand does neither explicitly
relate to the requirements presented before nor give any rationale for the design,
on the other hand with details of constraints that did not occur in any form
previously in the document.

Where does this information come from? Many of the embedded systems in
the automotive domain have been developed over and over again, for example
within product lines. Therefore, an experienced developer will know the
majority of the implied constraints without bothering to capture them in early
artifacts like the Operational Environment. Furthermore, it is not necessary to
reinvent the wheel every time there is a new release of an old system planned.
Therefore, the technical architecture is already predefined, at least to a certain
extent. This leads to the shortcut of the technical architecture being copied
and skipping the development of a logical architecture. Some OEMs now use a
new shortcut, by eliciting requirements as recommended by the state of the art,
then still copying the technical architecture, and afterwards trying to link the
two via defining a logical architecture. This already leads to better traceability
but does not bring the main benefit of model-based development.

The development of a logical architecture and the explicit modeling of a
system’s behavior on a solely logical abstraction level allows for better quality
through early model-checking or simulation and therefore early troubleshooting.
Of course, the realization then does require the proper modeling of hardware
and operational constraints on a lower abstraction level to be able to simulate
the software and perform software-in-the-loop tests before deploying on real
hardware, which is much more costly. Therefore, the answer to the question
“Use logical description or technical description?” is: “Both.”

Quality of the Artifacts. If the effort is taken to develop the artifacts
described above, it is crucial to develop these artifacts in an adequate quality for

CHAPTER 2. STATE OF THE ART 33

really achieving the benefits of model-based development. Being able to audit
the quality of the artifacts requires suitable metrics for measuring the quality.

A simple way of providing support for a certain artifact quality is to use
criteria that define what content has to be specified to which degree of detail
by a certain artifact. This approach was chosen, for example, for the REMsES
guide [RDSS09].

Another approach is to develop the artifacts with sufficient quality by
adhering to a number of common requirements quality criteria, as for example
given by Robertson and Robertson [RR07]:

• Completeness

• Traceability

• Correctness

• Unambiguity

• Understandability

• Consistency

• Testability

• Atomicity

This list of criteria is commonly accepted in the RE community as other book
authors in the requirements engineering discipline frequently cite these criteria,
for example Pohl [Poh07]. Recknagel and Rupp have also proposed to use
metrics for these quality criteria to provide quality assurance in requirements
documents [RR06a].

By setting up metrics for the quality criteria, it is possible to define quality
goals for a requirements specification based on quality goals for single artifacts.
Such metrics for quality criteria are also used by process maturity models like
CMMI [Sof09] and SPICE [SPI05] to assess the quality of documentation.

For defining appropriate quality assurance for the artifact model, it is
reasonable to also consider tailoring of the artifact model.

Tailoring. According to the project situation, the artifact model and the
related development process can be customized. In general, there are three
types of tailoring as described, for example, by Kuhrmann [Kuh08]:

• According to characteristics of the organization of the developing company
or association of developing companies, for example to fit standardized
development processes.

• According to characteristics of the project type, for example single system
development for customers, or product development for the market.

• According to characteristics of the process instance, for example the
system domain, or the degree of criticality of the system.

This order provides three stages of tailoring, although they can be performed
by the same person or instance. The bigger the company, the bigger the
differentiation that occurs between the single stages. According to the size
of the company, such an artifact model will be used company-wide or in
single departments. The person responsible for the process first makes

CHAPTER 2. STATE OF THE ART 34

adjustments to the general process standards of the company, for example in
terms of vocabulary that is preallocated within the company, or procedures for
coordinating artifact contents. The result is a process conform to the general
company processes.

In the second stage, the processes are adapted to the project type present,
that is to the known initial situation and point of departure of the project.
This stage links the processes with the preceding and following processes via
clearly defined interfaces, for example in form of milestones with deliverables
and acceptance criteria, depending on whether and in which form information is
available in advance and which stakeholders are involved. Thereby, the optional
process parts are appointed and the artifact model is tailored. The result is
a reference for all projects that fit the defined initial situation. It should be
communicated company-wide and be used throughout all projects of a similar
point of departure.

Furthermore, it can be necessary to carry out further tailoring for special
projects. In the third stage, the person responsible for the process adjusts the
artifact model and process with respect to special requirements of the project.
This is done in coordination and accordance with the project manager to
special requirements of the project present. Regarding the process this may, for
example, be a certain course of action in the collaboration with a subcontractor,
regarding the artifact model this may be an amendment of voice recordings of
stakeholder interviews.

The REMsES artifact model allows for all three stages of tailoring but
does not describe a process how to exactly perform the tailoring. In general,
the artifact model may be pruned and notation techniques for the individual
artifacts may be chosen.

Mapping the Artifacts onto a Document Structure. The exchange of
requirements for software development is still document-based in most cases.
When presenting an artifact model, it is therefore important to distinguish
between the structured system model, represented in different views by the
artifact model, and the document structure that contains the artifact model, or
parts of it.

A possible mapping of the artifacts to the prototype outline of the IEEE
Recommended Practice for Software Requirements Specification (SRS) [IEE98]
is presented in Tab. 2.5.3. The design artifacts of the logical and technical
architecture levels are not included in the table as they do not fit into the
defined general scope of the IEEE definition of a SRS15 but are intended as
connection to the subsequent design phase.

The intention of the mapping is to show that the artifact model can be
fit into existing document structures, and does not require the introduction
of completely new organizational structures for requirements engineering
documentation.

Artifact Responsibility. There are usually different roles that produce the
artifacts described in the sections above, for example a marketing manager, a
requirements engineer, a system architect, and a quality assurance person. This
differentiation is not of explicit interest for this work, the only two roles that are

15“The SRS writer(s) should avoid placing (...) design(...) in the SRS.” [IEE98, p.3]

CHAPTER 2. STATE OF THE ART 35

Table 2.2: Mapping of Artifacts to the IEEE SRS Prototype Outline [IEE98]

IEEE SRS Prototype Table of Contents REMsES Artifacts (or comment, where not applicable)
1. Introduction
1.1 Purpose purpose of the SRS, intended audience
1.2 Scope System Vision, Goals, Stakeholders
1.3 Definitions, acronyms, abbreviations as glossary or in form of references
1.4 References list of documents (title, date, publishing organization)
1.5 Overview outline and organization of the rest of the SRS
2. Overall description
2.1 Product perspective Operational Environment, Interface Specification
2.2 Product functions Use Cases, Service Graph, Behavior Specification
2.3 User characteristics reference toÊ Stakeholders
2.4 Constraints Technical Constraints
2.5 Assumptions and dependencies references toÊ Operational Environment
3. Specific requirements Functional Requirements, Quality Requirements

used for task descriptions in subsequent chapter are the requirements engineer
and the system architect, as defined in the motivation (Sec. 1.1). However, the
special case of distributed development imposes the need to differentiate which
artifacts are provided by the OEM and which are produced by the subcontractor.

This is also closely related to the compatibility issue, as the artifact model
has to be used by both the OEM and the subcontractor. The artifact model
is a logical product data model and to use it, a concrete instance has to be
defined. Interoperability can most easily be guaranteed, if both OEM and
subcontractor use the same concrete instance of the artifact model. Due to the
OEM cooperating with a multitude of subcontractors and each subcontractor
usually working for a multitude of OEMs, this is hardly possible on a big
scale. Therefore, the artifact model in this work can be instantiated with
different description techniques and notation methods for compatible instances
of a product data model, thereby minimizing integration problems.

There are two possibilities for artifact authorship according to which
abstraction level was chosen for the subsystem assignment: on the logical
architecture level or on the technical architecture level. In case of the assignment
of a logical subsystem, the OEM would provide the artifacts defined on the
usage level as well as any existing context and requirements artifacts on the
lower levels related to that special subsystem. In case of the assignment
of a technical subsystem, the OEM might already make prescriptions about
the logical architecture and provide the respective specifications. The missing
artifacts have to be produced by the subcontractor. In most cases, the exchange
will be document-based.

Tooling

An artifact model like the REMsES model will only be used in practice if
sufficient tool support is available. There are a number of possibilities to support
the usage of the artifact model with adequate tooling, either captured in one tool
as good as possible, or across more than one tool with an adequate management,
for example through a controlled versioning system.

CHAPTER 2. STATE OF THE ART 36

CASE-Tools. A simple solution is to tailor the artifact model in such a way
that it can be represented completely with one tool. Common CASE-tools
frequently used in the industry are Enterprise Architect16, Rational Rose17,
Together18, Visual Paradigm19, and Simulink20. Apart from the last one, all of
these tools are based on UML. Either of the UML tools can be used to produce
the artifacts of the model.

Simulink was developed as tool for model-based software development for
embedded systems but intended on a rather technical level building on Matlab21.
Simulink may be used for only a subset of the artifacts as the context and
requirements artifacts are out of scope for the provided modeling support.

In contrast, AutoFocus222 in combination with AutoRaid [SFGP05]
is a prototype tool suite developed at TUM Software & Systems
Engineering [FFH+09a, SFGP05] which supports a tight integration of
requirements engineering and system design. It allows for modeling with defined
semantics across the abstraction levels defined for the artifact model. All
artifacts can be modeled within AutoFocus2 and AutoRaid with consistency
checks and traceability between requirements and design, including explicit
rationale for the derivation of logical components.

REMsES tool concept. There are tools for developing the single artifacts,
but there is no adequate tool support yet for managing a heterogeneous artifact
model with relations between the artifacts. To fill this gap, a tool concept
is proposed that supports the artifact model with a defined workflow for
consistency and quality checks with respect to the content of and relations
between the artifacts.

The REMsES tool prototype [PBP09] is a cross-tool solution that links the
different artifacts via an additional graphical model representing the artifact
model. Technically, it integrates a version control system with a ticket system
and triggers automatic checks. It offers automatic consistency checks where
this is possible and assigns tickets to reviewers for manual checks where
automatic checking cannot be supported. It offers a lightweight, adaptable,
workflow-centric support.

For each artifact there are four generic steps: Automatic content check,
manual content check, automatic relation check, and manual relation check.
Fig. 2.8 shows the states each artifact passes. In case of a failed check at any
stage, a ticket is issued to the responsible developer and the artifact moves back
into the state work.

Work: This is the first state of each revision of an artifact. If the artifact
is in the state work, the author can make any changes without triggered
effects.

Check Content Automatically: The state check content automatically is
the starting point of the quality management system. If the developer

16http://www.sparxsystems.com/
17http://www-01.ibm.com/software/awdtools/developer/rose/index.html
18http://www.borland.com/us/products/together/index.html
19www.visual-paradigm.com/
20http://www.mathworks.com/products/simulink/index.html?ref=pfo
21http://www.mathworks.com/products/matlab/index.html?ref=pfo
22http://www4.in.tum.de/~af2/

http://www.sparxsystems.com/
http://www-01.ibm.com/software/awdtools/developer/rose/index.html
http://www.borland.com/us/products/together/index.html
www.visual-paradigm.com/
http://www.mathworks.com/products/simulink/index.html?ref=pfo
http://www.mathworks.com/products/matlab/index.html?ref=pfo
http://www4.in.tum.de/~af2/

CHAPTER 2. STATE OF THE ART 37

Figure 2.8: Generic Workflow of the REMsES Tool Prototype

sets the state of an artifact to check content automatically, the predefined
content checks are executed. This includes all formal checks that can
be conducted automatically. If these are passed successfully, the artifact
receives the state check content manually.

Check Content Manually: In this state, the developer responsible for
the review gets a ticket issued to perform the manual content checks,
for example, to validate consistency with the initial requirements. If
these checks are passed, the artifact receives the state check relations
automatically.

Check Relations Automatically: The next step is an examination of the
artifact in relation to other artifacts, i.e., the validity of each relation.
These relations are defined in the artifact model. In this state, the
predefined scripts for the rules that can be checked automatically are
executed. If the artifact passes all checks, it moves to state check relations
manually and the responsible reviewer gets notified.

Check Relations Manually: In this state, the remaining manual checks for
relations have to be performed. If an artifact passes every check, it moves
to state finished.

Finished: An artifact with the state finished has passed all the checks
concerning its content and its relations to other artifacts.

CHAPTER 2. STATE OF THE ART 38

The state of the whole artifact model can be determined from the current
states of the contained artifacts and their relations. More concrete, the artifact
model is said to be consistent if the current version of each artifact is in the
state finished, meaning that it has passed all consistency checks. The aim of
the supporting tool is to guide the users systematically to a consistent artifact
model.

The architectural concept for the REMsES tool is based on a version control
system (VCS), with a specific structure, which is complemented by an issue
tracking system. The VCS serves as a central database and the issue tracking
system provides the possibility to integrate the responsible developers into the
workflow.

The proposed concept was realized on the basis of the two freely available
tools: Subversion23 as VCS and Trac24 as issue tracking system. The prototype
serves as proof of concept, but is currently not further developed.25

Traceability. In the case when one of the tooling approaches from above
is in use, traceability is often provided by the tools, either because it is
a CASE-tool that is based on an underlying consistent model, or because
traceability was added to a cross-tool solution in terms of an additional graphical
model representing the artifact model.

In the case when no specific tool support is defined, traceability has to be
provided manually by the developers. This includes continuous updating of
references, which is a tedious task that is likely to be forgotten or neglected.
Therefore it is strongly suggested to define appropriate tool support when
adopting the artifact model.

2.5.4 Results and Evaluation
The REMsES guide for systematic requirements engineering and management
was evaluated in several case studies, student experiments, and pilot projects
at the sites of the industrial partners. The guide is now available for free
download [RDSS09].

2.6 Example: Driver Assistance Systems
There were nearly 50 million cars on the road in 2008 [Sta09]. Half of EU
citizens (50%) drive between 5,000 and 15,000 km per year [Eur06] and safety
is the most important factor (54%) that EU citizens would take into account if
they were to buy a car (but most would consider fuel consumption in parallel).

Active Safety. Apart from passive safety through airbags and crush zones,
there is a lot of potential in active safety systems, also known as advanced
driver assistance systems (DAS). The latter are a variety of independent
electronic systems designed to help the driver maneuver through demanding

23http://www.subversion.org
24http://trac.edgewall.com
25The REMsES tool prototype was presented to the project partners and is documented

in [PBP09], but it is not stable enough to be provided for public download and trial.

CHAPTER 2. STATE OF THE ART 39

traffic situations. According to Lindgren [LCJZ08], their overall aim is to reduce
traffic accidents and to make the driving experience easier and more efficient.

Driver assistance systems demonstrably decrease the risk of
accidents [Deu09] and therefore, the automotive subdomain concerned
with driver assistance has emerged as important development area for market
competition. Some challenges concerning driver assistance systems, like driver
data collection, design guidelines, and traffic impact, have been investigated in
the German research project INVENT [VB06]. Examples for driver assistance
systems were already given in Sec. 2.6.

Requirements Elicitation. Eliciting requirements for such a system imposes
a number of questions to be answered beforehand, for example whether to create
systems based only on formal rules and legislations or if drivers should be allowed
to break traffic rules and still get assistance from the systems [LCJZ08].

Furthermore it is necessary to evaluate when, why, and how the driver likes
to have assistance, because as Werneke et al. report, drivers do enjoy driver
assistance systems for safety and comfort but still want flexibility [WKV08].
Additionally, according to Lindgren et al., cultural differences have to be taken
into account as well [LCJZ08]. One approach for eliciting requirements for driver
assistance systems is an in-depth analysis of accidents [BV06, BDS08].

Running Example: DAS plus two Subsystems

The subdomain of the automotive domain that was chosen for the examples
throughout this work is the domain of driver assistance. Driver assistance
systems support the driver in the driving process. Their aim is to increase
car safety and, more generally, road safety. Examples of such systems are
in-car navigation system with typically global positioning system (GPS) and
traffic message channel (TMC) for providing up-to-date traffic information,
adaptive cruise control (ACC), lane departure warning, traffic sign recognition,
collision warning system, night vision, blind spot detection and driver drowsiness
detection.

The examples used in this thesis are the “Radio Frequency Warner” and the
“Adaptive Cruise Control”. The requirements and/or system specifications of
both systems stem from real industrial specification documents.

Radio Frequency Warner (RFW)

The “Radio Frequency Warning” System is a driver assistance system that
supports the driver in coping with the information flood in road traffic
with the help of radio frequency signals for traffic sign recognition. It is a
fictitious system that has been specified with the standard specification and
documentation techniques by project partner Daimler as case study for the
REMsES project [RDSS09].

The system vision of the RFW is that with the permanent increase of traffic
and traffic-related information during the last decades, it is now quite likely
for the driver to miss a sign when for example distracted or when a sign is
covered by another car. The RFW system filters incoming signals and displays
the relevant ones on the instrument cluster display for as long as they are valid.
As integrated comfort function along with cruise control, it also produces alert

CHAPTER 2. STATE OF THE ART 40

signals when the car is too fast for the current speed limit. The complete
requirements specification of the RFW system [Ris07] cannot be supplied within
this document due to reasons of secrecy but examples are taken as excerpts.

Adaptive Cruise Control (ACC)

The driver assistance system “Adaptive Cruise Control” is an intelligent speed
control system that automatically maintains a pre-defined minimum distance to
the car in front. ACC systems use either a radar or laser setup to allow the car
to slow when approaching another car and accelerate again to the preset speed
when traffic allows. This is achieved through a headway sensor, digital signal
processor and longitudinal controller. The example system specification used
in this work also features Pre-Crash Safety (PCS), which means it warns the
driver and/or provides brake support if there is an increased risk of a collision.

The original requirements that have been used in the ACC case study are
documented in [FFH+09b].

Summary. This chapter explained this work’s background: the Architecture
Model (Sec. 2.3), the Requirements Engineering Reference Model (Sec. 2.4),
Automotive Software Development (Sec. 2.1), presented the conducted study
about the state of practice (Sec. 2.2), and introduced the REMsES project
(Sec. 2.5). This knowledge was used as a basis for the approach presented in
this work, which will be detailed in the following, starting with the reference
catalogue of decomposition criteria in the next chapter (Chap. 3).

Chapter 3

Decomposition Criteria

Contents
3.1 Related Work for the Decomposition of Systems 41
3.2 Overview of the Criteria Catalogue 43
3.3 Directive Criteria 47
3.4 Functional Criteria 50
3.5 Quality Criteria . 52
3.6 Technical Criteria 55
3.7 Coherence of the Criteria 58
3.8 Impact of the Criteria on Decomposition 60

The decomposition of a system is the first step into the direction of defining
the architecture after the analysis of the requirements. For actually performing
such a decomposition, it has to be analyzed why a system is decomposed, what
criteria have to be considered and how to apply the criteria.

This chapter presents the theory and analysis of the decomposition of
systems into subsystems with the objective to show the connection of the
approach in this work to architecture design. A special focus lies on reuse
for being a promising means to significantly lower development costs.

First, related work for system decomposition is discussed. In Sec. 3.2, the
factors that shall be optimized by state-of-the-art system development, which
will be called “optimization factors” in the following, are introduced. Then,
the criteria that have to be taken into account for system decomposition are
presented in the “Criteria Catalogue” and its subcategories in Sec. 3.3, Sec. 3.4,
Sec. 3.5, and Sec. 3.6, respectively. Subsequently, the coherence of the criteria is
described in Sec. 3.7 and, finally, their impact on the decomposition (Sec. 3.8).

3.1 Related Work for the Decomposition of
Systems

In the area of the decomposition of systems, there are two major approaches:
general paradigms and practical guidance with patterns. Furthermore, there
are collections of best practices.

41

CHAPTER 3. DECOMPOSITION CRITERIA 42

General Paradigms. General paradigms are principles that support the task
of decomposing a system. The two most cited ones are hierarchical structuring
and information hiding. These paradigms were identified and presented in
various papers by Parnas and Dijkstra: Parnas discusses criteria to be used in
decomposing systems and promotes the concept of information hiding [Par72],
extends this discussion for the development of program families with stepwise
refinement [Par76]. Furthermore, he presents design decisions for software that
is subject to frequent changes and therefore faces extension and contraction
problems [Par79]. Dijkstra discusses the concepts of sequential processes
and hierarchical abstraction levels [Dij68]. Another important paradigm is
“Conway’s Law” [Con68] (later extended by Herbsleb and Grinter [HG99]) which
states that the structure of an organization is mirrored by the structure of the
systems developed by the organization.

These general paradigms are an important foundation for the reference
criteria catalogue.

Formal Approaches. There are also theoretic approaches on formal
decomposition, for example as performed by Abadí and Lamport. They analyze
the formal decomposition of a system in their paper “Decomposing Specifications
of Concurrent Systems” [AL94] on which they base a formal conjunction of
component specifications for program verification. The aim of their work is
the decomposition of an existing system with the intent of performing program
verification, which is not in the scope of this work.

Guidance and Patterns. One of the best known books on design and
software architecture stems from the Pittsburgh Carnegie Mellon University
Software Engineering Institute (CMU SEI), “Software Architecture in Practice”
from Bass et al. [BCK03].

The presented approach relies on reference models, tactics, and architectural
patterns. It uses knowledge from the attribute-based architectural styles
(ABAS), where the idea of object-oriented design patterns is applied to
architecture [KK99]. Furthermore, it adapts the Attribute-Based Design (ABD)
method [BBC+00]. Clements worked on the transition of domain models to
architecture [Cle94].

The successor method for ABD and most recent development from the
CMU SEI is Attribute-Driven Design (ADD) [WBB+06]. In ADD, the design
process for architecture relies on quality attribute requirements. Inputs are
functional requirements, design constraints, quality attribute requirements,
implied constraints, and uncategorized requirements (e.g., related to legacy
systems). The process identifies architectural drivers and applies design
concepts (patterns). Outputs are software elements, roles, responsibilities,
properties, and relationships.

All of these approaches rely on patterns that match architectural drivers,
which reflect only part of the decomposition criteria given in this work. DeSyRe
instead emphasizes on an analysis of decomposition criteria before such a pattern
matching. Thereby, the approach takes into consideration the whole range of
potentially influencing factors.

CHAPTER 3. DECOMPOSITION CRITERIA 43

Best Practice. Accumulated knowledge from best practice is presented by
Hofmeister et al. in their book “Applied Software Architecture” [HNS00].
They organize relevant architectural factors in three categories, namely product
factors (e.g., functional features, user interface, performance), technological
factors (e.g., software technology, architecture technology, standards) and
organizational factors (e.g., management, staffing, development schedule), and
then use Kruchten’s 4 views [Kru95], i.e., conceptual, module, code, and
execution view.

The approach first prescribes a global analysis of factors, where the architects
describe, characterize changeability, analyze impact, and sum up the gained
knowledge in factor tables. Then, the authors suggest to develop so-called
strategies by identifying an issue, developing a solution, identifying related
strategies, and summing up in issue cards. From those, central design tasks
are derived.

The idea of the book is to sum up best practices and make them easily
available to other practitioners. The categorization of criteria mixes factors from
different stakeholders while the DeSyRe categorization distinguishes between
factors according to their source of origin and therefore provides support for
gathering the respective information during requirements engineering.

3.2 Overview of the Criteria Catalogue
The decomposition process is influenced by system type specific aspects as well
as domain specific and individual constraints. The criteria catalogue presented
in this section reflects both points of view in four criteria categories that guide
through the decomposition process. As stated in Sec. 3.1, up to now, there is
no encompassing catalogue of decomposition criteria in literature.

This section first explains the objective for the decomposition of a system,
i.e. the envisioned optimization, subsequently gives an overview of the criteria
categories, and introduces the description template that is used to explain each
criterion in the following sections. The subsequent sections then discuss the
criteria of each category in detail and illustrate them with examples.

The catalogue was developed from a number of resources: First of all, an
extensive literature research, inter alia Conway [Con68] and Herbsleb [HG99],
Nuseibeh [Nus01], Parnas [Par72], and Wojcik [WBB+06].

Further information sources were requirements engineering activities and
related reference models (for example REM, see Sec. 2.4 and REMsES, see
Sec. 2.5). The gained knowledge was validated and enriched within the
interviews of the field study (see Sec. 2.2) and, last but not least, through many
discussions with colleagues from our research group and other institutions.

3.2.1 Optimization Factors
Decomposition of a system takes place with a certain aim of optimizing the
development. The commonly accepted basis for optimizing development and
projects in general is the triangle of time, quality and costs [MHM87], depicted
in Fig. 3.1 that needs to be balanced.

Further optimization factors can be related to one or more of these three
major concerns, for example, related to costs and quality is the issue of reuse,

CHAPTER 3. DECOMPOSITION CRITERIA 44

Figure 3.1: Time-Cost-Quality Triangle and Related Concerns.

and related to time and costs are organizational structures. There may be other
potential issues for optimization but these are the ones considered important
within this work.

3.2.2 Criteria Categories
The four categories are the directive criteria, the functional criteria, the quality
criteria, and the technical criteria. Each of the categories is related to different
stakeholders, as visualized in Fig. 3.2.

Figure 3.2: Decomposition Criteria Categories and their Stakeholders

Directive Criteria: The stakeholders of the business point of view
are the strategy consultant (or business analyst), the economist, the
marketing expert, and the product manager. They issue the majority
of directive criteria. The directive criteria contain laws and standards,
licensing/patents, information politics and business rules.

CHAPTER 3. DECOMPOSITION CRITERIA 45

Functional Criteria: The point of view of end users, service personnel,
and product designer is the system idea. These stakeholders provide the
functional criteria and (indirectly, therefore not depicted in Fig. 3.2) part
of the quality criteria. The functional criteria are concerned with the
usage functions the system shall provide.

Quality Criteria: The point of view of quality is represented by the quality
assurance manager. The quality criteria reflect implications by desired
quality characteristics of the system.

Technical Criteria: The stakeholders who hold the architecture point of
view are the software architect and the hardware architect. The technical
criteria derive from the constraints given by the technical solution domain
and the future system environment as well as from architecture design
rules.

Thereby, not all categories have to be present to the same extent for a
system, for example a web application would probably have to conform to certain
business rules that are of less interest for an embedded system.

Due to the aforementioned dependency of the criteria on the type of system
and its specific situation, there is no general rule on how to incorporate all the
criteria equally into the decision for the division into subsystems. The relevance
of the criteria has to be evaluated separately for each system and according to
that relevance, the division can be decided individually. It is not desired to limit
the general applicability of the approach but, to be able to justify the selection
of criteria for the division, it is necessary to assume a certain type of system
in the following. The catalogue of criteria will be the same but the criteria’s
priorities might vary for specific systems or types of systems.

The type of the specified system determines to what extent each of them is
relevant for its division into subsystems. In this work, it was already defined
that the system type of the given context is embedded systems.

3.2.3 The Description Template
The template used for explaining each criterion in the remainder of this chapter
was created to provide an easy overview and systematic description of the
criteria of the different categories.

Table 3.1: Description Template for Decomposition Criteria.
Template entity Description of the entity, to be filled in for each criterion
Source <Corresponding documents for information retrieval>
Impact <Priorities, consequences and risks>
Usage <Recommendation of state-of-the-art methods>
Examples <From case study scenario “international logistics company”>
Prioritization <According to the reasons for decomposition, according to the

business domain, and according to the system type>

The template for the criteria description is depicted in Tab. 3.1. It includes
the source of information, which explains where the information for this criterion
can be gained, the criterion’s impact or priority, which describes what can
happen if it is ignored for the decisions, the usage concepts, which give guidance
on how to proceed, and examples, which have been chosen from different

CHAPTER 3. DECOMPOSITION CRITERIA 46

case studies. There have been identified three different “dimensions” for the
prioritization of the criteria for the decomposition of a certain system:

• according to the intention (reasons for performing decomposition, e.g.,
control of complexity, improvement of reuse, . . .),

• according to the business domain (e.g., aerospace, financial sector,
consumer electronics),

• and according to the system type (e.g., BIS / data-intensive,
embedded system / performance-intensive, multimedia & entertainment /
performance & data-intensive but uncritical).

Due to a limited generality of the criteria, it is only possible to give hints
and guidance for the possible consequences for the architecture and concrete
usage concepts. The usage concepts will be methods in the small that enable
simple application of the approach to ensure acceptance in practice.

The sources of information for the criteria within the requirements and
design artifact model used throughout this work (explained in Chap. 2.5.3) is
depicted in Fig. 3.3.

The figure is intended to provide a rough idea about which part of the
artifact model the criteria may be derived from, according to content category
and abstraction level (both concepts were introduced in Sec. 2.5). The directive
criteria have their origin in the area of the context on the system level, the
quality criteria stem mainly from the requirements on system level and function
groups level, the functional criteria are emphasized in the design on the system
level and the requirements on the function groups level, and the technical criteria
are mainly found on the software / hardware level spread across the content
categories context and requirements.

Figure 3.3: Criteria Information Sources within the Artifact Model

CHAPTER 3. DECOMPOSITION CRITERIA 47

Each of the categories will be described in detail in the following sections and
the criteria are illustrated with a continuous example. The template is filled
for each criterion to provide the information flow and handling of the criteria
during the requirements engineering process.

3.3 Directive Criteria
Depicted in the upper left corner of Fig. 3.2, the directive criteria summarize
all criteria that influence the system’s decomposition from “the outside”, to
say independent from the system vision itself. They can be derived from the
perspective of the business (requirements), represented in the REM specific
document type reflecting the Business Needs (see Sec. 2.4). The criteria
encapsulate direct influences, which cannot be modified, and indirect influences,
which are negotiable to a certain degree. They can be divided into organization,
legislation, and economics. Bass et al. refer to some of the following criteria as
“business qualities” whose “goals center on cost, schedule, market, and marketing
considerations” [BCK03, p. 95].

The following list of directive criteria was elaborated through literature
research, discussions with colleagues and project partners from industry, and
validated by the study described in Sec. 2.2. The grouping into the three
domains organization, legislation, and economics was chosen for easier overview
and orientation.

• Organization

– Infrastructure and Conway’s Law

– Information politics, business rules, and implications from
subcontractor-supplier relationships

– Experience, background and expertise of the developers

• Legislation

– Laws

– Standards

– Licensing

– Patents

– Certificates

• Economics

– Reuse

– Cost models

– Demand management

There is general consensus on that these factors do influence a system’s
design, but in part it is hard to put a finger on a concrete example, because those
influences are indirect. Some aspects like experience and personal background
may not even be perceived consciously as an influence by the system developers
in charge.

CHAPTER 3. DECOMPOSITION CRITERIA 48

3.3.1 Organization

Table 3.2: Organizational Criteria
Source Business objectives, general conditions, scope
Impact System acceptance criteria are not accomplished and can not be

traced.
Usage “Means” from non-functional requirements (NFR) method [DKK+05],

system concepts undergo an acceptance test before they are designed
(technical solution variations and corresponding acceptance criteria
for guiding through the test).

Examples The coarse-grained decomposition has to be structured according to
the development units for each special domain (e.g. driver assistance).
No use of open source components (e.g. in military systems).

Prioritization According to business domain and system type.

Information sources, impact, usage, example, and prioritization are
described in the template in Tab. 3.2.

The influence of an organization’s infrastructure on the structure of a system
has first been explored and described by Conway [Con68], then Parnas [Par72]
and was later on revised by Herbsleb [HG99]. The following citation from the
original work of Conway [Con68] concludes his essay with a result statement
known as “Conway’s Law”:

“. . . organizations which design systems (in the broad sense used
here) are constrained to produce designs which are copies of
the communication structures of these organizations.” [Con68,
Conclusion]

Parnas shows that dividing a software system is simultaneously a division of
labor as he defines: “In this context ’module’ is considered to be a responsibility
assignment rather than a subprogram.” [Par72].

Herbsleb and Grinter showed that for distributed development, Conway’s
Law does make sense, but focused on the problem that “multiple site
development works against informal communication channels” and therefore
complicates integration. This problem was also reported in the accomplished
study interviews (see Sec. 2.2) as communication efforts between OEMs and
suppliers and will be tackled in this work through the artifact model (Sec. 2.5.3).

Furthermore, the organizational issues capsule business rules and information
politics that imply certain restrictions on the development process, for example
human resource management. Implications from subcontractor and supplier
relationships are agreements on the workflow intersection or interface, e. g. the
type of reference document or specification that serves as contractual basis for
the collaboration.

Finally, experience, background and expertise of the developers influence the
design of a system as well. “If the architects of a system have had good results
using a particular architectural approach, (...) chances are that they will try
that same approach on a new development effort.” [BCK03, p. 8]. The same
applies conversely for approaches that worked poorly.

CHAPTER 3. DECOMPOSITION CRITERIA 49

3.3.2 Legislation

Table 3.3: Legislational Criteria
Source Laws, limitations and scope
Impact Road traffic concession
Usage Checklists and guidelines for global software development [BH07]
Examples “The recovery rate is defined and calculated according to ISO 22628.”

[Ris07, RFW176]
Prioritization According to each tailoring dimension there are different laws that

have to be obeyed

Legislation features the non-negotiable criteria as these are straight forward
influences from laws, e. g. the data protection act or road traffic regulations.
Information sources, impact, usage, example, and prioritization are described
in Tab. 3.3.

Within the external influences, there are regulations and permissions.
Regulations are standards that the decision makers want to obey, e. g.
ISO standards. The permissions capsule part of the influences from product
management, in explicit which licenses, patents or certificates are needed or
used; also an important cost factor.

Relevant laws in the automotive domain are for example the Automobile
Safety Act [Bun07], the Product Liability Law [Kul06], and the Electromagnetic
Compatibility Law [Bun08d]. To point academic audience to the technical level
on which OEMs are currently dealing with legislative constraints, the current
state of the art for handling them at Daimler’s is presented and discussed in
[PL08].

In the information systems domain, the German ministry for security in
information technology (“Bundesamt für Sicherheit in der Informationstechnik”)
imposes strict orders and regulations on data storage and processing to be
conform to the German data protection act [Bun08a]. The data protection act
is one of the many laws that differ considerably in each country. One possibility
to handle such differences in legislation of different countries is to define a role
model with different views for each country. In embedded systems, constraints
of country-specific laws like the road traffic act can hardly be solved by such a
view. Therefore, there are different versions of a car, for example “US”, “Asia”
and “ROW” (“rest of world”).

3.3.3 Economics

Table 3.4: Economic Criteria
Source Business objectives, market analysis, risks, ROI
Impact Endangered ROI, predictions of risk analysis fail
Usage Component-oriented development (for reuse), modularization into

stand-alone subsystems for off-shoring (depending on risk models)
Examples Product line approaches and distributed development in the

automotive domain in general.
Prioritization According to reasons for decomposition, e.g. reusability or distributed

development. For example, for distributed development, the risks of
off-shoring have to be considered.

CHAPTER 3. DECOMPOSITION CRITERIA 50

Economics includes reuse, cost models, and demand management.
Information sources, impact, usage, example, and prioritization are described
in Tab. 3.4.

The demand management is concerned with market positioning and strategic
goals (of the developers as well as the customers) regarding the delivery
of “business goods”, including timing constraints like time-to-market. The
cost models are chosen according to the intended product placement and
management.

For systematic reuse, the analysis must identify variations to anticipate
changes and the design must be chosen for adaptability [DH]. Therefore, another
criterion for the decomposition of a system is the stability of the requirements
or how fast they might change; the keyword here is “software aging” [Par94]. As
this can be regarded as an aspect of evolvability within the quality criteria, it
was not put on the list separately.

3.3.4 Directive Criteria of the Running Example
The directive criteria for our running example Driver Assistance Systems are
listed and discussed in Tab. 3.5.

Table 3.5: Directive Decomposition Criteria in DAS
Organization Infrastructure Conway’s Law says that the system will mirror

the developing organization’s structure, but at the
same time, developing organizations will also be
structured according to the systems they develop.
The departments at BMW’s are already organized
according to the different driver assistance systems.

Business Rules No explicit business rules are known of that would
influence the decomposition of DAS.

Experience The experience of the developers is about ten years in
average, their background is mainly mechanical and
electrical engineering.

Legislation Laws German Road Traffic Act “StVO” [Bun07] , German
Road Traffic Admission Act “StVZO” [Bun08c],
Electro-magnetic Compatibility Act “EMV” [Bun08d]
and others, but none of them explicitly influences the
decomposition.

Standards Different German Industry Norms “DIN” apply, but
none of them is relevant for the decomposition.

Economics Reuse All of the DAS have already been developed in the
previous vehicle series, so reuse is strongly expected.

Cost Models Cost of the hardware parts is crucial as even cents
sum up critically for the number of produced vehicles.
Software development costs are considered less critical,
but in this case is connected with reuse, as a
decomposition for high reusability will decrease the
costs for the next iteration.

CHAPTER 3. DECOMPOSITION CRITERIA 51

3.4 Functional Criteria
Depicted in the upper right corner of Fig. 3.2, the functional criteria that were
identified are:

• Clustering in services (functional features) according to user perception.

• Functional dependencies.

• Unwanted feature interaction (in other words: side effects).

The first black board sketch of a system’s decomposition will usually be a
functional one defined by the usage behavior. The proposal is a clustering into
services that will be offered to the user.

3.4.1 Clustering According to Services

Table 3.6: Clustering according to Functional Features
Source Scenarios, functional requirements
Impact “Intuitive” and process-oriented, but no explicit account for quality

requirements
Usage Broy [BKM07], QUASAR enterprise [Sie02], SOA [BS06], Rittmann

[Rit08b]
Examples RFW Feature description: “The system stores information about a

possible speed limit during a parking stop and presents it to the driver
at system startup.” [Ris07, RFW_SL-66]
Functional requirement from Diagnostic Service Lane Change
Warning: “The system warns the driver about risky lane changes and
supports him / her during the execution with a probably necessary
correcting reaction to avoid an impending collision.” [Gyö08]

Prioritization According to reason for decomposition (= optimization factors).
There is a difference in modelling services for distributed development
and for distributed delivery, as the latter has to include considerations
about the future usage domains of the system.

A service describes functional characteristics of the system from a user’s
point of view [Bro05] and therefore shows a black-box view onto the system.
For the clustering of functionality according to usage services, the information
sources, impact, usage, example, and prioritization are described in Tab. 3.6.

A decomposition according to identified services makes sense because it
probably comes closest to an intuitive decomposition (e.g. as performed by
Rittmann [Rit08b]). This sketch has to be checked in terms of dependencies
and interaction between the services.

In order not to overly simplify reality, it has to be mentioned that
sophisticated functionality may require the cooperation of various functions that
can be distributed across different hardware units.

3.4.2 Functional Dependencies
Functional dependency means that a service or functional feature can only
perform if another feature is either active and has delivered input or is waiting
for input, or if another feature is deactivated. The information sources, impact,
usage, example, and prioritization are described in Tab. 3.7.

CHAPTER 3. DECOMPOSITION CRITERIA 52

Table 3.7: Functional Dependencies
Source Functional requirements, behavior specification
Impact Prevent conflicts in concurrent usage and preserve causal order
Usage Perform dependency analysis [Grü08] and [Rit08b]
Examples RFW: A warning tone is generated for urgent signals only in

combination with display of the signal. (derived from [Ris07,
RFW_SL-71])
ACC: “If the parking assistant is activated while the ACC is active,
the ACC is deactivated and the parking assistant functionality is
executed.” [Rit08a]

Prioritization Always has to be considered.

The decomposition of the system is not a pure top-down process, because
there can only be limited knowledge about interactions and dependencies as long
as the system’s architecture is not yet modeled to a certain detail. Therefore
it can be necessary to do the decomposition in iterations and incorporate the
feedback from the interaction analysis if it reveals certain new dependencies
during the first modeling approach of the system.

3.4.3 Unwanted Feature Interaction

Table 3.8: Unwanted Feature Interaction
Source Functional requirements, behavior specification, function net (see

Sec. 2.5.3)
Impact Quality assurance for first system sketch, early detection of unwanted

feature interaction
Usage Analysis of unwanted feature interaction [Grü08]
Examples The door of the car is opened and the warm air causes the air

conditioning to increase performance in order to cool down to the
set temperature. The extra energy required for that purpose causes
higher revolutions of the engine. The increased revolutions are
misinterpreted as a driver stepping on the gas pedal who would
thereby want the hand break released to be able to drive off.
Therefore, an unwanted release of the automatic hand break occurs
and the car starts rolling away. [Grü08]

Prioritization Optional, additional to dependency analysis.

A completely different type of interaction is “unwanted feature interaction”
which is unwanted side effects instead of intended cooperation between services.
In order to verify that there is no such interaction, an analysis has to be
performed, for example as proposed by Grünbauer [Grü08]. The information
sources, impact, usage, example, and prioritization are described in Tab. 3.8.

These functional dependencies and interactions can only be identified at the
level of the detailed system concept in terms of REM (Sec. 2.4), where a first
sketch of the technical solution is developed, or within the design category of
the system or usage level in REMsES (Sec. 2.5), in explicit represented by the
artifact function net, which is described in the next chapter (see Sec. 2.5.3).

3.4.4 Functional Criteria of the Running Example
The functional criteria of the running example “Driver Assistance Systems” are
listed and discussed in Tab. 3.9.

CHAPTER 3. DECOMPOSITION CRITERIA 53

Table 3.9: Functional Decomposition Criteria in DAS
Usage Services The usage services that are present in the use cases in Sec. 6.1.4 can

be grouped according to their functionality. This is the most intuitive
decomposition.

Functional
Dependencies

For the use cases in Sec. 6.1.4 there are some functional dependencies.
For example, use case 2 is also relevant for use case 5 in case of a vehicle
in the blind spot when departing the lane.

Unwanted Feature
Interaction

Interaction occurs in case of two DAS responding at the same time to
a traffic situation. For example, the cruise control accelerates when
the driver sets the indicator to pass another vehicle but at the same
time the system detects a vehicle in the blind spot and therefore has
to stop the acceleration to prevent a crash with the vehicle in front
as the driver cannot change lanes. Therefore, the decomposition has
to enable easy and fast communication between the different DAS.

3.5 Quality Criteria
The quality criteria are depicted in the lower left corner of Fig. 3.2. It is
important to include non-functional requirements (NFR) in the decomposition
process as “The scope of formal specification and analysis must be extended to
cover non-functional requirements that play a prominent role in architectural
design – such as performance, security, fault tolerance, accuracy, maintainability,
etc” [vL00].

It is a challenge to pin down the quality criteria in a way that they can
be pursued satisfyingly during development, just because this type of criteria
often comes up by underspecified demands of the customer. A refinement of the
term non-functional brings up general constraints (project constraints, political
constraints, technical constraints as shown in [RR06b]) and quality criteria.

There are many different opinions on (product-oriented) quality criteria,
their interpretation and treatment as well as on software quality in general.
The current variety of quality reference models (e.g. [WD07]), taxonomies, and
maturity degree models has yet to be unified and standardized. In this work, the
classification of quality is according to ISO 9126 [Int01] being the international
standard for the evaluation of software quality. The quality model established
in the first part of the standard, ISO 9126-1, classifies software quality in a
structured set of characteristics1:

• Functionality (Suitability, Accuracy, Interoperability, Compliance,
Security)

• Reliability (Maturity, Recoverability, Fault Tolerance)

• Usability (Learnability, Understandability, Operability)

• Efficiency (Performance in terms of behavior and resources)

• Maintainability (Stability, Analyzability, Changeability, Testability)

• Portability (Installability, Replaceability, Adaptability, Conformance)

The ISO 9126-1 [Int01] also lists “Functionality” within the characteristics.
For the decomposition criteria, functionality was already considered in Sec. 3.4
and is therefore omitted here apart from the aspect of security. Security may

1These aspects focus on the quality of the specifications, e.g. regarding structuredness or
completeness, and the development processes.

CHAPTER 3. DECOMPOSITION CRITERIA 54

influence the decomposition of a system and has not been considered before
within the catalogue at hand.

Each of these characteristics is refineable to a certain (individual) level
of measurable quality attributes (see e.g. Dörr et al. [DKK+05]), but we do
not list them all as the refinement process depends on the individual business
domain. For example, within IT Service Management the emphasis often lies
on the availability of IT services, which is a subcategory of reliability, while for
embedded systems the focus often lies on safety and performance aspects.

“It is critical to design each structure correctly because each is the
key to a different quality attribute: ease of change, ease of extracting
a subset, and increased parallelism and performance.”[BCK03]

For our approach, we limit the perception and measurement of quality
to meet the requirements specified by the customer within the contract
specification.

Table 3.10: Quality Criteria
Source Business needs, general conditions, design constraints, scenarios,

quality requirements
Impact Higher maintenance effort, difficult change management and defect

detection, decrease in user satisfaction
Usage Checklists within quality reviews, audits, modeling (relate to use cases

and refine and bind to state automata), design patterns [GHJV95],
programming paradigms [Par72], SOFTPIT [HMRR06], CONQAT
[DJH+08], ASPIRE [DKK+05]

Examples Code quality, but not mentioned in [Ris07] as this would rather be a
company standard.
“The handling has to be simple and intuitive.” [Ris07, RFW_SL-69]
“For the choice of material and parts it has to be considered that spare
part deliveries have to be possible until 10 years after the end of serial
production.” [Ris07, RFW329]

Prioritization All 3 dimensions imply emphasis on different quality aspects, e.g.
for the system type a BIS will request high productivity while
an embedded system focusses on maximum safety. For BIS the
general view is rather about business processes realized as application
domains, while for embedded systems the view is rather hardware
driven, e.g. by ECU.

However, the crucial point for the impact of quality criteria on decomposition
is the possibility of actively designing the decomposition to support a certain
quality attribute. The information sources, impact, usage, example, and
prioritization are described in Tab. 3.10. Prominent examples for design rules
are programming paradigms and principles as promoted by [Par72] or design
patterns [GHJV95].

Finally, Bass et al. [BCK03] give concrete guidance on how to enhance
quality attributes in an architecture by using the adequate patterns and
principles. For each quality attribute, they list so-called tactics, which is
the term they use to summarize patterns and principles, to enhance the
specific quality. If possible, they are additionally organized according to their
appropriate application time during the development process, e.g. at design
time, binding time, and run time. For example, design time tactics for usability
are the patterns Model-View-Controller, Presentation-Abstraction-Control, etc
[BCK03, p. 123].

CHAPTER 3. DECOMPOSITION CRITERIA 55

3.5.1 Quality Criteria of the Running Example
The quality criteria of the running example “Driver Assistance Systems” are
listed and discussed in Tab. 3.11.

Table 3.11: Quality Decomposition Criteria in DAS
Functionality In the definition of the ISO 9126-1 [Int01], functionality includes

suitability, accuracy, interoperability, compliance, and security.
Naturally, these factors are important for DAS but no explicit impact
on the decomposition of DAS could be determined.

Reliability Maturity, Recoverability, and Fault Tolerance are crucial for all
vehicles participating in road traffic. For system decomposition,
this can mean that certain subsystems are grouped onto redundant
electronic control units (to prevent harm in case of malfunction).

Efficiency Performance is required in terms of behavior as for any real time
system and performance in terms of resources is required to keep the
size and costs of the hardware low.

Maintainability Changeability and testability are important for reusability. This leads
to a typical modular decomposition with high cohesion and loose
coupling.

3.6 Technical Criteria
Depicted in the lower right corner of Fig. 3.2 are the technical criteria,
which usually arise bottom-up from either the system context given by the
surrounding environment or from constraints of the technical realization domain.
Architecturally significant requirements often arise from quality attributes,
volume of functionality, architecting for a family of related systems, choice
of technologies, deployment, and operations [BBC+06]. According to their
influence on the architecture, they can be grouped into three subcategories:

• Communication requirements
• Technical constraints
• Legacy systems

These criteria are rather concerned with the system design than with the
business logics. The type of communication and therefore the corresponding
communication requirements depend mainly on the purpose of the system, e.g.
for a real-time application we have to guarantee that all data arrives in time,
while for multimedia it is more important that we have a consistent data rate
and can transmit high data volumes. The technical constraints derive from
the constraints given by the technical solution domain and the future system
environment. There may exist legacy systems that have to be taken into account.
With respect to decomposition such legacy systems are relevant if they are
components of the system, not only communication partners.

The technical criteria are therefore not only influenced by the system type,
but also by (requirements of) the business domain. While guiding through the
decomposition process, this criteria category links the system specific aspects
with the (individual) requirements given by the business domain. This supports
the idea of an artifact model across the content categories from context to
design, as it unifies both points of view along several artifact types during the
requirements engineering process.

CHAPTER 3. DECOMPOSITION CRITERIA 56

3.6.1 Communication Requirements

Table 3.12: Communication Requirements
Source Behavioural requirements, standards (for system apects, not

documented within system specification)
Impact Transaction security, data consistency, technical adequacy
Usage Consider for technical architecture, for example, on the SOA layer,

see Sensoria [FLB06]
Examples “The car is not equipped with RFID transmitters. Communication

will only flow in one direction, from the mobile or fixed radio signals
to the cars.” [Ris07, RFW_SL-72]
Information system: “The IP protocol has to be used.”

Prioritization According to system type, e.g. for a BIS we think about
communication protocols in terms of messages, while for an embedded
system we think about the bit patterns for certain sensor values.

The communication requirements got assigned high impact on decomposition
in the study interviews in Sec. 2.2. The information sources, impact, usage,
example, and prioritization are described in Tab. 3.12.

For example at Daimler, the communication matrix, which displays the
messages that are sent between the ECUs, is currently one of the most important
artifacts for decomposing and designing a new system. The matrix only presents
the content which has to be communicated but does not give details on how to
do this. Further communication requirements are therefore spread throughout
the requirements specification, especially within behavioral requirements.

3.6.2 Technical Constraints

Table 3.13: Technical Constraints
Source Design constraints
Impact Technical adequacy
Usage Consider for technical architecture within the design on the software

/ hardware layer [BCK03].
Examples “The frequency (of the RFID tags) is 5,8GHz.” [Ris07, RFW_SL-217]

“The data load of a CAN message is 0 to 8 bytes.” [Rob91]
Prioritization For BIS there are top-down technical requirements that can be

realized by different solutions, while embedded systems also have
bottom-up hardware constraints from different engineering disciplines
that cannot be negotiated but have to be obeyed.

The term “technical constraints” is very general but the only adequate one, as
there is a wide variety of constraints from the surrounding technical context and
the future system platform. The information sources, impact, usage, example,
and prioritization are described in Tab. 3.13.

These constraints are spread throughout the requirements specification and
all types of so-called “further applicable documents”. The latter is usually a quite
extensive collection of various related specifications and the only way through
that accumulation of specifications is experience. According to research partners
from industry, experienced developers know one half of those constraints by
heart and know for another third where to look them up - the missing part is
the one that frequently causes integration problems during development. This
situation can be improved by using the approach proposed by this thesis.

CHAPTER 3. DECOMPOSITION CRITERIA 57

3.6.3 Legacy Systems

Table 3.14: Legacy Systems
Source General conditions that refer to an old specification of a legacy system.
Impact Incompatibility
Usage Reengineering methods, compatibility checks as performed by

Koss [Kosed]
Examples “The implementation of the old system was realized in C.”

“The system has to support the 2004 and 2008 editions of the sensor
Z42.”

Prioritization Reengineering methods and compatibility checks are individual for
each specification technique and programming language.

At a first glance, there are not as many legacy systems in the automotive
domain as for example in information systems, because the systems are always
newly developed. At a second glance, the specifications are often reused and only
minimally changed, if the economic calculation is still the same. Furthermore,
new product lines are often based on preceding ones. The information sources,
impact, usage, example, and prioritization for legacy systems are described in
Tab. 3.14.

Especially embedded systems advance quite quickly as the general
development speed in terms of hardware evolution is pretty high. New hardware,
with either new materials or more capacity in storage or performance requires
new software to enhance the complete system.

3.6.4 Technical Criteria of the Running Example
The technical criteria of the running example “Driver Assistance Systems” are
listed and discussed in Tab. 3.15.

Table 3.15: Technical Decomposition Criteria in DAS
Communication
Requirements

Easy communication has to be possible for real time interaction
between the different DAS and with the rest of the vehicle.

Technical
Constraints

Hardware topology and resources imply a number of technical
constraints that are important for the final deployment onto the
technical architecture but not for the decomposition with respect to
the logical architecture design.

Legacy Systems There is the surrounding system environment, but no real legacy
systems have to be taken into account, as the complete system is
under development with every new vehicle series.

CHAPTER 3. DECOMPOSITION CRITERIA 58

3.7 Coherence of the Criteria
Similar to the optimization factors in Sec. 3.2.1, the criteria are not independent
of each other but instead closely interrelated.

3.7.1 Dependencies between Criteria
This section analyses the dependencies between the criteria of the given
categories. An overview is depicted in Fig. 3.4.

Directive to Functional and Quality Criteria. The natural flow of
influence begins with the directive criteria: The functional and quality criteria
may not be derived from the directive criteria in a compulsive way, but there
is definitely an influence from them as the system under development has to fit
the general business goals and market strategy.

Legislature is reflected by constraints for certain quality characteristics,
for example in terms of reliability, the quality criterion has to specify how
the reliability required by legislation is guaranteed by the system, e.g. by
redundancy in form of multiple provision of controllers.

Economics are represented by business goals. These may also include
high-level goals about certain quality characteristics, or simply the general
notion “the user expects high quality of our product” which has to be refined
within the quality criteria in a measurable way, for example a high mean time
to failure and comfortable usage.

Directive to Technical Criteria. Furthermore, the directive criteria
influence the technical criteria: The legislation can influence or be the source of
some technical constraints, like the motor vehicle certification act [Bun08c] or
the United Nations Economic Commission for Europe R43 [Uni03], which for
example specifies that the front window of a car may not be darkened below a
translucency of 75%. The latter restriction may be used directly as technical
constraint.

Economics can also be the source of origin for technical constraints, for
example when a certain hardware has to be used that imposes a restriction
on the reaction time but is cheaper. The result of this trade-off due to price
calculations is a technical constraint with the reaction time of that particular
hardware.

Economic calculations are also often the reason for using (parts of) legacy
systems, because it is either simply cheaper or not possible to redevelop all
required subsystems at the current point in time.

Use of legacy systems may also be due to organizational issues, for example,
probably rather in business information systems than in embedded systems, a
“that’s the way it has always been” attitude. A more likely organizational reason
for usage of legacy in embedded systems development are differing development
cycles at some of the suppliers’ sites that do not perfectly fit the OEM’s
development cycle. In that case, the term “legacy” refers to a system that
is probably only two years old, but already not any more state of the art.

CHAPTER 3. DECOMPOSITION CRITERIA 59

Figure 3.4: Influences between Decomposition Criteria

Within Functional and to Technical Criteria. Within the functional
criteria, there is an influence from the clustering into services to the
dependencies and the interaction. Information about the interaction of user
services is one of the sources of origin for the communication requirements that
belong to the technical criteria.

Within Quality and to Technical Criteria. In between the quality criteria
there are some trade-offs, for example between reliability and efficiency as well
as between portability and efficiency. If legacy systems have to be integrated,
these may not have the state of the art statistics for quality characteristics in
terms of efficiency maintainability, or portability. This has an influence on the
statistics for the quality characteristics of the overall system, so again trade-offs
have to be made.

Priority in a Trade-off. Some criteria contradict others, therefore a trade-off
has to be found and agreed on, e.g., high performance versus portability.

High performance can be achieved by exploiting hardware specifics in the
code. At the same time, such an hardware-specific code tailoring leads to code
that can often only be deployed on exactly the hardware it has been optimized
for. This contradicts the idea of high portability, i.e. to stay independent of
hardware specifics to be able to easily deploy the code on a different hardware.

When both quality characteristics shall be present, a trade-off is the only
solution. In case of the example of high performance versus portability, one
solution is to optimize the code as far as possible without yet exploiting
hardware-specific details. This includes on one hand a programming

CHAPTER 3. DECOMPOSITION CRITERIA 60

language-specific optimization, and on the other hand an optimization for a
certain type of hardware units that are under consideration for deployment2.

3.8 Impact of the Criteria on Decomposition
It is agreed upon that a system can be decomposed in different ways according
to the optimization factors that are most relevant for the system development.
Less obvious are the systematics of how the criteria influence the decomposition
and what consequences arise from the way of decomposing a system. Major
impact of the decomposition criteria can be realized in the facilitation of systems
engineering and systems integration as well as in economics and return on
investment.

Systems Engineering. The advantage of a functional decomposition on the
engineering activities is an improved intuitive understanding of the system’s
functionality. The functional decomposition can still be completely independent
of technical constraints. However, for distributed development, some constraints
of the operational environment have to be taken into account as will be detailed
in Chap. 5.

The technical decomposition, which is driven by the technical constraints
and leads to a design blueprint, perfectly enables distributed development, but
in practice often happens bottom-up. The better solution would instead be
developing a technical architecture after a functional decomposition as there
always has to follow a design blueprint at some stage. Therefore, the two do
not contradict each other but are in fact two different stages in the development
process.

Facilitation of System Integration. The functional decomposition makes
integration easier as the interfaces are kept small. The technical decomposition
eases integration through making technical constraints explicit. In combination
with an artifact model like the one presented in Chap. 2.5.3, all relevant
information is provided to allow for smooth integration.

Economics and Return on Investment. Every optimization factor that
has been described in Sec. 3.2.1 is related to costs in a certain way. For example
reliability, as a software that is not reliable will cause high maintenance costs
after the first failed tests. Therefore, either kind of systematic decomposition
and development will lead to economic benefits as long as the overhead created
by the method is not too big.

Summary. This chapter introduced the criteria catalogue for system
decomposition. It gave an overview of the catalogue, described the template and
coherence of the criteria categories directive, functional, quality, and technical,
and described each of them in detail. Furthermore, the impact of the criteria
on decomposition was discussed.

2Think of a smallest common denominator for the hardware characteristics.

CHAPTER 3. DECOMPOSITION CRITERIA 61

To be able to apply the listed criteria in a pragmatic way, a guiding
process is needed. The information needed for that process is gathered in the
description template described in Sec. 3.2.3, which was filled in for each criterion
in Sec. 3.3-Sec. 3.6.

The application of the catalogue is described and shown exemplarily in
Chap. 5.

Chapter 4

Subsystem Requirements
Decomposition and
Refinement

Contents
4.1 Related Work for Subsystem Requirements . . . 63
4.2 Prerequisites for Requirements Refinement 65
4.3 Subsystem Modeling 68
4.4 Refinement Application Guideline 74
4.5 Case Differentiation for Requirements Distribution 77
4.6 Decomposition and Refinement Patterns 78
4.7 Discussion: Quality Requirements 87
4.8 Tracing . 97

The decomposition criteria of the previous chapter (Chap. 3) give guidance
on how to decompose a system and draw a first coarse-grained sketch of the
architecture. The goal is a subsystem specification with refined requirements.
In current systems development, problems often arise during system integration
between the subsystems. In that case, when the subsystems do not fulfill the
requirements of the system, the reason is usually missing information in the
requirements specification of the subsystem. To avoid such lacking information
and to guarantee compliance with the overall system requirements, it is crucial
to systematically refine system requirements into subsystem requirements.

The systematic refinement of requirements is the topic of this chapter. The
aim is to achieve a better understanding of how such a systematic refinement
has to be accomplished for subsystem requirements to ensure satisfaction of the
overall system requirements they were derived from. Furthermore, the intention
is to give concrete support for realizing such a refinement.

In the following, a set of system requirements with a given system
decomposition is assumed. When a decomposition has been decided on, the
overall system requirements have to be deduced for the subsystems. The
question is how to transform and decompose the requirements accordingly for
subsystem specifications. Then, in the context of large system development

62

CHAPTER 4. SUBSYSTEM REQUIREMENTS 63

with subcontractors, the subsystem specifications can be given to suppliers who
implement the subsystems.

This chapter is organized as follows: In Sec. 4.1, related work for requirements
refinement is discussed. In Sec. 4.2, the assumption/guarantee specifications
are introduced to provide a semi-formal view of the problem. Subsequently,
a subsystem model is defined (Sec. 4.3), and the distribution of a subsystem
across the abstraction levels and its description are inspected.

On that basis, the actual refinement of requirements for subsystems is
investigated in Sec. 4.4, detailed with case differentiation with respect to
distribution of a requirement across subsystems and systematic decomposition
and refinement in assumption / guarantee style (Sec. 4.5) by use of patterns
(Sec. 4.6).

Finally, the decomposition and refinement of quality requirements are
discussed in Sec. 4.7.

4.1 Related Work for Subsystem Requirements
Requirements refinement has been covered by research for a number
of designated specification techniques, like goal modeling or behavioral
specifications in labeled transition systems and state machines. Requirements
decomposition has been approached through patterns with the objective of
formalization.

Behavioral Specifications. A refinement approach for behavioral
specifications has already been offered, for example, by von der Beeck [vdB00].
He proposes to define the semantics of the considered specification language
in a compositional structured operational semantics (SOS) style with labeled
transition systems (LTS). According to von der Beeck [vdB00], an adequate
refinement notion should at least support reduction of non-determinism and
reduction of partiality. Such an approach of formal semantics is hardly
applicable for informal or semi-formal requirements.

Instead, the DeSyRe approach focuses on informal and semi-formal
requirements to be widely applicable in practice.

Assumption/Guarantee Specifications. A/G specifications are used by
Abadí and Lamport [AL95] for conjoining specifications in their composition
theorem to prove that a lower-level specification implies a higher-level
one. Henzinger et al. [HQR98] build on [AL91] and use assume-guarantee
reasoning and refinement mappings on a formal system description language
of reactive modules for verification purposes. They find that the success of
assume-guarantee reasoning depends critically on the construction of suitable
abstraction modules. In [HQRT02], the authors add an assume-guarantee rule
for checking simulation.

The specification language is defined formally (the system description
language of reactive modules), which is not the case for the requirements
specification of this approach. However, the idea of assume-guarantee reasoning
relies on plain logic, which is also applicable to statements in natural language.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 64

Therefore, the DeSyRe approach uses that idea for requirements refinement for
subsystems.

Goal Refinement. Lamsweerde [vL09] uses goal refinement to make the
transition from abstract or high level goals to concrete system goals and analyze
their interelation. System goals are refined by decomposing them according to
their so-called actors by usage of patterns, for example the milestone-driven
refinement pattern and the case-driven refinement pattern [vL09, p. 321ff].
Thereby, the goals are decomposed and refined until there is only one actor
per goal, which turns the goal into a requirement.

In contrast, in this work, the idea is not to decompose the requirement to
identify their actors when refining system goals, but instead to transform the
system requirement into subsystem requirements for the subsystems already
given by the decomposition (according to Chap. 3). The requirements that are
the result of Lamsweerde’s refinement serve as potential input for the refinement
described in this work.

Requirements Patterns. The most recognized work on requirements
patterns is the pattern system by Dwyer et al. [DAC99] as these patterns
have been found in an empirical evaluation of over 550 specifications. The
patterns are classified according to the system behaviors they describe in terms
of occurence and order of actions. Smith et al. [SACO02] used these patterns in
a “disciplined natural language representation” (by means of templates with lists
of alternative phrases) to specify commonly-occuring properties with the aim of
eliciting “precise and rigorous requirements from people who are unlikely to be
fluent in temporal logics or other specification formalisms” [SACO02, p. 12].

The four basic patterns are: Response, Precedence, Existence, and
Absence [SACO02, p. 14]. Any other pattern can be constructed by using
composition. According to Zave and Jackson [ZJ97], there are two expressive
capabilities needed. The first one is that a sufficiently expressive requirements
language must provide for the declaration of a finite collection of action types
that indicate whether an action is environment-controlled or machine-controlled
and whether an action is shared or unshared [ZJ97, p. 10]. As requirements
do not describe the solution itself but the environment under influence of the
machine, the case of an unshared, machine-controlled action does not occur.
The second necessary expressive capability is the full ability to state constraints
on actions in all categories. Assertions can be stated about all actions either
indicative (about the environment) or optative (as requirement) by using safety
and liveness properties [ZJ97, p. 11]. According to Alpern and Schneider [AS87],
any property in linear-time temporal logic can be expressed as combination of
safety and liveliness properties. These expressive capabilities are also covered
by the requirements patterns.

The requirements patterns in [SACO02] are characterized as follows.

• Response: A specified stimulus is followed by a response. Example: “If a
discard-signal is received, the current entry is deleted.” [Ris07, p.37]

• Precedence: A specified action cannot occur until it has been preceded by
an enabling event. Example: “The code shall be sent only after a code
was sent from the queue.” [Ris07, p. 37]

CHAPTER 4. SUBSYSTEM REQUIREMENTS 65

• Existence: An action must occur in the system execution. Example: “All
radio signals are added to the queue.” [Ris07, p.31]

• Absence: An action must not occur in the system execution. Example:
“The component may not produce short circuits.” [Ris07, p.44]

These patterns are helpful to understand the content of the requirements
and proceed in the direction of formalization, but they are not helpful for
decomposing and refining the requirements for subsystems as their objective
is not to provide a decomposable structure. Instead, as presented in this
work, different cases with respect to decomposition can apply (Sec. 4.5) and
work for all patterns in [SACO02], thereby ensuring general applicability of the
approach and confirming the authors’ findings about the general distribution of
occurrences of their requirements patterns.

Further work on requirements patterns is presented by Fleischmann [Fle08].
The idea is to formalize initial informal requirements issued by stakeholders in
order to enhance their quality and ease transition to design. This is achieved
by classifying the requirements and filter the functional usage requirements,
then decompose and model the single contained natural language elements.
Subsequently, the requirements are ordered in a usage service hierarchy,
which significantly increases the amount of requirements due to requested
completeness.

The aim of the work is to provide a transition from natural language
requirements to formalized usage service descriptions. Instead, DeSyRe
decomposes requirements according to an initial design decomposition for
separate subsystem requirements specifications that can be passed on to
subcontractors for realization of the subsystems.

Identified Shortcoming in Literature. As described in the preceding
paragraphs, there is guidance on the refinement of some specification techniques,
i.e. formal behavioral specification and goal modeling. However, there is
no systematic approach to the decomposition and refinement from system
requirements to subsystem requirements for a given system decomposition.
The work at hand addresses the identified shortcoming by use of requirements
patterns and assumption/guarantee specifications.

4.2 Prerequisites for Requirements Refinement
On the basis of a given logical system decomposition, the goal is to develop a
subsystem specification with refined requirements, as depicted in Fig. 4.1. On
the system level (denoted by C in Fig. 4.1), the requirements are black box
(top of left hand side), but the given initial decomposition (right hand side of
Fig. 4.1) makes the first step to design. Then, one subsystem (A and B in
Fig. 4.1) of the first white box specification is used to describe the requirements
in a black box manner on the subsystem level (bottom of left hand side).

CHAPTER 4. SUBSYSTEM REQUIREMENTS 66

Figure 4.1: Transition from System Requirements to Subsystem Requirements.

4.2.1 Assumption / Guarantee Specifications
When decomposing and refining a requirement, it is necessary to ensure that the
resulting requirements for subsystems do indeed guarantee the overall system
requirement. System components are designed for environments that satisfy
certain assumptions. If those assumptions are fulfilled, the components commit
themselves to certain guarantees. The same idea can be applied to requirements
by using assumption/guarantee (A/G) specifications with logical implications.

The first formal method based on A/G specifications that received wide
attention was the pre/postcondition style of Floyd/Hoare logic [Hoa69], which
provided the foundation for further methods.

Assumption/guarantee specifications consist of two parts: an assumption
and a guarantee. The assumption describes properties of the environment in
which the specified component is supposed to run. The guarantee describes
what the component has to fulfill in case the assumption is satisfied by the
environment [BS01, Chap. 12]. Denoted as formula in Eq. 4.1, the assumption
implies the guarantee.1

A(input, output)⇒ G(input, output) (4.1)

Specification with A/G has also been used in [Bro05] for describing services.
The idea of A/G reasoning relies on plain logic, which is also applicable to
statements in natural language as often used for requirements specifications.
In the following, this idea is used for the capturing and the refinement of
requirements. Approaching requirements by using A/G has also been recognized
as issue for future research by [Bro10].

1Although the approach is intended for deterministic systems, the assumption restricts
the input and at the same time references the past output [Bro95]. The reason is that
requirements do usually not compose a total (in the sense of complete) specification but
describe an underspecified system, which can be interpreted as non-determinism.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 67

Refining the requirements specification by means of assumptions and
guarantees is chosen for the approach described in this work because exactly and
exclusively the relevant constraints from the surrounding system environment
are captured by specifying the requirements using A/G. A specification
technique itself can not guarantee for making appropriate use of it, therefore the
precondition is that the requirements engineer puts effort into an appropriate
description of the overall system requirements with A/G and they are elaborated
sensibly.

The challenge when refining the system requirements for a subsystem is to
ensure that all relevant information is present but no overhead information is
dragged along. Therefore, when a requirement is represented as guarantee and
the constraints under which the requirement needs to hold are represented as
assumption, exactly the constraints which are relevant to fulfill the requirements
are present within the assumptions. Consequently, a requirements specification
in A/G style allows to extract the relevant requirements for a specific subsystem.

4.2.2 Semi-formal View of the Problem
The motivation for the decomposition of the system into subsystems is the
assignment of subsystems to subcontractors for distributed development. The
subcontractor has to be provided with an adequate subsystem requirements
specification, hence the question to answer is: “For a given system requirement,
how to develop the requirements for the identified subsystems?”

The given input is therefore:

• A system C and an initial decomposition into the subsystems A and B.
• A set of requirements for the system, captured in a system requirements

specification SC .

The envisioned result is:

• Sets of refined requirements per subsystem, the subsystem requirements
specifications SA and SB .

• A mapping of these refined requirements so that their composition implies
the overall system requirements, so that the (re-)combination of SA and
SB implies SC .

To describe how to transform and decompose the requirements accordingly,
it is helpful to use a formal view onto system decomposition as depicted in
Fig. 4.2. In the figure, the overall system C is decomposed into subsystems A
and B, x1 and x2 are the input and y1 and y2 are the respective output. The
subsystems are related via local channels z1 and z2, with “channel” meaning
typed communication channels. The simple model in Fig. 4.2 encompasses all
possible decompositions, as a communication channel may or may not be used
in a specific system specification.

In order to formalize the transition from requirements for the overall
system and requirements to the subsystems, the following questions need to
be answered:

1. What is an adequate subsystem model to analyze the requirements
refinement?

CHAPTER 4. SUBSYSTEM REQUIREMENTS 68

Figure 4.2: Formalized System Decomposition.

2. How to decompose the requirements for C into requirements for A and B?

Question number one is answered in Sec. 4.3 and question number two in
Sec. 4.5. Within the answer to the second question, it is also interesting if all
types of requirements can be decomposed and for which types of requirements a
refinement is compositional with regard to the system decomposition. Thereby,
compositionality means that a requirement can be decomposed and then
composed again with the result fulfilling the original requirement. In explicit,
decomposition is considered a reversible action. Refinement and decomposition
are clearly distinguished from each other: refinement is the act of adding details
to a model, decomposition is the act of partitioning a model. However, when
specifying the subsystem requirements with a set of system requirements at
hand, often both is performed conjointly in one step.

The following section presents the subsystem model that serves as basis for
analyzing the requirements refinement.

4.3 Subsystem Modeling
In the subsequent sections, a model for subsystems based on the system model
introduced in Sec. 2.3 is presented. As stated in Sec. 1, the standard IEEE
definition of the terms system(Def. 1.1) and subsystem(Def. 1.2) [JM90] is used.

The scope of a subsystem depends on the regarded abstraction level. A
subsystem is again modeled and documented like a system, as the differentiation
between system and subsystem depends on the scope or context in which a
system is considered2. The context of a subsystem is derived from a part of the
context of the complete system plus new information that originates from the
surrounding architecture.

Moreover, all information about the boundaries of the subsystem has to
be documented explicitly to allow to quickly get an overview of all relevant
constraints imposed by the context. To improve reusability, the context
boundaries have to be described such that the required conditions can thereby
be reproduced in another system. This means that the right degree of
abstraction has to be chosen for the formulations. With respect to the content,
the subsystem boundaries include the interface specification and constraints
imposed by both the operational environment and the project settings (or
business context).

For example, the following requirement does not choose the right degree
of abstraction: “The controller requires the input speed sensor SpeedySens

2In other words: “A system is a subsystem is a system.”

CHAPTER 4. SUBSYSTEM REQUIREMENTS 69

xyz2000”. Here, SpeedySens stands for the brand and the xyz2000 for the special
model that has been found applicable. This requirement specification does not
tell which exact characteristic of the input speed sensor is required. Therefore,
the description “The controller requires an input speed sensor with trouble codes
according to the 2008 standard No. 4711 (cf. Ref. 4711)” is more helpful and
the information “SpeedySens xyz2000 was used successfully during pre-serial
prototyping.” should instead be added in the corresponding context artifact on
the hardware / software level.

A subsystem is defined with different scope on each abstraction level, as
will be detailed in the following section: In terms of a feature on the usage
level, as logical component on the logical architecture level and as software or
hardware component on the technical architecture level. For the approach at
hand, the emphasis lies on the usage level and the logical architecture level. The
subsequent section presents an adoption of the architecture model introduced
in Sec. 2.3 for the description of subsystems.

4.3.1 Definition of a Subsystem Model
As stated above, a subsystem is modeled and documented like a system,
therefore the subsystem model uses the abstraction levels of the system
model from Sec. 2.3 by Broy et al. [BSW+08], namely usage services, logical
architecture and technical architecture. The reason to detail a specification
over three abstraction levels is that each abstraction level focusses on certain
aspects and, while moving from the most abstract level to the more concrete
ones, each level adds the examination of one particular problem. The usage
service level abstracts from the internal structure and behavior of the system,
and the logical architecture level abstracts from the distinction of hardware and
software. While the technical architecture level is still depicted in Fig. 4.3, this
work focusses on the upper two abstraction levels and their relation.

Usage Services. For easier discussion, the usage services of the subsystem
depicted in Fig. 4.3 are labeled with capital letters and the logical components
are labeled with numbers. The usage services are hierarchically structured,
where S is the main usage service (Def. 2.1) of the system that is decomposed
into subservices A and B, which are in turn decomposed into the subservices
C, D, E, F, and G. The hierarchical decomposition leads to a tree-like shape,
with relations between the usage services depicted as directional or bidirectional
dependencies. Thereby, relations can be transitioned and refined such that
they occur only on the leaf level of the tree (cf. the thesis of Rittmann on
modeling usage behavior [Rit08b]). Due to the hierarchical decomposition with
refinement, the leaf level of the service tree covers the complete interface of
the usage service S and its subservices [Rit08b]. The dashed rectangle in
Fig. 4.3 illustrates an abstraction of the usage services reduced to their interface.
Examples for usage service graphs can be found in the case study in Fig. 6.2
and Fig. 6.5.

Logical Architecture. On the logical architecture level, the components
that realize the subsystem are denoted with the numbers 1 through 6. As
the logical components are interconnected, not every component necessarily has

CHAPTER 4. SUBSYSTEM REQUIREMENTS 70

Figure 4.3: Subsystem Model.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 71

an interface that is visible at the border of the logical subsystem. The interface
is illustrated by the inputs ci through gi and the outputs co through go already
known from the usage service level. Again, the dashed rectangle illustrates the
abstraction of the logical architecture reduced to the interface.

Technical Architecture. The technical architecture level describes the
realization composed by hardware and software components and the deployment
(as introduced in Sec. 2.3). This lowest level of abstraction is depicted here
for completeness of the subsystem model, but is not used further during the
discussion of requirements decomposition.

Interface Refinement. The interface of the logical architecture of a system
is a refinement of the interface of the respective usage service hierarchy [Bro07].
However, for the systematic decomposition and refinement of requirements,
a discussion about interface refinement does not bring any new insights.
Therefore, a possible interface refinement is not discussed any further in the
following.

Capture in Assumptions and Guarantees. All relevant information with
respect to the system environment of the subsystem, i.e., information about
the relations with the surrounding system, can be captured by using an
assumption / guarantee style specification as introduced in Sec. 4.2.1. Thereby,
the assumption denotes the information about the outside context, and the
guarantee denotes what the system is required to deliver given that the
surrounding environment fulfills the assumption.

The following section discusses the distribution of a subsystem across the
different abstraction levels and their relation.

4.3.2 Subsystem Distribution across Abstraction Levels
Within this section, the identification of corresponding modeling elements on
the different abstraction levels depicted in Fig. 4.3 is discussed. This means
reasoning about how to determine the corresponding logical component (logical
architecture level) responsible for a certain usage function (usage level) in
top-down direction and how to determine the corresponding usage function
realized by a certain logical component in bottom-up direction.

Subsystem Units on Each Level. The usage service level units (cf.
Fig. 4.3), called services, represent chunks of user-perceivable functionality. The
logical level units, called logical components, represent entities that interact as
logical items to realize the services described on the usage level. The technical
level units, called software and hardware components, represent the controllers,
the input and output devices, and the communication channels to realize the
functionality described through the logical level.

The implementation-relation between subsystems on the different
abstraction levels is not necessarily 1:1. In general, the relationship between
units of one level to units of another level is many-to-many (n:m). As
illustration, Fig. 4.4 depicts the system slice for one logical subsystem. This
is due to the different kinds of structural units that are used to decompose a

CHAPTER 4. SUBSYSTEM REQUIREMENTS 72

system on a specific level of abstraction. It is, for example, rarely the case that
a specific usage function can be realized by one logical component, furthermore
not all logical components are visible at the system interface.

Figure 4.4: System Slice based on a Logical Subsystem.

Transition from Usage Level to Logical Level. In the transition from
the usage service level to the logical level (cf. Fig. 4.3), a system unit usually
implements a number of services (at least in parts). Each of them is represented
by one logical unit on the logical level. The difficulty is that not every system
entity in that sense is already identified on the usage level. This means that
there will be logical components on the logical architecture level that did not
exist as explicit actors in the service descriptions on the usage level, because
they are used for reasons of distributed development.

For example, the service descriptions of the radio frequency warning system
explain that a warning is shown on the display and that a warning tone is
created in certain circumstances, but the service description does not say that
there is a controller that calculates whether a warning has to be generated at
all. Consequently, the logical components “display” and “tone system” can be
derived from the service description but not the “controller”. The reason for this
is that the display and the tone system are visible at the system interface, while
the controller is not user-perceivable. Adding the latter as logical component is
part of the engineer’s effort that has to be performed by a human developer as
genuine design work.

In order to trace the distribution of a logical component bottom-up to find
the related usage functions, part of the service descriptions can be identified via
the entities that are present as roles in service descriptions and correspond to
specific logical components. Another part of the necessary knowledge is captured
in the system context and can hardly be sliced according to the subsystem as
that context is equally relevant and mandatory for all subsystems.

Tracing the distribution of a described user service of the usage level
top-down to find all related logical components would be even more complicated
if the goal was not to end up with nearly the complete realization on the lower
abstraction levels. Instead, a group of closely related services might be chosen

CHAPTER 4. SUBSYSTEM REQUIREMENTS 73

with use of engineer’s expertise. Following the decomposition of the system as
described in Sec. 5.4 this will lead to one or at least very few logical components
for one group of closely related services, so one can speak of the extraction of a
logical subsystem in this case as well.

Transition from Logical Level to Technical Level. During the transition
from the logical level to the technical level (cf. Fig. 4.3), each of the logical
components gets assigned a technical component that realizes the specified
behavior. This technical component can be a hardware component, or a software
component, or a combination thereof. Such a 1:1 mapping is a canonical way to
perform the deployment. Unfortunately, this is not reasonable as, due to cost
efficiency, hardware components may be used by different software components
and different software components can be deployed on the same hardware
component. For example, the radio frequency warner has a controller with
relatively few lines of code that will not require an extra electronic control unit
(ECU) in the car. Instead, the software will be deployed on an ECU where there
is still capacity available.

To trace the distribution of a logical component across the abstraction levels,
all technical components related to that same logical component have to be
traced and included. For the case where there are no technical components
related to more than one logical component at a time, this is manageable. But
in the case of shared technical components, this can lead to a high number of
components that have to be included in the subsystem specification.

When looking at the distribution of a described technical component
bottom-up across the logical architecture, the same difficulty of multiple logical
components belonging to different multiple technical components arises. There
can be logical components that have nothing to do with each other in terms
of contributing to the same functionality but that are deployed on the same
hardware component. For that reason it is not expedient to extract a subsystem
specification from the technical level bottom-up across the abstraction levels.

Due to the discussed distribution of a subsystem across the abstraction levels,
the extraction of a subsystem specification or slice of a system as depicted in
Fig. 4.4 will therefore in most cases be based on a logical subsystem.

In addition to the examples given above, further illustrations of what
subsystems are on the different abstraction levels and how they relate to each
other or how their distribution differs on the subsequent abstraction levels are
given in the case study in Sec. 6.1.

4.3.3 Subsystem Description across Abstraction Levels
Describing a subsystem across the abstraction levels of the subsystem model
(cf. Fig. 4.3) requires a model for the slice of a system and a point of origin for
the slicing. The starting point has been chosen as a logical subsystem on the
intermediate abstraction level as illustrated in Fig. 4.4 for the reasons discussed
in Sec. 4.3.2.

A logical component represents a unit that encompasses an interface,
structural and behavioral description [BSW+08]. Formally, a logical component
possesses a syntactic and a semantic interface. The syntactic interface defines

CHAPTER 4. SUBSYSTEM REQUIREMENTS 74

how the logical components can be connected to each other by their inputs and
outputs. The semantic interface specifies the behavior of a logical component.
A user services on the usage level may have partial behavior, i.e., a user
service may be defined only for expected inputs. Thereby, the legal inputs
are oftentimes only a subset of the syntactically possible inputs. In contrast, a
logical component always possesses a total behavior, which means it delivers a
well-defined result for each syntactically possible input at each point in time.

Tracing to Services. The respective extract of the system description on the
usage level is a collection of service descriptions, depicted as service hierarchy
in Fig. 4.4. The term service (Def. 2.1) is used as defined by Broy [Bro05] and
used by Rittmann [Rit08b] for the modeling of usage3.

The associated service descriptions can be traced by identifying the
respective users (human or other system) in the service descriptions and relate
them to the logical components of the subsystem of interest. Subsequently,
all of the service descriptions are collected that feature the respective users.
As indicated in Fig. 4.4, this will lead to services being included that are not
exclusively realized by the logical components of the subsystem of interest but
only share some of the actors. This means, that tracing the service descriptions
for all logical subsystems will not lead to a disjunct partition. Instead, there is
a many-to-many mapping between services and logical components.

At the same time, not all logical components will coercively have a
corresponding, explicitly visible user within the service descriptions on the
usage level. This “gap” is due to the earlier mentioned engineer’s effort when
developing a logical architecture, because not all logical components are visible
at the system interface. Therefore, a system slice will always lead to a number
of relevant service descriptions for a logical component.

Tracing to Hardware/Software. The respective extract of the system
description (the specification of the system slice) on the technical level
is a collection of software component descriptions, hardware component
descriptions, and an adequately reduced deployment diagram. In general, there
is a many-to-many relation between logical and technical components.

The descriptions are collected by identifying the corresponding technical
components, whether they be hardware, software, or combination thereof, for
the logical components of the subsystem of interest. These technical components
may not solely belong to the subsystem of interest but instead be shared by
multiple subsystems. Again, similar to the usage level, tracing the technical
components for all logical subsystems will not lead to a disjunct segmentation.

4.4 Refinement Application Guideline
The following brief application guideline sums up the refinement of requirements
for subsystems in a process overview before detailing the ideas and reasoning
for the process steps in Sec. 4.5.

3“A service is a piece of functionality - abstracting from technical structure. It is described
by a black box view relating inputs to outputs and hiding the internal realization. It is a
partial behavior, i.e. it might not be defined for all possible inputs in each situation.” [Rit08b,
p. 175]

CHAPTER 4. SUBSYSTEM REQUIREMENTS 75

Figure 4.5: Decomposition and Refinement Process Description.

The steps to take for refining a system requirements specification are
depicted in Fig. 4.5. The process input is the system requirements
documentation. As a certain aspect of the system realization is anticipated by
the decomposition into subsystems, the transition from system requirements to
subsystem requirements usually includes both a decomposition and a refinement
of the system requirements. For each system requirement, the following steps
are performed:

• System Requirements: The input (depicted top left in Fig. 4.5) for
the depicted steps are the system requirements as A/G specification
(introduced in Sec. 4.2.1).

• Analyze Type of Requirement: The requirements are assumed to be
detailed enough that it is possible to differentiate to which subsystem
they belong. This assumption can be made for two reasons: First, the
system decomposition is already decided, which can only be the case if the
requirements were detailed enough to identify the subsystems. Second, if
this does not apply for all requirements at this stage of the development
process, the requirements engineer has to refine these requirements before
continuing the process.4

The following steps are performed for every system requirement. In case
only one subsystem is of interest, the requirements engineer performs the
steps only for the system requirements that contain a reference to the
respective subsystem (e.g. the subsystem realizes one step in a functional

4If the requirement is a rather abstract goal and can not be operationalized, the compliance
of the system has to be assured by defining acceptance criteria and/or tests. [Gli07]

CHAPTER 4. SUBSYSTEM REQUIREMENTS 76

description) in either their assumption or their guarantee. The latter
applies to all functional requirements. In case of quality requirements,
the decision, whether a requirement is relevant for a specific subsystem,
requires the expertise of the requirements engineer.

• Can be Decomposed: In this step, the requirements engineer decides
whether a requirement can be decomposed at all or has to be adopted (top
of Fig. 4.5). If the requirement refers to only one subsystem, it is adopted.
If it refers to several subsystems, it has to be decomposed. Decomposition
requires compositionality, which can be guaranteed in case of a functional
system specification [Bro95].5 For quality requirements, compositionality
is still under active research, e.g. for security [Can01, PM05], and often
requires additional properties for composition, e.g. a model for composing
probabilities. Therefore the applicability for quality requirements is not
guaranteed in general, but further analyzed in Sec. 4.7. Still, the approach
was applied successfully to a number of examples during a case study.

“No”: Adopt Requirement for Subsystem: In case of requirements that apply
to only one subsystem, adopt the system requirement for the subsystem
specification as no refinement is possible. Straight-forward adoption of
a requirement causes redundancy, which is usually not wanted within
requirements documentation. However, in this case the redundancy
is expedient as the subcontractor does not receive the whole system
specification but only the subsystem specification with just enough
information to meet his needs.

“Yes”: Match to Requirement Patterns: There are three patterns according to
which a requirement can be decomposed, two special cases that apply
to most requirements, and a general one than applies otherwise. In this
step, the requirements engineer decides which pattern is applicable for the
requirement at hand with the aid of the pattern descriptions.

• Decompose and Refine using A/G: The final step to deduce the subsystem
requirement is to decompose and refine the system requirement with A/G
specification according to the identified pattern.

• Subsystem Requirements: After the requirements engineer has performed
the described steps for all requirements, the output is a complete set of
subsystem requirements specifications.

The process steps of decomposition in combination with using assumptions
and guarantees of the subsystem requirements imply compliance of the overall
system requirement. Therefore, an appropriate refinement covers and implies
compliance of the system requirement. Moreover, the advantage of the whole
system specification being written in A/G style is the capability of capturing
exactly the relevant information (see Sec. 4.2.1).

The concepts for the process steps and the actual analysis and refinement
are detailed in the following Sec. 4.5.

5Strong causality is required for ensuring that the performed decomposition is correct.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 77

4.5 Case Differentiation for Requirements
Distribution

As stated in Sec. 4.2.1, by using assumption/guarantee specifications, exactly all
relevant information with respect to the system is captured. SC (as introduced
in Sec. 4.2.2) is a set of requirements, also called the system requirements
specification of the usage service level (see Fig. 4.3). The following cases have
to be differentiated when decomposing and refining single requirements:

1. A one-to-one transition of a system requirement c ∈ SC to a subsystem
requirement a ∈ SA is performed, where the requirement is plainly
adopted. In that case, the subsystem shows the complete functionality
required by the system requirement (detailed in Sec. 4.5.1).

2. A one-to-many refinement of a system requirement to requirements for a
set of subsystems is performed, so that SA combined with SB implies SC

is guaranteed (detailed in Sec. 4.5.2).6

These cases encompass all possibilities to decompose and refine a system
requirement into subsystem requirements — either there is one match with a
responsible subsystem, many matches, or a match with all subsystems.

For each system requirement of a given system specification, one of the
above cases applies. The following sections give the case differentiation, detail
the refinement and illustrate each of them with examples.

4.5.1 One-to-one Transition of Requirements
If a specific subsystem A provides the complete functionality or property that
a specific system requirement c ∈ SC demands, a refinement might not be
necessary. Instead a straight-forward adoption of the system requirement c into
the subsystem specification SA occurs.

An example for the direct adoption of an overall system requirement stems
from the driver assistance systems: “The system automatically holds the
distance to the preceding vehicle.”

In this case, there is no refinement necessary, the requirement can be adopted
directly for the responsible subsystem “Adaptive Cruise Control”. This is not
a frequent case because requirements will usually be phrased according to the
degree of detail on the respective abstraction level of the system specification.
The one-to-one mapping will only occur in cases where one subsystem exhibits
the complete functionality demanded by the requirement.

For a detailed specification of the adaptive cruise control, it is nevertheless
necessary to do a refinement later on. For that refinement, the same rules as
for the one-to-many transition described in Sec. 4.5.2 apply.

4.5.2 One-to-many Transition of Requirements
In the case of a one-to-many transition, a specific system requirement c ∈ SC

of the usage service level (cf. Fig. 4.3) is realized by more than one subsystem,
let these subsystems be A and B (as in Fig. 4.1).

6The one-to-all case is a subset of the one-to-many case and therefore its analysis will not
bring further insights, which is why it is not discussed any further in the following.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 78

A specific system requirement c shall be decomposed into subsystem
requirements a ∈ SA and b ∈ SB such that, in the case of compliance of the
subsystem requirements, the compliance of the overall system requirement is
ensured. ∧

a∈SA

a ∧
∧

b∈SB

b⇒
∧

c∈SC

c (4.2)

For a valid refinement of all system requirements c ∈ SC of a system C within
the subsystem requirements a ∈ SA and b ∈ SB of the subsystems A and B, the
conclusion is that if all subsystem requirements are met for both A and B, all
system requirements for C are fulfilled.

This assurance is guaranteed by the use of assumptions and guarantees,
where, in explicit, “the assumption describes exactly those aspects of
the environment that are significant for the functioning of the specified
component.” [BS01, p. 213] and in case of compliance to that assumption the
component gives a certain guarantee about its behavior.

In the case of decomposition, each subsystem makes a certain assumption
about its environment and if that assumption is fulfilled, the subsystem can
give a certain guarantee. The sum of the guarantees implies the compliance
of the overall system requirement. As stated at the beginning of the chapter,
it is assumed that there is a given system decomposition for which adequate
subsystem requirements are desired.

It is sufficient to analyze the decomposition patterns of a system with two
subsystems. The cases with more subsystems can be reduced to that basic case
by introducing intermediate steps, where the system is decomposed into two
subsystems and then, iteratively, each of the subsystems is decomposed again
until the desired decomposition is simulated.

4.6 Decomposition and Refinement Patterns
This section describes the three decomposition patterns and provides illustrating
examples from case studies. In the following, assumptions will be denoted
as predicates AX with the index indicating the respective (sub-)system
specification the assumption is taken for and guarantees will be denoted
as predicates GX with the index indicating the respective (sub-)system
specification the guarantee is given by.

Requirement vs. Service. In the requirements documentation, the
description of a specific usage service is usually split up into more than one
requirement. A usage service is often complex and it does not make sense to try
to decompose a complex service description as it complicates the specification
of the subsystems instead of easing the deduction. A complex service is rather
described in a list of requirements.

Consequently, the general case where input and output are both shared
by two subsystems rarely occurs for the task of decomposition of a set of
requirements. Instead, for the majority of requirements, there are two special
cases that form subsets of the general case.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 79

Figure 4.6: Case Differentiation for Decomposition Patterns.

Special Cases. For two subsystems, there are two special cases that can
be applied for many requirements, depicted in Fig. 4.6. As stated in the
preceding paragraph, the general case where input and output are both shared
by two subsystems (center of Fig. 4.6) is usually not captured within a single
requirement. For reasons of completeness it is necessary to discuss the general
case here, but for most requirements, a subset of (easier) special cases is sufficient
to perform the decomposition.

A single requirement can in many cases be decomposed by using one of
the two decomposition patterns subservice (bottom right side of Fig. 4.6) and
pipeline (bottom left side of Fig. 4.6). These terms have been chosen because
they resemble ideas from the architectural patterns of “main program and
subroutines” (here called subservice) and “pipeline” that are described, inter
alia, by Vlissides et al. [VCK96].

For single requirements, the two decomposition patterns do already cover
most cases as the differentiation is made only between a decomposition where
the input and the output are produced by different subsystems (e.g. i1 and o2

in Fig. 4.6) and a decomposition where input and output are produced by the
same subsystem with the subsystem using a second subsystem as service (e.g.
i1 and o1 in Fig. 4.6).

CHAPTER 4. SUBSYSTEM REQUIREMENTS 80

For the requirements that do not apply to either of the special cases, the
general pattern is used. Decomposition into more than two subsystems is based
on a composition of these three patterns. In the following, first the pipeline
pattern is explained, because it is the most simple case, then the subservice
pattern, and finally, the general pattern.

4.6.1 Pipeline Decomposition Pattern
The pipeline pattern is used in the case when both subsystems provide part
of the interface for fulfilling the requirement. Before explaining the pattern in
detail, it is illustrated with an example.

Example. To illustrate the pipeline decomposition pattern, an example
requirement from the radio frequency warning system is used. An overall system
requirement on the usage service level (Fig. 4.3) is:

“In case of speeding, the driver shall be warned by the
system.” [Ris07]

The interface is described by an input channel speed info and an output channel
display info. The system receives the signal from the wheel sensors periodically
and detects whether the driver is speeding. In case the vehicle is faster than the
allowed speed stored by the system, the driver is warned by use of the display.
The assumption and guarantee7 on the system level are:

• ARFW (speed info):
The current speed information is available.

• GRFW (speed info, display info):
The system displays a warning to the driver if the speed is too high.

The relevant subsystems on the logical architecture level (Fig. 4.3) are the RFW
Control and the Display Control, depicted in Fig. 4.7.

Figure 4.7: Pipeline Decomposition of an Example of the RFW System.

Compliance to the overall requirement by the subsystem requirements is assured
by the following assumptions and guarantees:

• ARFWControl(speed info):
The current speed information is available.

7The introduced scheme of A/G from Sec. 4.2.1 provides assertions on data streams while
some of the following assertions are phrased as actions. The difference is only a nuance, and
no further consequences introduced by that difference could be detected.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 81

• GRFWControl(speed info, RFW info):
The system sends information about legality of the current speed.

• ADisplayControl(RFW info):
The information about legality of the current speed is available.

• GDisplayControl(RFW info, display info):
The system displays a warning to the driver in case of speeding.

If both guarantees hold, the requirement is satisfied. As one guarantee is
the assumption for the next subsystem, respectively, the satisfaction of the
requirement does not depend on further external influences.

The pipeline decomposition example makes assumptions about input speed
info and gives a guarantee for display info. Thereby, RFWControl uses
DisplayControl and forwards to DisplayControl, so that DisplayControl triggers
display info. The following implications apply by using plain logic:

• ARFWControl(speed info): The current speed information is available.

• ARFWControl(speed info) ⇒ GRFWControl(speed info, RFW info):
The system sends information about legality of the current speed.

• GRFWControl(speed info, RFW info) ⇒ ADisplayControl(RFW info).

• ADisplayControl(RFW info) ⇒ GDisplayControl(RFW info, display info):
The system displays a warning to the driver in case of speeding.

• GDisplayControl(RFW info,display info)⇒ GRFW (speed info,display info)
as defined at the beginning of the example description.

• This complies with the original system requirement
“In case of speeding, the driver shall be warned by the system.” �

Hence, the example decomposition for the pipeline pattern works. Subsequently,
the universal description of the pattern follows.

General Description Pipeline Pattern. In case of the pipeline
decomposition pattern, both subsystems provide part of the interface for
fulfilling the requirement, as depicted in Fig. 4.8.

Figure 4.8: Pipeline Decomposition Pattern.

For the overall system C with communication channels i and o (Fig. 4.8), the
guarantee GC with respect to output o relies on assumption AC for input i.

AC(i, o)⇒ GC(i, o) (4.3)

CHAPTER 4. SUBSYSTEM REQUIREMENTS 82

The pipeline is formed by the subsystems A and B. Subsystem A receives input
i, produces output x, which again is taken as input from subsystem B to produce
output o. For the pipeline pattern, the decomposition results in the following:

• Subsystem A: AA(i, x)⇒ GA(i, x)

• Subsystem B: AB(x, o)⇒ GB(x, o)

• Furthermore, subsystem A satisfies the assumption of subsystem B.

Hence, the composition is a behavioral refinement8 of the original specification:

(
AA(i, x)⇒ GA(i, x)

)
∧
(
AB(x, o)⇒ GB(x, o)

)
⇒
(
AC(i, o)⇒ GC(i, o)

)
(4.4)

In other words, the subsystem requirements for A and B comply with the overall
system requirement for C.

4.6.2 Subservice Decomposition Pattern
The subservice pattern is used in the case when there is only one subsystem that
provides the interface of the system and additionally uses the other subsystems
to fulfill the requirement. The subservice pattern is illustrated with an example
in the following.

Example. To illustrate the subservice decomposition pattern, consider an
example from the navigation system, as depicted in Fig. 4.9. One system
requirement on the usage service level is:

“The system proposes a route from the point of departure to the
chosen destination.”

The interface is described by an input channel query and an output channel route
proposal. The navigation system receives a query for a route proposal issued by
the driver and proposes an adequate route from the point of departure to the
destination.

Figure 4.9: Subservice Decomposition of an Example of the Navigation System.

The assumption and guarantee for the navigation system (NS) are:
8As defined in [BS01, p. 241], a behavioral refinement relates specifications of the same

syntactic interface, where the refined specification may impose further requirements.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 83

• ANS(query):
There are valid inputs for the point of departure and the destination.

• GNS(query, route proposal):
The system proposes an appropriate route according to the query.

The relevant subsystems on the logical architecture level are the routing
calculator and the data base. Their assumptions and guarantees are listed in
the following.

• Subsystem Routing Calculator (RC)

– ARC(query):
There are valid inputs for the point of departure and the destination.

– ARC(data):
The data base delivers correct information.

– GRC(query,request):
There are valid inputs for the request.

– GRC(data,route proposal):
The system proposes an appropriate route.

– ARC(query)∧ARC(data)⇒ GRC(query,request)∧GRC(data,route proposal)

• Subsystem Data Base (DB)

– ADB(request):
There are valid inputs for the request.

– GDB(request,data):
The system delivers correct data about the possible routes between
the requested points.

– ADB(request)⇒ GDB(request,data)

If the assumption of the data base is fulfilled, the data base can adhere to
its guarantee. This again satisfies the assumption of the routing calculator
and therefore the guarantee of the routing calculator is met, which means that
compliance to the overall system requirement is assured.

In this case, the routing calculator has to make the assumption that the
data base delivers correct and up-to-date information and there are valid
inputs for the point of departure and the destination. Then it can give the
guarantee to propose an appropriate route. The data base is a subservice for
the routing calculator which delivers up-to-date information about the possible
routes between point of departure and destination.

• Interplay of Routing Calculator and Data Base:

– GRC(query,request) ⇒ ADB(request)

– GDB(request,data) ⇒ ARC(data)

• Deduced behavior of the interplay:

– If the query is valid, the request is valid.

– If the request is valid, the data is correct.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 84

– If the data is correct, the route proposal is appropriate.

• Hence, the decomposition complies with the original system requirement
“The system proposes a route from the point of departure to the chosen
destination.” �

The example decomposition for the subservice pattern works. Therefore, the
section continues with the universal description of the pattern.

General Description Subservice Pattern. In the case of the subservice
pattern (Fig. 4.10), one subsystem interacts at the interface to provide the
requested system service while the second subsystem is used as subservice
provider by the first one.

Figure 4.10: Subservice Decomposition Pattern.

The overall system C in Fig. 4.10 is described by an assumption about input i
and a guarantee about output o (same starting point as in Eq. 4.3):

AC(i, o)⇒ GC(i, o) (4.5)

For the subservice pattern, the decomposition results in the following:

• Subsystem A: AA(i, x2, x1, o)⇒ GA(i, x2, x1, o)

• Subsystem B: AB(x1, x2)⇒ GB(x1, x2)

• Furthermore, the subsystems mutually satisfy each other’s assumption
about the internal channels x1 and x2.

Therefore, the composition of A and B is:

(
AA(i, x2, x1, o)⇒ GA(i, x2, x1, o)

)
∧
(
AB(x1, x2)⇒ GB(x1, x2)

)
(4.6)

Eq. 4.6 is a behavioral refinement of Eq. 4.5, therefore Eq. 4.6 ⇒ Eq. 4.5.
By this refinement, the system requirement is appropriately decomposed and

refined.

4.6.3 General Decomposition Pattern
The most general case for a subsystem decomposition is that the service a system
offers is provided by both subsystems with both of them providing part of the
interface.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 85

Example. An example for the general decomposition case is the adaptive
cruise control (ACC) system. The ACCSystem allows the driver to set a
specific speed that the vehicle automatically maintains. The system is depicted
in Fig. 4.11.

Figure 4.11: Decomposition of an Example from the ACC System.

In this example, the black box interface consists of two input channels,
revolutions provides the information from the wheel sensors about the current
number of revolutions to calculate the current speed, and setspeed provides
the information from the driver about the speed he wishes to maintain. The
output channels are the display information that is shown to the driver about
the maintained speed and adaptspeed is the information that tells the motor
to reduce speed in order to obtain the prescribed speed. The assumptions and
guarantees of the ACC System are the following:

• ASys(revolutions, setspeed):
The input revolutions delivers the current number of revolutions from the
wheels and the input set speed delivers the speed request by the driver.

• GSys(revolutions, setspeed, display, adaptspeed):
The output display delivers feedback for the driver according to the request
set speed and the output adapt speed sends commands to the motor for
adapting the speed.

• The system requirement specification for the ACC System is:
ASys(revolutions,setspeed)⇒ GSys(revolutions,setspeed,display,adaptspeed)

The subsystems are the Motor ECU and the ACC ECU. The assumptions and
guarantees for the system and the subsystems are as follows:

• Subsystem Motor ECU

– AMotor(revolutions,excess):
The information about current revolutions and excess speed is
available.

– GMotor(revolutions,excess,speed,adaptspeed):
The current speed is calculated from the revolutions and the excess
information is checked whether it is necessary to adapt speed is
provided.

• Subsystem ACC ECU

CHAPTER 4. SUBSYSTEM REQUIREMENTS 86

– AACC(speed,setspeed):
The information about the current speed is available and the input
set speed delivers the speed request by the driver.

– GACC(speed,setspeed,excess,display):
The information about excess speed is delivered after comparing the
current speed to the set speed and the feedback is delivered to the
driver via display.

• Interplay of the two subsystems:

– Motor ECU calculates the current speed and sends it to ACC ECU.

– ACC ECU calculates for Motor ECU whether there is excess speed.

• Deduced behavior of the interplay:

– If the revolutions are available, Motor ECU delivers the speed.

– If the set speed is available, ACC ECU calculates excess using speed.

– In case of excess, Motor ECU issues the command adapt speed and
ACC ECU sends feedback to the driver via display.

• This complies with the overall ACC System guarantee GSys. �

Hence, the decomposition of the example works as the original system
specification of the ACC System is fulfilled.

General Description. In the general pattern, both subsystems interact with
the surrounding system and provide a part of the interface, as depicted in the
white box view of the system C in Fig. 4.12.

Figure 4.12: General Decomposition Pattern.

For the decomposition, part of the input for system C goes to subsystem A
via communication channel i1 and part of the input goes to subsystem B via
communication channel i2. The output is provided in part by subsystem A
via communication channel o1 and in part by subsystem B via communication
channel o2. The subsystems interact via communication channels x1 and x2.
The specification of the overall system requirement for C is:

AC(i1, o1, i2, o2)⇒ GC(i1, o1, i2, o2) (4.7)

For decomposition, the assumptions and guarantees for the subsystems A and
B are:

CHAPTER 4. SUBSYSTEM REQUIREMENTS 87

• Subsystem A:

– Assumptions: AA(i1, x1, x2, o1)

– Guarantees: GA(i1, x1, x2, o1)

– AA(i1, x1, x2, o1)⇒ GA(i1, x1, x2, o1)

• Subsystem B:

– Assumptions: AB(i2, x1, x2, o2)

– Guarantees: GB(i2, x1, x2, o2)

– AB(i2, x1, x2, o2)⇒ GB(i2, x1, x2, o2)

• Furthermore, the subsystems satisfy each other’s system-intern
assumptions about the channels x1 and x2.

Therefore, the composition is a behavioral refinement of the original specification
from Eq. 4.7:(

AA(i1, x1, x2, o1)⇒ GA(x2, x1, i1, o1)
)
∧
(
AB(i2, x1, x2, o2)⇒ GB(x1, x2, i2, o2)

)
⇒
(
AC(i1, o1, i2, o2)⇒ GC(i1, o1, i2, o2)

)
(4.8)

In other words, the decomposition according to the general patterns complies
with the overall system specification in Eq. 4.7.

4.7 Discussion: Quality Requirements
This section analyzes the decomposition of quality requirements. After giving
a definition of quality requirements, the precondition of compositionality is
discussed, and then, three handling alternatives for different categories of quality
requirements are presented and illustrated with example decompositions.

4.7.1 Definition of Quality Requirements
The following discussion relies on the definitions given by Glinz in [Gli07]:

Definition 4.1 The set of all requirements of a system is partitioned
into functional requirements, performance requirements, specific quality
requirements, and constraints.

A functional requirement is a requirement that pertains to a functional
concern.

A performance requirement is a requirement that pertains to a performance
concern.

A specific quality requirement is a requirement that pertains to a quality
concern other than the quality of meeting the functional requirements.

A constraint is a requirement that constrains the solution space beyond what
is necessary for meeting the given functional, performance, and specific quality
requirements.

An attribute is a performance requirement or a specific quality requirement.
[Gli07, pp.4/5] 2

CHAPTER 4. SUBSYSTEM REQUIREMENTS 88

4.7.2 Precondition for Decomposition: Compositionality
In general, all types of system requirements are treated equally within DeSyRe,
no matter whether they are functional or not. The preconditions are that the
requirements are refined to a sufficient degree and that compositionality is given,
as explained in Sec. 4.4, p. 76.

Specific quality requirements are often difficult to decompose and refine
because it requires the expertise of the requirements engineer to find
appropriate test criteria or measures for their validation. However, without
sufficient validation criteria provided by the requirements engineer, the system
designer cannot check whether his specification of the (sub-)system meets the
requirements. If a requirement cannot be decomposed, this is an indicator for
a necessary refinement before intending a decomposition for the subsystems.

For special quality requirements, the limitation for a guaranteed appropriate
decomposition is the compositionality of the subsystem requirements. The
hypothesis is that they require additional properties for composition. These
additional properties are not necessarily known — for some quality attributes,
there may be a model for calculation, for others, the property may include
probabilities, for some, it may still remain completely unsolved what the
additional property is.

However, for a concise representation of the idea and to facilitate the
discussion, the hypothetical property is given a name and denoted in a formula:
Instead of straight-forward composition of the subsystems as in Eq. 4.2 on
p. 78, there is an additional internal property z that specifies the dependency
or composition rule9 for the subsystem requirements specifications SA and SB :

z ∧
∧

a∈SA

a ∧
∧

b∈SB

b⇒
∧

c∈SC

c (4.9)

The property z can represent many different characteristics or relations, also
depending on whether the decomposition is performed on the logical architecture
level or on the technical architecture level. For example, z can include:

• Probabilities: For example, for calculating composed availability, z can
be a model that describes how to include the probabilistic characteristics
appropriately.

• Geometric characteristics: In case of distributed systems, z can take
account for the geometric characteristics.

• Latency: In case of latency requirements, z can be a calculation model
thats adds the necessary latency for composition of components.

• Cable length: For electromagnetic compatibility, cable length is a
parameter with high influence. So z can, for example, represent the
electromagnetic characteristics of the cable length between two subsystems
in a vehicle in order to be able to fulfill a requirement with respect to
electromagnetic compatibility.

• Hardware costs: For splitting up a requirement about hardware costs, z
could be responsible for taking into account not only the subsystems, but
adding the right amount for the communication channels.

9The idea of an additional internal property z is inspired by [Bro10].

CHAPTER 4. SUBSYSTEM REQUIREMENTS 89

• Correction algorithms: For example, in systems that use measurements
from the environment (e.g. fuel consumption, physics experiments, . . .),
z can be a correction algorithm.

These are a couple of examples and they do not give an encompassing answer
to the question of how to realize z in general. However, for some of the mentioned
possibilities for z, there is related work available, with much of it still in progress.

As stated on p. 76, compositionality is still under active research for
quality attributes [Can01, PM05, Neuss]. For example, Pavlich-Mariscal [PM05]
proposes a composable security definition that uses concern-specific modeling
languages. Other quality attributes require predications about probabilities,
for example availability. In this direction, Neubeck [Neuss] is working on
a model for composing probabilities. For performance requirements, Russell
and Zilberstein [RZ91] approach compositionality by using so-called anytime
algorithms that are characterized by a probabilistic description of the quality of
results as a function of time. For composability in service-oriented architectures,
see the work by Drugan et al. [DDB+05] on composability of ad hoc mobile
middleware.

4.7.3 Decomposition and Alternative Handling of Quality
Requirements

Despite the open issues with respect to compositionality for specific quality
attributes, the requirements decomposition has successfully been applied to
a number of examples. The results do not provide statistical relevance but
exemplarily show how specific quality requirements can be decomposed for
subsystems. The analysis has been performed according to the categories of
quality requirements given by Robertson and Robertson [RR07] that are are
also used in the Volere Requirements Specification Template [RR06b].10 Each
category is represented by an example from the case studies of the driver
assistance systems [Ris07, FFH+09b].

• Look and Feel Requirements
• Cultural and Political Requirements
• Usability and Humanity Requirements
• Performance Requirements
• Security Requirements
• Legal Requirements
• Operational and Environmental Requirements
• Maintainability and Support Requirements

These categories overlap, but they help in discussing the general handling that
applies to most instances of quality requirements. Each of the categories can
be assigned a handling alternative that works for all cases that were found
when examining examples and discussing with experts on the topic. However,
there might be special cases where a specific requirement does not fit into the
assignment given below.

10The categories do not match exactly with the definition in [Gli07], as performance
requirements and special quality requirements are listed together, but this does not restrict
the discussion.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 90

Overview of the Alternatives. There are three alternatives for
decomposing quality requirements according to their specifics with respect to
compositionality (as discussed in Sec. 4.7.2).

1st Alternative: Compositionality of characteristics (as in Eq. 4.2) is given for look and
feel requirements, cultural and political requirements, and many usability
requirements. These can be decomposed and refined for the subsystems
as soon as the responsible system characteristics are identified.

2nd Alternative: Additional rules or models are required to approach compositionality (as
in Eq. 4.9) for performance requirements, security requirements, some
usability requirements, and some legal requirements.

3rd Alternative: Constraints that are not decomposable in general are issued by operational
and environmental requirements as well as maintainability and support
requirements, and many legal requirements.

For the first two alternatives, it is important to note that a decomposition
often already includes design decisions and therefore the subsystem
requirements result as functional requirements. This is due to having to take
a glass box view onto the system in order to decide on a decomposition into
subsystems that is presumed as given for the decomposition of the requirements.
Such a given decomposition is a design decision and therefore, the decomposition
of the requirements may reflect the respective design decision.

Taking a design decision can result in turning the quality requirements
into functional requirements for the subsystems. For example when a safety
requirement is decomposed by naming what the respective realizing subsystems
have to accomplish in order to fulfill the overall system requirement. Many
high-level quality requirements can be turned into functional requirements, even
before decomposition, by deciding how they should be realized. For that reason,
both cases (turning into functional requirements and staying nonfunctional)
occur in the examples given below.

1st Alternative: System Properties for Enabling Decomposition

For look and feel requirements, cultural and political requirements as well as
many usability requirements, a rule of thumb is proposed as these specific quality
requirements are expected to be decomposable and refineable as soon as the
responsible system characteristics are identified. The rule for decomposition is:

1. Refine the overall system requirement as precisely as possible according
to applicable/responsible properties of the system vision.

2. Decompose the requirement and refine it for the subsystems that exhibit
any of these properties.

If all affected subsystems refine the requirement accordingly, compliance
with the overall system requirement is guaranteed. For each of the categories,
an illustrating example is discussed in the following.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 91

Look and Feel Requirements. These requirements specify the intention of
the appearance, and not the detailed design of an interface [RR07, p. 176].

• Example from the RFW system: The product shall conform to the CI
standards.
This requirement is still high-level and general. Before performing a
decomposition, it is suggested to refine the requirement for the system
characteristics that are relevant for the CI.

• Refinement: The user interface has to provide appearance according to the
CI standards.
Now the requirement can be decomposed and refined for the subsystems,
i.e., every subsystem of the decomposition that realizes part of the
user interface has to refine the requirement according to its related
characteristics.

• Decomposition (and further refinement): The display uses typesetting and
colors according to the CI standards.
In this case, the display is the only subsystem providing part of the user
interface and therefore has to refine the requirement, while the RFW
controller subsystem is not affected.

Look and feel requirements are expected to be decomposable and refineable as
soon as the responsible system characteristics are identified. A rule of thumb
for their decomposition is:

1. Refine the overall system requirement as precisely as possible according
to applicable (look-and-feel) properties of the system vision.

2. Decompose the requirement and refine it for the subsystems that exhibit
any of these properties.

Cultural and Political Requirements. These are special factors that would
make the product unacceptable because of human customs, religions, languages,
taboos, or prejudices. The main reason for cultural requirements comes when a
product shall be sold to a different country [RR07, p. 190].

• Example: The pictograms of the driver assistance systems have to be
intuitively understandable and non-offending all over the world.
This requirement can be decomposed and adapted for the subsystems that
include pictograms in their user interface, e.g. the RFW.

• Decomposition and refinement: The pictograms of the RFW system used
in addition to the traffic road signs have to be intuitively understandable
and non-offending all over the world.
Referencing also the road traffic signs prevents the misinterpretation that
the user interface substitues all road traffic signs (that differ considerably
all over the world) with pictograms.

For cultural and political requirements applies the same notion with respect to
decomposition and refinement as for look and feel requirements. The essential
step is the identification of the responsible system characteristics that exhibit
the relevant properties for realizing the requirement.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 92

Usability and Human Factor Requirements. These requirements make
the product conform to the user’s abilities and expectations of the usage
experience [RR07, p. 178/179].

• Example from DAS: The driver assistance system shall help the driver to
avoid mistakes and thereby reduce the number of accidents.
This requirement can be refined for all driver assistance systems. The
requirements engineer has to think about what a particular subsystem
contributes to the requirement.

• Decomposition and refinement for ACC: The ACC helps to avoid accidents
by automatically reducing the speed of the vehicle in case of too little
distance to the preceding vehicle.
If every driver assistance system (which are the subsystems in this case)
contributes in that manner, the system requirement is met. The system
requirement in this example is quite high-level, so one may argue that it
has to be concretized anyways to be able to realize it. For that reason, the
refinement for the ACC is still high-level as well. The alternative is to first
turn the abstract requirement into a concrete one, that can be measured,
and then decompose and refine it for the subsystems.

Many usability and human factor requirements are expected to be similar to look
and feel requirements with respect to decomposition and refinement. Therefore,
a similar rule of thumb applies, in this case for usability characteristics.
However, there are some cases, where straight-forward composition does not
guarantee compliance with the overall system requirement, for example, when
referring to ease of navigation. This example is discussed below within the
examples for decomposition with additional properties.

2nd Alternative: Composition Models for Enabling Decomposition

For performance requirements, security requirements, some usability
requirements, and some legal requirements, a decomposition that guarantees
compliance with the overall system requirement is only possible with adequate
composition models. If such a composition model is available, the subsystem
requirements can be decomposed and refined, so that their compliance with
the overall system requirement is assured as in Eq. 4.9. An example for each
category illustrates the idea.

Performance Requirements. These requirements describe specific
capacities the product needs to have [RR07, p. 182] like response times,
accuracy, reliability, and resource consumption.

• Example: The response time of the system shall be less than half a second
for 90% of system uptime. No answer may take longer than one second.
Such requirements can be refined for a subsystem by breaking down the
allowed response time for all subsystems and calculating the additional
communication overhead between the subsystems. In current practice,
these calculations are based on estimations.

• Decomposition and refinement: The response time shall be less than 0.2
seconds for 95% of system uptime. No answer may take longer than 0.4

CHAPTER 4. SUBSYSTEM REQUIREMENTS 93

seconds.
Depending on the type of system, the currently used estimations are
conservative (worst case) or liberal (average case). Giving guarantees
instead of estimations for such runtimes is still under research for real-time
system development. In this example, the numbers are not calculated
adequately. For precise refinement, a calculus for time and, subsequently, a
calculus for probability is needed, which would be captured in the property
z introduced in Sec. 4.7.2.

The major problem with performance requirements is that the calculations
still rely on estimations. As denoted above, models for compositionality are
still under research, e.g. [RZ91, Neuss]. Decomposition and refinement can be
performed, but the assurances are insecure.

Security Requirements. Security includes several aspects: confidentiality,
integrity, availability, privacy, traceability. . . Confidentiality means the product’s
data is not available to anyone except authorized users. Availability means that
authorized users are not prevented from accessing the data, and the security
devices employed do not hinder or delay the users from getting what they
want when they want it. Integrity means that the data held by the product
corresponds exactly to what was delivered to the product from the adjacent
system [RR07, p. 187/188].

• Example: The smart remote key system has to prevent unauthorized
persons from remotely unlocking the car.
This requirement first needs a refinement, that defines how an
unauthorized person might try to remotely unlock, before it is possible
to decompose it for the subsystems.

• Refinement: The smart remote key has to prevent that unauthorized
persons can systematically guess key codes and transfer them remotely to
unlock the car.
This definition allows to decompose the original requirement for the
subsystems that are concerned with key codes. This is a special case that
does not yet cover all possibilities of remotely unlocking the car. Further
possibilities include trying to spy out the transmitted code. In addition,
it has to be noted that in this case the requirement is transformed into a
functional requirement by the design decisions that have been taken.

• Decomposition and refinement: The key control includes a blocker circuit
so that in case of 10 consecutive incorrect code words from a remote, it
blocks the receipt of all signals (even correct ones) for the next 15 minutes.
Thereby, of all the millions of possible code combinations a scanner only
has 10 chances every 15 minutes [Cas99]. The original requirement is
realized. As overall solution, this is not yet satisfying, but it is a partial
solution used in practice as stated in [Cas99]. This subsystem requirement
already includes design decisions and turned into a functional one.

Security requirements are often complex in their decomposition and the
requirements engineer has to put effort into finding the responsible parameters
and system characteristics for realizing the requirement. This usually includes

CHAPTER 4. SUBSYSTEM REQUIREMENTS 94

already a certain degree of design decisions with respect to a technical
solution which often leads to a transformation into functional requirements.
The latter particularity is also noted by Luckey et al. [LFBW10] who map
security requirements onto activities in a quality model, thereby usually turning
them into functional requirements. If these means are identified, security
requirements are expected to be decomposable and refineable. For some security
requirements, for example for availability requirements, a composition model is
necessary in addition.

Functional Safety Requirements. A particularly important quality
attribute for embedded systems that is difficult to assign to any of the categories
of Robertson and Robertson [RR07] is safety. Safety requirements play a crucial
role in determining the acceptability of a safety-critical system and therefore an
example is included in this listing.

• Example: The electronic stability control (ESC) interferes when the driver
is losing control of the vehicle.
This real-time requirement first needs a refinement that defines losing
control before it is possible to decompose it for the subsystems.

• Refinement: Losing control is defined by either lateral acceleration greater
than x m/s, or slip greater than y % (traction control).11
Thereby, the requirement is turned into a functional one, as losing control
can now be measured. This definition allows to decompose the original
requirement for the subsystems that are concerned either with lateral
acceleration or with slip.

• Decomposition and refinement:

– In case of slip greater than y %, traction control has to notify the
ESC.

– In case of lateral acceleration (LA) greater than x m/s, the LA sensor
controller has to notify the ESC.

– The ESC controller gets activated in case of notification by either
traction control or LA sensor controller.

Thereby, all subsystems relevant for the activation of the ESC refine the
original requirement and their composition leads to compliance.

Safety requirements, like security requirements, are complex in their
decomposition and the responsible parameters and system characteristics have
to be identified. After that step, safety requirements are expected to be
decomposable and refineable.

Usability and Humanity Requirements. The category is listed for a
second time to give an example for a requirement where the composition has
additional properties that have to be taken into account.

11The complete definition of losing control involves more parameters and is more complex.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 95

• Example from DAS: All commands should be fast to reach by interface
navigation.
This example could either by adopted as is for the subsystems or, as it is
still quite high-level and abstract, be refined into a measurable requirement
and then decomposed and refined for the subsystems.

• Refinement: The navigation through the user interface must take no more
than 5 steps until the driver reaches the desired command or information.
The result is a measurable, functional requirement that can be refined
for all driver assistance systems. However, the requirements engineer
has to keep track of the different possibilities of navigation within the
usage interface under development. The more subsystems share the user
interface, the more difficult it will be to overview all paths.

• Decomposition and refinement: The navigation through the user interface
of the RFW must take no more than 3 steps until the driver reaches the
desired command or information.
Still, this requirement does not guarantee compliance with the system
requirement in case of navigation relations with another DAS.

• Handling of the integration: One possible solution is a central navigation
path graph that depicts the possible cross-DAS navigation paths and
therefore allows to check whether the overall navigation still complies with
the system requirement.

Many usability and humanity requirements may be decomposed as soon
as the appropriate (sub)system characteristics are identified, but some, like
the navigation example, require the integration of the subsystems to be
explicitly included in the composition to guarantee compliance with the system
requirement.

Legal Requirements. As the cost of litigation is one of the major risks for
software for sale, and can also be expensive for other kinds of software, it is
important to be aware of the laws that apply to the developed kind of product.
Legal requirements can also have to do with adjacent systems or actors or
demand compliance to standards [RR07, p. 186].

• Example: The driver assistance systems have to comply to the
Electromagnetic Compatibility (EMC) [Bun08d] norms.
This requirement can be decomposed and refined as soon as the responsible
characteristics are identified, for example, for each subsystem that uses a
specific kind of short range devices.

• Decomposition and refinement: The RFW system has to comply to the
EMC standard for Short Range Devices operating on frequencies between
9 kHz and 25 GHz.
Thereby, the RFW subsystem complies with the overall system
requirement, as the relevant characteristic for complying to the EMC
norm are the short range devices of the RFW. Further refinement of the
requirement has to identify the attributes of the RFW that are affected.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 96

• However, if the subsystems comply to the EMC, this does not guarantee
that the logical device connecting them does also fulfill the requirements.
In fact, especially long cables (for example, the data buses in cars) have a
high impact on the electromagnetic radiation. Therefore, the relation (or
connection) between the subsystems has to be considered and documented
explicitly in this case to guarantee compliance with the EMC norm.

Many legal requirements can be refined by turning them into technically
decomposable safety or security requirements like the EMC example, but there
are other instances that remain plain constraints. An example for the latter is
discussed below within the other constraint examples.

3rd Alternative: Constraint Handling instead of Decomposition

Operational and environmental requirements as well as maintainability and
support requirements, and many legal requirements can often not be refined
as they are general constraints for the system. For such quality requirements
that cannot be refined, an explicit constraint list at the beginning of
the subsystem requirements specification (including validation means) is
recommended. Examples for the two categories are given in the following.

Operational and Environmental Requirements. These requirements can
cover the operating environment, the condition of the user, and partner or
collaborating systems [RR07, p. 184/185].

• Example from DAS: All data has to be exchanged using common message
formats.
This requirement is high-level and can either by adopted for the
subsystems or refined first and then decomposed and refined for the
subsystems. The requirement is therefore refined into the following.

• Refinement: The data of the driver assistance systems has to be exchanged
via CAN messages.
The CAN bus is one of the data busses in current vehicles and the
requirement can be adapted for the subsystems.

• Refinement for the ACC subsystem: The data of the ACC has to be
exchanged via CAN messages.
This requirement is adapted for all individual driver assistance systems to
ensure their compatibility with the surrounding system.

Operational and environmental requirements can be adapted for subsystems if
there is a specific system characteristic that is realized by particular subsystems.

Maintainability and Support Requirements. These requirements
capture information about changes that can, to some extent, be foreseen, e.g.,
in the areas of organization, environment, and business rules [RR07, p. 186].
This type of requirements is also concerned with adaptability, extendability,
analyzability, stability and portability.

• Example: Software updates are provided once a year.
This support requirement can not be refined but is rather a constraint.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 97

• Handling: The constraint can be added to a designated list of constraints
for the subsystem or be integrated directly into process planning.

The same applies for a number of other examples for maintainability and support
requirements that were analyzed. Maintainability is usually realized either
constructively, e.g., by proposing guidelines, or assured analytically, e.g., by
issuing assessment criteria. A possible solution is an explicit constraint list at
the beginning of the subsystem requirements specification.

Legal Requirements. This category is the second one that is listed twice for
belonging to two different handling assignments. This time, the requirement is
a constraint that can only be adapted for the subsystem, but not decomposed.

• Example: The use of micro controllers in battery-monitoring sensors has
to include a reference to the patent number by Mikrochip. [Mic06]
This requirement can only be adapted for the subsystems, but no real
decomposition is possible.

• Handling: The constraint can be added to a designated list of constraints
for the subsystem.

Legal requirements can either be broken down into safety or security
requirements, as in the EMC example above, or they persist as plain constraints
that have to be adapted and checked manually for validation.

4.8 Tracing
Tracing of requirements is important for a number of purposes, inter alia,
project management, validation, and maintenance. Naturally, these tasks are
also related to the derivation of subsystem requirements specifications and their
management and maintenance.

In the following, requirements traceability is understood as defined by Gotel
and Finkelstein [GF94]:

Requirements traceability refers to the ability to describe and follow
the life of a requirement, in both a forwards and backwards direction
(i.e., from its origins, through its development and specification, to
its subsequent deployment and use, and through periods of on-going
refinement and iteration in any of these phases). [GF94, p. 1]

4.8.1 State of the Art of Tracing
According to von Knethen and Paech [vKP02], there are four core concepts
present within tracing approaches: purpose, process, conceptual trace model,
and tools. The purposes are characterized by the stakeholders involved in
tracing: Customer, project planner, project manager, requirements engineer,
designer, verifier, validator, and maintainer.

The process steps are defining the traces, capturing them, extracting and
representing the traces, and finally maintaining them.12

12These steps are a constructive approach to requirements tracing; retrieving traces later
(post development) is an analytical approach.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 98

Conceptual trace models consist of entities and relationships. Entities are
usually characterized by their kind, granularity, and attributes. Relationships
occur horizontally on the same level of abstraction as viewpoints and as
dependencies, vertically between abstractions as refinements in same and
different types of artifacts, and as versioning. Traces have a direction, attributes,
an implicit or explicit setting, and can be represented in matrices, graphical
models, or as cross references. Von Knethen and Paech distinguish tools in use
as general-purpose tools (e.g., spreadsheet), special-purpose tools, workbenches,
and case tools [vKP02].

So far, there is no agreement in literature as to which conceptual trace
models (in terms of entities and relationships) are necessary to support which
stakeholders and tasks. The reason for that lack of agreement is that the
conceptual trace model depends on the artifacts to be considered in the domain
of application. However, one of the most cited reference models is the one by
Ramesh and Jarke [RJ01].

Figure 4.13: Traceability Meta Model by Ramesh and Jarke [RJ01].

Reference Model for Traceability. The meta model by Ramesh and Jarke
is based on an empirical study including interviews in 26 software development
organizations. The basic meta model consists of the entities Object, Stakeholder,
and Source (see Fig. 4.13). The stakeholder manages the sources which, in
turn, document the objects. The meta model shall be used to answer the
following questions about each entity or relation in the model: what information
is represented (type of entity or relation), who the stakeholders are, where in
the document sources the information is represented, how the information is
represented, why the conceptual object exists or was modified (rationale), and
when the information was captured.

Furthermore, Ramesh and Jarke define four traceability link types:
satisfaction, evolution, rationale, and dependency [RJ01]. Satisfaction
and dependency are product-related while rationale and evolution are
process-related traceability links. A dependency link is explained by a
satisfaction link and an evolution link is explained by a rationale link.

The model is the basis of the partial model described for this work.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 99

4.8.2 State of the Practice of Tracing
The following three reports constitute a representative overview of the state
of practice in requirements tracing. Gotel and Finkelstein [GF94] report on a
questionnaire study with more than 100 practitioners, Ramesh [Ram98] reports
on a study with 138 practitioners, and Eyged et al. present their lessons learned
from three case studies on a value-based approach [EGHB09].

Gotel and Finkelstein [GF94] describe the current support for requirements
traceability in terms of basic techniques and automated support, analyze why
there is still a requirements traceability problem (lack of a common definition
and conflicting underlying problems), propose a framework, and suggest a
research agenda that emphasizes pre-requirements specification traceability.

Ramesh [Ram98] analyzes findings from a comprehensive survey in order to
identify what motivates users to employ traceability practices. Critical factors
that influence the practice of requirements traceability are general conditions
like recognizing and articulating a traceability problem, the usage of traceability
by developing methods and acquiring or developing tools, and changes in system
development policies.

Eyged et al. [EGHB09] conclude from their case studies that trace acquisition
“requires broad coverage but can tolerate imprecision”. Therefore, they suggest
a traceability strategy that provides trace links quickly, refines them according
to stakeholder-defined value considerations, and supports later refinement (for
changes within the value considerations).

The conclusions of these reports on the state of practice are considered for
the proposed tracing approach for DeSyRe in terms of providing suggestions for
low cost, easily adaptable options for requirements tracing.

4.8.3 Proposed Tracing Approach
The tracing between the requirements can either be established constructively
during specification or analytically on demand. The constructive approach leads
to complete capturing of all traces during the decomposition and refinement of
the requirements. At the same time, the maintenance effort for a complete
tracing can be cost-intensive if performed manually.

Figure 4.14: Tracing Model for DeSyRe.

CHAPTER 4. SUBSYSTEM REQUIREMENTS 100

Constructive Approach. The requirements’ traces, including the respective
type of relationship, are documented while decomposing and refining the
requirements. The basic model for the tracing documentation is depicted in
Fig. 4.14. A Requirement on the system level can be either:

• refined horizontally by another requirement on the system level (in case
it does not yet provide sufficient information to be transitioned into a
requirement on the subsystem level),

• refined vertically by a requirement on the subsystem level (in case there
is only one subsystem concerned with the requirement),

• or decomposed into a number of subsystem requirements.

In relation to Ramesh and Jarke’s meta model (Fig. 4.13), the entity
Requirement can be interpreted as a type of Source and the relationships are
all of the type evolution.

The traces can be documented using a variety of techniques, for example,
reference indexes, traceability matrices, or templates [GF94]. To find the
optimal strategy, different tracing strategies may be compared by use of the
tracing activity model TAM as proposed by Heindl and Biffl [HB08, HB07], but
further discussion of tracing strategies is out of scope for this work.

The dependencies have to be maintained across refinement and
decomposition. For example, considering a system requirement XC that
depends on another system requirement YC :

• XC is refined to subsystem requirement XA.

• YC is decomposed into subsystem requirements YA and YB .

• Consequently, XA depends on YA and YB .

Documentation and maintenance of the requirements traces and their
dependencies is crucial for successful change management.

Analytical Approach. An analytical approach can either be performed
on demand or if, after inadequate change management, traces have to be
recovered. Approaches to trace recovery are, for example, information retrieval
algorithms [LO10], often supported by tools like RETRO [HDS+07], or latent
semantic indexing [LD06].

For a better retrieval rate, different trace recovery tactics can be combined as
each model might miss certain relations, e.g., a keyword-based approach might
miss a relation where less frequent synonyms have been used.

Implications of Trace Orders. Different decomposition alternatives of a
system lead to different requirements decompositions and, therefore, to different
requirements trace graphs or trace orders. For a given decomposition, there
may be alternatives for restructuring the requirements decomposition to a
certain extent while maintaining the dependencies. The aim of restructuring
the decomposition could be to retrieve an easier maintainable trace order, for
example, if maintainability is a key concern for the system under development.

Consequently, the question of what are good ordering criteria (in terms of
classification) for requirements to support architectural design arises. This issue

CHAPTER 4. SUBSYSTEM REQUIREMENTS 101

is partly addressed in Sec. 3.6 but worth further, future investigation in order
to support requirements analysis.

Summary. This chapter first introduced a model of a subsystem based
on the system model of Broy et al. [BSW+08] with three abstraction levels
and discussed the distribution and description of a subsystem across these
abstraction levels.

Then, the chapter presented a systematic approach to the decomposition
of system requirements into subsystem requirements for a given system
decomposition. Case differentiation was made according to whether a
requirement could be refined so that it would include a concrete reference to
a specific part of the system. This concreteness, plus compositionality, are the
prerequisites for expressing a requirement in assumption/guarantee style that
can be decomposed.

It was detailed how requirements decomposition and refinement can be
performed using three decomposition patterns, two special cases that already
apply for most requirements, and the general case for the rest of them. Each
of them was illustrated with an example and then described in general. It was
shown how, after decomposition into subsystem requirements, the compliance
to the original system requirement is fulfilled.

Furthermore, the decomposition and refinement of quality requirements were
discussed. These can either be decomposed as soon as the responsible system
characteristics are identified, or an additional composition model is needed, or
they issue constraints that have to be acknowledged. Thereby, the presented
categorization is not strict, there are example requirements that fit into different
categories and categories that exhibit example instances for different handling
alternatives.

Finally, a simple model for tracing between system requirements and
subsystem requirements is proposed. The application of requirements
decomposition and refinement in combination with the system decomposition
(presented in Chap. 3) within a surrounding software development process is
shown in the subsequent chapter.

Chapter 5

The DeSyRe Method -
Decomposition of Systems
and their Requirements

Contents
5.1 Related Work for the DeSyRe Approach 103
5.2 Outline of the DeSyRe Method Phases 104
5.3 Starting Point: Required Artifacts 106
5.4 Decomposition into Subsystems 107
5.5 Transition to Subsystem Requirements 112
5.6 Delivery of Subsystem Specification 118
5.7 Integration and/or Reuse 119
5.8 Implications . 121

Axel van Lamsweerde stated: “. . . specification technology needs to provide
CONSTRUCTIVE methods for specification development, analysis, and
evolution.” [vL00] Therefore, the method Decomposition of Systems and their
Requirements (DeSyRe) is presented as practical guideline. It integrates the
decomposition of a system from Chap. 3 and the refinement of its requirements
in the transition from system to subsystem (Chap. 4) in order to systematically
derive a subsystem specification. For the method at hand, the emphasis lies on
describing it constructively for high applicability.

This chapter first discusses related work, next presents an overview of
the DeSyRe method, then explains the starting point of the method and,
subsequently, each of the method’s phases. The single steps are illustrated
with a running example from the driver assistance systems (DAS) introduced
in Sec. 2.6.

102

CHAPTER 5. THE DESYRE METHOD 103

5.1 Related Work for Artifact-based Transition
from Requirements to Architecture

There is a number of approaches to perform a systematic transition from
requirements to architecture on the basis of artifacts. However, all these works
specialize on certain notation techniques, while this approach does not imply a
specific notation technique to be used.

KAOS Goal modeling. Brandozzi and Perry [BP01] describe briefly how to
formally derive an architecture in Architecture Prescription Language (APL)
notation from goals in KAOS notation (“Knowledge Acquisition in autOmated
Specification”). It inspired van Lamsweerde, the original author of the KAOS
notation, to describe the way from system goals to software architecture using
an event-based architectural style [vL03]. This works as long as plain pattern
matching is applicable, but the author already states in his conclusion that
the given constructive guidance is “insufficient in a number of situations where
architectural features need to be propagated bottom-up” [vL03, p. 38].

In contrast, DeSyRe includes a wider range of view points and information
sources with the decomposition criteria catalogue and the artifact model.
Information that often needs to be promoted bottom-up is included especially
in the technical criteria of the decomposition catalogue and in the artifacts of
the context of the hardware/software abstraction level of the artifact model.

Patterns from NFRs. Eric Yu proposes a goal-oriented requirements (GRL)
language, which is intended to capture especially non-functional requirements
(NFRs) in patterns [GY01a]. GRL does this with a scenario-oriented
architectural notation called Use Case Maps (UCM) to model requirements and
architecture incrementally [LY01, GY01b].

The approach limits itself to the NFR part that can be captured within
goal modeling (thereby also omitting bottom-up promoted requirements).
In contrast, DeSyRe aims at the full range of available requirements and
information sources for guiding the way through requirements engineering to
design.

CBSP intermediate language. The “Component, Bus, System, and
Properties” (CBSP) language, proposed by Boehm, Egyed, Grünbacher, and
Medvidovic [MGEB03, EGM01, MBE01], is an intermediate language for
representing requirements in an architectural fashion, thereby representing an
incomplete architecture. The approach starts with a (potentially incomplete)
set of requirements, identifies potential architecture elements by applying a
taxonomy of architectural dimensions, and results in an intermediate model
that captures architectural decisions. It is integrated with the EasyWinWin
negotiation process and is partially tool-supported.

The CBSP bridges a large gap by linking directly from requirements to
elements of the technical architecture, like busses. Instead, DeSyRe includes
an abstraction level for logical architecture that is independent of hardware
details. Furthermore, CBSP uses the coarse-grained “negotiation rationale view”
from the WinWin approach to capture the requirements, where “stakeholder
objectives and goals are expressed as goals” [MGEB03, p. 201]. Instead, DeSyRe

CHAPTER 5. THE DESYRE METHOD 104

captures requirements from a broader range of information sources including
bottom-up technical constraints.

ATRIUM architecture model. Developed in the research project MetaSIG,
Navarro et al. [NRP03, Nav07] offer the process ATRIUM, based on the
architecture model PRISMA. ATRIUM stands for “Architecture generaTed
from RequIrements applying a Unified Methodology”. The intention is to
guide the architecture development from the inception and handle changes of
requirements over time using aspect-orientation. This is done by defining goals
and operationalizing architectural scenarios.

The main concerns of ATRIUM are maintainability and adaptability of
software artifacts by use of aspect-orientation [Nav07, p. 71]. In contrast, the
aim of DeSyRe provides concrete methodical guidance based on an artifact
model.

ITEA EMPRESS project. Paech et al. [PvKD+03] propose an
experience-based approach for integrating architecture and requirements
engineering in the context of the ITEA EMPRESS project. The method
shows how different kinds of experience-based artifacts, such as questionnaires,
checklists, architectural patterns, and rationale, can beneficially be applied.

EMPRESS does not consider explicit abstraction levels or a detailed artifact
model. The findings of the experience-based approach served as additional
information to the reports of the practitioners we questioned in our interviews
for the development of the artifact model.

COSMOD-RE approach. Pohl and Sikora [PS07a] describe COSMOD-RE
that supports the co-design of requirements and architectural artifacts. The
authors describe architectural scenarios and aim for a first coarse-grained sketch
of the system architecture composed by logical components.

However, COSMOD-RE does not give concrete guidance on how to proceed
to decompose a system and derive these architectural artifacts. In contrast,
DeSyRe explicitly emphasizes the importance of practical guidance.

All of these approaches specialize on a certain type of artifacts. In contrast,
the transition described in DeSyRe abstracts from specific artifacts and instead
describes a general transition from system to subsystem requirements.

5.2 Outline of the DeSyRe Method Phases
The approach is an application guideline that is derived from the preceding
chapters about the decomposition criteria analysis and the requirements
refinement.

Artifact-orientation. An artifact-centered approach is considered more
valuable for strongly distributed software development as present in the
automotive domain than prescribing smallest process steps.

A system with widely distributed development includes many development
teams and therefore is hardly likely to be developed using the exactly same

CHAPTER 5. THE DESYRE METHOD 105

processes and tools. This leads to the pragmatic solution of defining a concrete
artifact model with assigned contents, but a less strict process for how to develop
the artifacts.

Apart from an easy integration into existing processes, further advantages of
defined artifacts are that they can serve as basis for discussions and contracts,
and their quality and progress can be checked.

Figure 5.1: Process DeSyRe

Method Phases. The method DeSyRe describes the decomposition
into subsystems and the deduction of separate subsystem requirements
specifications. The purposes of the decomposition are, as depicted on the right
hand side of Fig. 5.1, distributed development and subsequent integration as
well as reuse of subsystems.

The process includes the following phases:

• Decomposition into subsystems (Sec. 5.4): DeSyRe begins after an initial
set of System Requirements has been elaborated (left-most box in Fig. 5.1).
By help of the Decomposition Criteria Catalogue (up-most box in Fig. 5.1),
the System Decomposition is derived (subsequent box).

• Transition to subsystem requirements (Sec. 5.5): The System
Requirements and the System Decomposition are the input for deriving
the Subsystem Requirements (at the center of Fig. 5.1).

• Delivery of subsystem specification (Sec. 5.6): At that point of
the development process, the subsystem specification (Subsystem
Requirements in Fig. 5.1) is delivered to the subcontractor (house shape
in Fig. 5.1) who subsequently develops and then delivers the assigned
subsystem (Subsystem Realization in Fig. 5.1).

• Integration (Sec. 5.7): Finally, the subsystem is integrated in the System
Realization or reused in a New System Specification & Realization.

In the following, the starting point of the method and, then, each of the
phases will be described in detail.

CHAPTER 5. THE DESYRE METHOD 106

5.3 Starting Point: Required Artifacts
The point of origin (see Fig. 5.2) for the decomposition of a system into
subsystems and, thereafter, the specific concentration on individual subsystems,
is a partial instance of the artifact model.

Figure 5.2: Starting Point of Process DeSyRe

The requirements engineer has to elaborate the black box specification of
the usage service level of the artifact model, i. e., the respective context,
requirements, and design artifacts, as depicted in Fig. 5.3. These artifacts are
the required ones to start with DeSyRe, because they represent the usage service
level of the overall system (as presented in Sec. 2.5.3) and are elaborated before
conducting the initial system decomposition.

The responsible author for these artifacts is the system development
organization as producer of the overall system. More precisely, the authorship
lies with their requirements engineers who, in turn, have to communicate with
the other stakeholders to assess all relevant information, as depicted earlier in
Fig. 3.2.

Figure 5.3: Required Artifacts for Decomposition.

Running Example. For illustration, here are two of the artifacts for
the driver assistance systems, namely the system vision and the use cases.
The other artifacts from the category context, namely Goals, Stakeholders,
and Operational Environment, are needed to ensure completeness of the
requirements elicitation activities (see App. 6.1.4).

System Vision: “A well-interrelated network of driver assistance systems
shall support the driver in demanding traffic situations and thereby increase the

CHAPTER 5. THE DESYRE METHOD 107

safety of the vehicle.”
The Use Cases were identified in brainstorming sessions and derived from

the goals with BMW employees after identifying the system vision and the goals.
For a more encompassing list, see App. 6.1.4.

• The driver is about to change lanes. The system displays a vehicle in the
blind spot.

• The driver is using cruise control and approaches a vehicle ahead. The
system decelerates.

• The driver is driving 100km/h although there is a speed limit of 80km/h.
The system displays a warning.

In the design category of the artifact model, a Service Graph helps making
dependencies explicit between usage services that realize the use cases. From
this basis of artifacts, the software architect can proceed with the decomposition
as described in the following sections.

Quality Assurance: Dependency Analysis. An optional but
recommended step is an analysis of requirements dependencies, influences,
constraints, and potential conflicts. Thereby, the requirements engineer assures
the quality of the requirements. What makes such an analysis challenging is
that the relations between requirements are often not documented explicitly.
Examples for this are shared input or output channels like hardware sensors,
displays, etc. [Res08]. Further discussion on implicit knowledge can be found
in the thesis of Feilkas [Fei10].

One possibility to perform such an analysis is by help of the work
by Herrmann, Paech, and Plaza [HPP06]. The authors define a list of
requirements dependencies like refinement, feature bundle, or architectural
restriction [HPP06, p.29]. Oftentimes, more than one relationship applies at
the same time and that there are also relations between the relationships of
the model. However, it is not crucial to mark all possible dependencies for the
realization of the system, but it is important to find them as they give hints on
potential requirements inconsistencies or conflicts.

Within the same work, Herrmann, Paech, and Plaza [HPP06, pp. 7,8] also
define three types of requirements conflicts, namely inconsistency, contradiction,
and feasibility conflict. No matter which type, the conflicts have to be resolved
before the actual decomposition.

The step dependency and conflict analysis is optional because it does not
necessarily change the requirements in a way imposed by DeSyRe. However, it is
strongly recommended to perform such a step of quality assurance as consistent
requirements with explicit dependencies are the basis for successful systems’
development. Therefore, we assume for the following that conflicts are resolved
and dependencies denoted explicitly.

5.4 Decomposition into Subsystems
For this step, the requirements engineer has to deliver the elaborated artifacts of
the usage level to the system architect who is responsible for the decomposition.

CHAPTER 5. THE DESYRE METHOD 108

The division into subsystems is based on the reference catalogue of criteria
that has been defined and explained in Chap. 3. The steps for the decomposition
are, first, a consideration of the reference catalogue, then, a relationship analysis
of the system requirements, and finally, the division into subsystems.

5.4.1 Consideration of the Reference Catalogue
The reference catalogue of decomposition criteria from Chap. 3 serves as
reference guide suitable for different project situations. Therefore, it is necessary
to analyze the relevance of the given criteria for the project at hand (Fig. 5.4).

Figure 5.4: Consideration of Reference Catalogue in Process DeSyRe

A customization of the catalogue is optional. The catalogue serves as growing
knowledge base and can be amended either during its first use in a company, or
if experience in a conducted project brought forward new criteria.

If the requirements engineer or the system architect decide to make
alterations to the catalogue, it is necessary to analyze the new relationships
and possible influences between the criteria. The relationships between already
identified criteria were discussed in Sec. 3.7.

Finally, priorities have to be chosen considering the optimization factors (as
described in Sec. 3.2.1) which are most important for the system to be developed.
These are usually given by the high priority business goals that are captured in
the artifact Goals defined in Sec. 2.5.3.

The instance of the catalogue makes implicit knowledge explicit and helps to
take decisions on the basis of a seizable artefact with visible-made experience.
The information needed for the decomposition is gathered via the description
template described in Sec. 3.2.3, which was filled in for each criterion in the
catalogue in Sec. 3.3 – Sec. 3.6.

Running Example. The decomposition criteria from the reference catalogue
are instantiated and described for the driver assistance systems. Two examples,
the criteria Economics (from the category Directive Criteria) and Reliability
(from the category Quality Criteria), are given here; the complete list of the
instantiation can be found in Sec. 6.1.4.

Economics

• Reuse: All of the driver assistance systems have already been developed
in the previous vehicle series, so reuse is strongly expected.

CHAPTER 5. THE DESYRE METHOD 109

• Cost Models: The cost of the hardware parts is crucial as even cents sum
up critically for the number of produced vehicles. Software development
costs are considered less critical, but in this case is connected with reuse,
as a decomposition for high reusability will decrease the costs for the next
iteration.

Reliability. Maturity, recoverability, and fault tolerance are crucial for all
vehicles participating in road traffic. For system decomposition, this can mean
that certain subsystems are grouped onto redundant electronic control units.

5.4.2 Decomposition Realization

Figure 5.5: Decomposition Realization in Process DeSyRe

After eliciting the most relevant criteria, the system architect decomposes
the system accordingly, see Fig. 5.5. In general, it is assumed that there are two
main ways that do not necessarily exclude each other, but also work in concert,
see Fig. 5.6: Either there are architectural criteria that have to be obeyed and
that predetermine the decomposition, or if not, it is to be chosen whether it is
more appropriate to decompose the system according to functional or quality
criteria. The directive criteria will mainly have an indirect influence that give
more general guidance.

The procedure for decomposing the system according to the introduced
criteria is performed in the following major steps:

1. Identify architecturally significant requirements.

2. Review catalogue, analyze and assign the requirements to the given
categories.

3. Consider and apply the criteria according to the order depicted in Fig. 5.6
in a logical blueprint either on the basis of features or on the basis of
architectural constraints.

4. Assure quality of the blueprint.

These steps are explained in more detail to allow for concrete guidance during
systems development:

1. Identification. The preparation for the decomposition is to identify
the requirements that qualify as architecturally significant in each category.
Jazayeri, Ran, and van der Linden give suggestions for detecting them [JRvdL00,
p. 11]:

CHAPTER 5. THE DESYRE METHOD 110

Figure 5.6: Criteria and Application

• “Requirements that cannot be satisfied by one (or a small set of) system
components without dependence on the rest of the system. (...)”

• “Requirements that address properties of different categories of
components (...).”

• “Requirements that address processes of manipulating multiple
components (...). ”

2. Analysis. After their identification, these requirements have to be
analyzed and assigned to the adequate criteria categories directive (Sec. 3.3),
functional (Sec. 3.4), quality (Sec. 3.5), and technical (Sec. 3.6). Within each
category, they have to be ordered according to their impact or priority. A
requirement may belong to more than one category, however, it is not helpful to
introduce redundancy. Instead, the requirement should be assigned to the one
category that the system architect perceives to be the most important for the
specific content.

3. Application. The (partial) order of the criteria’s consideration and
application during the design process is depicted in Fig. 5.6. The starting point
are the directive criteria, which influence the quality and functional criteria.
The latter again influence the technical criteria.1 There are four theoretic
alternatives, inter alia depending on whether there are architectural constraints
that in fact predetermine the architecture or not.

1These are only the general influences. Additionally, there may also be examples where
directive criteria influence technical criteria and where quality criteria influence technical
criteria.

CHAPTER 5. THE DESYRE METHOD 111

Review the catalogue and check for more information related to the criteria
within the requirements artifacts.

(a) Technical Criteria Predominance. If there are architectural
constraints, the architecture is already predefined and the functional and
quality criteria can only be considered secondarily. This directly imposes or at
least can restrict the logical design, a coarse-grained blueprint of the system’s
architecture, leading to derivation (1) in Fig. 5.6. If the system architect
finds that there is a predominance of technical criteria that leads to designing
the system similarly to previous systems, he should perform an architecture
evaluation to determine the appropriateness of the old architecture and thereby
justify his decision and assure design quality.

(b) Functional Criteria Predominance. In the alternative case, when
there is no such predetermination, the architecture is organized according
to the functionality of the system. This allows us to derive a structured
service hierarchy with user-perceptible functions decomposed into realizable
subfunctions, depicted by derivation (2) in Fig. 5.6. An analysis identifies
parts of functionality that are alike within the different use cases and functional
requirements of the system. Those common or alike parts are then abstracted
to, grouped, and realized as logical components.

In general, (a) leads to a less abstract decomposition than (b), because it
has a stronger connection to technical constraints, but both solutions primarily
lead to a logical blueprint of the architecture.

Within the directive criteria, especially in big companies, the organizational
criteria (e.g., in terms of Conway’s Law, cf. Sec. 3.3.1) take a significant
influence on the decomposition of complex systems. The reason for this is that
the departments are often already organized according to special application
domains, for example, in the automotive domain, there is usually a carriage
department, engine control department, driver assistance systems department,
etc. However, according to whether the organization is structured according
to functional system units or technical system units, the predominance will be
functional or technical, and the respective above case applies.

4. Quality Assurance After an initial decomposition, either according to
architectural or functional criteria, the quality criteria concerning architecture
are evaluated (see also evaluation methods according to Bengtsson and
Bosch [BB98]). In case they are not sufficiently realized by the initial
decomposition, the system architect has to reconsider and modify the design
accordingly.

The quality criteria can influence the architecture of the resulting system
in two ways: Either the structure is modified according to a certain principle,
e.g., maintainability, or some functionality is added to fulfill the requirement,
e.g., a component for user identification to satisfy a security requirement. For
realizing specific quality requirements, please refer to, e.g., the NFR framework
from Chung et al. [CNYM00] and the architectural techniques described by Bass
et al. [BCK03].

CHAPTER 5. THE DESYRE METHOD 112

Defining the Architecture. Furthermore, the following rules of thumb for
defining an architecture, according to Bass et al. [BCK03, p. 16], are widely
accepted in academia and industry:

• Well-defined modules use the principles of information hiding and
separation of concerns for their functional responsibilities.

• Well-defined interfaces per module encapsulate changeable aspects, so the
development teams can work independently.

• Well-known architectural tactics [BCK03, Chap. 5] help to achieve quality
attributes.

• Never depend on a particular version of a tool or other commercial
product.

• Modules that produce data should be separate from modules that consume
data.

• Parallel-processing systems need well-defined processes or tasks.
• Every task or process should be written so that its assignment to a specific

processor can easily be changed.
• Use a small number of simple interaction patterns (= do same things in

the same way throughout).

These rules of thumb are often known in a different wording, for example as
separation of concerns with respect to separating responsibilities, separating
technical aspects and application domain, and using black boxes. Further
principles to keep in mind are reusability, maintainability, and other quality
attributes, as well as the so-called KISS principle (Keep It Simple and Stupid)
that captures the idea to choose the most simple feasible approach for a solution
when there are a couple of otherwise equal possibilities.

Running Example. For the driver assistance systems, the conclusion is
to apply a decomposition primarily according to the identified services, the
user-perceived functionality. One usage service cluster is realized by one logical
function group or logical component as depicted in Fig. 5.7.

Consequently, the driver assistance systems are decomposed into the
subsystems Blind Spot Detection, Lane Departure Warning, Adaptive Cruise
Control, Radio Frequency Warning, Night Vision, and Driver Drowsiness
Detection.

Figure 5.7: Service Graph of DAS.

CHAPTER 5. THE DESYRE METHOD 113

5.5 Transition to Subsystem Requirements
The general idea of transition from system requirements to subsystem
requirements is discussed and analyzed in Chap. 4. The applicable patterns are
presented and illustrated with examples in Sec. 4.6.3. For some requirements
engineering artifacts, the application differs somewhat from the plain adoption
of the patterns. Therefore, the artifacts are discussed separately in the following.

Figure 5.8: Transition to Subsystem Requirements in Process DeSyRe

In Sec. 2.5.3, it was stated that the artifacts of the content categories Context
and Requirements may be refined on the lower levels if necessary, but their
general form would stay the same. For the transition of the point of view of the
overall system to the point of view of a subsystem, such a refinement is necessary.
This section describes the transition to subsystem requirements (Fig. 5.8).

Thereby, the transition from system level to subsystem level differs for
specific types of artifacts as detailed in the following.

5.5.1 Context
A systematic derivation and refinement of requirements for subsystems deduces
a system vision, refines the goals, deduces the stakeholders, and refines
the operational environment. However, as the subcontractor is usually not
intended to know all the information contained in those artifacts, some of the
information (e.g., business goals) may intentionally be omitted in the subsystem
requirements specification.

System Vision. The system vision is deduced from the goals of the overall
system and the initial decomposition, as the system vision in general is not
detailed enough to directly derive system visions for the subsystems.

Running example. The system vision of the driver assistance systems (“A
well-interrelated network of driver assistance systems shall support the driver
in demanding traffic situations and thereby increase the safety of the vehicle.”)
provides a rough idea, but does not allow to deduce the subsystems. Instead,
knowledge of goals and and decomposition allows to deduce subsystem visions,
e.g., for the Radio Frequency Warning System: “RFW supports the driver in
coping with the information input from the surrounding environment by use of
radio frequency signals.”

Goals. The goals on the subsystem level are decomposed and refined for the
subsystems according to the given initial decomposition. For each subsystem,

CHAPTER 5. THE DESYRE METHOD 114

the list of goals is walked through and analyzed and documented how the
subsystem can contribute to the system goal.

Running example. The driver assistance systems’ goal “Provide active
safety” can be concretized for the RFW subsystem to “Provide active safety by
preventing that the driver misses a traffic sign which could cause an accident”.

Stakeholders. The stakeholders on the system level and on the subsystem
level are not necessarily the same, but there is strong overlapping. Some of
the stakeholders might be especially involved with a particular subsystem, but
there is no new information about them on the logical level, the stakeholders do
not change according to the degree of detail. Other stakeholders might not be
involved at all with specific subsystems, instead, there may be others that were
not visible yet on the system level.

Running example. The driver assistance subsystems as black box do already
include suppliers in their stakeholder list. However, on the subsystem level,
there may be additional suppliers for the realization of a specific subsystem,
e.g., for special hardware, because the design choice had not been taken yet.

Operational Environment. In contrast to the business-related artifacts, the
appearance of the Operational Environment does change according to the degree
of detail on the logical level.

The point of view of the requirements engineer shifts from interacting
surrounding systems to interacting surrounding subsystems and possibly also
to surrounding systems, i.e., the developer zooms in on a particular subsystem.
This shift means that, on one hand, there is a refinement of the description of
those surrounding systems that interact with the subsystem under analysis and,
on the other hand, other subsystems of the overall system under development
turn into being subjects of the context of the subsystem under analysis on
the logical level. The system environment on that layer can be divided into
a technical and a physical aspect, as defined by Weyer [WP08, pp. 171/172].
For each of them, the documented elements are subject-matter, event, input
parameter, and output parameter.

Running example. Before, the driver assistance systems were the black
box and the surrounding vehicle and the road traffic were the operational
environment. For the RFW system, the operational environment consists of
the parts of the vehicle that it interacts with, e.g., the display (to inform the
driver), and the parts of the road traffic that it receives input from, e.g., traffic
signs.

5.5.2 Requirements
For the requirements artifacts, the situation is different from the context
artifacts. In this content category, all artifact types may be refined or derived
from the respective usage level artifacts.

CHAPTER 5. THE DESYRE METHOD 115

Use cases. For the vertical refinement2 of use cases, it is possible to
distinguish between two types of scenarios as defined by Sikora [BGL+08,
pp. 17/18]. One type is local scenarios, which represent only system-internal
interaction, and the other one is system-wide scenarios, which document
interaction at the external system interface. Mixed forms of the two types
also occur.

Scenarios with interaction at the system interface are the ones which are
already present on the usage level. These are now refined on the logical level
and the actors within the respective scenarios are the (equally refined) subject
matters of the physical and technical context in the Operational Environment.
Therefore, these subject-matters belong to the surrounding systems on the usage
level.

System-internal scenarios are not yet documented on the usage level as they
are still encapsulated through the black box representing the system under
development. These are captured for the first time on the logical level and
the actors are those subject-matters of the physical and technical context that
were not yet present on the usage level either, in explicit, of the adjacent
subsystems. The general pattern from Sec. 4.6.3 can be used for guidance on
the decomposition.

Running example. For the RFW system, a system scenario is any concrete
scenario instantiated for one of the use cases, for example:

“The RFW system reads a speed limit traffic sign and displays a
warning for the driver, because he is driving too fast.”

For the system level scenarios, the RFW system is still black box. On
the subsystem level, the scenario is decomposed into two scenarios for the
subsystems (as depicted in the example in Fig. 4.7):

“The RFW control reads and processes a speed limit traffic sign and
sends the information to the display.”
“The RFW display receives information about speeding and shows
a warning for the driver.”

Requirements. An equivalent systematic refinement of the requirements
leads to more detailed information about function, data, and behavior on the
subsystem level. The functions thereby are performed only by the subsystem
under analysis and the occurring actors are equal to the ones present in the
scenarios on the logical level. Consequently, there are requirements from the
usage level, which have to be refined, and new requirements that are derived
from the new scenarios on the logical level.

For the requirements that are to be refined, the description of requirements
refinement with assumption / guarantee specifications is applied. The general
procedure is a case differentiation and then application of the respective pattern
(see also Sec. 4.4, depicted in Fig. 4.5). There are three patterns: two special
cases that already apply for many requirements, namely pipeline (Sec. 4.6.1)

2Refinement can occur in two types: Horizontal refinement stays on the same abstraction
level, vertical refinement makes the transition to the next abstraction level. In the case at
hand, there is a transition to the next lower abstraction level, the logical level.

CHAPTER 5. THE DESYRE METHOD 116

and subservice (Sec. 4.6.2), and a general pattern that can always be applied
(Sec. 4.6.3).

Sec. 4.5.2 that exemplarily describes the refinement in case of an 1:m
transition for a requirement that has to be refined for a number ofm subsystems.

Running example. An example for each pattern was already given in Sec. 4.6:
Adaptive Cruise Control for the general pattern (see Fig. 4.11), Radio Frequency
Warner for the pipeline pattern (see Fig. 4.7), and Navigation System for the
subservice pattern (see Fig. 4.9). The following example shows that the general
pattern includes all cases that are not covered by the special case patterns, as
it is composed of two input channels and one output channel, while the other
output channel is not in use.

The LightSystem automatically switches on the light when the sensor
detects too little luminosity. The interaction may be overruled by the driver.
The system is depicted in Fig. 5.9.

Figure 5.9: Decomposition of an Example from the Light System.

In this example, the interface consists of two input channels, one from the
sensor, the notification, and one from the driver, the driver overrule. The output
is a single communication channel, the one that switches the light on/off. The
assumption/guarantee specification for LightSystem is:

ALightSystem(notification) ∧ALightSystem(overrule) ⇒ GLightSystem(light)

The subsystems are the LightIntensitySensorECU(LIS) and the
HeadLightECU(HL). The assumptions and guarantees for the system and
the subsystems are given as:

ALIS : The light intensity information is available.

GLIS : The system indicates whether light is necessary.

Subsystem Spec. LIS: ALIS(notification) ⇒ GLIS(light)

AHL: The information about whether light is necessary is available,
optionally, a driver overrule can occur.

GHL: The system switches on the light if necessary.

Subsystem Spec. HL: AHL(light) ∧AHL(overrule) ⇒ GHL(light on/off)

Composition leads to:

ALIS(notific.) ∧AHL(overrule)∧AHL(light)⇒ GLIS(light) ∧GHL(light on/off)

CHAPTER 5. THE DESYRE METHOD 117

Reduction: GLIS(light) ⇒ AHL(light)
Result: ALIS(notification) ∧AHL(overrule) ⇒ GHL(light on/off)

The verification that the assumptions and guarantees can be composed such
that the decomposition is proved is not a mandatory step within DeSyRe. The
patterns work, a subsequent composition and verification show whether correct
assumptions and guarantees for the subsystems have been chosen. Therefore,
the verification can be performed as optional but recommended step for quality
assurance.

5.5.3 Design
The artifacts for the content category design on the logical level differ more
from the artifacts on the usage level than the other content categories. For that
reason, they have already been defined and described in Sec. 2.5.3.

The requirements engineer develops the artifacts from the design artifacts
on the system level and the context and requirements artifacts on the subsystem
level. The service graph of the design category on the system level (see
Sec. 2.5.3) served as basis for the system decomposition as described in
Sec. 5.4.2. The Rationale captures the design decisions that have been taken
for the decomposition of the system. A Component Model (Sec. 2.5.3) is
the documentation of the structural view on the decomposition and can be
refined hierarchically. A Behavior Model (Sec. 2.5.3) is the system view on the
interactions defined in the use case scenarios on the logical level and accounts
for the constraints documented in the Operational Environment.

Thereby, each component represents a subsystem. Consequently, the
requirements engineer deduces a service graph and an interface description
for each of the subsystems by using the use cases and the operational
environment descriptions of the context and requirements artifacts of the
respective subsystem specifications. Later on, these new black box specifications
of the subsystems will be turned into white box specifications by the respective
subcontractors who realize the subsystems.

Running Example. The service graph of the driver assistance systems was
already depicted in Fig. 5.7. The service graph that is deduced from the radio
frequency warning system from use case scenarios as presented in Sec. 5.5.2 is
depicted in Fig. 5.10.

5.5.4 Compositionality
When decomposing a system into subsystems, even more with the intention
of developing those subsystems distributedly, compositionality is an important
issue. Janssen [Jan97] observed that a compositional approach enables the
developer to think of the system as a composite set of behaviors, which means
that he or she can factorize design problem into smaller problems which can
then be handled one by one.3

Apart from the intuitive understanding of compositionality, how can
compositionality be captured formally? Concerning language in general,

3Janssen further concluded that “thus compositionality forms a reformulation of old
wisdom, attributed to Philippus of Macedonia: divide et impera” [Jan97, p. 1]

CHAPTER 5. THE DESYRE METHOD 118

Figure 5.10: Service Graph Overview of the RFW

Montague [Mon70] suggests to capture the principle of compositionality
formally through a homomorphism between the expressions of a language
and the meanings of those expressions. However, a discussion of an
encompassing formalization of language with a syntactic algebra for application
in requirements engineering would go too far for the purpose of DeSyRe.
Therefore the method is limited to aiming for compositionality without such
a complete formalization and refers to, for example, Fleischmann [Fle08] for
further reading on that topic related to the domain of requirements engineering
for embedded systems.

A means for tackling compositionality is to master its strongest opponent,
according to the Stanford Encyclopedia of Philosophy [Sza07], the consideration
of the context. The same specification can lead to crucially diverging results
if the context is not defined appropriately and meaningfully. This reinforces
putting emphasis on the explicit documentation of the context within the
artifact model, not only on the usage level but also on the lower abstraction
levels.

Compositionality can only be actually guaranteed when using a formal
approach and verification techniques. An example for the realization of
guaranteed compositionality is the verification of operational semantics as
described, e.g., by Larsen [LL91], but this is out of scope for the work at hand.

Within DeSyRe, compositionality is given for the usage of the requirements
decomposition patterns, as shown in Sec. 4.6.

Running Example. For the driver assistance systems, the compositionality
of the requirements that were refined using assumption/guarantee specifications
is verified by (re-)composing the subsystem specifications. For other derived
artifacts, additional quality assurance is required to verify the compositionality.

CHAPTER 5. THE DESYRE METHOD 119

Figure 5.11: Delivery of Subsystem Specification in Process DeSyRe

5.6 Delivery of Subsystem Specification
At this point of the process, the systematic refinement of the artifacts from
the usage level lead to a self-contained specification for the subsystems that
can be used independently. Subsequently, the subsystem artifacts can be put
in one document and handed on to the organizational unit responsible for the
development of the subsystem, whether in-house or at a supplier’s site.

At this stage, the DeSyRe process is suspended until the integration and the
gap is filled by the standard implementation and testing phases of the developing
organizational unit.

After the implementation, the developed subsystem has to be integrated with
the other developed subsystems and into the overall system.

Integration is a phase that currently still challenges system developers
(or original equipment manufacturers). First, this is because of distributed
development and therefore difficult communication, as for example observed by
Herbsleb and Grinter [HG99].

Second, high effort in integration is mostly due to insufficient specification
of subsystems. How to improve the latter and instead develop a consistent,
self-contained subsystem specification was described in the past sections,
thereby laying the most important foundation for smooth integration.

The next section deals on how to integrate and / or reuse a subsystem and
its documentation. As the DeSyRe method description does not include any
tasks with regard to the actual implementation of the system, it is assumed
at this point, that the realization of the subsystems has been accomplished
by the separate development units (suppliers and organizational units of
the contractor). Therefore, the next stage of the general software systems
development process is the integration phase.

Running Example. For the driver assistance subsystems, all artifacts
concerning the radio frequency warning system are put together as subsystem
specification and are delivered to the subcontractor. All artifacts concerning
the adaptive cruise control are gathered in another subsystem specification and
are delivered to another subcontractor for realization.

CHAPTER 5. THE DESYRE METHOD 120

5.7 Integration and/or Reuse
Finally, the last step of the development process is the integration of the realized
subsystems (Fig. 5.12).

Figure 5.12: Integration and/or Reuse in Process DeSyRe

Integration or re-integration denotes the integration of a developed
subsystem into the overall system whose specification was the point of origin
for the extraction of the subsystem specification.

For reuse, there are different situations: within a product line, in a
component-off-the-shelf approach, or simply ad-hoc when developing a new
system that resembles an older one which has already been developed.

5.7.1 Integration
In case of integration of a subsystem whose specification was directly derived
from the system specification with DeSyRe, the integration should not reveal
misalignments between the system specification and the subsystem specification
in case the system specification is correct. Therefore, any potentially arising
compatibility problem should already have been detected during module test
on the subsystem level when the complete subsystem is validated against its
specification. Else, the initial overall system specification may have contained
errors from the beginning.

Running Example. For the driver assistance systems, integration of the
developed subsystems radio frequency warning system and adaptive cruise
control should not reveal any problems at that stage. Furthermore, the
subsystem specifications are reusable if updated by using a continuous change
management process.

5.7.2 Reuse
In case of reuse, the steps to be taken are to identify an appropriate subsystem
and check its compatibility. In case no adequate subsystem can be found,
it is necessary to analyze and integrate additional requirements and reiterate
development.

Subsystem Identification. The following steps only apply in the case when
the subsystem is not yet chosen or has not been developed especially for the
surrounding system under development. For that case it is necessary to identify

CHAPTER 5. THE DESYRE METHOD 121

appropriate subsystems, by a search which can be accomplished according to
their interface specification.

The prerequisite for such a search is an existing knowledge base that stores all
the interface specifications and allows for queries. Imagining such a database
is already set up and filled to a useful degree, a string search for keywords
about the desired functionality in the fields Name and Purpose should find
the potentially adequate subsystems. These candidate subsystems subsequently
have to be checked for their actual compatibility to the surrounding system
under development.

Compatibility Check. The most important demand for compatibility is that
the interfaces and borders between subsystems are cleanly and consistently
defined with all constraints.

Garlan et al. have discussed that architectural mismatch stems from
mismatched assumptions a reusable part makes about the system structure it
is to be part of. They blame this problem on conflicts of these assumptions
with the assumptions of parts of the new surrounding system, which are almost
always implicit, thus they are extremely difficult to analyze before building the
system [GAO95].

Therefore, the appropriate modeling of the subsystem borders and their
context is crucial to avoid mismatches when integrating the subsystem into a
(new) surrounding system. The guiding question is: What information can we
use as is and what do we have to add? For the information that is already
present we have to decide whether the given form is already appropriate or if
we have to adapt a form to avoid dragging along to much information.

The constraints can roughly be divided into hardware constraints (e.g.,
physical limits) and software constraints (e.g., data types) and each of the
types can be categorized as static (e.g., resources) or dynamic (e.g., timing).
For ensuring compatibility, it is necessary to check all types of constraints that
are captured in the artifacts Operational Environment, Interface Specification,
Data Model, and Behavior Model.

Analysis and Integration of Additional Requirements. In case that
there was no exactly matching subsystem found during the Subsystem
Identification, the solution would be to perform an analysis of the additional
requirements that could not be satisfied by the subsystem so far.

Analyzing the additional constraints and requirements provides an answer
to the question what would have to be added to the subsystem, or what would
have to be changed within the subsystem to fully meet the demands imposed by
the surrounding system under consideration. Subsequently, when those efforts
have been named, a cost calculation has to be performed to determine whether
the adaptation is worth the efforts.

Finally, when that decision was made, the last step is to integrate the new
requirements into the artifacts and check their consistency, then go back to
the implementation phase for realizing the changes in the actual software and
afterwards again return to ensuring the compatibility.

CHAPTER 5. THE DESYRE METHOD 122

5.8 Implications
The approach brings a number of benefits, but it also imposes limitations. Both
aspects are discussed in the following.

5.8.1 Benefits
This section presents the benefits of the application of the approach with
respect to requirements engineering, architecture development, and reuse.
The most specific benefits of this work are improved structuredness of
the development of subsystem requirements and completeness of subsystem
requirements specifications.

Structured Derivation of Subsystem Requirements. The proposed
approach is the first published guide for systematically deriving subsystem
requirements from system requirements. It provides a detailed description
of the steps the requirements engineer and the system designer have to
perform. The requirements engineer elicits the system requirements, the system
designer performs the initial system decomposition using the catalogue, and the
requirements engineer derives the subsystem requirements using the patterns.

Completeness of Subsystem Specifications. With the process steps for
derivation of subsystem requirements, all necessary information from the system
requirements specification is transformed into the appropriate form for the
subsystem requirements specification that is to be delivered to a subcontractor.
The term completeness is to be seen relative to what is considered to be
necessary information for successful system development. Naturally, the
precondition for completeness of the subsystem requirements is completeness
of the system requirements.

Benefits of Model-based Requirements Engineering. In the situation
in embedded systems described in the work at hand, model-based requirements
engineering (RE) can help to overcome some of the difficulties related to
natural language requirements [PBKS07]. In model-based RE, conceptual
models such as goal models, scenario models, or function models are used to
specify requirements. Model-based RE offers several advantages: A model
represents a well-defined view of the planned system. Design constraints and
design choices can be documented in separate models, e.g., using an architecture
description language. Models can be automatically checked, e.g., for consistency
between different views or to identify the absence of certain requirements
during tool-supported simulations. Models support communication among the
stakeholders and achieve a common understanding of the planned system.

As the approach at hand works artifact-based, it features all the advantages
of model-based requirements engineering.

Benefits of Architecture Documentation. As discussed by Beneken,
architecture and its appropriate documentation are fundamental for successful
project management in big software development projects [Ben08, Chap. 1].
The DeSyRe approach supports explicit definition of the first design sketch

CHAPTER 5. THE DESYRE METHOD 123

and documentation of the architecture by providing the decomposition criteria
catalogue (Chap. 3) and the guiding process (Chap. 5) for application of the
catalogue and documentation in artifacts (Chap. 2.5.3). The artifact model
and the decomposition guidance offer a systematic approach to information
gathering and architecture development. In the content category “design” of the
artifact model, the views of behavior and interfaces are already captured.

Benefit of Systematic Reuse. The DeSyRe approach also provides
support for reuse: in form of specification artifacts that compose a modular
artifact model (Chap. 2.5.3), which adheres the OMG Reusable asset
Specification [OMG04], and with a short description of which steps to perform
for the reuse of a subsystem specification in Sec. 5.7. Furthermore, reuse is also
one of the criteria in the decomposition criteria catalogue (Chap. 3).

As reuse has been proven to lower maintenance load and improve software
quality by Stützle [Stü02, p. 108], the approach helps to achieve these goals by
supporting reuse.

5.8.2 Limitations
The potential limitations of the approach at hand are:

1. the transferability to different surrounding development processes,

2. and the required expertise or competence for using the approach.

Transferability to Surrounding Processes

Another limitation could be that it requires effort to integrate it into
surrounding, established development processes or, even more desirable with
respect to facilitated integration, development process models. In case there is
an established process like RUP [Kru00], V-Modell XT [Bun08b] or others, the
question is whether it requires much effort to include the approach at hand into
that framework.

Implications. Additional effort for adaptation of existing processes reduces
the probability of application in practice. It is likely that the requirements
documentation differs somewhat from the documentation used in the approach
at hand, in explicit there may not even be an established artifact model.

Counter Measures. Neither the surrounding process nor the type of
requirements documentation influence the applicability of the approach. The
guidance on system decomposition can be used independently at the appropriate
stage of the development process. The information sources for the decomposition
criteria are described such that they can be found in any information model
used for the initial requirements documentation. The guidance on requirements
decomposition and refinement can be applied to whichever form of requirements
documentation is established, whether it be natural language text or a different
artifact model.

CHAPTER 5. THE DESYRE METHOD 124

Required Expertise

A final potential limitation is the required expertise or competence that is
required to perform the approach at hand. A developer with limited background
knowledge on requirements engineering will probably have difficulties with the
application.

Implications. The higher the effort for learning how to use the approach,
the less is the motivation of the developers and therefore the probability for its
application in practice. Tutorials have to be held in seminars or provided as
documents for individual learning and reference.

Counter Measures. The estimation is that the approach at hand can be
taught in approximately two hours: One hour presentation and explanation and
another hour for exercises and their discussion. Little experienced developers
may experience difficulties if their general knowledge of requirements engineering
is low, but not specifically related to the approach at hand.

Summary. This chapter presented the guiding process for the DeSyRe
approach to get to a complete subsystem requirements specification from
the system requirements. It integrates the concepts of the decomposition
criteria catalogue and the requirements refinement and applies them using a
requirements engineering artifact model. The steps are illustrated with examples
from the driver assistance systems, which are described in more detail in the
next chapter.

Chapter 6

Evaluation and Assessment

Contents
6.1 Case Study on Applicability 125
6.2 Case Study on Usefulness 144

This chapter presents the evaluation of DeSyRe in case studies, experiences
gained in the case studies, and a small survey evaluation with respect to the
usefulness of the approach for practitioners.

There are two research objectives for the evaluation of the method:
applicability and usefulness. The applicability is evaluated with a case study
performed for the driver assistance systems, reported on in Sec. 6.1. The
usefulness of the approach was evaluated by a questionnaire handed out to
practitioners after a tutorial on the approach, reported on in Sec. 6.2.

6.1 Case Study on Applicability
In the following, the case study is presented and discussed inspired by the
structure recommended by Runeson and Höst [RH09].

6.1.1 Research Objective
The research question for the case study is defined according to the goal
definition template by Wohlin et al. [WRH00]:

Analyze the DeSyRe approach
for the purpose of evaluation
with respect to the applicability
from the point of view of the requirements engineer
in the context of driver assistance systems.

6.1.2 Study Object
The driver assistance systems were chosen as case study for the purpose of
validating the applicability of the approach presented in the work at hand. As
they provide a wide range of different granularities and types of requirements

125

CHAPTER 6. EVALUATION AND ASSESSMENT 126

with a sufficient degree of detail, they qualified as suitable for an evaluation
of DeSyRe. The objective was to perform the complete process described in
Chap. 5.

6.1.3 Study Design
The case study was performed as action research by the author. She applied
the complete DeSyRe method to design and document the decomposition of
driver assistance systems and derive the requirements for the subsystems radio
frequency warner and adaptive cruise control. These two subsystems were
already introduced shortly in Sec. 2.6. Thereby, she began with the starting
point in Sec. 5.3, followed by deducing the system decomposition (Sec. 5.4),
performing requirements refinement (Sec. 5.5), and documenting the respective
contents with help of the artifact model.

The initial input for the case study was composed by a number of information
sources: General background knowledge about driver assistance systems was
gained during research projects with BMW, Daimler, Bosch, and Siemens as
well as through literature research, e.g., [Sta09, Eur06, LCJZ08, WKV08, BV06,
BDS08, LS04]. The original source document of the requirements specification
of the RFW system by Daimler AG is available in German only [Ris07].
The original requirements that have been used in the ACC case study are
documented in [FFH+09b].

6.1.4 Execution and Results
For easier reading, the contents and results of the case study are set in italic
sans serif while the supplementary explanations are set in normal font. All
artifacts have been developed from scratch on the basis of common knowledge
on driver assistance systems and the cited documents [Ris07, FFH+09b] to avoid
confidentiality issues.

System Requirements
The following passage lists requirements that apply to the entirety of DASs,
captured in the artifacts of the usage level as defined in Sec. 2.5.3. As the usage
level describes the system in a black-box manner, these artifacts (see Fig. 5.3) can
all be developed before analyzing the decomposition. They serve as information
basis for the decomposition.

Context
The artifacts for the context on the system level are the system vision, the
goals (business goals and quality goals), the stakeholders, and the operational
environment.

System Vision. The system vision is an image of the system to be developed:
‘A well-interrelated network of driver assistance systems shall support the driver
in demanding traffic situations and thereby increase the safety of the vehicle.”

CHAPTER 6. EVALUATION AND ASSESSMENT 127

Stakeholders. Stakeholders are persons and institutions that are affected by
the development and/or the operations of a system.

1. Driver, may be accompanied by other passengers.
2. Original equipment manufacturer, can be further detailed in marketing

person, system architect, software engineer, quality assurance, lawyer.
3. Supplier, can be further detailed, like the OEM, but in this case is only

regarded as one stakeholder.
4. Customer engineer, for problem reports and upgrades.

Goals. The business goals sum up the economic and customer-related aims of
the system:

1. Improve market competition.
2. Safeguard investment, the vehicle.
3. Provide active safety.
4. Fortify trust of driver in brand.

The quality goals determine specific characteristics that the system shall
demonstrate apart from the actual functionality:

1. High reliability and robustness.
2. Maximize utilisation of ressources.
3. Improve the communication between the different DAS.

Operational Environment. An illustration of the system environment is provided
in Fig. 6.1. It depicts the system with its surrounding related systems and
respective interacting stakeholders to provide an overview of the operational
environment.

Figure 6.1: Operational Environment of DAS.

CHAPTER 6. EVALUATION AND ASSESSMENT 128

Requirements
The following use cases were gathered in a brainstorming session with BMW
employees after identifying the system vision and the goals. Not all of the
following use cases are realized by ACC or RFW.

Use Cases for DAS

1. The driver is about to fall asleep. The system omits a warning tone.
2. The driver is about to change lanes. The system displays a vehicle in the

blind spot.
3. The driver is using cruise control and approaches a vehicle ahead. The

system decelerates.
4. The driver is driving 100km/h although there is a speed limit of 80km/h. The

system displays a warning.
5. The driver is distracted by his kid on the backseat. When turning around

to face the kid while talking, he unintentionally departs from the lane. The
system omits a warning tone and displays a designated “lane departure”
symbol.

6. A jogger in dark clothes is running on the shoulder of the road at night.
The system notifies the driver by displaying a designated “human in way”
symbol.

7. The driver is using cruise control and is about to overtake another vehicle.
He sets the indicator to change lanes. The vehicle accelerates.

The following functional requirements are not assigned to one specific use
case but apply for all DAS.

Functional Requirements for DAS

1. The vehicle shall keep a certain clearance distance to preceding vehicles,
depending on the current speed and driving situation.

2. The driver has the final authority, not the vehicle.
3. The displays may not restrict the sight of the driver.
4. The driver may not be overly distracted by the DAS.
5. The DAS may not charge the busload more than xxx kBits/s.
6. All DAS shall be deployed onto one ECU.

They are later on decomposed and refined into subsystem requirements for
ACC and RFW.

Design
Service Graph. The service graph in Fig. 6.2 displays the system services. In

current practice, there is hardly any usage-related interaction between driver
assistance systems. Prioritization of warnings is an important issue for not
stressing the driver by too much information at the same time, but this is a quality
requirements which is not explicitly listed within the services that the systems
provide.

CHAPTER 6. EVALUATION AND ASSESSMENT 129

Figure 6.2: Service Graph of DAS.

Interface Specification. Fig. 6.3 displays part of the interface specification of
the driver assistance system. The header lists the functions that are offered by
the system and, subsequently, the interface is specified per function. In this case,
only the function blind spot detection is further detailed with parameters, error
cases, recovery, and quality requirements.

Figure 6.3: Example Interface Specification.

Decomposition of the System
At this point, all artifacts that serve as information basis for the decomposition
of the overall system (see Sec. 5.3) have been presented. This section describes

CHAPTER 6. EVALUATION AND ASSESSMENT 130

the application of the decomposition steps defined in Sec. 5.4.

Consideration of the Catalogue
When used for the first time in a company, the catalogue may be reviewed
and probably customized to certain business strategies of the company (see
Sec. 5.4.1). This would be accomplished by stakeholders from the management.
Then the users of the catalogue, the requirements engineers, make themselves
familiar with the catalogue and prioritize the optimization factors described in
Sec. 3.2.1 according to the business goals that are documented in the artifact
Goals.

Goals and Optimization Factors. Naturally, most business goals cannot be
mapped one to one to an optimization factor, because the optimization factors are
related to systems engineering while the business goals stem from marketing and
management. Instead, the business goals can be supported through optimizing the
system in an adequate way. For example, the market competition can be supported
through building a reliable system.

A more direct relation is observable between the quality goals of the “Goals”
artifact and the optimization criteria. “High reliability” (QG 1) can be mapped to
reliability, “Maximize utilization of resources” is a cost factor, and to improve the
communication between the different DASs requires controllability.

Goals and Decomposition Criteria. The tables Tab. 6.1, Tab. 6.2, Tab. 6.3, and
Tab. 6.4 list and analyze the decomposition criteria from the reference catalogue
(Sec. 3.3 to Sec. 3.6) for the driver assistance systems.

Table 6.1: Directive Decomposition Criteria in DAS
Organization Infrastructure Conway’s Law says that the system will mirror the

developing organization’s structure, but at the same time,
developing organizations will also be structured according
to the systems they develop. The departments at BMW
are already organized according to the different driver
assistance systems.

Business Rules No explicit business rules are known of, that would
influence the decomposition of DAS.

Experience The experience of the developers is about ten years
in average, their background is mainly mechanical and
electrical engineering.

Legislation Laws German Road Traffic Act “StVO” [Bun07] , German Road
Traffic Admission Act “StVZO” [Bun08c], Electro-magnetic
Compatibility Act “EMV” [Bun08d] and others, but none of
them explicitly influences the decomposition.

Standards Different German Industry Norms “DIN” apply, but none of
them is relevant for the decomposition.

Economics Reuse All of the DAS have already been developed in the previous
vehicle series, so reuse is strongly expected.

Cost Models Cost of the hardware parts is crucial as even minor amounts
of money sum up for the number of produced vehicles.
Software development costs are considered less critical, but
in this case are connected with reuse, as a decomposition
for high reusability will decrease the costs for the next
iteration.

CHAPTER 6. EVALUATION AND ASSESSMENT 131

Table 6.2: Functional Decomposition Criteria in DAS
Usage Services The usage services that are present in the use cases in Sec. 6.1.4 can

be grouped according to their functionality. This is the most intuitive
decomposition.

Functional
Dependencies

For the use cases in Sec. 6.1.4 there are some functional dependencies. For
example, use case 2 is also relevant for use case 5 in case of a vehicle in
the blind spot when departing the lane.

Unwanted Feature
Interaction

Interaction occurs in case of two DAS responding at the same time to a
traffic situation. For example, the cruise control accelerates when the driver
sets the indicator to pass another vehicle but at the same time the system
detects a vehicle in the blind spot and therefore has to stop the acceleration
to prevent a crash with the vehicle in front as the driver cannot change lanes.
Therefore, the decomposition has to allow for a resolver for the different DAS.

Table 6.3: Quality Decomposition Criteria in DAS
Functionality In the definition of the ISO 9126-1 [Int01], functionality includes suitability,

accuracy, interoperability, compliance, and security. Naturally, these factors
are important for DAS but no explicit impact on the decomposition of DAS
could be determined.

Reliability Maturity, recoverability, and fault tolerance are crucial for all vehicles
participating in road traffic. For system decomposition, this can mean that
certain subsystems are grouped onto redundant electronic control units (to
prevent harm in case of malfunction).

Efficiency Performance is required in terms of behavior, as for any real time system,
and performance in terms of resources, to keep the size and costs of the
hardware low.

Maintainability Changeability and testability are important for reusability. This leads to a
typical modular decomposition with high cohesion and loose coupling.

With prioritized optimization factors and a reviewed criteria catalogue, the
requirements engineer is set up for analyzing dependencies between potential
subsystems.

Dependency Analysis for Driver Assistance Systems
Before the decomposition of the system can be conducted, the dependencies
between the potential subsystems have to be analyzed. Concrete examples for
interaction between driver assistance systems are:

• ACC and navigation: Interconnection between ACC and the navigation
system. The navigation data is used to calculate the curviness of the roadway
ahead and to adjust dynamic parameters to it.

• Braking and ACC: Conjoint use of the far range radar for the intelligent
braking system and the ACC. The two systems also align their warning
algorithms for system boundaries to prevent unwanted double warnings in
the case of both systems being active.

• Driver Surveillance System: usage of multiple input parameters (mainly
operator control actions of the driver) to calculate the driver’s attention and
adjusts the warning thresholds.

• Interferences of DAS: Two DAS are active at the same time and one has to
overrule the other in certain circumstances, for example the cruise control

CHAPTER 6. EVALUATION AND ASSESSMENT 132

Table 6.4: Technical Decomposition Criteria in DAS
Communication
Requirements

Adequate communication has to be supported for real time interaction
between the different DAS and with the rest of the vehicle.

Technical
Constraints

Hardware topology and resources imply a number of technical constraints
that are important for the final deployment onto the technical architecture
but not for the decomposition with respect to the logical architecture design.
Furthermore, general potential bottlenecks arise from shared sensors where
the input is used by more than one system as well as shared output channels
that are used by more than one system, for example the head unit display.

Legacy Systems There is the surrounding system environment to be taken into account with
technical details as specified in the respective interface descriptions.

could be overruled when a future “fog assistant” senses approaching heavy
fog.

These dependencies were not documented explicitly within any source
documents, but are domain knowledge from systems engineers at BMW that
was gathered during informal interviews.

Division into Subsystems
Recalling the described alternatives in Sec. 5.4.2, one possible conclusion is
to apply a decomposition primarily according to the identified services, the
user-perceived functionality. One usage service cluster, one logical function group,
one electronic controller unit. It is not optimal with respect to resources and space
capacity within the vehicle. A different approach might improve the utilization of
resources but offer less flexibility for the design of the individual usage services.

In traditional development in practice in the automotive domain, the abstraction
level of the logical architecture is often skipped. In the approach applied of the
work at hand, the logical architecture and the technical architecture are designed
separately.

For the technical architecture and the deployment, some of the decision factors
for sharing an ECU are the input and output channel locations and potentially
shared logic. In detail, the criteria for partitioning the electronic/electrical system
architecture in vehicles are, according to [Rei09]:

• Homogeneity / heterogeneity of requirements (on the software-in-the-loop
level, processing requirements, resources, availability, ...)

• Communication requirements
• Functional interrelation (related functions integrated or in spatial proximity,

complex functions not widely distributed, ...)
• Geometric criteria (space, wiring length, connectors, power lines, ...)
• Environmental conditions (humidity, temperature, electromagnetic

compatibility, ...)
• Communality, compatibility
• Costs (integration level, take rate, new design, variant, ...)
• Service (accessibility, diagnosis, costs, ...)
• Scalability, extendability over architecture life cycle

CHAPTER 6. EVALUATION AND ASSESSMENT 133

• Variability (basic and high versions of vehicle)

After deciding the initial system decomposition, the requirements
specifications for the subsystems ACC and RFW were elaborated. This step
takes the system requirements and the system decomposition into account and
systematically refines the requirements for the subsystems.

Subsystem ACC
This section presents the developed and documented requirements of the
subsystem “Active Cruise Control”.

Context
System Vision

The driver assistance system Active Cruise Control (ACC) is an
intelligent speed control system that automatically maintains a
pre-defined distance to the vehicle in front.

The system vision for a subsystem can in this case not be derived from the system
vision of the surrounding system, because the idea of the driver assistance systems
was phrased too abstractly to deduce any subsystems. It is the idea of the
system to be developed agreed upon by all stakeholders, which has to be imagined
creatively.

Goals. Some of the DAS goals can be refined for the ACC subsystem. For
example, the goal Provide active safety can be concretized into Provide active
safety by preventing rear-end collisions. Other goals can not be refined in such a
way that the additional information would prevent benefits, and therefore remain
unchanged, for example the goal Safeguard investment. Additionally, there may
be new goals that stakeholders require for the subsystem that were not yet present
on the system level, for example, “Achieve faster adaptation of speed than market
competitors.”.

Stakeholders. The stakeholders are the same as for the complete DAS: Driver,
OEM, supplier, and customer engineer.

Operational Environment. The operational environment of the ACC subsystem in
Fig. 6.4 tailors the DAS operational environment in Fig. 6.1. The related systems
Radio and Tone System are not present any more as they are not relevant for the
ACC. Instead, the Breaking System has been added as interaction possibility for
the driver.

ACC Requirements
The following requirements are the refinements from the overall DAS functional
requirements listed on p. 128.

CHAPTER 6. EVALUATION AND ASSESSMENT 134

Figure 6.4: Operational Environment ACC

1. Within the speed ranges of operation of the ACC system, the vehicle shall
keep a clearance distance of one meter per km/h to preceding vehicles.
The clearance distance is refined for the usage service of the ACC.

2. The driver can overrule the ACC system at any time by either braking,
accelerating, or switching it off.
Thereby, the final authority is refined.

3. The ACC displays or head up display may not restrict the sight of the driver.
The relevant displays are named.

4. The driver may not be overly distracted by interference of the ACC,
acceleration or braking shall occur smoothly.
Potential distraction by the ACC is named.

5. The ACC may not charge the busload more than yyy kBits/s.
In this case, a model for calculating the busload is needed, as described in
Sec. 4.7.2, Eq. 4.9.

6. The ACC shall be deployed onto the same ECU as the other DAS.
The design decision for which ECU to deploy on has not been taken yet,
but the requirement is adopted.

Further functional requirements that refer exclusively to the ACC system are
documented in [FFH+09b]. It is the driver assistance system for Active Cruise
Control with Pre-Crash Safety (PCS).

There are 28 informal requirements in natural language, but they are not
well written. The first four are listed here, the remaining requirements are
documented in App. A.1.

1. Select target vehicle. Probability is calculated by radar data. Conditions:
within the defined range; high probability; most close range vehicle.

2. Select target vehicle. Reject Parking cars.

3. Follow-up control of ACC system starts in case of target vehicle exists.
Distance between two cars is controlled with in the target. Target

CHAPTER 6. EVALUATION AND ASSESSMENT 135

acceleration is decided on deviation of distance and relative speed. Target
acceleration is conveyed from Drive assist ECU to fusion ECU. Fusion ECU
provides request to engine and brake components.

4. Follow-up control of ACC system starts in case of target vehicle exists.
Distance between two cars is configurable depend on vehicle speed.

For example, requirements 3 and 4 are highly redundant. This lack of quality
suggests to perform the quality assurance step described in Sec. 5.3 and perform
a dependency analysis for the requirements.

Multiple dependencies. If there is a dependency between two requirements,
there often applies more than one type of dependency. For example, between
requirement (1) and (2), there apply the dependency types refinement, concept
bundle, feature bundle, logical component, and architectural bundle. This can
be explained through “dependencies between the types of dependencies” as a
requirements refinement will always entail some of the other dependencies.

Ambiguous type of dependency. It is not always clear, which type of
dependency is the most suitable, but it does not seem to make sense to always
assign all potential types of dependencies. For example, is the dependency
between (1) and (2) a refinement, concept bundle, feature bundle, logical
component, or architectural bundle - or is it necessary to consider all of them?

Requirements Dependencies. The majority of detected dependencies were
refinements, i.e., there were eight occurrences. Furthermore one concept bundle,
three feature bundles, two logical components, and one architectural bundle could
be identified. All of them are listed in App. A.2. There were no examples found
for architectural restrictions, architectural alternatives, conflict negotiation, or
architectural decisions. Missing examples for the last four dependency types
are likely to be due to using only the original informal requirements of the ACC
instead of more formally refined requirements. It is not crucial to mark all possible
dependencies for the realization of the system, but it is important to find them as
they give hints on potential requirements inconsistencies or conflicts.

Requirements Conflicts. There were no conflicts found within the ACC
requirements. This was checked by manually reviewing all dependencies.
Therefore the development can proceed straight away to the design artifacts.

Design
The design on the system layer is documented in the artifacts service graph,
behavior specification, and interface specification.

Service Graph

Fig. 6.5 shows the service graph of the ACC subsystem. The ACC is composed by
the three subservices Activation/Deactivation, Regulation, and Input. Activation
enables the subservices of the Regulation. Some of the subservices exclude each
other, because the velocity of the vehicle can only be either slower than 31km/h,
between 31 and 180km/h, or faster than 180km/h.

CHAPTER 6. EVALUATION AND ASSESSMENT 136

Figure 6.5: Service Graph of the subsystem ACC

Interface Specification

The interface specification is simply part of the interface specification that has
been defined for the complete set of driver assistance systems, as the functionality
of the ACC is already perceivable on the “outside” of the black box of driver
assistance systems.

The preceding section captured the resulting requirements specification for
the ACC on the usage level. For the case study, the work with respect to the
subsystem ACC is complete. In the real development process, the subsequent
step would lead to design on the logical architecture level.

Subsystem RFW
The requirements specification of the RFW system [Ris07] (in German) is the case
study developed for the REMsES project [RDSS09]. The complete specification
cannot be supplied within this document due to reasons of secrecy, but examples
are taken in form of the artifacts presented in the following.

Context
System Vision.

The driver assistance system “Radio Frequency Warning” (RFW)
supports the driver in coping with the information input from the
surrounding environment by use of radio frequency signals. [Ris07,
p. 6]

As with the subsystem ACC, the System Vision for the RFW subsystem can not
be derived systematically from the System Vision of the surrounding system. It is
an aim of the system to be developed agreed upon by all stakeholders, which has
to be imagined creatively.

CHAPTER 6. EVALUATION AND ASSESSMENT 137

Figure 6.6: Operational Environment RFW

Goals. The goal “Provide active safety” can be refined into “Provide active safety
by preventing that the driver misses a traffic sign which could cause an accident”.
Additionally, a new goal is: “Use different modalities within RFW to address the
driver.”

Stakeholders. The stakeholders are the same as for the complete DAS: Driver,
OEM, supplier, and customer engineer.

Operational Environment. The operational environment of the RFW subsystem
in Fig. 6.6 tailors the operational environment in Fig. 6.6. There is no Radar
Antenna any more, but there are the Tone System, the Direction Indicator, and
the Discard Button.

Requirements
Common use cases of the RFW subsystem, for example browse through list of hints,
warning for driving in wrong direction, and show speed limit during trip and the
detailed scenario for the latter use case are depicted in Fig. 6.7.

Requirements Dependencies and Conflicts. There were examples for
the same types of dependencies as for the requirements for the subsystem ACC,
but no new insights gained. There were no conflicts found within the RFW
requirements.

Requirements Refinement

The following requirements are the refinements from the overall DAS functional
requirements listed on p. 128.

1. Clearance distance is not applicale to the RFW system, therefore the
requirement is not refined.

CHAPTER 6. EVALUATION AND ASSESSMENT 138

Figure 6.7: Scenario RFW

2. The RFW system can be switched off by the driver at any time.
As the RFW system does not actively interfere but only displays available
information, the driver’s authority can only be refined by the operation of
switching off the system.

3. The RFW display may not shine brighter than vvv lux in order to not restrict
the sight of the driver.
The RFW does not use a head up display in this case, so it is sufficient to
refine the requirement for the instrument cluster display.

4. The warning tone of the RFW system shall be in an adequate volume to be
noticed by the driver but not to startle them. The frequency of the displays
shall not exceed the cognitive abilities of the driver.
This requirement refines and restrict the possible distractions by the RFW.

5. The DAS may not charge the busload more than zzz kBits/s.
As well as in case of the ACC requirements, a model for calculating the
busload is needed, as described in Sec. 4.7.2, Eq. 4.9.

6. The RFW system shall be deployed onto the same ECU as the other DASs.
Again, the design decision for which ECU to deploy on has not been taken
yet.

For the functional requirements of the specification of the RFW system,
two specification documents have to be considered, namely the “system
specification” [Ris07, p. 11ff] and the “component specification” [Ris07, p. 29ff] that
gives further details. The following refinements can be made:

CHAPTER 6. EVALUATION AND ASSESSMENT 139

Interface Requirements. The “environment” requirements within the system
specification [Ris07, Chap. 3] describe the interaction of the RFW system with the
environment, for example: “The RFW system communicates with other systems via
a CAN interface.” [Ris07, p. 8] These interface requirements can be adopted for the
component specification without changes. Therefore, the same requirement can be
found in the component specification of the RFW system [Ris07, p. 27].

The same applies for the other requirements of the chapter, which all describe
the interaction with the environment, i.e.:

• driving direction information [Ris07, p. 9],
• speedometer [Ris07, p. 9],
• on-board computer [Ris07, p. 10],
• display [Ris07, p. 10],
• tone system [Ris07, p. 10],
• velocity control system [Ris07, p. 10/11].

All of these are directly adopted for the subsystem as they impose interface
constraints that are not further refined for subsystems.

System Requirements. The “system description” chapter within the system
specification [Ris07, Chap. 4] encompasses functional and technical requirements.

The core functionality of the RFW controller is given in [Ris07, p. 12]: “The
RFW controller is at the core of the RFW system. Here arrives the signal data
of the RF reader and the rule system of the controller generates the respective
output. For details, see component specification RFW controller Sec. 5.3.1 function
description.”

This is further detailed within the function requirements that are most relevant
for the requirements refinement.

Function Requirements. The “technical requirements” chapter within the system
specification [Ris07, Chap. 5] encompasses, inter alia, a description of the
functionality of the RFW system. The description includes examples for
requirements of the different patterns described in p. 64. There were occurrences of
all requirements patterns, but with different frequency. The most frequent pattern
is the response pattern. With a much lower frequency follow the absence pattern
and, even with lower frequency, the precedence and existence patterns. These
findings confirm the results of the survey by Dwyer et al. [DAC99]. Tab. 6.5 gives
an example for each pattern. Tab. 6.6 shows the refinement of the requirement
“Reading of Radio Signal Queue” [Ris07, p.36].

CHAPTER 6. EVALUATION AND ASSESSMENT 140

Table 6.5: Refinement of Functional Requirements of the RFW System

Ref. Requirement Pattern
[Ris07,
p.31]

All radio signals are added to the queue. Exceptions
are speed limits and clearings. These are stored
separately as they nullify each other.

Existence

[Ris07,
p.37]

The code shall be sent only after a code was sent from
the queue.

Precedence

[Ris07,
p.37]

If a discard-signal is received, the current entry is
deleted.

Response

[Ris07,
p.44]

The component may not produce short circuits. Absence

Table 6.6: Refinement of Functional Requirement “Reading of Queue”[Ris07, p.36,
RFW576]

Ref. Requirement Pattern
[Ris07,
p.36]

If the queue is empty, go to branch “Maximum velocity”. Response

[Ris07,
p.36]

Else send code symbol of the current entry to display
as “SET_RASI_SMYBOL”.

Response

[Ris07,
p.36]

The function is called periodically and the symbol
code is also sent periodically. For cycle time, see
communication matrix.

Response

[Ris07,
p.36]

In case of a warning, there is an additional warning
tone message sent to the tone system.

Response

[Ris07,
p.36]

Warning tones are emitted no more than once. Absence

CHAPTER 6. EVALUATION AND ASSESSMENT 141

For the decomposition patterns described in Sec. 4.5.2, the following examples
occur.

Subservice Decomposition Pattern.

• Original Requirement: “The assigned priority of each incoming radio signal
is looked up in the radio signal catalogue.” [Ris07, p.36]

– Assumption: There are incoming radio signals that are listed in the
radio signal catalogue.

– Guarantee: The priority of the radio signal is returned as assigned by
the catalogue.

The relevant subsystems are the RFW controller and the radio signal queue. The
RFW controller uses the radio signal catalogue as a subservice to identify the
priority of a radio signal. The requirement can be decomposed according to the
subservice pattern (see Sec. 4.6.2) in the following way:

• RFW controller: As the RFW controller is the only subsystem interacting
with the interface, it has to satisfy the whole requirement “The assigned
priority of each incoming radio signal is looked up in the radio signal
catalogue.”

– Assumption: There are incoming radio signals that are listed in the
radio signal catalogue.

– Guarantee: The radio signal is assigned the priority given by the
catalogue.

• Radio signal catalogue: “The priority of the radio signal is returned to the
controller.”

– Assumption: A valid radio signal is received from the controller.
– Guarantee: The appropriate priority is mapped to the received radio

signal and sent to the controller.

Pipeline Decomposition Pattern.

• Original Requirement: “Each radio signal is listed in a radio signal queue
ordered according to priority of the signals.” [Ris07, p.36]

– Assumption: There are incoming radio signals that have been assigned
a priority by the radio signal catalogue.

– Guarantee: The radio signal is placed at the slot corresponding to the
priority within the queue.

The relevant subsystems are the RFW controller, the radio signal queue, and the
display. The three subsystems form a pipeline in order to fulfill the requirement.
The requirement can be decomposed according to the pipeline pattern (see
Sec. 4.6.1) in the following way:

• RFW controller: “The system shall send the incoming radio signals with
their priorities to the radio signal queue.”

CHAPTER 6. EVALUATION AND ASSESSMENT 142

– Assumption: There are incoming radio signals that have been assigned
a priority by the radio signal catalogue.

– Guarantee: The signal and its priority are sent to the radio signal
queue.

• Radio signal queue: “The system shall represent the radio signal
notifications according to their priority.”

– Assumption: The radio signal and its priority are received from the
controller.

– Guarantee: The radio signal is inserted into the queue at the slot
corresponding to the priority so that the complete queue is ordered
according to priorities.

There are no examples for the general decomposition pattern within the
RFW requirements as the system does not interfere with the vehicle control,
but only displays available information for the driver.

Design
The first design sketch of the radio frequency warning system is depicted with the
Service Graph. The functionality of the RFW system is shown in Fig. 6.8.

Figure 6.8: Service Graph of the RFW.

The overall system functionality RFW is decomposed and refined into
subservices Activation/Deactivation, Input, and Regulation. Each of them is
decomposed again into subservices. Some of them en- or disable others, for
example, the Discard Button service cancels the current regulation.

CHAPTER 6. EVALUATION AND ASSESSMENT 143

6.1.5 Discussion
It was possible to develop all artifacts for the overall system specification of
the system level and deduce the subsystem specifications for the two chosen
subsystems. The process was applicable and did not reveal gaps.

Application of the Criteria Catalogue. The catalogue can be used as
checklist, but in an application domain as well known and explored as the
automotive domain, the logical decomposition tends to stay close to previous
solutions. The question, when a logical architecture should be changed, can only
be answered by comparing the old design and some alternative new designs
through an architecture evaluation method. At the same time, it requires a
trade-off between the effort of developing a new design and the impact of the
shortcomings of the old design. On the technical architecture level, the system
designer has to consider, that hardware development advances fast and hardware
cost optimization is crucial for high production volumes.

Application of Requirements Refinement. Due to the limited amount
of coarse-grained functional requirements, only a limited number of example
requirements could be found that can be decomposed and refined to
illustrate broader applicability. However, the smaller number of natural
language functional requirements (in comparison to traditional natural language
requirements specifications as still in practice in the automotive domain) is due
to the graphical artifacts used for parts of the case study.

Requirements Decomposition Patterns. The question of which pattern
to use depends on the point of view of a specific requirement. For example, for
the requirements for the signal queue of the RFW system, the queue can be seen
as pipeline between controller and display, or as subservice to either of them.
This lies within the preferences of the requirements engineer who performs the
decomposition. The important part is that no information gets lost.

Less requirements could be transformed by using the patterns than expected.
The application of the patterns requires the possibility to represent them in
assumption / guarantee style. This is the case for functional requirements that
state details relying on perceivable inputs and outputs.

Application of the DeSyRe Guiding Process. The guiding process
explains how to apply the concepts of the decomposition criteria catalogue
and the requirements refinement in combination with an artifact model for
requirements engineering. The process does not depend on that specific artifact
model and may be substituted by a different one, which would require a more
generic version of the process description. However, a more generic description
was not desired to ensure applicability.

Feasibility of Requirements. Requirements that cannot be operationalized
can only be copied, and therefore are hard to validate. This is the case for
high-level requirements like goals that have not been transformed properly into
system requirements. These requirements tend to stay vague because if the

CHAPTER 6. EVALUATION AND ASSESSMENT 144

developer does not know how to satisfy them (e.g., by certain test measures),
they cannot be realized. Consequently, they have to be refined sufficiently.

Appropriateness of the Artifact Model. The artifact model might have
to be tailored to project-specific needs in order to support the requirements
engineer and the system designer while at the same time not forcing them to
produce more artifacts than necessary. Depending on the overall development
process present in a company, it might be useful to adapt the artifact model,
for example to better incorporate well-established tools.

Design Constraints of the Case Study. In general, the interaction between
driver assistance systems is not very high. According to a BMW developer,
this is due to the fact that these systems are usually extra equipment and
the customer has to pay for each of them separately [Ebe09]. There is only
little packaging, if at all. Therefore, the developer does not know for sure
whether a certain driver assistance system that is interconnected with another
driver assistance system is really present or not. It depends on the vehicle’s
configuration. Consequently, all possibilities would have to be provided and
tested, which is too costly in most cases according to system engineers at
BMW [Ebe09]. There are many ideas and, in parts, already detailed concepts
for the interconnection of driver assistance systems, but most of them never
make it into serial production.

6.1.6 Threats to Validity
The threat to internal validity is an experimenter bias, as the author performed
the case study herself. External validity is threatened by specifics of the
application domain as the case study was performed only in the embedded
systems domain, although the method was successfully applied to a number of
small examples from the information systems domain.

Countermeasure for both threats is further validation in a case study
performed by industrial software developers. A follow-up case study in a
different application domain performed by industrial research partners is also
intended, as this would further show domain-independent applicability.

6.1.7 Summary
The case study showed the applicability of the DeSyRe approach for the driver
assistance systems specification. The method for decomposition and refinement
of system requirements was applied successfully in combination with an artifact
model for requirements engineering. The results are subsystem requirements
specifications for the ACC subsystem and the RFW subsystem that comply
with the overall driver assistance systems requirements.

6.2 Case Study on Usefulness
The general usefulness of an integrated approach dealing with the decomposition
of systems and their requirements was motivated in Chap. 1 with work
distribution and systematic requirements engineering and by the encouraging

CHAPTER 6. EVALUATION AND ASSESSMENT 145

feedback from the interview partners in the study on the state of practice
(Sec. 2.2). The specific usefulness of the approach developed in the work at
hand was evaluated by giving a tutorial for practitioners and, subsequently,
asking them to fill out a questionnaire. Again, the presentation structure is
inspired by Runeson and Höst [RH09].

Research Objective. (template from [WRH00])

Analyze the DeSyRe approach
for the purpose of validation
with respect to the usefulness
from the point of view of the software developer
in the context of general software systems development.

Study Design. The author presented a tutorial on the approach followed by
handing out a questionnaire that the audience was asked to fill out straight
away. The tutorial was designed as a slide presentation with emphasis on the
concepts of system decomposition criteria and requirements refinement and an
overview of the guiding process. The questionnaire was designed according to
the template by Davis [Dav89]. The following statements could be rated in 6
degrees from I strongly agree to I strongly disagree:

1. Using DeSyRe improves the structuredness of requirements engineering
for complex systems.

2. Using DeSyRe improves the completeness of subsystem requirements
specifications.

3. Using DeSyRe improves the traceability of requirements.

4. Using DeSyRe eases system integration as the approach ensures that all
relevant information is captured and processed.

5. Using DeSyRe improves the reusability of requirements.

6. I would find DeSyRe useful for my work.

Execution. The tutorial was held at a small software development company
and took about 75 minutes including discussion. The number of participants
for the tutorial was 12. The audience took active interest in the tutorial and
there was a lively discussion on details of the approach.

The number of filled out questionnaires was 11, as one participant decided
he could not make any judgement due to lack of experience. He was a 16-year
old apprentice who had just started the job. The other eleven participants were
experienced software developers with academic background (diploma or master’s
degree in computer science, one in electrical engineering) and between 2 and 10
years of industrial project experience. Of the 11 handed in questionnaires, not
all were completely filled out. The results are given in Tab. 6.7.

Discussion. Overall, the participants had the impression that the approach
provided improvements with respect to all points, but they estimated the
usefulness for their own daily work as rather low. The reason for the latter is
presumably the generally low importance the developers gave to requirements

CHAPTER 6. EVALUATION AND ASSESSMENT 146

Table 6.7: Results of the Questionnaire on Perceived Usefulness

strongly
agree

agree partially
agree

partially
disagree

disagree strongly
disagree

sum

Improved
Structuredness

1 9 1 11

Improved
Completeness

1 5 2 2 10

Improved
Traceability

2 4 2 2 10

Eased
Integration

3 1 4 2 1 11

Improved
Reusability

3 4 2 9

Useful for
My Work

2 3 2 3 1 11

engineering. According to their own perception, their projects are developed
rather solution-oriented with weak attention to RE. This raises questions with
regard to the suitability of the target group.

In contrast, structuredness, completeness, traceability, integration and
reusability were all perceived as improving by means of the approach.

With regard to the overall research objective for the approach, the
improvement of structuredness is the most emphasized characteristic as the
intention was to find a systematic approach for the derivation of subsystem
requirements specifications:

How can we systematically derive subsystem requirements
specifications from system requirements specifications? (Sec. 1.2)

Therefore, the rating of for the improvement of structuredness is an indicator
for having achieved this objective.

Threats. A threat to internal validity may be the discussions that took
place during the tutorial, as the participants may have influenced each other
and would have answered differently after participating in the tutorial without
sharing their thoughts in between.

The major threat to external validity is that the participants may be
plain wrong, since they have not tried the method themselves. The counter
measure taken during the tutorial was to use examples from real specifications
so the audience could relate them to their experience as most of them have
experience in software development for the application domain of the examples,
i.e., embedded systems.

Another threat to external validity is that there is no systematic
requirements engineering approach established within the company. Therefore,
most of the developers have limited knowledge about requirements engineering
in general and might not be the most appropriate audience to judge the approach
after only a short tutorial. On the other hand, this might actually not harm
transferability as requirements engineering in practice and, even more, its
education and training, are often neglected in favor of other issues.

CHAPTER 6. EVALUATION AND ASSESSMENT 147

Conclusion. The results from the questionnaire on perceived usefulness
indicate that the approach achieves the objective of improving the
structuredness of results during the process of requirements engineering.

Summary. This chapter presented the evaluation and assessment of the
DeSyRe approach. The evaluation of applicability was performed with a case
study in the automotive domain on driver assistance systems. The evaluation
of usefulness was performed with a questionnaire filled out by the participants
of a tutorial on the method.

Chapter 7

Conclusion and Future Work

This chapter concludes the thesis at hand, gives a summary of the presented
work, and provides an outlook on future work.

7.1 Summary of Results
This section summarizes the contributions of this work and denotes how the
research questions from the introduction are covered by the DeSyRe method.

The motivation for this thesis lies in complex systems’ development, where
a development company specifies the overall system and assigns subcontractors
for the distributed realization of the subsystems. For a smooth development
without communication overhead in terms of numerous additional information
requests by the subcontractor as well as successful integration of the subsystems
following such an assignment, a subsystem specification is to be systematically
derived from the system specification and includes all relevant information. This
challenge was affirmed by an interview study on the state of practice (Sec. 2.2).

From the motivation, the central research question that was phrased is:

What is a good way for a requirements engineer to systematically
derive subsystem requirements specifications from system
requirements specifications?

To break it down, three more research questions were deduced from the central
one: The first one about how to get an initial system decomposition, the second
one about how to deduce subsystem requirements, and the third one about how
to apply both steps during the development process (Sec. 1.2).

Contributions
So far, although the problems considered by the research questions are
recognized (see also interviews in Sec. 2.2), yet missing is an approach that
tackles these problems. In the thesis at hand, the contributions according to
the research questions are the following:

Decomposition criteria catalogue. The guidance for decomposition is
provided by a decomposition criteria catalogue that lists all potential influences

148

CHAPTER 7. CONCLUSION AND FUTURE WORK 149

on a system’s decomposition (Chap. 3). The four main categories of criteria,
namely directive, functional, quality, and technical, are further refined and
detailed, including their source of information and stakeholders, and illustration
with examples. The catalogue serves as extensive checklist for requirements
engineers eliciting and gathering information and system architects reviewing
the information before deciding on the design. This contribution answers
research question 1: What is a good way for the system architect to obtain
the initial system decomposition?

Subsystem Model and Requirements Refinement. The defined
subsystem model serves as basis for a discussion of subsystem distribution
across abstraction levels (Sec. 4.3). The subsystem requirements refinement is
performed using patterns and assumption / guarantee specifications (Sec. 4.4).
The patterns are a general pattern, and two special cases, pipeline and
subservice, which are reduced versions of the general pattern that already cover
a major part of requirements.

There are three alternatives for the treatment of nonfunctional requirements,
equal to the handling of functional requirements in case of compositionality,
inclusion of an adequate model for conditional compositionality (e.g.,
probabilities), or constraint handling in case the requirement is not
decomposable. Furthermore, a tracing approach is described. This contribution
answers research question 2: What is a good way for the requirements engineer
to deduce subsystem requirements from system requirements?

DeSyRe Process. The process (Chap. 5) guides the decomposition of a
system by use of the decomposition criteria catalogue, then the capturing of
requirements and related information within an artifact model, the refinement of
requirements and the extraction of a subsystem specification. This contribution
answers research question 3: How do the requirements engineer and the system
architect perform both the decomposition and deduction during the requirements
specification development process?

Evaluation. The method is evaluated in a case study with respect to
applicability and with an opinion survey with respect to usefulness after a
tutorial on the approach in another case study. The results of the case
studies (Sec. 6.1) showed that the method is applicable and the results of
the questionnaire (Sec. 6.2) rated that the approach improves structuredness,
completeness, traceability, integration and reusability of requirements.

7.2 Current and Future Work
There are some issues related to the work at hand that are either already
in work or worth future investigation. These include further investigation on
nonfunctional requirements, different application domains, repeated hierarchical
decomposition, maintenance, and refactoring. Further issues are continued
empirical validation and tool support.

CHAPTER 7. CONCLUSION AND FUTURE WORK 150

Nonfunctional Requirements. The discussion of nonfunctional
requirements in Sec. 4.7 provides a starting point for an extensive study
on different quality attributes. One objective is an analysis of their potential
transformation into functional requirements and the other one an analysis of
particular quality attributes’ compositionality.

Application Domains. The approach was evaluated with a case study from
the embedded systems domain, but it is not designed to exclusively satisfy
specifics of only this domain. Therefore, it is also interesting to analyze other
domains like the information systems domain with respect to the applicability
of DeSyRe. Neither the patterns nor the paradigm of assumption / guarantee
are coupled to the embedded systems domain, therefore the expectation is that
the approach proves to be equally applicable in other domains.

Hierarchical Decomposition. The approach is assumed to work
hierarchically such that, in the first step, subsystems are deduced and
specified and, in the second step, subsubsystems are deduced and specified.
Thereby, the requirements specifications for subsubsystems are derived in the
same manner as for the subsystems. However, a case study on that hypothesis
might reveal whether repeated and hierarchical execution leads to additional
implications for the development process.

Integration into Methodical Context. An important subsequent step to
improve the usability and applicability of the DeSyRe approach, is to integrate
it into a surrounding methodical environment. In this case, the methodical
environment constitutes of further methods developed by the research group
of Software & Systems Engineering at TUM. Therefore, current work is to
relate the approach to the artifact model by Méndez [MFK09]. A first step
towards integration with further requirements engineering activities is described
in [BFI+09].

Process Integration. The process described in Chap. 5 gives only general
guidance on how to proceed, but does not detail on specific milestones and
interplay with further activities of the overall software development life cycle.
Therefore, an integration with the V-Modell XT [Bun08b] would provide
practical plug-in possibilities for the DeSyRe approach with respect to its
application within surrounding established activities. That way it could be
listed with a number of other compatible methods in a ready-to-use method kit.

Maintenance and Evolution. As many projects continue for a long time
after their first release, it is interesting which part of the requirements
engineering artifacts is most important and relevant to keep up to date while at
the same time avoiding overhead. Therefore, one task is to investigate the most
relevant contents for maintenance and evolution, and another task is to find
the right quality attributes for maintainable requirements engineering artifacts
plus, subsequently, concrete guidance on how to maintain them over time.

CHAPTER 7. CONCLUSION AND FUTURE WORK 151

Refactoring. A further interesting point to investigate is the difference
between inlining and extracting subsystems. The question is, what the
implications for the subsystem requirements specification are in case the
subsystem shall be inlined and integrated into other systems. For systems
developed using the same approach to requirements engineering, integration is
smooth, but a case study on how to integrate subsystem specifications developed
with different approaches might reveal interesting insights on the compatibility
of specifications.

Empirical Validation. For the approach as presented in this work, as well as
for the possible future extensions, further empirical evaluation is an important
issue to validate applicability and usability in practice.

Tool Support. Finally, an analysis of how far the approach can be supported
by tools reveals automatization potential for the decomposition of systems
as well as the decomposition of requirements. Automated support for the
decomposition criteria catalogue can be provided by offering the catalogue as
checklist where the user can mark all relevant criteria and, as result, receives
either a short summary (simple version of support) or even concrete design
proposals (sophisticated version).

Tool support for the refinement and decomposition of requirements
for a subsystem can be provided by an application that automatically
provides templates for the assumption / guarantee specification of the system
requirements and then their decomposition by selection of the pattern. The
simple version would be that the user has to fill out the template, the more
sophisticated version that the application proposes a decomposition and the
user has to verify it.

Bibliography

[AL91] Martín Abadi and Leslie Lamport. The existence of refinement
mappings. Theoretical Computer Science, 82(2):253 – 284, 1991.

[AL94] Martín Abadi and Leslie Lamport. Decomposing specifications of
concurrent systems. In PROCOMET, pages 327–340, 1994.

[AL95] Martín Abadi and Leslie Lamport. Conjoining specifications. ACM
Transactions on Programming Languages and Systems, 17:507–533,
1995.

[AS87] B. Alpern and F.B. Schneider. Recognizing safety and liveness.
Distributed computing, 2(3):117–126, 1987.

[AUT06] AUTOSAR consortium. AUTOSAR - Automotive Open Systems
Architecture. www.autosar.org, 2006.

[BB98] PerOlof Bengtsson and Jan Bosch. Scenario-based Software
Architecture Reengineering. In Proceedings of the International
Conference on Software Reuse., pages 308–317, 1998.

[BBC+00] Felix Bachmann, Len Bass, Gary Chastek, Patrick Donohoe, and
Fabio Peruzzi. The architecture based design method. Technical
Report CMU/SEI-2000-TR-001, CMU SEI Pittsburgh, 2000.

[BBC+06] Len Bass, John Bergey, Paul Clements, Paulo Merson, Ipek
Ozkaya, and Raghvinder Sangwan. A comparison of requirements
specification methods from a software architecture perspective.
Technical Report CMU/SEI-2006-TR-013, CMU SEI, 2006.

[BBH+09] Peter Braun, Manfred Broy, Frank Houdek, Matthias Kirchmayr,
Mark Müller, Birgit Penzenstadler, Klaus Pohl, and Thorsten
Weyer. Entwicklung eines Leitfadens für das Requirements
Engineering softwareintensiver Eingebetteter Systeme. Technical
report, Technische Universität München, 2009.

[BCK03] L. Bass, P. Clements, and R. Kazman. Software Architecture in
Practice. Addison-Wesley, second edition edition, 2003.

[BDS08] U. Becker, J. Drewes, and E. Schnieder. Accident based
requirements analysis for advanced driver assistance systems.
Analysis, Design, and Evaluation of Human-Machine Systems,
10:1, 2008.

152

BIBLIOGRAPHY 153

[Ben08] Gerd Beneken. Logische Architekturen - Eine Theorie
der Strukturen und ihre Anwendung in Dokumentation und
Projektmanagement. PhD thesis, Technische Universität München,
2008.

[BFI+09] Manfred Broy, Andreas Fleischmann, Shareef Islam, Leonid Kof,
Klaus Lochmann, Christian Leuxner, Birgit Penzenstadler, Daniel
Méndez Fernández, Wassiou Sitou, and Sebastian Winter. Towards
an Integrated Approach to Requirement Engineering. techreport,
Technische Universität München, 2009.

[BGG+06] Nadine Bramsiepe, Eva Geisberger, Johannes Grünbauer, Günter
Halmans, Nadine Heumesser, Frank Houdek, Hannes Omasreiter,
Wassiou Sitou, and Thorsten Weyer. REMsES D1.2: Stand von
Praxis und Wissenschaft und Anforderungen an den Leitfaden.
Project Deliverable, 2006.

[BGG+07] Nadine Bramsiepe, Eva Geisberger, Johannes Grünbauer,
Günter Halmans, Birgit Penzenstadler, Tim Schmidt, Ernst
Sikora, Wassiou Sitou, and Thorsten Weyer. REMsES D2.2:
Grobes Produktmodell inklusive der Abstraktionsebenen zur
Strukturierung und Modellierung von Anforderungen. Project
Deliverable, 2007.

[BGL+08] Nadine Bramsiepe, Johannes Grünbauer, Klaus Lochmann, Birgit
Penzenstadler, Tim Schmidt, Ernst Sikora, Wassiou Sitou, and
Thorsten Weyer. REMsES D-3.2: Ausarbeitung des Leitfadens auf
Abstraktionsstufe Funktionsgruppen. Project Deliverable, 2008.

[BH07] Manfred Broy and James Herbsleb, editors. Global Software
Development Handbook. Auerbach Publications, 2007.

[BKM07] Manfred Broy, Ingolf Krüger, and Michael Meisinger. A formal
model of services. ACM Transactions on Software Engineering
Methodology (TOSEM), 16(1), 2007.

[BP01] Manuel Brandozzi and Dewayne E. Perry. Transforming goal
oriented requirements specifications into architecture prescriptions.
In Workshop “From Software Requirements to Architectures”
STRAW, 2001.

[Bro95] Manfred Broy. A functional rephrasing of the
assumption/commitment specification style. Technical report,
Technische Universität München, 1995.

[Bro05] Manfred Broy. Service-oriented Systems Engineering: Specification
and Design of Services and Layered Architectures — The
Janus-Approach. In Manfred Broy, Johannes Grünbauer, David
Harel, and Tony Hoare, editors, Engineering Theories of Software
Intensive Systems, volume 195. NATO Advanced Study Institute,
2005.

BIBLIOGRAPHY 154

[Bro07] Manfred Broy. Model-driven architecture-centric engineering of
(embedded) software intensive systems: modeling theories and
architectural milestones. Innovations in Systems and Software
Engineering, 3(1):75–102, 2007.

[Bro10] Manfred Broy. Towards a Theory of Architectural Contracts:
Schemes and Patterns of Assumption/Promise Based System
Specification. In Software and Systems Safety: Specification and
Verification, 2010.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of
Interactive Systems: Focus on Streams, Interfaces and Refinement.
Springer New York, 2001.

[BS06] Jason Bloomberg and Ronald Schmelzer. Service Orient or to be
doomed. Wiley & sons, 2006.

[BSW+08] Manfred Broy, Bernhard Schätz, Doris Wild, Martin Feilkas,
Judith Hartmann, Alexander Gruler, Birgit Penzenstadler,
Johannes Grünbauer, and Alexander Harhurin. Umfassendes
Architekturmodell für das Engineering eingebetteter
software-intensiver Systeme. Technical Report TUM-I0816,
Technische Universität München, June 2008.

[Bun07] Bundesregierung. Straßenverkehrsordnung. Bundesgesetzblatt Teil
I, November 2007.

[Bun08a] Bundesamt für Sicherheit in der Informationstechnik.
BSI-Standard 100-2: IT-Grundschutz-Vorgehensweise, Version 2.0.
www.bsi.bund.de/gshb, 2008.

[Bun08b] Bundesamt für Sicherheit in der Informationstechnik. V-Modell
XT. http://www.v-modell-xt.de/, 2008.

[Bun08c] Bundesregierung. Straßenverkehrs-Zulassungs-Ordnung.
Bundesgesetzblatt Teil I, May 2008.

[Bun08d] Bundesrepublik Deutschland. EMV Gesetz. Bundesgesetzblatt,
2008.

[BV06] Susanne Briest and Mark Vollrath. In welchen Situationen
machen Fahrer welche Fehler? Ableitung von Anforderungen
an Fahrerassistenzsysteme durch In-Depth-Unfallanalysen.
VDI-Berichte, 1960(1960):449–463, 10 2006.

[CA09] B.H.C. Cheng and J.M. Atlee. Current and Future Research
Directions in Requirements Engineering. In Design Requirements
Engineering: A Ten-Year Perspective, Workshop, Cleveland, 2007,
page 11. Springer, 2009.

[Can01] R. Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS ’01: Proceedings of the 42nd
IEEE symposium on Foundations of Computer Science, page 136,
Washington, DC, USA, 2001. IEEE Computer Society.

BIBLIOGRAPHY 155

[Cas99] Jim Cash. All the key questions. Roadfly. The complete automotive
resource for buyers, sellers, and owners like you., Oct, 1999.

[Cle94] Paul Clements. From domain models to architectures. In Workshop
on Software Architecture, USC Center for Software Engineering,
1994.

[CNYM00] Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos.
Non-functional Requirements in Software Engineering. Kluwer
Academic Publishers, 2000.

[Coc00] Alistair Cockburn. Writing Effective Use Cases. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[Con68] M. Conway. How do committees invent? Datamation Journal,
pages 28–31, April 1968.

[Cre03] John Creswell. Research Design: Qualitative, quantitative and
mixed approaches. SAGE Publications, 2003.

[DAC99] Matthew Dwyer, George Avrunin, and James Corbett. Patterns in
property specifications for finite-state verification. In Proceedings
of the International Conference on Software Engineering, 1999.

[Dav89] F.D. Davis. Perceived usefulness, perceived ease of use, and
user acceptance of information technology. MIS quarterly,
13(3):319–340, 1989.

[Dav93] Alan M. Davis. Software requirements: objects, functions, and
states. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[dCP08] David Bettencourt da Cruz and Birgit Penzenstadler. Designing,
documenting, and evaluating software architecture. Technical
Report TUM-I0818, Technische Universität München, 2008.

[DDB+05] Ovidiu Drugan, Ioanna Dionysiou, David Bakken, Thomas
Plagemann, Carl Hauser, and Deborah Frincke. On the
importance of composability of ad hoc mobile middleware and
trust management. In Miroslaw Malek, Edgar Nett, and Neeraj
Suri, editors, Service Availability, volume 3694 of Lecture Notes in
Computer Science, pages 149–163. Springer, 2005.

[Deu09] Deutscher Verkehrssicherheitsrat. Bester Beifahrer -
Fahrerassistenzsysteme, Innovationen für Sicherheit. online
available at http://www.bester-beifahrer.de, 2009.

[DH] Jorge L. Díaz-Herrera. Embedded systems product
lines: Process and models. website, project YES,
http://cse.spsu.edu/yes/YES-PL.pdf.

[Dij68] Edsger W. Dijkstra. The structure of the THE-multiprogramming
system. Commun. ACM, 11(5):341–346, 1968.

BIBLIOGRAPHY 156

[DJH+08] Florian Deissenboeck, Elmar Juergens, Benjamin Hummel, Stefan
Wagner, Benedikt Mas y Parareda, and Markus Pizka. Tool support
for continuous quality control. IEEE Software, 25 (5):60–67, 2008.

[DKK+05] Joerg Doerr, Daniel Kerkow, Tom Koenig, Thomas Olsson, and
Takeshi Suzuki. Non-functional requirements in industry - three
case studies adopting the ASPIRE NFR method. Technical Report
025.05/E, Fraunhofer IESE, 2005.

[DL05] Norman Denzin and Yvonna Lincoln, editors. The Sage Handbook
of Qualitative Research. Thousand Oaks, CA: Sage, 2005.

[DVM+05] W. Damm, A. Votintseva, A. Metzner, B. Josko, T. Peikenkamp,
and E. Böde. Boosting re-use of embedded automotive applications
through rich components. Foundations of Interface Technologies.
Elsevier Science, August, 2005.

[Ebe09] Jörg Ebeling. Email about Interaction Examples for Driver
Assistance Systems at BMW. unpublished, March 2009.

[EGHB09] A. Egyed, P. Grünbacher, M. Heindl, and S. Biffl. Value-based
requirements traceability: Lessons learned. Design Requirements
Engineering: A Ten-Year Perspective, pages 240–257, 2009.

[EGM01] Alexander Egyed, Paul Grünbacher, and Nenad Medvidovic.
Refinement and Evolution Issues in Bridging Requirements and
Architecture — The CBSP Approach. In International SofTware
Requirements to Architecture Workshop, 2001.

[Eur06] Eurobarometer. Use of Intelligent Systems in Vehicles.
Special Eurobarometer 267/Wave 65.4, 12 2006. available at
http://www.bester-beifahrer.de/downloads.html.

[EYA+05] S. Easterbrook, E. Yu, J. Aranda, Yuntian Fan, J. Horkoff,
M. Leica, and R.A. Qadir. Do viewpoints lead to better conceptual
models? An exploratory case study. In Proceedings of the
International Conference on Requirements Engineering, 2005.

[Fei10] Martin Feilkas. Implizite Entwurfsregeln in Softwaresystemen:
Entstehung, Erfassung und Konformitätsprüfung. PhD thesis,
Technische Universität München, 2010.

[FFH+09a] M. Feilkas, A. Fleischmann, F. Hölzl, C. Pfaller, K. Scheidemann,
M. Spichkova, and D. Trachtenherz. A Top-Down Methodology
for the Development of Automotive Software. Technical report,
Technische Universität München, 2009.

[FFH+09b] Martin Feilkas, Andreas Fleischmann, Florian Hölzl, Christian
Pfaller, Sabine Rittmann, Kathrin Scheidemann, Maria Spichkova,
and David Trachtenherz. A Top-Down Methodology for the
Development of Automotive Software. Technical Report I0902,
Technische Universität München, 2009.

BIBLIOGRAPHY 157

[FLB06] José Luiz Fiadeiro, Antónia Lopes, and Laura Bocchi. A Formal
Approach to Service Component Architecture. Web Services and
Formal Methods, 4184:193–213, 2006.

[Fle08] Andreas Fleischmann. Modellbasierte Formalisierung von
Anforderungen für eingebettete Systeme im Automotive-Bereich.
PhD thesis, Technische Universität München, 2008.

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural
mismatch: Why reuse is so hard. IEEE Software, 12(6):17–26, 1995.

[GBB+06] Eva Geisberger, Manfred Broy, Brian Berenbach, Juergen
Kazmeier, Daniel Paulish, and Arnold Rudorfer. Requirements
Engineering Reference Model (REM). Technical report, Technische
Universität München, 2006.

[GF94] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the
requirements traceability problem. In International Conference on
Requirements Engineering, pages 94–101, 1994.

[GGRS08] Frank Großhauser, Frank Gesele, Stephan Reichelt, and Karsten
Schmidt. In die Realität überführt: Nutzung von AUTOSAR in
der Serie bei Audi. Automotive Elektronik, 2008.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[Gli07] M. Glinz. On non-functional requirements. Proceeddings of the
International Conference on Requirementes Engineering, 7:21–26,
2007.

[GRM04] Martin Große-Rhode and Stefan Mann. Model-based Systems
Engineering in the Automobile Industry: Positions and
Experiences. In Proceedings of the Software Product Line
Conference 2004, Workshop Automotive Software Architectures,
2004.

[Grü08] Johannes Grünbauer. Feature Interactions auf Nutzungsebene.
Softwaretechnik-Trends, 1, 2008.

[GY01a] Daniel Gross and Eric Yu. From non-functional requirements to
design through patterns. Requirements Engineering, 6(1):18–36,
2001.

[GY01b] Daniel Gross and Eric S. K. Yu. Evolving system architecture to
meet changing business goals: an agent and goal-oriented approach.
In International Software Requirements to Architecture Workshop,
2001.

[Gyö08] Andreas Györy. Tracing zwischen Anforderungen und Design in
mechatronischen Systemen. Master’s thesis, Technische Universität
München, 2008.

BIBLIOGRAPHY 158

[HB07] M. Heindl and S. Biffl. An Initial Tracing Activity Model to Balance
Tracing Agility and Formalism. Technical report, Vienna University
of Technology, 2007.

[HB08] Matthias Heindl and Stefan Biffl. Modeling of requirements
tracing. In Bertrand Meyer, Jerzy Nawrocki, and Bartosz Walter,
editors, Balancing Agility and Formalism in Software Engineering,
volume 5082 of Lecture Notes in Computer Science, pages 267–278.
Springer, 2008.

[HDS+07] Jane Hayes, Alex Dekhtyar, Senthil Sundaram, E. Holbrook,
Sravanthi Vadlamudi, and Alain April. REquirements TRacing
On target (RETRO): improving software maintenance through
traceability recovery. Innovations in Systems and Software
Engineering, 3:193–202, 2007.

[HG99] James D. Herbsleb and Rebecca E. Grinter. Splitting the
organization and integrating the code: Conway’s law revisited.
In Proceedings of the 21st international conference on Software
engineering, 1999.

[HMRR06] Jens Heidrich, Jürgen Münch, William E. Riddle, and Dieter
Rombach. New Trends in Software Process Modelling, chapter
People-Oriented Capture, Display, and Use of Process Information,
pages 121–180. World Scientific, 2006.

[HNS00] Christine Hofmeister, Robert Nord, and Dilip Soni. Applied
Software Architecture. Addison-Wesley, 2000.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12:576 – 580, 1969.

[HPP06] Andrea Herrmann, Barbara Paech, and Damian Plaza. ICRAD:
An integrated process for the solution of requirements conflicts and
architectural design. International Journal of Software Engineering
and Knowledge Engineering, 16:1–34, 2006.

[HQR98] Thomas A. Henzinger, Shaz Qadeer, and Sriram Rajamani. You
assume, we guarantee: Methodology and case studies (Computer
Aided Verification), volume 1427/1998, pages 440–451. Springer,
1998.

[HQRT02] Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani, and
Serdar Tasiran. An assume-guarantee rule for checking simulation.
ACM Trans. Program. Lang. Syst., 24(1):51–64, 2002.

[IEE98] IEEE. IEEE Recommended Practice for Software Requirements
Specifications (IEEE Std 830-1998), 10 1998.

[Int01] International Standardization Organization. ISO9126 -
International Standard for the Evaluation of Software Quality.
http://www.iso.org, 2001.

BIBLIOGRAPHY 159

[ITU96] ITU-TS Recommendation Z.120. Message Sequence Chart (MSC).
International Telecommunication Union ITU-TS, Geneva, 1996.

[Jan97] Theo M.V. Janssen. Handbook of logic and linguistics, chapter
Compositionality. MIT Press, 1997.

[JM90] F. Jay and R. Mayer. IEEE standard glossary of software
engineering terminology. IEEE Std, 610:1990, 1990.

[JRvdL00] Mehdi Jazayeri, Alexander Ran, and Frank van der Linden.
Software Architecture for Product Families. Addison-Wesley, 2000.

[KK99] R. Kazman and M. Klein. Attribute-based architectural styles.
Technical Report 22, CMU SEI, 1999.

[KNR05] Marco Kuhrmann, Dirk Niebuhr, and Andreas Rausch. Application
of the V-Modell XT - Report from A Pilot Project. In Unifying
the Software Process Spectrum, International Software Process
Workshop, pages 463–473. Springer, 2005.

[Kosed] Dagmar Koss. Kompatibilität und Kompatibilitätsmanagement.
PhD thesis, Technische Universität München, to be published.

[Kru95] Philippe Kruchten. Architectural blueprints—The “4+1” view
model of software architecture. IEEE Software, 12(6):42–50,
November 1995.

[Kru00] P. Kruchten. The rational unified process: an introduction.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
2000.

[KS98] G. Kotonya and I. Sommerville. Requirements Engineering. John
Wiley & Sons Ltd, 1998.

[Kuh08] Marco Kuhrmann. Konstruktion modularer Vorgehensmodelle. PhD
thesis, Technische Universität München, jul 2008.

[Kul06] Kullmann. Produkthaftungsgesetz. Erich Schmidt Verlag, 5 edition,
2006.

[LCJZ08] Anders Mikael Lindgren, Fang Chen, Patrick W. Jordan, and
Haixin Zhang. Requirements for the design of advanced driver
assistance systems — the differences between swedish and chinese
drivers. International Journal of Design, 2:41–54, 2008.

[LD06] Marco Lormans and Arie Van Deursen. Can lsi help reconstructing
requirements traceability in design and test? In Conference on
Software Maintenance and Reengineering, 2006.

[LFBW10] Markus Luckey, Daniel Méndez Fernández, Andrea Baumann, and
Stefan Wagner. Reusing security requirements using an extended
quality model. In Workshop SESS at the IEEE International
Conference on Software Engineering, 2010.

BIBLIOGRAPHY 160

[LL91] Kim G. Larsen and Lin Xinxin Liu. Compositionality through
an operational semantics of contexts. Journal of Logic and
Computation, 1(6):761–795, 1991.

[LO10] Jörg Leuser and Daniel Ott. Tackling semi-automatic trace recovery
for large specifications. In Roel Wieringa and Anne Persson,
editors, Requirements Engineering: Foundation for Software
Quality, volume 6182 of Lecture Notes in Computer Science, pages
203–217. Springer Berlin / Heidelberg, 2010.

[Lon04] Lonn et al. FAR EAST: Modeling an automotive software
architecture using the EAST ADL. IEE Seminar Digests, 2004.

[LS04] J. Leohold and C. Schmidt. Communication requirements of
future driver assistance systems in automobiles. Proceedings of the
International Workshop on Factory Communication Systems, pages
167–174, Sept. 2004.

[Luk00] K. Lukka. The key issues of applying the constructive approach
to field research. Management Expertise for the New Millenium.
Publications of the Turku School of Economics and Business
Administration, Series A-1, 2000.

[LY01] Lin Liu and Eric Yu. From Requirements to Architectural Design
— Using Goals and Scenarios. In STRAW, 2001.

[MBE01] Nenad Medvidovic, Barry W. Boehm, and Alexander Egyed.
Refinement and Evolution Issues in Bridging Requirements and
Architecture — The CBSP Approach. In International SofTware
Requirements and Architecture Workshop, 2001.

[MFK09] D. Méndez Fernández and M. Kuhrmann. Artefact-based
requirements engineering and its integration into a process
framework. Technischer Bericht, Technische Universität München,
2009.

[MGEB03] Nenad Medvidovic, Paul Grünbacher, Alexander Egyed, and
Barry W. Boehm. Bridging models across the software lifecycle.
Journal on Systems and Software, 68(3):199–215, 2003.

[MHM87] P.W.G. Morris, G.H. Hough, and WG Morris. The anatomy of
major projects: A study of the reality of project management. Wiley
Chichester, UK, 1987.

[Mic06] Microchip Technology Inc. BMW Signs SmartShunt Technology
Patent License Agreement with Microchip Technology. Embedded
Computing Design, Jan, 2006.

[Mon70] Richard Montague. Universal grammar. Theoria, Vol. 36 Iss. 3:p.
373–398, 1970.

[MT00] N. Medvidovic and R.N. Taylor. A classification and comparison
framework for software architecture description languages. IEEE
Transactions on Software Engineering, 26(1):70–93, Jan 2000.

BIBLIOGRAPHY 161

[Nav07] Elena Navarro. ATRIUM Architecture Traced from Requirements
by Applying a Unified Methodology. PhD thesis, University of
Castilla-La Mancha, 2007.

[Neuss] Philipp Neubeck. Probability Extension of the Specification Method
Focus. PhD thesis, Technische Universität München, work in
progress.

[NRP03] E. Navarro, I. Ramos, and J. Perez. Software requirements
for architectured systems. In Proceedings of the 11th IEEE
International Requirements Engineering Conference, 2003.

[Nus01] Bashar Nuseibeh. Weaving the software development process
between requirements and architecture. In International SofTware
Requirements to Architectures Workshop, 2001.

[Obj07] Object Management Group. UML 2.
http://www.uml.org/#UML2.0, 2007.

[OMG04] OMG. Reusable asset specification.
http://www.omg.org/technology/documents/formal/ras.htm,
2004.

[Par72] David L. Parnas. On the Criteria To Be Used in
Decomposing Systems into Modules. Communications of the ACM,
15(12):1053–1058, 1972.

[Par76] David Lorge Parnas. On the design and development of program
families. IEEE Transactions on Software Engineering, 2(1):1–9,
1976.

[Par79] David L. Parnas. Designing software for ease of extension
and contraction. IEEE Transactions on Software Engineering,
5(2):128–138, 1979.

[Par94] David L. Parnas. Software aging. In Proceedings of the
16th International Conference on Software Engineering, pages
p.279–287, 1994.

[PBKS07] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and
Thomas Stauner. Software engineering for automotive systems:
A roadmap. In International Conference on Future of Software
Engineering, pages 55–71, 2007.

[PBP09] Birgit Penzenstadler, Peter Braun, and Jan Philipps. Deliverable
7.3: Anwendung des Leitfadens auf Werkzeuge im REM -
Werkzeugkonzept. Project Deliverable, January 2009.

[PK08] Birgit Penzenstadler and Dagmar Koss. High confidence subsystem
modelling for reuse. In High Confidence Software Reuse in Large
Systems, Proceedings of the Intl. Conf. on Software Reuse, 2008.

BIBLIOGRAPHY 162

[PL08] Birgit Penzenstadler and Joerg Leuser. Complying with Law for RE
in the Automotive Domain. InWorkshop Requirements Engineering
and Law (RELAW) at the Intl. Requirements Engineering
Conference, 2008.

[PM05] Jaime Pavlich-Mariscal. A framework for composable security
definition, assurance, and enforcement. In Doctoral Symposium of
the Models Conference, 2005.

[Poh07] Klaus Pohl. Requirements Engineering. dpunkt.verlag, 2007.

[PPV00] Dewayne E. Perry, Adam A. Porter, and Lawrence G.
Votta. Empirical studies of software engineering: a roadmap.
In Proceedings of the International Conference on Software
Engineering: The Future of Software Engineering, pages 345–355,
2000.

[PS07a] Klaus Pohl and Ernst Sikora. COSMOD-RE: Supporting
the co-design of requirements and architectural artifacts. In
International Conference on Requirements Engineering, pages
258–261, 2007.

[PS07b] Klaus Pohl and Ernst Sikora. Structuring the co-design
of requirements and architecture. In International Working
Conference on Requirements Engineering: Foundations for
Software Quality, pages 48–62. Springer, 2007.

[PSP09] Birgit Penzenstadler, Ernst Sikora, and Klaus Pohl. A requirements
reference model for model-based requirements engineering in the
automotive domain. In International Working Conference on
Requirements Engineering: Foundation for Software Quality, 2009.

[PvKD+03] Barbara Paech, Antje von Knethen, Joerg Doerr, J. Bayer,
Daniel Kerkow, Ronny Kolb, A. Trendowicz, T. Punter, and
A. Dutoit. An Experience-Based Approach for Integrating
Architecture and Requirements Engineering. In International
SofTware Requirements to Architectures Workshop, 2003.

[Ram98] B. Ramesh. Factors influencing requirements traceability practice.
Communications of the ACM, 41(12):37–44, 1998.

[RDSS09] Robert Bosch GmbH, DaimlerChrysler AG, SSE Universität
Duisburg-Essen, and Software and Systems Engineering Technische
Universität München and Validas AG. Project REMsES. http:
//www.remses.org, 2009.

[Rei09] Günther Reichart. Bordnetze im Automobil: Aspekte der
Hardware und Software, der Vernetzungstechnologien und der
Systemarchitektur. Talk at “Methoden des Software Engineering”,
Technische Universität München, April 2009.

[Res08] Markus Reschka. Discussions about Driver Assistance Systems at
BMW. Personal interview notes, August 2008.

http://www.remses.org
http://www.remses.org

BIBLIOGRAPHY 163

[RH09] P. Runeson and M. Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software
Engineering, 14(2):131–164, 2009.

[Ris07] Stefan Rischard. REMsES Illustrator “Radio-Frequenz-Warner
(RFW)”. Project Deliverable, 9 2007. AP6.

[Rit08a] Sabine Rittmann. Funktionale Anforderungen an das ACC mit
Einparkassistenten. Project Deliverable, October 2008.

[Rit08b] Sabine Rittmann. A methodology for modeling usage behavior
of multi-functional systems. PhD thesis, Technische Universität
München, 2008.

[RJ01] B. Ramesh and M. Jarke. Toward reference models for requirements
traceability. IEEE Transactions on Software Engineering,
27(1):58–93, 2001.

[Rob91] Robert Bosch GmbH. CAN Specification Version 2.0, September
1991. superseded by the standard ISO 11898.

[RR06a] Matthias Recknagel and Chris Rupp. Meßbare Qualität in
Anforderungsdokumenten. Automotive Vertikal, 2:12–17, 2006.

[RR06b] James Robertson and Suzanne Robertson. Volere: Requirements
specification template, 2006. http://www.volere.co.uk/.

[RR07] James Robertson and Suzanne Robertson. Mastering the
requirements process. Addison-Wesley, 2007.

[RZ91] S.J. Russell and S. Zilberstein. Composing real-time systems.
In Proceedings of the Twelfth International Joint Conference on
Artificial Intelligence, pages 212–217, 1991.

[SACO02] Rachel Smith, George Avrunin, Lori Clarke, and Leon
Osterwell. PROPEL: An approach supporting property elucidation.
In Proceedings of the International Conference on Software
Engineering, 2002.

[SB07] Klaus Steinhauser and Gunther Bauer. Hitech im Antriebsstrang:
Vernetzte Funktionen und Entwicklung. Hanser Automotive,
10:28–32, 2007.

[SFGP05] Bernhard Schätz, Andreas Fleischmann, Eva Geisberger, and
Markus Pister. Model-Based Requirements Engineering with
AutoRAID. In Workshop Modellbasierte Qualitätssicherung, pages
511–516, 2005.

[Sha03] Mary Shaw. Writing good software engineering research papers.
In Proceedings of the 25th International Conference on Software
Engineering, pages 726–736. IEEE Computer Society, 2003.

[Sie02] Johannes Siedersleben. Quasar: Die sd&m Standardarchitektur.
Technical report, sd&m AG, 2002.

http://www.volere.co.uk/

BIBLIOGRAPHY 164

[Sne98] Gregor Snelting. Paul Feyerabend und die Softwaretechnologie.
Informatik-Spektrum, 21:273–276, 1998.

[Sof09] Software Engineering Institute Carnegie Mellon
University. Capability maturity model integration.
http://www.sei.cmu.edu/cmmi, 2009.

[SPI05] SPICE User Group. Software process improvement and capability
determination. http://www.automotivespice.com/, 2005.

[Sta09] Statistisches Bundesamt Deutschland. Fahrzeugbestand
Kraftfahrzeuge. published online at http://www.destatis.de,
Jan 2009.

[Stü02] Rupert Stützle. Wiederverwendung ohne Mythos: Empirisch
fundierte Leitlinien für die Entwicklung wiederverwendbarer
Software. PhD thesis, Technische Universität München, 2002.

[SV03] Alberto L. Sangiovanni-Vincentelli. Electronic-system design in the
automobile industry. IEEE Micro, 23(3):8–18, 2003.

[Sza07] Zoltán Gendler Szabó. Compositionality. Stanford Encyclopedia of
Philosophy, First published Thu Apr 8, 2004; substantive revision
Wed Feb 14, 2007. viewed on January 21st, 2009.

[TA05] J. Tyree and A. Akerman. Architecture decisions: demystifying
architecture. IEEE Software, 22(2):19–27, March-April 2005.

[Uni03] United Nations Economic Comission for Europe. ECE R43,
Revision 2. http://www.unece.org/, July 2003.

[VB06] Volkswagen AG and BMBF. Forschungsinitiative INVENT
(Intelligenter Verkehr und Nutzergerechte Technik): Schlussbericht
FAS, February 2006.

[VCK96] John Vlissides, James O. Coplien, and Norman L. Kerth. Pattern
Languages of Program Design 2. Addison-Wesley, 1996.

[vdB00] Michael von der Beeck. Behaviour specifications: Equivalence
and refinement. In H. Giese and S. Phillippi, editors, Visuelle
Verhaltensmodellierung verteilter und nebenläufiger Software-
Systeme, 2000.

[vKP02] Antje von Knethen and Barbara Paech. A survey on
tracing approaches in practice and research. Technical report,
IESE-Report, 095.01/E, 2002.

[vL00] Axel van Lamsweerde. Formal specification: a roadmap.
In Proceedings of the International Conference on Software
Engineering: The Future of Software Engineering, pages 147–159,
2000.

[vL01] Axel van Lamsweerde. Goal-oriented requirements engineering:
A guided tour. In Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering, page 249, 2001.

BIBLIOGRAPHY 165

[vL03] Axel van Lamsweerde. From system goals to software architecture.
In School on Formal Methods, pages 25–43, 2003.

[vL08] Axel van Lamsweerde. Requirements engineering: From craft to
discipline. In SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, pages 238–249, 2008.

[vL09] Axel van Lamsweerde. Requirements Engineering: From system
goals to UML models to software specifications. Wiley & sons, 2009.

[WBB+06] Rob Wojcik, Felix Bachmann, Len Bass, Paul Clements, Paulo
Merson, Robert Nord, and Bill Wood. Attribute-driven design
(ADD). Technical Report CMU/SEI-2006-TR-023, Carnegie
Mellon University, Pittsburgh, 2006.

[WD07] Stefan Wagner and Florian Deissenboeck. An Integrated Approach
to Quality Modelling. In 5th Workshop on Software Quality
(5-WoSQ). IEEE Computer Society Press, 2007.

[Wiled] Doris Wild. Modellbasierter Übergang von der logischen Architektur
eingebetteter Systeme zur Plattform. PhD thesis, Technische
Universität München, to be published.

[WKV08] J. Werneke, A. Kassner, and M. Vollrath. An analysis of the
requirements of driver assistance systems — when and why does
the driver like to have assistance and how can this assistance be
designed? Proceedings of European Conference on Human Centred
Design for Intelligent Transport Systems, page pp. 193 Ű 204, 2008.

[WP08] Thorsten Weyer and Klaus Pohl. Eine Referenzstrukturierung
zur modellbasierten Kontextanalyse im Requirements Engineering
softwareintensiver eingebetteter Systeme. In Thomas Kühne,
Wolfgang Reisig, and Friedrich Steimann, editors, Modellierung,
pages 181–197, 2008.

[WRH00] C. Wohlin, P. Runeson, and M. Höst. Experimentation in software
engineering: an introduction. Springer Netherlands, 2000.

[ZJ97] Pamela Zave and Michael Jackson. Four dark corners of
requirements engineering. ACM Transactions on Software
Engineering Methodology, 6(1):1–30, 1997.

Appendix A

ACC Appendix

A.1 ACC Requirements
There are 28 original informal requirements in natural language listed
in [FFH+09b].

1. Select target vehicle. Probability is calculated by radar data. Condition:
Within the defined range, High probability, Most close range vehicle.

2. Select target vehicle. Reject Parking cars.
3. Follow-up control of ACC system starts in case of target vehicle exists.

Distance between two cars is controlled with in the target. Target
acceleration is decided on deviation of distance and relative speed. Target
acceleration is conveyed from Drive assist ECU to fusion ECU. Fusion ECU
provides request to engine and brake components.

4. Follow-up control of ACC system starts in case of target vehicle exists.
Distance between two cars is configurable depend on vehicle speed.

5. Constant speed control of ACC system starts in case of target vehicle NOT
exists. Vehicle speed is controlled for target speed.

6. Target speed is configurable by Driver operation. Target speed is defined
with cruise configuration switch. [Target speed] Initial condition: current
speed, Increment: +5km/h, Decrement : -5km/h

7. Following distance is configurable by Driver operation. Following distance
is changed by Setup SW. (3 Stage setup: Long→ Middle→ Short→ Long
→ . . .)

8. ACC vehicle speed is in the defined range. ACC vehicle setting speed range:
50-100km/h

9. ACC acceleration is in the defined range. [ACC target acceleration range]
Lower limit: -2.5m/s2, Upper limit: 1.5m/s2

10. Put ACC slowdown limit warning in action, when acceleration speed of ACC
control is under lower limit. In case of ACC target acceleration is under
limit, ACC slowdown limit warning is commanded.

11. ACC will be able to start, if vehicle speed is within the specified speed frame.
ACC control will be able to start, if vehicle speed is between 45km/h and
110km/h.

166

APPENDIX A. ACC APPENDIX 167

12. When vehicle speed is under defined range, ACC control is terminated. ACC
control will be terminated, if vehicle speed is less than 40km/h.

13. ACC control will start by drive SW operation. ACC control will start in case
of pushing [SET SW] by driver.

14. ACC control will be terminated by drive SW operation. ACC control will be
terminated in case of pushing [CANCEL SW] by driver.

15. Select Pre-Crash Safety (PCS) target. Set PCS target when scanned object
has a high probability of collision. (Embedded on radar function)

16. Put PCS warning in action, when collision time is short. In case of collision
time is shorter then defined range, PCS warning is in action.

17. When collision time is further short, PCS brake assist is set for ready
condition. In case of collision time is shorter than defined range, PCS brake
assist is set for ready condition.

18. When collision time is further short, PCS seat belt control is set for ready
condition. In case of collision time is shorter then defined range, PCS seat
belt control is set for ready condition.

19. When collision time is further short, PCS brake control is executed. In case
of collision time is shorter than defined range, PCS brake control is executed.

20. When vehicle speed is in defined range, PCS comes in. When vehicle speed
is over 30km/h, PCS comes in.

21. Drive’s brake operation has a priority to ACC control. When Drive operate
brake pedal, ACC control is terminated.

22. Driver’s acceleration operation has a priority to ACC control. When Driver
operate acceleration pedal, vehicle speed is able to speed up. (Embedded
on engine ECU)

23. Driver’s acceleration operation has a priority to ACC control. When Driver
operate acceleration pedal, ACC brake control is suspended.

24. Compare request level of speed reduction between Driver’s brake operation
and PCS brake control. PCS brake control is continued when Driver
operates brake pedal.

25. PCS brake control has a priority to Driver’s accelerator pedal operation.
During PCS brake control is in execution, Driver’s acceleration request is
turned down. (Embedded on engine ECU)

26. Compare request level of speed reduction between ACC control and PCS
control. Strong request has a priority. Brake control has to be active if PCS
brake control is NOT active.

27. Compare request level of speed reduction between ACC control and PCS
control. Strong request has a priority. Engine throttle has to be closed if
PCS Control is active.

28. ACC Control should be canceled when PCS brake control is operated.

APPENDIX A. ACC APPENDIX 168

A.2 Requirements Dependencies.
For the definition of the dependency types see Sec. 5.3.

• Refinements: (2) refines (1), (4 and 7) refine (3), (6) refines (5), (14)
refines (13), (16) refines (15), (17 - 19) refine (16), (23) refines (22), (27)
refines (26).

• Concept bundles: (21 - 28) are the concept bundle “priority management”.

• Feature bundles: (1 - 7) are the feature bundle “follow-up”, (15 - 19) are
the feature bundle “PCS warning”, (21 - 23) are the feature bundle “driver’s
command”.

• Logical components: (1 - 14) are the logical component “ACC”, (15 - 20)
are the logical component “PCS”

• Architectural bundles: The whole ACC including the PCS is one
architectural bundle.

• There were no examples found for architectural restrictions, architectural
alternatives, conflict negotiation, or architectural decisions.

	Introduction
	Motivation and Problem Statement
	Research Questions
	Research Design
	Contribution
	Outline

	State of the Art
	State of Practice in Automotive Software Development
	Interview Study on the State of Practice
	Context
	Research Objective
	Hypothesis
	Design
	Results
	Analysis
	Validity of the Study
	Conclusions

	Software Systems Architecture Model
	Requirements Engineering Reference Model
	The REMsES Project
	Structure Concepts
	Specification Techniques
	Artifact Model
	Results and Evaluation

	Example: Driver Assistance Systems

	Decomposition Criteria
	Related Work for the Decomposition of Systems
	Overview of the Criteria Catalogue
	Optimization Factors
	Criteria Categories
	The Description Template

	Directive Criteria
	Organization
	Legislation
	Economics
	Directive Criteria of the Running Example

	Functional Criteria
	Clustering According to Services
	Functional Dependencies
	Unwanted Feature Interaction
	Functional Criteria of the Running Example

	Quality Criteria
	Quality Criteria of the Running Example

	Technical Criteria
	Communication Requirements
	Technical Constraints
	Legacy Systems
	Technical Criteria of the Running Example

	Coherence of the Criteria
	Dependencies between Criteria

	Impact of the Criteria on Decomposition

	Subsystem Requirements
	Related Work for Subsystem Requirements
	Prerequisites for Requirements Refinement
	Assumption / Guarantee Specifications
	Semi-formal View of the Problem

	Subsystem Modeling
	Definition of a Subsystem Model
	Subsystem Distribution across Abstraction Levels
	Subsystem Description across Abstraction Levels

	Refinement Application Guideline
	Case Differentiation for Requirements Distribution
	One-to-one Transition of Requirements
	One-to-many Transition of Requirements

	Decomposition and Refinement Patterns
	Pipeline Decomposition Pattern
	Subservice Decomposition Pattern
	General Decomposition Pattern

	Discussion: Quality Requirements
	Definition of Quality Requirements
	Precondition for Decomposition: Compositionality
	Decomposition and Alternative Handling of Quality Requirements

	Tracing
	State of the Art of Tracing
	State of the Practice of Tracing
	Proposed Tracing Approach

	The DeSyRe Method
	Related Work for the DeSyRe Approach
	Outline of the DeSyRe Method Phases
	Starting Point: Required Artifacts
	Decomposition into Subsystems
	Consideration of the Reference Catalogue
	Decomposition Realization

	Transition to Subsystem Requirements
	Context
	Requirements
	Design
	Compositionality

	Delivery of Subsystem Specification
	Integration and/or Reuse
	Integration
	Reuse

	Implications
	Benefits
	Limitations

	Evaluation and Assessment
	Case Study on Applicability
	Research Objective
	Study Object
	Study Design
	Execution and Results
	Discussion
	Threats to Validity
	Summary

	Case Study on Usefulness

	Conclusion and Future Work
	Summary of Results
	Current and Future Work

	 ACC Appendix
	 ACC Requirements
	 Requirements Dependencies.

