

TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Angewandte Softwaretechnik

Dissertation

A Framework for Externalizing Information

 in Agile Meetings

Jennifer Schiller

TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Angewandte Softwaretechnik

A Framework for Externalizing Information

 in Agile Meetings

Jennifer Schiller

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. H. Seidl

Prüfer der Dissertation

 1. Univ.-Prof. B. Brügge, Ph.D.

 2. Univ.-Prof. Dr. F. Matthes

Die Dissertation wurde am 02.11.2010 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 20.03.2011 angenommen.

Danksagung

Ich möchte mich herzlich bei Prof. Bernd Brügge für die Betreuung dieser Dissertation bedan-

ken. Ohne seine Unterstützung und unsere wertvollen Gespräche wäre die Fertigstellung dieser

Dissertation nicht möglich gewesen.

Des Weiteren gilt mein Dank Sabine Canditt, Norbert Weber und Ludger Meyer, und all mei-

nen Kollegen bei der Siemens AG, die meine Promotion unterstützt und mir so einen Einblick

in die aktuellen Herausforderungen der Industrie ermöglicht haben. Vielen Dank für die wert-

vollen Diskussionen. Außerdem bedanke ich mich ganz herzlich bei den Kollegen von Siemens

Enterprise Communications und Alexander Hauptmann und seinem Team von der Carnegie

Mellon University für die erfolgreiche Zusammenarbeit.

Ein großes Dankeschön an Thilo Kraft fürs Korrekturlesen und all meinen Kollegen am Lehr-

stuhl für Angewandte Softwaretechnik, im Besonderen an Monika Markl und Helma Schneider

für die organisatorische Unterstützung.

Erklärung

Ich versichere, dass ich diese Arbeit selbständig verfasst und nur die angegebenen Quellen und

Hilfsmittel verwendet habe.

München, 2. November 2010 Jennifer Schiller

v

Zusammenfassung

Software-Entwicklungsprojekte sind geprägt durch Kommunikation. Entscheidungen werden

in Besprechungen gefällt, Anforderungen in Workshops mit dem Kunden definiert, neue Auf-

gaben in Besprechungen vergeben, und Probleme und Lösungsansätze diskutiert. Kommunika-

tion bestimmt den weiteren Verlauf des Projektes. Um die besprochenen Informationen festzu-

halten, wird im Anschluss an die Besprechung ein Protokoll verfasst. Die Protokollierung ist

jedoch häufig eine unbeliebte Aufgabe, da das Schreiben eines Protokolls zeitaufwändig ist und

es schwierig ist, gleichzeitig der Diskussion zu folgen und mitzuschreiben. Dadurch sind die

Protokolle vielfach unvollständig oder fehlerhaft. Werden jedoch nicht alle Informationen rich-

tig dokumentiert, kommt es zu Informations- und Wissensverlusten. Verstärkt wird dieses

Problem durch die vermehrten informellen Besprechungen, die Bestandteil agiler Methoden

sind und immer häufiger eingesetzt werden, da ein explizites Wissensmanagement nicht Be-

standteil dieser Methoden ist.

Um die genannten Probleme detailliert zu adressieren, und somit außerdem eine Kombination

von empirischen und traditionellen Prozessmethoden, im Besonderen in großen Unternehmen,

zu ermöglichen, stellt diese Dissertation eine neue Methodik vor, um Wissen aus Besprechun-

gen zu externalisieren und automatisch Protokolle zu erstellen. Dazu werden die Besprechun-

gen aufgenommen und nach vordefinierten Besprechungselementen durchsucht. Dies geschieht

auf Basis einer definierten Grammatik, die Besprechungsphrasen, wie z.B. die Definition eines

Problems, oder eine getroffene Entscheidung, abbildet. Aus den gefundenen Phrasen wird das

Protokoll erstellt und an alle Besprechungsteilnehmer versandt. Die extrahierten Informationen

werden darüber hinaus an die eingesetzten Projektmanagement- und Aufgabenverwaltungs-

werkzeuge weitergeleitet. So wird beispielsweise eine zugewiesene Aufgabe direkt an das indi-

viduelle Aufgabentool gesendet und dort eine neue Aufgabe erstellt mit allen Informationen

(Beschreibung, Fälligkeit, etc.) aus der Besprechung. Dieses Vorgehen des automatischen Proto-

kollerstellens wird im STACHUS Framework abgebildet.

Das STACHUS Framework wurde als Prototyp realisiert, um Machbarkeit und Einsatzmöglich-

keiten anhand eines experimentellen Fragebogens und mehrerer Fallstudien empirisch zu eva-

luieren. Die Ergebnisse dieser Evaluierung zeigen, dass die Externalisierung von Informationen,

insbesondere aus informellen Besprechungen, schneller ist als manuell verfasste Protokolle,

eine bessere Protokollqualität aufweisen, sowie ohne Mehraufwand und unter Einhaltung der

agilen Prinzipien im Projektalltag einsetzbar ist.

vii

Abstract

Software development projects are characterized by communication. Decisions are made in

meetings, requirements are defined in workshops with the customer, tasks are assigned in

meetings, and problems and solutions are discussed. Communication determines the progress

of the project. To record the discussed information, a protocol is created after the meeting.

However, writing a protocol is often an unpopular task, as it is time consuming and difficult to

listen and write at the same time during the discussions. As a result protocols are often incom-

plete or incorrect. However, if not all information is correctly documented, meeting knowledge

will be lost. The problem is worsened by an increase of informal meetings, especially in agile

methods, which are more and more applied in software development.

To address these problems, and to allow a combination of empirical and traditional process

control methods in large organizations, this dissertation proposes a new methodology to exter-

nalize knowledge from meetings and automatically generate a protocol. Meetings are recorded

and the audio stream is searched for predefined meeting elements, based on a defined grammar

for meeting key words, e.g. for defining a problem, or making a decision. Based on the extracted

meeting phrases the protocol is generated and sent to all meeting participants and stakeholders.

Additionally, the externalized information can be transferred to project- and task management

tools. For example, an assigned task is forwarded to the individual task management tool after

the meeting, where a new task is created, containing description, due date, etc. determined in

the meeting. The automated protocol generation process is realized in the STACHUS frame-

work.

A prototype of the STACHUS framework has been implemented to empirically validate the

automated protocol generation and externalization of information from meetings, based on an

experimental survey and three case studies. The results of the evaluation show that an automa-

tion of the protocol generation process improves the protocol quality, is faster than manually

written protocols, reduces the protocol generation effort, and is applicable in compliance with

the agile principles and practices.

ix

Table of Contents

Table of Contents ... ix

List of Figures .. xi

List of Tables ... xiii

1 Introduction .. 1

1.1 Overview .. 3

2 Agile methods in large organizations .. 5

2.1 Agility ... 5

2.2 Agile methods in large and traditional organizations ... 7

2.3 Research question ... 14

3 Communication & Meetings ... 15

3.1 Communication... 15

3.2 Meetings ... 24

4 Protocol generation technologies ... 37

4.1 Automatic text summarization ... 37

4.2 Speech recognition .. 43

4.3 Summarization of spoken language ... 47

4.4 Current research projects ... 50

5 STACHUS ... 59

5.1 Requirements ... 60

5.2 STACHUS Grammar .. 67

5.3 STACHUS protocol generation process ... 70

5.4 STACHUS framework: Protocol Engine & Compiler .. 73

5.5 Software architecture.. 78

Table of Contents

x

6 Empirical evaluation ... 83

6.1 Empirical research .. 83

6.2 Hypotheses and research questions ... 87

6.3 Empirical evaluation of the hypotheses ... 93

7 Conclusion .. 119

7.1 Contribution .. 119

7.2 Future work ... 120

Appendix I: Grammar .. 123

Appendix II: Prototype .. 127

A.II.1 Realization of a prototype for formal meetings ... 127

A.II.2. Prototype: mobile version .. 132

Appendix III: Empirical research .. 139

Appendix IV: Questionnaire .. 143

Bibliography .. 151

xi

List of Figures

Figure 2-1: Cost of change curve (Ambler S. W., 2009) .. 8

Figure 3-1: Communication model (UML Activity Diagram) ... 16

Figure 3-2: Ways of communication: written and verbal ... 17

Figure 3-3: Two dimensions of knowledge .. 19

Figure 3-4: Knowledge management and its processes ... 20

Figure 3-5: SECI: socialization, externalization, combination, and internalization 21

Figure 3-6: Effectiveness of different ways of communication (Ambler, 2009) 23

Figure 3-7: Typical meeting workflow.. 25

Figure 3-8: Taxonomy for agile Scrum Meetings .. 30

Figure 5-1: Daily Scrum Meeting ... 60

Figure 5-2: Meeting minutes of the daily Scrum meeting .. 61

Figure 5-3: Meeting workflow ... 62

Figure 5-4: Meeting participation (UML Use Case Diagram) .. 63

Figure 5-5: Meeting activities (UML Use Case Diagram)... 63

Figure 5-6: Protocol generation (UML Use Case Diagram) ... 64

Figure 5-7: Protocol generation and report updating (UML Use Case Diagram) 64

Figure 5-8: Audio recording (UML Use Case Diagram) .. 64

Figure 5-9: Core vocabulary elements .. 68

Figure 5-10: Project context flows into the grammar (UML Activity Diagram) 68

Figure 5-11: Project management vocabulary.. 68

Figure 5-12: Project management vocabulary elements ... 69

Figure 5-13: Project management vocabulary elements and its synonyms 69

Figure 5-14: Decomposition of project management method dependent vocabulary 69

Figure 5-15: Protocol Generation (UML Sequence Diagram) .. 70

Figure 5-16: Protocol Generation Process (UML Activity Diagram) .. 71

Figure 5-17: Workflow Meeting – Protocol generation .. 72

Figure 5-18: The meeting (UML class diagram) .. 72

Figure 5-19: Documents (UML class diagram) .. 72

Figure 5-20: Meeting Protocol (UML Class Diagram) .. 72

Figure 5-21: Outputs of the protocol engine (UML Class Diagram) .. 73

Figure 5-22: STACHUS Framework (UML Component Diagram)... 73

Figure 5-23: The STACHUS Protocol Engine (UML Activity Diagram) .. 74

Figure 5-24: Blackboard system (UML Class Diagram) ... 75

Figure 5-25: Speech recognition components (UML Class Diagram) ... 75

List of Figures

xii

Figure 5-26: Details of the STACHUS Analyzer (STACHUS Protocol Engine) (UML Activity

Diagram) ... 76

Figure 5-27: STACHUS framework: Protocol Engine generation (UML Activity Diagram) 77

Figure 5-28: Continuous integration of project changes: new team member 77

Figure 5-29: Continuous integration: update system model ... 78

Figure 5-30: Continuous integration: Action item .. 78

Figure 5-31: Three-tier architecture (UML Package Diagram) .. 79

Figure 5-32: Architecture of the STACHUS Framework on one node (UML Deployment

Diagram) ... 80

Figure 5-33: Architecture with several nodes (UML Deployment Diagram) 80

Figure 5-34: Architecture of a thin client solution (UML Deployment Diagram) 81

Figure 6-1: Meeting minutes of the meeting from 18.01.10 at Siemens, published in MS Excel . 114

Figure A.II.1: Informedia: Database Browser (import and execution of a new meeting video) . 131

Figure A.II.2: Result of the Informedia batch process .. 131

Figure A.II.3: Informedia: Player for meeting section with text highlighting 132

Figure A.II.4: iPhone app – meeting recording (UML Use Case Diagram) 133

Figure A.II.5: iPhone app - additional functionality ... 133

Figure A.II.6: overview of iPhone and server connection .. 134

Figure A.II.7: Meeting list……….…. ... 135

Figure A.II.8: Meetings by participant .. 135

Figure A.II.9: Meetings by location ... 135

Figure A.II.10: search for meetings……….. .. 136

Figure A.II.11: meeting recording………… ... 136

Figure A.II.12: Attach documents to meeting ………… ... 136

Figure A.II.133: Settings dialog…………………………. ... 136

Figure A.II.14: Participants of the meeting…………. .. 137

Figure A.II.15: Meeting summary………………….. 137

Figure A.II.16: Meeting details and integrated Player .. 137

xiii

List of Tables

Table 3-1: Formal vs. informal meetings .. 26

Table 3-2: Overview meeting types and corresponding meeting elements 29

Table 6-1: Relationship between the hypotheses of the dissertation, requirements of STACHUS,

and coverage by case studies ... 88

Table 6-2: Calculation of s² and s for 60 - 120 min meetings .. 95

Table 6-3: Results: effort for protocol generation manual vs. STACHUS generated 96

Table 6-4: Mean and Variability for the communication behavior evaluation 97

Table 6-5: Mean and Variability for the communication behavior evaluation 98

Table 6-6: Mean, Variability and Number of Participants for Q27 ... 99

Table 6-7: Mean, Variability and Number of Participants for Q20 ... 99

Table 6-8: Mean, Variability and Number of Participants for Q21 ... 100

Table 6-9: Mean, Variability and Number of Participants for Q22 ... 101

Table 6-10: Mean and variability for the "Forgettability-Experiment" ... 102

Table 6-11: Effort and duration for manually and automated protocol generation 105

Table 6-12: Results: effort for manual protocol generation .. 106

Table 6-13: Mean and Variability for the communication behavior evaluation 107

Table 6-14: Mean, Variability and Number of Participants for Q27 ... 107

Table 6-15: Mean, Variability and Number of Participants for Q20 ... 108

Table 6-16: Mean, Variability and Number of Participants ... 109

Table 6-17: Mean, Variability and Number of Participants for Q8 ... 110

Table 6-18: Mean, Variability and Number of Participants for Q21 ... 111

Table 6-19: Mean, Variability and Number of Participants for Q19 ... 112

Table 6-20: Results of the experiments regarding improvement of protocol quality 113

Table 6-21: Mean and variability for the “Completeness-Experiment" .. 117

Table 6-22: Mean and Variability: aggregated typing errors & false information 117

1

1 Introduction

Motivation and Overview

Today, the way of software engineering is changing – more and more companies are moving

their defined software development process to an empirical process control model. The empiri-

cal model of process control exercises risk management and control through visibility, and fre-

quent inspection and adaptation for situations where the inputs are varying, and the process is

too complex to produce repeatable and predictable outputs. Empirical process control is the

essence of all agile methodologies (Van Schooenderwoert, 2005).

Agile methods have continuously gained in importance since their first publication (Takeuchi &

Nonaka, 1986), as these methods proved a valuable contribution to successful software devel-

opment projects (Ambler, 2009) by embracing change, short iterations with complete software

packages, test-driven development, and encouraging high quality software. More and more

software engineering departments implement the agile practices and principles in their soft-

ware development lifecycle, as the latest Agile Survey1, conducted by VersionOne (2010),

shows. Larger organizations are also contemplating to change their development processes to a

lightweight, agile method.

With the introduction of agile methods, the number of informal meetings is rising, as face-to-

face communication is emphasized (Beck & al., 2001). Agile practices and principles are based

on tacit knowledge and communication. Tacit knowledge is implicit knowledge and infor-

mation discussed in a meeting, which is kept only in the developer‟s memory. The results of

informal meetings are not externalized in a protocol and project and process documentation is

not necessarily written, if it is not part of the project deliverables (Poppendieck & Poppendieck,

2003).

Agile projects are often criticized for their missing focus beyond project borders (Longstreet,

2008), (Müller & al., 2005), and the missing documentation, which is necessary for a successful

introduction of the agile methods in defined process control methods of large organizations. On

the other hand, agile teams often deplore the additional work of writing documentation that is

1 The Agile Survey has been conducted for 5 years now

1 Introduction

2

not necessary when the team works closely together and meets every day. Well-written docu-

mentation supports organizational memory effectively, but is a poor way to communicate dur-

ing a project (Ambler, 2006).

Protocols from „traditional‟ meetings also have problems, for instance the meeting minutes are

late, incomplete, incorrect, or unread (Lewis, 1997) (Waibel, et al., 2001). Nobody is willing to

assume the task of the minutes taker, as writing a protocol is time-consuming and „unpopular‟,

so the protocols are published with delay or even too late to prepare for the next meeting. As it

is difficult to listen and write at the same time during the meeting, the protocols are incorrect or

incomplete, especially if the protocol is written after the meeting from memory. However,

knowledge can be lost, if the information is only tacit or not correctly documented. Due to the

volatility of communication, it is important to capture project information, discussed in meet-

ings, in an externalized knowledge source, e.g. in documents, or store the information directly

in project- and task management tools.

The agile methods, for instance Scrum (Schwaber & Beedle, Agile Software Development with

Scrum, 2002) and XP (Beck & Andres, 2004), are originally designed for a software development

team consisting of five to seven developers, working at the same location. Best practices have

been proposed (Pichler, 2008) to use agile practices and principles in larger teams. Nevertheless,

large organizations are not only confronted with large teams. The software development meth-

ods affect also departments such as Maintenance, Sales, or Quality Assurance (Schiller &

Canditt, 2008). Thus, a holistic introduction of agile methods in a traditional process- or plan

driven company fast meets its limits, resulting in challenges, as the empirical process model,

representing an “agile lightness” with responsibility to change and flexibility, has to be merged

with established processes (the defined process models), which makes organizational change

difficult.

This dissertation claims that agile methods can be extended and enhanced with a knowledge

externalization process in consistence with the agile principles, in particular without increasing

the effort for agile teams. A second claim is that it allows the injection of empirical into defined

process models. We will show that it is possible to instantiate the empirical process models in a

large, traditional enterprise, and additionally facilitate the externalization of tacit knowledge to

support organizational memory, the aggregated knowledge of a company.

Our hypothesis is that knowledge can be externalized in protocols, which are automatically

generated, so teams with different process models can work together. An approach for external-

izing information in an agile software development environment is developed, applicable in

small and large projects, without increasing the workload of the agile team.

Continuous and fast change in an agile project leads the team to keep knowledge informal and

tacit. Externalization of this discussed information in documents would paralyze that team, as

the documentation is obsolete when it is published (Rüping, 2003) (Ambler, 2006). However,

missing externalization of discussed information in informal meetings is a problem, as

knowledge is lost, especially when introducing agile methods in large organizations.

1.1 Overview

3

We investigate a method that supports the externalization of knowledge in empirical software

development processes. The framework STACHUS (Smart tool for ad-hoc communication,

speech-recognition & document generation in agile software development projects) is designed

to support the automatic generation of protocols and integration of the results in the project

management workflow.

The focus lies on the detailed description of the framework for protocol generation and meeting

workflow support, including the interfaces to project and task management tools, to transfer

information discussed in a meeting, e.g. the assignment of a new action item, to the individual

task management tool. Thus, effort for manually entering and updating the task within the tool

is reduced.

Our hypothesis is that the effort of protocol generation is reduced with an automated protocol

engine, the protocol generation process is accelerated, and the quality of the protocols is im-

proved. The STACHUS framework is used to validate these hypotheses.

To demonstrate feasibility the framework is realized as a prototype. In three case studies, two in

an academic environment and one industry case study, the hypotheses are validated. The case

studies analyzed the effectiveness, effort reduction, and protocol quality improvement of the

automated protocol generation process during a software development project. Moreover, the

industry case study focused on the evaluation of the applicability of the framework in the pro-

ject workaday life and the acceptance and practicability of the meeting grammar.

1.1 Overview

The dissertation is organized as follows. In the first part we lay the foundations for the devel-

opment of the STACHUS framework by describing the impact of agile methods on communica-

tion in large organizations. Chapter 2, Agile in large organizations, gives an overview of the agile

practices and principles and the application of agile methods in small and large organizations.

An exemplary process of injecting agile methods in large enterprises is developed. Based on the

experiences gathered during the generation and introduction of this process, resultant problems

of an integration of agile methods and practices in large organizations with different processes

are described.

In Chapter 3, Communication and Meetings, we illustrate the significance and characteristics of

communication in development projects. The externalization of information with the STACHUS

framework is based on a meeting taxonomy and a meeting grammar. The meeting taxonomy

classifies the meetings and the meeting grammar defines the meeting elements of the meeting

taxonomy, used in the protocols.

Chapter 4 describes the protocol generation technologies regarding summarization of spoken con-

versations and protocol automatism. Speech recognition technologies and techniques for the

summarization of texts and information externalization, respectively, are introduced and ana-

1 Introduction

4

lyzed for the applicability in the STACHUS framework to extract information from a meeting

and automatically generate a protocol.

Chapter 5 introduces the model for automated protocol generation. A specific meeting compiler

and engine are described, as well as a grammar for protocol generation. The protocol engine

generates the meeting minutes out of the recorded meeting audio stream, based on the gram-

mar. Both components are generated by the meeting compiler.

The applicability of the STACHUS framework is validated in chapter 6 in several student pro-

jects. The transition to software development independent communication is also described in

this chapter. During the empirical evaluation of our hypotheses the effort reduction and accel-

erated publication of automated protocols by STACHUS are analyzed. Additionally, the usabil-

ity and training effort, i.e. the „easiness‟ of the grammar for the meeting participants is evaluat-

ed, as well as the completeness and correctness of the externalization of meeting information.

Chapter 7 summarizes the dissertation and provides an outlook of future work in particular in

the area of speech recognition and automatic report generation, to improve the protocol quality

and enhance the STACHUS framework.

The dissertation contains four appendices. A project example of the STACHUS grammar is

summarized in Appendix I. Appendix II covers aspects of the realization of the STACHUS proto-

type. A short description of the empirical research methods used throughout the dissertation is

given in Appendix III. The questionnaire for the evaluations used in the case studies is presented

in Appendix IV.

5

2 Agile methods in large organizations

Combination of empirical and defined process models

This chapter gives a brief overview of the fundamental ideas of agile methods. Section 2.1 pro-

vides a historical overview. Afterwards the application of agile method and principles in large

and traditional, plan-driven organizations is analyzed (section 2.2). The integration of empirical

processes in a defined process world is challenging. The challenges are discussed in section 2.3,

which leads to the research questions, addressed in this dissertation.

2.1 Agility

In the late 1990‟s software development methodologies began to get increasing public attention,

that emphasized an empirical process model (Takeuchi & Nonaka, 1986), close collaboration

between the programmer team and business experts, face-to-face communication, frequent de-

livery of new deployable business value, and tight, self-organizing teams.

The word agile was selected to describe the intention of these methodologies as a lightweight

method, as the waterfall process was seen as heavyweight and bureaucratic (agilecollab, 2008).

The accepted definition of agility was summarized in the Agile Manifesto (Beck, et al., 2001) by

software process methodologists in 2001, where agility is defined as the ability to both create

and respond to change. Core to agile software development is the use of light human- and

communication-oriented rules. Agility is value-driven in the focus on delivering the most im-

portant features first, i.e. the highest value items are developed first on what will be used the

most by the customer. The development is done with small, dedicated, co-located, self-

organizing teams who work in close collaboration with a business customer (Slinger &

Broderick, 2008).

The agile methods are characterized as a subset of iterative methods. Iterative development is

an approach to build software where the overall lifecycle is composed of several time-boxed

iterations. Each iteration is a self-contained mini-project composed of activities such as re-

quirements analysis, design, programming, and test. The goal for the end of an iteration is a

release, a stable, integrated, tested and executable system with new features, not a proof of con-

2 Agile methods in large organizations

6

cept (Larman, 2004). This enables flexibility in the further process of the project, because deci-

sions can be made based on working software. The system grows incrementally with new fea-

tures, iteration by iteration. This concept of growing an always executable system via iterations

is at the core of all the agile methods.

In iterative development the requirements, plans, estimates, and solution evolve or are refined

over the course of the iteration, rather than fully defined and “frozen” in a major up-front speci-

fication effort before the development iterations begin.

Adaptive development implies that the requirements, plans and solutions adapt in response to

feedback from prior work and feedback from the users. The intent is the same as iterative de-

velopment, but the name suggests more strongly a feedback mechanism.

Some methods or methodologies emphasize the term “evolutionary” instead of “iterative” or

“adaptive”. The ideas and intents are similar, although strictly speaking, evolutionary devel-

opment does not require the use of timeboxed iterations, where the schedule is divided into a

number of separate, but fixed time periods. Moreover, in adaptive development, it is not the

case that the requirements are forever unbound or always changing at a high rate. Rather, most

requirements discovery and refinement usually occurs during early iterations (Highsmith J. A.,

1999).

Agile development methods apply time-boxed iterative and incremental development, adaptive

planning, and encourage the rapid and flexible response to change.

Scrum (Schwaber & Beedle, 2002), eXtreme Programming (Beck & Andres, 2004), Feature Driv-

en Development (Nebulon Pty. Ltd., 2002) and Lean Software Development (Poppendieck &

Poppendieck, 2003) are the most established agile methods. Each agile methodology has its

particular focus. Scrum is a project management framework that forces on dedicated, small,

cross-functional, self-managed teams to build increments of product. A set of Backlog features

is realized in 30 days, so called Sprints cycles. The core practice in Scrum is the use of daily 15-

minutes team meetings for coordination and integration. There are three roles in Scrum: a

Product Owner who is responsible for the success of the product, a delivery team who is

charged with creating a potentially shippable product increment every 30 days, and a Scrum

Master who facilitates communication between the Product Owner and the team and removes

obstacles encountered during development.

eXtreme Programming (XP) is a software development methodology, i.e. mainly focused on

software development, described with a set of 12 engineering practices that embody and en-

courage the values of communication, feedback, simplicity, courage, and respect. The practices

continuous integration, test-driven development, and pair programming for instance, help the

development team stay responsive to the customer‟s needs and have always working software.

XP teams are small (no more than ten) and co-located. Their practitioners embrace the fact that

product requirements change, and change for good reason, while working in iterations along-

side the customer to capture and implement the requirements for immediate feedback.

2.2 Agile methods in large and traditional organizations

7

Feature-Driven Development (FDD) combines the advantages of agile methodologies with

model-driven techniques. FDD focuses on the domain model, the creation of which is the foun-

dational step in the FDD process. The five activities to be followed in FDD are: develop a do-

main model, build a feature list, plan by feature, design by feature, and build by feature. Sets of

features are worked through the completion in two-week iterations. The features to be built are

small aspects of client-valued functionality.

Lean Software Development was adapted from Lean Manufacturing, the Toyota Production

System, and Bob Charette‟s Lean Development (Charette, 2002). Lean Software Development

focuses on seven principles: eliminating waste, amplifying learning, deciding as late as possible,

delivering as fast as possible, empowering the team, building integrity in, and seeing the whole.

A set of tools is provided to help teams adhere to the principles and achieve their goals. Lean is

a management approach for streamlining the process of providing value to the customer, com-

plementing the existing practices of software development teams.

The next section gives an overview of agile methods applied in large and traditional environ-

ments and the related challenges, when the agile methods are adapted to large teams and inte-

grated in defined processes models. Another paragraph introduces an existing agile process

model at a large organization that combines defined and empirical process control methods.

2.2 Agile methods in large and traditional organizations

Although Beck (2004) and Schwaber (2002) recommend teams of seven to ten, collocated peo-

ple, including Product Owner or other customer proxy, developers, and testers, when applying

an agile method, larger and distributed teams are also trying to follow the agile practices and

principles (VersionOne, 2009). Several best-practices have been proposed to apply agile meth-

ods also in large teams, summarized by Eckstein (2004) and Pichler (2008).

Eckstein recommends for instance a jointly review meeting to offer all team members a common

understanding of the project progress and cross-project retrospectives to facilitate project-wide

learning, as well as the interaction of the project members across team boundaries. Eckstein

distinguishes between several types of project-wide sprint retrospectives, e.g. meta-

retrospective or open-space retrospective. Open-space retrospectives are a mode, where team

members propose topics, which will be executed and discussed afterwards in parallel groups.

The results, changes, and next steps are finally summarized. In meta-retrospective, first all

teams have a retrospective and afterwards representatives of each team meet in a meta-

retrospective.

Meta-Scrums propose a similar paradigm that enable cross-project self-organization and help to

identify project-wide impediments systematically (Sutherland, 2005). The scrum of scrums meet-

ing is a recommended technique in scaling Scrum to large project teams, where each team meets

daily and then sends a representative to meet with the other representatives.

2 Agile methods in large organizations

8

Pichler recommends a consistent estimation basis, i.e. a common understanding across the dif-

ferent teams for example of story points, an estimation basis of the complexity of a work pack-

age. Moreover, guidelines and norms, e.g. coding guidelines, will help the teams to build a con-

sistent and high quality software product.

Also in large projects, the teams should be collocated and not split across several locations.

An adequate communication infrastructure helps distributed teams to enable cooperation, in-

cluding a central code basis, as well as central project storage (e.g. Wikis), configuration man-

agement, integration- and build management (managed by an integration team), and tools for

collaboration. Also a large team has to be able to deliver frequently a running system for cus-

tomer feedback, for instance via individual and collective integration.

However, agile methods are currently not only attempted to be adapted to large teams, but also

to be integrated in defined processes models with the aim to address the problems of a tradi-

tional, waterfall software development approach.

The Standish Group regularly publishes the CHAOS Report, containing statistics about success

and failure of software development projects. In 2009 for example, 68% of the analyzed projects

were late, over budget, or delivered with less than the required features and functions, or even

cancelled prior to completion (Standish Group, 2009). In another study of 6700 projects, four out

of the five key factors contributing to project failure are associated with and aggravated by the

waterfall model, including inability to deal with changing requirements and problems with late

integration, resulting in a risky and expensive way to build software systems (Larman, 2004, p.

75). Due to misconceptions between the customer and the developers, or an unclear vision of

the customer regarding the finished product, requirements change. The cost of change grows

through the software‟s development life cycle, as illustrated in Figure 2-1.

Figure 2-1: Cost of change curve (Ambler S. W., 2009)

Change in requirements and technology solutions, as well as environmental changes, cannot be

stopped early in a project, but must be handled throughout the project life cycle (Highsmith &

Traditional cost curve

2.2 Agile methods in large and traditional organizations

9

Cockburn, 2001). Because these changes cannot be eliminated, driving down the cost of re-

sponding to them is the only viable strategy. Rather than eliminating rework, the agile strategy

is to reduce cost of rework. This is done not only by the development in iterations, where no big

up-front specification is written, but also by prioritizing the customers‟ demands and develop-

ing the most important features first, where the feature is analyzed, developed and tested in one

iteration.

For this reason, large organizations are investigating agile methods to deal with change and

reduce the cost of change throughout a project (VersionOne, 2009). The motivations for the in-

creased adoption of agile methods are in addition an expected increase in productivity and time

to market, to reduce cost, and improve the software quality (Schwaber C. , 2005). As a result

agile methods are introduced in traditional environments. The question arises, how much

change is necessary when transitioning to and using agile methods. Development groups are

trying single practices, for instance only pair programming, or only test-first development, and

attempt to determine how to get any of these practices to work with internationally distributed

teams. The agile philosophies and practices disperse over a wider range of people, projects, and

organizations, including many CMM and ISO 9000 organizations (Canditt & Russwurm, 2008),

(Glazer et al., 2008).

The adoption of agile development practices means change (organizational change, cultural

change, changing tools and processes), which is easier for small projects in small organizations

than for large organizations (Schiller & Canditt, 2008). Change is made difficult, due to the de-

fined process world of large businesses and the defined interfaces between departments, as the

other departments have to change, too. Moving an enterprise to agile methods means to sub-

stantially revolutionize and evolve the methods, the organization, best practices, and even the

company culture. Changing paradigms, e.g. from big up front planning to continuous planning

and responding to change, or from the management methodology command and control with

top-down decision making to collaborative and self-organizing teams, provide both the power

and the concerns for agile, because addressing change on such a wholesale basis in an enter-

prise is challenging (Leffingwell, 2007), as it takes time, is possibly complex and costly, and

people have to be convinced to change.

Chung and Drummond (2009) argue that agile methods can be scaled to enterprise level. The

scalability of agile methods and introduction in a process-driven environment of a large inter-

national organization was evaluated during a case study by Schiller and Canditt. During the

case study an agile process, called „agilePEP‟ (agile product evolution process), was integrated

in the existing, traditional defined process world of a large company, the Siemens AG. The re-

sults of this case study are confirmed by evaluation in other large organizations, for example at

Allianz AG (Hastreiter, Roberts, & Mathis, 2009) .

The Siemens Reference Process House (RPH) (Schmelzer & Sesselmann, 2007) generically de-

fines all (traditional) software development processes within the Siemens group. The idea is to

2 Agile methods in large organizations

10

harmonize the evolved agile processes of small teams within Siemens and integrate them in the

RPH to create a process that is standardized and mandatory for the rising number of agile

teams of one business branch and suitable also for large agile teams. agilePEP is an empirical

process, based on the Scrum methodology that is integrated in the RPH at Siemens Building

Technologies (MRT PLM Group Europe, 2007). This process is applied in several agile teams at

Siemens (in the USA, Switzerland and Germany), signifying that there are still challenges when

combining agile methods with traditional processes, as presented in the following.

While integrating an agile process in an existing, defined process world, observations and in-

terviews at Siemens discovered that agile team members, who are convinced of the benefit of

agile methods, believe that the agilePEP process is no more pure agile, it is too „traditional‟ due

to the required documentations, e.g. fixed specifications and project reports. Whereas tradition-

alists, i.e. the team members who want to continue the waterfall-approach for software devel-

opment, and now have to follow the agile principles, are missing many quality assurance doc-

uments, detailed specifications and upfront planning. That is, one of the biggest issues, when

introducing agile methods to a traditional organization, is the organizational culture change, as

defined by Schein (2004, p. 444).

Beside the problem of organizational culture change, several other challenges accompany the

transition to an empirical process, for example customer availability, change of the physical

working environment, or milestone definitions, which will briefly be presented in the follow-

ing.

Organizations grow a strong corporate culture over time, some of which may not be beneficial to

agile. Leffingwell (2007) claims that if the accomplished work is measured by hours worked

rather than by productivity delivered for example, agile teams will not necessarily feel that they

are properly motivated, measured, or rewarded. As agile is tactically intensive, and because of

the daily and weekly focus and accountability, the agile manifesto requires that agile processes

promote sustainable development (Beck, et al., 2001). That is, if more than a 40-hour workweek

in the long run is demanded, agile development will not be the proper choice.

Compensation systems may be poorly designed as well. Systems that reward individual over

team performance may prevent the team from the pairing and cooperation necessary to achieve

an iteration. Everyone is accountable for his or her own work, but everyone is accountable to

the team as well, and reward systems recognize the differences. Moreover, strict command-and-

control cultures inhibit agile practices. If management dictates all processes and technologies,

the teams will not be able to evolve to the self-organizing and constantly changing teams that

characterize the agile methods, nor will they be able to select the optimum technical path to a

solution if they are directed by others to a different approach.

The success of the agile methods is dependent on close customer collaboration, where the custom-

er is available for questions and regular reviews and the business analyst who works with the

project team is willing and able to participate in the fine-grained, detailed review that stories

and customer-written acceptance tests require. However, often the customer may be remote or

2.2 Agile methods in large and traditional organizations

11

may not have the skills or time available to participate in such a manner; or there is no single

customer, as the application has tens of thousands of users. Then a present product manager

has to play the proxy role, acting on behalf of the customer, answering questions, and making

decisions in cooperation with the customer.

Agile‟s practice of working on a few stories at a time is a focusing mechanism for the team. But

in larger systems, it has to be clarified what the right stories are and if the summation of all

stories actually meets the customer‟s end-to-end use-case needs. That is, the lack of requirements

analysis and documented specifications has to be solved. A clear visibility into stories others are

building has to be assured and if and how they affect the team. When developing solution set

(large sets of products that must be deployed together and support end-to-end use cases for the

user or customers), it has to be ensured that the stories actually work together to achieve the

final objective.

XP and Scrum recommend cross-functional teams of seven people, plus or minus two (Schwaber &

Beedle, 2002). To an enterprise with 1000 practitioners it has to be clarified how to fit this new

model into the existing organizational hierarchy.

Much of the productivity of agile methods comes from the pairing contexts, daily stand-ups,

visual signaling of stories and status, and constant informal communication that characterizes

these methods. Developers, product owners, and testers are together, not separated by time

zones and language barriers. At scale, collocation is impractical even for large teams in the same

building and other mechanisms must be devised. It is likely that many team members are in

different countries and different time zones and perhaps even speak different languages. At

scale, all development is distributed development, and the methods and organization must

adapt to this challenges.

In agile projects team members work in an open environment, and often their managers and su-

pervisors are joining the team at those tables. Additionally, the informality of stories posted on

walls, and teams of people that are far more talking than coding are suggestive of inefficiency,

unsupervised, chaotic, and even unprofessional project work. The traditional team members

first have to familiarize with these changes in the development practices.

As organizations grow, they tend to put in infrastructure to control and measure projects and

programs. These organizations often become the drivers behind formalized policies and procedures

for development, to standardize and harmonize their processes and thus reduce the related

risks and training costs. In addition, outside audits by regulatory agencies and customers such

as drug companies may look for typical „controls‟ on the development process, such as “re-

quirements document complete and signed off” or “test plans complete and approved by QA”.

These are artifacts that the agile teams don‟t need und are unlikely to be developed, unless

mandated. Agile methods are a concept of a „barely sufficient‟ methodology that attempts to

answer the question of how much structure is enough, meaning that the demands regarding the

processes, documentation, etc. are as less as possible. Many organizations operate on the un-

spoken assumption that if a little process is good, then lots of process will be better (Highsmith

2 Agile methods in large organizations

12

J. , 2002, p. 5). Nevertheless, the key is having good people – good domain experts, good devel-

opers, good chief programmers, because no process makes up for a lack of talent and skill

(Highsmith J. , 2002, p. 6).

Individual control mechanisms are added by each team from their experiences, gathered in past

projects. It is quite common to see stage gates such as “design complete” and “design review

sign of” in the published product and system development process guidelines. These formalized,

published, and adopted guidelines are not so easy to change. And many of these policies and

procedures must be amended, changed, or eliminated to facilitate agile. The documented poli-

cies cannot simply be ignored, and they can create real impediments for agile adoption.

If a customer comes to a team to deliver functionality X in period Y with resources Z, then by

definition it does not meet agile‟s fixed-time, variable scope idea, and the teams will be discour-

aged right out of the starting gate. This impediment will have to be addressed directly. Teams

would like to be able to predict exactly when they can deliver what functionality, but they

know they can‟t.

It is also likely that the teams responsible for developing the product and their extended team-

mates in marketing or operations distribution, had problems in the past, e.g. delayed, incom-

plete or incorrect deliveries. For many outside the development teams, it appears that the de-

velopment organization has simply “failed to deliver again”, and mistrust is the result. For

those in development, it appears that their outside stakeholders don‟t understand that it is re-

search and development, not just development. Neither team is right or wrong, but with agile

methods, they will be forced to work together in close proximity. As the agile manifesto de-

mands: “Business people and developers must work together daily throughout the project”

(Beck, et al., 2001), they must relearn to trust each other‟s skills and contributions.

Enterprises are often organized along functional (product management, architecture, develop-

ment, etc.) rather than product or business application lines. In agile methods, teams quickly reor-

ganize to assure they have a full complement of the resources necessary to define, build, test,

and deliver a component or feature. This requires dedicated (not heavily multiplexed) resources

for the project, or else the team will fail to meet its commitment to the iteration. Reorganization

typically requires redefinition of what makes a team a team in the enterprise.

There are often unclear and different understandings regarding milestone definitions in the pro-

ject lifecycle. Especially the transition from definition phase to implementation phase is a prob-

lem, as traditionalists are used to get at that point the list of to be realized features and their

specification, while this “list” exists in agile not until the end of the project, due to changing

requirements or changed prioritizations.

The organization has grown with its successes. For most enterprises, success often involves

acquisition of teams or product lines or existing IT organizations along the way. These teams

are rarely collocated, and the larger the enterprise, the less likely they are to be together in one

place. Moreover, raw size alone prevents pure collocation because there is no way physically to

2.2 Agile methods in large and traditional organizations

13

co-locate even 100 people in one workspace, so the problem of distributed teams is endemic to

agile methods at scale.

As agile methods were originally developed and codified in small team environments, there

was freedom to explore and innovate, and most resources the teams needed and most problems

that arose could be managed at the level of a single team. It has to be recognized that many

successful applications of these methods at larger scale occurred in a context where there were

many small and autonomous projects inside the enterprise. So specific projects aligned well

with the principles of agility and most of the rest of the enterprise was not dependant on com-

ponents, subsystems, features, or anything else these teams were delivering. These applications

could have been smaller, stand-alone products, or internal applications, or perhaps new web

front ends for legacy applications; but in any case, they were relatively isolated endeavors that

did not require coordination of large numbers of people or other teams and other departments.

The basic small-team constructs of agile methods were inherent attributes of the project, and the

organization did not interfere with success. However, when building enterprise class systems,

systems of systems, and applications, including components and enterprise systems provided

by others, the apparent limits of the methods themselves must be analyzed, as well as the chal-

lenges regarding the organization. Barriers to agile adoption at the enterprise arise from two

sources: the apparent limitations of the methods themselves and the impediments that exist

within the enterprise. Both must be addressed to achieve enterprise agility (Leffingwell, 2007, p.

87). The limits of the agile methods include small team size and collocation, close customer in-

volvement, and missing project documentation. Cohn and Ford (2003) see limits given by the

organization in change resistance, the adherence of standards (e.g. FDA (U.S. Food and Drug

Administration, 2009), or CMMI (Carnegie Mellon University, 1991)), and established processes.

Especially a lack of documentation, including specification documents, meeting protocols, re-

view protocols, agendas, etc., is critical. In a traditional company it is common to write these

documents and reports, which a traditional quality assurance department demands, while most

agile teams see no value in it. There are no meeting minutes for informal meetings, as they are

often short, no minutes taker is assigned, or they take place for instance in the hallway where

there is no possibility to take notes. Agile projects are focused only on the current project and

emphasize tacit knowledge and communication, project and process documentation is not nec-

essarily written down to avoid waste (Poppendieck & Poppendieck, 2003) if they are not part of

the project deliverables like manuals, or backlogs. The team lives the process daily, meets, dis-

cusses about the process, and adapts it. Decisions, information exchanges, specifications and

clarifications, etc., which emerge out of a meeting, are only interesting for the life of the project

and haven‟t to be written down, as long as they are present for the team members.

This leads to the danger of losing important information, e.g. regarding the process, if the tacit

information is not externalized and saved. Furthermore, knowledge reuse and companywide

learning (CMMI Product Team, 2006), especially across projects, are not covered by agile meth-

ods. These challenges have to be addressed, when the agile methods are integrated in a large

environment with defined processes.

2 Agile methods in large organizations

14

2.3 Research question

This dissertation addresses the problem of missing externalization of tacit project knowledge,

especially in an agile software development environment. Today, as the number of informal

meetings is rising due to the increased application of agile methods, the process of protocol

generation becomes even more critical.

Although there are best practices for meetings of traditional project teams of writing a protocol

after the meeting (see chapter 3), they do not deal well with many problems. The creation of

meeting minutes is time consuming and it is difficult for the minutes taker to listen and write at

the same time. So the protocols are often published too late, incomplete or incorrect.

Our suggestion is to automate the generation of protocols to record the project knowledge, so

the software development teams don‟t have to create the documentation manually.

Our hypothesis is that with an automated protocol generation process, the flexible and commu-

nicative character of agile can be preserved. Moreover, the effort for the creation of meeting

documentation is minimized and the quality of the documents will improve, as well as the pro-

tocol generation is accelerated, which is helpful also for traditional meeting environments.

When applying the automated protocol generation tool, the easiness in communication is en-

sured, that is, the meeting progress is not interfered, and no additional effort for the tool han-

dling, as well as an easy usability of the tool is guaranteed. So the organizational memory – the

accumulated data, information, and knowledge summarized in documents, or knowledge in

individuals‟ memories and in procedures and products – is supported by an externalizing

knowledge management, which additionally improves the effectiveness of meetings, as action

items, etc. are not forgotten by the next meeting.

We will show that it is possible to combine the advantages of documentation as externalized

knowledge source with the lightness of agile by the implementation of a protocol generator

engine. The protocol generator will be part of a dynamic extensible meeting management and

protocol generation framework. The correctness of our hypotheses will be evaluated in two case

studies in the academic field and within an industry survey.

In the next chapter we will show the relevance of communication for the software development

process in large agile projects. The forms of communication, especially the difference between

document-based communication and face-to-face conversation in meetings is presented. More-

over, we analyze how information can be externalized from meetings.

15

3 Communication & Meetings

The relevance of communication in today’s projects

This chapter elaborates the relevance of communication for software development projects,

especially regarding knowledge management (section 3.1). Section 3.2 analyzes communication

in meetings in detail, presents a meeting taxonomy, and discusses meeting minutes as one form

of externalizing and conserving the tacit knowledge of meetings.

3.1 Communication

Communication is the reciprocal exchange of thoughts and information via speech, gesture,

mimic, writings, or pictures of at least two participants. It is a technique for expressing ideas

effectively (Oxford University Press, 2010). Communication is a process by which information is

transmitted between individuals through a common system of symbols, in an attempt to create

shared understanding, spread information, and generate knowledge.

The process of information transmission can be described with a simple model, developed by

Claude Shannon and Warren Weaver, where information is sent from a sender to a receiver

(Shannon, 1948). This model views communication as a means of sending and receiving infor-

mation. The strengths of the model are simplicity, generality, and quantifiability. The model is

structured based on an information source sending a message to a destination. The information

source produces a message, which is encoded into signals, i.e. the sound of the spoken word.

The signals are transmitted via the channel. The message is then 'decoded' (reconstructed) from

the signal and arrives at the destination.

Wilbur Schramm refined and expanded Shannon’s model to a two-way circular communication

(allowing feedback) between the sender and receiver (Schramm, 1961). This model of communi-

cation is illustrated in Figure 3-1.

3 Communication & Meetings

16

Figure 3-1: Communication model (UML Activity Diagram)

The communication model visualizes the key abstractions of communication: sender (by whom),

receiver (to whom), and the message. The sender (source) conveys an idea or some information to

the receiver. The message is encoded, send, and the transmitted information is then decoded.

The receiver is the destination or target of the message.

Messages are characterized by a purpose or pragmatic aspect, the content (what is communicat-

ed), its form, and the method (through which medium). The sender transmits a message with the

intention of knowledge transfer. Objectives of communication are to discuss open questions, to

make a decision, or to check the status of previous action items, as well as to distribute infor-

mation, gather ideas, or to develop a solution (Brügge & Dutoit, 2004). Communication accom-

plishes cooperation and innovation, establishes confidence between the team members and the

communication flow reduces internal and external response times.

The actual content is the information that is conveyed. This may include facts and figures, a

project status update, a summary of recent meetings, or a key project decision.

People communicate with each other in a variety of ways that depend on the message they

want to send and the context in which it is to be sent. There are several forms of communica-

3.1 Communication

17

tion, which can be categorized according to the following criteria. First, there is written and ver-

bal communication. According to the number of participants, communication can be divided into

one-to-one communication, i.e. interpersonal communication between two individuals, one-to-

many communication, i.e. presentational communication, where one person communicates to a

group, and many-to-many communications. Communication can be personal or technique support-

ed. Personal communications are for instance face-to-face meetings, whereas in technique sup-

ported communication the transmission of information is based on the application of technique,

for example via e-mail.

Synchronous and asynchronous communication can be differentiated. Synchronous communication

comprehends for example hallway conversations, structured interviews, meetings (face-to-face,

telephone, video), or synchronous groupware where the participants communicate at the same

time, whereas electronic mail, newsgroups, and the World Wide Web are asynchronous com-

munication (Brügge & Dutoit, 2004), where the response is delayed.

Each of these forms of communication can involve one- or two-way communication, i.e. either

there is only one sender and one receiver, or the receiver becomes also a sender to give feed-

back.

Figure 3-2: Ways of communication: written and verbal

There are multiple ways of communication (communication channels) – via phone, email,

voicemail, instant messenger, letter, fax, meeting, video conference, audio conference, desktop

sharing, text message (SMS), podcasts, video casts, logs, wikis, and more. The methods are dis-

3 Communication & Meetings

18

tinguished, whether the method promotes a push approach that is, information is pushed out to

the receiver, as it is via email or presentation, or a pull approach in which the person who needs

information asks for or collects it when it’s needed, as it is the case with blogs or notice boards,

for example. Some methods support different forms of communication better than others. The

effectiveness of a way of communication defines how well the communication channel is suited

to support the information transmission. For instance, e-mail is an effective method for one-to-

one and one-to-many communication, but inefficient for many-to-many discussions or conver-

sations.

The richness of a communication channel is defined along a continuum, where highly rich

channels as those handling multiple inherent cues simultaneously, such as using feedback,

nonverbal gestures and mimic, and several senses simultaneously. A face-to-face meeting,

which employs feedback as well as audio and visual senses, is considered extremely rich. On

the contrary, a newsletter or fax is lean, however, involving only the visual sense and slow or

no feedback.

The empirical process control method is a communication based process. That is, communication is

in the foreground and controls and influences the software development process. In conversa-

tions, the progress of the project is determined. That is, for example in dialogues with the cus-

tomer, requirements are gathered. The requirements are planned and estimated in planning

meetings, and the next features to be developed are prioritized. In daily meetings, the current

status is shared, or during pair programming sessions problems are discussed. There are review

meetings with the customer to present the current status. In retrospective meetings the software

development process is reviewed, to detect problems and gather ideas and solutions for im-

provement.

For each of these meetings, an agenda can be created. During the meeting the next steps are

defined, which flow into the agenda of the next meeting.

3.1.1 Communication and Knowledge

Knowledge is defined as the expertise and skills acquired by a person through experience or

education, i.e. via communication (Oxford Corpus, 2005). It is the theoretical or practical under-

standing of a subject with the ability to use it for a specific purpose if appropriate.

Data, information, and knowledge have to be distinguished. Examples of data are raw numbers

and facts; information is processed data, and knowledge is applied and verified information.

Knowledge is information possessed in the mind of individuals: it is personalized information,

related to facts, procedures, concepts, interpretations, ideas, observations, and judgments. That

is, information is converted to knowledge once it is processed in the mind of individuals and

3.1 Communication

19

knowledge becomes information once it is articulated and presented in the form of text,

graphics, words, or other symbolic form.

In an organizational context, knowledge is the sum of what is known and resides in the intelli-

gence and the competence of people and can provide a competitive advantage/ resource

(Nonaka & Takeuchi, 1995). Knowledge is created by individuals. Knowledge can be viewed as

existing in the individual or the collective (Nonaka, 1994). Individual knowledge is created by

and exists in the individual whereas social knowledge is created by and inherent in the collec-

tive actions of a group, summarized in a company knowledge repository. Thus, organizational

knowledge creation is understood as a process that ‚organizationally‛ amplifies the knowledge

created by individuals and crystallizes it as a part of the knowledge network of the organiza-

tion.

Nonaka distinguishes two dimensions of knowledge in organizations: tacit (or implicit)

knowledge and explicit knowledge (Figure 3-3). The tacit dimension of knowledge is rooted in

the action of an individual, the experience, and involvement in a specific context. Tacit

knowledge represents internalized knowledge that resides only with the individual e.g. subjec-

tive insights, intuitions, and hunches, as well as ideas, values, or emotions. The explicit dimen-

sion of knowledge represents knowledge that is articulated, codified, and communicated and

shared in symbolic form and/ or natural language. The most common forms of explicit

knowledge are manuals, documents and procedures, as well as audio-visual material.

Figure 3-3: Two dimensions of knowledge

Explicit knowledge can be processed by a computer, transmitted electronically, or stored in

databases. But the subjective and intuitive nature of tacit knowledge makes it difficult to pro-

cess or transmit the acquired knowledge in any systematical or logical manner. For tacit

knowledge to be communicated and shared within the organization, it has to be converted into

explicit knowledge.

A further categorization of knowledge is the distinction between the creation of "new

knowledge" (i.e., innovation) vs. the transfer or exploitation of "established knowledge" within

a group, organization, or community.

3 Communication & Meetings

20

Knowledge management refers to identifying and leveraging the collective knowledge in an or-

ganization to help the organization compete. Moreover, it is intended to increase innovativeness

and responsiveness, improve performance, share lessons learned, and to assure integration and

continuous improvement of the organization (Thompson & Walsham, 2004).

Knowledge management involves the processes of creating, storing/retrieving and transferring

knowledge.

Figure 3-4: Knowledge management and its processes

Organizational knowledge creation involves developing new content or replacing existing content

within the organization’s tacit and explicit knowledge. Through social and collaborative pro-

cesses as well as in individual’s cognitive processes (e.g. reflection), knowledge is created and

shared in organizational settings. Four modes of knowledge creation have been identified by

Nonaka and Takeuchi: socialization, externalization, combination, and internalization (known

as the SECI process) (Figure 3-5). Each mode is based on conversation to create new knowledge.

In the socialization mode (tacit to tacit), new tacit knowledge is created from tacit knowledge

through conversations, social interactions, and shared experience among organizational mem-

bers. Externalization (tacit to explicit) refers to converting tacit knowledge to new explicit

knowledge (e.g. articulation of best practices or lessons learned in a meeting and writing them

down). The combination mode (explicit to explicit) refers to the creation of new explicit

knowledge by merging, categorizing, reclassifying, and synthesizing existing explicit

knowledge (e.g. literature survey reports). In the internalization mode (explicit to tacit), new

tacit knowledge is created from explicit knowledge (e.g. by learning and understanding results

from reading or through discussions). The four knowledge creation modes are not pure, but

highly interdependent and intertwined. That is, each mode relies on, contributes to, and bene-

fits from other modes.

3.1 Communication

21

Figure 3-5: SECI: socialization, externalization, combination, and internalization

The storage and retrieval of organizational knowledge, also referred to as organizational

memory, constitutes an important aspect of effective organizational knowledge management.

Organizational knowledge includes knowledge residing in various component forms, including

written documentation, structured information stored in electronic databases, codified human

knowledge stored in expert systems, documented organizational procedures and processes and

tacit knowledge acquired by individuals and networks of individuals (Tan, Teo, Tan, & Wei,

1998). The organizational memory has to be stored, however in such a way that an effective and

efficient retrieval of information is allowed.

The transfer of knowledge occurs at various levels: transfer of knowledge between individuals,

from individuals to explicit sources, from individuals to groups, within group, across groups,

and from the group to the organization (Alavi & Leidner, 2001). An important process of

knowledge management in organizational settings is the transfer of knowledge to locations

where it is needed and can be used. Communication processes (dialogues, discussions, and

experience sharing) and information flows drive knowledge transfer in organization.

Successful knowledge management effort needs to convert internalized tacit knowledge into

explicit knowledge in order to share it – that is from individual’s personal to organizational

knowledge. Communication can be seen as processes of information and knowledge transmis-

sion. Through verbal and written communication knowledge and experiences are conferred.

Emergent knowledge is generated through communication. For instance, during a meeting, the

SECI process pushes knowledge creation, as the tacit knowledge of the individuals is external-

ized and then combined to new knowledge. Furthermore, externalized knowledge, for example

a book, can be the source for new knowledge generated by internalization.

The dynamic model, called knowledge conversion process, considers a spiraling knowledge

process interaction between explicit knowledge and tacit knowledge(Nonaka & Takeuchi,

1995). This model views organizational knowledge creation and transfer as involving a continu-

al interplay between the tacit and explicit dimensions of knowledge and a growing spiral flow

as knowledge moves through individual, group, and organizational levels. In this model,

knowledge follows a cycle in which implicit knowledge is 'extracted' to become explicit

knowledge, is, where applicable, stored, and the explicit knowledge is ‘re-internalized’ into

implicit knowledge.

3 Communication & Meetings

22

Communication and learning are important activities in software development processes. Pro-

ject relevant knowledge regarding requirements, agreements, the system models, the software

architecture, the design, and tools and used technologies have to spread (via communication

processes) around the team. If all team members are informed, i.e. the group memory was

transferred to the individual memories, each individual team member can make a decision

against the background of the current information state and regarding the made agreements

amongst each other and with the customer in consistence with the current project situation.

3.1.2 Communication: conversation vs. documents

While agile projects emphasize people, personal communication, and tacit knowledge, tradi-

tional methods emphasize business process engineering, explicit knowledge, and document

based communication. In this regard, the agile manifesto promotes: ‚The most efficient and

effective method of conveying information to and within a development team is face-to-face

conversation.‛(Beck & al., 2001) An agile project requires open communication and collabora-

tion in order to succeed. Davenport and Prusak (1998) even claim that companies need to shift

attention from documents to discussions, as people can transfer ideas faster by talking face to

face than by writing and reading documents.

Software development projects proceed more successfully, if more importance is attached to the

developers and their communication among each other, as well as to working software, instead

of comprehensive documentation and a rigid adherence of a process (Beck & al., 2001). The

communication focus allows an agile project to react fast and flexible to changes.

There are various modes of communication that people may choose to apply when working

together. Figure 3-6 shows a graph that compares the effectiveness of different ways of commu-

nication with the richness of the communication channel employed.

3.1 Communication

23

Figure 3-6: Effectiveness of different ways of communication (Ambler, 2009)

Ambler claims that the most effective communication is face-to-face, particularly when en-

hanced by a shared medium such as a plain whiteboard, flip chart, paper, or index cards. By

removing the shared medium or by no longer being face-to-face, a drop in communication ef-

fectiveness can be experienced. As the richness of communication channels decrease physical

proximity is lost and the conscious and subconscious clues that such a proximity provides. The

benefit of multiple modalities is lost, i.e. the ability to communicate through techniques other

than words such as gestures and facial expressions. The ability to change vocal inflection and

timing is also lost, people not only communicate via the words they say but how they say those

words. A speaker may emphasize what he is saying, i.e. changing the way he is communicating,

by speeding up, slowing down, pausing, or changing tones. Furthermore, the ability to answer

questions in real time, the point that distinguishes verbal and written communication, are im-

portant because questions provide insight into how well the information is being understood by

the listener (Cockburn, 2002).

Given the high levels of corporate loss of knowledge in commerce and industry, organizations

not only have to transfer knowledge, they have to preserve their organizational memory and, in

particular, their tacit knowledge. Tacit knowledge of individuals or small teams has to be made

available for other and future teams of the organization. This is done by extracting tacit

knowledge in an easily accessible format – like documents. Thus, documents constitute a source

3 Communication & Meetings

24

of knowledge in a rapid changing environment, provide a basis for decision making, and allow

traceability.

Understanding is generated by a combination of documentation and conversation. Documenta-

tion can provide content (facts), but conversations are better at building context. So documenta-

tion as well as conversation is need. However, while documentation contributes to understand-

ing and knowledge transfer (current and future), it also creates barriers to conversation.

Even though most organizational work processes are largely designed around documentation,

much remains unrecorded, especially regarding decision-making.

We have seen in this section that the most effective form of communication is conversation,

particularly in meetings (personal, via telephone, video conference, etc.), whereas the discussed

information and tacit knowledge has to be summarized and stored as explicit knowledge in

documents (meeting minutes). In the following, we will go into the details of meetings, their

various forms and their meaning for a successful project completion.

3.2 Meetings

Meetings are one of many coordination mechanisms available to organizations, as discussed on

page 18. In a meeting, two or more people come together for the purpose of discussing a (usual-

ly) predetermined topic, often in a formal setting. Doyle and Straus (1976, p. 3) even claim that

‛we are a meeting society - a world made up of small groups that come together to share infor-

mation, plan, solve problems, criticize or praise, make new decision or find out what went

wrong with old ones.‚ In addition to coming together physically, communication lines and

equipment can also be set up to have a discussion between people at different locations, e.g. a

conference call or an electronic ‘e-meeting’.

In the following we use a dynamic model for a meeting, which consists of three phases: meeting

set- up, run the meeting, and a meeting follow-up.

During the meeting set-up phase, the meeting is prepared, that is, purpose, scope and goals of

the meeting are defined. An agenda is created upfront to allow the meeting participants to pre-

pare for it. In addition, the attendance list is determined, the meeting is scheduled, a room is

booked, and an invitation is send to the participants.

Running the meeting is the second phase. The meeting is started by an opening phase and fin-

ished by a closing part. During the meeting several presentations, discussions, brainstorming or

voting units are held.

3.2 Meetings

25

The follow-up phase of a meeting involves the process of writing meeting minutes to protocol

made decisions, new action items, or discussed problems. To influence the long-range effective-

ness of the meeting the phase also includes a review of the meeting notes, paying special atten-

tion to the action items assigned to the participant. The meeting protocol should be sent to all

participants and stakeholders, who did not participate. It has to be followed up whether the

assigned tasks are being carried out, and detected issues and concerns have to be kept in focus.

This meeting workflow is illustrated in Figure 3-7.

Figure 3-7: Typical meeting workflow

Meetings can be categorized according to their frequency, the formalism, their dimensions, and

their types.

The meeting organizer has to determine the repetition and frequency of occurrence of the meet-

ing. Options generally include the following: A one-time meeting is the most common meeting

type and covers individual meeting events that are self-contained. The occasional meeting is com-

posed of people whose normal work does not bring them into contact and whose work has little

or no relationship to that of the others. A recurring meeting is a meeting that recurs periodically,

such as a staff meeting from 9:00 am to 9:30 am every Monday, or a Daily Scrum Meeting. The

meeting organizer wants the participants to be at the meeting on a constant and regular basis. A

recurring meeting can be ongoing, such as a weekly team meeting, or have an end date, such as

a five week training meeting, held every Friday afternoon. A recurring meeting can be a daily,

weekly or monthly meeting. A series meeting is like a recurring meeting, but the details differ

from meeting to meeting. One example of a series meeting is a monthly ‘lunch and learn’ event

at a company. The place is the same, but the agenda and topics vary.

Meetings can be distinguished according their formalism in informal meetings and formal meet-

ings. Informal meetings are generally not planned in advance and the participants are not noti-

fied through means such as memos or emails. If a team member needs an advice or has a prob-

3 Communication & Meetings

26

lem, he calls a colleague, expecting that he can help him, or two team members meet on the way

to the canteen, talking about the latest news. So the content is mostly limited to one topic. In-

formal meetings can also take place in neutral surroundings, for instance in a restaurant rather

than a formal boardroom. In contrast, formal meetings are preplanned meetings. A predeter-

mined set of topics are discussed along with a set of objectives that one wishes to achieve at the

end of the meeting. The members of the meeting are often given a considerable period of notice

before the meeting, preferably through formal means. As the title suggest, the atmosphere in

such meetings is generally formal. Table 3-1 opposes the criteria of formal to informal meetings.

Criteria Formal meeting Informal meeting

Attributes

- planned

- meeting room

- fixed date

- Ø 1-2 hours

- written agenda

- meeting minutes

- unplanned

- everywhere

- any time feasible

- short (~10 minutes)

- purpose

- no documentation

Aim - jour fix

- team building

- brainstorming well pre-

- problem solving pared

- information sharing

- problem solving

- new information

- advice needed quick

- information sharing

- status update

Process - create agenda

- find date

- book room

- send invitation

- acceptance/ cancelation

- conduct meeting

- write meeting minutes

- send protocol

- ‚Do you have time now?‛

or

- ‚Good that I see you…‛

- discuss problem/ share

information

- if necessary, each partici-

pant takes individual notes

Topics - several topics

- reprocessing of old topics

- one topic

Participants - e.g. whole team (5-20, even more) - few (2-4)

Table 3-1: Formal vs. informal meetings

Agile projects are strongly affected by the communication component. This results in infor-

mation exchanges that often take place in the office kitchen rather than in formal meeting

rooms. Decisions can be made in an informal meeting between the involved persons without

waiting for the next official meeting, or even calling an extra formal meeting. The project re-

3.2 Meetings

27

mains flexible and can quickly react on change. The amount of informal meetings is far greater

than the one of formal meetings. It is comparable to an iceberg: formal meetings are only the tip

of all meetings. Only a few meetings are formal: the Planning Meeting at the beginning of an

iteration, daily 15-minute status meetings, and a review and retrospective meeting at the end of

an iteration. However, under the surface, there are a lot more ‘meetings’ every day, for instance

during pair programming where two developers discuss product features and possibly assign

new tasks, or some team members meet at the hallway exchanging information and making

decisions relevant for the project progress. Especially those unplanned meetings are an im-

portant part of the agile communication and a source for knowledge creation and transfer.

In addition to the temporal and formal differentiation, meetings can be labeled according to the

importance (from important to unimportant), priority (high to low), or urgency (urgent to trivi-

al). Moreover, a separation according the scope (short to comprehensive) or scheduling

(planned or unplanned) can be done.

There are several meeting types, corresponding to their participants, the meeting style, aim and

purposes, and the applied project management method. Following meeting types can be differ-

entiated (Doyle & Straus, 1976): A classification according the participating people comprises

team meetings, where colleagues are working on various aspects of a team project and staff meet-

ings, typically between a manager and those that report to the manager. In addition, there are

management meetings among managers, board meetings, where the board of directors of an organ-

ization or project comes together, and one-on-one meetings, a meeting between two individuals.

Furthermore, a meeting can be classified as expert meeting, a conference, or panel discussion.

Meetings have different styles, depending on the way how they are conducted. There are break-

fast meetings or lunch meetings, off-site meetings, stand-up meetings, or lab meetings. Moreover, a

meeting can take place in a classical meeting room, via telephone, or video conference.

Each meeting has a predefined purpose. There are problem solving meetings, where a problem/

issue is identified and defined, solutions are searched and evaluated, and if necessary an action

plan (including the assignment of tasks) is determined (Brügge & Dutoit, 2004). Moreover, there

are idea generation meetings, e.g. a brainstorming session in combination with a problem solving

meeting to develop creative ideas for solutions. During a decision making meeting it is the aim

that the participants come to a decision, while the planning meeting is targeted to identify the

next steps and an action plan, including delegations and task assignments. In addition, there are

feed forward and feedback meetings. Feed forward meetings comprise status reporting and infor-

mation presentations, as well as a Jour Fix, where a fixed group meets at a fixed date, also with-

out a concrete occasion (to increase the ‚We-Feeling‚). Feedback meetings are reactive and

evaluating meetings, including client or project reviews, peer reviews and postmortems/ retro-

spectives. Furthermore there are combinations of these meetings, like a kick-off meeting – an

3 Communication & Meetings

28

informative meeting with planning components to define the next steps afterwards. If the meet-

ing is called together spontaneously for a special purpose, it is an ad-hoc meeting.

Specific project management methods use special meeting types, for instance Scrum distin-

guishes between Sprint Planning Meeting, Daily Scrum Meeting, Sprint Review Meeting, and

Sprint Retrospective Meeting.

3.2.1 Meeting taxonomy

Each meeting, depending on the purpose of the meeting, consists of several recurrent meeting

elements. For instance, a problem solving meeting consists of the following elements: issue

(problem) definition, a discussion about alternative positions (possible answers) and arguments

(that support or object to a given position or argument), and a decision (the final solution)

(Kunz & Rittel, 1970). During a feedback retrospective meeting, there is a discussion and brain-

storming part to gather best-practices and improvement potential, followed by a decision phase,

where an action plan is approved and where necessary action items are assigned.

Based on the meeting types and their elements we defined a meeting taxonomy. This classifica-

tion of (recurrent) meeting components forms a logical structure of communication, which

shows meeting type specific elements, but also allows the components to be almost arbitrarily

combined to new meeting types. Table 3-2 gives an overview of the meeting elements for the

meeting types discussed above.

Meeting type Meeting elements

Problem solving - Problem definition

- Discussion (positions & arguments)

- Decision

- Definition of actions

Idea generation - Topic definition

- Discussion (idea gathering)

Decision making - Topic definition

- Definition alternatives

- Decision

Planning - Gathering of new requirements

- Work package splitting

- Task assignment

- Re/prioritization

- Update plan

- Re/estimation of work packages/ tasks

Feed forward: status report - Status information (task, project, …)

- Task delegation

3.2 Meetings

29

- Re/estimation of tasks

- Controlling (project progress, budget)

Feed forward: information presentation - Information announcement

Feedback: review - Customer approval

- Change requests, new requirements

- Controlling

Feedback: retrospective - Discussion: gathering process feedback

- Decision: best-practices

- Brainstorming: improvements

- Definition of actions (incl. task as-

signment)

Meeting type independent - Greeting

- Closing

- Scheduling next meeting

Table 3-2: Overview meeting types and corresponding meeting elements

Formally, the table can be interpreted as

 .

That is, for example .

The meeting taxonomy is extensible by project method specific meeting types. Figure 3-8 shows

the extended taxonomy for the agile project management method Scrum.

3 Communication & Meetings

30

Figure 3-8: Taxonomy for agile Scrum Meetings

3.2 Meetings

31

3.2.2 Meeting best-practices for formal meetings

Independent of the meeting type, meetings are an important vehicle for personal contact in

organizations. They are so common and pervasive in organizations that they are often taken for

granted; however, unless properly planned and executed, meetings can be a waste of time and

resources (Kayser, 1995). Meetings have often a bad reputation, mainly because people end up

sitting through so many meetings that seem pointless.

For this reason, a lot of best practices, advices and optimal meeting procedure have been re-

leased, regarding the meeting process, logistics, and roles (Williams, 2008), (Doyle & Straus,

1976). The meeting best practices can be allocated to the three phases: meeting set- up, the meet-

ing itself, and a meeting follow-up, presented in chapter 3.2.

During setting-up a meeting, the needs and goals of the meeting are defined. An agenda is creat-

ed upfront and is sent with the meeting invitation to allow the meeting participants to prepare

for it, so that by the time the meeting takes place, they can already be on board as to what the

intention of the meeting is. Moreover, the team members need to trust that if a discussion arises

in which they should be involved, discussions are not made without them. The meeting agenda

includes a list of participants, the purpose and goals for the meeting, a list of discussion topics,

and any background material or a list of documents that should be reviewed prior to the meet-

ing. That is, in advance the meeting’s objective has to be cleared. The purpose of the meeting,

the end products, i.e. the outcomes of the meeting, and standards, the meeting will adhere to,

have to be defined.

Additionally, the meeting is labeled as to type and function, whether it is a decision meeting, a

brainstorming meeting, a retrospective meeting, or a regular team meeting. Whatever the type

of meeting, it should be clearly defined in advance, and a decision made who exactly needs to

be there. As it is easy to simply invite everyone to every meeting, the list of ‘must attend’ in-

vitees should be kept as small as possible and only people should be added to the ‘optional’ list

if they truly might be interested in the meeting. Thus the meeting will be more focused and

more effective.

When setting-up a meeting, logistics have to be considered as well. Depending on the number of

participants and the goal of the meeting an appropriate room and material has to be provided.

If necessary, internet access, a conference phone, or a white board has to be made available.

All conference rooms should be reserved to allow a smooth start without any bad surprises. If

the meeting will require the use of laptops, projectors or other technical equipment, additional

15 minutes before and after the designated meeting time should be allowed for to set up and

break down any equipment.

3 Communication & Meetings

32

In the second phase, a meeting timekeeper and facilitator have to be assigned. The Timekeeper is

responsible for monitoring the clock and notifying the host if the meeting is falling behind

schedule, based on the agenda provided. A meeting facilitator has to be assigned to separate the

powers, which means that the power of decision making (the boss) has to be separated from the

power of the process (the facilitator) (Edelman & Crain, 1994). Neutral and non-evaluating, the

meeting facilitator is responsible for making sure the participants are using the most effective

methods for accomplishing their task in the shortest time. So the manager, as decision maker,

can fully participate in the meeting.

Keeping focused and the meeting as short as possible is one of the important best-practices for

meetings so the meetings don’t become a waste of time for the participants. There are very few

real situations where a meeting should take longer than one hour, or even three or four. Usual-

ly, long meetings like these are combinations of smaller meetings, which have to be divided.

A parking lot, i.e. a flip-chart or whiteboard to write down important parts of the communica-

tion, like ideas or decisions, or postponed topics will help keeping focused. Whenever anyone

starts getting into a very detailed discussion that would be better dealt with outside the meet-

ing, it can be ‘parked’ by noting it on the parking lot page. However, it has to be kept in mind

that these issues are dealt with, otherwise it will just be seen as trying to silence discussion. A

meeting recorder will be responsible to take these notes and support the short-term memory of

the meeting group (Doyle & Straus, 1976).

The meeting follow-up phase involves the process of writing meeting minutes to protocol the

conversation. Summarizing the important parts of the meeting (e.g. decisions or action items) in

a protocol will help the meeting participants to continue a successful meeting with a successful

post-processing and the absent team members to keep informed, what happened in the meet-

ing. Formal protocols have to be approved by the meeting participants or one representative,

e.g. a manager, before they are published. The meeting protocol is sent to all stakeholders. As-

signed tasks and detected issues and concerns have to be kept in focus after the meeting. In

addition, the parking lot items should be reviewed and necessary follow-up meetings be sched-

uled to address outstanding issues.

3.2.3 Best practices for informal meeting

Based on the established best-practices for formal meetings, the following best-practices for

informal meetings are derived.

Informal meetings are unplanned ad-hoc meeting with no preplanning phase, i.e. no set-up

phase. The agenda is based on a question, an urgent issue, or a piece of information that one

team member wants to discuss with the other meeting participants. Ad-hoc meetings allow no

3.2 Meetings

33

detailed preparation for the meeting. However, also in informal meetings a whiteboard helps

the team members to visualize and explain ideas, and record discussed information and deci-

sions.

Informal meetings have to be focused and as short as possible, i.e. only one or a few topics

should be addressed in order to reduce the necessary amount of meeting time to a minimum. So

the meeting participants can return as fast as possible to their planned work. If there are more

questions or topics to be discussed, a formal meeting has to be planned.

After the meeting – also in informal meetings – meeting minutes have to be written, summariz-

ing the important parts of the meeting, for instance decisions or assigned action items. There-

fore notes have to be taken during the meeting by one participant.

During the follow-up phase of the meeting, a protocol has to be written based on the taken

notes. The protocol is sent to the meeting participants to summarize assigned tasks and detected

issue that have to be solved. Moreover, all stakeholders have to be informed, especially regard-

ing decisions, problems and next steps.

3.2.4 Meeting Minutes

Meeting minutes (also know as protocols) are documented records of a meeting, containing

externalized information.

Protocols summarize the important parts of the meeting (for instance decisions and action

items), hence acting as a steering and controlling tool for the meeting facilitator during the

meeting. After the meeting, a protocol is aid to memory for the meeting participants and infor-

mation source for outsiders or absent team members. Meeting minutes are procedure documen-

tation for realization activities, enabling a successful post-processing, as well as evidence for

possible later conception discrepancies (Laufer, 2009).

Each protocol comprises results and/ or actions, as well as the related dates and responsible

persons. Meeting minutes can be differentiated into three types: verbatim protocol, narrative

and resolution/ decision protocol.

The verbatim protocol is a word-for-word recording of everything said in the meeting. Verbatim

minutes are appropriate complex, both for the minutes taker and the reader. Thus, they play a

minor role in operative business and are written only in two situations: the proceedings of legis-

lative bodies (Congress, Houses of Parliaments, etc.) and protocols at the court are recorded

verbatim.

3 Communication & Meetings

34

Minutes of Narration are not verbatim, but still the whole meeting progress is described. They

include some of the discussions that took place and important details and give a fuller picture

of the debate, including an account of discussions leading up to the decision and the views ex-

pressed by various members of the meeting. Hence, they are the archived record of discussions

that exist after the meeting has finished. It is important in many cases to have well-written nar-

rative minutes because in several year’s time people may not just want to know what decisions

were made at the meeting but how professional they were made, i.e. whether all the points

were discussed, whether proper experts were brought in, and so on.

In operational meetings, normally it is sufficient to apply Occam's razor and record the final

results or made decisions. Resolution/ decision minutes are limited to the recording of the actual

words of all resolutions that were passed, and not the discussions leading up to those decisions,

which should have been set out in the narrative minutes.

Furthermore, there is a special form of minutes, the memory minutes, written after the meeting

from memory.

Protocols consist of three parts. The header comprises the basic information about the conversa-

tion. Normally, these information are place, date, and time, as well as the participants (number,

un/excused) and the meeting facilitator. Moreover, motivation and agenda items are in the first

part of a protocol.

The minutes in the narrower sense are depending on the protocol type. Its structure arises from

the agenda and reproduces requests, issues, proposals, and criticisms, plus decisions, action

items, and brief rationales.

In the final part – mandatory, if the protocol shall have a legal relevance – are the signatures of

the minutes keeper and the meeting facilitator or another responsible person.

On a protocol, in terms of a provable recording, high demands are made. The requirements

include completeness and correctness with regards to the content, i.e. all discussed information

has to be recorded, accurately and no errors have to be in the protocol. The relevance of the

recorded results and activities has to be ensured, as well as authenticity of the authorship, and

the validity of the protocol. Only if a protocol guarantees these requirements it can give reliable

information. Moreover, the demands have to be satisfied and facilitated by the right time of

generation (present vs. protocol from memory), the method for minutes taking (minutes taker

or technical equipment), during writing (objectivity) and storage of the data (archiving, stable

medium with access control).

Meeting minutes are considered as a fundamental source of information for building knowledge

bases and repositories (Corrall, 1999), but they are not always available, especially for informal

meetings. While tacit knowledge is communicated in meetings, in order to be useful to anyone

3.2 Meetings

35

beyond the person who owns it, the knowledge additionally has to be converted into explicit

knowledge. That externalization of knowledge, which is then reusable for knowledge manage-

ment processes, is done by writing a protocol that satisfies the requirements mentioned above.

The primarily target group of meeting minutes is the project team. Team members and project

stakeholders, e.g. the customer, need to be informed. The protocol is a knowledge source and a

rational document, i.e. the meeting minutes help the team members to reconstruct decisions in

further phases of the project. Moreover, another target group are other projects within the com-

pany. Managers and team members may be interested in problems and risks, to consider the

issues in their project plan, or profit from established best-practices.

Writing meeting minutes is part of the best-practices. Nevertheless, there are often no protocols,

as despite the high benefit, they are considered as dispensable, or there is nobody willing to

assume the task of the minutes taker. Sometimes, protocols are written after the meeting from

memory. Minutes written in this way are often incomplete and incorrect and possess miscon-

ceptions. Subsequent disagreements and rework activities are not unusually.

Writing high quality meeting minutes is a critical success factor for software development pro-

jects and the company advancement. To support the principles of an agile proceeding, in addi-

tion the effort for writing and publishing a protocol has to be minimized, so the developers are

not kept from software development (the aim) by ‘unnecessary’ work. A new approach is re-

quired that reduces the documentation effort with simultaneously increasing the protocol quali-

ty.

We propose a protocol automation approach for knowledge externalization. This approach is

based on audio-/video-recording the meetings, to record and store the meeting conversation

and the discussed information. As only recording the meetings is not sufficient, because the

essential information would be lost in the amount of audio- or video material, the important

information (decisions, problems, etc.) have to be extracted and summarized in meeting

minutes. Therefore a semantic structuring of the conversional recording is required. This will be

based on the above proposed meeting taxonomy and a procedure, where each item of the agen-

da or made result should be adopted directly after it is discussed and be formulate for the pro-

tocol, if all agree (Laufer, 2009). So the meeting efficiency is increased, because finished agenda

items are closed, the next (open) steps become clearer, and later misconceptions are avoided. In

fact, the protocol can become a useful steering tool.

37

4 Protocol generation technologies

Technologies for automated summaries and protocol generation

The problem of generating an automated concise and meaningful protocol has been addressed

from different perspectives, in varying domains and using various paradigms. This chapter

intends to investigate approaches for automated text summarization (section 4.1), speech recog-

nition (section 4.2) and summarization of spoken language (section 4.3), as fundamental tech-

nologies used in protocol generation. Applications, also focusing on protocol generation, are

introduced in section 4.4.

4.1 Automatic text summarization

Automatic summarization of texts is mainly investigated in the field of natural language pro-

cessing. The predominant approach of natural language processing is based on a statistical pro-

cedure, where the sum of significance of all words in one sentence is calculated, the sentences

with the highest sums are extracted and thus the text is summarized.

Radev, et al. (2002) define a summary as “a text that is produced from one or more texts, that

conveys important information in the original text(s), and that is no longer than half of the orig-

inal text(s) and usually significantly less than that”. This definition captures three important

aspects that characterize research on automatic summarization:

• Summaries may be produced from a single document or multiple documents,

• Summaries should preserve important information,

• Summaries should be short.

Following, summarization terminology is introduced, based on the definitions of Das and Mar-

tins (2007) and Radev et al. (2002): extraction is the procedure of identifying important sections

of the text and producing them verbatim; abstraction aims to produce important material in a

new way; fusion combines extracted parts coherently; and compression aims to throw out unim-

portant sections of the text. Earliest instances of research on summarizing scientific documents

or newswire data used features like word and phrase frequency (Luhn, 1958), position in the text

(Baxendale, 1958) and key phrases (Edmundson, 1969).

4 Protocol generation technologies

38

Usually, the flow of information in a given document is not uniform. Thus, the major challenge

in summarization lies in distinguishing the more informative parts of a document from the less

ones. In this section, we describe eminent extractive techniques in the research field on summa-

rization, as well as approaches involving machine learning techniques. Finally, the field of short

summaries is briefly described.

Luhn (1958) was the first, who proposed that the frequency of a particular word in an article

provides a useful measure of its significance. He put forward several key ideas that have as-

sumed importance in later work on summarization. As a first step, words were stemmed to

their root forms, and stop words (e. g. “a”, “be”, “the”, “so”) were deleted. Then a list of content

words sorted by decreasing frequency was compiled, the index providing a significance meas-

ure of the word. On a sentence level, a significance factor was derived that reflects the number of

occurrences of significant words within a sentence, and the linear distance between them due to

the intervention of non-significant words. All sentences are ranked in order of their significance

factor, and the top ranking sentences are finally selected to form the auto-abstract.

Baxendale (1958) provided early insight on a particular feature helpful in finding salient parts of

documents: the sentence position. Towards this goal, 200 paragraphs were examined to find that

in 85% of the paragraphs the topic sentence came as the first one and in 7% of the time it was

the last sentence. Thus, a naive but fairly accurate way to select a topic sentence is to choose one

of these two.

Edmundson (1969) described a system that produces document extracts. He developed a typical

structure for an extractive summarization experiment. The two features of word frequency and

positional importance were incorporated from Luhn and Baxendale. Two other features were

used: the presence of cue words (presence of words like significant, or hardly), and the skeleton of

the document (whether the sentence is a title or heading). Weights were attached to each of

these features manually to score each sentence.

With the advance of machine learning techniques in the field of natural language processing,

statistical techniques where published to produce document extracts. Kupiec et al. (1995) de-

scribe a method derived from Edmundson (1969) that is able to learn from data. The classifica-

tion function categorizes each sentence as worthy of extraction or not adequate, using a naïve-

Bayes classifier. The features, which are compliant to the features proposed by Edmundson, ad-

ditionally included the sentence length and the presence of uppercase words. Each sentence is given

a score, and only the n top sentences are extracted.

Aone et al. (1999) also incorporate a naïve-Bayes classifier, but with richer features. Their sys-

tem DimSum makes use of features like term frequency (tf) and inverse document frequency

(idf) to derive signature words, those words that indicate key concepts in a document. The idf is

computed from a large corpus (a database of speech audio files and text transcriptions that rep-

resents the natural language) of the same domain as the concerned documents. A shallow dis-

course analysis is employed to maintain cohesion, e.g. reference to same entities in the text. The

references are resolved at a very shallow level by linking name aliases within a document like

4.1 Automatic text summarization

39

“U.S.” to “United States”, or “IBM” for “International Business Machines”. Synonyms and

morphological variants are also merged while considering lexical terms, the former being iden-

tified by using Wordnet (Miller, 1995).

The importance of a single feature, the sentence position, was studied by Lin and Hovy (1997)

based on the ideas of Baxendale (1958). Weighing a sentence by its position in text, which is

termed as the “position method”, arises from the idea that texts generally follow a predictable

discourse structure, and that the sentences of greater topic centrality tend to occur in certain

specifiable locations (e.g. title or abstracts). However, the discourse structure significantly varies

over domains, so Lin and Hovy investigated techniques of tailoring the position method to-

wards optimality over a genre and how it can be evaluated for effectiveness. A newswire cor-

pus was used, which consists of text about computer and related hardware, accompanied by a

set of key topic words and a small abstract of six sentences. For each document in the corpus,

the authors measured the yield of each sentence position against the topic keywords. They then

ranked the sentence positions by their average yield to produce the Optimal Position Policy

(OPP) for topic positions for the genre.

Lin (1999) breaks away from the assumption that features are independent of each other and

tries to model the problem of sentence extraction using decision trees, instead of a naïve-Bayes

classifier. He examines a lot of features and their effect on sentence extraction. The data used in

this work is a publicly available collection of texts, classified into various topics. The dataset

contains essential text fragments (phrases, clauses, and sentences) that are each evaluated by a

human judge. The SUMMARIST system, developed at the University of Southern California, is

foundation for the experiments of Lin. The system extracts sentences from the documents and

matches them against human extracts.

Some novel features are the query signature (normalized score given to sentences depending on

number of query words that they contain), IR signature (the m most salient words in the corpus,

similar to the signature words of Aone et al. (1999)), numerical data (Boolean value 1 given to

sentences that contains a number in them), proper name (Boolean value 1 given to sentences that

contains a proper name in them), pronoun or adjective (Boolean value 1 given to sentences that

contains a pronoun or adjective in them), weekday or month (similar as previous feature) and

quotation (similar as previous feature). Some features like the query signature are question-

oriented because of the setting of the evaluation, unlike a generalized summarization frame-

work. Various baselines are experimented with, for instance using only the positional feature,

or using a simple combination of all features by adding their values. When evaluated by match-

ing machine extracted and human extracted sentences, the decision tree classifier is clearly the

winner for the whole dataset.

In contrast with these feature-based and non-sequential approaches, Conroy and O‟leary (2001)

model the problem of extracting a sentence from a document using a hidden Markov model

(HMM). The basic motivation for using a sequential model is to account for local dependencies

between sentences. Only three features were used: position of the sentence in the document

4 Protocol generation technologies

40

(built into the state structure of the HMM), number of terms in the sentence, and likeliness of the

sentence terms given the document terms.

Svore et al. (2007) proposed an algorithm based on neural nets and the use of third party da-

tasets to tackle the problem of extractive summarization. A model is trained from the labels and

the features for each sentence of an article that could infer the proper ranking of sentences in a

test document. The ranking is accomplished using RankNet (Burges, et al., 2005), a pair-based

neural network algorithm designed to rank a set of inputs that uses the gradient descent meth-

od for training. For the training set, ROUGE-1 (Lin, 2004) is used to score the similarity of a

human written highlight and a sentence in the document. These similarity scores are used as

soft labels during training, contrasting with other approaches where sentences are “hard-

labeled”, as selected or not selected.

Some of the used features based on position or n-grams frequencies have been observed in pre-

vious work. The novelty of the new frameworks lay in the use of features that derived infor-

mation from query logs from search engines, e.g. Bing (Microsoft, 2010), Google (Google, 2010)

and Wikipedia (Wikimedia Foundation, 2001) entries. If a document sentence contains key-

words used in the news search engine, or entities found in Wikipedia articles, then there is a

greater chance of having that sentence in the highlight.

Barzilay and Elhadad (1997) used an amount of linguistic analysis for performing the task of

summarization. Lexical chains, sequences of related words in a text, are applied spanning short

(adjacent words or sentences) or long distances (entire text). The method progressed with the

following steps: segmentation of the text, identification of lexical chains, and using strong lexi-

cal chains to identify the sentences worthy of extraction. Cohesion in text means sticking together

different parts of the text. Lexical cohesion is a notable example where semantically related

words are used.

The phenomenon of cohesion occurs not only at the word level, but at word sequences too, re-

sulting in lexical chains, used as a source representation for summarization. Semantically relat-

ed words and word sequences are identified in the document, and several chains are extracted,

that form a representation of the document. To find out lexical chains, Wordnet (Miller, 1995) is

used, applying three generic steps: a set of candidate words is selected, for each candidate

word, an appropriate chain relying on a relatedness criterion among members of the chains is

found, and then the word is inserted in the chain. The relatedness is measured in terms of

Wordnet distance. The chains are scored by their length and homogeneity. Then heuristics are

applied to select the significant sentences. Strong lexical chains are used to create the summar-

ies.

Ono et al. (1994) put forward a computational model of discourse for Japanese expository writ-

ings, where they elaborate a practical procedure for extracting the discourse rhetorical structure,

a binary tree representing relations between chunks of sentences. This structure is extracted

using a series of natural language processing steps: sentence analysis, rhetorical relation extrac-

tion, segmentation, candidate generation and preference judgment. Evaluation is based on the

4.1 Automatic text summarization

41

relative importance of rhetorical relations. In a following step, the nodes of the rhetorical struc-

ture tree are pruned to reduce the sentence, keeping its important parts. Same is done for para-

graphs to finally produce the summary.

A unique approach towards summarization, that, unlike most other previous work, does not

assume that the sentences in a document form a flat sequence, is described by Marcu (1998a).

Discourse based heuristics are used with the traditional features that have been used in the

summarization literature. Rhetorical Structure Theory (RST) holds between two non-

overlapping pieces of text spans: the nucleus and the satellite. The distinction between nuclei and

satellites comes from the empirical observation that the nucleus expresses what is more essen-

tial to the writer‟s purpose than the satellite; and that the nucleus of a rhetorical relation is com-

prehensible independent of the satellite, but not vice versa. Marcu (1998b) describes a rhetorical

parser producing a discourse tree. Once such a discourse structure is created, a partial ordering

of important units can be developed from the tree. Each equivalence class in the partial ordering

is derived from the new sentences at a particular level of the discourse tree.

If it is specified that the summary should contain the top k% of the text, the first k% of the units

in the partial ordering can be selected to produce the summary. Marcu (1998b) states that thus a

summarization system based just on this method is possible, where the discourse based heuris-

tics are merged with traditional heuristics. The metrics are clustering based metrics (each node in

the discourse tree is assigned a cluster score; for leaves the score is 0, for the internal nodes it is

given by the similarity of the immediate children; discourse tree A is chosen to be better than B

if its clustering score is higher), marker based metrics (a discourse structure A is chosen to be bet-

ter than a discourse structure B if A uses more rhetorical relations than B), rhetorical clustering

based techniques (measure the similarity between salient units of two text spans), shape based met-

rics (prefer a discourse tree A over B if A is more skewed towards the right than B), title based

metrics, position based metrics, connectedness based metrics (cosine similarity of an unit to all other

text units, a discourse structure A is chosen to be better than B if its connectedness measure is

more than B). A weighted linear combination of all these scores gives the score of a discourse

structure. To find the best combination of heuristics, the weights that maximizes the F-score on

the training dataset are computed, which is constituted by newswire articles. To do this, a

GSAT-like algorithm (Selman, Levesque, & Mitchelle, 1992) is used that performs a greedy

search in a seven dimensional space of the metrics.

Rather than aiming to build full summarization systems, short summaries are aimed to extract

only captions, which approach the meeting protocols, where not the discussions should be

summarized, but the conclusions in one sentence.

Witbrock & Mittal (1999) claim that extractive summarization is not very powerful in that the

extracts are not concise enough when very short summaries are required. Thus they created a

system that generates headline style summaries. The system learns statistical models of the

relationship between source text units and headline units. It attempts to model both the order

4 Protocol generation technologies

42

and the likelihood of the appearance of tokens in the target documents. Both models, one for

content selection and the other for surface realization, are used to co-constrain each other dur-

ing the search in the summary generation task. For content selection, the model learns a transla-

tion model between a document and its summary (Brown et al., 1993). This model in the sim-

plest case can be thought as a mapping between a word in the document and the likelihood of

some word appearing in the summary. To simplify the model, the probability of a word appear-

ing in a summary is assumed as independent of its structure. This mapping boils down to the

fact that the probability of a particular summary candidate is the product of the probabilities of

the summary content and that content being expressed using a particular structure. The surface

realization model uses was a bigram model. Viterbi beam search is used to efficiently find a

near-optimal summary. The Markov assumption is violated by using backtracking at every

state to strongly discourage paths that repeat terms, since bigrams that start repeating often

seem to pathologically overwhelm the search otherwise.

A statistical approach to sentence compression is introduced by Knight and Marcu (2000). The

idea is that understanding the task of compressing a sentence may be a fruitful first step to later

tackle the problems of single and multi-document summarization.

Sentence compression is defined as follows: given a sequence of words W = w1 w2 ... wn that con-

stitute a sentence, find a subsequence wi1 wi2 … wik , with 1 ≤ i1 < i2 < … ik ≤ n, that is a com-

pressed version of W. Two different approaches are considered: one that is inspired by the

noisy-channel model and another one based on decision trees. Knight‟s and Marcu‟s model has the

advantage of decoupling the goals of producing a short text that looks grammatical and of pre-

serving important information (which is done through the channel model). In (Knight & Marcu,

2000), the source and channel models are simple models inspired by probabilistic context-free

grammars (PCFGs).

Daumé III and Marcu (2002) extend this approach to document compression by using rhetorical

structure theory as described by Marcu (1998a), where the entire document is represented as a

tree, hence allowing not only to compress relevant sentences, but also to drop irrelevant ones. In

this framework, kernel methods are employed to decide for each node in the tree whether or

not it should be kept (Daumé III & Marcu, 2004).

The attention of research in automatic test summarization has drifted from summarizing scien-

tific articles to news articles, electronic mail messages, advertisements, and blogs. Both abstrac-

tive and extractive approaches have been attempted, depending on the application at hand.

Usually, abstractive summarization requires heavy machinery for language generation and is

difficult to replicate or extend to broader domains. In contrast, simple extractions of sentences

have produced satisfactory results.

4.2 Speech recognition

43

4.2 Speech recognition

Automatic speech recognition converts acoustic signals, captured by a microphone or a tele-

phone, to word phrases. The recognized words can be the final results, as for applications such

as commands & control, data entry, and document preparation. They can also serve as the input

to further linguistic processing in order to achieve speech understanding.

Speech recognition applications belong to one of three categories: dictation or document crea-

tion systems, navigation or transactional systems (e.g. automated voice response systems), and

multimedia indexing systems. In dictation systems, the words spoken by a user are transcribed

verbatim into text to create documents such as personal letters or business correspondence. In

navigation systems, the words spoken by a user are used to follow links on the web or to navi-

gate around an application. In transactional systems, the words spoken by a user conduct a

transaction such as stock purchase or banking transactions. In multimedia indexing systems,

speech is used to transcribe the audio (possibly extracted from a video) into text, and subse-

quently, information retrieval techniques are applied to create an index with time offsets into

the audio (video). Advances in technology are making significant progress towards the goal of

allowing any individual to speak naturally to a computer on any topic and the computer accu-

rately understands what was said. However, we are not there yet. Even state-of-the-art continu-

ous speech recognition systems require the user to speak clearly, enunciate each syllable

properly, and have one‟s thoughts in order before starting.

The first speech recognizer was developed by Davies et al. (1952) and consisted of a device for

the recognition of single spoken digits. Fry and Denes (Fry, 1959) (Denes, 1959) built a phoneme

recognizer to recognize four vowels and nine consonants. Pattern-recognition ideas were intro-

duced in speech recognition by Velichko and Zagoruyko (1970), Sakoe and Chiba (1978), and

Itakura (1975). Tappert et al. (1971) and Jelinek (1975), (1985) investigated in large vocabulary

speech recognition at IBM. At AT&T Bell Labs, researchers experimented with speech-

recognition systems that are truly speaker independent (Rabiner, Levinson, Rosenberg, &

Wilpon, 1979), as well as recognizing a fluently spoken string of words (e.g. digits) based on

matching a concatenated pattern of individual words (Myers & Rabiner, 1981), (Sakoe, 1979),

(Lee & Rabiner, 1989).

Ferguson (1980) shifted the technology from template-based approaches to statistical modeling

methods, using the hidden Markov model approach to problems in speech recognition. The

idea of applying neural networks was investigated by Lippmann (1987), and Weibel et al.

(Weibel, Hanazawa, Hinton, Shikano, & Lang, 1989).

A major impetus was given to large vocabulary, continuous-speech-recognition systems by the

Defense Advanced Research Projects Agency (DARPA) community, which sponsored a large

research program aimed at achieving high word accuracy for a 1000-word, continuous-speech-

recognition database management task. Major research contributions resulted from efforts at

CMU (notably the well-known SPHINX system by Lee et al. (1990)), BBN with the BYBLOS

system presented by Chow, et al. (1987), SRI (Weintraub & et al., 1989), MIT (Zue et al., 1989),

4 Protocol generation technologies

44

and research from Lee et al. (1990) at AT&T Bell Labs. In addition, the Hearsay-II system, de-

veloped by Erman et al. (1980) was developed during the DARPA-sponsored speech-

understanding research program. This system represents a specific solution to the speech-

understanding problem and a general framework for coordinating independent processes to

achieve cooperative problem-solving behavior to generate and evaluate speech hypotheses. The

speech understanding problem is structured as a space, in which the problem solver searches

for a solution. The space is the set of (partial and complete) interpretations of the input acoustic

signal, i.e. the (partial and complete) mappings from the signal to the possible message. The

goal of the problem solving system is to find a complete interpretation (i.e. a message and map-

ping). The key functions of generating, combining, and evaluating hypothetical interpretations

are performed by diverse and independent programs called knowledge sources (KSs). KSs per-

form a variety of functions, including extracting acoustic parameters, classifying acoustic seg-

ments into phonetic classes, recognizing words, parsing phrases, and generating and evaluating

predictions for undetected words or syllables. Because each KS is an independent condition-

action module, KSs communicate through a global database called the blackboard. The black-

board records the hypotheses generated by KSs. Any KS can generate a hypothesis (record it on

the blackboard) or modify an existing one. In this framework the blackboard serves in two roles:

it represents intermediate states of problem-solving activity, and it communicates messages

(hypotheses) from one KS that activate other KSs. The recognition processing finally halts in one

of two ways. First, there may be no more partial hypotheses left to consider for prediction and

extension; Second, if the system expends its total allowed computing resources (time or space).

The highest rated hypothesis/ hypotheses are the result of the recognition process.

While the DARPA program shifted its emphasis to natural language front ends and to retrieval

of air travel information, speech-recognition technology was increasingly used within telephone

networks to automate as well as enhance operator services.

Pawar et al. (2005) distinguish three approaches to automatic speech recognition by machine:

the acoustic-phonetic approach, the pattern recognition approach, and the artificial intelligence

approach.

The acoustic-phonetic approach is based on the theory of acoustic phonetics that postulates that

there exist finite, distinctive phonetic units in spoken language and that the phonetic units are

broadly characterized by a set of properties that are manifest in the speech signal, or its spec-

trum, over time. Even though the acoustic properties of phonetic units are highly variable, both

with speakers and with neighboring phonetic units (the so-called co-articulation of sounds), it is

assumed that the rules governing the variability are straight-forwards and can readily be

learned and applied in practical situations. Hence the first step in the acoustic-phonetic ap-

proach to speech recognition is called a segmentation and labeling phase because it involves

segmenting the speech signal into discrete (in time) regions where the acoustic properties of the

signal are representative of one (or possibly several) phonetic units (or classes), and then attach-

ing one or more phonetic labels to each segmented region according to the acoustic properties.

To actually do speech recognition, a second step is required. This second step attempts to de-

termine a valid word (or string of words) from the sequence of phonetic labels produced in the

4.2 Speech recognition

45

first step, which is consistent with the constraints of the speech-recognition task (i.e. the words

are drawn from a given vocabulary, the word sequence makes syntactic sense and has semantic

meaning, etc.).

The pattern-recognition approach to speech recognition is basically one in which the speech

patterns are used directly without explicit feature determination (in the acoustic-phonetic sense)

and segmentation. As in most pattern-recognition approach, the method has two steps – name-

ly, training of speech patterns, and recognition of patterns via pattern comparison. Speech

„knowledge‟ is brought into the system via the training procedure. The concept is that if enough

versions of a pattern to be recognized (a sound, a word, a phrase, etc.) are included in a training

set provided to the algorithm, the training procedure should be able to adequately characterize

the acoustic properties of the pattern (with no regard for or knowledge of any other pattern

presented to the training procedure). This machine learns which acoustic properties of the

speech class are reliable and repeatable across all training tokens of the pattern. The utility of

the method is the pattern-comparison stage, which does a direct comparison of the unknown

speech (the speech to be recognized), with each possible pattern learned in the training phase

and classifies the unknown speech according to the goodness of match of the patterns.

The artificial intelligence approach to speech recognition is a hybrid of the acoustic-phonetic

approach and the pattern-recognition approach in that it exploits ideas and concepts of both

methods. The artificial intelligence approach attempts to mechanize the recognition procedure

according to the way a person applies its intelligence in visualizing, analyzing, and finally mak-

ing a decision on the measured acoustic features. In particular, among the techniques used

within this class of methods are the use of an expert system for segmentation and labeling so

that this crucial and most difficult step can be performed with more than just the acoustic in-

formation used by pure acoustic-phonetic; learning and adapting over time (i.e. the concept that

knowledge is often both static and dynamic and that models must adapt to the dynamic com-

ponent of the data); the use of neural networks for learning the relationships between phonetic

events and all known inputs (including acoustic, lexical, syntactic, semantic, etc.) as well as for

discrimination between similar sound classes.

Speech recognition systems are typically based on Hidden Markov Models (HMMs) as present-

ed by Rabiner (1989), which are used to represent speech events (e.g. a word) statistically, and

where model parameters are trained on a large corpus of speech data. Given a trained set of

HMMs there exists an efficient algorithm for finding the most likely word sequence when pre-

sented with unknown speech data. The recognition vocabulary and vocabulary size play a key

role in determining the accuracy of a system. A vocabulary defines the set of words or phrases

that can be recognized by a speech engine. A small vocabulary system may limit itself to a few

hundred words where as a large vocabulary system may consist of tens of thousands of words.

Large vocabulary speech recognition systems typically use a sub-word approach where phonet-

ic sub-word models are built instead of an explicit model for each word in the large vocabulary.

Such systems also use a statistical language model that defines likely word sequences in a par-

ticular domain to provide statistical information on word sequences. The language model as-

sists the speech engine in recognizing speech by biasing the output towards high probability

4 Protocol generation technologies

46

word sequences. Together, vocabularies and language models are used in the selection of the

best match for a word by the speech recognition engine. Dictation systems are typically large

vocabulary applications, whereas navigation/transactional are typically small vocabulary ap-

plications. Multimedia indexing systems could be either large vocabulary or small vocabulary,

depending on the specific application.

Dynamic time warping is an algorithm for measuring similarity between two sequences which

may vary in time or speed. Kathana (2010) claims, that dynamic time warping is an approach

that was historically used for speech recognition but has now largely been displaced by the

more successful HMM-based approach. DTW has been applied to video, audio, and graphics –

any data which can be turned into a linear representation can be analyzed with DTW. Especial-

ly in automatic speech recognition DTW is applied to cope with different speaking speeds. In

general, it is a method that allows a computer to find an optimal match between two given se-

quences (e.g. time series) with certain restrictions, i.e. the sequences are "warped" non-linearly

to match each other.

Speech recognition systems output the most probable decoding of the acoustic signal as the

recognition output, but keep multiple hypotheses that are considered during the recognition.

The multiple hypotheses at each time, often known as N-best word lists, provide grounds for

additional information. Recognition systems generally have no means to distinguish between

correct and incorrect transcriptions, and a word lattice representation (a directed acyclic graph)

is often used to consider all hypothesized word sequences within the context. The nodes repre-

sent points in time, and the arcs represent the hypothesized word with an associated confidence

level. The path with the highest confidence level is generally output as the final recognized re-

sult, often known as the 1-best word list. The N-best word lists are typically used by speech

recognition applications to improve the usability and performance of the applications such as

dictation systems and multimedia indexing systems.

Speech recognition accuracy is typically represented in terms of word error rate (WER), defined

to be the sum of word insertion, substitution and deletion errors divided by the total number of

correctly decoded words. The WER can vary dramatically depending on the nature of the audio

recordings.

Key-word spotting is a subfield of speech recognition. Key-word spotting is the ability to use the

automatic speech recognition engine in order to analyze natural day-to-day conversation be-

tween two or more people and indicate whether specific key-words were mentioned. That is,

key-word spotting deals with the same problems as continuous speech recognition, namely the

continuous spontaneous conversation between two or more speakers that can include an unlim-

ited range of vocabulary. In addition, the speech can be from a noisy environment, various in-

put types and include several speakers.

Various approaches exist for implementing a key-word spotting engine. Natural Speech Com-

munication Ltd. (2005) discusses three underlying processes:

4.3 Summarization of spoken language

47

The LVCSR based Key-Word Spotting approach uses a two-stage process. In the first stage, the

transcription of the speech into words is done using a Large Vocabulary Continuous Speech

Recognition (LVCSR) engine, outputting formatted text. In the second stage, a textual search for

the key-words within the text is performed. Using this approach, results from LVCSR and the

text search are combined to spot the key-words.

The Phoneme Recognition based Key-Word Spotting approach transforms in the first stage the

speech to a sequence of phonemes. In the second stage, the application searches for phonetically

transcribed key-words in the phoneme sequence, obtained from the first stage.

The Word Recognition based Key-Word Spotting approach searches for the key-words in a one

stage operation. The recognition is phoneme-based and the key-word spotting engine looks for

the keyword in the speech stream based on a target sequence of phonemes representing the

key-word.

4.3 Summarization of spoken language

While the field of summarizing written texts has been explored for many decades, gaining sig-

nificantly increased attention in the last ten to fifteen years, summarization of spoken language

is a comparatively recent research area. As a result a number of different methods and ap-

proaches have been proposed and a variety of systems have been built that can perform differ-

ent summarization tasks on spoken language input. Although automatic speech recognition

technology has matured over time, natural unconstrained scenarios present significant chal-

lenges to state-of-the-art systems. For example, spontaneous and realistic interaction, with often

accented speech and specialized topics of discussion, as well as overlapping speech, interfering

acoustic events, and room reverberation degrade significantly the automatic speech recognition

performance. This section places summarization of spoken language in the context of general

summarization research, describes its main challenges which are added on top of the already

challenging area of written text summarization, and investigates approaches and spoken lan-

guage summarization systems.

Waibel et al. (2001) claim that meeting recognition is a very challenging Large Vocabulary Con-

tinuous Speech Recognition (LVCSR) task. They identified main challenges that have to be ad-

dressed in spoken language summarization, in addition to the challenges of written text sum-

marization, to cope with speech disfluencies (breaks, irregularities, e.g. phrases that are restart-

ed or repeated, or 'fillers'), the identification of the units for extraction, and single vs. multiple

speakers. Cross-speaker coherence (in case of multi-party conversations) has to be maintained

by a spoken language summarization system and it has to cope with speech recognition errors.

There are mainly three reasons for the difficulties: first, the conversational style – meetings con-

sist of uninterrupted continuous recordings with multiple speakers talking in a conversational

4 Protocol generation technologies

48

style. Second, the lack of training data – meeting data is highly specialized depending on the

topic and participants, therefore large databases cannot be provided on demand. Third, the

degraded recording conditions: to minimize interference a clip-on lapel microphone is often

chosen instead of a close-talking headset. In order to continue processing of conversations with

computer-linguistic methods, the challenges mentioned above have to be recognized and, if

necessary, be removed. Not till then, traditional procedures for automatic text summarization

can be applied to conversations.

In dialogues cross-reference words, so called anaphora, for example „he‟, „she‟, and „it‟, or

demonstrative pronouns, e.g. „that‟ and „these‟, are applied. EML Research (2005) states that

without dissolving the different kinds of pronouns, conversations can‟t be summarized mean-

ingfully. Speech-comprehending computer systems have difficulties with pronouns, as the sys-

tems are lacking in knowledge and relations of the said statement. Objective of research is that

computers learn to integrate the pronouns in their context. As well as in automatic summariz-

ing, quantitative or statistical approaches have to be applied, to detect patterns in the speech.

As significant advances in automatic speech recognition were made researchers looked into the

question of spoken language summarization in restricted domains. The first applications in spoken

language summarization were built in the context of speech-to-speech translation systems such

as VERBMOBIL, developed by Reithinger et al. (2000) and JANUS, built by Lavie, et al. (1997).

Since these systems all operate in very restricted domains, a limited text understanding ap-

proach is feasible and allowed, in the case of VERBMOBIL, the generation of abstracts in multi-

ple languages from a single knowledge representation format.

In that context, several spoken dialogue summarization systems are developed, whose goal it is

to capture the essence of the task based dialogues at hand. Kameyama (1984), (1996) presented

the MIMI System that deals with the travel reservation domain and uses a cascade of finite state

pattern recognizers to find the desired information.

The VERBMOBIL, a more knowledge-rich approach is used in the domain of travel planning

and negotiation of a trip (Alexandersson & Poller, 1998). In addition to finite state transducers

for content extraction and statistical dialogue act recognition, also a dialogue processor and a

summary generator are used which have access to a world knowledge database, a domain

model, and a semantic database. The abstract representations built by this summarizer allow for

summary generation in multiple languages.

In the context of the DARPA Broadcast News workshops and TREC’s Spoken Document Re-

trieval track (SDR), Garofolo et al. (1997), (1999) developed several systems for summarizing

spoken news. The systems enable the multi-media browsing tools for text, audio, and video data,

indexing, and retrieving of audio recordings, sometimes along with summarization of the con-

tents, based on either human transcription or automatic transcription by automatic speech

recognition technology.

4.3 Summarization of spoken language

49

Speech recognizer transcripts in tandem with the original audio recording system are used by

Hirschberg et al. (1999) and Whittaker et al. (1999) to support local navigation for browsing and

information extraction from acoustic databases,. While the system interface helps users in the

tasks of relevance ranking and fact-finding, it is less helpful in the creating of summaries, due to

imperfect speech recognition. More accurate and reliable summaries are obtained by an audio

summarization system presented by Valenza et al. (1999), which combines acoustic confidence

scores with relevance scores. Hori and Furui (2000) use salience features in combination with a

language model to reduce Japanese broadcast news captions by about 30-40% while keeping the

meaning of about 72% of all sentences in the test set.

While most approaches to summarizing of acoustic data rely on the word information (provid-

ed by a human or automatic speech recognition transcript), Arons (1997) uses prosody-based de-

tection in spoken audio focuses on the acoustic signal and makes use of a variety of prosodic fea-

tures to enable quick skimming/browsing. Passages are extracted which are prosodically em-

phasized, by training a Hidden Markov Model on transcriptions of spontaneous speech, labeled

for different degrees of emphasis by a panel of listeners (Chen & Withgott, 1992). Stifelman

(1995) uses pitch based emphasize detection algorithms, developed by Arons (1994), to find

emphasized passages in a 13 minute discourse.

Zechner and Waibel (2000), (2001) summarize, for the first time, conversations of two or more

parties for spoken dialogues in unrestricted domains in the summarization system (DIASUMM).

The DIASUMM system addresses the issues of disfluency detection and removal and sentence

boundary detection. Cross-speaker information is linked by the system. The components of the

DIASUMM system are trained on a large corpus of disfluency annotated conversations (LDC,

Linguistic Data Consortium, 1999) and tested on four different genres of spoken dialogues, so

the automatic speech recognition word error rate is reduced, compared to previous systems in

unrestricted domains.

Zechner (2002) states that as the amount of digitized speech available on-line will rise substan-

tially, and more robust and improved speech recognition is required. There is an increasing

interest in summarization of dialogues and audio documents of various kinds. Automatic

speech recognition will have to be performed across a wide range of channel conditions, some-

times with substantial noise, cross-talk and other hard parameters. Current state-of-the-art

speech recognizers still exhibit fairly high average word error rates of up to 40% for challenging

genres such as multi-party meetings in noisy environments with participants using rather con-

versational speech.

4 Protocol generation technologies

50

4.4 Current research projects

In the following section an overview of current research projects in the area of automated

speech summarization, indexing and retrieval is given. These projects are analyzed regarding

externalization of informal meeting information.

4.4.1 Multimedia indexing and retrieval projects

Indexing applications provide the ability to retrieve relevant audio or video segments when

presented with a textual query.

A well-known issue in spoken document retrieval is the concept of in-vocabulary terms and

out-of-vocabulary terms. Since the speech engine matches the acoustics from the speech input

to words in the vocabularies, only words in the vocabulary are capable of being recognized.

Words in a vocabulary are recognized based entirely on their pronunciations. In addition, a

word not in the vocabulary will often be erroneously recognized as an in-vocabulary word that

is phonetically similar to the out-of-vocabulary word.

Chang et al. (1997) and Wactlar et al. (1999) state that multimedia indexing techniques for ex-

traction of semantic information from unstructured video include a wide range of topics from

computer vision, pattern recognition, video analysis and summarization, speech recognition,

natural language understanding, and information retrieval,.

A more popular approach to video retrieval is to search the audio transcript using the familiar

metaphor of free text search, presented by Jones et al. (1996). In this case, speech recognition is

applied to the audio track, and a time-aligned transcript is generated. The indexed transcript

provides direct access to the semantic information in the video.

The Informedia research project on multimedia retrieval at Carnegie Mellon University includes

a strong speech retrieval component. Goal of the Informedia initiatives is to achieve machine

understanding of video and film media, including all aspects of search, retrieval, visualization

and summarization in both contemporaneous and archival content collections. Speech, lan-

guage, and image understanding technology are combined to automatically transcribe, segment

and index the linear video. The same tools are applied to accomplish intelligent search and se-

lective retrieval. Informedia also seeks to improve the dynamic extraction, summarization, vis-

ualization, and presentation of distributed video, automatically producing “collages” and “au-

to-documentaries” that summarize documents from text, images, audio and video into one sin-

gle abstraction. The process automatically generates various summaries for each story segment:

headlines, filmstrip story-boards, and video-skims.

4.4 Current research projects

51

A highly accurate, speaker-independent speech recognizer is applied to automatically tran-

scribe video soundtracks which are then stored in a (time-track corresponding) full-text infor-

mation retrieval system. This text database in turn allows for rapid retrieval of individual corre-

sponding "video paragraphs" which satisfy an arbitrary subject area query based on the words

in the soundtrack. Another innovative concept is the implementation of "video skimming". This

enables an accelerated viewing of the key video and audio sequences without the perceptual

disturbance of simply speeding up the frame rate and audio. Thus a video abstract is created

that conveys the essence of the content in 5 to 20% of the time.

The Informedia system provides full-content search and retrieval of current and past TV and

radio news and documentary broadcasts. The system implements a fully automated process to

enable daily content capture, information extraction and storage in on-line archives by applying

artificial intelligence and advanced systems technology. The prototype database allows for rap-

id retrieval of individual video paragraphs which satisfy an arbitrary spoken or typed subject

area query based on the words in the soundtrack, closed-captioning or text overlaid on the

screen. There is also a capability for matching of similar faces and images.

Through the integration of technologies from the fields of natural language understanding,

image processing, speech recognition and video compression, Christel et al. (1994) showed that

the Informedia project allows the users to explore multimedia data in depth as well as in

breadth. The Informedia digital video library project goes far beyond the current paradigm of

video-on-demand, where a user can select one video from a limited set and view that video

after a delay of a perhaps a few minutes. The computer adds no substantial benefit to this vid-

eo-on-demand model over a VCR with each video on a tape; the user remains a passive observ-

er of someone else’s produced material. By contrast, the Informedia Project segments hours of

video into logical pieces and indexes these pieces according to their raw content (dialog, imag-

es, narration). The users can actively explore the information by finding sections of content rel-

evant to their search, rather than by following someone else’s path through the material (as one

does when using the current generation of educational CD-ROMs) or by viewing a large chunk

of pre-produced material (as with video on demand).

The Informedia project covers three broad categories of technologies to create and search a digi-

tal video library built from broadcast video and audio materials (Hauptmann & Smith, 1995):

Text processing looks at the textual (ASCII) representation of the words that were spoken, and at

other text annotations that may be derived from the transcript, from the production notes, or

from closed-captioning that is sometimes broadcast with the news stories. Mauldin (1989)

claims that text analysis can work on an existing transcript to help segment the text into para-

graphs. Image analysis looks at the images in the video stream. Image analysis is primarily used

for the identification of scene breaks and to select static frame icons that are representative of a

scene. Primitive image features based on image statistics, such as color histograms, are used by

4 Protocol generation technologies

52

Zhang et al. (1995) for indexing, matching and segmenting images. Color histogram analysis

and Optical flow analysis are implemented in the News-on-Demand production system. Speech

analysis provides the basis for analyzing the audio component of the news broadcast. Speech

analysis operates only on the audio portion of the video. Using speech recognition a transcript

can be obtained, although it may contain errors. To transcribe the content of the video material,

the Sphinx speech recognition engine (CMU-Speech, 1995) is used, a large-vocabulary, speaker-

independent, continuous speech recognizer created at Carnegie Mellon developed by Hwang et

al. (1994).

Acoustic signal analysis is used to identify segment boundaries of paragraph size. Transitions

between speakers and topics can be detected which are marked by silence or low energy areas

in the acoustic signal. To detect breaks between utterances a Signal to Noise ratio (SNR) compu-

tation is applied. This algorithm computes the power of digitized speech samples where each si

is a pre-emphasized sample of speech gathered over a twenty millisecond frame. A low power

level indicates that there is little active speech occurring in the frame. Segmentation breaks be-

tween utterances are set at the point of minimum power after smoothing over a one second

window.

Hauptmann and Witbrock (1997) distinguish two distinct phases during News-On-Demand

processing: library creation and library exploration. Library creation deals with the accumula-

tion of information, transcription, segmentation and indexing. Library exploration concerns the

interaction between the system and the user trying to retrieve selections in the database.

To transcribe the content of the video material, spoken words are recognized with the Sphinx-II

speech recognizer. The CMU Sphinx-II system uses semi-continuous Hidden Markov Models to

model context-dependent phones (triphones), including between word context (Hwang, et al.,

1994). The recognizer processes an utterance in three steps: It makes a forward time synchro-

nous pass using full between word models, Viterbi scoring and a trigram language model. This

produces a word lattice where words may have only one begin time but several end times. The

recognizer then makes a backward pass which uses the end times from the words in the first

pass and produces a second lattice which contains multiple begin times for words. An A* algo-

rithm is used to generate the best hypothesis from these two lattices. The language model con-

sists of words (with probabilities), bigrams/trigrams, which are word pairs/triplets with condi-

tional probabilities for the last word given the previous word(s). Rudnicky (1995) constructed

the language model from a corpus of news stories from the Wall Street Journal from 1989 to

1994 and the Associated Press news service stories from 1988 to 1990. Only trigrams that are

encountered more than once are included in the model, but all bigrams and the most frequent

58800 words in the corpus are included.

Processing the video tape, using the speech recognition system, results in a transcript. This tran-

script contains errors, which, depending on the quality of the tape and the subject matter, cur-

4.4 Current research projects

53

rently range from 20% to 70% word error rate. Regarding automated meeting protocol genera-

tion from videos the word error rate would be too high, using the Informedia system, as too

many errors would be in the generated protocols.

Although Informedia is intended for information retrieval and does not generate text summari-

zations (protocols) out of the video, the Informedia project realizes a combination of language

understanding and speech recognition and applies an open-source, speaker independent speech

recognizer, which could be promising in the application of protocol generation.

The Medusa network multimedia system, developed at Cambridge University in collaboration

with Olivetti Research Laboratory, is also an information retrieval system, based on word-

spotting. Medusa uses a high-speed asynchronous transfer mode network for a video mail ap-

plication using a 35-word indexing vocabulary for word-spotting, chosen a priori for the specif-

ic domain. The retrieval methods developed by Jones et al. (1995) are based on spotting key-

words in the audio sound track by integrating speech recognition methods and information

retrieval technology to yield a practical audio and video retrieval system. In the applied phone-

lattice scanning approach, the speech recognition system generates a generalized sub word, or

phone lattice. Spoken words are decomposed into a sequence of phone units and the precom-

puted lattices are scanned for phone strings corresponding to the query word.

As Medusa is only an information retrieval system, it is not applicable for meeting protocol

generation, although the keyword spotting approach can be realized in an automated protocol

generator, searching for predefined meeting elements.

4.4.2 Speech mining research projects

The multimedia indexing and retrieval applications are aimed primarily at domains where the

data is professionally produced audio or video, stored on tape or disk, and the main problem is

to provide users with the ability to quickly find a particular clip, fact, or piece of information.

Some systems provide additional functionality, including automatic summarization, clustering,

classification, and organization of the recorded information, e.g. the Informedia system. These

systems typically operate off line, require two to ten times real time to analyze the recorded

data, and generally assume high-quality produced recordings.

Although these systems can be invaluable for managing recordings, such as broadcast news or

corporate training videos, they are not directly amenable to spoken discourses i.e. spoken con-

versation between two or more individuals that takes place anywhere, anytime. Spoken dis-

course is a rich source of tacit information, and often the only form in which the tacit infor-

mation is instantiated.

4 Protocol generation technologies

54

Technologies and applications attempt to capture spoken discourse, convert the discourse to

text, apply text analysis to the discourse, and exploit the knowledge discovered in the dis-

course, for instance in an informal meeting.

At IBM Thomas J. Watson Research Center, Coden and Brown (2001) investigated how to cap-

ture spoken discourse and analyze it in real time is done, to both extract knowledge from the

discourse and provide additional, related knowledge to the discourse participants. The need for

this capability is driven by three separate applications: meeting support, data broadcasting, and

call mining. Meeting support in this context includes the ability to understand the current meet-

ing discussion and automatically provide related information to the meeting participants. Data

broadcasting is the process of exploiting the unused bandwidth in a television broadcast to send

arbitrary data with the television program. In particular, the data should be related to the cur-

rent television program and provide an enhanced viewing experience for the user, enriching the

audio and visual television program with related facts, articles, and references. Call mining is

an effort to analyze and index the telephone calls made or taken by customer service represent-

atives at call centers and help desks. As understanding meeting discussions, as well as analyz-

ing speech, is an integral part of the externalization of knowledge from a meeting, the IBM ap-

plication is considered in more detail. The meeting support and data broadcast applications

share a common need for the ability to analyze speech in real time and automatically discover

relevant, collateral information.

The WASABI system, built at Watson, is a generic framework for analyzing speech. WASABI

takes speech audio as input, converts the audio stream into text using a speech recognition sys-

tem, applies a variety of analyzers to the text stream to identify information elements, automati-

cally generates queries from these information elements, and extracts data from the search re-

sults that are relevant to the current discourse.

Input to the system is a raw data stream, i.e. the captured audio of the discourse. The speech

recognition system IBM ViaVoice converts the audio into a text stream, which WASABI feeds to

one or more analyzers. An analyzer performs a text analysis procedure on its input and produc-

es an output that may be fed to another analyzer or multiplexed back into the original data

stream. The task performed by each analyzer depends on the application in which the frame-

work is applied. One of the more important tasks performed by an analyzer is to automatically

create a query from the input, use the query to search a relevant knowledge repository, and

extract relevant information from the search results that will enhance the input data stream.

Regardless of the task, the analysis must take place in real time, or fast enough to keep up with

the incoming data stream. The final enriched data stream is presented to the user in an appro-

priate user interface, or archived to a data store for indexing and future reference.

4.4 Current research projects

55

Brown et al. (2001) claim that meetings often suffer from the problem that during the meeting

the participants do not have convenient access to all of the knowledge resources that might be

used to facilitate or enrich the meeting. These resources might be as simple as someone’s phone

number, or they might be more complex, such as a project database that identifies who is work-

ing on what and where expertise on a particular topic can be found. The WASABI framework is

being applied to solve this problem in a system called MeetingMiner. MeetingMiner is essential-

ly an agent that passively captures and analyzes the meeting discussion and periodically be-

comes an active participant in the meeting, whenever it finds information that it determines is

highly pertinent to the current discussion. The main input to the system is an audio stream gen-

erated by one or more microphones that capture the spoken discourse of the meeting. The audio

stream is converted to a text transcript by the speech recognition system, and the text transcript

is processed by the meeting analyzers.

The current set of meeting analyzers includes a named entity recognizer, a topic tracker, and a ques-

tion identifier. The named entity recognizer identifies proper names in the text, such as people,

places, and organizations. It is based on the algorithms developed in the Textract system by

Ravin et al. (1997), and it uses a combination of lexical clues (e.g. capitalization patterns and

punctuation) and dictionary lookups to identify named entities. The system uses the identified

names of people to search an employee database and retrieve address, phone number, group

affiliation, project responsibilities, and expertise information. This information is assembled in a

custom address book as the meeting progresses, providing instant access to information about

any individual who may be mentioned during the course of the meeting.

The topic tracker uses a combination of automatic text classification and statistical term fre-

quency analysis to identify keywords in the text. The text classification system analyzes a slid-

ing window of sentences and classifies the window content into a predefined taxonomy of top-

ics. The current topic combined with the identified keywords is used to search related

knowledge repositories and provide a continuously updated “hit list” of objects that may be

relevant to the meeting. For example, during a technical design meeting, the topic tracker might

send topic and keyword queries to a database of patents and alert the meeting participants

whenever a highly relevant patent is found. This capability can enhance the design session with

relevant information and help prevent time being spent on solutions that already exist, or are

owned by competitors.

The question identifier uses regular expressions to identify various kinds of questions in the

text transcript. In particular, the system identifies who, what, when, where, why, and how ques-

tions and feeds them to a question-answering system (Prager et al., 2000). The question-

answering system parses the question and returns a concise phrase or small number of sentenc-

es that answer the question. This capability works best with questions seeking factual answers

(e.g., “When are the budget numbers due?”), as opposed to more open-ended questions (e.g.,

4 Protocol generation technologies

56

“How can we improve profitability?”). The effectiveness of the question-answering component

is limited by the information available for answering questions. Prager et al. (2000) state that a

question-answering system can be created by automatically processing free-text documents,

allowing any relevant collection of documents (corporate memos, e-mail messages, reports, etc.)

to be included in the question-answering system.

An automated protocol generator could reuse the idea of a named entity tracker, for example to

detect the person assigned to a new task, and the topic tracker of WASABI, to identify a proto-

col entry. However, as the topic tracker works on a statistical term frequency, most protocol

entries will probably be missed, because the critical information, e.g. the phrase with the deci-

sion, or the assignment of a task, will be spoken only once and not recognized by WASABI. For

this reason, the WASABI system does not generate a protocol of the meeting.

At Carnegie Mellon University (CMU), Waibel et al. (1998) developed the Meeting Browser, a

system for capturing, indexing, searching, and browsing meetings. The work focuses on build-

ing speech recognition models suitable for the speaking modes found in meetings and applying

post processing steps on the speech recognition transcripts to generate summaries. The use of

visual cues captured by video camera is explored to aid in tracking a discussion and to provide

enhanced browsing capabilities. Waibel et al. (2007) showed that the Meeting Browser provides

functionality for offline reviewing of recorded meetings, automatic analysis, summarization or

data reduction, generation of minutes, topic segmentation, and information querying and re-

trieval of human interactions.

The system consists of four major components:

1.) the speech transcription engine,

2.) the summarizer, a statistical tool that attempts to find salient and novel turns,

3.) the discourse component that attempts to identify the speech acts, and

4.) the non-verbal structure, including speaker types and non-verbal visual cues.

The speech recognition component of the meeting browser is based on the JANUS Switchboard

recognizer. The gender independent, vocal tract length normalized, large vocabulary recognizer

features dynamic, speaking mode adaptive acoustic and pronunciation models.

In spontaneous conversational human-to-human speech, as observed in meetings, there is a

large amount of variability due to accents, speaking styles and speaking rates (also known as

the speaking mode). Because recognition systems usually use only a relatively small number of

pronunciation variants for the words in their dictionaries, the amount of variability that can be

modeled is limited. The meeting browser incorporates a probabilistic model based on context

dependent phonetic rewrite rules to derive a list of possible pronunciations for all words or

sequences of words. In order to reduce the confusion of this expanded dictionary, each variant

of the word is annotated with an observation probability. To this aim the corpus based on all

4.4 Current research projects

57

allowable variants using flexible utterance transcription graphs and speaker adapted models is

automatically retranscribed. The alignments are used to train a model of how likely which form

of variation (i.e. rule) is and how likely a variant is to be observed in a certain context (acoustic,

word, speaking mode or dialogue).

The summarizer component produces condensed informative summaries of the meeting. The

summaries are created using a statistical approach, whereby salient, relevant and informative

passages are flagged and selected from a meeting. As a first metric for selecting informative

passages from a human dialog, the Maximal Marginal Relevance (MMR) metric is explored. The

MMR iteratively maximizes the similarity between a query and each section of a document

while it minimizes the similarity among previously ranked document sections. It thereby identi-

fies the most relevant, yet most diverse, non-redundant sections of a document. Here, a modi-

fied version of a MMR is applied to conversational dialogue to find the most relevant, non-

redundant turns in a meeting transcript. The top N turns are presented to the user in the origi-

nal order of the meeting transcript as a summary of the meeting. The summarization algorithm

takes as input a textual transcript that is generated manually or from an actual speech recogni-

tion run. The algorithm can be divided into the following steps:

1. Eliminate all stop words from consideration

2. Identify the most common stems from the set of remaining words

3. Weight each turn or utterance

4. Include the highest weighted turn in the summary

5. Eliminate the most common stem word and the included turn from consideration

6. If a preset summary size has not been reach, go to step 2.

An important aspect of generating meeting summaries or minutes is the successful and efficient

delivery of the result. The meeting browser allows the user to review and browse transcribed

and summarized meetings. The browser also includes video capture of the individuals in the

meeting for use in meeting rooms or video conferencing. In addition to being a tool for brows-

ing and viewing meeting records, the meeting browser also attempts to provide tools for more

rapid and informative access of key events in the meeting. The meeting browser interface dis-

plays meeting transcriptions, time-aligned to the corresponding sound and video files. The user

can select all or a portion of these files for playback. Text highlighting occurs in sync with the

sound and video playback.

Although the Meeting Browser generates a summarization of the meeting, the summaries are

based partly on a manually generated transcript, i.e. the protocol generation process is not fully

automated. The summaries are generated using only a statistical approach to extract relevant,

not-redundant phrases. Available information regarding the meeting and the meeting elements,

as presented in our meeting taxonomy, is not included in the summarization process of the

Meeting Browser system. The incorporation of the meeting information would improve the

4 Protocol generation technologies

58

quality of the summaries, as the most relevant phrases can be externalized. The generated

summarizes are only available within the Meeting Browser, a connection to other project man-

agement tools, applied in the project, is not realized.

In the next chapter the protocol generation framework STACHUS is presented that addresses

the improvement ideas of incorporating available meeting information, enhancing a pure statis-

tical approach for automated protocol generation, and providing the meeting results to task

management tools, allowing an effective meeting follow-up.

59

5 STACHUS

A framework for meeting report generation

The STACHUS framework for protocol generation supports the meeting workflow in external-

izing formal and informal meeting communication. It is a framework for information retrieval

and summarization of meeting conversation, incorporating existing speech recognition engines

and protocol generation techniques, presented in chapter 4. The framework focuses on

knowledge externalization and preparation of information in protocols.

The aim is to actively reuse the project context in terms of old meeting protocols, the system

model, e-mails, chats and other project documentation to enhance the speech recognition engine

and thus the protocol quality. STACHUS summarizes meetings by a semantic analysis. It is

based on the meeting taxonomy presented in chapter 3.2. This allows the framework to create

accurate and complete meeting protocols that comprise only the important parts of the meet-

ings, as summarized in chapter 3.2.3.

STACHUS also provides connectivity for existing project management tools. That is, the results

of the meeting, for instance assigned action items or issues, are automatically transferred to a

task or project management tool, where the discussed information from the meeting are directly

stored in the individual tool of the project team. So traceability of decisions is improved and the

meeting workflow and procedure is supported, as well as the completion of assigned action

items.

The framework consists of a compiler generator and a protocol engine. The protocol engine is

dynamically generated by the compiler generator.

Section 5.1 describes the requirements, including a scenario of a meeting and a use case model.

The underlying meeting grammar is presented in section 5.2. Section 5.3 presents dynamic and

object models of meeting progresses and the protocol generation process automated by STA-

CHUS. The components of the framework are described in section 5.4 and the software architec-

ture is presented in section 5.5.

5 STACHUS

60

5.1 Requirements

5.1.1 Meeting workflow – a scenario

This section describes a meeting scenario in a Scrum-based project. A daily status meeting is

presented, where protocols are automatically generated by the STACHUS protocol generator

and the lightweight character of the Scrum meeting is emphasized.

Meeting participants are the software developers Tom, Joshua, Ben and their Scrum Master

Michael. It‟s 9:30 am, the team members are assembled in a meeting room and they are ready to

start their daily Scrum meeting.

Michael starts the audio recording by turning on the installed recorder in the meeting room,

while the team member check either their pluggable microphone or one hand microphone for

proper operation. Then Michael welcomes the team and asks Tom to start with his report, about

“what he did yesterday”, “what he will do today”, and if there “are any problems or impedi-

ments” keeping him from doing his work.

Figure 5-1: Daily Scrum Meeting

Tom informs the team that he has finished User Story 15 (“set a date of birth for a customer”)

yesterday, and started User Story 23 ("change address of customer"). Tom also mentions that he

has an impediment that prevents him to finish the current User Story 23. Joe is ill and he want-

ed to do the code review. Michael asks, if Ben could help Tom. Ben agrees with this suggestion,

and the Michael summarizes the new action item for Ben: “Code review with Tom.”

Afterwards, its Joshua‟s turn to inform the team what he did yesterday and will do today. Josh-

ua tells that he finished the User Stories 20 and 21. This morning he started with User Story 25.

And he has a new impediment; the network connection is constantly breaking down.

5.1 Requirements

61

Figure 5-2: Meeting minutes of the daily Scrum meeting

The Scrum Master is responsible to smooth these impediments out; he assigns himself a new

action item to contact the IT network guys.

After all team members informed each other about their current status, the Scrum Master closes

this daily Scrum meeting and stops the recording.

5 STACHUS

62

Subsequently, the team members go back to their workplace and can immediately read the pro-

tocol of the just finished meeting (see Figure 5-2). Moreover, all new action items, impediments

and status changes of finished or in progress user stories are updated in their team project man-

agement and task-list maintenance tool, respectively.

Based on the given scenario, we present a more abstract description of the meeting workflow.

The process of data detection during a meeting is shown in Figure 5-3, based on the usage of a

key word spotting approach of meeting elements, like „new issue‟, „new action item‟ or „deci-

sion‟.

At the beginning of a meeting, an audio recorder is started. The audio stream is processed by a

speech recognition engine that converts the audio stream into text phrases. Afterwards the out-

put is searched through for pre-defined keywords of the meeting grammar, the meeting ele-

ments. If a keyword is found, the kind of keyword indicates the further process steps, carried

out afterwards, i.e. the keyword is categorized. We take for instance the daily status meeting, as

described in the scenario above. There, each team member presents its current work progress,

whether a task corresponding to a requirement could be completed, is still in progress, or a new

task was opened. Additionally, impediments are reported and new action items are defined and

assigned to a team member. Based on the defined meeting taxonomy in chapter 3.2.1, there are

special keywords for a daily status meeting to recognize status changes of a task, new action

items, and new impediments, which are summarized in the meeting grammar (see section 5.2).

Figure 5-3: Meeting workflow

If a predefined keyword is found, the keyword and its context are extracted and the infor-

mation is, depending on the keyword, processed. For instance, a detected new action item is

stored in a task list, issues are sent to the impediments list and additionally, decisions, as well as

action items and issues, are prepared and documented in the protocol. Moreover, the infor-

mation is transferred to project and task management tools, and reports and protocols are au-

tomatically generated, containing a summary of the meeting, as defined in chapter 3.2.

In the following we present the meeting model used in the framework.

5.1 Requirements

63

5.1.2 Meeting and protocol generation models

Meetings are attended by meeting participants, who attend a meeting and read a protocol sub-

sequent to the meeting that summarizes the discussed topics.

Figure 5-4: Meeting participation (UML Use Case Diagram)

During meetings, problems are discussed, new action items assigned, statuses presented, in-

formation shared, decisions are made, and knowledge is created.

Each meeting consists of meeting elements. In the case of a daily Scrum meeting, for instance, a

team member reports about status changes, whether he started or finished a task. Moreover, the

team member informs the other colleagues about new issues that prevent him from doing his

work properly. New action items are assigned to individual team members, if necessary.

Figure 5-5: Meeting activities (UML Use Case Diagram)

A meeting summary has to be created at the end of the meeting containing all discussed infor-

mation (e.g. status changes, new issues or action items) to externalize the knowledge of that

meeting.

5 STACHUS

64

Figure 5-6: Protocol generation (UML Use Case Diagram)

The process of protocol generation incorporates updating the task lists and the Burndown

Chart, as well as the creation of other reports or documents (like the Sprint Backlog), as illus-

trated in Figure 5-7.

Figure 5-7: Protocol generation and report updating (UML Use Case Diagram)

Protocol generation is based on recordings of the meeting conversation. The STACHUS Audio

Recorder captures the meeting communication and allows the STACHUS Protocol Generator to

externalize the information of the meeting and summarize them in a protocol afterwards. The

audio recording is started and stopped by a meeting participant (see Figure 5-8).

Figure 5-8: Audio recording (UML Use Case Diagram)

5.1 Requirements

65

5.1.3 Functional requirements

A meeting management framework, supporting the automatic generation of meeting minutes,

and the automatic forwarding of information to project tools, like a to-do manager, has to fulfill

several functional and nonfunctional requirements to provide a useful tool for the meeting par-

ticipants in an agile and traditional process environment. The framework has to be modular and

flexibly extensible to incorporate additional or updated speech recognition engines and project

management tools, and a dynamically self-improving system to constantly improve the proto-

col quality.

The functional requirements for a meeting management can be classified into three main cate-

gories. First the framework must provide necessary recording functionalities and storage of the

verbal meeting content. Second, the audio stream has to be prepared to allow searching for tacit

knowledge that will be externalized in the protocol. Third, the protocol generation and sending,

as well as an additional storage, e.g. in a task-list manager, of the information discussed in the

meeting have to be provided by the framework.

FR1: Recording of meetings

The meeting management framework has to provide necessary recording functionalities, in-

cluding interfaces to an audio recorder to record meeting conversations.

FR2: Information externalization

The framework has to extract the „important‟ information from the meeting conversation re-

cordings. Therefore, the framework has to distinguish, which parts of the conversation are im-

portant, namely those that will be documented in the protocol later, like new action items, deci-

sions, problems, information, etc. This filtering is done on the basis of a flexible and extensible

grammar, which is part of the framework.

FR3: Protocol generation

The meeting management framework has to automatically generate meeting minutes to docu-

ment the volatile information of the meeting, as simple text files, Excel-documents, and as lists.

Moreover, beside a protocol, additional reports have to be created or updated by the protocol

generator, for instance a Product Backlog has to be filled, or a Sprint Backlog be updated, the

Burndown Charts be refreshed, and project plans have to be updated.

FR4: Tool connection

If the team applies electronic project management tools (e.g. for the management of tasks or

project planning) the STACHUS framework has to implement an interface to these tools, to

allow information forwarding. That is, statuses and estimates have to be updated, new action

items can be created, assigned and their deadlines can be determined. Moreover, finished tasks

have to be ticked off in the task list, priorities of Backlog items can be changed, and an impedi-

ment list has to be expanded.

5 STACHUS

66

5.1.4 Nonfunctional requirements

An effective and efficient application of a framework for automatic report generation in the

project lifecycle involves also non-functional requirements, listed in the following.

NFR1: Support for agile lightness

The framework should support an easy set up and recording a meeting without additional effort.

The framework has to allow the users to easily familiarize with the system and ensure a simple

handling, for instance only one button to start and stop the recording without any need for fur-

ther configuration. The system has to be operated with as little effort as possible to support the

agile idea of eliminating waste.

NFR2: Correctness

One of the problems when writing a protocol manually, as described in chapter 3, is that the

protocol is often incomplete or incorrect. The meeting minutes‟ taker can‟t always concentrate

on listening and writing at the same time – mistakes can easily creep in. Consequentially, an

important requirement for an automated meeting management framework is that the protocol

generator produces correct and complete outputs, i.e. all mentioned meeting elements are rec-

ognized and summarized in the protocol.

NFR3: Timely delivery

Meeting minutes and reports have to be generated immediately after the meeting by the

framework and provided to all team members and further interested persons. Aim is to support

the meeting follow-up process as soon as possible with the meeting protocol. That is, the auto-

mated protocol generation has to be faster than manually written protocols and with less effort.

NFR4: Non-intrusiveness

A smooth meeting workflow has to be supported by the framework. That is, the meeting may

not be disturbed by the audio recording or automatic protocol generation. Moreover, the audio

recording (starting and stopping of the recorder) has to be easy to handle, i.e. without addition-

al effort and has to be intuitive, i.e. no comprehensive training is necessary to start and stop the

protocol generation process. Thus an easy meeting communication has to be facilitated by the

framework, where the meeting participants can concentrate on the communication and are not

constrained by the automated protocol generation.

NFR5: Availability

The framework has to be designed to allow a meeting at any time and any place. So the flexible

character of an agile team, having meetings at any time and everywhere is supported.

NFR6: Extensibility

The framework has to provide the ability to modify and add context. In particular, the extensi-

bility of new key words, supporting additional meeting types, has to be provided. Moreover,

the framework has to allow a flexible enhancement to support new technologies, for instance in

the area of speech recognition.

5.2 STACHUS Grammar

67

5.2 STACHUS Grammar

In this section a rhetorical model is introduced, which is applied in the meeting management

and protocol generation framework.

Continuous, spontaneous conversations between two or more speakers include a potentially

large vocabulary. In addition, meetings can include several speakers or are conducted in a noisy

environment which complicates speech recognition and results in a reduced word recognition

rate.

A formal language is „mapped‟ to the conversation of a meeting to address these problems.

Based on the results of our meeting taxonomy, where each meeting element that is a potential

candidate for the protocol is characterized by a dedicated key word – for instance “action item”

for the process of defining an action item – a rhetorical model is defined. The rhetorical model

includes a Chomsky-2 grammar with predefined terminal symbols. The STACHUS grammar

consists of a set of rules that describe how to form strings from the language's alphabet that are

valid according to the language's syntax.

The STACHUS grammar for the rhetorical model consists of

 a finite set of nonterminal symbols,

the meeting elements, e.g. <action item>, <problem>, <information>

 a finite set of terminal symbols, where

e.g. “new action item”, “issue”

 a finite set of production rules with a left and right-hand side consisting of a sequence

of these symbols: () () ()

e.g.

 and a start symbol , a meeting phrase, where .

The terminal symbols correspond to words in the vocabulary, spoken during a meeting. The

nonterminal symbols correspond to phrases or sentences formed using words from the vocabu-

lary. Terminal symbols may appear in isolation (“task”) or as sequences of words separated by

whitespace characters (“action item”). During the project lifecycle, new rules and terminals can

be added dynamically, extending the grammar. This allows to enhance the speech recognition

and thus the protocol generation. This process of continuous improvement is realized in the

STACHUS Framework Compiler – a detailed description is given in sections 5.4.2.

The terminal and nonterminal symbols depend on the context of the project. A core grammar

and a core vocabulary (Figure 5-9) are used to cover a basic set of meeting phrases.

5 STACHUS

68

Figure 5-9: Core vocabulary elements

Moreover, extensions are identified, for instance the team members (address book entries), as

well as the management method and its vocabulary, e.g. “retrospective” or “user story”, and

the system model and domain vocabulary, e.g. “Cocoa”, or “touch screen”. The core vocabu-

lary, project management vocabulary, address book entries, and the system model are part of

the STACHUS grammar, as visualized in Figure 5-10.

Figure 5-10: Project context flows into the grammar (UML Activity Diagram)

The project vocabulary consists of a set of vocabulary that is independent of the applied project

management method, as well as vocabulary that is based on the applied project management

method, e.g. Scrum vocabulary. So the nonterminals are grouped in a project independent set

(e.g. the <date> for the next meeting) and a project dependent set, e.g. <Backlog item> or <unit

test> (Figure 5-11).

Figure 5-11: Project management vocabulary

5.2 STACHUS Grammar

69

The project management vocabulary is based on IBIS (Kunz & Rittel, 1970) and consists of meet-

ing elements that are independent of the applied project management method. Examples are

shown in Figure 5-12.

Figure 5-12: Project management vocabulary elements

Each class of meeting elements, as defined above, can be instantiated, representing the syno-

nyms that are spoken in a meeting. Figure 5-13 shows the instances of “Action Item”.

Figure 5-13: Project management vocabulary elements and its synonyms

The project dependent set consists of nonterminals that are dependent of the applied project

management method. The nonterminals for Extreme Programming, Scrum, and Feature Driven

Development are shown in Figure 5-14.

Figure 5-14: Decomposition of project management method dependent vocabulary

5 STACHUS

70

An example of a grammar, which was used during meetings of a student project at the Tech-

nische Universität München during the summer term 2009, is attached to the Appendix I.

5.3 STACHUS protocol generation process

An automatic protocol generation workflow starts, when a meeting participant starts audio

recording. The Protocol Engine records the meeting audio stream and generates a protocol from

the output. This process is illustrated in the sequence diagram in Figure 5-15.

Figure 5-15: Protocol Generation (UML Sequence Diagram)

In the sequence diagram, the actor “Meeting Participant” is visualized, who starts the recording

via the audio recorder GUI (the boundary object). After the recording is stopped by the actor,

the STACHUS Protocol Engine (the control object) creates the “Protocol” (the entity object).

Figure 5-16 gives a detailed representation of the protocol generation process.

5.3 STACHUS protocol generation process

71

Figure 5-16: Protocol Generation Process (UML Activity Diagram)

The automatic protocol generation process, done by the STACHUS Protocol Engine, gets a cur-

rent meeting as input and generates a meeting protocol for this meeting. This workflow is

summarized in Figure 5-17.

5 STACHUS

72

Figure 5-17: Workflow Meeting – Protocol generation

The meeting consists of the audio stream of the meeting conversation, the participating team

members and documents that are reviewed, regarded, or consulted during the meeting.

Figure 5-18: The meeting (UML class diagram)

A document can be the agenda for this meeting, old protocols, test and project plans, as well as

process documentation, system model objects, or forum and wiki pages.

Figure 5-19: Documents (UML class diagram)

Figure 5-20: Meeting Protocol (UML Class Diagram)

The meeting protocol, generated by the Protocol Engine, consists of externalized information

from the meeting and the meeting participants.

5.4 STACHUS framework: Protocol Engine & Compiler

73

The protocol engine can also generate the agenda for the next meeting, based on assigned action

items from the current meeting. Moreover, simple list in XML or the inputs for project man-

agement and task maintenance tools can be created, as shown in Figure 5-21. Here, the file for-

mat (Excel, XML or text) is separated from the meeting artifacts (protocol, agenda, etc.), to ad-

dress the easy extensibility by further formats (e.g. word-documents or annotated audio files)

and further artifacts (for instance Burndown Charts or status reports).

Figure 5-21: Outputs of the protocol engine (UML Class Diagram)

5.4 STACHUS framework: Protocol Engine & Compiler

The STACHUS framework consists of a compiler and a protocol engine, including a recorder,

an analyzer and a protocol generator (see Figure 5-22).

Figure 5-22: STACHUS Framework (UML Component Diagram)

5.4.1 The STACHUS Protocol Engine

The STACHUS Protocol Engine accepts the current meeting and generates a meeting protocol.

The STACHUS grammar, presented in chapter 5.2, is integrated in the information externaliza-

tion process of the Protocol Engine.

The Protocol Engine is composed of three components: the STACHUS Recorder, STACHUS

Analyzer, and STACHUS Protocol Generator.

5 STACHUS

74

Figure 5-23: The STACHUS Protocol Engine (UML Activity Diagram)

STACHUS Recorder implements the interface to a microphone and is responsible for recording

the meeting audio stream; STACHUS Analyzer analyzes the audio stream and searches for

meeting information that is to be documented in the protocol; and STACHUS Protocol Genera-

tor creates the protocol (and if necessary, other documentation, like the next agenda) from the

output of the Analyzer and sends the generated protocol to the meeting participants. As the

main part of information externalization and extraction is done by the Analyzer, we will go into

the details of the STACHUS Analyzer in the following.

The STACHUS Analyzer is based on the blackboard architectural model, where a common

knowledge base, the blackboard, is iteratively updated by a diverse group of specialized

knowledge sources (Buschmann et al., 1998). The knowledge sources of the blackboard model

are applied in the STACHUS framework to cooperatively solve the speech recognition and in-

formation extraction and thus improve the protocol quality. So the problems of the current

speech recognition systems, whose word recognition rate is not perfect, are addressed by work-

ing together to solve the speech understanding. Thus, the STACHUS Analyzer is built on the

ideas of the first major blackboard system, the Hearsay-II system, implemented between 1971

and 1976 (Erman et al., 1980), a speech-understanding system, where various knowledge

sources cooperate to solve the speech recognition.

The STACHUS Analyzer consists of three major components: the knowledge sources, a black-

board and a controller. The knowledge sources (KSs) are specialist modules, where each KS

provides a specific expertise. In STACHUS the blackboard is a shared repository of partial solu-

tions of to be externalized meeting information, which is readable and writable by all KSs. The

control shell of the STACHUS Analyzer controls the flow of problem-solving activities in the

system, that is the controller provides a mechanism to organize the use of the KSs in the most

effective and coherent fashion.

5.4 STACHUS framework: Protocol Engine & Compiler

75

Figure 5-24: Blackboard system (UML Class Diagram)

Each knowledge source adds hypotheses (meeting phrases of to be externalized information) to

the blackboard. This process of adding contributions to the blackboard continues until the prob-

lem has been solved, i.e. the meeting stream is finished and all meeting information is extracted

to be written in the protocol. In this way, the specialists work together to solve the problem.

The ability to support interaction and cooperation among diverse KSs creates flexibility for the

framework, as modules can easily be replaced as they become outmoded or obsolete, if better

and more effective speech recognition components are developed.

The STACHUS knowledge sources are the speech recognition knowledge sources from external

suppliers, as well as the STACHUS Lexer, the STACHUS Parser, and the STACHUS Semantic

Analyzer. The knowledge sources for speech recognition transform the meeting audio stream

into a textual representation. These can be commercial speech recognition software components

(e.g. Naturally Speaking), as well as human transformations (e.g. via Amazons Mechanical Turk

(amazon.com, 2005)), that work together in parallel.

Figure 5-25: Speech recognition components (UML Class Diagram)

The Amazon Mechanical Turk is one of the suites of Amazon Web Services that enables com-

puter programmers (known as Requesters) to co-ordinate the use of human intelligence to per-

form tasks that computers can‟t solve due to the difficulty of the problem or the complexity of

the required algorithms. The Requesters are able to pose tasks known as HITs (Human Intelli-

gence Tasks), such as the transformation of a meeting audio into text. Workers (also called Pro-

5 STACHUS

76

viders) can browse among existing tasks and complete them for a monetary payment set by the

Requester.

The STACHUS Lexer conducts a lexical analysis of the hypotheses created by the speech recog-

nition components and updates the partial solutions on the blackboard. The Lexer breaks the

text into small pieces called tokens, where each token is a single atomic unit of the language.

The STACHUS Parser performs a syntax analysis based on the STACHUS grammar that in-

volves parsing the token sequence to identify the syntactic structure of the hypothetical phrases

on the blackboard and generates a syntax tree.

The STACHUS Semantic Analyzer searches the syntax tree for predefined key words, the meet-

ing elements, defined by the STACHUS grammar. Only hypothetical phrase containing a meet-

ing element will remain on the blackboard and will get part of the protocol. Thus only „relevant‟

information is documented in the protocol.

Figure 5-26 presents the STACHUS Analyzer, the controller, blackboard and the KSs.

Figure 5-26: Details of the STACHUS Analyzer (STACHUS Protocol Engine) (UML Activity Diagram)

5.4.2 The STACHUS Compiler

The STACHUS Protocol Engine is generated by the STACHUS Protocol Generator Compiler.

The STACHUS Protocol Generator Compiler is a compiler-compiler that generates, based on the

project context and the grammar, the STACHUS Lexer, Parser, and Semantic Analyzer. After-

5.4 STACHUS framework: Protocol Engine & Compiler

77

wards the generated modules are integrated with the speech recognition components in the

STACHUS Protocol Engine, as shown in Figure 5-27.

Figure 5-27: STACHUS framework: Protocol Engine generation (UML Activity Diagram)

The modules Grammar, Lexer, Parser, Semantic Analyzer and the speech recognition compo-

nents are the knowledge sources of the Protocol Engine. The STACHUS Protocol Generator

Compiler updates the STACHUS Grammar, Lexer, Parser, and Semantic Analyzer each time,

when there are changes in the project context. For example, if a new member joins the project

team, the STACHUS Compiler updates the Grammar and rebuilds the STACHUS Protocol En-

gine, so the name of the new team member can be recognized in the next meeting conversation

(Figure 5-28).

The process of integrating the generated modules and generation of the STACHUS Protocol

Engine includes updating the STACHSU Protocol Engine Controller, which coordinates the

activities of the knowledge sources.

Figure 5-29 shows the procedure, if the system model changes, due to a new understanding

based on a recent meeting. During the discussion in the meeting, the system model is updated.

Due to the changed system model, the STACHUS Compiler updates Lexer, Parser and the Sys-

tematic Analyzer and the protocol engine. That is, the next meeting protocol is generated on

basis of the new system model and the included vocabulary.

Figure 5-28: Continuous integration of project changes: new team member

5 STACHUS

78

Figure 5-29: Continuous integration: update system model

The protocol itself flows back into the STACHUS Compiler and thus influences the protocol

generation of the next meeting, as illustrated in the example in Figure 5-30, where a new action

item is defined and assigned during a meeting. This action item is documented in the protocol,

which is entered in the STACHUS Compiler that updates the STACHUS Protocol Engine com-

ponents.

Figure 5-30: Continuous integration: Action item

The protocol engine is regularly updated by the compiler so changes in the project context are

easily, fast, and continuously be integrated. That is, the framework is always up-to-date and a

self-improving system that continually improves its knowledge sources and thus the quality of

the generated protocols, as the compiler-compiler integrates the current project context.

5.5 Software architecture

The following section describes the architecture of the framework.

The overall architecture of our approach is shown in Figure 5-31. The interface or presentation

layer contains the STACHUS Audio Recorder and a microphone. The application layer provides

the STACHUS Analyzer and STACHUS Protocol Generator, externalizing information from the

meeting stream provided by the audio recorder and generating the meeting protocol. The pro-

ject repository, i.e. the project database containing project documents and the team address

book, are covered by the database layer.

5.5 Software architecture

79

Figure 5-31: Three-tier architecture (UML Package Diagram)

In the following three deployment diagrams of the STACHUS framework and its components

are shown.

Figure 5-32 shows a configuration where all subsystems are located on one node. STACHUS

Protocol Generator Compiler, STACHUS Protocol Engine, as well as the microphone that rec-

ords the meeting conversation and the database, including the project repository are on one

device, for instance a notebook. The meeting is recorded with the integrated notebook-

microphone. The protocol engine, also running on the notebook, generates, based on the rec-

orded meeting audio file, the meeting minutes and stores them locally. The advantage is that

the notebook can be carried to each meeting room and no additional network, server connec-

tion, or other devices are necessary.

The deployment diagram shown in Figure 5-33 separates the application server, containing the

STACHUS subsystems, from the database and microphone, and the devices that access the

STACHUS Protocol Generator Compiler and Protocol Engine.

5 STACHUS

80

Figure 5-32: Architecture of the STACHUS Framework on one node (UML Deployment Diagram)

Figure 5-33: Architecture with several nodes (UML Deployment Diagram)

Figure 5-34 illustrates the configuration of a thin client and a backend application server. Thus,

for instance an ad hoc meeting is supported. The meeting is recorded via the integrated micro-

phone of a smart phone, e.g. an iPhone. Then the audio file is sent to an application server that

creates the meeting protocol. The resulting meeting summary is presented at the end of the

meeting at the smart phone.

5.5 Software architecture

81

Figure 5-34: Architecture of a thin client solution (UML Deployment Diagram)

83

6 Empirical evaluation

Evaluation of the hypotheses

The previous chapters discussed the problem of missing externalization of information in meet-

ings, to support an introduction of agile methods in defined process environments. An ap-

proach was presented to solve this problem by an automatic protocol generation engine – the

STACHUS framework. This chapter presents the empirical validation of the STACHUS frame-

work for automatic protocol generation and externalization of information from meetings. The

choice of empirical methods, design of the empirical studies and the derivation of conclusions

are covered in this chapter.

In the following we refer to the definitions of Rosnow & Rosenthal (2008) and Bortz & Döring

(2005). An overview of empirical research and the methods applied during the evaluation of our

hypotheses is also given in Appendix A.III.

Section 6.1 motivates the empirical research and null hypothesis significance testing. In Section

6.2 the hypotheses regarding the automated protocol generation framework are described. The

empirical evaluation of the STACHUS framework is based on three empirical studies: The first

one is an experimental survey with students, using the STACHUS framework in a software

development project that adapts the mobile version of the protocol generator. The experimental

survey is described in section 6.3.1. To evaluate the application of automatic protocol generation

for traditional meetings and with professionals an explorative industry case study was execut-

ed. Section 6.3.2 presents this case study and the resulting conclusions. An additional case study

as part of a large student project in cooperation with a real customer is discussed in section

6.3.3.

6.1 Empirical research

Empirical research is a scientific methodology that is applied to gain conclusions about the ap-

plicability of the STACHUS framework and the results of the protocol generation engine, by

systematical evaluation of experiences via interviews, observations and measuring. On the basis

of the collected data, hypotheses are verified and can be accepted or rejected (falsified). Inten-

6 Empirical evaluation

84

tion is to allow conclusions and theories about the particular object of research. However, con-

jectures are scientific only if they claim validity, which goes beyond the subjective opinion and

workaday experiences of indivicuals. Empirical research is applied in the context of this thesis

to evaluate our hypotheses regarding the practicability, usability, and effort reduction of the

STACHUS framwork for meeting minutes generation.

A Hypothesis is a proposed explanation for observable phenomena, i.e. it represents a “research

idea that serves as a premise or supposition” (Rosnow & Rosenthal, 2008, p.417). A hypothesis

is called a scientific hypothesis, if it can be tested, is plausible, and concise. Moreover, it has to

go beyond individual cases (generalizability) and be falsifiable based on observational data.

“Scientific hypotheses state a more or less precise relationship between two or more variables

that hold for a defined population of comparable objects.” (Bortz & Döring, 2005, p.12) A dis-

tinction is drawn between a null hypothesis (the hypothesis to be nullified that states that there

is no relation between two variables) and alternative hypothesis (the experimental hypothesis).

Null hypothesis significance testing (NHST) uses statistics and probabilities to evaluate null hy-

potheses and determine the significance level and the probability (value). NHST evaluates if

for example a difference between two means might be due to chance. In this context a Type I

error implies that the decision maker mistakenly rejected the null hypothesis (H0) when it is, in

fact true and should not have been rejected.

 (|) i.e. ()

A significance level of 5%, the .05 alpha, is seen by many scientists as a good “fail-safe” stand-

ard to decide about rejecting or accepting H0, because it is convenient (most statistical tables

show 5% values) and stringent enough to protect from too often concluding that the null hy-

pothesis is false when it is actually true.

The collected evaluation data is analyzed and validated by statistical tests. Beside describing

data and measuring relationships, researchers are usually interested in making comparisons

using statistical test. In the following, we will analyze the data based on t-tests for small sam-

ples and normal distribution. A t-test is a test of statistical significance that examines the differ-

ence between two means against the background of the within-group variability (i.e. the varia-

bility of the scores within the sample). The larger the difference between the means, and/ or the

smaller the within-group variability for any given size of study, the greater will be the value of

t. Because large t values are associated with differences between means that are more statistical-

ly significant, researchers generally prefer larger t values. That is, larger t values have a lower

level of probability (the p value) and, in turn, allow researchers to reject the null hypothesis that

there is no difference between means. When the results are not statistical significant, the evi-

dence is termed to be anecdotal evidence.

The unpaired or independent-sample t-test examines the differences between two independent

means that is the two groups are independent of one another, i.e. the results in one group are

6.1 Empirical research

85

not influenced by the results in the other group. Considering the t-test, the degrees of freedom

(symbolized as df) are defined as for … and n-1 for …

Paired or dependent samples t-tests typically consist of a sample of matched pairs of similar

units, or one group of units that has been tested twice (a “repeated measures” t-test).

The p values are probability values, obtained in the t-tests. P values can be two-tailed or one-

tailed. The two-tailed p values are associated with a result supporting a prediction of a nonspe-

cific direction of a research result, e.g. , whereas one-tailed p values are associated with a

result supporting a prediction of a specific direction of a research result, e.g. .

The t value is calculated as follows:

Independent one-sample t-test (tests the null hypothesis that the population mean is equal to a

specified value):

 ̅

∑

 ̅ is the sample mean of the data, n is the sample size.

 ̅

√

where s is the standard deviation of the sample. The degrees of freedom used in this test is

n − 1.

∑(̅)

 √

Independent two-sample t-test (this test is only used when the two sample sizes (that is, the num-

ber n of participants of each group) are equal and it can be assumed that the two distributions

have the same variance.

The t statistic to test whether the means are different can be calculated as follows:

 ̅ ̅

√

where

√

6 Empirical evaluation

86

is the standard deviation for 1 = group one and 2 = group two. The denominator of t is the

standard error of the difference between two means. The degrees of freedom used in this test is

 .

Dependent t-test for paired samples (this test is used when the samples are dependent)

 ̅

∑

 ̅ is the mean of the sample differences and the standard deviation of the sample. The

degrees of freedom is n − 1.

 √

∑(̅)

 ̅

√

Once a t value is determined, a p-value can be found using a table of values from Student's t-

distribution. If the calculated p-value is below the threshold chosen for statistical significance,

the null hypothesis is rejected in favor of the alternative hypothesis.

The confidence interval is the upper and lower bounds of a statistic, where confidence is de-

fined as

[̅ (

)

√
 ̅ (

)

√
]

If the sample is not normally distributed, non-parametric tests are used – e.g. a Wilcoxon rank-

sum test for independent samples or Wilcoxon signed-rank test for the case of two related sam-

ples or repeated measurements on a single sample.

During a survey the data is gathered for the statistical test that rejects or accepts a hypothesis.

Internal and external validity are essential quality criteria of a survey. Validity is the degree to

which what was observed or measured is the same as what was purported to be observed or

measured. Internal validity is the degree of validity of statements made about whether X causes

Y. External validity is the dependability of causal generalization across persons, settings, treat-

ment, and outcome variations. In particular external validity – the degree of generalizability –

has to be assured during research. Reliability is a second quality criterion, which is the extent to

which observations or measures are consistent or stable.

6.2 Hypotheses and research questions

87

6.2 Hypotheses and research questions

The focus of our empirical evaluation was to analyze the practicability and effectiveness of the

framework STACHUS and its integration in the project and meeting workflow to value the

automated protocol generation process and the generated protocols. Based on the functional

and non-functional requirements, defined in chapter 5.1, twelve hypotheses for automated pro-

tocol generation framework are derived, to evaluate STACHUS and its components by as-

sessing the hypotheses. Each hypothesis is related to functional or non-functional requirements

(FR/ NFR), that are validated with this hypothesis. The valuation of the hypotheses is distribut-

ed to three case studies (C1 – C3) – shown in Table 6-1 – two in an academic environment (C1 &

C2) and one larger, industrial case study (C2).

Hypothesis FR/ NFR
Case study

coverage

1 The STACHUS Protocol Engine reduces the effort of

protocol generation in comparison to manually written

protocols

FR3, NFR3 C1, C2

2 STACHUS Protocol Engine (audio recording & protocol

generation) ensures easiness in communication, i.e. the

communication is not complicated or constrained by

audio recording and the process of automated protocol

generation

NFR1,

NFR4

C1 , C2

3 The STACHUS meeting grammar is easy to learn and

apply and does not constrain the meeting progress

NFR1,

NFR4

C1, C2

4 STACHUS Audio Recorder and Protocol Generator are

easy to use

FR1, NFR1,

NFR4

C1, C2

5 The STACHUS Compiler & Protocol Engine support

knowledge management by information externalization

FR2, FR3,

FR4

C1, C2

6 The STACHUS Protocol Engine reduces the information

overload

FR3 C1

7 The STACHUS Protocol Engine supports externalization

of volatile communication and thus improves the forget-

tability of action items, decisions etc., especially during

informal meetings, in comparison to the manual protocol

generation from memory

FR2, FR3 (C1)

8 The STACHUS Protocol Generator accelerates the proto-

col generation, i.e. the protocols are published faster

than manually written protocols

NFR3 C2

9 The STACHUS Protocol Engine support agile practices NFR1,

NFR5

C2

10 The STACHUS Protocol Generator reduces gaps be-

tween different tools in the project & meeting workflow

and thus simplifies the meeting process

FR4 C2

6 Empirical evaluation

88

11 Protocol generation procedure (STACHUS Protocol En-

gine and STACHUS Compiler) can be improved by a

dynamic extending grammar

NFR6 C2

12 The STACHUS Compiler and STACHUS Protocol En-

gine improve the correctness of protocols compared to

the correctness of manually written meeting minutes

NFR2 C3

Table 6-1: Relationship between the hypotheses of the dissertation, requirements of STACHUS, and coverage by
case studies

Effort reduction for protocol generation (H1)

An effective application of the automatic protocol generation engine – especially in an agile

environment – requires the reduction of effort for generating a protocol. The manual creation of

protocols is time consuming, why most agile projects do without protocols as the effort is larger

than the value for them. If it is the aim to increase the number of protocols in agile projects and

relieve the protocol generation also in traditional environments, the effort for creating a proto-

col has to be minimized. Thus, the reduction of effort is important for the effectiveness of the

meeting protocol generation framework.

The STACHUS Protocol Engine reduces the effort of protocol generation in comparison to

manually written protocols. Effort reduction is measured using the questions Q8 (effort for

writing a protocol) and Q9 (effort for post-processing a meeting). Additionally the effort reduc-

tion is evaluated using the questions Q17 and Q18, regarding the potential for fewer errors.

Easiness in communication (H2)

The easiness in communication is depending on the easiness of the grammar (H3) and the usa-

bility of the framework during meetings (H4), i.e. the STACHUS Audio Recorder and STA-

CHUS Protocol Generator. That is, the easiness in communication is supported, if the grammar

is easy to learn, does not need a comprehensive training and it is easy for the meeting partici-

pants to stick to the grammar rules. Moreover, the execution of the grammar must not disturb

the meeting progress. In addition, the STACHUS Audio Recorder has to be easy to use, that is it

should support an intuitive user prompting, so no training is required to activate the meeting

recorder. Moreover, setting up the audio recorder and protocol generator has to happen in min-

imal time and with no additional effort.

Thus, an automated protocol generation approach has to support an easy communication, to be

better to use and therefore improve the effectiveness of the meetings. Aim is that the automa-

tion of protocol generation does not complicate and constrain the communication during a

meeting (especially regarding the application of a grammar).

STACHUS Protocol Engine (STACHUS Audio Recorder & Protocol Generator) ensures easiness

in communication, i.e. the communication is not complicated or constrained by audio recording

and the process of automated protocol generation.

6.2 Hypotheses and research questions

89

Furthermore, possible (negative and positive) changes of the communication behavior are ana-

lyzed to evaluate the effects of applying a meeting grammar and the fact of recording a meet-

ing. The changes in communication behavior are measured using questions Q23, as well as us-

ing the respondents‟ comments belonging to this question and observations during the whole

student project.

Easiness of the meeting grammar (H3)

As mentioned above, easiness of communication is depending on the acceptance of the applied

meeting grammar. The automated protocol generation is effective, if the meeting participants

can easily learn the meeting grammar (needed for the protocol generation) and don‟t need

comprehensive trainings. Moreover, it has to be easy to stick to the rules of the meeting gram-

mar during the meeting and don‟t confuse the meeting participants. Thus, the meeting gram-

mar must not constrain the meeting process.

The STACHUS meeting grammar is easy to learn and apply and does not constrain the meeting

progress. The easiness of the grammar is measured using the question Q27.

Easiness of the framework (H4)

The easiness of the STACHUS framework for the meeting participants is depending on the usa-

bility of the STACHUS meeting recorder and the STACHUS Protocol Generator. The STACHUS

Audio Recorder has to support an intuitive user prompting, so no trainings for the activation of

the meeting recorder are required and starting a meeting recording at the begin of the meeting

can be done by each meeting participant in no time. Additionally, the protocols are automatical-

ly and without any effort generated by the STACHUS Protocol Generator and handed out to the

meeting participants; and ideally no additional effort is involved for reviewing and correcting

incorrectly or incompletely automatically created protocols.

The easiness of the STACHUS framework for the meeting participants increases not only the

easiness in communication (as the conversation is not disturbed by the audio recording process)

but also the acceptance of the tool is increased and handling errors are reduced. The STACHUS

Audio Recorder and Protocol Generator are easy to use, in terms of the definition above. The

easiness of STACHUS is measured using Q20, observations during several meetings, and using

the open questions Q28 – Q31.

Knowledge management support (H5)

Protocols are a source for knowledge management. Knowledge is created or combined in meet-

ings by socialization (tacit to tacit), during the conversations, and externalization (tacit to explic-

it), by creating a protocol. This ‘people-to-document’ approach (codification approach) makes

implicit knowledge explicit. Moreover, the knowledge is made independent of the person from

whom it is extracted and stored in protocols, reports, or databases. These protocols are read by

other project members and thus make a contribution to knowledge spreading, combination of

knowledge (explicit to explicit), and internalization (explicit to tacit).

6 Empirical evaluation

90

Possibly, the knowledge combination or generation of new knowledge during this process of

externalization and internalization of knowledge has an effect on the comprehension of the

project and system model. That is, protocol generation conduces to knowledge transfer and

thus to knowledge generation. Protocols keep decisions, the understanding and knowledge of

the team in written form to reuse and apply the knowledge in the future or in other projects.

Hypothesis H7 states that the STACHUS Compiler & Protocol Engine support knowledge man-

agement by information externalization and protocol generation. This support of knowledge

management is evaluated by a systematic observation during a judgment study that accompa-

nied the whole student project and it is measured using the question Q21.

Reduction of information overload (H6)

Information overload, popularized by Alvin Toffler (1970), refers to the presence of too much

information to find the ‘right’ information, understand an issue or make a decision.

The automation of the protocol generation process will increase the number of available proto-

cols and reports. The access to so much information may increase the information overload of

individual team members, as searching for the ‘right’ or a specific information becomes difficult

in such an amount of information. The sole creation of paper protocols does not support the

meeting participant in retrieving requested information of the meeting. So additionally the pro-

tocol generator has to reduce the information flood caused by meeting minutes, by preparing

the discussed information to allow an easy searching and retrieval of specific information.

The STACHUS Protocol Engine (of the smart phone version) reduces the information overload.

The reduction of information overload is measured using the question Q22.

Forgettability (H7)

Informal meetings are characterized by volatile communication. That is, if the discussed infor-

mation is not externalized and recorded in a protocol, it will be forgotten and get lost. As a re-

sult, assigned action items for instance may be overlooked (as no written documentation is

available to look up important parts of the conversation after the meeting) and thus are not

executed by the next meeting, where they have to be discussed again. An effective application

of the automation of protocol generation has to reduce the „forgettability‟ of discussed, but vola-

tile information.

The STACHUS Protocol Engine supports externalization of volatile communication and thus

improves the ‘forgettability’ of action items, decisions, etc., especially during informal meetings,

in comparison to the manual protocol generation from memory. The volatility of information of

meetings is evaluated using the question Q16. Additionally an experiment was executed to

measure the level of forgettability by opposing the number of discussed information in a meet-

ing to the number of remembered information after the meeting.

6.2 Hypotheses and research questions

91

Accelerated protocol generation and publication (H8)

One observation of traditional meeting minutes, as mentioned in chapter 3, is that they are pub-

lished often too late, i.e. just before the next meeting, so an extensive preparation for the next

meeting is impossible and assigned action items are not executed. An improved meeting man-

agement needs to shorten the time of the protocol generation process, to allow the meeting par-

ticipants to prepare for the next meeting and contribute to the project progress.

The STACHUS Protocol Generator accelerates the protocol generation, i.e. the protocols are

published faster than manually written protocols. The accelerated protocol generation is meas-

ured using the question Q8 (protocol writing effort), Q10 regarding the average protocol publi-

cation time and Q11.

Support of agile practices (H9)

The effective integration of the STACHUS Audio Recorder and Protocol Generator in the meet-

ing process, especially for agile teams, requires the support and compliance with the agile prac-

tices, summarized in chapter 2. That is, the lightweight and flexible character of agile meetings

and projects should be maintained, the protocol generation may not result in additional effort

for the meeting participants, and the STACHUS framework has to support informal meetings.

In addition, the agile projects shall be enriched by the externalization and storage of knowledge.

STACHUS Protocol Engine support agile practices. The degree of agile support is measured

using the question Q21.

Tool support und simplified meeting process (H10)

Updating to-do-lists and maintenance of project management tools can be time consuming.

Surveys, e.g.(VersionOne, 2010), yielded that task and project management is mostly done elec-

tronically. Thus, the effective integration and application of the STACHUS framework in the

project lifecycle can be ensured, if the applied project management tools are connected to STA-

CHUS and information, discussed in a meeting, can be directly transferred to these tools. That

is, if a new task was assigned during a meeting, it is recorded in the protocol and directly added

to the individual task-management-list. Furthermore, the protocols created by the STACHUS

protocol generator have to be adaptable to the individual project format and layout standards.

The STACHUS Protocol Generator reduces gaps between the tools in the project & meeting

workflow and thus simplifies the meeting process. The tool integration and workflow support

is measured using the question Q19.

Protocol improvement by dynamic grammar (H11)

Today, the speech recognition rate is still not 100% accurate. To guarantee high quality proto-

cols that are automatically generated, the speech recognition has to improve. This can be done

6 Empirical evaluation

92

by the integration of project vocabulary (names of the team members, tools, etc.), system models

and project domain context (technical terms) in a dynamic grammar to improve the protocols.

The protocol generation procedure (STACHUS Protocol Engine and STACHUS Compiler) can

be improved by a dynamic extending grammar, resulting in a better protocol quality. The im-

provement of the protocol generation is measured based on several experiments, where the

speech recognition rate and protocol quality (correctness, completeness) is analyzed before and

after adding additional project vocabulary from the context of the project and those from the

system model for instance, to the speech engines of STACHUS.

Less error (H12)

As shown in chapter 3, protocols are often published to late, or the protocols are incomplete or

incorrect.

The STACHUS Compiler and STACHUS Protocol Engine improve the correctness of protocols

compared to the correctness of manually written meeting minutes. The error reduction is meas-

ured using question Q12 regarding the amount of incorrect protocols and question Q18 about

the error reduction potential.

The following sections describe our case studies and the empirical experiments used to evaluate

the hypotheses stated in this section. Each section consists of a brief introduction, where the

case study is presented, followed by a description of the empirical methods, applied for evalua-

tion. Afterwards, the results are derived, which are finally discussed and evaluated.

6.3 Empirical evaluation of the hypotheses

93

6.3 Empirical evaluation of the hypotheses

6.3.1 Case study I

The first case study was executed in the context of a student project at the Technische Universi-

tät München during the summer semester 2009. The objective was to evaluate the applicability

of the automated meeting protocol generation framework, ensure its feasibility, and improve

the framework during the project if necessary. Moreover the practicability of the meeting

grammar and its application during meetings should be tested, to analyze the effects on the

meeting conversation.

At the end of the student project, the hypotheses H1 – H7 were analyzed. The other hypotheses

are evaluated in the case studies II and III.

The case study was designed as a one-group pre-post case study, i.e. it was designed with an

experimental group using the STACHUS framework, compared to the meeting and protocol

generation experiences of this group with the previous manual protocol generation.

The case study took place during the summer semester 2009 within the ‚iPhone Praktikum 09‛,

a practical student’s course for programming mobile multimedia applications with the iPhone

SDK.

Objective of the student’s project was to develop a mobile version of the STACHUS framework

that runs on an iPod/iPhone, to support informal and ad-hoc meetings. Prerequisite for the team

was to apply the STACHUS meeting management framework for developing the mobile ver-

sion.

To answer the research questions, the participants of the survey needed to have experiences

with meetings and taking meeting minutes, and attended ideally several kinds of meetings in

the software development environment. Therefore, the inclusion criteria of the protocol-

generation-team were bachelor/ master degree in software engineering, experience in real soft-

ware development projects, and experience and interest in meeting management. Additionally,

importance was attached to grouping a heterogeneous student team with different levels of

meeting experience and interests.

The population of the practical course was 31 students, five (one female and four male students)

passed the inclusion criteria and became a member of the protocol-generation-team.

The case study consisted of two parts: on the one hand a six month project accompanying ob-

servation (n = five students) and on the other hand a final questionnaire. A sample of four male

and female students and four further project participant (project partners and customers, and

potential users) participated in the concluding questionnaire, which additionally required first

6 Empirical evaluation

94

experiences with the STACHUS framework to answer the questions. 25 % of the respondents

were female, 75% male, at the age between 24 and 55.

In this case study we use observations, interviews and a questionnaire. The questionnaire is

attached in Appendix III.

In the following, the results of the questionnaire and the statistical tests are shown, structured

according to the hypotheses mentioned in section 6.2.

H1: The STACHUS Protocol Engine reduces the effort of protocol generation in comparison

to manually written protocols

This hypothesis is tested at a significance level of 5%, comparing the means of effort for manual-

ly writing a protocol and for generating it via STACHUS.

H0:

H1:

The interpretation of the respondents’ data shows that the mean effort for manually writing a

protocol is between 7 and 113 minutes, depending on the meeting duration. In contrast, the

effort for the automated generation of meeting protocols is approximately five minutes, for

starting and stopping the meeting recording and starting the application– the generation pro-

cess is fully automated. The detailed numbers for writing a protocol are shown in Diagram 6-1.

Diagram 6-1: Questionnaire responds: mean effort for writing a protocol

0

20

40

60

80

100

120

up to 30
min

30 min - 1 h 1 - 2 h 2 - 4 h 4 - 8 h

Ø
 e

ff
o

rt
 in

 m
in

u
te

s

meeting duration

Mean effort for writing a protocol

experience
respondents

STACHUS

6.3 Empirical evaluation of the hypotheses

95

Moreover, the effort for the meeting post processing, e.g. for updating the individual to-do list,

which should be add the manual effort, was between 13 and 105 minutes, depending on the

meeting duration.

The results of the statistical test are given in Table 6-3, which shows that the mean effort for

writing a protocol manually is higher than the mean effort for starting the STACHUS Protocol

Engine for an automated protocol generation.

The calculations are exemplarily shown for meeting with duration of 60 - 120 minutes:

 ̅

∑

 ()

 xi xi-μ (xi-μ)²

 45 min 11,4 130,6

 - 0,0

 30 min -3,6 12,8

 60 min 26,4 698,5

 30 min -3,6 12,8

 10 min -23,6 555,6

 30 min -3,6 12,8

 30 min -3,6 12,8

sum 0,0 1435,7

s² 205,1

s 14,3

Table 6-2: Calculation of s² and s for 60 - 120 min meetings

∑(̅)

 √ √

 √
 ̅

 √

[̅ (

)

√
 ̅ (

)

√
]

 [(

)

√
 (

)

√
]

 [

√

√
] []

 ()

6 Empirical evaluation

96

Measure Manual Manual Manual Manual Manual STACHUS

Meeting

duration

< 30 min 30 - 60

min

1 - 2 h 2 - 4 h 4 - 8 h meeting in-

dependent

 ̅(in min) 10 17 34 55 113 5

s 0 9,4 14,3 18,7 13,0 0

s2 0 88,9 205,1 350 168,8 0

n 7 6 7 6 4 12

t - 3,1 5,4 6,5 16,6 -

p - <0,025 <0,001 <0,001 <0,0005 -

95% confidence

interval

- 7,1

to 26,9

20,8

to 47,2

35,4 to

74,6

92,3 to

133,7

-

Table 6-3: Results: effort for protocol generation manual vs. STACHUS generated

The savings of time, when using automated instead of manual protocols, are on average be-

tween 5 and 108 minutes per meeting protocol. The results of the independent t-test on these

data, depending on the meeting duration, yielded , , and one-tailed.

As the calculated p-value is below the threshold of for statistical significance, the null

hypothesis can be rejected in favor to the alternative hypothesis.

The acceptance of the alternative hypothesis can be confirmed by the results of the question Q17

and Q18, where 100% of the respondents believe that using the STACHUS framework will save

time and 87,5% of the respondents are convinced that the automatically generated protocols

have less errors than the manual written protocols. This can be seen as an additional time sav-

ing factor, as the effort for reviewing protocols and fixing them is decreased compared to the

manual creation.

To verify the hypothetical error reduction rate in automatically generated protocols by the

STACHUS framework a small experiment was done comparing manual and automated proto-

cols. This experiment showed that although the error rate of both protocol versions is almost the

same (the minutes taker does errors due to distractions and the fast communication, whereas

the protocol generator is confronted with a speech recognition with less than 100% word recog-

nition rate), the number of recorded items is slightly higher in the automated protocols. One

explanation could be that the minutes taker rejects – from his view – irrelevant items, which is

not done in the automated version. However, if an initially irrelevant item becomes relevant in

the future it is not part of the manually written minutes in contrast to the automated protocols.

Moreover, an improved speech recognition rate in the future will additionally reduce the error

rate of the automated protocols.

6.3 Empirical evaluation of the hypotheses

97

H2: STACHUS Protocol Engine (audio recording & protocol generation) ensures easiness in

communication, i.e. the communication is not complicated or constrained by audio recording

and the process of automated protocol generation

Beside the easy application of the framework (H3) and easy grammar (H4), the effects on the

communication behavior contribute to the easiness in communication. The possibly changed

communication behavior is evaluated in question Q23 and should be minor or predominantly

positive to support the alternative hypothesis.

75% of the respondents answered the question, if they believe in a changed communication

behavior, when using STACHUS, in the affirmative. However mostly a positive effects is seen,

e.g. ‚one would try to speak more articulately and systematic‛ or ‚think before speaking‛.

These results are confirmed by observations during different meetings. For an observer it is not

obviously to see, if the team is currently applying the STACHUS framework for protocol gener-

ation and the meeting is recorded or not, as the meeting workflow is not influenced by the au-

tomated protocol generation process.

For this reason, the team members were asked during an interview, to evaluate the communica-

tion behavior of a traditional meeting and of a STACHUS-meeting. If the hypothesis is right, the

evaluation should increase, that is

H0:

H1:

The results are summarized in Table 6-4 and Table 6-5.

Measure

Traditional

meeting

mgmt

STACHUS

meetings

 ̅ 1,67 2,5

s 0,8 0,5

s2 0,7 0,3

Table 6-4: Mean and Variability for the communication behavior evaluation

6 Empirical evaluation

98

Traditional

meetings
coded

STACHUS

meetings
coded d di- ̅ (di- ̅)²

1 to be improved 2 ok 3 1 0,17 0,03

2 bad 1 to be improved 2 1 0,17 0,03

3 bad 1 ok 3 2 1,17 1,36

4 ok 3 ok 3 0 -0,83 0,69

5 bad 1 to be improved 2 1 0,17 0,03

6 to be improved 2 to be improved 2 0 -0,83 0,69

 ̅ | ̅ 1,67 2,5 0,83

sum 0,00 2,83

sd² 0,57

sd 0,75

Table 6-5: Mean and Variability for the communication behavior evaluation

 ̅

∑

 √

∑(̅)

 √

 ̅

√

√

The dependent t-test for paired samples on the data of the interviews yielded ̅ ,

 , , , and , so we can reason that STACHUS has positive effects on the

communication behavior of meetings.

H3: The STACHUS meeting grammar is easy to learn and apply and does not constrain the

meeting progress

Hypothesis H3 is accepted, if the majority of the respondents verify the easiness of the gram-

mar. As the response choices of the corresponding research question Q27 are coded with natu-

ral numbers from ‚very difficult‛ (1) in ascending order to ‚very easy‛ (4), the arithmetic mean

should be larger than 2,5 to reject the null hypothesis (again at a significance level of 5 %).

H0:

H1:

6.3 Empirical evaluation of the hypotheses

99

Measure Responds

 ̅ 2,875

s 0,64

s2 0,41

n 8

Table 6-6: Mean, Variability and Number of Participants for Q27

75 % of the respondents evaluated the grammar, the learning process, and to follow the gram-

mar during the meeting as ‚easy‛ or ‚very easy‛. However, the independent t-test yielded

ed , , a 95% confidence interval ranging from 2,34 to 3,41, and one-tailed,

which results in the acceptance of the null hypotheses and rejection of the alternative hypothe-

sis, due to the 5 % significance level. Though, at a significance level of the null hypothe-

sis is rejected.

H4: STACHUS Audio Recorder and Protocol Generator are easy to use

The hypothesis H4 is accepted, if the majority of the respondents confirm an easy usability of

the audio recorder and protocol generator, and an intuitive user prompting to easily start the

audio recorder and create a protocol. As the response choices of the corresponding research

question Q20 are coded using natural numbers, that is, ‚yes‛ is coded with 3, ‚fair‛ with 2, and

‚no‛ is coded with 1, the mean ‘usability’ should be larger than 2 to accept the alternative hy-

pothesis.

H0:

H1:

Measure Responds

 ̅ 2,71

s 0,70

s2 0,49

n 8

Table 6-7: Mean, Variability and Number of Participants for Q20

The independent one-sample t-test on these data yielded , , one-tailed,

and a 95% confidence interval ranging from 2,13 to 3,30.

Due to the results of H2 – H4, the hypotheses are accepted that the easiness of the communica-

tion is ensured and the communication is not disturbed, when using the STACHUS protocol

generator.

6 Empirical evaluation

100

H5: The STACHUS Compiler & Protocol Engine support knowledge management

This hypothesis will be accepted, if the majority of the respondents verify a positive effect on

knowledge management by STACHUS, i.e. that the STACHUS Protocol Engine generates

knowledge and makes a contribution to the transfer of knowledge, by externalizing implicit

knowledge and preparing in protocols.

The response choices of the corresponding research question Q21 are coded with natural num-

bers (no (1), partly (2), yes (3)), so the average () should be larger than 2 to reject the null hy-

pothesis at significance level .

H0:

H1:

Measure Responds

 ̅ 2,87

s 0,4

s2 0,1

n 8

Table 6-8: Mean, Variability and Number of Participants for Q21

The question Q21 asked, if the participant believes that the automated protocol generation sup-

ports the project knowledge management. 87,5% answered this question in the affirmative. The

remaining responds (12,5%) see at least a partial support in knowledge management by the

STACHUS framework.

The independent t-test yielded , , and one-tailed, i.e. the alternative

hypothesis is accepted – the automated protocol engine generates knowledge, by externalizing

implicit knowledge and makes a contribution to the transfer of knowledge by preparing the

information in protocols.

H6: The STACHUS Protocol Engine reduces the information overload

At the beginning of the student’s project, the participants were asked during an interview to

estimate the information overload of meetings and the summarizing meeting minutes (very low

(1), low (2), fair (3), high (4), very high (5)). The arithmetic mean yielded ̅ . The same

question was asked after the completion of the mobile version of STACHUS (with ̅).

Moreover, in a final questionnaire, the participants were asked to evaluate the mobile meeting

application regarding its potential of reducing the information overload.

The alternative hypothesis, that STACHUS reduces the information overload will be accepted, if

on average () the question Q22 was answered with useful (>3) and the estimations regarding

6.3 Empirical evaluation of the hypotheses

101

the information overload of traditional meeting minutes is statistical significant higher than the

information overload of protocols generated by the STACHUS protocol engine.

H0: ⋀ ̅ ̅

H1: ⋀ ̅ ̅

The dependent t-test for paired samples on the data of the interviews at the beginning and end

of the project yielded ̅ , , , , and .

Measure Responds

 ̅ 3,75

s 0,9

s2 0,8

n 8

Table 6-9: Mean, Variability and Number of Participants for Q22

The independent one sample t-test on the data of question Q22 yielded , ,

 one-tailed and a 95% confidence interval ranging from 3,0 to 4,5.

Based on these results, the null hypotheses can be rejected in favor of the alternative hypothe-

ses: STACHUS reduces the information overload of meetings minutes, due to a more focused

summarization.

H7: The STACHUS Protocol Engine supports externalization of volatile communication and

thus improves the ‘forgettability’ of action items, decisions etc., especially during informal

meetings, in comparison to the manual protocol generation from memory

The existence of a positive effect of the STACHUS framework on the volatility of discussed

meeting information was evaluated during the following experiment. It is analyzed, how much

information is lost, if the protocol is not written directly after the meeting (which is especially

the case in informal meetings, where there it is harder to take notes during the meeting). Our

hypothesis is that the mean number of recorded items is higher when protocols are automatical-

ly generated with STACHUS than in manually written protocols, summarized after the meeting

from memory.

H0:

H1:

Four volunteers were asked to participate in a two-hour meeting. Afterwards they had to write

a protocol of the conversation after one day and after three days. This experiment was repeated

three times in different meetings. The completeness of these protocols was analyzed, that is if all

6 Empirical evaluation

102

mentioned items (action items, decisions, issues, etc.) are listed in the protocol. The results of

the manually written protocols after one and after three days were compared to the automated

notes generated by STACHUS and all mentioned items. The results are summarized in Table 6-

10.

Measure # items #items STA-

CHUS

#items after 1

day

#items after 3

days

 ̅ 100% (22) 97,0% (21,3) 61,3% (13,3) 48,5% (10,5)

s 0 3,1 6,8 3,8

s2 0 9,6 46,4 14,6

Table 6-10: Mean and variability for the "Forgettability-Experiment"

If it is not possible to take some notes right after the meeting, the mean of remembered items is

approximately 61% after one day, and 49% after three days, respectively.

The t-test yielded | | and | | and Thus, the null

hypothesis can be rejected at a significance level .

This reduced loss of meeting information, when applying the STACHUS Protocol Generator,

can be supported by the results of the question Q16. 87,5% of the respondents evaluate the mo-

bile meeting application as useful or above regarding the externalization of discussed infor-

mation and thus the improvement of forgetfulness (the remaining 12,5% of the respondents

answered ‚don’t know‛).

Risk of validity

The sample size of this survey (n = 8) is too small to generalize our conclusions. So, the valida-

tion obtained from this survey provides only anecdotal evidence. A second case study was de-

signed and executed to address this problem of external validity for the hypotheses 1 - 7, which

is described in the following section. Moreover, four additional hypotheses are evaluated,

which could not be analyzed in this case study due to the required experience of the partici-

pants, e.g. regarding the creation of traditional meetings minutes or the application of agile

methods in defined processes, which could not be provided by the students.

Observation

The overall findings of the observations support the results of the questionnaire indicating the

usefulness, the usability, and effort reduction for the protocol generation. Feasibility was veri-

fied by the development of a mobile iPod application. The meetings during the development

project were summarized by the STACHUS protocol generator. Moreover the practicability of

our meeting grammar, its usability, and the effects on the meeting conversation were tested by

the students in several meetings.

6.3 Empirical evaluation of the hypotheses

103

Acceptance of alternative hypotheses: The statistical significance from the t-test results rejects

the null hypothesis and accepts the alternative hypotheses H1, H2 and H4 to H7. This gives

evidence that automatic protocol generation is useful, easy to apply, assistance in the project

workaday life, and supports the knowledge management of tacit knowledge, discussed in meet-

ings.

Although hypothesis H3 (‘the meeting grammar used in the STACHUS framework is easy to

learn and apply’) was rejected, observations during the whole project showed that once the

meeting participants were used to the grammar, it was easy for them to abide by the grammar

rules.

Moreover, a correlation analysis on basis of the data from the questionnaire yielded a strong

positive linear correlation between the profession and the meeting grammar evaluation – corre-

lation coefficient . Noticeable is, that traditional software developers evaluated the

meeting grammar worst (equates difficult), whereas project managers and agile de-

velopers in our case study evaluated the grammar as easy () on average. The data is summa-

rized in Diagram 6-2. From these results it seems reasonable to assume that traditional software

developers are not used to meetings, as they seldom attend meetings, whereas project manag-

ers, and the agile developers in our case study, often participate in meetings and are used to the

meeting procedures, as meetings are an essential part of agile methods. So the additional factor

of familiarization to the grammar is less for them than for the software developers, who first

have to familiarize with the meetings itself. However, if that is true, it would mean that project

members with agile experience would evaluate the meeting grammar better than those with no

agile knowledge. The correlation analysis yielded a correlation coefficient of , verify-

ing the positive linear correlation. That means that the aimed target audience (project members

with lots of meetings, as it is typical in agile projects) evaluated the meeting grammar as useful

(, , , , and a p-value of one-tailed), resulting in the rejection

of the null hypothesis in favor of the alternative hypothesis.

6 Empirical evaluation

104

Diagram 6-2: Correlation: grammar evaluation – profession

6.3.2 Case study II

The second case study is an exploratory study of the STACHUS framework for protocol genera-

tion in business environments, and evaluated the expedience of the framework in the daily pro-

ject routine. While case study I was done in an academic environment, case study II is designed

for an industrial environment. So the transferability to meetings in common work-a-day life

should be analyzed.

In this case study the validation of the hypotheses H1 – H5, and H8 – H11 is analyzed by obser-

vations and a self-administered questionnaire. Hypotheses H6 and H7 are evaluated only in

case study I, due to the focus of informal vs. formal meeting. Case study II is also designed as a

one-group pre-post case study.

The questionnaire used in the study can be found in Appendix III.

The case study took place in winter 2009/2010 and consisted of several meeting observations

and an online questionnaire. To analyze the STACHUS framework in an industrial environment

with defined processes, the observations had to be done at a large (international) organization.

The observations were done at Siemens AG, as one example for a large company. Additionally,

the questionnaire was send to large companies, e.g. Fujitsu and Capgemini AG. Software pro-

fessionals and project managers were the target population for the case study and the question-

naire; ideally they had already experience with agile software development methodologies.

1

1,5

2

2,5

3

3,5

4

Software
Developer

Project
Manager

Other Student

le
ve

l o
f

d
if

fi
cu

lt
y

profession

easy

difficult

very difficult

very easy

μ0

6.3 Empirical evaluation of the hypotheses

105

Meeting Observations

The meeting observations were conducted in the context of monthly Jour fixes of the process

consulting team CT T DE TC 1 within Siemens Corporate Technology, consisting of ten team

members. The STACHUS Protocol Engine was used to automatically generate a protocol at the

end of each meeting. The meetings were evaluated regarding the practicability of the grammar,

i.e. how easy it was to learn and follow the grammar during meeting conversations and discus-

sions.

Questionnaire

The questionnaire was completed by 42 consultants, software developers and project managers

with more than ten years work experience on average. The questionnaire was sent to more than

ten companies, amongst other, Fujitsu Enabling Software Technology GmbH, it-economics

GmbH, Capgemini AG, and Siemens AG to reach a broad distribution of meeting experiences

and protocol practices.

In the following the results of the statistical tests are summarized, structured according to the

hypotheses from chapter 6.2.

H1: The STACHUS Protocol Engine reduces the effort of protocol generation in comparison

to manually written protocols

To validate this hypothesis the mean effort for manually writing a protocol is compared to the

mean effort for automatically generated protocols by the STACHUS Protocol Engine. The hy-

pothesis is tested at a significance level of 5%.

H0:

H1:

According to the respondents’ data, the mean effort for manually writing a protocol was be-

tween 10 and 85.5 minutes, depending on the meeting duration. In contrast, the effort for the

automated generation of meeting protocols was approximately five minutes for starting the

STACHUS Protocol Engine and stopping the meeting recording. The detailed numbers of the

questionnaire for writing a protocol are summarized in Table 6-11.

Meeting

duration

< 30

min

30 min

- 1 h

1 - 2 h 2 - 4 h

4 - 8 h

Mean effort (in min):

manual (̅)
10 18,1 30,2 52,1 85,5

Mean effort (in min):

Automated (̅)
5 5 5 5 5

Table 6-11: Effort and duration for manually and automated protocol generation

6 Empirical evaluation

106

Table 6-12 shows, that the mean effort for writing a protocol manually is higher than the mean

effort for starting the STACHUS Protocol Engine to automatically generate a protocol. That is,

time savings between 5 and 80,5 minutes per protocol can be achieved, when the protocol is

automatically generated.

The results of the independent t-test on these data, depending on the meeting duration, yielded

 , , and one-tailed. Table 6-12 gives the detailed results of the

statistical test.

Meeting

duration

< 30 min 30 - 60

min

1 - 2 h 2 - 4 h 4 - 8 h

Mean effort

(in min) (̅)

10 18,1 30,2 52,1 85,5

s 0 12,41 23,09 28,14 32,90

s2 0 153,99 532,96 791,84 1082,25

n 27 26 25 14 10

t - 5,38 5,46 6,26 7,74

p - <0,00001 <0,00001 <0,000025 <0,000025

95% confi-

dence interval

- 13,1

to

23,1

20,7

to

39,7

35,9

to

68,3

62,0

to

109,0

Table 6-12: Results: effort for manual protocol generation

As the calculated p-value is below the threshold of for statistical significance, the null

hypothesis can be rejected in favor to the alternative hypothesis, which validates the results of

the first case study also for business environments.

H2: STACHUS Protocol Engine (audio recording & protocol generation) ensures easiness in

communication, i.e. the communication is not complicated or constrained by audio record-

ings and the process of automated protocol generation

The case study also analyzed, beside the application of the framework (H3) and handling and

easy of learning of the grammar (H4), the effects on the communication behavior. The commu-

nication behavior is evaluated in question Q23.

80% of the respondents answered the question, if they believe in a changed communication

behavior, when using STACHUS, in the affirmative. However mostly a positive effects is seen,

e.g. ‚more meeting discipline‛ or ‚less meaningless discussions‛.

These results are confirmed by observations during several meetings during the case study.

6.3 Empirical evaluation of the hypotheses

107

For this reason, the team members were asked, to evaluate the communication behavior of a

traditional meeting and of a STACHUS-meeting. If the hypothesis is right, the evaluation

should increase, that is

H0:

H1:

The results are summarized in Table 6-13.

Measure

Traditional

meeting

mgmt

STACHUS

meetings

 ̅ 1,72 2,47

s 0,78 0,51

s2 0,61 0,26

Table 6-13: Mean and Variability for the communication behavior evaluation

The dependent t-test for paired samples on the data of the interviews yielded ̅ ,

 , , , and , so we can reason that STACHUS has positive effects on

the communication behavior of meetings.

H3: The STACHUS meeting grammar is easy to learn and apply and does not constrain the

meeting progress

This hypothesis will be accepted, if the majority of the respondents verify the easiness of the

grammar, i.e. the respondents evaluate the grammar as easy and fast to learn, as the rules are

simple to keep in mind and adopt during a meeting. As the response choices of the correspond-

ing research question Q27 are coded with natural numbers from ‚very difficult‛ (1) in ascend-

ing order to ‚very easy‛ (4), the arithmetic mean should be larger than 2,5 to reject the null hy-

pothesis (again at a significance level of 5 %).

H0:

H1:

Measure Responds

 ̅ 3,03

s 1,0

s2 1,0

n 36

Table 6-14: Mean, Variability and Number of Participants for Q27

6 Empirical evaluation

108

The independent t-test on this data yielded 3,17, , one-tailed, and a 95%

confidence interval ranging from 2,69 to 3,37, which results in the acceptance of the alternative

hypothesis and rejection of the null hypothesis at a 5 % significance level.

H4: STACHUS Audio Recorder and Protocol Generator are easy to use

The hypothesis H4 is accepted, if the majority of the respondents confirm an easy usability of

the audio recorder and protocol generator, and an intuitive user prompting to easily start the

audio recorder and create a protocol. As the response choices of the corresponding research

question Q20 are coded using natural numbers, that is, ‚yes‛ is coded with 3, ‚fair‛ with 2, and

‚no‛ is coded with 1, the mean ‘usability’ should be larger than 2 to accept the alternative hy-

pothesis.

H0:

H1:

Measure Responds

 ̅ 2,44

s 0,73

s2 0,53

n 9

Table 6-15: Mean, Variability and Number of Participants for Q20

The independent one-sample t-test on these data yielded , , one-tailed,

and a 95% confidence interval ranging from 1,89 to 3,00.

The hypothesis is accepted that the audio recorder and protocol generator are easy to handle,

i.e. no comprehensive trainings are required to use the tool, and the audio recorder can easily

and without additional effort be started.

H5: The STACHUS Compiler & Protocol Engine support knowledge management by exter-

nalizing tacit information

The participants of several meetings were asked during an interview if they see a positive effect

of the STACHUS protocol generator on knowledge management, by externalizing meeting in-

formation and generating a protocol.

This hypothesis will be accepted, if the majority of the respondents verify a positive effect on

knowledge management by STACHUS, i.e. that the STACHUS Protocol Engine generates

knowledge and makes a contribution to the transfer of knowledge, by externalizing implicit

6.3 Empirical evaluation of the hypotheses

109

knowledge and preparing in protocols. The response choices are coded with natural numbers

(no (1), partly (2), yes (3)), so the average () should be larger than 2 to reject the null hypothesis

at significance level .

H0:

H1:

Measure Responds

 ̅ 2,28

s 0,63

s2 0,40

n 39

Table 6-16: Mean, Variability and Number of Participants

The independent t-test yielded , , and one-tailed, i.e. the alternative

hypothesis is accepted – the automated protocol engine generates knowledge, by externalizing

implicit knowledge and makes a contribution to the transfer of knowledge by preparing the

information in protocols.

H6: The STACHUS Protocol Engine reduces the information overload

The hypothesis H6 is evaluated only in case study I, as information overload of meetings and

meeting minutes was claimed only by the participants of case study I, and could not be ob-

served in case study II.

H7: The STACHUS Protocol Engine supports externalization of volatile communication and

thus improves the ‘forgettability’ of action items, decisions etc., especially during informal

meetings, in comparison to the manual protocol generation from memory

Hypothesis H7 is analyzed and described within case study I during an extra experiment,

which is not repeated in case study II. Additionally, the focus of case study I, with the imple-

mentation of a smart-phone prototype, is on informal meetings, whereas case study II is more

focused on traditional meetings in an industrial environment.

H8: The STACHUS Protocol Generator accelerates the protocol generation, i.e. the protocols

are published faster than manually written protocols

The hypothesis is evaluated only in this case study, as in case study I no manual protocols were

written. Hypothesis H8 is accepted, if the mean effort for manually writing a protocol is larger

6 Empirical evaluation

110

than the mean duration for automatically generated protocols by the STACHUS Protocol En-

gine.

H0:

H1:

Meeting

duration

< 30

min

30 min

- 1 h

1 - 2 h 2 - 4 h

4 - 8 h

Mean effort

(in min):

manual (̅)

10 18,1 30,2 52,1 85,5

Mean dura-

tion (in min):

automated

(̅)

8

13

22

38

59

s 0 12,41 23,09 28,14 32,90

s2 0 153,99 532,96 791,84 1082,2

n 27 26 25 14 10

t - 2,10 1,78 1,87 2,55

p - <0,025 <0,05 <0,05 <0,025

95% confi-

dence inter-

val

- 13,1

to

23,1

20,7

to

39,7

35,9

to

68,3

62,0

to

109,0

Table 6-17: Mean, Variability and Number of Participants for Q8

The t-test on this data yielded , , and one-tailed, which re-

sults in the acceptance of the alternative hypothesis – the protocols generated by STACHUS are

faster generated than manually written ones – and rejection of the null hypothesis at a 5 % sig-

nificance level.

In addition, the respondents stated in their answers to questions Q10 and Q11 that it takes on

average days until the minutes taker finds time to manually write the protocol and send it,

which in 17% of the cases was too late to allow an adequate preparation for the next meeting.

The automated creation and publication of a protocol, generated by the STACHUS Protocol

Engine, takes maximal 1 hour.

6.3 Empirical evaluation of the hypotheses

111

H9: The STACHUS Protocol Engine is compliant with agile practices (lightweight, flexibil-

ity, avoiding waste)

The hypothesis H9 claims, that the STACHUS Protocol Engine internalizes and supports the

lightweight and flexible, adaptable character of agile methods and practices, and follows the

principle of avoiding waste. To evaluate the STACHUS framework regarding a compliance

with the agile practices, only evaluations of experts (respondents with practical experience in

agile methods) were regarded, so the hypothesis was not analyzed in case study I.

The response choices of the corresponding question Q21 are coded with natural numbers (‚no‛

(1), ‚yes, partly‛ (2), ‚yes‛ (3)), so the arithmetic mean ‘agile support’ should be larger than 2 to

accept the alternative hypothesis at a significance level . The hypothesis will be accepted,

if on average the respondents confirm the involvement and compliance of the agile practices in

the STACHUS framework.

H0:

H1:

Measure Responds

 ̅ 2,28

s 0,6

s2 0,4

n 32

Table 6-18: Mean, Variability and Number of Participants for Q21

90,6% of the respondents believe that the STACHUS Protocol Engine is compliant with the agile

methods and supports the agile practices and principles, due to a lightweight approach and

reduced effort for writing meeting minutes.

The independent t-test yielded , , one-tailed, and a 95% confidence inter-

val ranging from 2,05 to 2,51, i.e. the hypothesis is accepted, that the STACHUS protocol gener-

ator is compliant with the lightweight and flexible character of agile methods and supports the

agile methods with an knowledge management approach for externalizing tacit knowledge

without increasing the effort.

H10: The STACHUS Protocol Generator reduces gaps between tools in the project & meeting

workflow and thus simplifies the meeting process

The evaluation of Q14 showed that 82,9% of the respondents use electronic tools for the man-

agement and administration of their tasks, for instance Outlook, Excel, Bugzilla, XPlanner, AT-

notes, or a task management tools on their mobile phone. The STACHUS Protocol Generator

6 Empirical evaluation

112

integrates task and project management tools, e.g. XPlanner and Unicase (chapter A.2.1.2), in

the meeting workflow and protocol generation process and thus reduces the information gabs

that occur if information, discussed in the meeting, has to be manually transferred to these

tools.

As in case study I only paper and white boards were used as task-management tool, H10 is

evaluated only in case study II.

The NHST will accepts the hypothesis H10 at a 5% significance level, if the majority of the re-

spondents confirm that applying the STACHUS Protocol Generator simplifies the meeting

workflow, as project and task management tools are integrated and the results of the meeting

(like new action items) are documented in a protocol and additionally automatically transferred

to the project and task management tools (i.e. a new action item is created in the task tool). As

the response choices of the corresponding research question Q19 are coded using natural num-

bers (“yes, definitely” (4), “yes, probably” (3), “no” (2), and “no, even additional work” (1)), the

arithmetic mean should be larger than 2,5 to accept H10.

H0:

H1: ,5

Measure Responds

 ̅ 2,82

s 0,76

s2 0,57

n 38

Table 6-19: Mean, Variability and Number of Participants for Q19

The independent one-sample t-test on the data of Q19 yielded , , one-

tailed, and a 95% confidence interval ranging from 2,57 to 3,06. Based on these results, the null

hypotheses can be rejected in favor of the alternative hypotheses at a 5% significance level.

H11: Protocol generation procedure (STACHUS Protocol Engine and STACHUS Compiler)

can be improved by a dynamically extending grammar

The objective was to analyze, if the protocol quality can be improved on average by factoring

the project vocabulary into the automated protocol generation process by the STACHUS Proto-

col Engine.

Several project meetings at Siemens were recorded and analyzed, that included on average 14

meeting phrases. Each phrase consisted of a meeting element (like information, issue or action

item) and its description.

6.3 Empirical evaluation of the hypotheses

113

To validate this hypothesis, two experiments were done. In the first experiment, the STACHUS

Protocol Engine was started with the default vocabularies to create a protocol form the meeting

audio stream.

In the second experiment, the STACHUS Compiler was fed with project dependent vocabulary,

like names of the team members, special abbreviations, and project domain vocabulary (e.g.

methods, tools, etc.), and afterwards the STACHUS Protocol Engine was updated. Then the

protocol was generated a second time.

Our hypothesis is that the quality of the generated protocol can be improved by the integration

of project vocabulary. This means that the mean quality index (consisting of the number of doc-

umented meeting elements, their correctness and completeness) of the second experiment () is

higher than the mean of the first experiment ().

H0:

H1:

Measure # total Experiment 1 Experiment 2

meeting

elements

(phrases)

14 (100%) 12 (85,7%) 14 (100%)

words total 345 (100%) 202 (58,6%) 280 (81,2%)

 words/ phrase 24,6 14,4 20

quality index 100% 59,6% 81,9%

Table 6-20: Results of the experiments regarding improvement of protocol quality

The dependent t-test for paired samples on the data of the two experiments yielded ̅ 5,57,

 , , , and . Thus the alternative hypothesis is accepted, the

automated protocol generation can be improved by a dynamically extending grammar. An ex-

ample for an automated protocol, generated during the case study, is shown in Figure 6-1.

6 Empirical evaluation

114

Figure 6-1: Meeting minutes of the meeting from 18.01.2010 at Siemens, published in MS Excel

Observation

The overall findings of the observations of the second case study support the results of the ques-

tionnaire. The participants of the meetings got quickly accustomed to the meeting grammar and

accepted the recordings during the meeting. The meeting participants evaluated the STACHUS

Protocol Engine as useful on average for their project workdays, and the results show, that the

evaluation increases, when the respondents attend many meetings per week (20 h/ week) (see

Diagram 6-3).

6.3 Empirical evaluation of the hypotheses

115

Diagram 6-3: Correlation: evaluated STACHUS usefulness - meetings

The statistical significance from the t-test results rejects the null hypotheses and accepts all

evaluated hypotheses (H1 – H5 and H8 – H11). This gives evidence that automatic protocol

generation is useful and reduces the manual effort for protocol generation, so the protocols are

published faster. Moreover, the automatic protocol generation is assistance in the project work-

aday life, compatible also with agile practices and principles.

Validity

The results of this study, such as the effort reduction for protocol generation, confirm the results

of the previous study, however based on a larger experimental group with more than 40 partic-

ipants. This sampling size allows us to be 95% confident in the result, accepting an error of 15%

(Fink, 1995). For this reason, we judge the results of this case study with a strong external validi-

ty that can be generalized.

6.3.3 Case study III

The third case study was conducted within the DOLLI project (Distributed Online Logistic and

Location Infrastructure) at the Technische Universität München (Bruegge, et al., 2009). The

DOLLI project consisted of three sub-projects, DOLLI (in winter term 2007), DOLLI2 (2008) and

DOLLI3 (2009). The project’s goal was to develop a prototype for a real problem posed by a real

customer, the Munich Airport. The developers were organized into four to five sub teams in

each project (Team Telemetry, Team Interaction, Team Lavis, Team Airtouch, Team Architec-

ture, Team Optimizer, Team Simulation, Team Reasoning, and Team Facility Management).

0

5

10

15

20

25

don't know useless less useless useful fairly useful very useful

m

e
e

ti
n

gs
 in

 h
/

w
e

e
k

rating usefulness

Correlation: usefulness - meeting duration

6 Empirical evaluation

116

The case study took place in 2008 and 2009 analyzing teams of the DOLLI2 and DOLLI3 project.

The objective of this case study is to analyze the validation of the hypothesis H12 – protocols

generated by the STACHUS Protocol Engine are more correct (complete and less errors) than

manually written meeting minutes – to complete the evaluation of the previous case studies.

H12 could not be evaluated in the previous case studies, as only in case study III several manual

and automated protocols for the same meetings were available to be compared.

During the case study two student teams were observed, Telemetry System (DOLLI2) and Op-

timizer (DOLLI3), and their meeting protocols were evaluated. The teams were selected based

on their experience with agile methods and their cooperativeness and willingness to participate

in this experiment. The teams consisted of six and five team members respectively.

During the case study, the weekly team meetings of these two teams were recorded. The stu-

dents had to write protocols for each meeting, which were afterwards compared to the proto-

cols generated by STACHUS from the stored recordings.

In the following the results of the statistical tests regarding hypothesis H12 are summarized.

H12: The STACHUS Compiler and STACHUS Protocol Engine improve the correctness of

protocols

The correctness of a protocol is evaluated as the completeness of a protocol, i.e. if all, or how

many discussed meeting elements are documented in the protocol. Additionally, the numbers

of typing errors and false information is regarded to estimate the correctness of a protocol.

The evaluation of our questionnaire showed that almost 50% of the respondents are annoyed at

incorrect and incomplete protocols. Moreover, 48,9% of the participants of the questionnaire

expect a reduction of errors in automatically generated protocols by STACHUS.

To validate the hypothesis H12 the mean completeness of manually written protocols is com-

pared to the mean completeness of protocols generated by the STACHUS Protocol Engine. The

hypothesis is tested at a significance level of 5%, i.e. the hypothesis H12 is accepted, STACHUS

Compiler and Protocol Engine improve the correctness of protocols compared to the correctness

of manually written meeting minutes.

H0:

H1:

6.3 Empirical evaluation of the hypotheses

117

Measure # meeting

Elements

STACHUS #manual

 ̅ 100% (14,4) 97,8% (14) 49,7% (7)

s 0 3,1 18,8

s2 0 9,4 353,2

Table 6-21: Mean and variability for the “Completeness-Experiment"

The dependent t-test for paired sample, comparing STACHUS generated and manually written

protocols, yielded ̅ 48,1, , , , and one-tailed. Thus, the null

hypothesis can be rejected at a significance level .

Additionally, the number of typing errors and false information in the protocols was analyzed.

Measure
Errors

manual

Errors

STACHUS

 ̅ 5,6 2,0

s 5,13 1,58

s2 26,3 2,5

n 7 7

Table 6-22: Mean and Variability: aggregated typing errors & false information

That is, the mean number of errors and false information is higher in manually written proto-

cols than in meeting minutes generated by the STACHUS Protocol Engine. However, the im-

provement of automatically generated protocols compared to manually written protocols is not

statistically significant.

This case study showed that the number of typing errors and false information can be reduced

by STACHUS, when automatically generating protocols compared to manually written meeting

minutes. Additionally, and even more important, the improvement by STACHUS of the degree

of completeness of discussed meeting elements, like decisions, action items, or issues, was veri-

fied with a statistical significance.

The hypothesis H12 is accepted based on the statistical significance from the t-test and gives

evidence that the automatic protocol generation not only reduces the manual effort for protocol

generation, but also improves the completeness that is, that more/ all discussed meeting ele-

ments are documented in the protocol, with less errors.

6 Empirical evaluation

118

Conclusion

Evaluations of the questionnaire showed that approximately 90 minutes are spent per meeting

for manual meeting post-processing and protocol generation for 15 meetings on average per

week. Thus, there is a potential for effort reduction in the projects, which verifies the need for a

protocol automating tool like the STACHUS framework.

Our framework was analyzed in three case studies, verifying the hypotheses H1 – H12 with a

statistical significance, although with a sampling size of (only) 40 – 50 participants. The observa-

tions during the case studies regarding the applicability and quality of the STACHUS protocol

generator for externalizing information in formal and informal meetings were confirmed by the

statistical tests.

The evaluations (observations, interviews, and questionnaire) showed that the meeting partici-

pants got used to the STACHUS grammar and followed the rules during the meetings; however

the acceptance of an automated protocol generator could be increased, if the grammar is simpli-

fied with fewer restrictions to detect meeting phrases. Nevertheless, the overall opinion and

evaluation of the STACHUS framework by the participants is positive; it is seen as a valuable

and effective tool for information externalization.

119

7 Conclusion

Summary and outlook

As, more and more companies are introducing agile methods in their software development

lifecycles, especially in large organizations, a dedicated knowledge management is essential for

a successful integration of the agile practices and principles in a defined process world. The

missing focus of knowledge externalization and knowledge management is a weakness of agile

methods. This dissertation addressed the externalization of information from formal and infor-

mal meetings and the creation of meeting minutes. Our approach of automated information

extraction from meetings tried to address this problem of missing documentation and to en-

hance knowledge management.

Our collection of twelve hypotheses states that it is possible to follow an agile method in a large

organization with defined processes. The agile methods can be enriched by a knowledge exter-

nalization approach that is in compliance with the agile philosophy of light-weightness and

applicable without additional effort for the team.

We developed a framework for automated protocol generation called STACHUS. As integral

constituent of this framework, we employed a self-improving Protocol Compiler and Protocol

Engine to generate automated meeting minutes.

Furthermore, we claim that traditional meetings can also benefit from this automated protocol

generation approach by effort reduction, faster publication of the meeting minutes, and im-

provement of the protocol quality.

In the following, we present the main contributions of this work and an outlook on future steps

in the field of automated meeting protocols.

7.1 Contribution

The outcome of the dissertation is STACHUS, a framework for automated protocol generation.

STACHUS was realized as a prototype to show feasibility and to evaluate the automated proto-

7 Conclusion

120

col generation process. In several projects the framework was applied to validate our hypothe-

ses that an automated protocol generation reduces time and effort for the creation of meetings

minutes compared to the manual creation, and improves the protocol quality, as the protocols

are „more complete‟ and contain less errors.

The STACHUS framework supports externalization of information and knowledge by protocol

generation and the maintenance of project and task management tools. The results of a meeting are

automatically documented in a protocol, and can easily be transferred to other tools.

The STACHUS Compiler generates the STACHUS Engine, which creates the protocols from the

meeting audio stream. With the STACHUS Engine, our framework for protocol generation is

enhanced by a self-improving component. Regularly, project context and updates of the vocabu-

lary, system model and created documents are considered by the STACHUS Compiler and in-

tegrated in the protocol generation process, to improve the protocol quality. The influence of

the STACHUS Compiler on the generated protocols was evaluated and verified in chapter 6.

STACHUS supports the integration and acceptance of agile meeting methods, also in a traditional

environment. The added knowledge management focuses also beyond the individual project, so

projects can learn from the experiences of other projects in a company-wide learning process

and the development processes can be improved.

7.2 Future work

We believe that the STACHUS framework can improve the acceptance and introduction of agile

practices and principles in the software development lifecycles of large organization with de-

fined process control models.

Several further possibilities of improving the STACHUS framework have been identified, which

will be briefly described.

Within the time frame of the research, this dissertation considered and implemented three inter-

faces to project and task management tools (see chapter Appendix II). However a comprehensive

introduction and successful application of the STACHUS prototype in all meetings of the work-

aday life requires the support of further tools, for example ScrumWorks (CollabNet, Inc. , 2010),

as one of the most frequently applied tools in agile software development projects, according to

the agile survey 2009 (VersionOne, 2010).

Additionally, the meeting taxonomies and the project management vocabularies (necessary for the

detection and externalization of meeting information) have to be extended. The idea is to sup-

port further meeting types, for instance Kick-off meetings or Customer Acceptance Test meet-

ings, as well as software development independent meetings, for example budget meetings or

director‟s meetings.

7.2 Future work

121

The STACHUS grammar has to be analyzed, to integrate possibilities for simplification. Alt-

hough, the developed grammar was applied during the empirical evaluation procedure and

accepted by the meeting participants and valued as easy to learn and to follow during a meet-

ing, simplifications are desirable. So the acceptance and pervasiveness of automated protocol

generation and our framework can be increased. For this reason the reduction of grammar rules

has to be investigated and the replacement, for example by gestures or movements has to be

analyzed. This would allow for instance following scenario: instead of saying “new action item

… action item end.”, the meeting participant could wave with his right hand or shake his iPh-

one. So the system is signalized to start recording the meeting sequence, as a part is following

which has to be integrated in the protocol.

The STACHUS Compiler currently considers the system model, project vocabulary and existing

documents e.g. old protocols to create the knowledge sources as part of the STACHUS Protocol

Engine. However, further sources could be integrated in the protocol engine generation process,

for example text from chat sessions, e-mails, forum entries, or wiki pages that are integral part

of the projects.

The STACHUS framework currently creates protocols but does not handle the optimal storage

of the generated meeting protocols and how information can effectively and efficiently be found

in old protocols. The framework has to be extended by an indexing and information retrieval sys-

tem for an optimal usage of the externalized knowledge.

Information is discussed not only in meetings. Other sources of information have to be integrated

in a comprehensive knowledge management process. In e-mail conversations, forums, or chats,

information is exchanged in a communicative way that has to be considered and integrated in

the companywide knowledge management workflow in a future step, to document problems,

decisions, and action items, mentioned somewhere else than in a meeting.

Our hypotheses were evaluated with teams of 5 – 12 team members. However, the protocol

generation process works also for large teams applying Meta-Scrum, published by Sutherland

(2005). The individual sub-team meetings and the scrum of scrums meetings are an important

technique in scaling Scrum to large project teams. This type of meetings allows clusters of teams

to discuss their work, focusing especially on areas of overlap and integration. Each scrum of

scrum meeting occurs daily with on average seven participants (Schwaber & Beedle, 2002). So

we infer from the evaluated meetings to the applicability of STACHUS in large projects that

apply Meta-Scrums – however this has to be evaluated in a further case study.

The STACHUS framework is build on existing speech recognition engines. As these engines

only recognize speech from well-known users and under defined situations (e.g. no background

noise and a very good microphone), we are relying on improvements in the speech recognition

field. Currently most speech recognizers are user dependent and require trainings in advance.

This problem is addressed in our framework by the combination of several speech engines;

however improved speech recognition would improve the protocol quality of our system.

7 Conclusion

122

The combination of video and audio can be investigated to improve the speech recognition. If a

video tool recognizes the meeting participant in the video and detects who is speaking, the right

speaker profile of the speech recognition engine can be applied, to analyze the audio stream of

this part of conversation and externalize the information.

Concluding, STACHUS and the process of automated meeting minutes generation is work in

progress. The contributions described in this dissertation helped to further improve the auto-

mated protocol generation and created a reliable approach for knowledge externalization.

However, the practical use of the framework also revealed weaknesses and improvement po-

tential, which need to be covered to increase the acceptance and practicability in the project

lifecycle.

123

Appendix I: Grammar

An exemplarily meeting grammar of the iPhone student project

This chapter presents an exemplarily grammar G and its rules, that was applied in the iPhone

student project (see chapter 6.2) in the summer term 2009.

A grammar is defined as the ordered quad-tuple:

That is, the grammar comprises

 a finite set of nonterminal symbols,

 a finite set of terminal symbols, where

 a finite set of production rules with a left and right-hand side consisting of a sequence

of these symbols:

 and a start symbol , where

To allow an easy, modular, and automatic extensibility of the grammar, it is decomposed into

one superior grammar (the iPhone project grammar) and three further parts: the grammar for

the project vocabulary, the grammar of the address book, and the grammar that covers the sys-

tem model and project domain. The details of the grammars are given below.

Grammar: iPhone project

G = (N, T, P, S)

N = {WSE, Txt, TM, Descr, Date, Day, Month, SM, Sign, Letter, Number, Symbol}

T = {new, end,

 Monday, Tuesday, Wednesday, Thursday, Friday,

 January, February, March, April, Mai, June, July, August, September, October,

 November, December,

Appendix I: Grammar

124

 a, b, c, d, e, f, g, h, I, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z,

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

P = {S  new WSE Txt WSE end

 WSE  PM | SE

 Txt  Descr | Descr TM Descr | Descr TM Descr Date Descr| Descr Date Descr

 Descr  SM | Sign | Descr SM Descr

 Date  Number | Day | Month

 Day  Monday | Tuesday | Wednesday | Thursday | Friday

 Month  January | February | March | April | Mai | June | July | August |

 September | October | November | December

 Sign  Letter | Number | Letter Sign | Number Sign

 Sign  ε

 Letter  a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v |

 w | x | y | z

 Number  0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

 }

The project vocabulary comprises, beside classical project management vocabulary (PM) like

‘decision’ or ‘action item’, in addition the elements of Scrum (SE), like ‘impediment’ or ‘Sprint

Backlog’.

Grammar: project vocabulary

G = (N, T, P, S)

N = {PM, SE, AI, D, I, P, Req, FR, NFR, Info, BI, SBI, Status}

T = {Action Item, Task, ToDo, Issue, Problem, Impediment, Decision, Proposal, Suggestion,

 Idea, Requirement, functional Requirement, non-functional Requirement, Info,

 Information, Backlog Item, Sprint Backlog Item, Status, User Story}

P = {S  PM | SE

 PM  AI, D, I, P, Req, FR, NFR, Date, Info, Status

 SE  BI, SBI

 AI  Action Item | Task | ToDo | User Story

 I  Issue | Problem | Impediment

 D  Decision

 P  Proposal, Suggestion, Idea

 Req  Requirement

 FR  functional Requirement

 NFR  non-functional Requirement

 Info  Info | Information

Appendix I: Grammar

125

 BI  Backlog Item

 SBI  Sprint Backlog Item

 Status  Status

}

In the address book, all team members, customers, and stakeholders modeled.

Grammar: address book

G = (N, T, P, S)

N = {TM}

T = {Yuliya, Nikolay, Nik, Petromil, Yonata, Mahmoodreza, Mahmood}

P = {S  TM

 TM  Yuliya | Nikolay | Nik | Petromil | Yonata | Mahmoodreza | Mahmood | ε

 }

Grammar: system model

G = (N, T, P, S)

N = {SM, Meeting, Speech, Architecture}

T = {meeting, participant, location, date, room, agenda, protocol, minutes, summary,

 information, retrieval, discussion, topic, minutes taker, facilitator,

 speech, recognition, conversation, Sphinx, Naturally Speaking, MacSpeech, keyword,

 training, user independent

 architecture, framework, backend, server, connection, interface, mobile, iPhone, smart

 phone, Cocoa, upload, download, synchronize, picture, map, google, list

}

P = {S  SM

 SM  Meeting | Speech | Architecture

 Meeting  meeting | participant | location | date | room | agenda | protocol | minutes

 | summary | information | retrieval | discussion | topic | minutes taker |

 facilitator

 Speech  speech | recognition | conversation | Sphinx | Naturally Speaking |

 MacSpeech | keyword | training | user independent

 Architecture  architecture | framework | backend | server | connection | interface |

Appendix I: Grammar

126

 mobile | iPhone | smart phone | Cocoa | upload | download |

 synchronize | picture | map | google | list

}

The system model can become very large. Hence, the system model described above is only an

excerpt of some of the most important and often spoken words of the iPhone project.

Base on the defined grammar and its rules, for instance, following typical phrases can be spo-

ken and recognized during a meeting:

 New action item for Yonata: create a manual. Action item end.

 New action item for Nik: prepare a suggestion for a database connection by

15.01.2009. Action item end.

 New issue: Problems with the network connection. Issue End.

 New info: we will have a strategy meeting in September. Info end.

 New decision: our annual team excursion will be a bike tour this year. Decision

end.

 New Backlog Item: progress bar for data entries. Backlog Item end.

127

Appendix II: Prototype

Implementation of the STACHUS framework

This chapter presents a brief description of the realization of two prototypes: one for formal

meetings in a meeting room and one iPod/iPhone-application for informal and ad-hoc meet-

ings.

A.II.1 Realization of a prototype for formal meetings

The STACHUS Protocol Engine was realized in a prototype to evaluate the feasibility of an au-

tomated protocol generator and validate our hypotheses (see chapter 6.1). The results of the

evaluation are presented in chapter 6.

The framework for protocol generation is modularly designed, i.e. the speech recognition en-

gines, as well as the generated reports and documents, and the linked project and task man-

agement tools respectively, can be exchanged at runtime. The STACHUS framework was ex-

emplarily realized supporting Excel file outputs, XML and text files, as especially Excel is still

one of the most common project management tools (VersionOne, 2009). Additionally, to sup-

port the distinct character of a project, individual project management tools are interlinked with

the STACHUS framework. The first prototype implements Nuance’s speech recognition engine

Dragon NaturallySpeaking in combination with manual transcriptions. The prototype is con-

structed for agile Scrum meetings and common status meetings, i.e. the STACHUS Analyzer

and grammar are aligned for those meetings.

A.II.1.1 Libraries and Packages

The prototype is written in Java 1.5. For the creation of the different file formats existing librar-

ies where integrated, which will be briefly described in the following.

Apache POI - the Java API for Microsoft Documents (The Apache Software Foundation, 2002)

Appendix II: Prototype

128

Apache’s POI project enables the creation and maintenance of Java APIs for manipulating vari-

ous file formats based upon the Office Open XML standards (OOXML) and Microsoft's OLE 2

Compound Document format (OLE2). OLE2 files include most Microsoft Office files such as xls,

doc, and ppt. For each MS Office application exists a component module that provides a com-

mon high level Java API, including the Java implementation of Excel files that is applied in our

prototype. Thus functionality is provided to create, modify, read and write xls spreadsheets, so

new protocols can be generated in Excel and existing worksheets be modified, to continue exist-

ing protocols.

The Java API for XML Processing (JAXP) enables applications to parse, transform, validate and

query XML documents using an API that is independent of a particular XML processor imple-

mentation. It provides the capability of validating and parsing XML documents.

In the STACHUS framework following packages are reused:

javax.xml.parsers provides classes allowing the processing of XML documents.

javax.xml.transform defines the generic APIs for processing transformation instructions, and

performing a transformation from source to result.

A.II.1.2 Interfaces

The STACHUS framework allocates two interfaces, one to the speech recognition engine and

one to project and task management tools, which discussed in the following.

The speech recognition engine is integrated by the STACHUS Protocol Generator Compiler

during the framework generation process in the STACHUS Protocol Engine. So the speech

recognition engine can easily be exchanged with a new version, or additional engines can be

integrated to parallelize the speech recognition process, when the STACHUS Protocol Engine is

updated and new or additional knowledge sources are integrated. Hence, the STACHUS

framework is constructed in such a way, that it is independent from the individual speech

recognition engine, as the recognized phrases are published on the blackboard.

The second interface of the STACHUS Engine is the connection to tools for project, task and

document management. Information, extracted in the meeting can be handed in several ways,

that is, if a new task for instance was identified and assigned in a meeting, it can be documented

in a text protocol, added to an individual task list, or send and included in a team specific pro-

ject management tool, like XPlanner (Codehaus Foundation, 2006) or VersionOne (VersionOne,

Inc, 2010) for agile teams. The user can decide in advance of each meeting, if the information

will be transferred to a tool – realized with a strategy. To show feasibility, our first prototype

provides interfaces to following tools: VersionOne, XPlanner, and Unicase.

A.II.1 Realization of a prototype for formal meetings

129

VersionOne is one of the leading project planning and management tool designed specifically for

agile software development, enabling the agile methodologies Scrum, XP, DSDM and Agile UP.

The tool is relied on by over 10,000 teams around the world and has more than 70,000 users

(VersionOne, Inc, 2010).

Our prototype provides a connection to the VersionOne Integration Platform, an open-source

toolkit for building applications that integrate with the VersionOne Application. An external

application or integration can interact with the VersionOne server using the Core API (Ver-

sionOne API), which is the foundation for all integrations. This API, available on any Ver-

sionOne instance, provides secure read/write access to all data stored in the VersionOne sys-

tem. Through the Data API – part of the Core API – it is possible to query for simple or complex

sets of information, update the information, and execute system-defined operations. Additional-

ly, several sample applications are provided by VersionOne, for example the V1 Task Manager.

This is a task tray utility that allows viewing and updating key properties of tasks, tests, defects

and stories. The utility also allows taking ownership of items as well as taking effort and closing

items. Another helpful sample application for the STACHUS framework it the Create Entity

sample that is able to create Stories, Defects, Themes, Goals, Requests, and Issues in a specific

project. With it, connection and data transfer between our framework and the VersionOne tool

are realized, e.g. the creation of new issues, a status update, or assignment of a task, discussed

in a meeting and handled in VersionOne.

XPlanner (Codehaus Foundation, 2006) is a web-based project planning and tracking tool for

agile development teams in particular for eXtreme Programming (XP). XPlanner is an open-

source project, implemented using Java, JSP, and Struts, Hibernate and MySQL supporting

integration in the STACHUS framework with directly manipulating the data on the data base.

The main features of XPlanner are a simple planning model, virtual note cards, user stories, and

tasks. Additionally metrics can be generated (team velocity, individual hours, etc.) and charts

for iteration velocity (like Scrum Burndown Charts).

The UNICASE system integrates models from different development activities, such as re-

quirements, use cases, UML models, schedules, bugs, and feature models into a unified model.

The UNICASE client allows viewing and editing these models in a textual, tabular and dia-

gramming visualization. The models are stored and versioned on a server. Client and server are

easily extensible to support integrating new models into the unified model. The open-source

project UNICASE is based on the Eclipse platform including the Eclipse Modeling Framework

(EMF) and Graphical Modeling Framework (GMF). Its modular and open interfaces allow a

connection establishment out of the STACHUS framework and make the creation and modifica-

tion of action items, issues or bugs (discussed in a meeting) possible, as well as the storage of

meeting minutes, for instance.

In future, the STACHUS framework will be extended supporting further project management

tools (like MS Project (Microsoft, 2010), Scrumworks (CollabNet, Inc. , 2010), etc.) or additional

document formats (e.g. .doc).

Appendix II: Prototype

130

A.II.1.3 Linking audio and video

The first version of the STACHUS prototype used only the audio stream of a meeting. However,

if a video is recorded of the meeting, the visual information can be reused, too. This is done for

example by linking the location in the audio with the information in the protocol. If somebody

couldn’t attend a meeting and now is reading the meeting minutes, he can jump to the situation,

where an action item for instance was assigned to him, by following a link from the meeting

minutes to the position in the video. So he can watch the part of the video that is important to

him, without loosing time while searching through the whole video. The feasibility of these

ideas is analyzed within our prototype with the Informedia Project, introduced in chapter 4.

The overarching goal of the Informedia initiatives is to achieve machine understanding of video

and film media, including all aspects of search, retrieval, visualization and summarization in

both contemporaneous and archival content collections. The developed technology combines

speech, image and natural language understanding to automatically transcribe, segment and

index linear video for intelligent search and image retrieval. Utilizing this system, indexing and

retrieval of key words in video files is integrated in the STACHUS prototype. All information of

the Informedia project is written to an (Oracle) database, which allows reading out the needed

information and reusing them during the report generation.

Following the procedure of integrating meetings in the Informedia system is briefly described.

First a new meeting video is imported into the Informedia system, followed by the execution of

this video (speech recognition, segmentation by speaker, indexing, etc.). This step is illustrated

in Figure A.II.1 and Figure A.II.2.

A.II.1 Realization of a prototype for formal meetings

131

Figure A.II.1: Informedia: Database Browser (import and execution of a new meeting video)

Figure A.II.2: Result of the Informedia batch process

The result of this procedure, are listed in a meeting browser, as illustrated in Figure A.II.3, –

video sequences of meeting sections separated by speaker and the corresponding text.

Appendix II: Prototype

132

Behind each section are its details with the video and corresponding text sequence. As a video

player is integrated, the video can be replayed and additionally the currently spoken text is

highlighted. Thus, linking the indexed text in the Informedia project with the created or updat-

ed action item for instance in the generated report would allow a meeting participant to review

the details in a follow up process.

Figure A.II.3: Informedia: Player for meeting section with text highlighting

A.II.2. Prototype: mobile version

During the iPhone practical course in the summer term 2009, a mobile version of the first proto-

type, the iPhone App “iMOnTrack”, was developed by five students. This ad-hoc conferencing

tool was designed and implemented in cooperation with Siemens Enterprise Communications

(SEN). Following the realized functionality is described and screenshot of the final prototype

are presented. Details of the prototype and its realization can be found on the project website

(SEN-iPhone Team, 2009).

A.II.2. Prototype: mobile version

133

Requirement of SEN was that a meeting participant – the user – can start a meeting, pause and

stop it with the iPhone app and send the audio to our server, which implements the STACHUS

Protocol Engine.

Figure A.II.4: iPhone app – meeting recording (UML Use Case Diagram)

In addition, the user should be able to attach documents to the meeting, regard these attach-

ments and replay the meeting audio. Moreover, a meeting summary should be provided to the

user, containing assigned action items, decisions, issues, or new information. Furthermore, it

should be possible to search for meetings, share and delete them, and edit the meeting details,

like participants, or the description, as summarized in Figure A.II.5.

Figure A.II.5: iPhone app - additional functionality

Appendix II: Prototype

134

The iPod/Phone prototype implements the STACHUS Audio Recorder and a protocol viewer.

The STACHUS Protocol Compiler, as well as STACHUS Analyzer and STACHUS Protocol

Generator are on a backend server (called Speech Recognition Server in Figure A.II.6). That is,

components of the first prototype are reused on the backend server that analyzes the audio

stream, extracts meeting elements like action items and prepares them as a protocol, which can

be shown on the iPhone. iPhone app and the backend server communicate via the iMOnTrack

Application Server.

Figure A.II.6: overview of iPhone and server connection

The result of the development process is illustrated in the following screenshots of the iMOn-

Track iPhone application (Figure A.II.7 - Figure A.II.16).

All recorded meetings are listed under “My Meetings”, chronological, or separated by partici-

pant or location. Additionally, meetings can be search for. “Start New Meeting” allows the user

to record a new meeting, attach documents and administrate the participants. Under “Settings”

the user can change the connected application server, as well as user name and password.

If a recorded meeting is selected from the list (or map) its details are shown, including the par-

ticipants, the meeting summary, and details of the meeting like the duration. Moreover, the

selected meeting audio can be replayed.

The iPhone app was integrated in the weekly meeting workflow of the students and thus evalu-

ated already during the development process by the team members. The evaluation is described

in detail in chapter 6.

A.II.2. Prototype: mobile version

135

 Figure A.II.7: Meeting list Figure A.II.8: Meetings by participant

Figure A.II.9: Meetings by location

Appendix II: Prototype

136

 Figure A.II.10: search for meetings Figure A.II.11: meeting recording

 Figure A.II.12: Attach documents to meeting Figure A.II.133: Settings dialog

A.II.2. Prototype: mobile version

137

 Figure A.II.14: Participants of the meeting Figure A.II.15: Meeting summary

Figure A.II.16: Meeting details and integrated Player

139

Appendix III: Empirical research

Empirical research methods

This chapter gives a brief overview of the empirical research methods, applied during the eval-

uation of our hypotheses (see chapter 6).

Empirical methods focus on collection data and interpreting conclusions out of it. Following,

the methods for observation and measurment and describing and analyszing the gained data,

which were applied during our case studies, are described.

Empirical research methods can be classified into qualitative and quantitative methods. Quan-

titative research means that the data exist in a numerical or graphic form, and qualitative re-

search means that the data exist in a narrative form (spoken words, recorded conversations) or a

pictorial form. (Rosnow & Rosenthal, 2008, p.75) This distinction is not unambiguous, however,

because it is always possible to figure out ways to enumerate and graph aspects of qualitative

data (e.g. using judges as counters of events, or having a computer systematically decompose

written messages). The two classes are not mutually exclusive, as it is possible to use quantita-

tive and qualitative methods in the same study (e.g. interviewing some participants in a rigo-

rously quantified lab experiment).

Qualitative research is used to understand, study, and explain social and cultural phenomena. It

involves the use of qualitative data sources such as surveys, interviews and questionnaires, the

observation of participant, and the researcher’s impressions and reactions. Qualitative data is

any non-numerical information, represented as words and pictures. Qualitative analysis me-

thods are designed to analyze qualitative data. These methods tend to be used when it is neces-

sary to evaluate and understand end user perspectives of a situation; they allow the identifica-

tion of human-related aspects such as motivation, thinking, attitudes, values, and satisfaction

with a product.

Quantitative research methods work on the measurable properties and employ mathematical

models and theories for the investigation of hypothesis. Examples of quantitative methods in-

clude survey methods, laboratory experiments, formal methods and numerical methods such as

mathematical modeling. They produce statistical results by counting features, activities, and

measuring certain values of interest.

Appendix III: Empirical research

140

Quantitative methods are best suited to statistically evaluate a hypothesis that can be translated

to a quantifiable value. For example: “teams using protocol automation receive the meeting

minutes faster than those teams not using it”. The time to create a protocol and how long it

takes until it is published can be measured, giving the possibility to support or disprove the

hypothesis.

Techniques to collect data include among others interviews, observational techniques such as

participant observation, and questionnaires.

Interviewing is a qualitative data query technique that asks questions to the interviewee. The

questions are used to collect opinions or impressions about the activities. They are sometimes

used in combination with participant observations where they serve to clarify things that hap-

pened or where said during an observation, for example to elicit impressions of a meeting or to

collect information on relevant events that were not observed.

Participant observation refers to a technique, where a group or community is studied from within

by recording behavior as it occurs. The data is systematically and unobtrusively collected. This

does not mean that the observer takes part in the activities. It means only that the observer is

visibly present and is collecting data. During a judgment study, an observer (judge) scales, sorts,

or rates certain variables (e.g. observable behavior). As the observation techniques alone often

are of limited use, they should be complemented with other qualitative techniques such as think

aloud protocols and field notes.

In order to perform some type of quantitative or statistical analysis, the qualitative data can be

quantified. A commonly used technique called coding extracts values for quantitative variables

from qualitative data (collected from observations or interviews).

A questionnaire is a research instrument consisting of a series of questions to gather information

from respondents. The questions can be distinguished between open-ended and closed-ended

questions. An open-ended question asks the respondent to formulate his own answer, whereas

in a closed-ended question the respondent picks an answer from a given number of options.

The response options for a closed-ended question should be exhaustive and mutually exclusive.

The parameters of a hypothesis can be measured by posing closed questions. However, as not

all of the measureable parameters have concrete measurement standards, the response choices

are modeled using a fictitious scale, for instance with the response choices very useful, fairly use-

ful, useful, less useless, useless, don't know. For evaluation, the response choices of the research

questions are coded using natural numbers. Coding starts from the lowest response choice, that

is, “useless” is coded with 1. The other response choices are coded in ascending order with 2, 3,

4, and 5 for “very useful”.

Appendix III: Empirical research

141

The collected data is analyzed and evaluated by statistical tests. Beside describing data and mea-

suring relationships, researchers are usually interested in making comparisons using statistical

test, such as t-tests.

Null hypothesis significance testing (NHST) uses statistics and probabilities to evaluate null hypo-

theses and determine the significance level and probability (value), to evaluate if for exam-

ple a difference between two means might be due to chance (Rosnow & Rosenthal, 2008, p. 271).

In this context a Type I error (significance level) implies that the decision maker mistakenly

rejected the null hypothesis (H0) when it is, in fact, true and should not have been rejected.

A t-test is a test of statistical significance that examines the difference between two independent

means against the background of the within-group variability. The larger the difference be-

tween the means, and/ or the smaller the within-group variability for any given size of study,

the greater will be the value of t. Because large t values are associated with differences between

means that are more statistically significant, researchers generally prefer larger t values. That is,

larger t values have a lower level of probability (the p value or alpha) and, in turn, allow re-

searchers to reject the null hypothesis that there is no difference between the means. When the

results are not statistical significant, the evidence is termed to be anecdotal evidence.

The .05 alpha, indicating the statistical significance, is seen by many scientists as a good “fail-

safe” standard because it is convenient (most statistical tables show 5% values) and stringent

enough to protect us from too often concluding that the null hypothesis is false when it is ac-

tually true.

143

Appendix IV: Questionnaire

Questions and response choices

1) Gender:

o female

o male

2) How old are you?

3) What is your profession?

o Software Developer

o Product Manager

o Project Manager

o Consultant

o Student

o Other: _______________________

4a) For how many years do you already work in your profession?

o < 1 year

o 1 - 3 years

o 4 - 5 years

o 6 - 10 years

o More than 10 years

Appendix IV: Questionnaire

144

4b) How many semesters have you already completed in your current course of study?

o 1 - 2 semesters

o 3 - 4 semesters

o 5 - 6 semesters

o 7 - 8 semesters

o 9 - 10 semesters

o > 11 semesters

5) Do you have any experience with agile methods (Scrum, XP, FDD, DSDM, …)?

o Yes, applied

o Yes, but only read/ heard

o No

6) How many hours do you work on average per week?

7a) On how many meetings do you participate on average per week?

 Number

up to 30 minutes

30 minutes - 1 h

1 - 2 h

2 - 4 h

4 - 8 h

7b) How many informal (unplanned) meetings do you have approximately per week?

o < 3 meetings

o 3 - 5 meetings

o 6 - 10 meetings

o 11 - 15 meetings

o 15 - 20 meetings

o > 20 informal meetings per week

Appendix IV: Questionnaire

145

8) How many time do you spend approximately for writing protocols?

Meeting

duration

<= 10

min

30

min

45

min

1 h 1,5 h >2 h not

specified

up to 30 min O O O O O O O

30 min - 1 h O O O O O O O

1 - 2 h O O O O O O O

2 - 4 h O O O O O O O

4 - 8 h O O O O O O O

9) How many time do you spend approximately for post-processing of meetings, beside writ-

ing a protocol?

Meeting

duration

<= 10

min

30

min

45

min

1 h 1,5 h >2 h not

specified

up to 30 min O O O O O O O

30 min - 1 h O O O O O O O

1 - 2 h O O O O O O O

2 - 4 h O O O O O O O

4 - 8 h O O O O O O O

10) How long does it approximately take, until a protocol is finished and published by the pro-

tocol writer?

o 1 hour

o Half a day

o 1 day

o Up to 3 days

o 1 week

o 2 weeks

o 1 month

11) When are the protocols usually published?

o Early

o In time

o Just before the next meeting

o Too late

Appendix IV: Questionnaire

146

12) Did you ever get annoyed at incomplete or incorrect protocols?

o Often

o Sometimes

o Seldom

o Never

13) In which form do you write and publish your protocols?

 In Powerpoint

 In Word

 In Excel

 Per e-mail

 Other: _______________________

14) How do you manage your tasks?

 Not at all

 On paper

 Electronically, with the following tool: _______________________

15) How helpful is the automation of the protocol generation process for you?

o Very helpful

o Fairly helpful

o Helpful

o Less helpful

o Useless

o Don’t know

16) How useful is the iPod application for you to remember the results also from short meet-

ings?

o Very useful

o Fairly useful

o Useful

o Less useless

o Useless

o Don’t know

Appendix IV: Questionnaire

147

17) Do you believe that the automation of the protocol generation would save time in your

project workaday life?

o Yes, definitely

o Yes, probably

o No

o No, even additional work

o Don’t know

18) Do you believe that, due to the automation of the protocol generation, there are less errors

in the protocols?

o Yes, much less

o Yes, less

o No

o No, even more

o Don’t know

19) Do you believe that the automation of the protocol generation and integration with your

tools (e.g. with Excel, To-Do-Lists) would be useful and an assistance for you?

o Yes, definitely

o Yes, probably

o No

o No, even additional work

o Don’t know

20) Is the iPod-application easy to handle?

o Yes

o Fair

o No

o Don’t know

Appendix IV: Questionnaire

148

21) Do you believe that the protocol automation is helpful for agile projects in a traditional

environment, especially regarding knowledge management?

o Yes

o Partly

o No

o Don’t know

22) How useful is the iPod-application for you to cope with the information overload from

meetings?

o Very useful

o Fairly useful

o Useful

o Less useless

o Useless

o Don’t know

23a) Would it have any effects on the communication behavior, if the conversation of a meeting

is recorded?

o Yes, very much

o Yes, a little bit

o No

23b) If yes, in what way?

24a) Would you have any concerns, if meetings are recorded?

o Yes

o No

24b) If yes, to what extent?

Appendix IV: Questionnaire

149

25) Would you have any concerns, if meetings are recorded, but deleted after the processing?

o Yes

o No

26) Would you have any concerns, if meetings are recorded and project-internally stored (ac-

cessible only for meeting participants)?

o Yes

o No

27) How difficult is the grammar to learn and abide by its rules?

o Very easy

o Easy

o Difficult

o Very difficult

o Don’t know

28) What are your requirements for a system that automates the protocol generation?

29) What do you like regarding the idea of meeting support and automatic protocol genera-

tion?

30) What don’t you like regarding the system?

31) What should the system provide additionally to be even more useful for you?

151

Bibliography

Agile Alliance. (2010). Agile Alliance. Retrieved 03 16, 2010, from http://agilealliance.com/

agilecollab. (2008, 01 04). Agile Introduction for Dummies. Retrieved 03 17, 2010, from

WATERFALL vs. AGILE METHODOLOGY:

http://agileintro.wordpress.com/2008/01/04/waterfall-vs-agile-methodology/

Alavi, M., & Leidner, D. E. (2001, March). Review: Knowledge Mamagement and Knowledge

Management Systems: Conceptual Foundations and Research Issues. MIS Quarterly , Vol. 25

(No. 1), pp. pp. 107-136.

Alexandersson, J., & Poller, P. (1998). Towards multilingual protocol generation for

spontaneous speech dialogues. In Proceedings of the INLG'98, (pp. 198-207). Niagara-on-the-lake.

amazon.com. (2005, 11 02). Amazons Mechanical Turk. Retrieved 01 25, 2010, from

https://www.mturk.com/mturk/welcome

Ambler, S. W. (2006). Agile Best Practice: Document Late. Retrieved 04 20, 2010, from

http://www.agilemodeling.com/essays/documentLate.htm

Ambler, S. W. (2006). Agile/Lean Documentation: Strategies for Agile Software Development.

Retrieved 04 20, 2010, from http://www.agilemodeling.com/essays/agileDocumentation.htm

Ambler, S. W. (2009). Communication on Agile Software Projects. Retrieved 04 07, 2010, from

http://www.agilemodeling.com/essays/communication.htm

Ambler, S. W. (2006). Survey Says: Agile Works in Practice. Retrieved 04 15, 2010, from

http://www.it-smc.com/Articles/Survey%20Says%20-%20Agile%20Works%20in%20Practice.pdf

Ambler, S. W. (2009). Why Agile Software Development Techniques Work: Improved Feedback.

Retrieved 04 15, 2010, from http://www.ambysoft.com/essays/whyAgileWorksFeedback.html

Bibliography

152

Aone, C., Okurowski, M. E., Gorlinsky, J., & Larsen, B. (1999). A trainable summarizer with

knowledge acquired from robust nlp techniques. Advances in Automatic Text Summarization (pp.

71-80). MIT Press.

Arons, B. (1994). Pitch-based emphasis detection for segmenting speech. In Proceedings of the

ICSLP'94, (pp. 1931-1934).

Arons, B. (1997, March). SpeechSkimmer: A system for interactively skimming recorded speech.

ACM Transactions on Computer Human Interaction , 1, pp. 3-38.

Barzilay, R., & Elhadad, M. (1997). Using lexical chains for text summarization. In Proceedings

ISTS'97, (pp. 10-17).

Baxendale, P. (1958). Machine-made index for technical literature - an experiment. IBM Journal

of Research Development , 2 (4), pp. 354-361.

Beck, K., & al., e. (2001). Manifesto for Agile Software Development. Retrieved 11 27, 2009, from

http://agilemanifesto.org/

Beck, K., & Andres, C. (2004). Extreme Programming Explained: Embrache Change, 2nd Edition.

Amsterdam: Addison-Wesley Longman.

Berteig, M. (2006, 09 19). Agile Advice. Retrieved 04 15, 2010, from Agile Challenges - A Good

List of the Common Problems with Agile Methods:

http://www.agileadvice.com/archives/2006/09/agile_challenge.html

Bleek, W.-G., & Wolf, H. (2008). Agile Softwareentwicklung: Werte, Konzepte und Methoden.

Heidelberg: Dpunkt Verlag.

Bortz, J., & Döring, N. (2005). Forschungsmethoden und Evaluation (3. Auflage Ausg.). Heidelberg:

Springer Medizin Verlag.

Bridle, J., & Brown, M. (1979). Connected Word Recognition Using Whole Word Templates.

Proc. Inst. Acoust. Autumn Conf., (pp. 25-28).

Brooks, F. P. (1987). No Silver Bullet Essence and Accidents of Software Engineering. Computer ,

no. 4, pp. 10-19.

Brown, E. W., Srinivasan, S., Coden, A., Ponceleon, D., Cooper, J. W., & Amir, A. (2001). Toward

speech as a knowledge resource. IMB Systems Journal , pp. 985 - 1001.

Brown, F., Pietra, V., Pietra, S., & Mercer, R. (1993). The mathematics of statstical machine

translation: parameter estimation. Comput. Linguist. , 19 (2), pp. 263-311.

Bibliography

153

Bruegge, B., Reiss, M., & Schiller, J. (2009). Agile Principles in Academic Education: A Case

Study. Sixth International Conference on Information Technology: New Generations, (pp. 1684-1686).

Las Vegas, Nevada: itng.

Brügge, B., & Dutoit, A. H. (2004). Objektorientierte Softwaretechnik mit UML, Entwurfsmustern

und Java. München: Person Education Deutschland.

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., et al. (2005). Learning

to rank using gradient descent. In ICML'05: Proceedings of the 22nd international conference on

Machine learning (pp. 89-96). New York, NY: ACM.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1998). Pattern-orientierte

Software-Architektur. Addison-Wesley.

Canditt, S., & Russwurm, W. (2008). The First CMMI-based Appraisal in an Agile Environment at

Siemens AG. Retrieved 11 30, 2009, from http://www.sei.cmu.edu/library/assets/Canditt08.pdf

Carbonell, J., Geng, Y., & Goldstein, J. (1997). Automated query-relevant summarization and

diversity-based reranking. In Proceedings of the IJCAI'97 workshop on AI and digital libraries, (pp. 9-

14). Nagoya.

Carnegie Mellon University. (1991). Capability Maturity Model Integration (CMMI). Retrieved 11

30, 2009, from http://www.sei.cmu.edu/cmmi/

Chang, S., Chen, W., Meng, H., Sundaram, H., & Zhong, D. (1997). VideoQ: An Automated

Content Based Video Search System Using Visual Cues. Multimedia (pp. 313-324). Seattle, WA:

Proceedings, ACM.

Charette, R. (2002). Foundations of Lean Development: The Lean Development Manager's

Guide. The Foundations Series on Risk Management .

Chen, F. R., & Withgott, M. (1992). The use of emphasis to automatically summarize a spoken

disourse. In Proceedings of the ICASSP'92, (pp. 229-232). San Francisco, CA.

Chow, Y., Dunham, M., Kimball, O., Krasner, M., Kubala, G., Makhoul, J., et al. (1987). BBYLOS:

The BBN Continuous Speech Recognition System. Proc. ICASSP 87, (pp. 89-92).

Christel, M., Stevens, S., & Wactlar, H. (1994). Informedia Digital Video Library. In Proceedings of

the Second ACM International Conference on Multimedia (pp. 480-481). New York: ACM.

Chung, M.-W., & Drummond, B. (2009). Agile at Yahoo! From the Trenches. 2009 Agile

Conference (pp. 113-118). IEEE Computer Society.

Bibliography

154

CMMI Product Team. (2006, August). CMMI® for Development, Version 1.2. Retrieved 11 30,

2009, from http://www.sei.cmu.edu/reports/06tr008.pdf

CMU-Speech. (1995). Carnegie Mellon University - Speech at CMU. Retrieved 04 20, 2010, from

http://www.speech.cs.cmu.edu/speech/

Cockburn, A. (2002). Agile Software Development. Boston, MA: Pearson Education, Inc.

Cockburn, A. (2005). Crystal Clear: A Human-Powered Methodology for Small Teams. Amsterdam:

Addison-Wesley Longman.

Codehaus Foundation. (2006). XPlanner. Retrieved 05 28, 2010, from http://xplanner.org/

Coden, A., & Brown, E. (2001). Speech Transcript Analysis for Automatic Search. Hawaii

International Conference on System Science. Maui, HI: Proceedings.

Cohn, M., & Ford, D. (2003, 06). Introducing an Agile Process to an Organization. Computer , vol.

36 (issue 6), pp. 74-78.

CollabNet, Inc. . (2010). ScrumWorks. Retrieved 05 30, 2010, from

http://www.danube.com/scrumworks

Conroy, J. M., & O'leary, D. P. (2001). Text summarization via hidden markov models. In

Proceedings of SIGIR'01, (pp. 406-407). New York, NY.

Corrall, S. (1999, 02 03). Knowledge Management: Are We in the Knowledge Management Business?

Retrieved 04 10, 2010, from http://www.ariadne.ac.uk/issue18/knowledge-mgt/

Das, D., & Martins, A. F. (2007, 11 21). A Survey on Automated Text Summarization. Retrieved 04

20, 2010, from www.cs.cmu.edu/~nasmith/LS2/das-martins.07.pdf

Daumé III, H., & Marcu, D. (2002). A noisy-channel model for document compression. In

Proceedings of the Conference of the Association of Computational Linguistics (ACL 2002) (pp. 449 -

456). Philadelphia, PA: Association for Computational Linguistics .

Daumé III, H., & Marcu, D. (2004). A tree-prosition kernel for document compression. In

Proceedings of the Fourth Document Understanding Conference (DUC 2004). Boston, MA.

Davenport, T. H., & Prusak, L. (1998). Working Knowledge: How Organizations Manage What They

Know. Boston, MA: Harvard Business School Press.

Davies, K., Biddulph, R., & Balashek, S. (1952). Automatic Speech Recognition of Spoken Digits.

J. Acoust. Soc. Am. , No. 6, pp. 637-642.

Bibliography

155

Denes, P. (1959). The Design and Operation of the Mechanical Speech Recognizer at University

College London. J. British Inst. Radio Engr. , pp. 211-229.

Dijkstra, E. W. (1972, October). The humble programmer. (A. Press, Ed.) Communications of the

ACM , vol. 15 (no. 10), pp. 859-866.

Doyle, M., & Straus, D. (1976). How To Make Meetings Work. New York: Jove Books.

Drucker, P. F. (1998, 05 10). Management’s New Paradigms. Retrieved 04 20, 2010, from

http://www.forbes.com/forbes/1998/1005/6207152a.html

Drucker, P. F. (2006; Revised edition (1966)). The Effective Executive: The Definitive Guide to

Getting the Right Things Done. Harper Paperbacks.

DSDM Consortium. (2009). DSDM. Retrieved 09 11, 2009, from www.dsdm.org

Eckstein, J. (2004). Agile Software Development in the Large: Diving into the Deep. New York: Dorset

House.

Edelman, J., & Crain, M. B. (1994). The Tao of Negotiation. New York: HarperCollins Publishers.

Edmundson, H. P. (1969). New methods in automatic extracting. Journal of the ACM , 16 (2), pp.

264-285.

El Emam, K., & Koru, A. G. (2008, September/October). A Replicated Survey of IT Software

Project Failures. IEEE Software , pp. pp. 84-90.

EML Research gGmbH. (2005, 04 11). Gesprächsprotokolle auf Knopfdruck? . Retrieved 04 29, 2010,

from http://www.eml-r.org/english/press/p5_presspart.php?we_objectID=236

Erman, L. D., Hayes-Roth, F., Lesser, V. R., & Reddy, R. D. (1980, 06). The Hearsay-II Speech-

Understanding System: Integrating Knowledge to Resolve Uncertainty. (ACM, Ed.) Computer

Surveys , No. 2.

Ferguson, J. (1980). Hidden Markov Models for Speech. Princeton, NJ: IDA.

Fink, A. (1995). How To Sample in Surveys. Thousand Oaks, California: SAGE Publications.

Forgie, J., & Forgie, C. (1959). Results Obtained From a Vowel REcognition Computer Program.

J. Acoust. Soc. Am. , No. 11, pp. 1480-1489.

Fry, D. (1959). Theoretical Aspects of Mechanical Speech Recognition. J. British Inst. Radio Engr. ,

pp. 211-229.

Bibliography

156

Garfolo, J. S., Voorhees, E. M., Stanford, V. M., & Sparck Jones, K. (1997). TREC-6 1997 spoken

document retrieval track overview and results. In Proceedings of the 1997 TREC-6 Conference, (pp.

83-91). Gaithersburg, MD.

Garofolo, J. S., Voorhees, E. M., Auzanne, C. G., & Stanford, V. M. (1999). Spoken document

retrieval: 1998 evaluation and investigation of new metrics. In Proceedings of the ESCA workshop:

Accessing information in spoken audio, (pp. 1-7). Cambridge.

Glass, R. L. (1998). In the Beginning: Recollections of Software Pioneers. IEEE Computer Society

Press.

Glazer, H., Dalton, J., Anderson, D., Konrad, M., & Shrum, S. (2008). CMMI® or Agile: Why Not

Embrace Both! Software Engineering Process Management.

Godfrey, J. J., Holliman, E. C., & McDaniel, J. (1992). SWITCHBOARD: telephone speech corpus

for research and development. In Proceedings of the ICASSP'92, (pp. 517-520).

Goldman, S. L., Nagel, R. N., & Preiss, K. (1995). Agile Competitors and Virtual Organizations.

New York: Van Nostrand Reinhold.

Google. (2010). google. Retrieved 04 24, 2010, from http://www.google.de/

Hastreiter, D. G., Roberts, S. R., & Mathis, D. C. (2009, 01). Leuchtfeuer entzünden: Einführung

von Enterprise Scrum bei der Allianz Deutschland AG. OBJEKTspektrum , pp. 54-61.

Hauptmann, A., & Smith, M. A. (1995). Text, Speech and Vision for Video Segmentation: The

Informedia Project. AAAI Fall Symposium, Computational Models for Integrating Language and

Vision.

Hauptmann, A., & Witbrock, M. J. (1997). Informedia: News-on-Demand Multimedia

Information Acquisition and Retrieval. Intelligent Multimedia Information Retrieval (pp. 213-239).

AAAI Press.

Highsmith, J. A. (1999). Adaptive Software Development: A Collaborative Approach to Managing

Complex Systems. New York: Dorset House Publishing Co Inc.

Highsmith, J. (2002). Agile Software Development Ecosystems. Boston, MA: Addison-Wesley.

Highsmith, J. (2002, October). What Is Agile Software Development? CrossTalk The Journal of

Deense Software Engineering , pp. 4 - 9.

Highsmith, J., & Cockburn, A. (2001, September). Agile Software Develpment: The Business of

Innovation. Computer - Software Management , pp. 120 - 122.

Bibliography

157

Hirschberg, J., Whittaker, S., Hindle, D., Pereira, F., & Shinghal, A. (1999). Finding information

in audio: A new paradigm for audio browsing/ retrieval. In Proceedings of the ESCA workshop:

Accessing information in spoken audio, (pp. 117-122). Cambridge.

Hori, C., & Furui, S. (2000). Automatic speech summarization based on word significance and

linguistic likelihood. In Proceedings of ICASSP'00 , (pp. 1579-1582). Istanbul.

Hruschka, P., Rupp, C., & Starke, G. (2009). Agility kompakt. Heidelber: Spektrum.

Humphrey, W. S. (1988). Characterizing the Software Process: A Maturity Framework. (I. C.

Press, Ed.) IEEE Software , vol. 5 (issue 2), pp. 73 - 79 .

Hwang, M., Rosenfeld, R., Thayer, E., Mosur, R., Chase, L., Weide, R., et al. (1994). Improving

Speech Recognition Performance via Phone-Dependent VQ. In Proceedings of ICASSP-94, (pp.

549-552).

ISO. (2009). International Standardization for Organization. Retrieved 11 30, 2009, from

http://www.iso.org/iso/home.htm

Itakura, F. (1975). Minimum Prediction Residual Applied to Speech Recognition. IEEE Trans.

Acoustics, Speech, Singal Proc., (pp. 67-72).

Jelinek, F. (1985). The Development of an Experimental Discrete Dictation Recognizer. Proc.

IEEE, (pp. 1616-1624).

Jelinek, F., Bahl, L., & Mercer, R. (1975). Design of a Linguistic Statistical Decoder for the

Recognition of Continuous Speech. IEEE Trans. Information Theory, (pp. 250-256).

Jones, G. J., Foote, J. T., Jones, K. S., & Young, S. J. (1995). video Mail Retrieval: The Effect of

Word Spotting Accuracy on Precision. International Conference on Acoustics, Speech, and Signal

Processing (pp. 309-312). Detroit, MI: Proceedings, IEEE.

Jones, G., Foote, J., Jones, K., & Young, S. (1996). Retrieving Spoken Documents by Combining

Multiple Index Sources. International Conference on Research and Development in Information

Retrieval (pp. 30-38). Zurich: Proceedings, ACM SIGIR.

Kameyama, M., & Arima, I. (1984). Coping with aboutness complexity in information extraction

from spoken dialogues. In Proceedings of the ICSLP 94, (pp. 87-90). Yokohama.

Kameyama, M., Kawai, G., & Arima, I. (1996). A real-time system for summarizing human-

human spontaneous spoken dialogues. In Proceedings of the ICSLP'96, (pp. 681-684).

Bibliography

158

Kaminski, S. (2006). Communication Models. Retrieved 04 07, 2010, from

http://www.shkaminski.com/Classes/Handouts/Communication%20Models.htm#SchrammsInt

eractiveModel1954

kathana. (2010). Sinhala speech recognition system. Retrieved 05 25, 2010, from

kathana.googlecode.com/files/Project%20Praposal.pdf

Kayser, T. A. (1995). Mining Group Gold: How to Cash in on the Collaborative Brain Power of a Group

(2 ed.). Irwin Professional Publishing.

Kerzner, H. (2006). Project Management - A Systems Approach to Planning, Scheduling, and

Controlling (9th ed. ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.

Knight, K., & Marcu, D. (2000). Statistical-based summarization - step one: Sentence

compression. In AAAI/IAAI (pp. 703-710). Austin, TX: MIT Press.

Kunz, W., & Rittel, H. W. (1970). Issues as Elements of Information Systems, Working paper No. 131.

Heidelberg: Studiengruppe für Systemforschung.

Kupiec, J., Pedersen, J., & Chen, F. (1995). A trainable document summarizer. In Proceedings

SIGIR '95, (pp. 68-73). New York, NY.

Larman, C. (2004). Agile and Iterative Development: A Manager's Guide. Boston: Addison-Wesley.

Laufer, H. (2009). Sprint-Meetings statt Marathon-Sitzungen: Besprechungen effizient organisieren

und leiten. Offenbach: GABAL-Verlag GmbH.

Lavie, A., Waibel, A., Levin, L., Finke, M., Gates, D., Gavaldà, M., et al. (1997). Janus III: Speech-

to-speech translation in multiple languages. In IEEE International Conference on Acoustics, Speech

and Signal Processing, (pp. 99-102). Munich.

LDC, Linguistic Data Consortium. (1999). Treebank-3: CD-ROM containting databases of

disfluency annotated Switchboard transcripts.

Lee, C., & Rabiner, L. (1989). A Frame Synchronous Network Search Algorithm for Connected

Word Recognition. IEEE Trans. Acoustics, Speech, Signal Proc., (pp. 1649-1658).

Lee, C., Rabiner, L., Pieraccini, R., & Wilpon, J. (1990). Acoustic Modeling for Large Vocabulary

Speech Recognition. Computer Speech and Language , pp. 127-165.

Lee, K., Hon, H., & Reddy, D. (1990). An Overview of the SPHINX Speech Recognition System.

IEEE Trans. Acoustics, Speech, Signal Proc., (pp. 600-610).

Bibliography

159

Leffingwell, D. (2007). Scaling Software Agility: Best Practices for Large Enterprises. Amsterdam:

Addison-Wesley Longman.

Lewis, B. (1997, 01 08). The Importance of Meeting Minutes. Retrieved 04 15, 2010, from

http://web.mit.edu/brlewis/www/minutes/index.html

Lighthouse Documentation. (2009, 12 02). lighthousedocumentation. Retrieved 04 10, 2010, from

http://www.lighthousedocumentation.com/BestPracticesSample1.PDF

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In S. S. Marie-

Francine Moens (Ed.), Text Summarization Branches Out: Proceedings of the ACL-04 Workshop (pp.

74-81). Barcelona: Association for Computational Linguistics.

Lin, C.-Y. (1999). Training a selction function for extraction. In Proceedings of CIKM'99, (pp. 55-

62). New York, NY.

Lin, C.-Y., & Hovy, E. (1997). Identifying topics by position. In Proceedings of the Fifth conference

on Applied natural language processing, (pp. 283-290). San Francisco, CA.

Lippmann, R. (1987). An Introduction to Computing with Neural Nets. IEEE ASSP Mag., (pp. 4-

22).

Longstreet, D. (2008). The Agile Method and Other Fairy Tales. Retrieved 11 30, 2009, from

http://www.softwaremetrics.com/Agile/Agile%20Method%20and%20Other%20Fairy%20Tales.p

df

Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of Research

Development , pp. 159-165.

Marcu, D. (1998a). Improving summarization through rhetorical parsing tuning. In Proceedings

of The Sixth Workshop on Very Large Corpora, (pp. 206-215). Montreal.

Marcu, D. (1998b). The rhetorical parsing, summarization, and generation of natural language

texts. PhD thesis, University of Toronto. Adviser-Graeme Hirst.

Martin, T., Nelson, A., & Zadell, H. (1964). Speech Recognition by Feature Abstraction

Techniques. Tech. Report AL-TDR-64-176, Air Force Avionics Lab .

Mauldin, M. (1989). Information Retrieval by Text Skimming. Ph.D. Thesis, Carnegie Mellon

University. August 1989. Revised edition published as “Conceptual Information Retrieval: A

Case Study in Adaptive Partial Parsing, Kluwer Press, September 1991.

Bibliography

160

McAdam, R., & McCreedy, S. (2000, September). A critique of knowledge management: Using a

social constructionist model. New Technology, Work and Employment , Vol. 15 (No. 2), pp. pp. 155-

168.

McKeown, K., & Radev, D. (1995). Generating summaries of multiple news articles. In

Proceedings of SIGIR'95, (pp. 74-82). Seattle, Washington.

Microsoft. (2010). Bing. Retrieved 04 24, 2010, from http://www.bing.com/

Microsoft. (2010). Project 2010. Retrieved 05 30, 2010, from

http://www.microsoft.com/project/en/us/default.aspx

Miller, G. A. (1995). Wordnet: a lexical database for english. Commun. ACM , 38 (11), pp. 39-41.

Mountain Goat Software. (2005). Planning Poker. Retrieved 11 30, 2009, from

http://www.planningpoker.com/

MRT PLM Group Europe. (2007, 09 07). Product Evolution Process @ Siemens. Retrieved 05 30,

2010, from www.mrtplm.de/downloads/success_prodoma_siemens_de.pdf

Müller, C., Bahrs, J., & Gronau, N. (2005, 11 28). Considering the Knowledge Factor in Agile

Software Development. Journal of Universal Knowledge Management , pp. 128-147.

Myers, C., & Rabiner, L. (1981). A Level Building Dynamic Time Warping Algorithm for

Connected Word Recognition. IEEE Trans. Acoustic, Speech, Singal Proc., (pp. 284-297).

Nagata, K., Kato, Y., & Chiba, S. (1963). Spoken Digit Recognizer for Japanese Language. NEC

Res. Develop. , No. 6.

Natural Speech Communication Ltd. (2005, 07). Key-Word Spotting - The Base Technology for

Speech Analytics. Retrieved 05 27, 2010, from www.crmxchange.com/whitepapers/pdf/NSC-

kws.pdf

Nebulon Pty. Ltd. (2002). Feature Driven Development. Retrieved 11 30, 2009, from

http://www.featuredrivendevelopment.com/

Nenkova, A. (2005). Automatic text summarization of newswire: Lessons learned from the

document understanding conference. In Proceedings of AAAI 2005, (pp. 1436-1441). Pittsburgh.

Niekrasz, J., & Purver, M. (2005). A Multimodal Discourse Ontology for Meeting

Understanding. Proceedings of MLMI’05. LNCS (pp. 162-173). Springer Verlag.

NIST. (2002, 07 16). Document Understanding Conferences. Retrieved 04 24, 2010, from

http://duc.nist.gov/

Bibliography

161

NIST. (2000, 08 01). Text REtrieval Conference. Retrieved 04 24, 2010, from http://trec.nist.gov/

Nonaka, I. (1994, February). A Dynamic Theory of Organizational Knowledge Creation.

Organization Science , pp. pp. 14-37.

Nonaka, I., & Takeuchi, H. (1995). The Knowledge-Creating Company: How Japanese Companies

Create the Dynamics of Innovation. New York: Oxford University Press .

Ogunnaike, B. A., & Ray, W. H. (1994). Process Dynamics, Modeling and Control. New York:

Oxford University Press.

Olson, H., & Belar, H. (1956). Phonetic Typewriter. J. Acoust. Soc. Am. , No. 6, pp. 1072-1081.

Ono, K., Sumita, K., & Miike, S. (1994). Abstract generation based on rhetorical structure

extraction. In Proceedings of Coling'94, (pp. 344-348). Morristown, NJ.

Osborne, M. (2002). Using maximum entropy for sentence extraction. In Proceedings of the

ACL'02 Workshop on Automatic Summarization, (pp. 1-8). Morristown, NJ.

Owen, H. (1997). Open space technology: a user’s guide. San Francisco, CA: Berrett-Koehler

Publishers.

Oxford Corpus. (2005). Oxford Dictionary of English. (C. Soanes, & A. Stevenson, Eds.) Oxford

University Press.

Oxford University Press. (2010). Communication. Retrieved 05 22, 2010, from

http://www.oxforddictionaries.com/definition/communication?view=uk

Paul, D. (1989). The Lincoln Robust Continuous Speech Recognizer. Proc. ICASSP 89, (pp. 449-

452). Glasgow.

Pawar, R. V., Kajave, P. P., & Mali, S. N. (2005, 12). Speaker Identification using Neural Networks.

Retrieved 05 28, 2010, from www.waset.org/journals/waset/v12/v12-7.pdf

Pfleeger, S. L., & Atlee, J. M. (2009). Software Engineering: Theory and Practice. Upper Saddle

River, NJ: Prentice Hall.

Pichler, R. (2008). Scrum - Agiles Projektmanagement erfolgreich einsetzen. Heidelberg:

dpunkt.verlag GmbH.

Polanyi, M. (1966). The Tacit Dimension. Chicago: University of Chicago Press.

Poppendieck, M., & Poppendieck, T. (2003). Lean Software Development: An Agile Toolkit. Upper

Saddle Rier, NJ: Addison-Wesley.

Bibliography

162

Prager, J., Brown, E., Coden, A., & Radev, D. (2000). Question-Answering by Predictive

Annotation. Conference on Research and Development in Information Retieval (pp. 184-191). Athens:

Procedings, ACM SIGIR .

Rabiner, L. (1989, 02). A tutorial on hidden Markov models and selected applications in speech

recognition. Proceeding on the IEEE , pp. 257-286.

Rabiner, L. (1993). Fundamentals of Speech Recognition. Englewood Cliffs, NJ: Prentice Hall.

Rabiner, L., Levinson, S., Rosenberg, A., & Wilpon, J. (1979). Speaker Independent Recognition

of Isolated Words Using Clustering Techniques. IEEE Trans. Acoustics, Speech, Signal Proc., (pp.

336-349).

Radev, D. R., Hovy, E., & McKeown, K. (2002). Introduction to the special issue on

summarization. Computational Linguistics , 28 (4), pp. 399-408.

Randell, B. (2001, August 10). The 1968/69 NATO Software Engineering Reports. Retrieved 04 14,

2010, from http://homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/index.html

Ravin, Y., Wacholder, N., & Choi, M. (1997). Disambiguation of Names in Text. Conference on

Applied Natural Language Processing (pp. 202-208). Washington, DC: Procedings, ACL.

Reddy, D. (1966). An Approach to Computer Speech Recognition by Direct Analysis of Speech Wave.

Computer Science Dept., Stanford Univ: Tech. Report No. C549.

Reithinger, N., Kipp, M., Engel, R., & Alexandersson, J. (2000). Summarizing multilingual

spoken negotiation dialogues. In Proceedings of the 38th Conference of the Association for

Computational Linguistics, (pp. 310-317). Hongkong.

Romano, N. C., & Nunamaker, J. F. (2001). Meeting analysis: Findings from research and

practice. 34th Hawaii International Conference on System Sciences (p. 1072). IEEE Computer Society

Press .

Rosnow, R. L., & Rosenthal, R. (2008). Beginning Behavioral Research (6. Edition ed.). New Yersey:

Pearson Education - Prentice Hall.

Rudnicky, A. (1995). Language Modeling with Limited Domain Data. In Proceeding of the 1995

ARPA Workshop on Spoken Language Technology, (pp. 66-69).

Rundle, P. J., & Dewar, R. G. (2006). Using return on investment to compare agile and plan-

driven practices in undergraduate group projects. International Conference on Software

Engineering. Proceedings of the 28th international conference on Software engineering (pp. 649 - 654).

ACM.

Bibliography

163

Rüping, A. (2003). Agile Documentation. West Sussex: John Wiley & Sons Ltd.

Sakai, T., & Doshita, S. (1962). The Phonetic Typewriter, Information Processing 1962. Proc. IFIP

Congress. Munich.

Sakoe, H. (1979). Two Level DP Matching - A Dynamic Programming Based Pattern Matching

Algorithm for Connected Word Recognition. IEEE Trans. Acoustics, Speech, Signal Proc., (pp. 588-

595).

Sakoe, H., & Chiba, S. (1978). Dynamic Programming Algorithm Optimization of Spoken Word

Recognition. IEEE Trans. Acoustics, Speech, Singal Proc., (pp. 43-49).

Saon, G., Zweig, G., Huang, J., Kingsbury, B., & Mangu, L. (2001). Evoluation of the

Performance of Autmatic Speech Recognition Algorithms in Transcribing Conversational

Telephone Speech. Instrumentation and Measruement Technology Conference. Budapest:

Proceedings.

Schein, E. H. (2004). The Role of the Founder in Creating Organizational Culture. In J. T. Wren,

D. A. Hicks, & T. L. Price, Modern Classics on Leadership (pp. 443 - 458). Northampton, MA:

Edward Elgar Publishing, Inc.

Schiller, J. (2009). Modern Meeting Management and Information Retrieval. OOPSLA 2009.

Orlando, Florida: ACM.

Schiller, J. (2008). Word Spotting in Scrum Meetings. 19th International Conference on Database and

Expert Systems Application, DEXA (pp. 125 - 129). Turin: IEEE.

Schiller, J., & Canditt, S. (2008, 03). Das Ganze sehen: Auf dem Weg zum agilen Unternehmen .

OBJEKTspektrum .

Schmelzer, H. J., & Sesselmann, W. (2007). Geschäftsprozessmanagement in der Praxis. Kunden

zufrieden stellen, Produktivität steigern, Wert erhöhen. Hanser Fachbuch.

Schramm, W. (1961). How Communication Works. Urbana, Ill: The University of Illinois Press.

Schuh, P. (2005). Integrating Agile Development in the Real World. Hingham, MA: Charles River

Media.

Schwaber, C. (2005). Corporate IT Leads the Second Wve of Agile Adoption. Forrester Research Inc.

report.

Schwaber, K. (1995). SCRUM Development Process. OOPSLA'95 Workshop on Business Object

Design and Implementation .

Bibliography

164

Schwaber, K., & Beedle, M. (2002). Agile Software Development with Scrum. Upper Saddle River,

NJ: Prentice Hall.

Schwaber, K., & Beedle, M. (2002). Agile Software Development with Scrum. Upper Saddle River,

NJ: Prentice-Hall.

Selman, B., Levesque, H., & Mitchelle, D. (1992). A new method for solving hard satisfiability

problems. In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI'92), (pp.

440-446). San Jose, CA.

SEN-iPhone Team. (2009, 07 08). iphone09sen. Retrieved 05 20, 2010, from

https://teambruegge.informatik.tu-muenchen.de/groups/iphone09sen/

Shannon, C. E. (1948). A Mathematical Theory of Communication.

Slinger, M., & Broderick, S. (2008). The Software Project Manager's Bridge to Agility. Amsterdam:

Addison-Wesley Longman.

Sommerville, I. (2002, 10 01). Software Engineering. Retrieved 04 20, 2010, from

http://www.comp.dit.ie/rlawlor/Soft_Eng/Sommerville/ch01%20-%20Software%20v2.ppt

Standish Group. (2009, 04 23). CHAOS Summary 2009. Retrieved 12 15, 2009, from

http://www1.standishgroup.com/newsroom/chaos_2009.php

Stifelman, L. J. (1995). A discourse analysis approach to structured speech. In AAAI'95 Spring

Symposium on Empirical Methods in Disourse Interpretation and Generation, (pp. 162-167). Stanford,

CA.

Sutherland, J. (2005, June 03). Future of Scrum: Support for Parallel Pipelining of Sprints in Complex

Projects. Retrieved 11 30, 2009, from

http://jeffsutherland.com/scrum/Sutherland2005FutureofScrum20050603.pdf

Suzuku, J., & Nakata, K. (1961). Recognition of Japanese Vowels - Preliminary to the

Recognition of Speech. J. Radio Res. Lab , pp. 193-212.

Svore, K., Vanderwende, L., & Burges, C. (2007). Enhancing single-document summarization by

combining RankNet and third-party sources. In Proceedings of the EMNLP-CoNLL (pp. 448-457).

Prague: Association for Computational Linguistics.

Takeuchi, H., & Nonaka, I. (1986, 01). The New New Product Development Game. Harvard

Business Review , pp. 1-11.

Bibliography

165

Tan, S., Teo, H.-H., Tan, B., & Wei, K.-K. (1998). Developing a Preliminary Framework for

Knowledge Management in Organizations. Proceeding of the Fourth Americas Conference on

Information Systems (AMCIS), (pp. pp. 629-631). Baltimore.

Tappert, C., Dixon, N., Rabinowitz, A., & Chapman, W. (1971). Automatic Recognition of

Continuous Speech Utilizing Dynamic Segmentation, Dual Classification, Sequential Decoding and

Error Recovery. Rome, NY, Tech. Report TR-71-146: Rome Air Dev. Cen.

Thompson, M. P., & Walsham, G. (2004, July). Placing Knowledge Management in Context.

Journal of Management Studies , Vol. 41 (No. 5), pp. pp. 725-747.

Toffler, A. (1970). Future shock. Bantam.

U.S. Food and Drug Administration. (2009). U.S. Food and Drug Administration. Retrieved 11 30,

2009, from http://www.fda.gov/

Valenza, R., Robinson, T., Hickey, M., & Tucker, R. (1999). Summarisation of spoken audio

through information extraction. In Proceedings of the ESCA workshop: Accessing information in

spoken audio, (pp. 111-116). Cambridge.

Van Schooenderwoert, N. (2005, July 25). The Essence of Agile - Empirical Process vs. Defined

Process. Retrieved 05 10, 2010, from

http://www.agilerules.com/viewaaa.phtml?document=Vol%2002%20Issue%2008-

%20The%20Essence%20of%20Agile%20-

%20Empirical%20Process%20vs.%20Defined%20Process

Velichko, V., & Zagoruyko, N. (1970, 06). Automatic Recogniton of 200 Words. Int. J. Man-

Machine Studies , p. 223.

VersionOne. (2009). State of Agile Development Survey 2009. Retrieved 04 03, 2010, from

http://pm.versionone.com/StateOfAgileSurvey.html

VersionOne. (2010). VersionOne Agile Survey. Retrieved 04 15, 2010, from

http://www.versionone.com/Resources/Whitepapers.asp

VersionOne, Inc. (2010). VersionOne. Retrieved 05 15, 2010, from http://versionone.com/

Vintsyuk, T. (1968, 01/02). Speech Discrimination by Dynamic Programming. Kibernetika , No. 2,

pp. 81-88.

Wactlar, H., Christel, M., Gong, Y., & Hauptmann, A. (1999, February). Lessons Learned from

Bilding a Terabyte Digital Video Library. IEEE Computer .

Bibliography

166

Waibel, A., Bernardin, K., & Wölfel, M. (2007). Computer-Supported Human-Human

Multilingual Communication. In 50 Years of Artificial Intelligence (pp. 271-287). Berlin /

Heidelberg: Springer.

Waibel, A., Bett, M., & Finke, M. (1998). Meeting Browser: Tracking and Summarizing Meetings.

Lansdowne, VA: Proceedins, DARPA Broadcast News Transcription and Understanding

Workshop.

Waibel, A., Bett, M., Metze, F., Ries, K., Schaaf, T., Schultz, T., et al. (2001). Advances In

Automatic Meeting Record Creation And Access. Acoustics, Speech, and Signal Processing, 2001

Vol 1. 2001 IEEE International Conference (pp. 597-600). Salt Lake City, UT: icassp.

Weibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. (1989). Phoneme Recognition

Using Time-Delay Neural Networks. IEEE Trans. Acoustics, Speech, Signal Proc., (pp. 393-404).

Weintraub, M., & et al. (1989). Linguistic Constraints in Hidden Markov Model Based Speech

Recognition. Proc. ICASSP 89, (pp. 699-702). Glasgow.

Whittaker, S., Hirschberg, J., Choi, J., Hindle, D., Pereira, F., & Singhal, A. (1999). SCAN:

Designing and evaluating user interfaces to support retrieval from speech archives. In

Proceedings of the 22nd ACM-SIGIR International Conference on Research and Development in

Information Retrieval, (pp. 26-33). Berkeley, CA.

Wikimedia Foundation. (2001). Wikipedia. Retrieved 04 24, 2010, from http://wikipedia.org/

Williams, L., & Cockburn, A. (2003, June). Agile Software Development: It's about Feedback and

Change. Computer, vol. 36, no. 6 , pp. 39-43.

Williams, M. (2008). The Principles of Project Management. SitePoint Pty. Ltd.

Witbrock, M., & Mittal, V. (1999). Ultra-summarization (poster acstract): a stasticial approach to

generating highly condensed non-extractive summaries. In Proceedings of SIGIR'99, (pp. 315-

316). New York, NY.

Yegge, S. (2006, September 27). Good Agile, Bad Agile. Retrieved 11 30, 2009, from http://steve-

yegge.blogspot.com/2006/09/good-agile-bad-agile_27.html

Zechner, K. (2001). Automatic Summarization of Spoken Dialogues in Unrestricted Domains.

Carnegie Mellon University: Ph.D. thesis. Language Technologies Institute, School of Computer

Science.

Zechner, K. (2002, January 14). Summarization of Spoken Language. Speech Technology Expert

eZine , pp. 1-14.

Bibliography

167

Zechner, K., & Waibel, A. (2000). DIASUMM: Flexible summarization of spontaneous dialogues

in unrestricted domains. In Proceedings of COLING-2000, (pp. 968-974). Saarbruecken.

Zhang, H., Low, C., & Smoliar, S. (1995, March). Video parsing and indexing of compressed.

Multimedia Tools and Applications , pp. 89-111.

Zue, V., Glass, J., Phillips, M., & Seneff, S. (1989). The MIT Summit Speech Recognition System:

A Progress Report. Proc. DARPA Speech and Natural Language Workshop, (pp. 179-189).

	Dissertation_JenniferSchiller_24062011
	Dissertation_24062011
	0_Deckblatt_2
	leer_8
	0_Acknowledgment
	leer_1
	0_Zusammenfassung
	0_Abstract
	leer
	0_ToC
	0_LoF
	0_LoT
	leer_2
	1_IntroductionChapter_v10
	2_Agile in large environments_v6
	3_Communication_v4
	leer_3
	4_RelatedWork_v7
	5_Framework_v8
	leer_4
	6_Empirical evaluation_v8
	7_Conclusion_v4
	AI_Grammar_v1
	AII_Prototype_v1
	leer_5
	AIII_EmpiricalResearch
	leer_6
	AIV_Questionnaire_v1
	leer_7
	AV_Bibliography

	leer

	AI_Grammar_v1
	AV_Bibliography

