Technische Universitat Munchen

Lehrstuhl fir Datenverarbeitung
Univ.-Prof. Dr.-Ing. K. Diepold

Content management and
protection using
Trusted Computing and
MPEG-21 technologies

Florian Schreiner

Vollstandiger Abdruck der von der Fakultdt fiir Elektrotechnik und Infor-
mationstechnik der Technischen Universitdt Miinchen zur Erlangung des
akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. sc.techn. Andreas Herkersdorf
Prifer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Klaus Diepold
2. Univ.-Prof. Dr.-Ing. Georg Sigl

Die Dissertation wurde am 07.10.2010 bei der Technischen Universitat Miin-
chen eingereicht und durch die Fakultét fiir Elektrotechnik und Information-
stechnik am 15.02.2011 angenommen.

Acknowledgments

This thesis and the presented research have been elaborated at the Tech-
nische Universitat Miinchen in the Institute for Data Processing, which was
an inspiring and procreative environment for my research.

Firstly, I would like to thank my supervisor Prof. Dr.-Ing. Klaus Diepold
for his outstanding assistance and support during the work at the institute.
I am grateful for the inspiring and motivating discussions, which helped me
in the research and development. Furthermore, I want to thank him for the
comments and the review of this thesis, which were a valuable support in
its preparation.

I’'m also thankful for the great opportunity to work with international part-
ners and colleagues by participating in the standardization of the MPEG
group and the collaboration within the OpenTC project. Both organiza-
tions and their participants had a remarkable impact on my research and
the development of my personal and professional experience.

Furthermore, I am very grateful for my colleagues in the Institute for Data
Processing, who assisted with valuable advice and support in the various
tasks and challenges in the research and education.

Finally, I would like to thank my parents, family and friends for their out-
standing support and understanding in the work as a researcher and the
elaboration of this thesis.

Munich, Germany Florian Schreiner
September 2010.

Abstract

Content management systems are widely used for the collaborative cre-
ation, description, exchange and protection of digital content. This thesis
presents several improvements in content management systems using the
MPEG-21 standards and the Trusted Computing technology. The thesis
can be divided in three parts: content sharing, protection mechanisms and
implementation.

The content sharing is improved in the area of free distributable and
open content. There is already an impressive amount of free distributable
content available, e.g. user-created content, but distribution, sharing and
reuse of the content is hindered by incompatibilities in format and a lack
of metadata. The goal of this thesis is to identify commonalities for open
content and to specify a format to enhance the sharing and reuse of this
type of content. The resulting format is mainly based on the MPEG-21
standards, which specify an interoperable framework for the delivery and
management of digital media. The proposed format consists of a file format
with integrated metadata, which is attached to each content to communicate
its major information and properties. An important aspect of the metadata
is the licensing of the content and the management of these licenses. The
proposed concepts enable the assignment of licenses to unambiguously com-
municate the licensing of the content with an enhanced user experience. The
resulting format enables an automatic processing and indexing of content to
enhance the license management and sharing of free distributable content.

The second part of the thesis deals with protection mechanisms in the
content management using the Trusted Computing technology in the MPEG-
21 standards. The MPEG-21 standards do not define a concrete concept for
security mechanisms and have no specific support for Trusted Computing.
This part of the thesis presents three methods for the application of Trusted
Computing in MPEG-21 to protect content. The first method shows the re-
quired extensions of the MPEG-21 standards to support Trusted Computing

iii

in a decentralized architecture. The second method presents a concept to
integrate qualified timestamps based on Trusted Computing in digital sig-
natures. The third method concludes this part with an enhanced concept
for authentication within the OpenlD system.

The final part of the thesis presents a prototypical implementation, which
demonstrates the presented concepts and shows their feasibility. All con-
cepts are integrated into a working content management system, which im-
plements several functions to enhance the distribution and the protection of
content.

v

Contents

1 Introduction 1
1.1 Overview of content management 2
1.2 Existing systems and requirements 4
1.3 Problem statemento oo 5
1.4 Overview of the contributions 6

2 Metadata for sharing content 8
2.1 Fundamentals o oo 8

2.1.1 Free distributable content 9
2.1.2 Extensible Markup Language 11
2.1.3 MPEGstandards 11
2.1.4 MPEG-7 Multimedia Description Schemes 12
2.1.5 MPEG-21 12
2.1.5.1 Digital Item Declaration (DID) 13

2.1.5.2 Digital Item Identification (DII) 14

2.1.5.3 Rights Expression Language (REL) 15

2.1.54 File Format 17

2.1.5.5 Event Reporting 17

2.1.6 MPEG-A 18

2.2 Problem statement 0oL 19
2.3 Comparison with other systems 22
2.3.1 MPEG-21 based systems 22
2.3.1.1 Axmedis framework 23

2.3.1.2 Digital Media Project
2.3.2 Applications of Creative Commons licenses

2.3.2.1 Creative Commons Rights Expression Lan-
GUALZE « v v e e e e e e e
2.3.2.2 Open Mobile Alliance

2.4 Metadata and file format specification
24.1 Concept
2.4.2 Components

2.4.2.1 Technology selection and file format
2.4.2.2 Content identification
2.4.2.3 Legal licenses and author information
2.4.2.4 Rights expressions
2.4.2.5 License representation
2.4.2.6 Content rendering
2.4.2.7 Adaptation and aggregation
2.4.2.8 Feedback mechanism
2429 FileFormat.
2.4.2.10 Cryptographic signatures

2.4.3 Summary and outlook

3 Protection using Trusted Computing

3.1 Fundamentals o oo
3.1.1 Encrypted datain XML
3.1.2 MPEG-21IPMP
3.1.3 Digital signatures in XML

3.1.3.1 Qualified timestamp
3.1.3.2 XML Advanced Electronic Signatures
3.1.4 Trusted Computing
3.1.4.1 Trusted Platform Module (TPM)
3.1.4.2 Securestorage

3.1.4.3 Integrity measurements

vi

3.2

3.3

3.4

3.1.4.4 Internal keys and certificates 55
3.1.4.5 Attestation Identity Keys and PrivacyCA . . 55

3.1.4.6 Timestamping 56
3.1.4.7 Tick counter 56
3.14.8 Tickstamp 58
3.1.4.9 Timestamp Protocol 59
3.1.4.10 TCG Software Stack 60
3.1.5 Web based authentication with OpenID 61
3.1.5.1 Web-based Single Sign On 61
3.15.2 OpenlD 61
Problem statement oo 64
3.2.1 Secure content storage and transmission 65
3.2.2 Timestamps in digital signatures 67
3.2.3 User authentication 68
Comparison with other systems 69
3.3.1 Concepts for secure content exchange 69
3.3.1.1 SmartRM system 69
3.3.1.2 Key management in MPEG-21 IPMP 70
3.3.1.3 Other proposals 71
3.3.2 Timestamps in digital signatures 72
3.3.2.1 Applications of tickstamps 73
3.3.2.2 Representation of timestamps 73
3.3.3 User authentication 74
3.3.3.1 VeriSign’s OpenlID SeatBelt Plug-in 74
3.3.3.2 Other proposals 74
Developed concepts L. 75
3.4.1 Secure content storage and transmission 76
3.4.1.1 Digital signatures 76
3.4.1.2 Content storage 78
3.4.1.3 Transmission of content 79
3.4.1.4 Distribution and addressing of users 84

vii

34.1.5 Summary 86

3.4.2 Timestamps in digital signatures 86
3.4.2.1 GenericTimeStampExtensionType 87
3.4.2.2 TPMTimeStampType 88
3423 Tickstamp 89
3.4.2.4 Verification of the timestamp 90
3.4.2.5 Integration of the TPM-timestamp in signa-
tures Lo 91
3426 Example 92
3427 Summary 92
3.4.3 User authentication 93
3431 Overview 94
3.4.3.2 Components 95
3433 Usecases v 96
3.4.3.4 Registration, 98
3.4.3.5 Authentication 100
3.4.3.6 Deregistration 102
3.4.3.7 Evaluation 103
3438 Summaryo 104
3.4.4 Summary of the concepts 105
4 Implementation 106
4.1 Application scenarios 106
4.2 Architecture 107
4.3 Components 109
4.3.1 TPM Moduleand TSS 109
4.3.2 Content Management Application 110
4.3.2.1 Architecture 110
4.3.2.2 Functionalities 112
4.3.2.3 Cryptographic operations 113
4.3.24 Timestamps 115

viii

4.3.3 Content Server 117

4.3.3.1 Metadatao 118

4.3.3.2 User Authentication 119

4.3.3.3 Key management 120

4.34 Browseradd-on 121
4.3.4.1 Architecture 121

4.3.4.2 Functionalities 122

4.3.5 OpenlD Provider 125
4.3.5.1 Registration 125

4.3.5.2 Authentication 126

4.3.5.3 Deregistration 127

4.4 Summary ... e e e e 127
5 Conclusion 128

ix

Chapter 1

Introduction

The management of digital content plays an important role in modern
society. Content refers to all types of digital data that can be consumed
by another user, like videos or music, but also presentations or documents.
Nowadays, more and more content is created, and as a consequence, the
demand for distribution and sharing of content increases with the perma-
nent progress in communication and network technologies. There is already
an enormous amount and variety of content available and the amount is

increasing permanently.

Content is created by all parts of the society such as industry, organi-
zations or users. In industry, there are several domains generating content,
which is then shared and distributed either to other companies or users.
Examples are movies, documents within companies or commercials created
by the film industry. Organizations like political parties or academic insti-
tutions also create content, which is then distributed or even promoted to
the public.

Furthermore, the content created by users gains in importance as more
and more users are equipped with a communication device or a mobile cam-
era. The content created with these devices is then shared with social web-
sites that enable the user to easily share the content with everyone, friends
or other groups of users. This change in society additionally contributes to
the steady increase of shared content. This content is also advantageous as it
is a rich source of valuable content, which can be reused for other purposes.

Nevertheless, the overwhelming amount is obstructive and problematic,
because it is unmanageable for a single user and the discovery of a specific
content is a difficult task. Content management in general tries to solve this
problem as it provides methods and technologies to enhance the collection,

2 CHAPTER 1. INTRODUCTION

managing and publication of content regardless of its type. This thesis
proposes improvements for the management of content to ease the sharing
and distribution of content. Security is also very relevant with regard to
the content, which could be, for example, confidential documents or private
information. This thesis also presents several methods for the protection of
such content within content management systems.

1.1 Overview of content management

Content management has a wide scope and there are a large number of
systems and applications available. To enable the efficient management of
content, metadata is required, which describes the content and enables e.g.
the indexing or an efficient processing of the content. Metadata is additional
information, which is attached to content to describe it in a specified format.
The metadata can be categorized in two different types of formats: binary-
or text-based formats.

This thesis focuses on the management of digital content using text-based
metadata conforming to the Extensible Markup Language (XML) [41] stan-
dard. XML specifies the syntax of machine-readable documents to express
the required information with a set of hierarchically structured elements.
The semantic of these elements is not specified in the XML specification,
but there are several standards defining such semantics with a focus on a
specific application domain. An example for such a standard is the Dublin
Core Metadata Initiative (DCMI), which defines the terms for such ele-
ments in [10]. Another organization is the MPEG group, which specified in
MPEG-7 [86] a comprehensive set of elements for the description of multi-
media content.

Another aspect of content management is Digital Rights Management
(DRM), which are systems describing and controlling the rights associated
with content. DRM systems are categorized in Enterprise Rights Man-
agement systems and Multimedia Rights Management systems. Enterprise
Rights Management systems manage the distribution and, in particular, the
usage of the content. Their goal is to protect confidential documents and to
ensure that the granted rights are respected. These systems are limited to
operate within a particular environment, for example to manage documents
within a company or to handle the exchange of documents between multiple
companies. They can be configured to fit the requirements of the company
and can represent working flows of documents within the company. Exam-

1.1. OVERVIEW OF CONTENT MANAGEMENT 3

ples of Enterprise Rights Management systems are Adobe LiveCycle Rights
Management [1] and Oracle Information Rights Management [25].

In contrast to this, Multimedia Rights Management systems are not
limited to a particular environment. They manage the distribution of mul-
timedia content, which is usually distributed to all users who are allowed to
consume the content. The support of other multimedia systems is, however,
a critical issue, because many of the existing Multimedia Rights Management
systems are not compatible with each other, which prevents the unhindered
exchange of content. There are some organizations, that have developed
an interoperable Multimedia Rights Management system to overcome this
limitation. One example is the Open Mobile Alliance (OMA) [21], which
has developed a system mainly for the mobile phone industry and wireless
communication networks. There are many other systems in this domain,
but most of them are small initiatives with a very limited scope. Another
significant organization is the MPEG group, which developed the compre-
hensive MPEG-21 framework to enable the interoperable sharing and de-
livery of content. The concepts presented in this thesis are based on the
MPEG-21 framework, because it supports a wider range of application do-
mains than the other systems. Since the transition from Multimedia Rights
Management systems to Enterprise Rights Management systems is fluent,
the presented concepts in this thesis can be generally applied for Multime-
dia Rights Management systems as well as Enterprise Rights Management
systems.

Another aspect of content management is the protection of confidential
content, which requires a security basis for the key infrastructure. Most of
the existing DRM systems use ”obscurity” or smart cards as the basis of
security. Obscurity means that a secret software algorithm is applied, which
hides the key in the client to hinder the user from accessing the content. This
is an economic solution as it does not require additional hardware and it is
also supported in legacy systems. The security of this method is, however,
only very limited, as the user can obtain the key easily, when he discovers
the algorithm used for the obfuscation. An example for such a system is
the Windows DRM system [16] or the FairPlay system [4]. More security
is provided by smart cards, which are secure cryptographic devices capable
of storing keys securely. They have the disadvantage that there are many
types of smart cards and each type requires specific hardware and drivers.
To overcome this disadvantage the Trusted Computing Group (TCG) [29]
developed the specification of the Trusted Platform Module (TPM) [103],
which is basically a smart card with a standardized interface and capabilities.

4 CHAPTER 1. INTRODUCTION

Furthermore, the TPM is by default built into many platforms so that no
additional secure hardware is required in the client. For this reason, the
TPM is used in this thesis as a security basis for content management and
several concepts are presented to enhance the protection of content.

1.2 Existing systems and requirements

There are a high number of systems available which enable the manage-
ment and protection of content. Most of the systems differ inherently from
the concepts and the systems described in this thesis, because they have
different properties and requirements.

A number of systems are proprietary and they do not provide any spec-
ifications or descriptions of their architecture. One reason is that many
systems use obscurity as their security basis. In order to prevent users from
circumventing this security mechanism, the architecture and the functional-
ities of these systems are kept secret. Another reason is the business model
of the companies, which want to prevent competitors in the market realizing
systems or devices with similar functionalities. This would decrease their
influence in the market. As a result, the file format and the embedded meta-
data are proprietary and thus incompatible with other systems or devices,
which would provide similar functionalities. This lack of interoperability
hinders the exchange and usage of content. Therefore, this thesis deals with
specifications and standards which are published with the aim to achieve
interoperability.

There are a couple of systems whose specifications are published, like the
afore mentioned system from the Open Mobile Alliance (OMA) [21]. These
systems, however, are usually limited to a specific domain. They also do not
provide efficient functionalities for the license management or support for
Trusted Computing technologies. In contrast to that, the MPEG-21 frame-
work is broad in scope and supports a wide range of application domains and
functionalities. There are other systems based on MPEG-21, which require
a thorough evaluation. This evaluation is presented in section 2.3.1.

Another aspect is that the focus of most content management systems is
the centralized enforcement of rights and usage constraints on the content.
The authors or publisher of content primarily want to ensure that only
the granted rights are allowed, which restricts the user in the usage of the
content. The aim of the software is to enforce these usage constraints. The
aim of this thesis is to achieve a decentralized system, which ensures only

1.3. PROBLEM STATEMENT 5

confidentiality and integrity of the content. The user is not limited in the
usage of content; however, the adherence of the rights remains still in his
responsibility.

The security basis is another aspect in content management. Generally,
the security basis is not defined in the specifications of the majority of the
DRM systems and its realization depends on many factors like the business
model or the application domain. The Trusted Computing Group specifies
the TPM as an interoperable and secure device, but its functionalities are
not exploited in current content management systems. The aim is to use
some functions of the TPM in content management to enhance the security
of these systems. A description of the relevant functions and the differences
to existing concepts is shown in section 3.3.

1.3 Problem statement

The developed concepts in this thesis focus on free distributable content
and the goal is to improve its management and sharing. Free distributable
content is the content that can be shared without costs. It can be of any
type, which makes it difficult to manage, as there is no common format or
generalized information within the files. Nevertheless, the content has some
information in common, which is currently stored apart from the content.
The identified common information consists of the license information, in-
tentions of the license, relationships between adapted content, and reference
to the author.

The concept in this thesis overcomes this problem by specifying a su-
perior file and metadata format, which enables the attachment of common
information directly to the content. To develop such a format, it has to
be defined what license information is required and how this license infor-
mation can be adequately integrated into the file format. Furthermore, the
intentions of the licenses should be converted to a machine-readable repre-
sentation, which enables the automatic processing to assist the user in the
management of the content. This enables for example the software to notify
the user, if it detects that he intends to perform an action which might in-
fringe the license. In particular, the adaptation and aggregation of content
are two challenging actions, which require further investigation to realize
assisting functionalities for the user.

Another aspect for free distributable content is the reference to the au-
thor, which needs to be investigated. A clear reference is required to express

6 CHAPTER 1. INTRODUCTION

the attribution of the content to the author and to inform about important
events of his content. It has to be determined how this reference can be real-
ized and which additional functionalities are required to inform the author.

Furthermore, the development of protection mechanisms for content rel-
evant to security is another important aspect in this thesis. The aim is
to ensure authenticity, integrity, verifiability and confidentiality of content.
The Trusted Computing technology provides a security basis to achieve a
protection with these properties. A key management architecture has to be
defined, which enables the encryption and signing of content. Furthermore,
qualified timestamps from the TPM prove the existence of a content at a
specific point in time. It has to be shown how these timestamps with their
special structure can be supported and integrated into the existing stan-
dards. The key management and the timestamps also require modifications
to the MPEG-21 framework and an optimal method for their integration
needs to be elaborated.

Another aspect is the user management, which is required for the pro-
tected exchange of content. To ensure authenticity of users, the OpenlD
system is combined with the Trusted Computing technology. The thesis
proposes a concept of how the functionalities of the TPM can be applied
within the OpenlD system to enhance the authentication mechanism.

1.4 Overview of the contributions

This thesis presents a system which enhances the management and the
protection of content in several aspects. The management of free distributable
content is improved with a specialized file format and a selected set of meta-
data, which enhances the sharing and reuse of content. The metadata con-
tains the information, which is common to the free distributable content.
The developed improvements provide the following properties:

Open file format based on standardized technologies

Support for any content independent of its type

Enhanced license information and specification

Embedding of author and creation information

Assisted adaptation and aggregation

Feedback mechanism

1.4. OVERVIEW OF THE CONTRIBUTIONS 7

These properties are realized on the basis of the MPEG-21 framework,
which are selected and combined to create a concise solution for free dis-
tributable content. The details of these functionalities and their representa-
tion in MPEG-21 is presented in section 2.4.2.

Another aspect is the protection of content, which is achieved with the
application of the Trusted Computing technology within the MPEG-21 stan-
dards. To protect the storage and exchange of confidential content, the key
management functionalities of the TPM are integrated into the MPEG-21
standards. This enables a secure and interoperable exchange of the protected
content. Furthermore, a concept is presented to integrate timestamps cre-
ated by the TPM into signatures. This enables the ability to prove the
existence of a content at a specific point in time. Another concept investi-
gates the authenticity of the user for the content management and applies
the OpenlD authentication system to verify the identity of users using the
Trusted Computing technology.

Finally, a prototypical implementation of a content management system
is presented, which contains realizations of all presented concepts combined
in a single system. The implementation applies the MPEG-21 standards and
the Trusted Computing technology for the management and the protection
of content.

This thesis is organized as follows: chapter 2 introduces and describes the
concepts to enhance the sharing of content. After that, chapter 3 presents
the methods for the protection of content using Trusted Computing. Finally,
chapter 4 presents the implementation of the previous concepts.

Chapter 2

Metadata for sharing content

The publication and the sharing of content is an important aspect of
modern society. It fosters the exchange of information, interaction between
people and collaboration to achieve complex goals. The amount of shared
content increases permanently. The steady advancement of the Internet also
increases this demand and the exchange of content will gain more and more
in importance. In this chapter, different aspects of content and different
ways of publication are presented. The deficiencies in the current content
sharing lead to a set of requirements that allow the improvement and simpli-
fication of the current state. A system is proposed that can overcome these
limitations.

2.1 Fundamentals

In this thesis, the term ”author” represents the creator of the content
and the term ”user” is any person, which has access to the content within
the system. The term ”content” is used for data, information or knowledge
within the electronic communication domain. Metadata for content is an
important aspect, because it has significant impact on the management of
content. This is shown in examples for the two options of content exchange:
centralized services or decentralized files.

The exchange of content with a centralized service uses a common party
that stores, indexes and presents the content to the user. The user can
browse the content and eventually view, edit or retrieve it. This option is
used in web content management systems, where the content is stored in
a repository, and a software presents the content via a web server to the

2.1. FUNDAMENTALS 9

user. The content in the repository is indexed and usually also enriched
with additional information to enhance the searching and browsing of the
repository. The user profits from this metadata, but a disadvantage is that
for any operation, the user requires a connection to the service. When the
user downloads the content from the service, he generally cannot use the
metadata anymore, because the repository uses a proprietary format and
the metadata cannot be retrieved from the repository without efforts.

A decentralized transmission of content, for example from user to user,
generally uses files for the transportation and the exchange. Such a file can
either contain a single content like a video file or multiple content like an
archiving file. These files are transferred to the recipient, which are called
consumer in the rest of the thesis. The consumer directly receives the content
and he can use the content without a connection to the provider. Generally,
however, the consumer does not receive any information about the author or
the licensing of this content, because the files do not contain metadata with
this information. A potential solution can be, for example, the embedding
of a license in an archive as a separate file, but the relation between the
license and the content also gets lost when the content is extracted from
the archive. Metadata is thus an important factor, because it is required in
many situations, but the integration and interoperability of the metadata
has to be improved.

One part of metadata is the specification of the intellectual property of
the content. The intellectual property is usually described in a license, which
contains terms from the author defining how the content may be used. A
license consists of three parts: the licenser, the licensee and the terms of the
license. The licenser is the party who holds the rights on the content, e.g.
the author. The licensee can be a person, organization or everybody. The
license terms describe the granted rights of the licenser to the licensee.

There are many different types of licenses e.g. licenses for software or
contracts between specific parties. A special form of license is used when
the licensee allows the free distribution of the content. The next section
introduces free distributable content and its licensing to show the properties
for this type of publication.

2.1.1 Free distributable content

Free distributable content is defined as content that can be perceived and
distributed for free. Many of the free distributable content is ”open content”.
This content was created by authors who want to share the content with the

10 CHAPTER 2. METADATA FOR SHARING CONTENT

public and want to enable its reuse. The author grants a permission like the
free distribution or the reuse within a specific type of license, also called an
open content license. In this license, the author can specify in a legal way
how other people may use the content.

It exists already a remarkably high volume of open content, and the
amount of new content increases steadily. Open content comes from a gen-
eral movement to openness and reuse that can be found in many different do-
mains. One well-known example is the open source movement which evolved
together with the components of the operating system Linux. Most compo-
nents of Linux are published as open source code using a license certified by
the Open Source Initiative [22]. These open source licenses were designed
for the application on source code. In contrast to that, the open content
movement is not limited to source code. It is more general, because open
content can be any creative work independent of the type or the domain.
In particular, the distribution and availability of content in the multimedia
domain is growing rapidly. Examples of such repositories with open content
are sharing websites like the Wikimedia Commons [31]. In April 2010, this
repository already contained over 6.4 million media files [32], which shows
the success and importance of open content.

The license of this content is a central aspect, because with this license
the published content can be automatically shared and reused. Several orga-
nizations have developed concrete licenses for this purpose. One wide-spread
organization providing this type of licenses is Creative Commons [9]. Some
of their licenses are also compatible to the common GNU licenses, which
shows the importance and generality of the licenses defined by Creative
Commons. Each of these licenses has different properties, which allows the
author to choose the license with the adequate properties he wants to ap-
ply. Some of these licenses fulfill the criteria of open content and allow the
sharing and reuse of the content. Other licenses contain more restrictive
constraints, for example they do not allow the reuse of the content.

Licenses that do not allow the reuse are often applied when the content
contains information that is in a final state and should not be adapted.
One movement using these licenses is the "Open Access” initiative. Open
Access fosters the open publication and exchange of public-funded research
results. These results are available to the public for review and to foster the
technological progress, but the content may not be adapted for example.
The impact of Open Access in science can be seen in the Open Access
Declaration [6], which was developed and signed by 255 world-wide scientific
institutions and organizations in 2003.

2.1. FUNDAMENTALS 11

These and other organizations promote and support free distributable
content. There are, however, several problems hindering its exchange and
distribution. One example is content sharing websites, where content using
a specific license can be searched and browsed on the web interface. Nev-
ertheless, once the content is downloaded, the license is no longer attached
to the content, or only the human readable license text is embedded within
the content. The content cannot be automatically organized or searched
without the manual recreation of an index. This increases the effort for
the organization and management of content between different systems. In
this thesis, this and other problems are solved by using the technologies
and standards developed by the MPEG group. The next sections give an
introduction to these technologies and standards.

2.1.2 Extensible Markup Language

The Extensible Markup Language (XML) [41] is a basic standard, which
allows information to be declared and structured in a text based format.
The standard was specified by the World Wide Web Consortium (W3C)
and is used in several international standards for the structuring of infor-
mation. XML is a machine-readable format, which can be processed and
implemented effortless. It is wide-spread in many applications and thus a
good basis for interoperable standards.

2.1.3 MPEG standards

The MPEG group is a working group of the ISO/IEC association, which
consists of the International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC). The MPEG group is
responsible for the standardization in the coded representation of digital
audio and video and related data. The developed standards have a high
impact in the multimedia sector and already many devices apply MPEG
standards for the representation of multimedia content.

Among other standards, the MPEG group has developed the MPEG-7
and the MPEG-21 framework, which are sets of standards for the interop-
erable use of content between different systems. Furthermore, the MPEG-
group has specified the MPEG-A standards, which integrate other standards
in application specific formats. The next section presents a specific part of
MPEG-7, which is relevant in this thesis. After that, the other mentioned
MPEG standards are explained.

12 CHAPTER 2. METADATA FOR SHARING CONTENT

2.1.4 MPEG-7 Multimedia Description Schemes

MPEG-7 [86, 87] specifies a set of standards for the representation of
metadata, which describes multimedia content. This metadata can be used
for example for the management, the creation, the consumption, the gov-
ernance and the organization of content as well as for the representation
of user information. One standard of MPEG-7 defines a binary represen-
tation of this metadata, while the other standards use XML as their basic
format. The specified metadata describes information about the content,
independent of its type. The MPEG-7 standards support thus a wide range
of application domains and foster the interoperability of multimedia content.

One part of MPEG-7 is the Multimedia Description Schemes standard [64,
94], which is also known as ISO/IEC 15938-5. It defines an elaborated sys-
tem of XML schemes for the description of content. The standard specifies
the syntax of several schemes, descriptors and their databases. One part of
the standard is the scheme for media description, which represents informa-
tion for the creation, the production or the usage of content. The creation of
content is described with a descriptor in the scheme: ”CreationDescription-
Type”. It contains information about the content like the title, the license
or the creator.

This is a short introduction to MPEG-7, which explains the basic infor-
mation for the following sections. The next section introduces similarly the
relevant standards of MPEG-21.

2.1.5 MPEG-21

MPEG-21 is a framework of standards for the consumption and distri-
bution of multimedia content [46, 45, 68]. It supports trading of content as
well as rights and protection mechanisms, adaptation and reporting. The
MPEG-21 standards can be understood as a set of tools, which need to be
combined to realize a comprehensive solution for a specific application do-
main. The standards are independent of the type of content, as they specify
generic methods for the description and processing of data. They specify
an interoperable infrastructure for the creation, the consumption and the
distribution of content.

The MPEG-21 standards are also a basis for the development of DRM
systems, because they define basic tools for such systems. In the past, the
term Digital Rights Management was misused for the enforcement of busi-
ness interests in certain market segments, which led to an incompatibility

2.1. FUNDAMENTALS 13

of current systems. MPEG-21 tries to overcome these limitations with a
generic and interoperable framework, which can serve as a basis for the
development of compatible systems for the management of content. The
MPEG-21 standards are thus a good basis for DRM systems, which have
the focus on the interoperability between different implementations or ap-
plication scenarios. For this reason, the MPEG-21 framework was chosen as
an important set of tools for the development of the presented concepts in
this thesis.

The MPEG-21 standards introduce the term ” Digital Item” as a superior
structure of content. It packages the metadata in a single element to enable
the description, the structuring, the identification and the referencing of
content. The Digital Items are the fundamental objects in the whole MPEG-
21 framework. Their definition and processing in MPEG-21 is explained in
the following sections.

2.1.5.1 Digital Item Declaration (DID)

The MPEG-21 part 2 specifies the Digital Item Declaration (DID) [70,
44] using the identifier ISO/IEC 21000-2. It defines the term Digital Item as
"a structured digital object with a standard representation, identification and
metadata within the MPEG-21 framework’. A Digital Item comprises the
content and all metadata in a single re-identifiable package. The standard
defines the structure of the Digital Items and the semantic of the elements
in the structure. For this purpose, the standard uses XML schemes and
specifies the syntax and the semantic of the XML elements. Within the
DID, the content is called resource, which can be either embedded directly
or referenced with a link into the Digital Item.

Furthermore, the DID standard defines the Digital Item Declaration Lan-
guage, which is the fundamental structure for the delivery in the MPEG-21
framework. The language allows an aggregation of several Digital Items or
sub-items within a Digital Item to be created. This provides the possibil-
ity to combine several Digital Items in one DID document and to structure
them within the document. A DID document is the highest level of the
structure, which is usually associated with a file or a media stream. An
example of such a file is a music album. The album is a Digital Item, which
is the highest level in the file. The album contains several sub-items, which
represent the tracks of the album.

The Digital Item itself is structured in several elements allowing the
embedding of additional metadata or content in the Digital Item, or for

14 CHAPTER 2. METADATA FOR SHARING CONTENT

these to be attached. The structure supports for example the embedding of
supplementary metadata about the content or the insertion of an additional
content to increase the user experience.

The Digital Item Declaration Language also allows to insert a content in
different versions in a Digital Item. These versions can then be distinguished
with choices, which show the differences between the versions. It can be
used, for example, to let the user decide which version of the content should
be presented. These mechanisms offer a high range of flexibility and enables
the usage of the standard in a wide scope of application scenarios.

In the rest of the thesis the capitalized term ”Digital Item” or ”Item”
refers to the definition according to the DID. The lowercased term ”item”
is used with the general meaning in English.

2.1.5.2 Digital Item Identification (DII)

The identification of the Items is specified in the MPEG-21 part 3, the
Digital Item Identification (DII) standard [71]. This standard has the ISO
number ISO/IEC 21000-3 and defines the usage of identifiers on the basis of
the Uniform Resource Identifiers (URI) standard [39]. It allows the assigna-
tion of unique and persistent identifiers to the Items and resources within
the MPEG-21 framework. These identifiers are independent of the type of
content and can be structured hierarchically. The DII standard does not
define a new scheme for identification of Items or resources. It specifies the
method by which new or existing identification schemes can be categorized
and embedded into an Item. Examples of existing identification schemes are
the International Standard Book Number (ISBN) [57] and the International
Standard Recording Code (ISRC) [58]. Both schemes are compatible with
the method of identification in the DII standard and can thus be applied to
an Item.

Furthermore, the MPEG group introduced relationships between Items
in the Amendment 1 [72] of the DII standard. These relationships allow to
relate the Items to each other and to specify the type of this relationship.
Other Items are referenced within an Item using their unique identifier.
Each Item may have multiple relationships to other Items. The type of each
relationship is defined in the MPEG-21 Rights Data Dictionary standard,
which specifies nine different types of relationship. These types declare, for
example, that an Item is a component of another Item or that an Item is an
adaptation of another Item.

2.1. FUNDAMENTALS 15

2.1.5.3 Rights Expression Language (REL)

The MPEG-21 Part 5 specifies the Rights Expression Language (REL) [74,
107] which is also called ISO/IEC 21000-5. The REL is a versatile and a
flexible language, which expresses the granted rights over a content, also
called rights expressions. For this purpose, the REL defines the syntax and
the semantic of an interoperable license, which declares these rights expres-
sions in XML. Such a license is very flexible and can express a wide range of
functionalities. Examples of these functionalities are distribution licenses,
offer licenses, delegation of licenses or revocation of licenses. These func-
tionalities go beyond the scope of this thesis and will not be explained more
in detail.

A license of the REL contains several rights expressions, which express
the rights that are granted to a principal on a selected content from an issuer
under defined conditions. The issuer is an entity, which holds the rights and
grants them to other users. The principal is an entity, which is the target
of the rights expressions, i.e. the rights are granted to the principal. The
principal can be specified in several variants, which allow users as well as
devices to be specified.

The elements of the REL can be classified in core elements, standard
extension, multimedia extension and profiles. The core elements contain
essential elements of the REL, which are required for the basic functional-
ities. These elements include the basic license structure or the variants of
the principal. The standard extension defines elements, which are not essen-
tial in the REL, but still beneficial in many application domains. Examples
of these elements are the declaration of payment for the consumption or
restrictions regarding the territory of the user.

The multimedia extension specifies the syntax and the semantic of the
elements, which can be applied to multimedia content. These elements en-
able, for example, the marking of multimedia content. This part also in-
cludes the rights for the consumption of multimedia content, which are for
example play, print or adapt. These rights are adopted as a reference from
the MPEG-21 Rights Data Dictionary (RDD) [76] standard. This standard
defines these rights in a hierarchical structure to consistently define their se-
mantic meaning. The rights are related to each other in an ontology, which
can be interpreted by humans and are also machine-readable. This enables
the definition of a clear, concise, coherent, integrated and unique set of terms
for the application in the REL.

The last class of elements in the REL are the profiles. Profiles specify

16 CHAPTER 2. METADATA FOR SHARING CONTENT

basically a subset of the previous elements, which are required in a specific
application domain. The result is a concise and balanced set of elements,
which fulfills the needs of the specific application domain. The reduced
complexity of the profiles reduces the efforts for the implementation and
provides interoperability. An implementation conforms to a profile if it
implements the profile completely. Every implementation which conforms to
the profile is thus compatible to another implementation, as both understand
the elements in the profile. As a result, the profiles serve as conformance
points for the implementation and foster the interoperability. As stated
before, profiles are mainly subsets of existing elements, but they can also
introduce new elements if they are required in the application domain. This
flexibility allows the definition of a profile as a complete and comprehensive
solution for the respective application domain. The REL has three profiles at
the time of writing: the MAM (Mobile And optical Media) profile, the DAC
(Dissemination And Capture) profile and the OAC (Open Access Content)
profile. The MAM profile and the DAC profile will not be explained further
in this thesis, because they are profiles for specific application domains,
which are not relevant for this thesis. The OAC profile will be explained in
detail in section 2.4.2.4.

Besides the semantics and the syntax of the elements, the REL defines
an authorization model, which describes the processing and interpretation
of a license in an implementation. It is required when a user wants to
perform a given action and the implementation has to determine whether
the user is authorized for that action. For example, a user wants to play
an Item, which is an audio recording. When the user triggers the action
'play’, the implementation has to check whether the right to play is granted
to the current user. For this reason, the implementation evaluates the rights
expressions within the license of the respective Item. The standard specifies
the method for this evaluation in a mathematical way to obtain identical
results on different implementations. The detailed method is not explained
in this thesis and can be looked up in the MPEG-21 REL standard.

There are other Rights Expression Languages from other organizations
available, which can be also abbreviated as REL. Within this work the
term REL refers only to the MPEG-21 Rights Expression Language unless
otherwise noted.

2.1. FUNDAMENTALS 17

2.1.5.4 File Format

Part 9 of the MPEG-21 framework specifies the MPEG-21 File Format
and has the identifier ISO/IEC 21000-9 [78]. It is object-oriented and ex-
tends the ISO File Format to support the MPEG-21 framework and the
delivery of Items. The file format serves as a container for the DID and the
Items within it. The DID is mandatory in the standard. Furthermore, the
format can contain all or some of the content, which belongs to the Item.
The File Format enables thus the packaging of the metadata and the con-
tent into a single object. This eases the delivery, the distribution and the
adaptation of Items.

A file conforming to the MPEG-21 File Format uses an own identifier,
which allows to recognize a file conforming to the standard. The format
is divided into boxes, which contain the metadata and the content. The
standard specifies the structure of these boxes and the information stored
within them. Furthermore, the orientation on the ISO File Format enables
a flexible processing of the format. If required, the format can be created
as a MPEG-21 file as well as a MPEG-4 file. An implementation can thus
read the same file as a MPEG-4 file or as a MPEG-21 file depending on
the compatibility with the application. The support of MPEG-4 enables
the usage of the format with legacy applications and eases the transition for
these applications to the XML based MPEG-21 format.

2.1.5.5 Event Reporting

The MPEG-21 part 15 is called Event Reporting and is identified with
ISO/IEC 21000-15 [69, 101]. This standard specifies the creation and man-
agement of events in the MPEG-21 framework. An event can be understood
as an action on an Item or as an interaction with an Item, which triggers the
creation and transmission of a report. The standard specifies the method of
requesting a report to an event, the creation of the report and its transmis-
sion. The reports enable the tracking of content, which a provider can use
to have an insight about the distribution and usage of the content.

To insert a request for a report on a certain event the Event Reporting
standard specifies the Event Report Request. The Event Report Request can
be either embedded as metadata into an Item or transmitted as a standalone
Digital Item. It informs the receiving implementation that a report should
be created on the selected event. If an Item contains such an Event Report
Request, the implementation starts to monitor the occurring events and

18 CHAPTER 2. METADATA FOR SHARING CONTENT

triggers the creation of a report on the requested event. The created report
is called Event Report in the standard.

For the creation of an Event Report, the implementation uses the infor-
mation of the Event Report Request to assemble the required information.
For that purpose the Event Report Request specifies which information will
be inserted into the report, to whom the report will be transmitted and the
method of transmission. The information in the report is specified generi-
cally to support all possible types of information and metadata. This enables
the selection of any metadata within an Item and for this information to be
transmitted to the provider of the content. After the creation of the Event
Report, it is transmitted to the given recipient with the respective method
of transmission.

The structure and semantic of an Event Report is also specified in the
standard to achieve an interoperable creation and interpretation between
different implementations. An Event Report can also be transmitted to
several recipients, which enables the notification of many parties at the same
time. Furthermore, Event Report Requests can also be embedded in Event
Reports, which enables an ongoing processing of the reports. If a recipient
receives such an Event Report, the embedded Event Report Request can
request the recipient to take further action. This can be, for example, the
acknowledgment of the reception or the forwarding of the report to another
party.

This is the last standard from the MPEG-21 framework, which is intro-
duced. The next section presents the MPEG-A standards, which partly use
the MPEG-21 framework as building blocks.

2.1.6 MPEG-A

MPEG-A is relevant to this thesis as some of the developed concepts
were adopted and standardized by MPEG within MPEG-A. This section
introduces MPEG-A briefly.

The standards in MPEG-A are identified with the number ISO/IEC
23000 and have the name Application Formats (AF). They specify interop-
erable formats for the interchange, management and presentation of media
for particular application scenarios. The standards can also be seen as ”su-
performats” [48], which combine and integrate required technologies into
a comprehensive and single solution. These technologies are the building
blocks of the AFs and they can be either MPEG standards or specifications
from other organizations.

2.2. PROBLEM STATEMENT 19

Each Application Format supports a limited set of application scenarios
and on the basis of these application scenarios the required MPEG standards
or supplemental technologies are chosen. These building blocks can be either
included entirely or only necessary parts can be selected. The content within
the AFs is not limited to multimedia content. It can be of any type if it is
required by the application scenario. The resulting Application Format is
thus a concise set of selected technologies that are aligned to each other and
that specifies an optimized solution for the predefined application scenarios.

This section concludes the fundamentals for this part of the thesis. The
next section presents the problems which are investigated in this thesis.

2.2 Problem statement

The exchange and reuse of content plays an important role for the open
content and open access movement. There are, however, several problems
hindering the sharing, management and reuse of this content. The free
distributable content as described in section 2.1.1 has much information in
common, but the different types of content in the respective domains hinder
the efficient processing and exchange. The information that the content has
in common is the legal license, the intentions of the license and the reference
to the author.

The legal license text contains a juridical text that is written to express
precisely the granted rights on the content. Many legal licenses have been
developed for the publication of free distributable content, e.g. the already
mentioned Creative Commons licenses. These licenses are available for free
and they can be applied to any content. The license text is then the effective
basis for the decision-making of a court on licensing conflicts between two
parties. The court interprets the license and decides on these issues using
the laws of the country. That is why most licenses are provided in multiple
versions to reflect the different laws in the respective countries and also to
consider the consecutive changes in the law and judicature over time. A sys-
tem, which is capable of managing these licenses and their versions should
be able to precisely identify the license used and requires a global identi-
fication scheme. With this identification, the systems can create indexes
that allow the user to search or browse for specific licenses. Furthermore,
it should be possible to attach the legal license text directly to the content,
so that every consumer can directly access and view the license used at the
time of publication. It is also necessary for some licenses to publish the

20 CHAPTER 2. METADATA FOR SHARING CONTENT

license text together with the content to be legally valid, e.g. the Mozilla
Public License [19]. Furthermore, a URL to a website with some information
about the legal license can assist the consumer to determine if the content
is suitable.

There is a wide spectrum of legal licenses with an enormous variety
in conditions and properties. These licenses can be characterized with a
small amount of principal properties, which appear in most of the licenses.
Creative Commons determined these principal properties and defined a set of
licenses according to these properties. Thus, the licenses defined by Creative
Commons can represent a wide range of the existing license spectrum. In
this thesis, these licenses are examined in detail and applied substitutional
for most of the other existing licenses.

Another aspect is the automated processing and interpretation of the
license. This has several advantages, which can be seen in an example for
open source software. Currently, the license of the source code is added
as an extra file or directly embedded in the source code. Neither method
allows to automatically determine and process the license, because every
license has its unique text and the text has to be searched everywhere in
the source code, which is very complex. This problem is even more complex
in big software projects, which consist of several components, which are
licensed differently. This makes it difficult to determine the correct license
for the whole project. The compatibility of all licenses has to be checked
to determine which properties the resulting license must have. It is in the
interest of the author to find out the correct license to avoid legal dispute
subsequently. If a piece of software is able to interpret the license, it can
assist the user to determine the correct license and to respect all licenses from
the components. This interpretation cannot be performed on the license text
directly, because the text can only be interpreted by a human being. The
text has to be converted to a machine-readable language, which a program
can interpret and process. A method for the conversion has to be defined
and the capabilities of this mapping have to be examined. Furthermore,
the machine-readable license is only a representation of the legal license,
which the software can use in different ways to assist the user. The different
possibilities of utilization have to be determined and discussed.

Many licenses want to foster the sharing and reuse of content; however,
some restrictions must still be respected. A common restriction is that the
content should have a permanent attribution to the author declaring who
is the rights owner and the licensor. This information is currently either
individually embedded in the content itself or only loosely connected to the

2.2. PROBLEM STATEMENT 21

content. Additionally in the case of adaption or aggregation of content, the
author of the original content has to be referenced. This is typically also
a requirement in the license that the adapted content should reference the
original content to specify its source. For these use cases, a solution has to be
found that allows to respect these restrictions and to fulfill the requirements
of the license.

Furthermore, an author may wish to receive some feedback about the
usage of the content even after the publication. The feedback is a notification
on certain usage of the content, which is sent to the author. The received
notifications could be used to determine, for example, the distribution or the
popularity of the content. For this purpose, the structure of this notification,
the triggering event and the transferred data have to be specified as well as
the method of transportation has to be investigated.

Furthermore, a global identification of the content is required. On the
one hand, to be able to recognize a specific content, on the other hand,
to unambiguously reference other content for the feedback, the adaptation
and the aggregation. An identification scheme has to be chosen, which is
scalable and which supports a hierarchical management of the identifiers
using multiple coordinating authorities.

All this information needs to be bundled with the content into a package
for the release. To support the exchange and the sharing of the package,
the transportation in a file is the straightforward solution. The format of
the file has to be specified in detail. There are a large number of existing
file formats, which are potential candidates. The optimal format has to be
found regarding the complexity of integration and interoperability to the
existing formats. The format should also be extensible to allow an evolution
in the future development.

The MPEG group has developed several standards for the coding and
the representation of multimedia and other data, which are widely deployed
and accepted in the market. The MPEG-21 framework is one example where
the MPEG group has specified a powerful set of standards that can fulfill
many needs for the interoperable usage of content between different systems
and devices. Each standard in MPEG-21 was developed for a specific func-
tionality, which is fulfilled as comprehensively as possible to allow a wide
application of the standard. Although the standard provides a solution for
the demands of the market, this wide approach hinders the application of
the standard, because the integration and implementation of the standards
require a large effort in the development. For particular application do-
mains only a minimal and concise set of technologies is required to create

22 CHAPTER 2. METADATA FOR SHARING CONTENT

an adequate solution. This is the concept of the MPEG-A standards, which
contain specifications that are limited to particular application scenarios.
A MPEG-A standard selects and combines parts of other standards in a
concise specification that can be adopted and implemented. This selection
and combination of standards was performed as part of this work. It has to
be executed precisely to achieve a minimal and optimal basis for interoper-
ability in the application domain.

2.3 Comparison with other systems

This section presents a comparison to related systems which share some
commonalities with the presented work in this thesis. There are a large
number of existing systems, which manage content using licenses. In par-
ticular, the wide distribution of open content and its licenses increases the
number of relevant systems significantly. To limit the comparison, only sys-
tems based on the MPEG-21 standards or the Creative Commons licenses
are considered.

2.3.1 MPEG-21 based systems

The application scope of the MPEG-21 framework is very wide as it
provides technologies applicable in many different domains. One principal
domain is DRM, which defines a system to govern and protect the usage and
the distribution of content. In the past, the term was frequently used for the
governance of multimedia content as a mechanism for copy protection. This
created a negative impression in the perception of these systems. These are,
however, not directly related to the technology and mechanisms required for
the implementation of Digital Rights Management systems. Many systems
for Digital Rights Management of multimedia content were developed and
are available in the market. However, the majority of the systems are closed
source and their specification is not publicly available. They can thus not be
examined for the application of MPEG-21 technologies, which is required to
determine their relevance for this thesis. For this reason, this thesis presents
and compares only the systems whose specifications are publicly available
and can be compared to the concepts of this thesis.

2.3. COMPARISON WITH OTHER SYSTEMS 23

2.3.1.1 Axmedis framework

One system based on MPEG-21 is the AXMEDIS framework [5], which
is the abbreviation for ” Automating Production of Cross Media Content for
Multichannel Distribution”. It is a comprehensive framework for business
dealing with content management and it provides a solution for several plat-
forms and channels along the whole value chain. AXMEDIS supports a large
number of business models and deals with the production, the management,
the protection and the distribution of content.

For the protection and the rights management, it is based on the MPEG-
21 framework and uses the MPEG-21 REL standard to specify the licenses
for the content. It also uses the MPEG-21 Event Reporting for the statis-
tical surveillance of the content. The AXMEDIS framework concentrates
on business models and content protection for distributors with a variety
of functionalities. It focuses on the business to business or business to cus-
tomer distribution and the control of the distribution of the content. This
is required as the content has a value, which should be protected.

This is in contrast to the concept of this thesis, which enhances and
eases the distribution of the content using MPEG-21. The content is avail-
able for free and a restriction of the distribution is counterproductive. The
AXMEDIS framework thus has a different focus in the content management
and the application of the technologies of the MPEG-21 framework. This
is also perceivable in the license management. AXMEDIS concentrates on
the creation, the processing and the enforcement of the rights expressions in
the licenses and provides mechanisms for the expression of contracts. The
focus in this thesis is the representation of licenses for free distributable
content like the ones from Creative Commons using MPEG-21 technolo-
gies. AXMEDIS has no support for such licenses or mechanisms for their
management.

2.3.1.2 Digital Media Project

The Digital Media Project (DMP) [11] is an organization that consists
of several universities and companies. Their goal is to develop specifications
and software for the promotion of Digital Media to the consumer while the
rights of the owner should be respected. The DMP published the specifica-
tion of the Interoperable Digital Rights Management Platform [13], which is
still under development in cooperation with the MPEG group. Several parts
of the specification were contributed to MPEG, which were standardized for

24 CHAPTER 2. METADATA FOR SHARING CONTENT

example in the Media Streaming Application Format or the MPEG-21 REL
DAC profile. The specification is developed further with the specification of
the MPEG Extensible Middleware (MXM) and the Advanced IPTV Termi-
nal (AIT) standards in the MPEG group.

The Interoperable Digital Rights Management Platform is implemented
in the Chillout software, which is also the reference software of the speci-
fication. The specification and the software are based considerably on the
technologies in MPEG-21 to realize a majority of the functionalities. Some
functionalities not supported by MPEG-21 are realized by own developments
in the DMP project. The resulting software consists of several independent
devices, which have a clear predefined task and communicate with each
other using a defined set of protocols. The DMP project also adopted the
developed MPEG-21 OAC profile in the Chillout software, which enables
the representation of Creative Commons license. This functionality is in-
cluded to increase the scope of the software and is considered as a form of
lightweight DRM in the whole concept of the specification.

The DMP project has a strong focus on the protection of the rights of
the creator or the rights holder. It supports a number of use cases, which
are required in the classical understanding of DRM systems for multimedia
content, for example home domains. A home domain allows a consumer
to use a specific content in a set of devices, which he or she declared be-
forehand as his property. The specification supports a sizable set of rights,
which enable a detailed declaration and enforcement of rights on the con-
tent. Furthermore, the DMP project developed several elaborated protocols
and messages, which are required for the implementation of heterogeneous
devices in different levels of the value chain from the creation, the distri-
bution to the consumption of content. This differs from the focus in this
thesis, which concentrates on the declaration of rights as information to the
consumer and not on the enforcement of these rights. The representation
of the Creative Commons licenses is integral to the concepts in this the-
sis. The DMP project also does not specify details about the enforcement
of the rights like cryptographic concepts, which are required to ensure the
correct interpretation and processing of the rights. The following chapter of
this thesis describes such cryptographic concepts, but with the focus on the
protection of the content and not the enforcement of the rights.

2.3. COMPARISON WITH OTHER SYSTEMS 25

2.3.2 Applications of Creative Commons licenses

Other initiatives and organizations enhance the content and license man-
agement of free distributable content. As this thesis concentrates on the
representation of the licenses defined by Creative Commons, this section
presents other similar projects which apply these licenses. Although these
projects use other technologies than MPEG-21, they differ to the presented
concepts of this thesis.

2.3.2.1 Creative Commons Rights Expression Language

Creative Commons specifies and publishes its licenses in three different
formats: a human readable license deed, the legal license text and a machine
readable code. The human readable license deed is a simplified presentation
of the license, which is easily and quickly understandable for the end-user.
The legal license text is the license, which is legally valid and written as a
juridical text. The machine readable code is a representation of the license,
which is investigated more in detail.

The machine readable code is defined as the Creative Commons Rights
Expression Language (ccREL) [36], which specifies descriptive metadata to
represent the licenses from Creative Commons in a machine-readable Rights
Expression Language. It has the goal to enable the automatic processing
and interpretation of the license of a content for search engines and other
applications. The ccREL is specified in the Resource Description Frame-
work (RDF) [83] and the Extensible Metadata Platform (XMP) [34]. Both
standards describe methods to formalize information in a machine readable
format, which is compatible to the HTML technology of the Internet. The
ccREL allows the licenses to be identified and for a reference to a chosen
license to be clearly declared. Furthermore, the four main properties of the
licenses can be declared, which are similar to the description of the human
readable license deed. A license declaration, conforming to the ccREL spec-
ification, is attached as additional information to the content, which can be
interpreted by applications understanding the format.

Creative Commons developed implementations which are capable of pars-
ing and presenting such metadata. One implementation is a plug-in for the
Mozilla-based applications, which detects a ccREL license and presents an
icon in the status bar of the application to indicate the presence of a Cre-
ative Commons license. Another implementation is a basic editor for the
creation and the modification of a license declaration conform to the ccREL.

26 CHAPTER 2. METADATA FOR SHARING CONTENT

The ccREL specifies a declarative method of representation, which en-
ables the identification and the assignment of the licenses to content. It
does, however, not contain information about the interpretation and the
processing of the machine readable code. For example, it does not contain
information about how the license should be presented or at what point in
time. It is up to the application to process and to present this information
to the user. This is a significant disadvantage, because the processing of
the license information should be identical in different implementations to
achieve interoperability and to enhance the user experience.

2.3.2.2 Open Mobile Alliance

The Open Mobile Alliance (OMA) [21] is a consortia of several companies
which have developed open and interoperable standards for the mobile phone
industry and the wireless communication networks. Omne of the specified
standards is the OMA DRM Rights Expression Language (OMA REL) [88],
which specifies a Rights Expression Language for the controlled consumption
of Digital Content on authenticated devices. The OMA REL is based on
the Open Digital Rights Language (ODRL) [20], which specifies the rights
over the content similar to the MPEG-21 REL, but with a different syntax
and semantic.

The ODRL also contains a support of Creative Commons licenses and
integrated this support in the standard as a separate profile. It is specified
as the ODRL Creative Commons Profile [55] and enables the representation
of the licenses and their semantic directly as a part of the ODRL. Because of
this seamless integration, the profile benefits from the automated processing
and the interpretation mechanisms of the ODRL. The extensions of the
ODRL Creative Commons profile can be embedded within the declaration of
the ODRL at a desired point, which enables a precise choice of the method
of presentation of the license. This realizes a more powerful method of
expressing the licenses.

Although the ODRL provides this precise method of expression, it lacks
in the detailed representation of the Creative Commons licenses. The repre-
sentation orientates predominantly on the ccREL from Creative Commons,
which specifies the license in native terms in a declarative form. The ODRL
Creative Commons profile adopted the terms of the ccREL and included
them in the specification. Thus, the specification does not define a semantic
meaning of the adopted terms, which prevents the automatic interpretation
of the license properties. The goal of this thesis is to enable this inter-

2.4. METADATA AND FILE FORMAT SPECIFICATION 27

pretation by mapping also the detailed license properties of the Creative
Commons licenses to standardized terms, which can be automatically inter-
preted. This is achieved using the MPEG-21 framework and in particular
the MPEG-21 REL.

This concludes the comparison to other systems. The next sections ex-
plain the developed concept for the management of content in detail.

2.4 Metadata and file format specification

This section presents the descriptive metadata of the developed solution.
This work was contributed to the Moving Picture Experts Group (MPEG) [17],
which is a working group responsible for the development of standards for
coded representation of digital audio and video and related data. The MPEG
group accepted the work as an International Standard with the identifier
ISO/IEC 23000-7 and the full name ”Information technology - Multime-
dia application format (MPEG-A) - Part 7: Open access application for-
mat” [80], further called Open Access Application Format. An article de-
scribing the standard was published in [97] and [96]. Within the MPEG
group the work was discussed and improved in several meetings with inter-
national representatives of other countries interested in the work. The rights
expressions for this standard are specified separately in ISO/IEC 21000-
5/Amd3 with the name "REL OAC (Open Access Content) profile” [75].
These rights expressions were developed based on the requirements of the
Open Access Application Format.

Furthermore, an implementation of the standard was developed and
standardized as reference software of the Open Access Application Format
as "ISO/IEC 23000-7/Amd 1 - MPEG-A - Open access application format:
Conformance and reference software” [81], which is a part of the Open Ac-
cess Application Format standard. The reference software for the rights
expressions is published within the amendment "ISO/IEC 21000-8 Informa-
tion technology - Multimedia framework (MPEG-21) - Part 8: Reference
software - Amendment 1: Extra reference software” [77]. This is an optimal
basis to achieve interoperability, because it allows companies and organiza-
tions the adoption of the standard for the development of software.

28 CHAPTER 2. METADATA FOR SHARING CONTENT

Creation Distribution Consumption

® 3) /'
53§> ¢ > —*3

Figure 2.1: Basic scenario for the file format and metadata

Some examples for the application of the standards are the publication of
teasers, e-learning material or the release of public funded research results.
This content can be published as public domain or an existing license can be
applied, like the ones of Creative Commons. The publication and sharing
of user-created content is also becoming more and more important in the
web. Another example is the open source movement. The Open Access
Application Format enhances the management of this content, because it
enables the creation of content repositories and provides information for
search engines, which can index and categorize the content.

In the following section the Open Access Application Format is explained
in detail. At first the overall concept is shown as an overview and afterwards
the components are explained in detail.

2.4.1 Concept

The basic flow for the content consists of three steps: the creation, the
distribution and the consumption. This flow is depicted in figure 2.1.

The first step is the creation, in which the author can package his content
into a single file and enrich it with metadata. The content can be any
creative work the author wants to publish and share. It can be of any type,
for example a presentation, a document or an audio file. The author can
combine multiple and different content in the file, for example he can package
presentation slides together with a recorded audio file from the respective
speech. Additionally, the author can add metadata to the content, which
describes the content as supplementary information for the consumer. In
the example of a presentation, this metadata can be the contact details
or a short description of the presentation. Moreover, the author can add
licensing information that defines how the consumer may use the content.

When the author has finished packaging the content, he can release the
file and distribute it to the public or a specific group of people. This is the

2.4. METADATA AND FILE FORMAT SPECIFICATION 29

second step as depicted in figure 2.1. The distributable files conform to the
Open Access Application Format and they are called from now on released
file. In the distribution, the attached metadata increases the visibility of the
content, because it helps the consumer to easily find and to categorize the
content. The consumer does not need to open the file by himself anymore to
get some more information about the content. A released file also supports
search engines, which can use the XML-based metadata to allow consumers
to search for content that matches certain criteria, for example a specific
license. This increases the spreading and enables a more efficient exchange.

In step three, the consumer has received the chosen released file and
wants to view or to use the content. If the content was published with a
license, the consumer is informed about the license terms and he has to agree
to the conditions. This ensures that the consumer is aware of the conditions
and that he knows how he is allowed to use the content. After the consumer
has agreed to the license, he can consume or use the content. After this
basic explanation, the details of the concept are explained in the following
sections.

2.4.2 Components

The described basic conditions and functionalities of the system are re-
alized in a new file format, which is optimized for the effective exchange and
the sharing of content. This format is a minimal point of interoperability,
which allows compliant applications the parsing of the file and to make the
inner content available to the consumer. The embedded content has meta-
data assigned to it, which the application can use as information or as rules
for the processing. As a summary of the previous sections, the following
overall functionalities of the Open Access Application Format are:

Open and standardized file format

Global identification of the published content

Legal license information

Author and Creation information

Machine-readable rights expressions

Adaptation and aggregation of content

Feedback mechanism for the author

30 CHAPTER 2. METADATA FOR SHARING CONTENT

These functionalities and their realization will be described in the following
sections.

2.4.2.1 Technology selection and file format

By means of this list of functionalities the appropriate technologies are
selected and adopted to realize the respective functionality. The MPEG-21
framework provides a comprehensive and interoperable basis for the realiza-
tion for most of the functionalities. The set of standards in MPEG-21 were
examined and restricted to the necessary elements to fulfill the respective
function. Some descriptive functionalities are not provided in MPEG-21.
For these cases the specific parts of MPEG-7 were chosen and integrated
into the specification.

The following standards are included to specify the file format and the
metadata:

MPEG-21 Part 2 - Digital Item Declaration (DID)
e MPEG-21 Part 3 - Digital Item Identification (DII)

MPEG-21 Part 5 - Rights Expression Language (REL)
MPEG-21 Part 9 - File Format

MPEG-21 Part 15 - Event Reporting

MPEG-7 Part 5 - Multimedia description schemes (MDS)

The MPEG-21 File Format provides the overall file format, which contains
the content and the metadata. The other standards specify the metadata of
the content. They are structured hierarchically within the file format, which
is depicted in figure 2.2.

As introduced before, the content as binary data is called resource within
the MPEG-21 framework. The resources are embedded at the end of the
file in consecutive order. The other XML-based MPEG-21 standards specify
the metadata, which describes the resources.

To complete the overview, the XML-based metadata is described briefly.
The whole metadata is framed in the MPEG-21 Digital Item Declaration
(DID). This standard declares the Items, which comprise the content and
its associated information in a single entity. An Item contains a reference to
a specific resource in the file and with this reference, the resource and the
respective metadata are linked. Several Items can be added as a list into

2.4. METADATA AND FILE FORMAT SPECIFICATION 31

MPEG-21 File Format

p

MPEG-21 Digital Item Declaration

N
MPEG-21 MPEG-7 MPEG-21 MPEG-21
ltem 1 | Digital Item Multimedia Rights Event
Identification description Expression Reporting
schemes Language
N~ N NTTEVR SN
Y
N AN~ AN 4~ 4
MPEG-21 MPEG-7 MPEG-21 MPEG-21
ltem 2 | Digital item Multimedia Rights Event
Identification description Expression Reporting

schemes Language

~ < ~_ <~ -

| Ressource 1 {j}

| Ressource 2 ?

2

Figure 2.2: Hierarchical structure of the standards within a file

the DID, where each Item corresponds to a resource. Within the Item the
MPEG-21 Digital Item Identification (DII) specifies identifiers for the Item.
The MPEG-7 Multimedia description schemes are used to add descriptive
information about the content and its license. A machine-readable repre-
sentation of the license is modeled with the MPEG-21 Rights Expression
Language (REL) [74]. The last MPEG-21 standard in the list is the MPEG-
21 Event Reporting [69], which provides a feedback mechanism about the
usage of the content.

Knowing the file structure and the basic relationships between the stan-
dards, the mentioned functionalities of the format will be explained in detail
in the following sections.

2.4.2.2 Content identification

The identification of the content is a central aspect, because it allows
the indexing and recognition of the content. The MPEG-21 Digital Item
Identification (DII) specifies methods to uniquely identify Items, descrip-
tion schemes and the relationships to other Items or identification schemes.
For this work, only the globally unique identification of Items is required.

32 CHAPTER 2. METADATA FOR SHARING CONTENT

The specified identifiers are based on the Uniform Resource Identifiers (URI)
standard [39]. This standard specifies a URI as a string of characters, which
can identify abstract or physical resources. The syntax of this string allows
a hierarchical structure with different levels. This hierarchy can be used
to establish a decentralized and scalable management of the identifiers us-
ing multiple authorities for the different levels. With this scheme, globally
unique identifiers are specified in which each content has its own identifier.
This enables the re-identification of a content that if the identifiers of two
Items are identical, the corresponding content also has to be identical.

Additionally, algorithms for locating an Item, like online resolution ser-
vices are supported. One example of such a resolution service is the Domain
Name System (DNS) resolution system [40]. With this service only the
identifier of an Item is required to locate the Item itself. This mechanism
is particularly useful for ”Relatedldentifiers” but not mandatory. Relate-
dIdentifiers are specified in DII and they create an unambiguous reference
from one Item to another Item. The relationships between the Items can
also be categorized, for example in an adaptation the relationships states
that an Item is the adaptation of another Item. This referencing is also
integrated and is explained in section 2.4.2.7.

2.4.2.3 Legal licenses and author information

The license is a central aspect of the publication, because it defines the
granted permission on the usage of the content. The author can define his
own license with individual conditions or he can choose a generic license, for
example one of the licenses defined by Creative Commons. Generally, it has
to be considered that the author can also assign multiple licenses to a single
content. This is a common practice in cases where there are different groups
of consumers. Such cases include different communities or specific market
segments. Each license is a statement to the consumer, which informs him
about the legal permissions for the usage of the content. Thus, the consumer
is highly interested in the license and demands a clear notice of the license
and its version. It is essential for both sides, the author and the consumer,
to explicitly declare the license used.

There are three ways of license declaration in the system to satisfy this
demand: as a text, a URI or a web page. The declaration as text means
that the license text is included directly in the metadata. This is also often
required, because the license is generally only legally binding in the textual
form. Only the license text expresses precisely the granted permissions and

2.4. METADATA AND FILE FORMAT SPECIFICATION 33

the consumer should use this text to know the granted permissions. This is
particularly important if the author uses an individual license. Therefore,
the embedding of the whole license text is the general approach, although
it is very inefficient, because the consumer has to read and to interpret the
text carefully to determine the granted permissions.

This effort is reduced if the author uses a generic license, which the
consumer possibly already knows or is easy to interpret. In this case, the
consumer only requires an identifier that allows him to recognize the license.
For this purpose, the URI can be used, which contains a unique identifier to
declare unambiguously the exact license and version used. This identifier has
to be globally unique, which can be realized similarly to the identifiers of the
DII with decentralized registration authorities. An example of such a URI
is "http://creativecommons.org/licenses/by/3.0/”, which is the identifier of
one of the licenses defined by Creative Commons.

In this example the identifier is simultaneously also a URL for a web
page. At this URL the consumer can find some additional information
about the license and its properties. This information can assist the con-
sumer in understanding the license more efficiently. Other licenses, which
are identified differently than with a URL, require an additional URL field
to lead the consumer to a web page. This URL can be specified separately
in the format to provide an independent method for the declaration of a web
page with additional license information. It is specified as a related material
to the content within the metadata, to express that the URL only provides
further information about the license.

All three possibilities for the license declaration are realized with the
MPEG-7 Multimedia description schemes (MDS) standard. It is a com-
prehensive standard from which only the CreationDescriptionType scheme
was required and integrated into the Item as descriptive metadata. Further-
more, the CreationDescriptionType contains various descriptive data that
is not essential in the application domain of the system. For that reason,
the CreationDescriptionType was further restricted to a minimal set, which
provides the necessary descriptive metadata.

Besides the declaration of the license, the author is also declared within
this scheme. The author of a content can be either one or several persons.
Several persons are required in the case, when the content is a result of a
collaboration. According to that, the CreationDescriptionType allows one
or multiple authors to be specified. This information is also related to the
license, because it declares the issuer of the license and the attribution of the
content to the author. The attribution is also part of many licenses, because

34 CHAPTER 2. METADATA FOR SHARING CONTENT

it assigns the creation of the content to the author, who wants to show and
to declare this association to the consumer. The author is described with
the following information:

e first and last name,

e name of the organization,
e address,

e e-mail and

e web page.

With this information, the author can be identified and also contacted.
Furthermore, the CreationDescriptionType also contains information about
the title of the Item, the time of its creation and the author of the content.
The title contains a succinct description of the content, which an implemen-
tation can use for the presentation to the consumer. The time of creation
declares the point in time, when the Item was created and published from
the author.

2.4.2.4 Rights expressions

A clear license declaration is important for the author and the consumer.
In section 2.4.2.3, the license identification was eased with the use of a
unique identifier. This identifier, however, does not provide an automatic
parsing and interpretation of the license. This can be achieved with rights
expressions that allow the intentions of a license to be modeled in a machine-
readable way.

The MPEG-21 Part 5 - Rights Expression Language (REL) [74] specifies
a method to declare and interpret such rights expressions. A rights expres-
sion is a permission given to a Principal on a resource from an issuer under
defined conditions. The semantic of these expressions and the authorization
model are defined in this standard. Each permission grants a specific right,
which allows a certain usage of the resource.

The REL provides a method to specify rights expressions with a specific
semantic meaning in XML. The realization of these rights expressions is
not defined in the REL. It is up to the application scenario to define how
the rights expressions are processed and presented to the consumer. This
depends on many factors, like the value of the content or the business model.
For example, the rights expressions can be either enforced or alternatively

2.4. METADATA AND FILE FORMAT SPECIFICATION 35

License

Grant

Principal

Right

Resource

Condition

Issuer

i
it

Figure 2.3: Structure of the rights expressions

only presented as a notification to the consumer. In the case of open content,
it is sufficient to present the expressions to the consumer and to notify him
that he might be not be allowed to perform a certain action.

To support the automated processing and interpretation of the license,
only a limited set of the REL is required. Furthermore, the REL has to be
extended to support some specific properties of the licenses. The resulting
set was standardized as a profile in MPEG with the name OAC (Open
Access Content) profile [75]. The MPEG group created a separate profile
for this set of rights expressions, to ease the integration of the profile in other
applications. One other application using the OAC profile is the MPEG-A
standard Media Streaming Application Format [79].

The rights expressions can be used to provide a variety of functionalities.
To have an overview about these functionalities, the basic structure and the
most important XML elements are explained. The structure of the rights
expressions for this work is shown in figure 2.3.

In the following paragraphs, the names of the XML elements and the
attributes appear in idtalic. The license element is the root element for
the REL. It has two child elements: grant and issuer. The issuer is the
rights holder who created the rights expressions. The grant element can
appear multiple times in a license. It specifies the permission of a right to
a principal on a resource under specific conditions. The right defines the
allowed action on the content and can be for example play or print. The
principal is a person or entity, which is the target for the granted right.
Multiple conditions can be added to a grant, to restrict the granted right in

36 CHAPTER 2. METADATA FOR SHARING CONTENT

Table 2.1: Rights and conditions in the MPEG-21 REL OAC profile

Elements

Rights execute, play, print, adapt, governed Adapt, governed Copy

Conditions copyrightNotice, nonCommercialUse, sourceCode, territory

specific aspects.

The most important elements from the REL are listed in table 2.1. The
underlined elements are not defined in the REL specification or any profile
before the OAC profile. They are defined in the OAC profile, because they
are required for the support of specific license properties.

The elements can be categorized into two different purposes: license rep-
resentation and content rendering. The rights play, print, execute describe
different ways of rendering content. The other rights and conditions enable
the specification of a representation of licenses. Both purposes are explained
in the following sections.

2.4.2.5 License representation

The aim of the rights expressions is to provide a method to express the
intentions of a license in a machine-readable and interoperable way. This
would allow an automated processing of the license, which could assist the
consumer in the license management. The license management is particu-
larly important in cases where different licenses have to be combined for a
superior work. The determination of the license conditions on this work can
be difficult, because each license has to be evaluated separately. This supe-
rior license is only valid, if it is compatible to all other licenses, which are
part of the work. The permissions of this license are thus the combination
of properties that are common to all licenses.

Numerous different licenses exist, which are provided by many organiza-
tions. The licenses often do not differentiate in major points or sometimes
only minimally in some specific conditions. Creative Commons tries to cate-
gorize the existing licenses with the most important properties and wants to
align them to the own set of licenses to achieve a form of compatibility. This
increases the transparency and eases the choice of license. For this reason,

2.4. METADATA AND FILE FORMAT SPECIFICATION 37

the set of licenses from Creative Commons approximately covers the existing
spectrum of licenses and they are a good basis for the development of meth-
ods for their machine-readable representation. In this work, the licenses of
Creative Commons are thus taken exemplary for many other licenses, which
are used in this application domain.

A first draft of a mapping between the REL and the Creative Commons
licenses is shown in [91]. The paper explains how the intentions of the Cre-
ative Commons licenses can be expressed with the rights expressions of the
MPEG-21 REL. The presented mapping allows the basic intentions of the
licenses to be expressed. This draft was further developed and extended
to achieve a concise solution. Although the mapping is well elaborated,
the rights expressions in the REL have no legal relationship with the Cre-
ative Commons licenses. This cannot be achieved, because legal licenses can
contain very specific constraints that cannot be expressed in the REL. One
example is the juridical interpretation of licenses, which depends on the laws
of the country where the content is consumed. It would be possible to pro-
vide separate right expressions for each country, but this would significantly
increase the complexity. For this reason, the set of rights expressions was
kept to a minimum. It describes the basic intentions of the license, which
can be used, e.g. to notify the consumer when he presumably intends to
perform an action that is not allowed in the license.

The right adapt expresses that a content may be adapted and published
again. If the right adapt is granted to a consumer, he is allowed to use the
content and to create a derivation of it. The right governedAdapt is newly
defined in the OAC profile and has a similar semantic as adapt. Furthermore,
it restricts the license on the derived content, which has to contain the
same license and rights expressions as the original content. These elements
foster the reuse of content, because the consumer can determine directly
if he is allowed to adapt the content. The right goverenedCopy grants the
permission to copy the content, but similar to governedAdapt, the license and
the rights expressions have to remain the same as for the original content.

For each permission, a supplementary set of conditions can be added
to further restrict the usage of the content. The element copyrightNotice
is a notice with copyright information for the consumer. It can be added
for example to show the consumer a notice before he performs the asso-
ciated right. The notice can contain, for example, the license conditions.
The element nonCommercialUse declares that the content may not be used
commercially. The sourceCode condition can be applied for source code,
which notifies the consumer that adaptations of the code have to contain

38 CHAPTER 2. METADATA FOR SHARING CONTENT

the original source code or at least its accessible location within the adapted
content.

The principal element as shown in figure 2.3 is an extension that is not
required to model the intentions of the Creative Commons licenses. It was
added to provide a solution for cases, where a license is applied only to a
certain person or a group of people. An example is when a license free of
charge is only granted to students or scientific organizations. In these cases
the principal element can be added to specify that only the respective person
or group is allowed to use this permission. A concrete person or entity can
be selected with an identifier or as a holder of a specific key.

2.4.2.6 Content rendering

The rights play, print and ezecute are used to describe the permissions
on the rendering or the presentation of the content. The author can choose,
for example, to grant the corresponding right with the copyrightNotice to
show a notice each time the consumer views the content. These rights are
defined in the RDD and they can be directly used within the REL. The
rights depend, however, on the type of the content, because the implemen-
tation has to support the type to be able to e.g. play or print it. This
is a disadvantage, because a piece of software cannot process any content
independent of its type. Nevertheless, the rights were included in the stan-
dardized OAC profile, because a design according to the REL and the RDD
specification was preferred.

The REL and RDD specification also leave open how the rights are
realized in a concrete implementation. The rights expressions only declare
the permissions on the content. This allows an implementation either to
include rendering engines for specific content types or to handle the three
rights similarly. An example of such a similar realization is the extraction of
the content, when one of the rights is exercised. Extraction means that the
content can be saved directly in a separate file. Therefore, the consumer can
open the file with an application that supports the given content type. This
is a generic solution, which also works independent of the content type and
is adequate for the publication of open content. For more valuable content,
the implementation of rendering engines is the accurate approach.

2.4. METADATA AND FILE FORMAT SPECIFICATION 39

Adaptation
and aggregation

Author

Is Adaptation\

Related Identifiers

Figure 2.4: Example of adaptation and relationships

2.4.2.7 Adaptation and aggregation

This section describes the methods for the support of adaptations and
aggregations in the format. The adaptation and the aggregation of content
are a central aspect to ease the distribution and the reuse of content. For
free distributable content, adaptations are often even desired, because the
content evolves by successive modifications from different authors. In this
work, the terms adapt and aggregate are used according to the correspond-
ing definitions in the RDD. Aggregation means that an author copies and
possibly combines different content into a new collection. The adaptation is
defined as the copy of a content and the modification of this content. The
aim is to allow an author to freely combine newly created, adapted and ag-
gregated content into a single file, which can be published. Figure 2.4 shows
an example of the adaptation and the aggregation.

The figure shows an author creating a new file which contains both ag-
gregated and adapted content. The stars represent Items which contain the
content and the metadata. The green and orange stars are aggregated, the
red star was adapted. In an aggregation, a content is copied together with
its metadata to the new file. To define if such a copy is allowed for the
Item, the author of the original Item can use the right governedCopy. If the
original Item provides the right governedCopy to the consumer, then he is
allowed to perform the copy.

Similarly the rights adapt and governedAdapt express if a content may

40 CHAPTER 2. METADATA FOR SHARING CONTENT

\:

2N g

/

Item23 ltem13

H
q

Figure 2.5: Hierarchy of relationships between derived Items

be adapted. As all these rights are machine-readable, software can use this
information to notify the consumer about the permission. One example for
such a notification is if an author intends to release an adapted content while
the original content does not allow adaptation. The software can recognize
this case and can inform the consumer that the adaptation is not permitted
according to the rights expressions provided with the original content.

Additionally to these rights, the related identifiers from MPEG-21 DII
are used to set a link between the original and the adapted content. Every
Item can have unlimited number of related identifiers. Figure 2.4 also shows
these related identifiers for the adapted Item. These identifiers are set in the
original and the adapted Item on the publication of the adapted Item. This
relation offers advantages in the distribution of the content. A consumer
who has obtained an adapted Item can find the original Item using the
provided identifier. Furthermore, he can also find existing adaptations of
the current Item. The relationships to the adaptations of an Item change
over time, because at any time the Item can be adapted by another user.
Therefore, this information is treated as Annotation (as specified in DID) in
the metadata of the adapted Item. These relations also allow a hierarchical
tree structure to be created, which shows the different stages a content went
through. An example of such a structure is shown in figure 2.5. The figure
shows for example that Item23 is a 2nd level derivative of the Items 1, 2 and
3.

The related identifier has the further advantage that it also specifies
the attribution to the author of the original content. Some licenses require
imperatively that adapted content has to declare a reference to the original

2.4. METADATA AND FILE FORMAT SPECIFICATION 41

Creation Distribution Consumption Adaptation and aggregation
/'\ ﬂ "\
QV ® &
Author Open Access file Communlty Author Open Access file
Feedback

Figure 2.6: Full scenario of the file format and metadata

content. This is also the case for the relevant Creative Commons licenses.
In these licenses, the way of referencing is, however, not precisely defined.
The related identifier offers a generic and standardized method to declare
this attribution within the metadata of a released file.

2.4.2.8 Feedback mechanism

In some cases, the author may be interested to get some notification
about the usage of a content after he released it. He can create statistics
and determine the popularity or value of his content. Distributors can also
evaluate the efficiency of different methods for distribution. For this purpose,
a feedback mechanism is considered that transmits notifications from the
consumer back to the author. Figure 2.6 shows the enhanced scenario with
the added feedback mechanism and the adaptation of content.

The mechanism is realized with MPEG-21 Event Reporting [69], which
allows the metadata to declare that reports will be created and transmitted
on certain events. These reports are used as notifications, which are sent
back to the author. An event can be, for example, the execution of a right.
In this work, two events are supported for the reports: the extraction and
the derivation. The extraction event is triggered when the consumer uses
one of the rights:

e play,

e print,

execute or

governedCopy.

These rights represent the basic usage of a content and the event is pro-
cessed before the execution of the right starts. There is only one event

42 CHAPTER 2. METADATA FOR SHARING CONTENT

foreseen for these four rights for simplification, as a differentiation between
these rights is generally not required. If this is required in a specific applica-
tion scenario, it can be supported and integrated with minimal effort. The
derivation event is triggered on the execution of the rights

e adapt or

e governedAdapt.

The notification of an adaptation informs the author that the content
was reused and a new Item was created from the content. This information
is not only information for statistical purposes, it can also be used to create
the relationship between the Items. When an author receives the report
of a derived Item, he can automatically add a related identifier into the
respective Item. It reduces the effort, because a manual notification is not
required anymore and the automatic processing also helps to maintain the
consistency between the Items.

The event reports are specified by the author, who can also decide what
information is transmitted in the report. The transmitted information can
be critical, because it may contain private information and should not in-
fringe the privacy of the consumer. Furthermore, the consumer has to be
aware of the information in the reports and he should confirm the transmis-
sion of reports. So it is in the interest of the author to specify reports, which
are acceptable for the consumer. From the available data, the following in-
formation was considered to be of general interest to the author describing
an extraction or derivation event:

e Time,

Location,

Identifier and

User information.

The first three values contain the time and location of the event and the
identifier of the involved Item. The user information contains the informa-
tion about the user as specified in section 2.4.2.3 using the MDS standard.
The report can be transmitted via http-post to a web server or via e-mail.
Both methods are popular techniques of data transmission and allow an
automatic processing of the transmitted information.

2.4. METADATA AND FILE FORMAT SPECIFICATION 43

ftyp
meta
hdlr
iinf
[|
[|
[
iloc
[[
[|
[|
xml

mdat 7

Figure 2.7: Hierarchical structure of the file format

2.4.2.9 File Format

An overview of the file format and the selected technologies was presented
in section 2.4.2.1. The file format is based on the MPEG-21 File Format,
because it provides an optimal integration of the MPEG-21 framework and
preserves the compatibility to legacy applications. The standard is based on
the ISO Base Media File Format [63], which is a generic and abstract format
that is already used in many applications. It structures the file hierarchically
in boxes, which comprise the resources and the metadata. The set boxes
in the MPEG-21 File Format is further reduced so that only the required
boxes are integrated into the system. A basic overview of the required boxes
is shown in 2.7.

The boxes appear in the sequential order in an instance of the file format.
The first box is the "ftyp” box, which declares the conformance to the
MPEG-21 File Format and a specific value identifying the concrete system.
The "meta” box comprises all the metadata of the resources. The last box
with the name "mdat” contains the resources in sequential order. Within
the "meta” box, the "hdlr” box defines the format of the metadata. The
information about the filename and the encoding of the resource is included
in the ”iinf”, which contains an inferior box for each resource. Similarly the
”iloc” box defines the position and length of the resource in the "mdat” box

44 CHAPTER 2. METADATA FOR SHARING CONTENT

with inferior boxes for each resource. The ”"xml” box comprises all metadata
based on XML, which is attached to the resources. The root element of this
metadata is specified in MPEG-21 Digital Item Declaration.

2.4.2.10 Cryptographic signatures

The MPEG-A Open Access Application Format also contains the sup-
port for cryptographic signatures, which the author can optionally use to
ensure authenticity and integrity of the content. The signatures are inte-
grated into the DID and they can be embedded for each Item as well as
for the whole file. The required key infrastructure is not specified in the
standard. It depends on the concrete system to provide an appropriate in-
frastructure for the key and the certificate management. An example for
the integration of a key infrastructure is presented in section 3.4.1.1.

2.4.3 Summary and outlook

The increasing amount of free distributable content requires an elabo-
rated and interoperable management of its common metadata to increase
the exchange and the collaboration. In particular, the permanent increase
of available content in the Internet demands new formats and metadata to
keep content findable and manageable. The presented methods improve the
efficiency in the processing and indexing of the content and its licenses. The
MPEG-21 framework provides the major tools to realize this goal using a
standardized file format and interoperable metadata.

The presented solutions are a first step in the license and the content
management using MPEG-21 standards. Besides the licenses from Cre-
ative Commons, other licenses can also be modeled and integrated into the
MPEG-21 REL. It would require more sophisticated expressions in the REL,
which would also improve the precision of the machine readable licenses.
Furthermore, Creative Commons is permanently enhanced to increase the
compatibility and interoperability to other legal licenses. This development
can be adopted into the MPEG-21 REL to advance synchronously with the
permanent development. The presented solution is easily extensible to inte-
grate these future developments in the format.

The presented methods and formats of this thesis were also implemented
in a prototype, which is explained in section 4. The prototype realizes
also additional functionalities regarding security aspects in the management

2.4. METADATA AND FILE FORMAT SPECIFICATION 45

and the transmission of content. This also shows the extensibility of the
presented format.

This concludes the management of free distributable content with de-
scriptive metadata. The next section broadens the scope of content and
deals with more valuable content, which requires additional protection mech-
anism.

Chapter 3

Protection using Trusted
Computing

This section investigates protection mechanisms for the management and
the exchange of content. Protection mechanisms are required for content
which is relevant for security like confidential documents or private infor-
mation. The aim is to ensure authenticity, integrity, verifiability and con-
fidentiality of this content. This section presents several enhancements to
the protection of content using the Trusted Computing technology. Trusted
Computing provides the security basis and multiple functions, which are ex-
ploited in the developed concepts. The XML standard is used as a common
format for all concepts, which increases the interoperability.

The next section presents the background information, which is required
to understand the developed concepts. After that, the improvement op-
portunities using Trusted Computing are presented and the problems in the
existing solutions are described. Then, the developed concepts are explained
in detail.

3.1 Fundamentals

The protection mechanisms are differentiated in three categories: en-
cryption, signature and authentication. The following sections introduce
standards and technologies for these three categories. The standards and
technologies are briefly described to understand their main functionalities,
which are relevant for the developed concepts.

46

3.1. FUNDAMENTALS 47

EncryptedKey ——

Figure 3.1: Syntax of the EncryptedKey element

3.1.1 Encrypted data in XML

One method to ensure the confidentiality of data is the application of
encryption algorithms. To exchange encrypted data, XML can be used as
transportation format. This can be achieved with the XML Encryption
Syntax and Processing (XMLEnc) standard [56]. This standard defines a
syntax for the transportation of encrypted data together with information
about the algorithm, the parameters or the keys. This information is used
in the recipient for the decryption of the ciphertext. Furthermore, it allows
to specify the process of the encryption and decryption. The XML standard
is not limited to the transportation of encrypted XML documents, it allows
to embed any type of encrypted data in a XML format.

One functionality of the XMLEnc standard is the syntax of the Encrypt-
edKey element. It is shown in figure 3.1, which was created with the software
Altova XMLSpy [35].

The element is used to transport an encrypted key to a recipient. The
recipient has the related secret to decrypt the key. The element Encrypt-
edKey has an optional attribute with the name Recipient. It contains an
application-specific string, which specifies the recipient of the encrypted key.
The encryption algorithm is declared in the EncryptionMethod element. The
KeylInfo element originates from the XMLDSig standard and is used to spec-
ify the key which was used for the encryption. Within the Keylnfo element,
the key can be declared in different ways. Examples are a reference with a
name or a X.509 certificate. The element CipherData contains the encrypted
key to be transported. The encrypted key can be either embedded within the

48 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

element or associated with a reference. The EncryptionProperties element
specifies additional information about the encryption, for example the date
of the encryption. The element ReferenceList declares one or more links to
other elements which contain data that was encrypted by the transported
key. The other elements can be other EncryptedKey or EncryptedData el-
ements. The CarriedKeyName element associates an identifier or name to
the transported key.

3.1.2 MPEG-21 IPMP

The MPEG-21 standards were developed to design and to enable the
interoperable exchange and the use of content between different systems.
The content is not limited to free distributable content, but also for example
confidential content with a high value. The MPEG-21 standards include
methods to ensure authenticity, integrity and confidentiality of exchanged
content.

One standard in the MPEG-21 framework was developed to provide
such protection mechanisms to the content. This standard is the Intellec-
tual Property Management and Protection Components (IPMP) [73], which
has the identifier ISO/IEC 21000-4. It defines a simple mechanism to embed
protection information within the DID. This protection information contains
an alternative way of representing the elements from the DID with added
protection information. The protection information is specified in the IPMP
Info Descriptor, which defines the parameters and the tools to realize the
protection. Furthermore, the standard contains an IPMP General Info De-
scriptor, which can be used to declare general information about an Item as
a whole. The IPMP standard enables the control of the content with generic
containers that can transport the required information. The standard does
not specify particular cryptographic algorithms, keys, devices, certificates
or other components for the protection. For the realization of an IPMP
solution, a concise protection concept has to be developed and integrated
into the standard.

3.1.3 Digital signatures in XML

The MPEG-21 standards allow the integration of Digital Signatures ac-
cording to the XML Signature Syntax and Processing (XMLDSig) stan-
dard [50]. This standard specifies a generic framework to represent a signa-
ture in the XML format. A signature conform to XMLDSig can be declared

3.1. FUNDAMENTALS 49

Figure 3.2: Structure of a XML signature

in three forms: detached, enveloped or enveloping. A detached signature is
separated from the signed XML document and only refers to the document
via a URL. If the signature is integrated in a document and it signs parts
of this document, the signature is an enveloped signature. An enveloping
signature contains the signed XML document directly within the signature
document.

The basic structure of a XML-signature is shown in figure 3.2. The figure
was created using the software Altova XMLSpy [35].

The root element is the Signature element, which contains all values of
the signature. The first element in the Signature element is the SignedInfo
element, which comprises properties of the signature. One of these properties
is the method for canonicalization, which is described by the Canonicaliza-
tionMethod element. The canonicalization for example removes semantically
irrelevant characters (e.g. spaces, line breaks) of the document to create a
homogeneous document for the signature. The SignatureMethod element
declares the used algorithms for the signature and the Reference element
contains references as URIs to the documents which are signed. The Signa-
ture Value element contains the resulting value of the signature operation.
The certificates and the public key, which corresponds to the private key of
the signature, are in the KeylInfo element. They can be used for the verifi-
cation of the signature. The element Object is an optional element, which
can be used to include additional data in the signature.

50 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

One example of such additional data is a timestamp, which is explained
in the following section.

3.1.3.1 Qualified timestamp

A qualified timestamp uses cryptographic algorithms to bind a specific
date and time to a document. The aim is to prove that the document existed
at a certain point in time. Such a timestamp is created by a Timestamping
Authority (TSA), which is a trusted third party with a precise clock. A client
can request a timestamp from a TSA using specific protocols. The most com-
mon used protocol is the IETF standard Time-Stamp Protocol (TSP) [37],
which describes the messages between the TSA and the client. This stan-
dard is also used in the developed concept in this thesis. Other standards
for this functionality are the ISO Standard ISO/IEC 18014 [65, 66, 67] and
the ANSI ASC X9.95 Standard [38], which are not explained further in this
thesis, because they only differentiate in some application scenarios. They
provide the same basic functionalities as the TSP standard and within the
scope of this thesis, they can replace transparently the TSP standard if
required. The following section explains the TSP standard more in detail.

Creation of timestamps The TSP standard enables the creation of a
signed timestamp for a given document. Figure 3.3 shows the process of the

creation of a timestamp and the exchanged data between the client and the
TSA.

The exchanged data additionally contains a nonce to prevent replay at-
tacks. The nonce is not depicted in the figure for simplicity reasons. In the
first step, the hash value of the document is calculated and transferred to
the TSA. The hash value is sufficient, because it is directly connected to the
document. As the TSA receives only the hash value, the confidentiality of
the document itself is not at risk. In the next step, the TSA combines the
current time with the hash value and calculates the overall hash value of the
combination. The resulting value is then signed using the private key of the
TSA. The created signature, the hash value of the document and the time
value are then transferred to the client. These values compose the qualified
timestamp of the document, which can be validated by any party.

Validation The validation of a qualified timestamp proves that the re-
spective document was existent at a specific point in time. To perform the
validation, the verifier requires the document and the signature with the

3.1. FUNDAMENTALS 51

Document
<ltem>
<Component>

</Component>
</Item>

private key

S Signrsa -HDoc-TS
<Item> . : time
<Component> SlgnTSA HDoc-TS

</Component> time
</Item>

Document with timestamp

Figure 3.3: Creation of a qualified timestamp according to the Time-Stamp
Protocol

time value which was created by the TSA. The verifier starts with the same
procedure, which was performed for the creation. The verifier calculates
the hash value of the document and attaches the given time value to the
hash value. The combination of both values is hashed again and the re-
sulting hash value is used as reference value for the comparison with the
received signature. Then, the verifier has to obtain the public key of the
TSA. Depending on the relationship to the respective TSA, this can be se-
cured with certificates to verify the trustworthiness of the TSA. The public
key is applied to the signature and the result is compared to the previously
calculated reference value. If both values are equal, the signature is valid
and the document was existent at the given time value.

3.1.3.2 XML Advanced Electronic Signatures

The XML Advanced Electronic Signatures (XAdES) [51] is an extension
of the XMLDSig standard that allows to apply more sophisticated signa-

tures with further enhancements. The latest versions of the standard were
published by ETSI [12].

52 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

(GenericTimeStampType - = i

EncapsulatedTimeStamp ‘

= XMLTimeStamp

Figure 3.4: Structure of the GenericTimeStampType

XAdES defines additional profiles for use cases that require additional
security features. Examples of such use cases are the validation of the point
in time of the signing operation or the long-term archiving of signatures.
These examples show that qualified timestamps are required in the XAdES
standard to support such an use case. Thus, the XAdES supports the rep-
resentation of timestamps in XML and specifies a syntax and a semantic
for the respective elements. These elements are structured with an abstract
and generic type, the GenericTimeStamp Type, which is a common basis for
all supported use cases. For each use case the GenericTimeStampType is
derived and extended to support all requirements of the use case. Figure 3.4
was created with the software Altova XMLSpy [35] and depicts the structure
of the GenericTimeStamp Type.

The Include and Referencelnfo elements specify the document which
is signed with the timestamp. Include specifies a reference to the docu-
ment, while the Referencelnfo contains directly the hash value of the docu-
ment. The CanonicalizationMethod is a common structure required for the
creation of signatures in XML. The EncapsulatedTimeStamp contains the
timestamp in an encapsulated form as specified in the Time-Stamp Proto-
col standard [37]. The XMLTimeStamp element provides a representation
of the timestamp in XML. This is a placeholder, as the structure of the
XMLTimeStamp is not yet standardized.

Two types derive from the GenericTimeStampType: the XAdESTimeS-
tampType and the OtherTimeStampType. The types differentiate in their
method of referencing the data which is timestamped. For each use case a

derivative is created from this common type, which provides the required
fields.

3.1. FUNDAMENTALS 53

This concludes the standards for the creation of qualified timestamps
and its representation in XML. The next section introduces the Trusted
Computing technology, which is used as security basis for the developed
concepts.

3.1.4 Trusted Computing

Trusted Computing is a trust concept which ensures that a system be-
haves in a specific manner for a certain purpose. The Trusted Computing
technology is specified by the Trusted Computing Group (TCG) [29] with
the ambition to enhance the security in computers and devices. The TCG is
a consortia of international industrial partners, which developed open stan-
dards for Trusted Computing platforms. These platforms provide a higher
level of security on the basis of a hardware security module, the Trusted
Platform Module (TPM) [103, 104, 105]. The specification of the TPM was
adopted by ISO/IEC and standardized in [59, 60, 61, 62].

The TPM is basically a secure cryptoprocessor with tamper protection,
which is designed for the wide integration in many platforms and devices.
The TPM does not fulfill the requirements for high-security, as its capabil-
ities are usually limited regarding key length and performance. But as a
hardware security module it provides basic cryptographic functions to en-
hance the security of a platform. The TPM is widely distributed in many
devices and platforms, which qualifies it as a good basis for the application
in extensive environments, for example in corporations.

3.1.4.1 Trusted Platform Module (TPM)

The TPM is a hardware security module, which is integrated into the
platform. It provides the basis for the security of several cryptographic op-
erations. The TPM is a passive element which other system components
have to address to perform specific operations. Example of these system
components are a Trusted Computing aware operating systems or applica-
tions. The TPM serves for two main purposes: secure storage and integrity
measurements. Furthermore, it stores and creates several special keys and
certificates. These purposes and the special keys are explained in the fol-
lowing sections.

54 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

3.1.4.2 Secure storage

The TPM can create and securely store critical data like cryptographic
keys or certificates. Symmetric keys can only be generated and stored,
but not used for encryption operations, as the TPM specification does not
require a processing unit for a symmetric algorithm. Asymmetric keys can
be used for the encryption and the signing of data. Every TPM supports the
RSA algorithm with key sizes of 512, 1024, and 2048 bits. The TPM has also
a key generation engine, which can be used to generate asymmetric keys.
The generated keys can be either returned to the requesting application or
they can be stored in the TPM.

For the storage of the key, the TPM supports two different types: mi-
gratable or non-migratable keys. A migratable key can be transferred to
another TPM in a restrictive protocol to ensure the uniqueness of the key.
A non-migratable key is not allowed to be transferred and always stays
within the specific TPM, which created the key.

Migratable and non-migratable keys, are protected by the TPM that the
private part of the key never leaves the TPM unencrypted. If a key has to
be exported out of the TPM, it is encrypted before it is exported. This is
for example required if the memory of the TPM is exhausted. The usage of
a private key stored in the TPM for signing or encryption operation is only
performed within the TPM. This ensures also the correct execution of the
operation. The TPM can also prove to external parties that the key was
generated and stored in the TPM. For this prove, an AIK key is used, which
is explained in section 3.1.4.5.

3.1.4.3 Integrity measurements

The TPM has a set of registers, the Platform Configuration Registers
(PCR), which are used for the verification of the integrity of the platform.
During the boot procedure of the platform, the PCRs are involved to create
hash values of the executed software components. When the boot procedure
is finished, the PCRs contain characteristic values of the running software
components, which represent the system state. The values can be used to
determine if the current state of the platform can be trusted, i.e. if it works
as expected.

The PCR values can be also transmitted to another client or a trusted
third party, which performs the verification of the system state. This method
is called Remote Attestation.

3.1. FUNDAMENTALS 95

The functions for the integrity measurement are not used in this thesis
and are not explained more in detail. The developed concepts are compatible
with these measurements and can be integrated in an operating system which
applies the integrity measurements to protect the operating system.

3.1.4.4 Internal keys and certificates

A TPM contains a set of internal keys and certificates, which are used to
prove authenticity and integrity of the TPM towards external parties. The
Endorsement Credential is a certificate issued by the manufacturer, which
certifies the Endorsement Key (EK). The EK is a 2048 bit key pair, which
can be used for signing operations. The EK is not migratable and it should
not be used directly for any signing operation because the key allows the
identification of the TPM. Furthermore, the TPM contains the certificates
Conformance Credential, Platform Credential and Validation Credential to
prove the correct manufacturing and integration in the platform.

Furthermore, the TPM contains the Storage Root Key (SRK), which
is used as the principal key for storing generated or external keys. The
SRK is a non-migratable 2048 bit RSA key pair and it is created when the
ownership of the TPM is taken. The taking of the ownership corresponds to
the initialization of the TPM, which generates a SRK and sets a password for
it. For any further usage of the SRK, the user has to provide the password
again for authentication. The SRK is the root of a key hierarchy structured
as a tree. The SRK encrypts one or more other keys, also called Storage
Keys (SK), which are the inferior keys of the SRK. A SK can be used to
encrypt other keys or data. The encrypted Storage Keys and the data in the
hierarchy can be also stored outside of the TPM on an unprotected storage.
This is not problematic, because the exported key or data is encrypted with
the superior SK before the export. Thus, an exported key or data can be
only decrypted within the TPM.

3.1.4.5 Attestation Identity Keys and PrivacyCA

The EK is the certified key of the TPM, but it cannot be used directly,
because it would reveal the identity of the TPM and thus prevent anonymity.
The Attestation Identity Keys (AIK) allow the verification of the platform
or internal values towards an external party while preserving the anonymity
of the platform. An example of such an internal value is a private key, which
was generated and stored within the TPM. The public part of this key can

56 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

be signed with an AIK within the TPM to certify the origin of the key.
An external party can verify this signature to ensure that the private part
related to the public key is protected by the TPM.

An AIK can only be used to sign internal data. A TPM can create
multiple AIKs, which are derived from the EK and replace the EK in the
verification procedure. An AIK is a 2048 bit RSA key and is not migratable.
To verify the authenticity of an AIK, an AIK credential is required, which
is issued by the PrivacyCA. The PrivacyCA is a trusted third party, which
can verify the conformance of a TPM using the provided certificates. The
PrivacyCA issues and validates certificates for the EK or an AIK. The Pri-
vacyCA ensures that a valid certificate on the EK or an AIK originates of
an authentic TPM. A user may trust the PrivacyCA directly or a superior
certification authority if a hierarchical Public Key Infrastructure (PKI) is
realized.

Alternatively, the Direct Anonymous Attestation (DAA) [42] allows the
verification of an AIK without a trusted third party. It uses a zero knowledge
protocol to prove the authenticity of the AIK directly to the other party.
This protocol is available since the version 1.2 of the TPM specification.

3.1.4.6 Timestamping

The Trusted Computing technology can be used to create qualified times-
tamps. The TPM contains a counter, which can count short intervals in
time, which are called ticks. This tick counter does not provide the time as
an absolute universal time clock. The tick counter provides a relative value,
which is the number of ticks passed from the moment the timing session
is started. To get an absolute time base, the tick counter has to be linked
with an external universal time clock. The TCG specifies a protocol to cre-
ate this link in [103]. This leads to a significant different composition of a
timestamp from the TPM in comparison with a traditional timestamp. The
timestamp created by the TPM is called TPM-timestamp in the following
sections. The mentioned protocol and the tick counter are explained in the
next sections.

3.1.4.7 Tick counter

The tick counter is an internal TPM functionality, which counts the
passed time in ticks beginning from the start of the timing session. The
figure 3.5 shows the functionality of the tick counter.

3.1. FUNDAMENTALS o7

init getTicks
l tick counter
T X
t; t time
currTicks |
N,
/'/ \\
Il \\
Y Tick Session \\
s Nonce N
Tick Count [Tick Increment
Value Rate

Figure 3.5: Tick counter and its output

At a certain point in time, in the figure ¢;, the tick timing session is
initialized and the counter starts to count the ticks. The specification leaves
it up to the manufacturer to define, when the initialization is performed.
The need to initialize the counter depends on the power supply of the whole
platform. As there are different conditions for example in a PC desktop or
a mobile device, the manufacturer has to decide about the maintenance of
the counter.

When the user wants to retrieve the current counter value, the command
”getTicks” can be sent to the TPM. This is the time t5 in the figure. The
result is the currTicks value, which is an aggregation of the three values: Tick
Session Nonce, Tick Count Value and Tick Increment Rate. The Tick Count
Value is the current number of ticks of the counter and the Tick Increment
Rate specifies the rate at which the ticks are counted. The relationship
between Tick Increment Rate and seconds is a parameter defined by the
manufacturer, because it is up to the manufacturer to define a timing source
for the counter. According to the specification, the timing ticks should be
a reliable and tamper-proof source to achieve the required security, e.g. an
internal clock circuit within the TPM.

The Tick Session Nonce is a nonce, which identifiers the current timing
session. The initialization of this nonce is not imperatively defined in the
specification. To achieve a secure operation, the tick counter must be set to
zero and a new nonce must be generated for each initialization of a timing
session. This allows to assign a Tick Counter Value to a timing session. It
allows to verify that a Tick Counter Value belongs to the current session. It
enables the detection of a re-initialization of the counter between consecutive
executions of the getTicks command.

58 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

counter create
init TickStampBlob
J, tick counter
t, t time
Tickstamp

digest | signinfo

currTicks | signature

/ Tick Session AN

/ Nonce RS
Tick Count [Tick Increment

Value Rate

Figure 3.6: Creation of a tickstamp

3.1.4.8 Tickstamp

The tick counter provides the reliable counting of the time. The TPM
allows to create a signature on the tick counter using an AIK key. The result
is the tickstamp, which has a similar structure as a traditional timestamp.
The figure 3.6 shows the process for the creation of a tickstamp and its
structure.

Similar as for the tick counter, the command ” TickStampBlob” may be
executed at a certain time to to create the tickstamp. As input for this
command, the TPM requires among others the reference to the key for the
signature and the digest (hash value) of the document to sign.

The answer of the command is the tickstamp, which consists of four
values: digest, currTicks, signlnfo and signature. The digest is the hash
value of the document and the currTicks is the current value of the tick
counter as shown in section 3.1.4.7. The signInfo contains data in a structure
as specified in [104], which was created during the signing. The signature is
the value of the signature over all data in this structure. The key used for
the signature is an AIK, which proves that the signature was performed by
a TPM within a trusted platform. This allows to prove the recipient that
the tickstamp was created in a secure environment.

The tickstamp thus links the digest to the current Tick Count Value. In
the next step, the Tick Count Value is linked to an universal time clock to
obtain an absolute TPM-timestamp.

3.1. FUNDAMENTALS 59

create create
TickStampBlob TickStampBlob create
counter Get TSA TickStampBlob
init timestamp .
J, tick counter

tI1 %‘ t t time

Tickstamp1 Tickstamp2 Tickstamp3
digest | signinfo digest | signinfo digest | signinfo
currTicks | signature currTicks | signature currTicks | signature

TSA-
Timestamp

Figure 3.7: Timestamp protocol sequence

3.1.4.9 Timestamp Protocol

The TCG specifies a protocol to create a timestamp within the TPM,
which is verifiable by external parties. This TPM-timestamp consists of two
steps: the first step is to link a tick counter to an universal time clock and
the second step is the effective signature over the document together with
the current time. The whole process is shown in figure 3.7.

Anytime after the initialization of the timing session, the protocol can
start with the first step, in which the tick counter is linked to the universal
time. A tickstamp, Tickstampl, is created with a digest on the text ”Tick
Stamp”. This text is defined in the specifications. This links the Tick Count
Value and the session nonce with the signature.

Then a traditional timestamp from a TSA is obtained according to the
protocol presented in section 3.1.3.1. The hash of the data in Tickstampl is
sent to the T'SA, which integrates an absolute timestamp from an universal
time clock and signs it.

After the reception of the TSA-timestamp, a second tickstamp, Tick-
stamp2, is created using a digest of TSA-timestamp. The second tickstamp
is required to have an upper limit of the amount of time passed between
Tickstampl and the TSA-timestamp. The tick counter thus has an uncer-
tainty, which is limited by Tickstampl and Tickstamp2. To an external
party, it can be only proven that the universal time is between the two Tick
Count Values of both tickstamps, but the exact Tick Count Value cannot be
determined. Tickstampl and Tickstamp2 are the lower and upper bound-
aries of the current time and the interval between both tickstamps should be

60 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

kept to a minimum. Otherwise, an external party can decide to reject the
created timestamp, because the uncertainty of the timestamp is too high.

After the creation of this link, the respective timing session is set up for
the creation of TPM-timestamps. As long as the timing session is valid, the
TPM can create an unlimited amount of timestamps without any further
data exchange with external parties. The timing session terminates if the
tick counter is re-initialized, for example in the case of a power loss. To
create a TPM-timestamp, the hash value is calculated over the document
and with this a tickstamp, Tickstamp3, is created. This completes the link
between the time reference value coming from the TSA and the Tick Count
Value of the last tickstamp. With all these values, the point in time when the
document was timestamped can be determined. All three tickstamps and
the TSA-timestamp together with the AIK credentials form the timestamp
created by the TPM. The values can be transmitted with the document to
a recipient, which can then verify the tickstamps and the TSA-timestamp
to determine the correctness of the created TPM-timestamp.

3.1.4.10 TCG Software Stack

To integrate the TPM into the operating system, a device driver is re-
quired, which adds the TPM as a device. Then, applications or the operating
system can access the TPM and its functions using a low-level API. This
API, however, should not be accessed directly by applications, because it
does not support concurrent access.

For this reason, the TCG Software Stack (T'SS) [102] is on top of the
device driver as intermediate software layer between the driver and the appli-
cation or operating system. The TSS runs in the user mode of the operating
system as a service or daemon. It provides an interface, the TSS Service
Provider Interface (TSPI), to the other applications, which allows them to
access comfortably the functions of the TPM. The TSS implements a con-
version of parameters from the TSPI to the low-level API functions of the
TPM to reduce the efforts for a low-level implementation in the applications.
The TSS also multiplexes the access to the TPM, therefore, multiple appli-
cations can access the TPM functions simultaneously. A separate context is
created for each application and the conflicts in the simultaneous access of
a function is resolved.

The TSS manages also the storage of keys, which are protected by the
TPM. These keys are encrypted with the SRK or an inferior SK using the
mentioned key hierarchy. The TSS provides two types of storage for these

3.1. FUNDAMENTALS 61

keys: the User Persistent Storage or the System Persistent Storage. The
User Persistent Storage stores keys, which belong to a specific user. The
System Persistent Storage contains keys, which are available for all users of
the system.

3.1.5 Web based authentication with OpenlID

This section presents the authentication of users with the web-based
Single Sign On system OpenlID. To understand the concepts and architecture
of the OpenlID system, a short introduction of Single Sign On (SSO) is
presented. Then, the architecture and functionalities of the OpenlD system
are explained in detail.

3.1.5.1 Web-based Single Sign On

A Single Sign On (SSO) system provides an authentication mechanism,
which allows to validate the user identity for multiple services. These ser-
vices are provided by third parties, which request the identification and
authentication of a user. The advantage for the user is a single authenti-
cation for multiple services of the participating third parties at once. Web
based SSO-systems are a web service, which perform the authentication of
the user for multiple websites. After the authentication, the user is auto-
matically logged in for the websites in liaison with the SSO-system. The
advantage for the user is that he only has to authenticate himself once to-
wards the SSO-system and after that, he has access to all websites. Another
advantage is that the authentication secrets are only shared and exchanged
with the SSO-system. Other websites do not receive any authentication
data, because they only exchange the information confidentially with the
SSO-system. The next section presents the OpenlID system, which is a
SSO-system providing the mentioned functionalities.

3.1.5.2 OpenlD

The OpenlD system was developed to establish SSO services in the In-
ternet. The system is specified in [52] and presented in [89]. By the end
of 2009, over 1 billion OpenlD enabled accounts were created and several
providers worldwide integrated the support of OpenID [23].

The OpenlD specification defines the protocol between three parties: the
User Agent, the Relaying Party and the OpenlD Provider. The User Agent

62 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

is the browser on the client machine, which is operated by the user. The
user wants to authenticate himself towards a website, which is called the
Relaying Party in OpenID. During an authentication, the Relaying Party
is redirecting the user to the OpenlD Provider, which shares the secrets
with the user. If the authentication with the Provider was successful, the
user is redirected back to the Relaying Party and is logged in at the site.
The specification defines the format of the exchanged messages and their
methods of protection.

OpenlD specification does not require a single central authentication
instance, because everyone can set up an OpenlD Provider with proper user
accounts. This enhances the privacy and the independence of other parties.
Furthermore, an OpenlD Provider can also store personal user information,
like the e-mail address. The user can control, whether this information may
be transmitted to the Relaying Party or not. As OpenlD is a web-based
protocol, it is independent of the operating system. The User Agent only
requires a browser, which is available for all common operating systems. The
Relaying Party is a web service which uses an additional library to support
the OpenlD protocol for the user authentication.

Identifier The identifier of the user is a central aspect in the OpenlD spec-
ifications. An identifier in OpenID is a Uniform Resource Identifier (URI) [39]
or an Extensible Resource Identifier (XRI) [90]. An URI is a string of char-
acters with a given syntax, which enables the identification of abstract or
physical resources. XRI is based on URI, but provides more sophisticated
methods for the structuring and delegation of identifiers.

Each user has an identifier, which is unique within a Provider. This
identifier can be understood as a username. A part of the user identifier
is a reference to the Provider. Every identifier allows the discovery of the
Provider using the XRI resolution protocol [106]. The XRI standard is based
on the Domain Name System (DNS) Resolution system and also specifies
the exchanged information, which allows the negotiation of the Provider
capabilities. The detailed protocol is not relevant and is thus not explained
further in this thesis. The application of the discovery within the OpenID
protocol is shown in the next section.

Authentication protocol The OpenlD protocol consists of several steps
to exchange data between the User Agent, the Relaying Party and the
Provider. The figure 3.8 shows these three parties and the steps of the
protocol.

3.1. FUNDAMENTALS 63

Relaying Party OpenlD Provider

L

=

User?—\gent

Figure 3.8: OpenlD redirect protocol

The user wants to authenticate himself to the Relying Party in order
to access user-specific services. In step one, the user requests the page of
the Relaying Party, which provides a form for the authentication. The User
Agent receives the page in step two and asks the user to enter his OpenlD
identifier in the form. In step three, the User Agent sends the filled form
back to the Relaying Party.

Then, the Relaying Party performs the XRI resolution on the identifier
to determine the Provider. The Relaying Party establishes a connection with
the Provider in step four and references it with an associate handle. Op-
tionally the Relaying Party can secure the connection with a shared secret,
which is negotiated between the two parties.

In step five, the Relaying Party redirects the User Agent to the Provider.
After that, the Provider exchanges information with the User Agent for the
authentication in step six. The authentication method is not specified in
OpenlD and it is up to the Provider to define a mechanism, which allows
the re-identification of a registered user. A method often used is a password
authentication via web forms.

When the authentication is finished, the Provider redirects the User
Agent back to the Relaying Party. The result of the authentication is trans-
mitted within the redirect, which informs the Relaying Party if the authen-
tication was successful.

In the last step, the Relaying Party verifies if the authentication result

64 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

originates from the Provider. For this validation, the Relaying Party can
use the shared secret, which was negotiated before with the Provider. The
Relaying Party may connect to the Provider, if it requires more data for the
validation. If the authentication result is valid, the user is authenticated in
the Relaying Party and typically the OpenlID identifier is associated to the
connection with the User Agent.

Security mechanisms The OpenlD specification applies several security
enhancements to protect the authentication process. The previous section
already mentioned the shared secret between the Relaying Party and the
Provider, which is obtained using a Diffie-Hellman key exchange. This pre-
serves the integrity and the authenticity of the exchanged information to
verify the authentication result.

Furthermore, OpenlD requires a nonce within the redirect from the
Provider back to the Relaying Party to prevent replay attacks. The specifi-
cation also recommends to use Transport Layer Security (TLS) [49] between
the User Agent and the Provider to have a basic protection against man-in-
the-middle attacks and eavesdropping.

The user is authenticated in a single instance, the Provider, which also
simplifies the password management of the user. Many websites implement
an own password authentication, which requires the user to remember a
password for each site. The usage of the same password on multiple sites
increases the security, because only the interception of the password on
one of the sites grants the attacker permission to all sites. The OpenlD
system reduces the possible targets for an attack to one site, the Provider,
which can apply sophisticated security methods to ensure the confidentiality
of the authentication secrets. The central login also helps the user in the
recognition of the authentication page of the Provider. This helps to prevent
phishing attacks, in which the attacker tries to bring the user to perform
an erroneous login to a fraudulent site. This method allows an attacker to
obtain the password of a user.

3.2 Problem statement

The aim is to enhance the protection of exchanged content in XML based
content management systems. To achieve this aim, authenticity, integrity,
verifiability and confidentiality of the content has to be ensured. Authentic-
ity, integrity and verifiability can be provided by signatures, confidentiality

3.2. PROBLEM STATEMENT 65

is realized with the encryption of the content. The Trusted Computing
technology with the TPM enables the enhancement of the security in sev-
eral aspects, because it provides the basis for the execution of cryptographic
algorithms and the storage of security critical data like for example secret
keys. Furthermore, the TPM implements additional functionalities, which
can be exploited to enhance the security.

The provided security should be oriented to the user, who can self-
determined rule over all his data. The aim is to achieve complete trans-
parency for the user, even when strict confidentiality is provided towards
third parties. It is up to the user to decide, which data may be passed to
which user. This is the basic principle for successful content management
systems.

The integration of signatures and encryption ensures the most important
security requirements. Both security mechanisms require for their realiza-
tion a key management concept and a user authentication mechanism. The
TPM provides functionalities for the creation and storage of keys on a plat-
form, but there is no overall concept for the key and the user management
on distributed platforms. This superior architecture has to be developed,
which combines the TPM technology with the MPEG-21 standards to real-
ize a concise and comprehensive system. One principal task is to combine
the standards in such a way that the conformance of each standard is not
infringed. The semantic and structure should remain intact and only be
enriched with additional fields whenever possible. If this enhancement is
infeasible, the required modifications should be minimized.

In this work, the three concepts are presented: a concept for secure con-
tent transmission, timestamps in digital signatures and user authentication.
These concepts are explained in the following sections.

3.2.1 Secure content storage and transmission

To protect confidential content from a fraudulent access, encryption
mechanisms have to be applied to ensure that only the correct user can
view the content. On a system with many users, an encrypted storage is
required. This storage can be performed in the operating system or in the
application. In the operating system, an appropriate modification or config-
uration is required to enable the encryption. For example additional drivers
for the encryption of devices have to be loaded. An encryption on the ap-
plication level is independent of system modifications and only requires an
interoperable format for all applications. It also has to be defined how the

66 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

description of the encryption is integrated to preserve the compatibility and
the interoperability.

Besides the secure storage, the content also should be transmitted be-
tween users on different platforms. The content can be transmitted securely
in encrypted form to another party, but the exchange of the encryption key
of the content is still required. If the key is also encrypted and embedded
into the file with the content, it would enable the confidential and the se-
cure exchange of the content. Furthermore, it allows the transmission of
the encrypted content with any method and protocol. This method does
not require any changes in the system or in the method of transmission.
The security is implemented in the application, which requires a conform
implementation to support the format.

In this scenario, two methods have to be developed: the encryption of the
content and the secure exchange of the encryption keys. The encryption of
the content can be realized with an extension of the metadata in the file for-
mat to support and describe the encryption. The MPEG-21 IPMP standard
can be applied to describe tools for the encryption and its parameters. The
MPEG-21 standard has no direct support for Trusted Computing, therefore,
the standards need to be aligned and combined. The required parts of the
IPMP standard have to be selected and are integrated into the metadata of
the content.

Besides the encryption of the content, the respective key has to be trans-
ferred confidentially to the recipient. An appropriate method for the key
management has to be found, which uses the Trusted Computing technol-
ogy to protect the keys. The keys must be encrypted and integrated into the
metadata. A method for the integration has to be used, which is conform
to the MPEG-21 standards and which does not influence the distribution of
the content. The distribution can include the copy and aggregation of [tems
in multiple files.

An Item can incorporate a signature to ensure the authenticity, the in-
tegrity and the verifiability of the content. It enables the verification of the
author of a content and proves that the content has not been modified dur-
ing the distribution. As already mentioned in section 2.4.2.10, a signature
can be embedded within each Item or for the whole file. A concept for the
embedding of the signatures must be developed together with a method for
its creation. The signature must remain intact during the distribution of the
content. The distribution also includes an autonomous copy or aggregation
of the content by intermediate parties, which may not affect the validity of
the signature.

3.2. PROBLEM STATEMENT 67

The overall aim is to achieve a decentralized system that no central third
party is required for the key management. The content keys must remain
in the control of the user and allow him to decide how and to whom the
content may be transferred.

3.2.2 Timestamps in digital signatures

In this concept digital signatures are extended by the integration of
TPM-timestamps. The TPM-timestamp is issued and signed by the TPM
and a trusted third party, which allows an external party to verify the times-
tamp. Such a timestamp within the signature proves that the document was
existent in that specific point in time.

To include a traditional timestamp in a signature, a connection to a
trusted third party, the TSA, is required to obtain the signed timestamp.
This connection can be cumbersome in some scenarios, for example for mo-
bile devices. The Trusted Computing technology can be used to enable the
creation of signatures with qualified timestamps in offline environments. The
specified protocol from the TCG allows to create a timestamp with a TPM,
which can be verified by external parties. The protocol, however, does not
describe methods for the integration of the created values in a signature.
These values are binary data, which need to be mapped to existing XML
elements with the appropriate semantic. The elements come from existing
standards, which may already support parts of the required elements. The
corresponding elements have to be determined and if no appropriate element
can be found, a new representation of the values has to be defined and spec-
ified. XML signatures are widely used for the signing of XML documents,
also for example in several MPEG-21 standards.

Furthermore, the new timestamp with the extended values has to be
integrated into the XMLDSig or XAdES signature standards. Both stan-
dards are examined and a possible way of integration is presented. While
XAdES contains methods for the representation of qualified timestamps,
the XMLDSig standard does not support this functionality. The ideal aim
is a solution which is compatible and integrable with both standards. The
representation of the values also has to be optimized regarding the required
modifications of the standards. The extension of the standard has to be
elaborated accurately that existing implementations of the standard remain
compatible. Also the added extensions should be minimized, to keep the
changes for the support of the feature to a minimum.

68 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

3.2.3 User authentication

User authentication identifies the user of the platform, which enables to
determine if the user is allowed to access a content. To realize user authen-
tication, management facilities are required, for example for the creation or
deletion of users. This user management is an important aspect, because the
access to security-critical content may be only granted to a specific user or
group of users. The content creator has to be able to choose the respective
users from a list. The list can be provided by a centralized service, where
all users are registered. Furthermore, the service should be web-based, open
and standardized to support the integration of the service in other systems.
In this thesis, the OpenlD system is used as it provides a standardized and
interoperable method for a web-based user management.

The OpenlD standard does not specify the method of how the authen-
tication of the user has to be performed. The common approach in the
existing OpenlD-systems in the Internet is the authentication with a user
name and a password. The password is the secret of the user, which differ-
entiates him from other persons. The user can authenticate to a OpenlD
Provider by providing the password that belongs to his username. The
OpenlD Provider compares the given password with a stored value from the
registration of the user. If the values match, the user is authenticated. This
method is convenient, but it is also the source of several security issues.

One of these security limitations in OpenlD is the phishing attack, which
is presented in [54]. In this attack, the web page of the OpenID Provider
is imitated on another server. Then, the attacker tries to bring the user to
input his password on the rogue web page. If the user does so, the user
reveals his password to the attacker, who can then authenticate himself to
the real OpenlD Provider as the user. The attacker may then redirect the
user to the desired relying party, therefore, the performed attack is not
noticeable anymore to the user. The revelation of the password is also not
recognizable by the user in upcoming authentications or another usage of
the system.

In this thesis, the TPM is used to prevent phishing attacks and to replace
the user name and password authentication with a more secure protocol.
The messages of the protocol have to be defined and the TPM is used for
the key storage. The User Agent is extended with additional functionalities
to support the protocol. The User Agent is also able to connect to the
TPM and to use its functions for the execution of the protocol. The user
authentication is performed locally to the TPM. If the user can authenticate

3.3. COMPARISON WITH OTHER SYSTEMS 69

towards the TPM, the User Agent can perform the protocol with the OpenlD
Provider. The details of this method have to be elaborated and specified.

3.3 Comparison with other systems

This section compares the mentioned problem statements with existing
solutions and concepts. The existing solutions are presented and compared
to the goals in this thesis.

3.3.1 Concepts for secure content exchange

There exists a large number of applications, which enable the protected
storage and exchange of content. The scope in this thesis is the usage of the
MPEG-21 technology in combination with Trusted Computing to realize a
secure and interoperable solution. Currently, there is only one system to the
best knowledge of the author, which uses Trusted Computing as protection
mechanism in MPEG-21. This system is SmartRM, which is explained in
the following section.

3.3.1.1 SmartRM system

The goal of the SmartRM system [26] is to ease the exchange of content
while protecting the confidentiality of content. A user who is the author of
a content, can package it into a special file, which is then shared with other
users. The files are encrypted and can be exchanged arbitrarily with any
method or protocol. The decryption is separately granted for each access,
therefore, the author can decide at any time, who can access the content.
This is enabled with a centralized service, which manages the access to each
content and the respective keys.

The specification of the system is not available and the implementation
is closed source. Thus, the functionalities and the implementation cannot be
completely examined and compared to the goals of this thesis. The available
documentation of the system describes that a MPEG-21 based file format
is used for the packaging of the content and the content is transferred in
the form of a Digital Item. The MPEG-21 REL is also applied to express
the rights and to control the governance. The author can grant the rights
of reading, listening, viewing or printing to other users. Furthermore, the
system allows to set a limitation in time or to define how often the user may

70 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

execute the rights on the content. The SmartRM system also applies the
TPM in the system for the content protection and exchange. There is also
a statement which declares that the server performs a Remote Attestation
of the client to ensure the trustworthiness of the client. Nevertheless, no
details about the realizations of these functionalities are available.

There are two implementations of the system available: a Firefox plug-in
and a standalone version for the Macintosh operating systems. The Firefox
plug-in is the central component of the system, which is available for the
most operating systems. It is a part of the Firefox Internet browser [18] and
can be used for the creation and the accessing of governed content. The
plug-in also contains a user management to contact other users similar to
messenger applications. The standalone version for the Macintosh operating
system provides the identical features as the browser plug-in. Standalone
versions for other operating systems are under development.

Compared to the concept of this thesis, the major goal of the SmartRM
system is the protection and also the governance of content. The goal of
protecting content is also investigated in this thesis, however, the governance
is not desired. The concept of this thesis lets it in the responsibility of the
user to ensure the correct usage and protection of the exchanged content.

Furthermore, the application of the TPM for the protection is also shared
in this thesis. The SmartRM system uses, however, a centralized server for
the key and access management, which differs from the goals of this thesis.
This thesis concentrates on the protection of the confidentiality of content
using a decentralized architecture. A central service for the key management
is thus not required. Instead of this, the file format was extended in such a

way, which allows a direct transmission of content between users.

3.3.1.2 Key management in MPEG-21 IPMP

The paper [92] presents several methods for the content protection and
key management based on the MPEG-21 standards. They identified sev-
eral use cases for DRM systems and propose methods for their realization
using the standards in MPEG-21. Examples of these use cases are the
download, the distribution and the domain management of users or devices.
The authors compare three representatives systems (MPEG-21, Open Mo-
bile Alliance and Digital Media Project) regarding their key and license
management. The result of this comparison shows that all systems contain
minimal specifications regarding the realization of these security aspects.

3.3. COMPARISON WITH OTHER SYSTEMS 71

For this reason, they propose methods for the realization of these secu-
rity aspects. They developed the methods on the basis of the MPEG-21
framework and present protocols for each identified use case. Furthermore,
they differentiate in several methods of transportation of the encryption key
of the content. The transportation of this key can be either separated of
the content or together with the content. For the joint transportation of the
key, they apply the MPEG-21 IPMP standard and integrate the license and
the key information within the resource of an Item.

The paper presents generalized methods for the key and license man-
agement using the MPEG-21 IPMP standard. They do not consider the
application of Trusted Computing and the required modifications to sup-
port this technology. This thesis concentrates on this scenario and presents
a method to support Trusted Computing in MPEG-21. Furthermore, the
paper proposes the transportation of the key within the resource of an Item.
This thesis shows that this can be problematic in combination with Digital
Signatures and presents another possibility, which uses the MPEG-21 DID
to integrate this information.

3.3.1.3 Other proposals

There are several other proposals, which work in that area, but are not
directly comparable to the proposal in this thesis.

On implementing MPEG-21 IPMP The paper [98] describes several
methods of implementing the MPEG-21 IPMP standard to realize a flexi-
ble and active management of IPMP tools. It presents an implementation
of the standard, which uses the MPEG-21 REL as interface to the tools
of the IPMP standard. Within the implementation it also describes the
architecture of a key infrastructure for the exchange of the cryptographic
keys. The presented key infrastructure, however, only concentrates on the
IPMP standard and the exchange of tools in a centralized architecture. It
does not consider other standards or the Trusted Computing technology in
a decentralized structure.

Evaluating the usability of usage controls in electronic collabora-
tion Another concept is described in [43], which uses Trusted Computing
to enforce the usage control of applications. The authors focus on the usage
restrictions of Portable Document Format (PDF) documents and show an
implementation based on such PDF documents. The paper wants to ensure

72 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

that the usage information in a PDF document, like the prohibition of print-
ing, is enforced by a secure basis using the TPM. They present a server and
client implementations, which use policy files on the basis of the ODRL to
describe and exchange rights information about the usage of the documents.
The client requires a TPM and uses keys stored in the TPM to protect and
exchange these policy files. Furthermore, the proposal uses the UCLinux
architecture [84] to protect the operating system using measurements and
enables the remote attestation of platforms. The paper concentrates on
the usage control and enforcement of proprietary policy files using Trusted
Computing and does not provide an extensible and interoperable approach
to exchange confidential content. The paper shows a method for protecting
PDF documents, but does not describe the realization for other types of
content. This thesis presents a concept for any type of content and does not
focus on the enforcement of rights expressions. Furthermore, the application
of the MPEG-21 framework provides an interoperable and extensible basis
for the support of upcoming formats or functions.

Implementing trusted terminals with a TPM and SITDRM Sim-
ilar to the previous paper, the authors in [99] present a trusted terminal,
which applies Trusted Computing to protect the privacy of a user in a lim-
ited environment. The MPEG-21 REL is used to declare whether a remote
party is allowed to access the data in the terminal. The client parses the
licenses and interprets them for the authorization of the remote parties. To
ensure a secure storage and correct processing of the licenses, they use the
TPM as a security basis. The TPM performs the measurement and the
attestation of the operating system. The paper focuses on the protection of
the integrity of the platform and the enforcement of the licenses in a remote
terminal. This is not in the scope of this thesis, which shows a method of
key management using standardized formats and metadata.

3.3.2 Timestamps in digital signatures

The main goal in this part is the application of TPM-based timestamps
within digital signatures declared in XML. It can be divided into the two
principal aspects for the comparison with other proposals. The first aspect
is the application of tickstamps created by the TPM and the other aspect
is the representation of timestamps in signatures using XML.

3.3. COMPARISON WITH OTHER SYSTEMS 73

3.3.2.1 Applications of tickstamps

Remote attestation on legacy operating systems with TPM The
existing concepts use the tickstamp functionality of the TPM only to im-
prove the remote attestation of other platforms. One example is [95], which
describes another method for the remote attestation for legacy platforms
using the tickstamp function of the TPM. The method wants to detect
a tampered platform by verifying the memory of a remote program using
checksums. The timing of this verification is an important indicator for the
integrity of the program. The tickstamp in the TPM is used to improve this
type of verification, because the TPM provides a security basis to perform
the calculation of the time directly on the remote platform. The proposal
does not require an absolute time and does not deal with signatures based
on XML in the concept and thus differs from the concept in this thesis.

Improving the scalability of platform attestation The paper [100]
presents several methods to improve the scalability of the remote attestation.
One method uses tickstamps to create a token using a protected key stored
in the TPM. This token can then be used for the remote attestation to
another party. This method uses the tickstamp counter mainly as a kind of
session to prove that the integrity of the platform did not change as long as
the session is valid. The presented method also does not deal with digital
signatures or the representation of the tickstamps in XML.

3.3.2.2 Representation of timestamps

The representation and creation of timestamps is another domain which
is developed and improved by many researchers. In particular, the topic of
representation of timestamps in XML is relevant for the comparison to the
concept of this thesis. In [108] the authors describe a method of mapping
the timestamps in the available binary format to the XML format. They
developed a XML structure, which is a proposal for the development of a
representation of timestamps and a timestamp protocol in XML. They con-
sidered several types of timestamps and developed a XML representation for
each type. Furthermore, they present protocols using XML for the creation
of these timestamps. The paper does not deal with Trusted Computing and
the representation of the tickstamps in XML. This is shown in this thesis,
which can be understood as an extension of this paper.

74 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

3.3.3 User authentication

For the authentication of users, this thesis uses the OpenlD system. The
TPM is used to improve the security of the authentication to the OpenlD
Provider using a plug-in of the Firefox browser. There are several plug-ins
for the Firefox browser, which enhance the user experience or security as-
pects of the authentication. A common functionality is the storage of the
passwords in the browser using a master password, which eases the authen-
tication for the user, because the browser can login the user automatically
after the authentication with the master password. This functionality and
the plug-ins, which provide this functionality are not explained in this sec-
tion, because they do not replace the authentication mechanism and just
improve the user experience. The following plug-ins and concept are com-
pared regarding their enhancement in security.

3.3.3.1 VeriSign’s OpenlID SeatBelt Plug-in

SeatBelt [30] is a plug-in for the Firefox browser, which was developed
by VeriSign. It is a small plug-in, which enhances the user experience of the
OpenlD authentication and prevents basic phishing attacks. The enhance-
ment of the user experience is not relevant regarding security aspects. The
phishing attacks are prevented in the plug-in by a list of trusted OpenlD
Providers, which is stored in the client. When the user wants to login to a
Relaying Party, the plug-in verifies if the URL, where the browser is redi-
rected to, belongs to OpenlID Provider in the list. If the URL is not found,
the user is warned and the authentication is prevented.

The plug-in enables the user to view the list of OpenID Providers and to
insert a new Provider or to remove an existing one. The plug-in provides a
basic functionality to prevent phishing attacks in OpenID, but does not en-
hance the authentication mechanism. Most sites still use the unsafe method
of the password authentication, which should be replaced by more secure
authentication method.

3.3.3.2 Other proposals

There are a high volume of proposals which improve the security of the
OpenlD authentication. The following concepts are the most relevant for
this thesis, which show the security vulnerability of the OpenlD specification
and other solutions to resolve them.

3.4. DEVELOPED CONCEPTS 75

A new anti-phishing method in OpenID The authors in [85] improve
OpenlD resistance against phishing attacks by using a two way authentica-
tion over separate communication channels. Before the user authenticates
to the OpenlD Provider, he verifies the authenticity of the Provider with
a shared secret. For this purpose, the registration of the user is extended.
When the user registers, the Provider stores the shared secret in the client
and the user enters a personal message in the server. After that, when the
user wants to authenticate at the Provider, the user transmits the shared
secret to the Provider. If the secret is valid, the Provider shows the personal
message. The user verifies the personal message to determine that he is
connected to the same Provider as during the registration. This approach
is a possibility of preventing phishing attacks to the server, which has no
additional requirements on the client side. It does, however, not replace
the password authentication and does not apply secure hardware for the
protection of the identity of the user.

Preventing identity theft with electronic identity cards and the
TPM In the paper [82], the authors describe a method to protect an
identity of a user using the TPM, OpenlID and electronic identity cards. The
aim is to protect the identity of a user in the Internet, which is provided
by the electronic identity cards. The author uses a key stored in the TPM
to bind the identity to the platform of the user. The paper describes a
part of the authentication mechanism shown in this thesis, but the authors
focus on the application of the electronic identity cards. It does not provide
information about the protocols, components and their realization, which is
required in an elaborated and applicable solution.

3.4 Developed concepts

This section shows three concepts, which enhance the security in different
areas of a content management system. The aim is to develop a system,
which allows the user of the platform to benefit of the security features the
TPM provides. The design principle is to mainly rely on a peer-to-peer
architecture, which uses the same level for the users. This increases the
reliability, because no sophisticated centralized infrastructure is required.

The TPM uses a PKI structure, the PrivacyCA, for the verification of
the AIK keys. This infrastructure is needed to support this verification.
The Direct Anonymous Attestation (DAA) [42] is an alternative method

76 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

to perform this verification in a peer-to-peer architecture, but there are no
elaborated implementations of the protocol available to apply it practically
in complex systems. For this reason, the PrivacyCA is used in this thesis as
standard verification method. It can, however, be replaced with the DAA
algorithm as desired, because both methods provide the verification of AIK
keys.

The three developed concepts are presented in the following sections.
The first concept presents the secure storage of confidential data on a plat-
form as well as the secure transmission of content. After that, the TPM
is used for the creation and application of qualified timestamps, which are
integrated in signatures. The last concept presents an enhanced user au-
thentication in OpenlD.

3.4.1 Secure content storage and transmission

The aim of the concept is to protect the confidentiality of content with
the application of the TPM in the MPEG-21 framework. This can be real-
ized, if the content is securely stored within a platform and the transmission
between platforms is protected. These two aspects are considered on the ap-
plication level using the MPEG-21 framework as a basis for interoperability.
For the protection of content, digital signature and encryption are required
to achieve a comprehensive protection. The following section presents a
method for the integration of digital signatures into the MPEG-21 frame-
work.

3.4.1.1 Digital signatures

A digital signature enables the verification of authenticity, integrity and
verifiability of a content. An author signs a content to ensure that the con-
tent cannot be modified maliciously in his name. As already mentioned in
section 2.4.2.10, there are several possibilities for the integration of signa-
tures in the MPEG-21 standards. A typical file conform to the MPEG-21
standards packages several Items in a defined structure. Generally, a signa-
ture can be thus applied to each Item or to the whole file. The application
and the embedding of a signature in an Item are shown schematically in
figure 3.9.

It depicts a structural representation of some of the XML elements in
an Item. The different capitalization originates from different specifications
in the respective standards. Among other elements, the Item contains a

3.4. DEVELOPED CONCEPTS 7

Item
Component
license
grant
play

securelndirect

grant
governedCopy
securelndirect

issuer

Signature

Figure 3.9: Encapsulated signature within an Item

Component element, which in turn contains a license element. This license
is according to the REL specification and comprises several grant elements,
which assign rights to users. The last element in the license is the issuer,
which contains the signature of the author. The supported method of repre-
sentation of a signature in the REL standard is the XMLDSig standard [50].

A signature can protect an Item completely or only parts of it. The
protection of a whole Item is depicted in the figure using the black arrows.
The encapsulated signature signs all elements within the Item besides one
exception, which is explained later. The figure also shows that the grant
element contains also the securelndirect element. This element references to
the binary resource in the file format using a hash. When the file is compiled,
the hash is calculated over the resource and embedded in the securelndirect
before the signature is created. This hash value links the resource to the
signature and ensures the integrity of the content during the distribution.

The protection of a whole file comprising several Items is realized with
another signature, which needs to be embedded in a superior level of the
Items. This signature is embedded below the root DIDL element and signs
all Items with their metadata. This includes the licenses with the securelndi-
rect elements, which protect the integrity of the respective content.

78 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

The user requires an asymmetric signing key pair to create the signature.
This key pair has to be created before the content can be signed. The TPM
can be used for the key generation and the storage using a Storage Key. As
the signing key is encrypted with the Storage Key, it can be stored externally
on any storage device. When a signature is created, the key is loaded into
the TPM with the password of the Storage key. An AIK with a PrivacyCA
allows to verify that the signing key is protected by the TPM.

These signatures protect the content of modifications and should remain
intact during the whole distribution period to attribute the Item to the
author.

3.4.1.2 Content storage

Confidentiality of content can be achieved using the MPEG-21 TPMP
standard, which defines a method to embed protection information within
the MPEG-21 DID. Generally, the IPMP standard defines the notion of
a tool which represents any cryptographic algorithm that provides one or
more security services. The IPMP standard enables the declaration of such
an IPMP tool and its description, e.g. the algorithm and the location of its
implementation. To protect the confidentiality of content, a tool is defined,
which represents an encryption algorithm. This IPMP tool contains all
required information about the type of algorithm and its parameters. The
tool can be integrated on the level in the DID hierarchy, which is required
to ensure the security of the content. The lowest level is the encryption of
the content itself, while the metadata in the Item remains unencrypted. A
higher level is the encryption of the whole Item, which ensures that only the
recipient can decrypt and interpret the metadata in the Item. The level of
encryption is thus application dependent and can be chosen as required.

In this thesis, the level of encryption is chosen on the lowest level, i.e.
only the content is encrypted and the unencrypted metadata allows third
parties to identify and categorize the content. In this case, the IPMP tool
refers only to the resource in the DID. The optimal integration of the dec-
laration of the tool is thus in the Resource element of an Item element.
Figure 3.10 shows this integration schematically.

The surrounding Resource element in gray is used as defined in the DID.
The original resource within this element is replaced by the IPMP Pro-
tectedAsset element. The attributes in the Resources element are changed
accordingly to reflect that the resource is encrypted using IPMP. The Pro-
tectedAsset element defines an IPMP tool, which describes the encryption of

3.4. DEVELOPED CONCEPTS 79

Resource

ProtectedAsset

Tool

ToollD

InitializationSettings

Contents

Figure 3.10: Content encryption with MPEG-21 IPMP

the content. The ToolID element contains the identifier of the used encryp-
tion algorithm, which informs the recipient about the method of encryption.
Typically, symmetric encryption algorithms are used for efficiency reasons.
The InitializationSettings element specifies values, which the selected algo-
rithm requires as parameters for the execution of the algorithm. The original
resource is encrypted and embedded in the Contents element. This element
also defines the type of the content before its encryption.

The symmetric keys for the encryption can be generated by a software
key generator or the TPM. The TPM contains a key generator, which uses
the internal random number generator to generate strong keys. After the
encryption, the key can also be stored in the TPM, which binds the key to
the platform. As the memory of the TPM is limited, the key is exported
using a Storage Key in the key hierarchy. The user has to specify a password,
which uses the TPM for the exportation of the key. This password is used to
authenticate the user to protect the key against misuse. The key can be also
bound to the platform state using the sealing functionality of the TPM. This
is an independent issue and not considered in this thesis, because it requires a
special operating system, which makes use of the platform integrity features
of the TPM.

3.4.1.3 Transmission of content

The transmission of content is an integral issue in content management.
A transmission is performed, when the content is transferred between dif-
ferent users or several platforms.

80 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

On a single platform, several users can transmit their content between
each other. In this case, it is sufficient either to share the key between the
users or to re-encrypt the content for another user. Using the protection
mechanism as described in the previous section, the sharing of the key can
be realized with the sharing of the password, which is required to load the
key into the TPM. This password has to be revealed to the authorized users.
Alternatively, the content can be re-encrypted, if a permanent sharing of the
password is a security risk. A key can be created, which is only shared tem-
porarily between the sender and the recipient. After the generation of this
key, the content is re-encrypted with it. The encrypted content is transferred
to the recipient, which can then decrypt the content with the shared key.
The recipient may then again re-encrypt the content with a new key, which
is not shared with another party. The shared key and the corresponding
content can then be deleted. This method is more complex, but increases
the security as the shared key is only required temporarily. Another advan-
tage is that it does not require external parties for the transmission. This
method is, however, only applicable in a single platform and the security
significantly depends on the protected exchange of the encryption key. This
can lead to almost the same efforts, which is required for the transmission
between several platforms. So this method is only beneficial in special use
cases.

The comprehensive approach is the transmission of content between sev-
eral platforms. This can be also generally used for the transmission of
content within a single platform, because it provides a secure method to
exchange the encryption key. The aim for this method is to develop a so-
lution for the secure transmission of the encryption key without modifying
the operating system or the method of transmission. This is achieved by
embedding the content key into the MPEG-21 metadata of an Item. This
method is shown schematically in figure 3.11.

Before the transmission of the Item to the recipient, the sender extends
the Item with an encrypted key, which is derived from the content key. If
the content is stored outside of the TPM, the content key is loaded into
the TPM using the respective Storage Key and extracted from the TPM.
After that, the application encrypts the content key with the encryption key
of the recipient. This encryption key is the public part of an asymmetric
key pair, whose private part is bound to the TPM of the recipient. This
ensures that the encrypted key can only be decrypted within the TPM of the
recipient. The encryption key has to be transferred to the sender before the
transmission together with an AIK certificate. This certificate proves that

3.4. DEVELOPED CONCEPTS 81

Sender Recipient

Iltem Item

1
1
|
|
1
|
1
|
|
Metadata |::' > Metadata
Resource ! Resource
|
]
|
|
1
|
1
|
|
1
|
|
1
|
1
|

))
|] B Content key
> Encrypted key " Encrypted key "
Recipient
encryption key
Qi Encrypt f

Content key

-

TPM

TPM

Figure 3.11: Method for key exchange within an Item

the key originates from an authentic TPM. In the next step, the encrypted
key is embedded into the Item as additional encapsulated metadata.

In the Item, both the resource and the encapsulated key are encrypted,
which ensures the confidentiality of the content. As a result, the Item may
be transferred with any arbitrary method or protocol to the recipient. After
the transfer, the recipient extracts the encrypted key from the Item and uses
the private part of the encryption key in the TPM to decrypt the content
key. This key enables the user to decrypt the resource and to access the
content.

This is a schematic overview of the functionality. The next paragraphs
show the individual steps of the method and the integration in MPEG-21
in detail.

Prerequisites To transmit content with the presented method, the sender
requires to obtain the public part of the recipient’s encryption key. Together
with the key, he should get certificates from the recipient, which allow the
verification of the authenticity of the key. The recipient uses his TPM to
create the encryption key and stores the private part of the key within the
TPM. This enables the TPM to sign the public part of the key with a
previously created AIK. The result is a certificate, which states that the key
was created by the TPM and remains protected. The AIK in turn is signed
and certified by a PrivacyCA, which ensures that the AIK is authentic.

82 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

The recipient has to trust the PrivacyCA or one of its superior certification
authorities in a hierarchical PKI.

The method of how to obtain the encryption key of the recipient with its
certificates, is not prescribed in this thesis. Generally, the sender requires a
functionality to select other users and to retrieve their respective encryption
keys. This functionality can be performed manually or it can be a part of an
overall user management. The sender needs to be able to identify the user
and its certificates to verify that the encryption key belongs to the correct
user. An example is a central service, which performs the user management
and provides an interface to obtain the public part of the encryption key of
other users. The sender could contact this service, select a user as recipient
and retrieve his encryption key.

After the user has obtained the encryption key, he can encrypt the con-
tent key and embed it into an Item specified by MPEG-21 DID.

Integration in MPEG-21 The MPEG-21 DID defines Items as a supe-
rior structure for a content. It comprises the resource and the metadata
into a single asset, which contains information about the content and its
distribution. The distribution is governed for example with the MPEG-21
REL. As shown in section 2.4.2.5, the REL also supports use cases, where
content is shared without restriction between an unlimited amount of users.
The permanent re-distribution is an integral aspect in the decentralized con-
tent management. This issue is even more complex if digital signatures are
involved. As shown in section 3.4.1.1, an Item may be signed to ensure au-
thenticity and integrity of the content. A signature preserves the integrity of
the Item, which would also hinder the embedding of the encrypted content
key for the transmission of a content. The embedded key has to be inserted
in such a way that it is ignored by the signature to preserve its validity.

Semantically, the embedded key represents additional descriptive meta-
data within the Item, which addresses the MPEG-21 DID for the integration
of the key. For such a case, the MPEG-21 DID foresees the Annotation ele-
ment, which contains information, about an ”identified entity of the model
without altering or adding to that entity” [70]. This element can be used to
embed the key into the Item, without modifying semantically the resource
or the metadata belonging to the resource. To preserve the validity of the
signature, the Annotation element has to be excluded from the signature.
This allows to insert, modify or to remove Annotation elements from the
Item, while the signatures prove the authenticity and the integrity of the
Item. The signature also remains intact when the Item is copied to other

3.4. DEVELOPED CONCEPTS 83

Item

Component

Annotation

EncryptedKey

EncryptionMethod

KeylInfo
CipherData
CarriedKkeyName

Figure 3.12: Embedding of a key in an Annotation element

Items or aggregated with other Items. This eases the exchange, because
this method for the encrypted transmission does not affect the distribution
of the content.

This method has, however, a disadvantage, because the same content key
is shared with many users. This is a security risk, because the probability
of a violation of the secrecy of the key increases per user. To change the
content key for every user, the content has to be re-encrypted with a new
key. This would, however, invalidate the signature of the content and a
new signature has to be created by the sender. In this case, the process
for the transmission of content would be almost identical to the process for
the release of a content. A re-encryption can be required in application
scenarios, where different content keys per user are required. It has to be
defined in the particular application scenario, whether a re-encryption is
preferred over the validity of the original signature. This thesis considers
the case in which a re-encryption is not required and the original signature
should be preserved.

The structural integration of the encrypted key in the Annotation ele-
ment is shown in figure 3.12. The Annotation element is positioned after
the Component element within the Item. An Item may have an unlimited
amount of Annotation elements, which allows to insert multiple keys in an
Item. The structure of the Annotation element contains an attribute, which
allows to specify the content type of the information in the Annotation. This
enables the recipient to distinguish an Annotation transporting an encrypted
key from Annotation elements containing other information.

84 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

Within the Annotation element is the EncryptedKey element, which was
presented in section 3.1.1. The EncryptedKey element comprises the embed-
ded key and related identifiers for the keys and the recipient. The recipient
is specified as a URI in an attribute of the EncryptedKey element. The
recipient is the identifier of the user, who is in possession of the required
private key.

The inferior EncryptionMethod element declares the encryption algo-
rithm, which is used to en- or decrypt the embedded key. As this operation
is performed by the TPM, the RSA algorithm is selected in this element.
The key used for the encryption of the embedded key is specified in the
Keylnfo element. This element is based on the XMLDSig standard and can
contain the RetrievalMethod element, which notifies the recipient that the
encrypted key can be obtained from the TPM. The RetrievalMethod has the
two attributes Type and URI The Type contains a URI value, which de-
clares the type of the retrieved data. This value is set to a specific identifier
to notify the recipient that the key can be retrieved from the TPM. The URI
attribute specifies an identifier, which allows to locate the key within the
persistent storage of TPM. The CipherData element contains the encrypted
key as binary data. The embedded key is identified with the information in
the CarriedKeyName element, which allows to distinguish several encrypted
keys in an Item.

This structure enables the embedding of an encryption key into an Item.
An Ttem with such an embedded key can be distributed and confidentially
transmitted to the recipient. The next section investigates two methods for
the distribution of such Items.

3.4.1.4 Distribution and addressing of users

The distribution of the encrypted Items can be categorized in two meth-
ods: the direct transmission and the transfer over a trusted third party. The
direct transfer is the straightforward approach, in which the sender encrypts
the content and transmits it to the recipient. A transfer over a trusted third
party may be required if the sender wants to transmit a single content to a
defined group of people. In this case, the recipient is not a single user, but
a group of users. Depending on the size of the group, it would be inefficient
to encrypt the content key multiple times for all users in the group. The
sender could also use group keys, but this would increase the effort in the
key management. A trusted third party can reduce the efforts by interact-
ing as an agent between the users. The concept and realization of these two

3.4. DEVELOPED CONCEPTS 85

methods are shown in the following paragraphs.

Direct transmission The encrypted content can be transmitted directly
to the recipient. As the content is encrypted, it can be transferred with any
method or protocol. This can be for example via portable devices, e-mail or
directly from application to application. The recipient is either a single user
or a limited group of users. For each user, the sender can embed a separate
encrypted key into the Item. This allows to distribute and share a single
file with multiple users. Each recipient can distinguish the encrypted keys
with the recipient attribute of the EncryptedKey element. This allows the
recipient to determine, if the associated key is directed to him. Although
this method is inefficient if the sender wants to address a large group of users
or if the particular users are unknown to the sender. This can be improved
with the introduction of an intermediate trusted party, which is explained
in the next paragraph.

Trusted third party A trusted third party can act as an intermediate
agent for the distribution of content. This third party is aware of the format
and can parse and process the available metadata of the Item. A sender can
transmit the content to the third party, which then distributes the content
autonomously to the respective users. This increases the efficiency in sce-
narios, where a sender wants to share a content with a large group of users.
To transmit the content to the third party, the sender can use the same
encryption mechanism as for the direct transmission. The sender requires
the public key of the third party to encrypt the content key. The public key
has to be verifiable to ensure the authenticity of the third party. After the
transfer, the third party can decrypt the content key and has thus access
to the content. For this reason, the third party has to be trustworthy to
preserve the confidentiality of the content. This method has the advantage
that the third party can act as a centralized service, which distributes the
content to the selected users.

The sender chooses the desired recipients before the transfer to the server
using the MPEG-21 REL. The REL provides several methods, which allow
the sender to select a specific group of users. One example is the Iden-
tityHolder element, which contains an identifier to select specific users or
devices. The third party uses this information to determine if a user may
obtain a content. For this task, a user management is required, which allows
the third party to verify the authenticity of a user. When the user is au-
thentic and the access to a content is granted, the third party transmits the

86 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

content to the user. It can use the same method with an encrypted key as
for the direct transmission. This ensures the confidentiality of the content
and minimizes efforts in the implementation.

The third party can provide this service as long as necessary for the
respective content. It works independent of the sender and can be thus
more reliable and highly available for the recipients. It may also adopt if
changes in the recipients occur, for example a user joins a specific group
after the sender transferred the content to the third party. The third party
can automatically verify this change and transmit the content to the new
user without another negotiation with the sender.

3.4.1.5 Summary

The presented method enables the secure storage and the exchange of
confidential content with two or more users. The key management of the
encrypted content is decentralized and relies on the responsibility of the
users. The embedding of the encrypted key into the Item eases the exchange
of the content, because any method for the transmission can be applied. No
changes in the underlying operating system or external communication is
required. The applications on both sides, the sender and the receiver, have
to be implemented conform to a common file and metadata format. The
MPEG-21 framework provides these technologies as a good basis for the
interoperability on the application level.

3.4.2 Timestamps in digital signatures

Digital signatures ensure authenticity, integrity and verifiability of con-
tent. The integration of timestamps enhances signatures, because it allows
to verify the point in time when the signature was created. In section 3.1.4.6,
the functionality and the protocol for the creation of a TPM-timestamp us-
ing the tick counter of the TPM was presented. This section shows the XML
representation of such a timestamp and its integration in signatures.

The values of a TPM-timestamp are shown in figure 3.13. The Refer-
encelnfo value specifies a reference to the document, which is timestamped.
The TSA-timestamp is the traditional timestamp created by the TSA. The
three tickstamps and the AIK credentials are the new elements, which are
created by the TPM. These values have to be mapped to a representation
in XML and integrated into signatures. The XAdES standard already con-
tains elements, which can represent timestamps within signatures. To be

3.4. DEVELOPED CONCEPTS 87

Timestamp

C Referencelnfo) (AlK-Credentials)

Tickstamp1 TSA- Tickstamp2
digest | signinfo HE- digest | signinfo
stamp - -
currTicks |signature currTicks |signature
Tickstamp3

digest | signinfo

currTicks |signature

Figure 3.13: Timestamp created by the TPM

compliant to this standard, the elements defined in XAdES were used as a
basis for the integration of the additional values from the TPM.

The central type for the representation of a timestamp in XAdES is
the GenericTimeStampType. As the TPM also creates a timestamp, the
GenericTimeStamp Type is derived to create a new TPM-specific type of a
timestamp. This derivation is called Generic TimeStampFExtensionType in
this thesis. From this generic type, the specific type for the TPM-timestamp
is created and named TPM TimeStamp with the type TPMTimeStamp Type.
The next sections show these types and the mapping of the values to the
GenericTimeStamp Type.

3.4.2.1 GenericTimeStampExtensionType

In the XAdES standard, the Generic TimeStamp Type is the basis of all
timestamps. For particular use cases, the type is restricted to the specific
type of timestamp, which is required for the use case. To integrate the TPM-
timestamp in XAdES, the GenericTimeStamp Type has to be extended to
support the additional values. The GenericTimeStampFEzxtensionType is the
proposed extended type, which is shown in figure 3.14. The figure was
created with the software Altova XMLSpy [35].

The former GenericTimeStampType was extended with two elements
marked in red: the TickStamp and the AikCredentials. These elements are
optional, so the backward-compatibility is preserved. The GenericTimeS-
tampEztensionType can transparently replace the old type without interfer-
ence to the supported use cases. The AikCredentials element contains the

88 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

1o

| T
~i ds:CanonicalizationMethod

['ts:EncapsulatedTimestamp |

ts:XMLTimeStamp [

(GenericTimeStampExtensionType [} === | |

&s \

Figure 3.14: The GenericTimeStampExtensionType

AIK credentials in a format, which is compliant to the X.509 standard [47].
The XML representation for such a certificate is the X509DataType, which
is standardized in the XMLDSig standard.

The TickStamp element can appear up to three times and contains the
tickstamps, which were explained in section 3.1.4.8. Two of these tickstamps
are required to link the tick counter of the TPM to an universal time and
the third tickstamp finalizes the TPM-timestamp over the document. The
other elements are used as they are defined in the XAdES standard to keep
the backward compatibility to the current timestamps.

3.4.2.2 TPMTimeStampType

In the XAdES standard the concrete timestamp types are derived from
the abstract GenericTimeStampType. To be compliant to this scheme, a
new type, the TPMTimeStampType is introduced, which is a restriction
of the GenericTimeStampType. The figure 3.15 shows the structure of the
TPMTimeStamp Type and its mapping to the values of the TPM-timestamp.

The difference to the GenericTimeStampExtensionType is that the Tick-
Stamp and AikCredentials elements are not optional in each instance of the
TPMTimeStampType. The AikCredentials has to be present exactly one
time and exactly three instances of the TickStamp elements are required.

To specify the timestamped document, the Include element or the Refer-
encelnfo element can be used. The choice between the two elements depends
on the use case and the document to timestamp. In this thesis, the Include

3.4. DEVELOPED CONCEPTS 89

| ®
I _dsa:Referencemlo [

Timestamp [|

T T
C Referenceinfo) (AlK-Credentials)
————————————————————————————————— L 5 |, dsa:Referencelnfo = ;]

Tickstampl TSA- Tickstamp2 m
Time-
stamp - -
| TPMTimeStampType [e eSiar
Tickstamp3 | T o
3
I > LS s TickStamp [
> " 5
> .3
0 .3}
> B e Al Credentials O3
L% T

Figure 3.15: The TPMTimeStampType and its mapping to the TPM-
timestamp

I ;lts:digestTOStampE

Tickstamp

digest | signinfo ¢| I'ts:SignInfO]
>

currTicks |signature 1 TickStampType -._J——'_"'|
‘ ts:Signature

>

Figure 3.16: The TickStampType and its mapping to the tickstamp

element is removed, because its complexity in the implementation is higher.
The Referencelnfo element is kept to directly embed the hash value of the
document within the element. The detailed values within the TickStamp

element are shown in the next section.

3.4.2.3 Tickstamp

The XML-representation and the mapping of a tickstamp is shown in
figure 3.16.

Neither the XMLDSig nor the XAdES standard contain a structure suit-
able for embedding the values of a tickstamp, thus necessitating a newly

90 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

developed structure. A tickstamp comprises four elements: digest, signlnfo,
currTicks, and signature.

The digest of the tickstamp is mapped to the digestToStamp element.
This element is optional, because it is not required for the third tickstamp.
The third tickstamp contains the digest over the document, which is already
specified in the Referencelnfo element of the TPMTimeStampType. The
Signinfo element contains the values, which are created by the TPM during
the tickstamp operation. This data is required for the verification of the
signature, and is thus embedded as is. Similar to the signlnfo, the currTicks
value is created during the tickstamp operation and embedded as binary
value in the Ticks element. These values can also be separated, if desired.
The signature value is mapped to the Signature element and contains the
resulting value of the signature operation.

The TickStampType elements also have another attribute, which allows
the identification of the tickstamp within the TPM-timestamp. This at-
tribute can be the number one, two or three depending on the respective
tickstamp. All four values, digest, signlnfo, currTicks and signature, are rep-
resented as binary values in XML with the base64Binary-Type. Although
signInfo and currTicks are composites of several single values, they are kept
as one binary value, because this eases the verification of the signature.
These values are returned from the TPM in this form and their preservation
facilitates their processing.

3.4.2.4 Verification of the timestamp

The previous sections presented the mapping of the TPM-timestamp
with a XML structure based on the XAdES standard. The recipient of such
a timestamp has to verify the values and the signatures to determine if the
timestamp is valid. This verification consists of several steps, which must
be executed to obtain the result.

First, the three tickstamps themselves are validated to ensure their in-
tegrity. To accomplish this, the SignInfo element is verified by comparing
the value with the values in digestToStamp and Ticks. Then, the signature
can be decrypted with the public key of the AIK. This key is transmitted
in the AIKCredentials element as part of the certificate. Furthermore, the
hash value of the SignInfo value has to be calculated and compared to the
decrypted signature value. If the values are equal, then the tickstamp is
valid.

3.4. DEVELOPED CONCEPTS 91

In addition to the tickstamps, the TSA-timestamp and the AIK have to
be verified. The TSA-timestamp can be validated as a normal signature with
the public key of the TSA. The public key of the TSA must be authentic
and trusted, e.g. by using a trusted certificate. The AIK is validated with
a PrivacyCA, the DAA, or other means to guarantee that the AIK is from
an authentic TPM. If all verifications are successful, the TPM-timestamp is
valid. The resulting timing is determined with a specific precision depending
on the distance between the first two tickstamps.

3.4.2.5 Integration of the TPM-timestamp in signatures

The developed TPM-timestamp enables the user to prove that the times-
tamped document existed at a certain point in time. The timestamp can be
either stored separately or integrated into the document. To prove authen-
ticity and integrity of the document, a separate signature from the author or
publisher is required. Usually the timestamp is integrated in such a signa-
ture to achieve a comprehensive protection of the document. The following
sections show methods of integration of the presented TPM-timestamp in
the XMLDSig and XAdES standards.

XMLDSig XMLDSig is the most widely-used standard for the represen-
tation of signatures in XML. The XMLDSig standard specifies an Object
element, which can contain any extensions to the signature like timestamps.
The extensions are embedded with a SignatureProperty element, which de-
clares an identifier for the extension and a target in its attributes. The target
is a reference to the element the extension belongs to. Figure 3.17 shows

the most important element as an example of a signature with an integrated
TPMTimeStamp element. The TPMTimeStamp is marked in blue.

The elements in the Object element are not automatically included in
the creation of the signature and, therefore, not protected. The signature
must include the timestamp to ensure the timestamp remains attached to
the document. Accordingly, an additional Reference in the SignedInfo needs
to be added in the signature, which is marked in yellow in the figure. In the
XML Signature Properties [53] standard, several extensions in the Object
element are recommended, but the integration of timestamps is not fore-
seen. To achieve an interoperable integration of timestamps in XMLDSig,
a recommendation could be added to this standard.

92 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

<Signature 1d="SignatureAuthor" ...>
<SignedInfo>

<Reference URI="http://www.w3.0rg/TR/xml-stylesheet/">

</Reference>
<Reference URI="#MyTimeStamp" Type="http://www.w3.0rg/2000/09/xmldsig#SignatureProperties">

</Reference>
</Signedinfo>

<Object>
<SignatureProperties>
<SignatureProperty 1d="MyTimeStamp" Target="#SignatureAuthor">
<TPMTimeStamp>

</TPMTimeStamp>
</SignatureProperty>
</SignatureProperties>
</Object>
</Signature>

Figure 3.17: Example of integration in XMLDSig

XAdES The XAdES standard supports timestamps for specific use cases
and defines their integration. As XAdES was used as a basis in the devel-
oped proposal, the TPMTimeStampType can directly replace the existing
timestamps. Another advantage of the proposal is that the existing times-
tamps in the standard can also be realized with the TPM. For example, the
existing AllDataObjects TimeStamp can also be created by the TPM. This
completes the backward-compatibility and enhances the integration in the
existing solutions.

3.4.2.6 Example

Figure 3.18 shows a condensed example of a signature with a timestamp
created by the TPM. The namespace of the elements can be seen in the
prefixes of the elements. The ”ts” prefix refers to the new created element
for the TPM-timestamp. The elements with the prefix "dsa” are from the
XAdES standard and the remaining elements are specified in XMLDSig.

3.4.2.7 Summary

The usage of the TPM allows the creation of qualified timestamps with-
out a permanent connection to a TSA. The TPM enables the binding of a
trusted timestamp from a TSA to a secure counter. The timestamps created
by such a counter can be also verified by external parties. The integration

3.4. DEVELOPED CONCEPTS 93

<Signature xmIns="http://www.w3.0rg/2000/09/xmldsig#" 1d="MySignature">
<SignedInfo>
<Reference URI="#MyTPMTimestamp">...</Reference> ...
</SignedInfo>

<Object>
<SignatureProperties>
<SignatureProperty 1d="MyTPMTimestamp" Target="#MySignature">
<ts:TPMTimestamp xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmins:dsa="http://uri.etsi.org/01903/v1.3.24#"
xmins:ts="TPMTimestamp-NS">

<dsa:Referencelnfo>
<ds:DigestMethod Algorithm="..."/>
<ds:DigestValue>/LAdliasdSa2LaKna9aj12sdnkAC8a&</ds:DigestValue>

</dsa:Referencelnfo>

<ts:EncapsulatedTimestamp>OANMA......</ts:Encapsulated Timestamp>

<ts:TickStamp number="1">
<ts:digestToStamp>PD2ALMONOT....</ts:digest ToStamp>
<ts:SignInfo>OXM7XC1BZ....</ts:SignInfo>
<ts:Signature>LA9IANS2....</ts:Signature>
<ts:Ticks>WKSVMQL72A...</ts:Ticks>

</ts:TickStamp>

<ts:TickStamp number="2">....</ts:TickStamp>

<ts:TickStamp number="3">....</ts:TickStamp>

<ts:AikCredentials>
<ds:X509Certificate>OYMXSLUW....</ds:X509Certificate>

</ts:AikCredentials>

</ts:TPMTimestamp>
</SignatureProperty>
</SignatureProperties>
</Object>
</Signature>

Figure 3.18: Example of a XMLDSig signature with a TPM-timestamp

of a TPM timestamp into the XML standards for digital signatures is pre-
sented. This enables the representation of the TPM timestamps as XML
documents, which enhances the interoperable exchange and processing of the
timestamps. The representation is based on the XAdES standard and pro-
vides compliance to the existing timestamp definitions in the specification.
Furthermore, the integration in XML signatures according to the XAdES or
the XMLDSig standard was described.

3.4.3 User authentication

This section presents a concept which uses OpenlD as a basis for an
authentication of users on websites. The authentication process is enhanced
with the integration of the TPM into the protocol. The aim is a compre-
hensive solution, which benefits from the usability of OpenID and enhances
the security using the TPM.

94 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

Relaylng Party OpenlD Provider PrivacyCA
‘ |<—> . %ﬁ

/\/\

Client i User Agent
= {1 .
- TSS

=y

Figure 3.19: Overview of the OpenID system with the TPM

3.4.3.1 Overview

The OpenlD specification does not define the method for authentication
of the user. This gap can be used to seamlessly integrate the TPM into the
authentication process. The integration of the TPM may require a mod-
ification of the OpenlD standard. Modification are generally not desired,
because the OpenlD standard is already widely deployed and a modifica-
tion would mean, that all existing implementations become incompatible
regarding the modification. This should be prevented if possible.

The authentication of the user is performed between the Provider and
the User Agent. This is the central point for improvement, but also the other
components have to be considered and integrated in the whole concept.

An OpenlD system consists of the Relaying Party, the Provider and
the User Agent. The TPM is built into the User Agent and requires a
PrivacyCA to certify the keys within the TPM. All these components are
shown in figure 3.19 with the connections between them.

The Relaying Party is a website as specified in the OpenlD specification.
The User Agent is the component between the Provider and the TPM, which
serves as connector between them. The User Agent has to be extended with
an add-on to support the functionalities of the TPM. This add-on accesses
the TPM via the TSS, therefore, also multiple User Agents can use the

3.4. DEVELOPED CONCEPTS 95

TPM simultaneously. The add-on is responsible for the authentication and
communicates with http requests with the Provider. The User Agent and
also the Provider involve the PrivacyCA to request or validate certificates
from the TPM.

To authenticate a user, the protocol of the OpenlD specification is used
and extended. The beginning of the protocol is identical, where the user
enters his OpenlID identifier in a web form. After its submission, the User
Agent is redirected to the Provider. The add-on is able to recognize this
redirection and to initiate a specific protocol which involves the TPM. The
add-on accesses the TPM and uses secrets stored in the TPM to authen-
ticate the User to the Provider. The Provider validates the transmitted
values and requests additional certificates from the PrivacyCA as required.
If the authentication is successful, the Provider redirects the user back to
the Relaying Party as specified in the OpenlID standard.

The following sections present the details of the concept and the ex-
changed messages between the components.

3.4.3.2 Components

There are three components involved in the authentication procedure:
the TPM, the User Agent, and the OpenlD Provider. The Relaying Party
does not require any modification and is, therefore, not explained.

TPM - authentication and keys The TPM can store asymmetric keys
in a key hierarchy as explained in section 3.1.4.4. The stored keys are en-
crypted with the SRK or a Storage Key and saved in this encrypted form
on a device in the platform. The SRK or Storage Keys are protected with
passwords which are set when the key is created. These passwords have to
be given each time the key is used for the decryption of inferior keys. If an
application wants to use a key for a cryptographic operation, the key has to
be loaded and decrypted within the TPM. For the decryption of the key, all
keys superior in the hierarchy have to be loaded in the TPM. It starts with
the SRK and downwards from level to level the keys are loaded with their
passwords into the TPM until the selected key is reached.

The passwords are a method of authentication, because only the user
who knows the password is able to load the key into the TPM and to use
it. This method is exploited for the authentication in OpenlD. Each user
posses a Signing Key, whose private part remains in the TPM and is pro-
tected in the key hierarchy. The Signing Key is stored encrypted within

96 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

the User Persistent Storage and the user has to provide the password of the
superior Storage Key to use the key. The Signing Key allows the creation of
signatures on any data. Such a signature can be used for the authentication
to the Provider, because it proves that the user can load the key into the
TPM.

The validity of these signatures are verified with an AIK and the Priva-
cyCA. The TPM signs the Signing Key with an AIK to state that the key
is associated and belonging to the TPM. The AIK is certified by the Pri-
vacyCA, which verifies the platform credentials to determine that the AIK
belongs to the respective TPM. All these credentials can be transmitted to
the Provider, which allows him to validate the authenticity of a signature
created by the Signing Key.

User Agent The User Agent consists of the browser and an add-on to
that browser. The browser is a common software, which is used for the
exchange of information with websites. The add-on enriches the browser
with an access to the TPM over the TSS and extends the user interface of
the browser. The add-on inserts new functions in the user interface, which
allows the user to address the TPM and to perform high-level functions
of the TSS. This access to the hardware requires special privileges in the
browser, because fully developed browsers implement security mechanisms
to prevent malicious software from websites gaining access to private data.
The browser has to be configured to grant the hardware access to the add-on.

Furthermore, the add-on is able to recognize the redirection of the User
Agent to the OpenlD Provider. When this occurs, it performs a protocol to
authenticate the user. The exchanged messages are transported using the
HTTP protocol and via cookies.

OpenlID Provider The OpenlD Provider receives the information from
the add-on and performs the user authentication. To validate the values
from the TPM, the Provider uses the PrivacyCA to exchange required cer-
tificates. The Provider needs to trust the PrivacyCA to validate the certifi-
cates successfully.

3.4.3.3 Use cases

The interaction of the components is divided in three use cases to achieve
a concise solution for the management of the users: the registration, the au-
thentication and the deregistration. Each use case implements methods and

3.4. DEVELOPED CONCEPTS 97

protocols to achieve the respective functionality for the user management.
In the following paragraphs, the three use cases and the integrated improve-
ments are discussed to give an overview of the concept. The next sections
describe the protocols in detail.

Registration A user has to be registered in the OpenlD Provider to use
the OpenlD infrastructure for the authentication on websites. In this reg-
istration, the user creates a new OpenlD identity at the Provider, which
he can use later for the authentication. Before the user can register at the
Provider, he has to create a Signing Key within the TPM. The Signing
Key is encrypted with a Storage Key and stored in the key hierarchy of the
TPM. The user enters a password during the creation and the encrypted
key is then stored in the User Persistent Storage. The user can initiate the
creation of a new key with the add-on. The key may also be created exter-
nally with another software and the user may choose to use this key for the
authentication in OpenlD. The only restriction is that the key must have
been created with the same security conditions as with the add-on. In both
cases, it must be ensured that the Signing Key is assigned to the user and
only the user can provide the necessary passwords to load the key into the
TPM.

When the user has a Signing Key within the TPM, he can use the User
Agent to connect to the Provider to create an OpenlD identity. In a con-
ventional OpenlD system, the Provider requests the user to specify a name
for his OpenlD identity and a password. If the name has not already been
taken, the user receives the identifier and is registered. This registration pro-
cess is extended mainly with the submission of the public part of the Signing
Key and the associated certificates for its validation. The Provider validates
the certificates to ensure that the key originates from a TPM. The Provider
stores the data in a database for the upcoming authentications of the user.
After that, the user receives an OpenlD identifier and the registration is
successful.

Authentication During the registration, the Provider associates the Sign-
ing Key and the certificate to the user. This association is exploited in the
authentication of the user. The user enters his OpenlD identifier at a Re-
laying Party. The Relaying Party redirects the user to the Provider and the
add-on in the User Agents transmits additional data for the authentication.
This data is signed by the Signing Key within the TPM. The stored public
part of the Signing Key and the certificates allow the Provider to validate

98 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

OpenlD Provider PrivacyCA

—O—

\
I\

\
\

\@/

= SR

Client i User Agent
— l
- TSS

\ TPM /

Figure 3.20: Registration of a user at the Provider

the signature. If the signature is authentic, the Provider proved that the
same user as in the registration has submitted the signed data. Hence, the
user is authentic and is allowed to use the related OpenlD identifier.

Deregistration The deregistration of a user completes the user manage-
ment. In this use case, a registered user account in the Provider is removed
and the stored certificates are deleted. After that, the OpenlD identifier
becomes invalid and cannot be used anymore. It is not required to also
remove the Signing Key in the User Persistent Storage. The user can decide
to reuse the key for another identity or any other purpose.

3.4.3.4 Registration

This section presents the detailed steps for the registration of a user
in the Provider. The aim is to create an association between the OpenlD
identifier and the Signing Key of the user within the Provider. The steps of
the registration are shown in figure 3.20.

The exchanged values and the processing in the components are as fol-
lows:

3.4. DEVELOPED CONCEPTS 99

1. The user enters the name of the OpenlD identifier and the data related
to the Signing Key in a web form of the Provider. This data is:

o AIK certificate
e UUID of the Signing Key

Public part of the Signing Key

Signature of the Signing Key with the AIK

Signature of the UUID with the Signing Key (optional)

The web form of the Provider needs to provide fields for these values,
e.g., the possibility to upload files. The UUID of the Signing Key is
the identifier of the key within the TPM. It allows the identification
of the correct Signing Key, which has to be loaded into the TPM.
The signature of the UUID can be optionally added to ensure that
the UUID belongs to the given Signing Key. This is required if the
submission of the values is not encrypted to prevent an attacker from
modifying the UUID. In comparison to the conventional registration in
OpenlD, the password is replaced by these values. Hence, the Provider
is not aware of the password anymore. When the user has entered all
values, the form is submitted to the Provider.

2. The Provider validates the received values. It also validates the AIK
certificate with the PrivacyCA to ensure that the certificates belong
to an authentic TPM. The PrivacyCA returns the required certificates
to the Provider.

3. Upon receipt, the Provider verifies the values of the user. At first, the
Provider verifies the signature of the Signing Key with the AIK using
the ATK certificate. This ensures that the private part of the Signing
Key was created in the TPM and is protected by it. If the signature
of the UUID is provided, it is also validated with the public part of
the Signing Key.

4. If the validation was successful, the public part of the Signing Key and
the UUID are stored in a database (DB) within the Provider. Both
values are stored together with the created OpenlD identifier of the
user. The implementation of the database is up to the Provider and
depends on the amount of registered users. Furthermore, the OpenlID
specific metadata is created, which allows a Relaying Party to discover
the Provider.

100 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

5. Finally the Provider returns the created OpenlD identifier back to the
User Agent. The User Agent presents the identifier to the user to
inform him.

After this protocol, the user has obtained an OpenlD identifier from
the Provider. The public part of the Signing Key is transmitted to the
OpenlD identifier during the registration. This is required to perform the
authentication with the Signing Key. Alternatively, the user could also
register with a password and specify the Signing Key later on. The password
authentication may also be preserved to provide alternative methods for
the authentication. This dual approach is more flexible, but the password
introduces security risks.

The result after the registration is that the OpenlD identifier of the user
is linked to the Signing Key in the TPM. The user can then use the identifier
to authenticate on any website that supports the OpenlD protocol.

3.4.3.5 Authentication

The user wants to use the created OpenlD identifier to authenticate to a
website that supports the OpenlD protocol. The first steps with the Relay-
ing Party are identical to the conventional OpenID protocol. The user enters
his OpenlD identifier to the Relaying Party, which then performs the discov-
ery of the Provider. Afterwards the user is redirected to the Provider, which
performs the authentication of the user. The protocol is a challenge-response
authentication, which uses a signature to provide an one-way authentication
of the user. The protocol and its steps are depicted in figure 3.21.

Each number represents exchange of data between the components. The
following information is transmitted and processed in each step:

1. After the redirect of the Relaying Party, the User Agent connects to the
Provider. The OpenlD identifier is automatically transmitted within
the User Agent.

2. The Provider uses the OpenlD identifier to locate and load the cer-
tificates, keys, and UUID of the user from the database. In this step,
the Provider also verifies if the user is registered. If the OpenlD iden-
tifier is not registered, the certificates and keys are not stored in the
database and the authentication can not be performed. In this case,
the Provider can redirect the User Agent to a form, where the user
can register.

3.4. DEVELOPED CONCEPTS 101

OpenlD Provider

User
Client k Agent
= | @
TSS
TPM

\ J

Figure 3.21: Authentication protocol

3. The Provider forwards the UUID of the Signing Key to the add-on
in the User Agent. This informs the add-on about the Signing Key,
which was used for the registration. This key is also used for the
authentication to verify that the current user is the same user as for
the registration. Furthermore, the Provider transmits a nonce, which
will be signed in the client by the Signing Key within the TPM.

4. The add-on recognizes the received information of the Provider and
connects to the T'SS. The add-on loads the Signing Key belonging to
the received UUID. The user is prompted to enter the password for the
key. When the loading of the key was successful, the nonce received
from the Provider is signed with the Signing Key.

5. The created signature is transmitted to the Provider. The Provider
in turn verifies the signature with the public part of the Signing Key.
The public part of Signing Key does not need to be verified, because
the key has already been checked during the registration. After the
registration, the TPM ensures that the private part of the Signing Key
remains within the TPM and the platform. As a result, the Provider
knows that the signature was created by the same key which was used

102 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

for the registration. As the user is the only person in the possession
of the private part of the Signing Key, the user is authenticated.

6. The Provider sends the authentication result to the User Agent and
redirects him back to the Relaying Party. The Relaying Party veri-
fies the authentication result to determine if the authentication was
successful.

The presented protocol is not precise regarding the connection to the
TPM. The session management in the TSS allows the add-on to open a con-
nection to the TPM and to keep it open over a longer period of time. When
the add-on has started a session, the Session Key is loaded into the TPM
and it can be used for several authentications. This enhances the usability,
because the password is only required when a new session is started. How-
ever, the longer the session is kept open, the higher is the probability that
an attacker can take over the existing session. This can be achieved, for ex-
ample, by network intruders or viruses. Therefore, it is more secure to close
the session after each authentication. If a higher usability is preferred, the
session can be kept open a reasonable period of time, which is the optimum
between usability and security for the specific general conditions.

The presented authentication protocol remains compatible with the OpenlD
specification. No modifications are required for a Relaying Party to support
the presented protocol.

3.4.3.6 Deregistration

The third use case is the deregistration, which removes an existing
OpenlD identifier from the Provider. The presented protocol requires that
the key or data of the user are stored on both sides. The client side possesses
the private part of the Signing Key. The Provider stores the public part of
the Signing Key and the associated UUID. Therefore, the deregistration can
be realized with three possibilities:

e The user uses a function in the browser add-on to erase the private part
of the Signing Key from the platform. Without this key, the authen-
tication is not feasible anymore. This option is only reasonable if the
Signing Key was used for exactly one OpenlD identifier. Otherwise,
the deletion of the key would also deregister the other OpenID identi-
fiers related to the Signing Key. This approach is not optimal, because
the public part of the Signing Key remains in the Provider as stale data

3.4. DEVELOPED CONCEPTS 103

and the identifier is still reserved for the user. The Provider can im-
plement an additional functionality, which removes unused accounts
after a certain period of time. This functionality, however, increases
the effort for the management and also the final deregistration of an
identifier is performed after a delay.

e Another option is that only the Provider performs the deregistration.
In this case, the Provider sets up a form which allows a user to deregis-
ter his OpenlD identifier. When a user requests the deregistration, the
Provider removes the stored data associated to the user. This deletes
also the related OpenlD identifier instantly, although the private part
of the Signing Key remains on the client side. This approach is ap-
propriate when a Signing Key is used for multiple OpenlID identifiers.
The user can delete the Signing Key when he or she has assured that
all identifiers related to the Signing Key were removed.

e The third option is the combination of the previous options. In this
case, the add-on provides a functionality, which deletes the private
part of the Signing Key simultaneously with the removal of the user
data in the Provider. This procedure instantly removes the data on
both sides without leaving stale data. To achieve this, a method has
to be implemented, which triggers the deregistration on both sides.
This approach is optimal, if one Signing Key is associated with one
OpenlD identifier.

One of these three methods can be chosen to accomplish the deregistra-
tion. The choice depends on effort, usability and security within the general
conditions of the system.

3.4.3.7 Evaluation

The protocol enhances the security of the authentication, but also has
some drawbacks. In comparison to a conventional authentication with a
password, the presented concept is more complex, because of the signature.
The signing operation is performed within the TPM, which has limited re-
sources. This can lead to a remarkable delay in the authentication process.

Furthermore, the binding of the authentication to the TPM restricts the
user to one platform. The user can authenticate only from the platform,
which is equipped with the TPM that protects the Signing Key. This prob-
lem can be solved by registering multiple Signing Keys at the Provider. The

104 CHAPTER 3. PROTECTION USING TRUSTED COMPUTING

user may use one Signing Key for each platform. In this case, a procedure
for the registration of multiple platforms is required. Usually a user should
use a platform, which is already registered, to submit Signing Keys of other
platforms to the Provider. This approach is quite cumbersome, because the
user needs to transfer the public part of the Signing Key to the registered
platform. One possibility to solve this problem is the already mentioned
dual approach, which allows the alternative login with password or with the
Signing Key. This approach, however, has also security drawbacks.

One advantage of the presented protocol is the secure authentication with
a challenge-response protocol using a signature. It prevents phishing attacks,
because the password is not transmitted to the Provider. An attacker would
gain no advantage in the eavesdropping of the transmitted values. The
Signing Key is protected by the TPM, which ensures that the key can only
be used on the specific platform. The key is not migratable and cannot
be transferred to another platform. Furthermore, the session management
of the OpenlID session and the TSS session offers an enhancement for the
security and the usability. The timeout of the OpenlD session can be reduced
to increase the frequency of the authentication with the Provider. A higher
frequency offers a higher security for the Relaying Party and if the TSS
session remains active, the authentication does not require a user input.
A compromise between security and usability has to be found within the
general conditions of the application.

3.4.3.8 Summary

The presented concept describes a user authentication using the TPM
within the OpenlD system. The conventional password authentication to the
Provider is replaced with a Signing Key, which is protected by the TPM.
The platform of the user has to be equipped with a TPM and an add-on
has to be installed in the User Agent. The user is verified locally on the
platform using the TPM. The security in this authentication depends on
the protection of the Signing Key, because it is the secret, which is verified
by the Provider. The password to load the Signing Key has to be chosen
carefully and needs to remain confidential. The protocol is efficient, because
it requires only once the services of the PrivacyCA during the registration of
the user. The enhanced protocol remains compatible to the existing OpenlD
specification, which eases the acceptance and the distribution of the concept.

3.4. DEVELOPED CONCEPTS 105

3.4.4 Summary of the concepts

Several methods for the protection of content relevant for security were
presented. The Trusted Computing technology was used and integrated into
XML-based standards for the management and exchange of content. This
enables an interoperable exchange and processing of the protected content.

Chapter 4

Implementation

The presented concepts were implemented in a prototype to verify the
realizability and the functionalities. The separate concepts were aligned to
each other and combined to a working Content Management System. The
resulting implementation is an elaborated solution based on MPEG-21 and
Trusted Computing technologies. The system works decentralized and re-
quires only a possibility for the verification of the AIK keys, which can be
either realized with a PrivacyCA or the DAA. As there are no mature im-
plementations of the DAA, the PrivacyCA is applied in the prototype. The
next sections introduce the use cases, the implementation and the descrip-
tion of the software components.

4.1 Application scenarios

The implemented software can be used in many application scenarios,
where content management is involved and content is exchanged with secu-
rity mechanisms. The implementation can be used for the management of
unprotected content as well as the secure exchange of content relevant to
security. This is achieved with different levels of security.

Unprotected content is managed and distributed with the descriptive
metadata of the MPEG-A Open Access Application Format. The standard
improves the sharing and indexing of free distributable content using the
metadata based on MPEG-21 and MPEG-7. This metadata is used in the
implemented software components to identify the content and to provide the
user a convenient interface for the management and sharing of the content.

An intermediate level of security is provided by the signatures, which can

106

4.2. ARCHITECTURE 107

be applied to single Items or to all Items in a file. The signatures protect
the authenticity and the integrity of the content, but they do not ensure the
confidentiality. The signatures can be used for example to ensure that the
content cannot be modified during the distribution.

The highest level of security is provided with the encryption of confiden-
tial content using the TPM technology. The aim is to secure the exchange of
content in scenarios where it is in the user’s best interest to have the content
protected. One example are Enterprise Rights Management Systems, which
manage and protect internal content from a company or organization. The
system can also span multiple companies to allow an exchange of content
from one company to another. The TPM is often embedded by default in
business computers and laptops, which eases the support for the security
features of the implementation. Another application domain of the software
is the medical sector to protect the exchange of medical records. A digital
exchange of data between physicians and patients would increase the effi-
ciency in diagnosis and treatment. The security of the medical data is a
central aspect, because the privacy of the patient has to be ensured. The
MPEG-21 standards provide an optimal basis for the interoperable exchange
of the medical data between heterogeneous platforms. The TPM is also a
favorable security chip adequate for the wide application in this sector.

4.2 Architecture

The implementation consists of several components, which can be cat-
egorized in network services and client applications. Figure 4.1 shows an
overview of the components and their interaction between each other.

It also shows the interaction of the components in the implementation.
The TPM in the client is depicted at the bottom of the figure. It contains
and protects the private keys of each user. Although not depicted, the
keys can also be exported on an external storage device using Storage Keys.
Each user has two private keys, which are for the two operations: signing and
encrypting. The keys are generated within the TPM and are not migratable.
Above the TPM is an implementation of the TSS, which provides a high-
level interface of the TPM functions for the applications. Two applications
were developed for the client side, which use the functions of the TPM.

One application is the Content Management Application, which is the
central application for the consumption and creation of content. It imple-
ments the complete file format and allows the management of the embedded

108

OpenID
Provider

network

services \ /
client

browser i Content
Management
Addon Application

TPM

-

CHAPTER 4. IMPLEMENTATION

Content

Server TSA

\

[

(TSS

)

i

User A | signing key

| encryption keyl

User B | signing key

l encryption keyl

Figure 4.1: Overview of the system components

metadata in the Items. For the creation and release of content, it uses
After

the exchange of this reference value, the Content Management Application

the TSA to obtain a time reference value for secure timestamps.

can issue secure timestamps offline without further communication with the

TSA.

The other client application is the web browser with the integrated add-
on. The browser performs the user authentication with an OpenlID Provider
using the TPM. The Relaying Party in this authentication is the Content
Server, which is a web service providing and managing content in the system.
The server allows users to comfortably search and browse content stored in
an internal database. The access control of the content is performed using
OpenlID and the REL in the metadata of the Item. This allows the Content
Server to distribute the content to the appropriate users. If the user is
authorized, he can download the content and use the Content Management

Application to view and consume the content.

Most components were developed in the Java programming language [33],
which is an object-oriented language designed to compile and execute the

4.3. COMPONENTS 109

same source code on several platforms. This enables the execution of the
implemented components on all platforms supported by Java. The full func-
tionality is, however, only provided in the Linux operating system and its
derivate, because some required components are not available for other op-
erating systems.

4.3 Components

This section presents the implemented components and their interactions
to each other in the system. At first the local components on the client
are explained, which can be used for the creation and the consumption of
content. After that, the components for the distribution and the exchange
of content are described.

4.3.1 TPM Module and TSS

The choice of the TPM and TSS implementation is a challenging task.
The existing TPMs in the market were evaluated in [93] with the result
that the modules are partly incompatible to each other or do not implement
all features of the specification. This creates difficulties in the realization
and the interoperability between several platforms. Similar problems arise
with TSS implementations, which are not interoperable with all TPMs. Fur-
thermore, they are also incompatible with the applications, because some
functions were implemented differently. As the T'SS specification is also ex-
tensive, most T'SS implementations are not elaborated and do not support
all features.

One TSS implementation, which supports most of the TPM functions,
is the TCG Software Stack for the Java Platform (jTSS) [28]. The software
supports a set of TPMs and is available for different operating systems. One
of the supported devices is the TPM-Emulator [27], which emulates a TPM
in software. An emulated TPM has the advantage that the implementing
software can be exchanged and updated frequently. The implementation
is also independent of faulty hardware implementations or incompatibilities
between the manufacturers. For these reasons the presented prototype and
its components use the combination of jTSS and TPM-Emulator. Hardware
TPMs may work directly or with minor modifications, but they were not
tested for full compatibility.

110 CHAPTER 4. IMPLEMENTATION

Application

GUI
Data Model
[Metadata Managers

/ A

[Device Managers] [File Managers]

JAXB Library

DOM Library

v

” file system
TSS/TPM

Figure 4.2: Architecture of the Content Management Application

4.3.2 Content Management Application

The Content Management Application supports the creation and the
consumption of files conform to the specification presented in section 2.4.2.1.
The software implements the mentioned MPEG-21 and MPEG-7 standards
and provides a convenient user interface to demonstrate the advantages of
the format. The Java Programming language was used for the implementa-
tion. It can be used either as a file editor for the creation of conform files
or as a viewer to consume created files.

4.3.2.1 Architecture

The architecture and internal structure of the application is depicted in
figure 4.2.

The figure shows the application with its libraries and the interfaces to
the operating system. Internally the application can be categorized into the
Data Model and the Managers. Both represent several classes and interfaces.
The Data Model is depicted in green and it stores all information during
the execution of the program. The stored information is either related to
the content or to the user management. The data related to the content
represents the resource and the metadata within an Item. The metadata is
the XML-based descriptive information about the content and its license.
Within the software the metadata remains in a derived from of the XML
format to ease the parsing and saving of the metadata.

The data related to the user management contains information about
the users and their cryptographic keys. The user information includes, for
example, an identifier, the user name or an address. This information can

4.3. COMPONENTS 111

be embedded during the creation of a file and allows for the recognition of
the user who created the file. The cryptographic keys are required for the
signing and encryption of the content. They are mainly references to keys
stored in the TPM, which can be applied or retrieved from the TPM. The
retrieval of a key is required for the encryption of content.

The Data Model is used by the Managers, which consist of the Graphical
User Interface (GUI), the Metadata Managers, the Device Managers and
the File Managers. The GUI creates a user interface and interacts with
the user. It allows the user to create new files or to consume existing files.
All metadata elements from MPEG-21 and MPEG-7 are supported and
presented to the user. During the creation of a file, the user can modify the
metadata by changing the information in the respective fields.

These modifications are passed to the Metadata Managers, which vali-
date and save the information in the Data Model. These Managers create,
parse and validate the XML metadata from the MPEG-21 and MPEG-7
standards. For the XML processing, they use the JAXB- and DOM library
for the importing and exporting of information to the Data Model. Fur-
thermore, they verify signatures and perform the de- or encryption of the
content. When a file is finalized and saved to the file system, the Metadata
Managers call the respective methods of the File Managers. The File Man-
agers are also involved when an existing file is opened and consumed. They
implement the file format and enable the creation and the parsing of files
conform to the specified file format.

The keys for the signature and encryption are stored and loaded using
the Device Managers, which provide an interface to a cryptographic device.
The implemented software supports the TPM as principal device for the
key storage. The Managers connect to the T'SS of the operating system and
create the required sessions to send commands to the TPM. Besides the
support for the TPM, a software device is implemented, which emulates the
interface of the Device Manager in a plain software implementation. This
allows the usage of the software in environments where no TPM is available,
but lacks the respective security enhancements of a real TPM. The software
device can be used in particular for testing or development purposes. The
abstracted interface of the Device Managers additionally eases the support
for other devices like smart cards.

112 CHAPTER 4. IMPLEMENTATION

“= Conient Management Application g@gl

File ftem TPM Info
[View | b Play | () Print Execute Burn Extract

Path: Cifloriansireleased_file.m21

Mame | Pla | Print | Copt | Adapt | Feedback

=

| Apollo_15_liftoff_from_inside_LM.ogg (-] @ @ [7]

7| textfile.txt @ @ @ [~]

™| audiotada.wav [~]) [~] =] "

| Jimageisiandipg - @] @ @ @
Author information:
T Name: Florian Schreiner Organization: LDV, Technische Universitaet Muenchen Wisw,

Figure 4.3: Main window of the Content Management Application

4.3.2.2 Functionalities

The software supports two modes of operation: the creation mode and
the consumption mode. In the creation mode, the user can create files,
which are conform to the specification. The user inserts resources as Items
into the file and adds metadata to the Items. When the user has finished
the compilation of the file, he or she can finalize it and save it to the file
system. During this finalization, the signatures are created and the content
is encrypted if selected. The created file is a package, which cannot be
modified anymore. The user can open this file again and the application
switches in the consumption mode. In this mode, the user can view the
Items in the file with their attached metadata. He or she can request the
access to the resource, which is transparently decrypted if required and
presented to the user.

To get an impression of the application, the main window of the appli-
cation in the consumption mode is shown in figure 4.3 as an example. In
this state, the application displays a table, which contains the Items of a
file with their respective license properties. The toolbar on the top of the
window offers several functions for consumption to the user. The user can
for example view an Item, which presents the embedded metadata like the
author or the license of the content. The aim of the software is not to restrict
the user, but to notify him if he intends to perform an action, which might
not be allowed for some content. It is in the interest and the responsibility
of the user to respect the license conditions to avoid legal conflicts. These
can be also seen in the further functionalities of the implementation, which
are mentioned shortly:

e License pattern: The user can predefine licenses, which he intends

4.3. COMPONENTS 113

to use frequently. These licenses can be applied in a single step to the
content. It sets the defined copyright information and associates the
rights expressions with the content.

e Relationships between Items: The software allows to specify a
relationship, which defines that one Item is an adaptation of another
Item. The relationship may be set in both directions declaring that
the Item is an adaptation of another Item, or the Item was adapted
to another Item. The software also interprets the REL to notify the
user if the right for adaptation is granted.

e Copying of Items: This feature allows the user to copy an Item
to another file, while the attached metadata and signatures remain
intact. This copy enables the aggregation or combination of different
content into a new file. This function also uses the REL to guide the
user in the copy procedure. The software displays which Item grants
the right to copy to the user. Furthermore, he is notified whether the
right to copy the Item is granted in the REL of the source.

e License Acknowledgment: In the consumption mode, the user has
to acknowledge the license and its conditions before he can use the
content. This ensures that the user is aware of the license and that he
or she knows what he or she is allowed to do with the content.

e Rendering Engines: For the consumption of the content, a rendering
engine is required, which understands the format of the content and
can display it. The software supports the extraction out of the content
to the file system, which is applicable to all content types. The content
is saved as a file and can be opened with a separate program, which
can display the content. Besides the extraction, a couple of rendering
engines are also integrated into the implementation. These rendering
engines are able to display images, audio (wave format), video (theora
codec) and plain text directly from the file.

4.3.2.3 Cryptographic operations

The cryptographic operations like encryption and signatures are imple-
mented with a combination of libraries and TPM commands. The libraries
are used for operations, which cannot be executed in the TPM, e.g., the
symmetric encryption of content. The libraries are integrated according to
the Java Cryptography Architecture (JCA) [14], which is part of the Java

114 CHAPTER 4. IMPLEMENTATION

Platform Standard Edition (Java SE). The available cryptographic func-
tions are additionally extended with the Bouncy Castle Crypto APIs [7]
which provides support for X.509 certificates and qualified timestamps.

The connection to the TPM uses the jTSS as an intermediate layer be-
tween the TPM and the application. The application connects to the jTSS
and establishes a context, which can be understood as a session for the
connection. Within this context, the application can trigger the creation
of AIKs for the verification of internal keys of the TPM. This includes the
execution of the protocol with the PrivacyCA to obtain the AIK credentials.
They enable another party to verify the corresponding AIK. Both the AIKs
and their credentials are stored as files on the file system. An AIK can be
loaded into the TPM to certify keys protected by the TPM. Furthermore,
the files can then be exchanged with other parties which allows them to
verify the signatures created by the AIK.

The encryption of content is performed as described in section 3.4.1.3
using the JCA. After the transmission, the Content Management Applica-
tion passes the encrypted content key to the jTSS. The TPM decrypts the
key and the application can decrypt the content.

The creation of the signature is more complex, because the standard
implementation for the creation of XML signatures has to be adapted to
integrate the TPM in the creation process. The standard implementation
uses the private key directly to sign the hash value of the document. This
method cannot be reused, because the TPM protects the private key that
only the TPM can perform the signing operation. To perform this func-
tion, a new method for the creation of a signature was implemented and
integrated into the standard signing operation. This provides the opportu-
nity to reuse most of the standard implementation for the XML processing
and only involves the TPM for the signing operation. This also increases
the compatibility with existing applications, because only minimal modifi-
cations are required to integrate the TPM in the creation of a signature.
The modifications deal with different parameters to address the content of
the TPM and to reference a specific key in the TPM. The created signature
is validated as other signatures, because the TPM is not required in the
verification. The public key is verified using the signature created with the
AIK key and the credentials issued from the PrivacyCA.

4.3. COMPONENTS 115

4.3.2.4 Timestamps

The implementation also offers the possibility to enhance the signature
with a qualified timestamp as specified in section 3.4.2. The timestamps
can be created on the basis of the tick counters of the TPM. They can be
optionally added to the signature to allow an author to decide whether a
timestamp is required. The implementation uses an external TSA to obtain
a verifiable time basis and connects this time basis to a tick counter of
the TPM. After that, the TPM can issue qualified timestamps, which are
integrated into the created signatures conform to the XMLDSig standard.

Internally the implementation contains classes for the representation of
the exchanged values. The TSA is realized with functions from the Bouncy
Castle Crypto API, which works as a network service to issue qualified times-
tamps. The network service is based on the TCP /IP protocol and supports
a communication using the HT'TP protocol.

The Content Management Application is the intermediate party between
the TSA and the TPM and manages the creation of the timestamps using
the TPM. The creation of these timestamps can be divided in four steps:

e AIK creation,
e binding of the tick counter to a timestamp,
e timestamp creation and

e validation.

The created values after each step are temporarily saved to the file sys-
tem, which enables the independent execution of the steps. The saving of
the values allows their future use independent of the intermediate states of
the application or the operating system. For example, the application may
be closed at any time or even the operating system may be shut down as
long as the tick counter remains intact.

AIK creation The first step is the creation of an AIK, which is a prereg-
uisite, because it is required for the verification of the values from the tick
counter. These values are signed by an AIK, which is in turn verifiable with
the AIK credentials. Both allow a recipient to verify the authenticity if the
tick value originates from an authentic TPM. After the creation of the AIK,
the execution of the following steps can be triggered.

116 CHAPTER 4. IMPLEMENTATION

Binding a tick counter to a timestamp In this step the absolute times-
tamp from the TSA is connected with two tickstamps from the TPM. At
first, the implementation requests the first tickstamp from the TPM and
transmits its hash value to the TSA. The communication to the TSA is re-
alized with the Time-Stamp Protocol (TSP) standard, which is the protocol
prevalently used for this task. The TSA is identified with a string, which is
given by the user. It contains the information, which protocol has to be used
and how the connection to the T'SA can be established. At the end of the
communication, the TSA returns a qualified timestamp to the application.
The application hashes the first tickstamp and transmits this value to the
TPM to create the second tickstamp. After that, all stamps and the AIK
used for the tickstamps are stored in the file system. From that point on,
the TPM can be used to create qualified timestamps for every content that
will be published. This can be performed as long as the session of the tick
counter remains intact.

Timestamp creation The timestamp is created as a part of the signature
process at the time, when a content is lastly signed before its publication.
At first the data stored in the file system is loaded into the application.
Furthermore, the document to sign is hashed and the hash value is sent to
the TPM. From this hash value the TPM creates the third tickstamp using
the previously initialized tick counter. Finally, the three tickstamps, the
timestamp, and the AIK are stored in a XML document and integrated into
the signature of the document based on the XMLDSig standard.

Validation The recipient of a signature has to validate the timestamp and
the set of tickstamps to verify their correctness. The Content Management
Application also contains an implementation of this validation. Within the
application, the validation is performed when a file with several Items is
opened. At first the TPM-based timestamp is extracted from the XML
signature and the TSA-timestamp and the tickstamps are extracted from
the XML document. These values are then verified in the following steps:

e In the first step, the AIK is verified using the credentials issued by the
PrivacyCA. The client has to trust the PrivacyCA either directly or
using a certificate chain in a Public Key Infrastructure.

e Then, the tickstamps with their values are verified using the public
part of the AIK. The hash of the values in the tickstamp is recalculated
and compared to the value in the signature.

4.3. COMPONENTS 117

e In the next step, a recalculation of the hash values given in the tick-
stamps is performed. For each tickstamp the corresponding document
is hashed and the resulting value is compared to the value stored in
the tickstamp.

e To complete the verification of the tickstamps, the consistency of the
nonces has to verified. The nonces of all tickstamps in a timestamp
have to be identical to ensure that they originate from the same tick
counter of a specific TPM. It also ensures that the tick counter was
not reset during the creation of the timestamp.

e Then, the time interval between the first two tickstamps is calculated.
This time interval reflects the imprecision of the timestamp to the
absolute time value of the TSA-timestamp. The imprecision has to be
below a certain threshold to ensure that the time is within appropriate
boundaries.

e Finally the signature of the TSA-timestamp is verified using the cer-
tificate of the TSA. Similar to the PrivacyCA, the TSA and their
timestamps have to be trusted.

The order of these steps is not important. If the verification in all steps
was successful, the TPM-based timestamp is valid. The point in time, in
which the document was signed, can be obtained with the TSA-timestamp
and the time difference between the second and third tickstamp. The tick
values of these tickstamps is converted to a time value, which is added to the
absolute time value of the T'SA-timestamp. The imprecision of the resulting
time is given in the time difference between the first and second tickstamp.
They define the lower and upper boundary, which has to remain below a
certain threshold. The threshold can be defined depending on the particu-
lar application scenario. In the developed implementation using the TPM
emulator and the presented TSA, the imprecision is about one second. Thus
a threshold of several seconds should be sufficient under these conditions.
In the case when a real TPM is used, the threshold depends mainly on the
performance of the respective TPM.

4.3.3 Content Server

The Content Server is a web service, which works as an intermediate
party between the author and the consumer to enhance the distribution.
The server has an integrated repository of Items, which contains and indexes

118 CHAPTER 4. IMPLEMENTATION

the content with its attached metadata. A user can connect to the server
with a browser to view the content in the repository. He or she can download
content from the server and consume it locally.

The Content Server is implemented in the Java programming language
as a Java Servlet [15], which is executed in a servlet container. As servlet
container, the Apache Tomcat [3] is applied. The implemented web appli-
cation uses AJAX technology [2] to create an interactive user interface with
asynchronous loading of the data from the server to the client.

4.3.3.1 Metadata

The server makes use of the metadata within the Items. The server
parses all Items in the database and indexes the Items in several categories.
The created indexes are presented to the user in a tree structure using the
JavaScript programming language [8]. This structure enables the user to
comfortably browse and search the database for content which matches cer-
tain criteria. The implemented categories are the type of license, the rights
expressions, and the relationships between derived Items. A screenshot of
the interface with the category license type is shown in figure 4.4.

In this example, the tree structure contains the different license types
of the Items in the database. Within each license type, the server shows
all Items which are published with that license. In this example the Items
are icons, which are displayed on the left side of each entry in the tree
structure. The user can select an Item and the metadata of the Item is
shown in a table on the right side. The presented metadata assists the user
in the browsing and searching of Items. The user has a clear overview of
the most important properties of the Item, which also eases the comparison
of several Items between each other. This view also offers the user the
possibility to download the Item in the specified MPEG-21 file format. The
downloaded file can then be consumed on the local platform.

The Content Server works as a mediator and can thus distribute files to
the correct users. Each user can only see the files, which are authorized for
him or her. This authorization depends on the REL license, which is part of
each Item. The authorization requires an authentication mechanism, which
verifies the user currently connected to the server. Such an authentication
mechanism is shown in the next section.

4.3. COMPONENTS

119

Home

Eiles listina = ' Licenses File Information
1 “C':V'”df'ss Filename; page_add.png
al - ce-by-nc 2. =
Description: An icon symbolizing adding a page
Sorted by e
Relationships page_delete.prg MRS cc-by-nc 2.5
+ =l page_edit.png Rights
- ce-by-ne-nd 2.5 P]ay, @
+ o6 pencil_add.png PG 0
+ wa pendl_dslste.png e
ecute:
¢ public domain E“me - o
+ coby 25 Adapt/Gov.adapt: o
Copy: Q
Author information
Authors: James Abbott
This work is licensed under a
Attribution-Noncommerdial 2.5
License. [
- http://creativecommons.org
Crx_p‘yﬁght MNotice: Jlicenses/by-nc/2.5/] The icons are
: originally developed by Mark James,
and further developed by me, Oskar
Uddenberg. These icons are not for
commercial use.
e http://creativecommons.org
S flicenses/by-nc/2.5/
Download package
containing the item ExtsndediconSetm21
(Rightelick, Save As):

Figure 4.4: User interface of the Content Server in a browser

4.3.3.2 User Authentication

The Content Sever uses the OpenlD system to authenticate users for
the distribution of the content. According to the OpenlD specification, the
Content Server acts like the Relaying Party, which trusts the authentication
from the OpenID Provider. The method for authentication relies in the
responsibility of the user and the Relaying Party. The user has to decide
which Provider offers a method for authentication trustworthy enough for
the exchanged content. The Relaying Party also has to know which Provider
offers a sufficient security level.

The OpenlD system is supported in the Content Server by a login form,
which the user can use to enter his OpenlD Identifier. After the user has
entered and submitted his identifier, the form executes the OpenlD authen-
tication mechanism conform to the specification. This includes the discovery
and redirection mechanism to the OpenID Provider.

The user performs the authentication with the Provider, which can be
accomplished with a password or the TPM authentication as presented in

120 CHAPTER 4. IMPLEMENTATION

this thesis. The implementation of the authentication with the TPM is
shown in section 4.3.4. After the authentication, the User Agent is the
redirected back to a page of the Content Server. This page verifies the
response from the Provider. If the verification was successful, the Content
Server creates a user session to automatically identify the user during the
communication. The session is managed with a cookie, which contains a
nonce as identifier of the session. The server stores this value together with
the OpenlD identifier in the database. This enables the server to re-identify
the requests of the user. If a user without such a cookie or an invalid session
tries to connect directly to a governed content, the user is redirected to the
login screen for authentication.

Furthermore, the implementation provides a logout functionality. This
function is available when a session was successfully established. It allows
the user to invalidate the active session with the Content Server. It deletes
the cookie from the browser and the Content Server removes the session
from the database.

4.3.3.3 Key management

Besides the user authentication, the server also includes a key repository,
which stores the encryption keys for each user. These keys are the public
parts of asymmetric encryption keys, which can be used to transfer content
in encrypted form to the user. Each user can upload an encryption key,
which is assigned to his account. This key is used in the Content Server for
the encrypted transfer of the content to the client.

The server provides a separate page, which enables the user to view,
upload, and delete these encryption keys. The user can obtain a key from
the Content Management Application, which uses the TPM to create and
store the private part of the key. The public part of the key is exported out
of the TPM and stored in a XML-file using the XMLDSig standard. The
user then uploads the key to the Content Server to enable the encrypted
transfer of content.

Another functionality of the server is the uploading of content. The user
can create MPEG-21 files with Items using the Management Application
and upload these files to the server. To upload a file, the user loads a
specific page from the server and then transmits the files to the server. This
file can also be encrypted using a public key of the server to ensure the
confidentiality. Upon reception, the server validates the file, stores it in the
repository and releases it.

4.3. COMPONENTS 121

OpenlD Provider PrivacyCA
e

: s
— -
o >
e

|
— ™

client 'k Javascript Java

)
jTss

TPM

. J

User Agent

Figure 4.5: Architecture of the browser add-on and its connections

4.3.4 Browser add-on

The browser add-on is developed for the Mozilla Firefox internet browser [18],
which supports the development of add-ons to extend the functionalities of
the browser. The developed add-on augments the browser with the support
for the authentication protocol using a signing key stored in the TPM. It
communicates with the TPM and performs the local operation for the au-
thentication to the Provider. The add-on consists of several components,
which are presented in the next section. In the section after, the imple-
mented functionalities are described.

4.3.4.1 Architecture

The architecture of the browser add-on and the connections to external
components are shown in figure 4.5.

Within the client there are the User Agent, the jTSS and the TPM.
The User Agent is the Firefox browser, which consists of two parts: the
browser with a JavaScript add-on and a Java implementation. The add-
on is implemented in JavaScript, because it is the default language for the
Firefox browser. The browser provides a documented interface for the cre-
ation of add-ons to extend the functionality of the browser. The developed
implemantation behaves like a normal add-on for the browser, which can
be installed with the usual procedure. After this installation, some addi-

122 CHAPTER 4. IMPLEMENTATION

tional rights have to be assigned to the add-on, which are required for the
communication with the TPM. When the add-on is successfully installed,
it extends the user interface and interacts with the user using additional
entries in the context menu and dialogs. The added entries in the context
menu are required to trigger functions for the authentication procedure. An
example for such an operation is the creation of a signing key. When the
user triggers such a function, the add-on forwards the request to the Java
implementation to execute the operation. The JavaScript implementation
works thus as a mediator between the browser and the Java implementation.

The Java implementation is the central component, which establishes a
connection to the jTSS or the PrivacyCA as required. It provides a high-
level API to the JavaScript implementation to execute the functions the user
triggers. It implements the logic behind these functions to centrally manage
the execution and error processing. The Java implementation can connect to
the jTSS and manages the sessions with the TPM. It uses the jTSS to create,
register or load the signing keys. Furthermore, it implements functions
to use such a signing key for the creation of signatures on data provided
by the JavaScript implementation. Another signature can be created over
the signing key using the AIK, which is required to verify the signing key.
Moreover, the Java implementation can connect to the PrivacyCA to create
the credentials for the AIK.

The Java implementation is not essentially required in the prototype,
because the logic could have been also implemented in JavaScript. In this
ideal case the JavaScript implementation could interact directly with the
jTSS. The Java implementation was added to ease the development and to
prevent possible side effects and additional efforts, which can occur when
the JavaScript implementation connects directly to the complex API of
the jTSS. In a productive implementation, the Java implementation can
be rewritten in JavaScript and integrated into the add-on.

4.3.4.2 Functionalities

This section presents the functionalities of the added User Interface in
the browser and the implementation of the authentication procedure with
the OpenlD Provider.

Ownership The ownership has to be taken in the TPM to enable the
creation of signing keys for an authentication. Furthermore, the implemen-

4.3. COMPONENTS 123

tation also allows to undo this operation and to clear the ownership of the
TPM.

This operation is implemented as specified by the TCG. The user can
perform this operation directly and conveniently in the browser and is not
dependent on another application. As the operation is used as standard-
ized, it is not essentially required to be performed by the browser add-on.
An already existing ownership can be reused or the operation can be also
executed from another application.

Session management The communication with the jTSS is bound to
sessions, which are established between the TPM and the application. They
are required to create and use signature keys for signing operations. The
Java implementation creates these sessions and manages them. For the
establishment of a session, the user has to provide the owner secret to access
the TPM. Every user using the TPM for the authentication has to know this
secret. Thus on a single-user platform, this secret can be only known to the
owner of the platform. If multiple users are using the platform, the secret
can be empty or shared with all users. After the establishment of a session,
the user can load signing keys into the TPM. A loaded signing key can be
used multiple times within a session for the authentication at a Provider.
This increases the efficiency and follows the principle of a single sign on
system. It is valid under the assumption that one instance of the browser is
only used by a single user.

To terminate this session, the user can use the logout function of the
browser add-on. This function unloads the signing key from the TPM and
terminates the session. This is also automatically performed, when the
browser application is closed to prevent that another user can reuse an
existing session.

Creation of signing keys After the ownership is taken and a session is
established, the user can create a new signing key in the TPM. The new key
is non-migratable and can be used to create signatures for the authentication
with the OpenlID Provider. Together with the generation of the key in the
TPM, an AIK is created, which is used to sign the signing key. Furthermore,
the AIK credentials are requested from the PrivacyCA, which allow a third
party to verify the keys. The public part of the AIK and its credentials are
then stored as a file onto the file system. This file can then be used for
the registration at an OpenlD Provider. The private part of the key is also

124 CHAPTER 4. IMPLEMENTATION

stored on the file system encrypted with a Storage Key using the persistent
storage functionality of the jTSS.

The implementation can differentiate multiple signing keys with their
UUID identifier used in the TPM. This identifier is also transmitted to the
Provider during the registration of the user. When the user registers at a
Provider, the Provider associates the public part of the signing key and the
identifier to the user. The identifier is retransmitted to the user when the
authentication is performed. This enables the implementation to load the
corresponding key into the TPM for the creation of the signature.

Authentication procedure The authentication is initiated, when the
browser add-on recognizes a Provider, which supports the presented proto-
col. A Provider supporting the protocol sets a specific cookie with a defined
and unique identifier, which the browser add-on can recognize. The recog-
nition is achieved by monitoring the exchanged HTML data of the browser.
The Firefox browser offers a listener mechanism that enables an add-on to
be notified on certain events in the browser. One of these listener methods
also offers a notification, when a cookie is set in the browser. This notifi-
cation method is used in the add-on to check if the specific cookie from an
OpenlD Provider is set.

If this is the case, the browser add-on triggers the execution of the pro-
tocol and establishes a session to the jTSS. Within this cookie, the Provider
transmits a nonce, which is used for the challenge-response authentication.
Furthermore, it contains the UUID of the signing key, which is used for the
signature. The add-on checks if the requested key is already loaded into the
TPM. This is the case, if the key was already loaded in a preceding execu-
tion of the authentication protocol. If the key is not yet loaded, the signing
key belonging to the transmitted UUID is looked up and loaded into the
TPM. Then, the nonce is sent to the TPM, which signs it using the signing
key. After that, the resulting signature is transmitted to the Provider via
HTML using the post command. The answer to this command redirects the
browser to a specific URL within the site of the Provider. The Provider uses
this URL to notify the user about the result of the authentication. If the
authentication was successful, the user is automatically redirected back to
the Relaying Party as authenticated user. If the authentication failed, the
Provider displays an error message and offers the user to retry the authen-
tication.

The established session with the TPM, which was created to gain access
to the signing key, is not automatically terminated after an authentication.

4.3. COMPONENTS 125

The session is kept open to allow another authentication without creating
a new session. The current state of the session is signalized to the user
with an icon in the status bar. The logout function in the implementation
terminates such a session with the TPM, which unloads the signing key from
the TPM. To reload the key, the user has to start a new session and load
the key again in the TPM.

4.3.5 OpenlD Provider

The OpenID Provider is implemented as a web server using Java Server
Pages (JSP). The software is based on the openid4java implementation [24],
which is a Java implementation of an OpenlD Provider conform to the
OpenlD 2.0 specification. This implementation is extended with the pre-
sented authentication protocol. The developed Provider can be used for the
authentication with any Relaying Party supporting OpenlD. It depends on
the support of the browser whether the extended authentication involving
the TPM can be applied.

The OpenlD Provider supports three functionalities: the authentication,
the registration, and the deregistration. These functionalities are explained
in the following subsections.

4.3.5.1 Registration

The OpenlD Provider works as a user database, which saves the data of
all users and assigns an OpenlD Identifier to each user. The registration is
the functionality, which allows a user to add his identity to this database and
to obtain an identifier. The information the user has to provide during the
registration, e.g., an e-mail address or phone number, is application specific
and not examined further in this thesis.

For the application of the presented protocol, the user has to submit the
public part of the signing key and its credentials during the registration.
This enables the Provider to assign the key to the user, which is required for
the authentication. The openid4java implementation provides a registration
form, which creates a new user in the database and assigns an identifier to
the user. This registration was extended with additional fields to upload the
signing key, its UUID and its credentials. After the upload, the implemen-
tation verifies the signing key using the AIK and its credentials to ensure
that the key originates from a TPM and is protected by it. The UUID of
the key is required for the authentication. It notifies the browser add-on of

126 CHAPTER 4. IMPLEMENTATION

the identifier of the signing key in the persistent storage of the TPM. If this
validation is successful, the user information and the keys are stored in the
database. The Provider shows the user a page that the authentication was
successful and displays the created OpenlD identifier.

After the registration the user can use the Provider to authenticate to a
Relaying Party.

4.3.5.2 Authentication

When the user wants to log in to a Relaying Party, the Relaying Party
redirects the User Agent to a specific JSP page of the Provider. The Provider
first checks if the required parameters for the authentication are present and
valid. If the parameters are not valid, the user is redirected to a page, which
shows an error message. The parameters are the usual parameters according
to the OpenlD specification. The Provider checks in the database if the user
is registered and loads the data. If the data contains the signing key, the
Provider knows that the user can perform the extended authentication with
the TPM. In this case, the Provider creates a cookie, which is assigned to
the browser session of the user. In this cookie, the Provider puts a nonce
value and the UUID of the signing key in the TPM of the user.

The cookie is then sent back to the User Agent in the response. The
cookie has a specific identifier, which allows the add-on in the browser to
recognize the cookie and to trigger the signing procedure. It uses the UUID
in the cookie to load the respective key from the persistent storage into the
TPM. After that, it signs the nonce value with the signing key in the TPM.
The browser add-on retransmits the signature back to the Provider as a
variable within a HTML post command using a specific identifier.

The Provider recognizes the signed nonce and performs the validation of
the signature. It loads the public part of the signing key from the database,
decrypts the signed nonce, and compares the result to the nonce previously
sent to the user. If the values are equal, the user is authenticated. The
implementation also contains some error processing for the cases that an
error occurs. One example is that the browser add-on cannot load the
signing key, because the user cannot provide the corresponding secret. In
this case, the add-on sets a constant value as signed nonce. The Provider
recognizes this value and displays a corresponding error message.

After the authentication, the Provider sets an internal variable to indi-
cate the success of the authentication. Then, the Provider builds the redirect

4.4. SUMMARY 127

back to the originating Relaying Party according to the OpenlD specifica-
tion. The Relaying Party recognizes the successful authentication and the
user is logged in.

4.3.5.3 Deregistration

The deregistration removes a user from the database and deletes the
assigned data of the user. Only the user who created the account, can
deregister himself. A user has to authenticate himself to the Provider to
request the removal. To remove an account, the user can load a page for
this purpose from the Provider. This page allows the user to log into the
site in the same way as to a Relaying Party. The authentication is thus
performed with the Provider as the Relaying Party. The authentication is
then performed equally to the normal procedure. If the authentication was
successful, the Provider deletes all information of the user from the database.

4.4 Summary

The presented implementation realizes a solution for the management
and protection of content based on MPEG-21 standards and Trusted Com-
puting technology. The software implements the developed concepts, which
are aligned to each other to realize an overall user and key management.
The system works decentralized, because the users can exchange their data
directly from user to user. To increase the convenience, a user may involve
a Content Server for the distribution of the content. The Content Server as
well as the OpenlD Provider and the PrivacyCA can be operated multiple
times by different parties. This offers the users the flexibility to choose a
service, which fulfills required criteria like high reliability or trustworthi-
ness. The implemented prototype shows the realizability of the developed
concepts and demonstrates their functionalities.

Chapter 5

Conclusion

This thesis presents several improvements for content management sys-
tems based on the MPEG-21 standards. For free distributable content the
interoperable sharing and collaboration was improved with a selected set of
common metadata. This metadata enables the enhancement of the user ex-
perience in the consumption, reusing and indexing of specific content. The
MPEG-21 standards provide a comprehensive set of tools, which are used as
a basis for the selected metadata. The metadata describes the content, its
license, and a feedback mechanism. The licenses defined by Creative Com-
mons are investigated in detail as representatives for many other licenses in
this domain. Several forms of representation and declaration of the license
enhance the efficient processing of the license and the notification of the
user. The feedback mechanism enriches the format with a mechanism to
inform the author, which eases the management and enables the linking of
content. The standardization of this metadata in the Open Access Appli-
cation Format standard shows the importance and the potential impact to
the sharing and collaboration of free distributable content.

Furthermore, the security for the storage and exchange of content is
enhanced using the Trusted Computing technology within the MPEG-21
framework. A concept for the key management shows the feasibility of
protecting confidential content in decentralized systems. The choice of an
appropriate protection and exchange of the content relies in the responsibil-
ity of the user. The proposed concept does not require a specific method of
transmission or modifications in the operating system and is therefore widely
applicable. The concept presents an extension to the MPEG-21 framework
and describes the integration of the required information in the metadata of
the content.

128

129

Another improvement is the integration of qualified timestamps created
by the TPM in digital signatures. These timestamps can be created by
the TPM without a permanent connection to a trusted third party for a
secure time basis. The specific timestamp data from the TPM is mapped
to an optimal representation in XML, which is aligned to the most impor-
tant standards for digital signatures in XML. It also shows methods for the
integration of the developed representation within the standards to embed
the timestamp directly within the signature.

The authentication of users within the OpenlD system is improved by
exploiting the TPM as a secure key storage device. The conventional pass-
word authentication is replaced by a challenge response authentication with
signatures, which are created by the TPM. The password of the user is not
transmitted anymore, which prevents the threat of a phishing attack. The
security relies in the protection of the private part of the asymmetric key,
which is bound to the TPM and cannot be read out of the device. It thus
offers a higher level of security, because the key is only available on the spe-
cific platform, which is in possession of the authentic user. The presented
protocol is compatible with the existing OpenlD specification to foster the
acceptance and adoption of the proposal.

In the last chapter an implementation is presented, which realizes all the
described concepts and integrates them as components of a content manage-
ment system. It is based on the MPEG-21 framework and uses the Trusted
Computing technologies as a security basis for the protection of content.
Users of the system can exchange their data decentralized directly from user
to user. The OpenlD system provides a global identity management and au-
thentication mechanism, which enables the referencing of other users. The
keys for the encryption and signatures are stored and protected in the TPM.
The user decides and manages the keys, which enables the flexible and in-
dependent usage of multiple keys for several identities or different types of
content.

Bibliography

1]

Adobe LiveCycle Rights Management ES2. Available online at http:

//www.adobe.com/products/livecycle/rightsmanagement/; visited on
October 3rd 2010. Website [Online].

Ajax: A New Approach to Web Applications. Available online

at http://www.adaptivepath.com/ideas/essays/archives/000385. php;
visited on April 4th 2010. Website [Online].

Apache Tomcat. Available online at http://tomcat.apache.org; vis-
ited on February 23th 2010. Website [Online].

Apple Fairplay - Thoughts on Music. Available online at http://www.
apple.com/hotnews/thoughtsonmusic/; visited on October 3rd 2010.
Website [Online].

Axmedis - Automating Production of Cross Media Content for Multi-
channel Distribution. Available online at http://www.axmedis.org; vis-
ited on August 3rd 2010. Website [Online].

Berlin Declaration on Open Access to Knowledge in the Sci-
ences and Humanities. Available online at http://www.zim.mpg.de/
openaccess-berlin/berlindeclaration.html; visited on January 30th

2010. Website [Online].

Bouncy Castle Crypto APIs. Available online at http://wuw.
bouncycastle.org/java.html; visited on Mai 19th 2010. Website [On-
line].

Core JavaScript 1.5 Reference. Available online at https://developer.

mozilla.org/en/docs/Core_JavaScript_1.5_Reference; visited on
January 28th 2010. Website [Online].

Creative Commons. Available online at http://creativecommons.org/;
visited on January 28th 2010. Website [Online].

130

BIBLIOGRAPHY 131

[10]

[11]

[12]

[16]

[19]

[20]

DCMI Metadata Terms. Available online at http://dublincore.org/
documents/dcmi-terms; visited on June 6th 2010. Website [Online].

Digital Media Project (DMP). Available online at http://www.dmpf .
org; visited on July 26th 2010. Website [Online].

European Telecommunications Standards Institute (ETSI). Available
online at http://www.etsi.org; visited on April 27th 2010. Website
[Online].

Interoperable Digital Rights Management Platform. Available on-
line at http://open.dmpf .org//dmp1300.pdf; visited on July 26th 2010.
Website [Online].

Java Cryptography Architecture (JCA) Reference Guide. Available
online at http://download.oracle.com/docs/cd/E17409_01/javase/6/

docs/technotes/guides/security/crypto/CryptoSpec.html; visited on
June 27th 2010. Website [Online].

Java Servlet 3.0 Specification. Available online at http://

jcp.org/aboutJava/communityprocess/final/jsr315/index.html; vis-
ited on February 23th 2010. Website [Online].

Microsoft Windows Media - Verwaltung digitaler Rechte (DRM).
Available online at http://www.microsoft.com/windows/windowsmedia/
de/drm/default.aspx; visited on October 2nd 2010. Website [Online].

Moving Picture Experts Group (MPEG). Available online at http:

//mpeg.chiariglione.org; visited on February 25th 2010. Website
[Online].

Mozilla Firefox. Available online at http://www.firefox.com/; visited
on January 28th 2010. Website [Online].

Mozilla Public License. Available online at http://www.mozilla.org/
MPL/MPL-1.1.html; visited on February 22th 2010. Website [Online].

Open Digital Rights Language (ODRL). Available online at http:
//0drl.net; visited on August 7th 2010. Website [Online].

Open Mobile Alliance (OMA). Available online at http://www.
openmobilealliance.org; visited on August 8th 2010. Website [On-
line].

132

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

32]

BIBLIOGRAPHY

Open Source Initiative. Awvailable online at http://www.opensource.
org; visited on April 23th 2010. Website [Online].

OpenlD 2009 Year in Review. Available online at http://openid.net/
2009/12/16/0openid-2009-year-in-review; visited on June 5th 2010.
Website [Online].

Openid4java - OpenlD 2.0 Java Libraries. Available online at http://
code.google.com/p/openid4djava/; visited on March 7th 2010. Website
[Online].

Oracle Information Rights Management. Available online at http:
//www.oracle.com/us/products/middleware/content-management/
information-rights-mgmt/index.html; visited on October 3rd 2010.
Website [Online].

SmartRM. Available online at http://www.smartrm.com; visited on
August 6th 2010. Website [Online].

Software-based TPM Emulator. Available online at http://
tpm-emulator.berlios.de/index.html; visited on April 5th 2010. Web-
site [Online].

TCG Software Stack for the Java Platform. Available online at http:
//trustedjava.sourceforge.net/index.php?item=jtss/readme; visited

on June 22th 2010. Website [Online].

Trusted Computing Group. Available online at http://wuw.
trustedcomputinggroup.org; visited on January 12th 2010. Website
[Online].

VeriSign’s OpenlD SeatBelt Plugin. Available online at https://pip.
verisignlabs.com/seatbelt.do; visited on August 9th 2010. Website
[Online].

Wikimedia Commons. Available online at http://commons.wikimedia.
org; visited on April 13th 2010. Website [Online].

Wikimedia Commons: current statistics. Available online at http:

//commons.wikimedia.org/wiki/Special:Statistics; visited on April
19th 2010. Website [Online].

Sun Microsystems, Inc., Java programming language. Available online
at http://java.sun. com; visited on February 5th 2010., 1995. Website
[Online].

BIBLIOGRAPHY 133

[34]

[35]

[36]

[37]

[40]

[41]

[43]

XMP Specification. Adobe Systems Incorporated, 2005. Available
online at http://www.adobe.com/devnet/xmp/pdfs/xmp_specification.
pdf; visited on August 7th 2010. Website [Online].

Altova GmbH, XMLSpy 2007. Available online at http://www.altova.
com/xmlspy.html; visited on April 27th 2010., 2007. Website [Online].

H. Abelson, B. Adida, M. Linksvayer, and N. Yergler. ccREL: The
Creative Commons Rights FExrpression Language. 2008. Available
online at http://wiki.creativecommons.org/images/d/d6/Ccrel-1.0.
pdf; visited on August 5th 2010. Website [Online].

C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Internet X.509
Public Key Infrastructure - Time-Stamp Protocol (TSP). Technical
Report RFC 3161, The Internet Engineering Task Force (IETF), 2001.
http://www.ietf.org/rfc/rfc3161.txt.

ANSI X9.95:2005. Trusted Time Stamp Management and Security.
American National Standards Institute (ANST), 2005.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Re-
source Identifier (URI): Generic Syntax. Technical Report
RFC 3986, The Internet Engineering Task Force (IETF), 2005.
http://www.ietf.org/rfc/rfc3986.txt.

T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Lo-
cators (URL). Technical Report RFC 1738, The Internet Engineering
Task Force (IETF), 1994. http://www.ietf.org/rfc/rfc1738.txt.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fifth Edition). Technical
report, World Wide Web Consortium (W3C), 2008.

E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In CCS ’04: Proceedings of the 11th ACM conference on Computer and
communications security, pages 132-145, New York, NY, USA, 2004.
ACM.

J. C. Brustoloni, R. Villamarin-Salomén, P. Djalaliev, and D. Kyle.
Evaluating the usability of usage controls in electronic collaboration.

In SOUPS °08: Proceedings of the 4th symposium on Usable privacy
and security, pages 85-92, New York, NY, USA, 2008. ACM.

134

[44]

[50]

[51]

[52]

BIBLIOGRAPHY

I. Burnett, S. Davis, and G. Drury. MPEG-21 digital item declaration
and Identification - principles and compression. Multimedia, IEEE
Transactions on, 7(3):400-407, June 2005.

I. Burnett, R. Van de Walle, K. Hill, J. Bormans, and F. Pereira.
MPEG-21: Goals and Achievements. IEEE MultiMedia, 10(4):60-70,
2003.

1. S. Burnett, F. Pereira, R. V. d. Walle, and R. Koenen. The MPEG-
21 Book. John Wiley & Sons, 2006.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet X.509 Public Key Infrastructure - Certificate
and Certificate Revocation List (CRL) Profile. Technical Report
RFC 5280, The Internet Engineering Task Force (IETF), 2008.
http://www.ietf.org/rfc/rfc5280.txt.

K. Diepold, F. Pereira, and W. Chang. MPEG-A: multimedia appli-
cation formats. Multimedia, IEEFE, 12(4):34-41, Oct.-Dec. 2005.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Pro-
tocol. Technical Report RFC 5246, The Internet Engineering Task
Force (IETF), 2008. http://tools.ietf.org/html/rfc5246.

D. Eastlake, J. Reagle, D. Solo, F. Hirsch, and T. Roessler. XML
Signature Syntax and Processing (Second Edition). Technical report,
World Wide Web Consortium (W3C) and The Internet Engineering
Task Force (IETF), United States, 2008.

ETSI TS 101 903. XML Advanced Electronic Signatures (XAdES).
European Telecommunications Standards Institute (ETSI), 2009.

O. Foundation. OpenID Authentication 2.0 - Final. 2007. Available
online at http://openid.net/specs/openid-authentication-2_0.html;
visited on April 27th 2010. Website [Online].

H. Frederick. XML Signature Properties. Technical report, World
Wide Web Consortium (W3C), 2010.

Hyun-Kyung-Oh and Seung-Hun-Jin. The security limitations of SSO
in OpenlID. In 2008 10th International Conference on Advanced Com-
munication Technology, Gangwon-Do, South Korea, 17-20 Feb. 2008,
pages 1608-1611, Piscataway, NJ, USA, 2008. IEEE.

BIBLIOGRAPHY 135

[55]

R. Iannella. ODRL Creative Commons Profile. ODRL Initiative, 2005.
Available online at http://odrl.net/Profiles/CC/SPEC.html; visited
on August 6th 2010. Website [Online].

T. Imamura, B. Dillaway, and E. Simon. XML Encryption Syntax and
Processing. Technical report, World Wide Web Consortium (W3C),
United States, 2002.

ISO 2108:2005. Information and documentation - International stan-

dard book number (ISBN). 1ISO, 2001.

ISO 3901:2001. Information and documentation - International Stan-
dard Recording Code (ISRC). 1ISO, 2001.

ISO/TEC 11889-1:2009. Information technology - Trusted Platform
Module - Part 1: Overview. ISO/IEC, 2009.

ISO/IEC 11889-2:2009. Information technology - Trusted Platform
Module - Part 2: Design principles. ISO/IEC, 2009.

ISO/TEC 11889-3:2009. Information technology - Trusted Platform
Module - Part 3: Structures. ISO/IEC, 20009.

ISO/TEC 11889-4:2009. Information technology - Trusted Platform
Module - Part 4: Commands. ISO/TEC, 2009.

ISO/TEC 14496-12:2005. Information technology - Coding of audio-
visual objects - Part 12: ISO base media file format. 1SO/TEC, 2005.

ISO/IEC 15938-5:2003. Information technology - Multimedia con-
tent description interface (MPEG-7) - Part 5: Multimedia description
schemes. ISO/IEC, 2003.

ISO/TEC 18014-1:2008. Information technology - Security techniques
- Time-stamping services - Part 1: Framework. 1SO/TEC, 2008.

ISO/TEC 18014-2:2009. Information technology - Security techniques -
Time-stamping services - Part 2: Mechanisms producing independent
tokens. ISO /TEC, 2009.

ISO/IEC 18014-3:2009. Information technology - Security techniques -
Time-stamping services - Part 3: Mechanisms producing linked tokens.

ISO/IEC, 2009.

136

[68]

[69]

[70]

[74]

[75]

[76]

[77]

[78]

[79]

BIBLIOGRAPHY

ISO/TEC 21000-1:2004. Information technology - Multimedia frame-
work (MPEG-21) - Part 1: Vision, Technology and Strategy.
I1SO/IEC, 2004.

ISO/TEC 21000-15:2006. Information technology - Multimedia frame-
work (MPEG-21) - Part 15: Event Reporting. ISO/IEC, 2006.

ISO/IEC 21000-2:2005. Information technology - Multimedia frame-
work (MPEG-21) - Part 2: Digital Item Declaration. ISO/IEC, 2005.

ISO/TEC 21000-3:2003. Information technology - Multimedia frame-
work (MPEG-21) - Part 3: Digital Item Identification. ISO/IEC,
2003.

ISO/IEC 21000-3/Amd1:2007. Information technology - Multimedia
framework (MPEG-21) - Part 3: Digital Item Identification, AMEND-
MENT 1: Relates identifier types. ISO/IEC, 2007.

ISO/IEC 21000-4:2006. Information technology - Multimedia frame-
work (MPEG-21) - Part 4: Intellectual Property Management and
Protection Components. ISO/IEC, 2006.

ISO/IEC 21000-5:2004. Information technology - Multimedia frame-
work (MPEG-21) - Part 5: Rights Expression Language. 1SO/IEC,
2004.

ISO/IEC 21000-5/Amd3:2008. Information technology - Multime-
dia framework (MPEG-21) - Part 5: Rights Expression Language,
AMENDMENT 3: OAC (Open Access Content) Profile. 1SO/IEC,
2008.

ISO/TEC 21000-6:2004. Information technology - Multimedia frame-
work (MPEG-21) - Part 6: Rights Data Dictionary. ISO/IEC, 2004.

ISO/TEC 21000-8/Amd1:2009. Information technology - Multimedia
framework (MPEG-21) - Part 8: Reference software, AMENDMENT
1: Ezxtra reference software. ISO /TEC, 20009.

ISO/TEC 21000-9:2009. Information technology - Multimedia frame-
work (MPEG-21) - Part 9: File Format. ISO/IEC, 2005.

ISO/TEC 23000-5:2008. Information technology - Multimedia applica-
tion format (MPEG-A) - Part 5: Media streaming application format.
ISO/IEC, 2008.

BIBLIOGRAPHY 137

[80]

[81]

[82]

[85]

[86]

[87]

[88]

ISO/TEC 23000-7:2008. Information technology - Multimedia appli-
cation format (MPEG-A) - Part 7: Open access application format.
ISO/TEC, 2008.

ISO/TEC 23000-7/Amd1:2009. Information technology - Multimedia
application format (MPEG-A) - Part 7: Open access application for-
mat, AMENDMENT 1: Conformance and reference software for open
access application format. ISO/IEC, 2009.

A. Klenk, H. Kinkelin, C. Eunicke, and G. Carle. Preventing identity
theft with electronic identity cards and the trusted platform module.
In FUROSEC ’09: Proceedings of the Second European Workshop on
System Security, pages 44-51, New York, NY, USA, 2009. ACM.

G. Klyne and J. J. Carroll. Resource Description Framework (RDF):
Concepts and Abstract Syntax. Technical report, World Wide Web
Consortium (W3C), 2004.

D. Kyle and J. C. Brustoloni. Uclinux: a linux security module for
trusted-computing-based usage controls enforcement. In STC ’07:
Proceedings of the 2007 ACM workshop on Scalable trusted comput-
ing, pages 63-70, New York, NY, USA, 2007. ACM.

H. Lee, I. Jeun, K. Chun, and J. Song. A New Anti-phishing Method
in OpenID. In SECURWARE ’08: Proceedings of the 2008 Second
International Conference on Emerging Security Information, Systems
and Technologies, pages 243-247, Washington, DC, USA, 2008. IEEE
Computer Society.

B. Manjunath, P. Salembier, and T. Sikora. Introduction to MPEG-
7: Multimedia Content Description Interface. John Wiley and Sons,
2002.

J. Martinez, R. Koenen, and F. Pereira. MPEG-7: the generic multi-
media content description standard, part 1. Multimedia, IEEE, 9(2):78
—87, apr-jun 2002.

Open Mobile Alliance. DRM Rights Ezpression Language. 2008.
Available online at http://www.openmobilealliance.org/Technical/
release_program/docs/DRM/V2_1-20081106-A/0MA-TS-DRM_REL-V2_
1-20081014-A.pdf; visited on August 4th 2010. Website [Online].

D. Recordon and D. Reed. OpenID 2.0: a platform for user-centric
identity management. In DIM ’06: Proceedings of the second ACM

138

[92]

[93]

[97]

[98]

BIBLIOGRAPHY

workshop on Digital identity management, pages 11-16, New York,
NY, USA, 2006. ACM.

D. Reed and D. McAlpin. Extensible Resource Identifier (XRI) Syntax
V2.0. Technical report, Organization for the Advancement of Struc-
tured Information Standards (OASIS), 2005.

E. Rodriguez and J. Delgado. Towards the Interoperability between
MPEG-21 REL and Creative Commons Licenses. In Automated Pro-
duction of Cross Media Content for Multi- Channel Distribution, 2006.
AXMEDIS °06. Second International Conference on, pages 45-52,
Washington, DC, USA, Dec. 2006. IEEE Computer Society.

E. Rodriguez, 1. Gallego, and J. Delgado. Use of MPEG-21 for License
Protection and Key Management in DRM Systems. In AXMEDIS
’07: Proceedings of the Third International Conference on Automated
Production of Cross Media Content for Multi-Channel Distribution,
pages 163-170, Washington, DC, USA, 2007. IEEE Computer Society.

A.-R. Sadeghi, M. Selhorst, C. Stiible, C. Wachsmann, and
M. Winandy. TCG inside?: a note on TPM specification compli-
ance. In STC ’06: Proceedings of the first ACM workshop on Scalable
trusted computing, pages 47-56, New York, NY, USA, 2006. ACM.

P. Salembier and J. Smith. MPEG-7 multimedia description schemes.
Circuits and Systems for Video Technology, IEEE Transactions on,
11(6):748 =759, jun 2001.

D. Schellekens, B. Wyseur, and B. Preneel. Remote attestation on
legacy operating systems with trusted platform modules. Sci. Comput.
Program., 74(1-2):13-22, 2008.

F. Schreiner and K. Diepold. MPEG-A and its Open Access Appli-
cation Format. The Handbook of MPEG Applications: Standards in
Practice. John Wiley & Sons, 2010.

F. Schreiner, K. Diepold, M. Abo El-Fotouh, and T. Kim. Standards:
The MPEG Open Access Application Format. Multimedia, IEEFE,
16(3):8-12, July-Sept. 2009.

N. P. Sheppard. On implementing mpeg-21 intellectual property man-
agement and protection. In DRM ’07: Proceedings of the 2007 ACM
workshop on Digital Rights Management, pages 10-22, New York, NY,
USA, 2007. ACM.

BIBLIOGRAPHY 139

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

S. Stamm, N. P. Sheppard, and R. Safavi-Naini. Implementing Trusted
Terminals with a and SITDRM. Electron. Notes Theor. Comput. Sci.,
197(1):73-85, 2008.

F. Stumpf, A. Fuchs, S. Katzenbeisser, and C. Eckert. Improving the
scalability of platform attestation. In ST'C ’08: Proceedings of the 3rd
ACM workshop on Scalable trusted computing, pages 1-10, New York,
NY, USA, 2008. ACM.

A. Tokmakoff, F.-X. Nuttall, and K. Ji. MPEG-21 Event Reporting:
Enabling Multimedia E-Commerce. IEEE MultiMedia, 12(4):50-59,
2005.

Trusted Computing Group. TCG Software Stack (TSS) Specification.
2007. Available online at http://www.trustedcomputinggroup.org/
files/resource_files/6479CD77-1D09-3519-AD89EAD1BC8CI7F0/TSS\
_1_2_Errata_A-final.pdf; visited on April 22th 2010. Website
[Online].

Trusted Computing Group. TPM Main Specification -
Part 1 Design Principles. 2007. Available online at
http://www.trustedcomputinggroup.org/files/resource_files/
ACD19914-1D09-3519-ADA64741A1A15795/mainP1DPrev103.zip; visited
on April 17th 2010. Website [Online].

Trusted Computing Group. TPM Main Specification -
Part 2 TPM Structures. 2007. Available online at
http://wuw.trustedcomputinggroup.org/files/resource_files/
E14876A3-1A4B-B294-D086297A1ED38F96/mainP2Structrev103. pdf;
visited on April 17th 2010. Website [Online].

Trusted Computing Group. TPM Main Specification - Part 8 Com-
mands. 2007. Available online at http://www.trustedcomputinggroup.
org/files/resource_files/E14A09AD-1A4B-B294-D049ACC1A1A138ED/
mainP3Commandsrev103.pdf; visited on April 17th 2010. Website
[Online].

G. Wachob and D. Reed. Extensible Resource Identifier (XRI) Resolu-
tion Version 2.0. Technical report, Organization for the Advancement
of Structured Information Standards (OASIS), 2008.

X. Wang, T. DeMartini, B. Wragg, M. Paramasivam, and C. Barlas.
The MPEG-21 rights expression language and rights data dictionary.
Multimedia, IEEE Transactions on, 7(3):408-417, June 2005.

140 BIBLIOGRAPHY

[108] K. Wouters, B. Preneel, A. I. Gonzélez-Tablas, and A. Ribagorda. To-
wards an XML format for time-stamps. In XMLSEC ’02: Proceedings
of the 2002 ACM workshop on XML security, pages 61-70, New York,
NY, USA, 2002. ACM.

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

Basic scenario for the file format and metadata 28
Hierarchical structure of the standards within a file 31
Structure of the rights expressions 35
Example of adaptation and relationships 39
Hierarchy of relationships between derived Items 40
Full scenario of the file format and metadata 41
Hierarchical structure of the file format 43
Syntax of the EncryptedKey element 47
Structure of a XML signature 49
Creation of a qualified timestamp according to the Time-

Stamp Protocol o 51
Structure of the GenericTimeStampType 52
Tick counter and its output 57
Creation of a tickstamp 58
Timestamp protocol sequence 59
OpenlD redirect protocol 63
Encapsulated signature within an Item 7
Content encryption with MPEG-21 IPMP 79
Method for key exchange within an Item 81
Embedding of a key in an Annotation element 83
Timestamp created by the TPM 87
The GenericTimeStampExtensionType 88

141

142 LIST OF FIGURES

3.15 The TPMTimeStamp Type and its mapping to the TPM-timestamp 89

3.16 The TickStampType and its mapping to the tickstamp 89
3.17 Example of integration in XMLDSig 92
3.18 Example of a XMLDSig signature with a TPM-timestamp . . 93
3.19 Overview of the OpenlD system with the TPM 94
3.20 Registration of a user at the Provider 98
3.21 Authentication protocol 101
4.1 Overview of the system components 108
4.2 Architecture of the Content Management Application 110
4.3 Main window of the Content Management Application 112
4.4 User interface of the Content Server in a browser 119

4.5 Architecture of the browser add-on and its connections 121

