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The Epidemiology of Childhood Related Diseases:

Stability Analysis and Optimal Control

Abstract:

Abstract 1

Childhood related epidemics such as measles are characterized by: (i) short peri-

odic outbreaks that may last for short periods of time, between two weeks and six

months. (ii) The timescale of such epidemics is therefore shorter compared to the

time scale of human population dynamics, since the human lifespan is 60 years on

average. (iii) Vaccination plays a key role in controlling such diseases.

We analyzed an SIR model with periodic contact and vaccination rates. We aimed

at stability of disease free equilibrium to obtain a criterion for determining optimal

vaccination strategy. Two stability analysis tools are used. Floquet theory o�ered

an orbital stability analysis for periodic orbit, while Singular perturbation theory

gave an instantaneous stability result. The conditions obtained from stability anal-

ysis were used to de�ne two optimal control problems.

From the analysis of the optimal control problems, it turns out that optimal vacci-

nation should target at the instantaneous stability criterion. Focusing only on the

Floquet multiplier as the criterion for disease control may lead to a situation where

the instantaneous stability is not satis�ed at some time points, even though orbital

stability holds, leading to short time epidemics that that are not controlled.
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Abstract 2

An age dependent model for Hepatitis B, with �ve compartments of individuals

(Susceptibles, Latents, Infectious, Carriers and Immunes) is analysed. The model

allows for vertical transmission and the newborns from carrier mothers who develop

infection enter into the Latent class.

The aim is to investigate bi-stability scenario, that has been reported in literature

for Hepatitis B models without age structure. The results point out that for sce-

narios when vertical transmission is not allowed for, the probability of development

of carriers should depend on the force of infection Λ (in an increasing manner), for

bi-stability to occur.

In the case when vertical transmission is allowed for, we show that if we hold the

probability of carriage development q(Λ) as a constant of force of infection Λ and

ensure that no new susceptibles occur, that is, we hold (ω−Ω) non-increasing (pos-
sibly through mass infant vaccination), then, we are not likely to have bi-stabiliy

occurring in the system. The importance of analysis of bi-stability lies in its possible

e�ect on vaccination campaigns since possible existence of two endemic equilibrium

(low and high) may impact on disease control through a successful vaccination.

Keywords:SIR-epidemic models, Floquet Theory, Singular Perturbation Theory,

Optimal Control and Vaccination Strategies, Stability and Bi-stability analysis, Hep-

atitis B, Force of Infection.
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Zusammenfassung

Diese Arbeit untersucht optimale Impfstrategien für Kinderkrankheiten (u. a. Masern,

Windpocken, Mumps, Röteln und Hepatitis B). Die Theorie umfasst die Stabil-

itätsanalyse eines epidemiologischen SIR Modells. Kontaktrate und Impfparameter

wurden als periodisch angenommen. Eine Stabilitätsanalyse für das krankheitsfreie

Gleichgewicht (triviale Lösung) wurde ausgeführt. Für periodische Systeme ist die

Floquet Theorie der Standardansatz (Orbitale Stabilität).

Eine andere Vorgehensweise zur Analyse der Stabilität der trivialen Lösung

lieferte die Singuläre Störungs-Theorie, die die unterschiedlichen Zeitskalen von In-

fektion und Populationsdynamik ausnutzt. Dies führt auf die De�nition von Instan-

taner Stabilität. Die Ergebnisse ergeben parallel zwei Optimierungsprobleme, die

zur De�nition von optimalen Impfstrategien führen.

Wir de�nieren eine Menge von Lösungen für die Optimierungsprobleme und bi-

eten Lösungskandidaten für jedes Optimierungsproblem, das zur Menge optimaler

Lösungen gehört. Weiterhin wurden beide Kontrollszenarien (Orbitale und Instan-

taner Stabilität) simuliert.

Die Untersuchungen deuten an, dass es meistens besser ist das Instantaner Sta-

bilitätskriterium anzuwenden, was zu einem fast optimalen Floquet Faktor führt.

Die Fokussierung ausschlieÿlich auf den Floquet Faktor (Orbitale Stabilität) kann

zu Situationen führen, in denen die Instantaner Stabilität nicht gegeben ist und für

einige Erkrankungen Kurzzeit-Epidemien auftreten können.

Der Abschnitt Hepatitis B ist eine Fallstudie. Eine altersstrukturiertes Hepati-

tis B Modell wurde analysiert. Motivation für diese Untersuchung ist eine früher

verö�entlichte Arbeit zur Bi-Stabilität in Rahmen eines Modells ohne Altersstruk-

tur. Wir betrachten insbesondere die Frage, ob Bi-stabilität im Wesentlichen durch

Altersstruktur bedingt sein kann.

Summary

This work examines optimum vaccination strategies for childhood illnesses (such as

chicken pox, mumps, German measles and hepatitis B). The theory involves the

stability analysis of an epidemiological SIR Model. Contact rate and vaccination

parameter were assumed as periodic. A stability analysis for the Disease Free State

(trivial solution) was done. For periodically driven systems, the Floquet theory is

the standard tool (leading to Orbital stability). Another approach to the analysis

of the stability of the trivial solution was done by Singular Perturbations theory

which uses the di�erent time scales of disease infection and population dynamics.

This leads to the de�nition of Instantaneous stability. The results lead in parallel,

to two optimization problems from which we obtain optimum vaccination strate-

gies. We de�ne a set of solutions for the optimization problems and o�er candidate

solutions for every optimization problem which belongs to the set of optimal so-

lutions. Furthermore both control scenarios (Orbital and Instantaneous stability)

were simulated. The investigations indicate that it is mostly better to apply the
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Instantaneous stability criterion which leads to an almost optimum Floquet factor.

The focusing exclusively on the Floquet factor (Orbital stability) can lead to sit-

uations in which the Instantaneous stability is not satis�ed and for some illnesses,

short-term epidemics may occur. The segment on Hepatitis B is a case study. An

age-structured hepatitis B model was analyzed. Motivation for this investigation is

an earlier published work on Bi-stability in the case of a model without age struc-

ture. We look in particular at the question of whether Bi-stability can occur in the

case of an age structured model.
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SECTION A:

A general childhood disease model of SIR type with periodic coe�cients is analyzed.

Stability analysis is done using standard tool of Floqúet theory which provides an

averaging "orbital stability" criterion. We conjecture that such an averaging behavior

may fail to capture short outbreaks in disease even when orbital stability is satis�ed.

However an optional approach via Singular Perturbation theory provides an in-

stantaneous stability criterion which has the capacity to capture such small outbreaks

in diseases that may be unnoticed if one used an orbital criterion obtained from the

Floqúet case.





Chapter 1

Introduction

1.1 Introduction

Vaccination is widely used in medicine to control the spread of many infectious

diseases such as Measles, TB, Rubella, among others. The main concern is, "which

vaccination policies are optimal?" Optimal in the sense of disease eradication with

regard to associated costs.

This study is aimed at characterizing optimal vaccination strategies, given cer-

tain restricted costs. For instance, studies are ongoing to compare Constant Vac-

cination Strategy which involves vaccinating children homogenously over time to

Pulse vaccination Strategy. Whether single dose or booster vaccination, if the doses

are given randomly/uniformly in time to children in the population, then we still

classify the policy as constant vaccination. Booster vaccination is done for instance

in Finland and Sweden since 1982 and USA since 1989, where the MMR-(Measles,

Mumps, Rubella) vaccine is administered at two age groups/levels, with 97-98% suc-

cess [Alexander 2006, pp2]. An alternative strategy popularly referred to as Pulse

Vaccination Strategy (PVS) is also know as vaccination campaign, or the case when

vaccination is done for all children of an age group, e.g. 0-7years, in one particular

day. Mathematical theory of pulse vaccination as studied by Agur [Agur 1993] is

being widely investigated in Mathematics.

Mathematical theory in this work involves concepts form Pulse Vaccination and

Vaccination days, as in [Agur 1993, Eichner 1995] and optimal vaccination in peri-

odic setting, e.g., in [Anita 1998]. The idea of Vaccination days (where some special

day is set aside to vaccinate certain age group of children) seem very e�ective, but

the reasons are not completely clear. Some ideas to explain this phenomenon in-

clude:

(1) At vaccination days typically all children between say 2 and 7 years are vacci-

nated, irrespectively from the vaccination status; thus, children missed before

have at each vaccination day the chance to be vaccinated; initial vaccina-

tion failures get a second chance to become immune; all vaccinateds receive a

booster vaccination that ensures protection.

(2) There is a kind of resonance between periodic contact rate and periodic vac-

cination rate that yields a fast eradication of the disease (perhaps even before
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herd immunity is reached).

(3) Vaccination is more e�ective if vaccination days are carefully spread in time

(as in pulse vaccination), than randomly distributing them over time (like in

Constant vaccination) [Agur 1993, Shulgin 1998].

We only address the last question, assuming that the disease is not present in the

population. The aim is to stabilize the population against invasion of the disease

using a given amount of vaccination doses per period. The tools used are those

developed from works on models with age structure [Hadeler 1996a, Hadeler 1996b,

Mueller 1998, Mueller 2000]. Interest is to apply the theories to model the spread

of childhood diseases such as measles whose contact rates are periodic due to school

terms, or seasonal changes, for instance.We determine stability conditions in terms

of orbital and instantaneous stability and illustrate optimal vaccination policies with

respect to the two stability criteria. The conjecture is that instantaneous stability

o�ers a more appropriate tool to trace disease outbreaks and hence develop an

e�ective vaccination policy for childhood diseases.

One requires mathematical tools to get an insight into biological problems such

as spread and control of epidemics. Standard mathematical tools may be available

for most problems. However, more work my need to be done, to get to the �ner

details of such problems.

A system of ODE's commonly referred to as SIR model in epidemiology, with

periodic coe�cients is analyzed. We assume the manifold I(t) = 0 holds and

seek solutions on this manifold. Assuming a smooth �ow, positive invariance and

uniqueness of solutions is proved using Tangent conditions and Lipschitz conditions

respectively. Assuming N(t)=S(t)+I(t)+R(t), the Quasimonotonicity (cooperative

system) holds and uniqueness of solutions can be inferred.

As is standard with epidemiological models, we investigated the local stability

of disease free state (the trivial solution). Stability of the disease free state indicates

no infectives in the population. This is an indication of an e�ective vaccination

campaign in a system with vaccination. For a system with periodic coe�cients,

Floquet Theory is the main tool of analysis. The results of Floquet theory gave us

an orbital stability criterion.

We incorporated more biological reality in the modeling, by assuming that we

have a fast time scale for disease compared to the time scale for the population

dynamics. This holds for childhood diseases such as measles or chicken pox that have

infective periods lasting short periods of time (e.g 2 weeks). Singular perturbation

theory handles stability analysis for systems with di�erent time scales. The results

of singular perturbation theory gave us an instantaneous stability analysis criteria.

The work is organized as follow:

Chapter 1 introduces the model and its assumptions. Positive invariance and

uniqueness of solutions are investigated for a standard case of solutions in C1.

Chapter 2 addresses the problem of stability analysis of the disease free state. In a
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model with vaccination, a stable disease free state is an indicator of a successful vac-

cination e�ort. Orbital stability and instantaneous stability criterion are obtained

via two alternative mathematical theorems. In chapter 3, the two stability control

problems from chapter two are used to de�ne two optimal control problems.

Problem 1.1.1 For ψ ∈ L∞+ (0, T ), �nd the vaccination schedule that minimizes

F̃ [ψ] =
1
T

∫ T

0
β(τ)S[ψ](τ) dτ

under the constraint that the number of vaccination doses C̃[ψ] = C0 is given, where

C̃[ψ] is de�ned as

C̃[ψ] :=
∫ T

0
ψ(τ)S[ψ](τ) dτ.

Problem 1.1.2 For ψ ∈ L∞+ (0, T ), �nd the vaccination schedule that minimizes

‖Rv[ψ]‖L∞ =
∥∥∥∥β(t)S[ψ](t)

α

∥∥∥∥
L∞

under the constraint that the number of vaccination doses C̃[ψ] = C0 is given. Again,

C̃[ψ] :=
∫ T

0
ψ(τ)S[ψ](τ) dτ.

It turns out that the optimal control problem (1.1.1) is a classical optimal control

problem, but the control problem (1.1.2), which involves minimizing a supremum of

a function, does not fall into any class of standard classical optimal control problems

unless with modi�cations. Since we are interested in comparisons of the two optimal

control strategies, we chose to handle both problems in a similar manner, by de�ning

a set S from which we guarantee the existence of optimal solutions. Section (3.2)

in chapter 3 is dedicated to characterizing the set of optimal solutions for both

problems. In chapter 4, we illustrate candidate optimal control solutions for the

two control problems. In chapter 5, we use the candidate solutions and simulate the

vaccination strategies obtained from the two cases using a set of parameters that

emulate measles epidemic.

Chapter 6 in Section B is rather a case study on Hepatitis B. Section A deals

with a general theory for any childhood related diseaes. The chapter o�ers an ex-

ample from Hepatitis B modeling with an aim at investigating a hypothesis that the

contribution of carriers in the population leads to possible bi-stability scenario. The

�xed point equation for the force of infection is used to investigate stability, a com-

mon approach used in the literature for age structured systems in epidemiology. The

motivation is to justify, in an age structured model, the hypothesis of contribution

of carriers for bi-stability as reported in an earlier published work [Medley 2001].
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We prove this hypothesis for a case when no vertical transmission is allowed in our

model.

Though we fail to prove the above hypothesis in a general case when vertical

transmission is allowed for, we however show that if we hold the probability of

carriage development q(Λ) as a constant of the force of infection Λ and ensure,

through mass infant vaccination, that no new susceptibles occur, i.e. (ω − Ω) non-

increasing, then we are not likely to have bi-stabiliy occuring in the system.

1.2 De�nition of terminologies

(i) SIR models: These are epidemiological models that separate a population

of (human) individuals into compartments, of susceptible people (those who

do not have disease and are at risk of being infected if they meet infected

people), infected people (who have the disease and can infect other people

they come into contact with) and immune people (who have recovered from

the disease and have some protection from infection). There are models that

consider more compartments of infection including incubation, Carriage and

even a return paths from Immune state to susceptible state.

(ii) Optimal Vaccination: Vaccination is the use of vaccines to prevent speci�c

diseases. Optimal vaccination requires good management of available resources

(money, time, personnel or any other costs considered) to achieve e�ective

disease control, even without vaccinating the whole population.

(iii) Vaccination Strategy: An approach of applying vaccination doses. This

can be studied in terms of vaccination doses used, number of immunes already

induced in the population or the number of susceptibles still remaining in

the population. In this study, the number of susceptibles in a population

undergoing vaccination S[ψ](t) will be used to classify vaccination strategies.

(iv) Vaccination support: Any time point in which vaccination is done. We

expect the vaccination parameter ψ(t) = 0 outside the vaccination support.

(v) Bistability: Also understood as "hysteresis" in general bifurcation theory.

It is a scenario where two non-trivial solutions co-exist for the same set of

parameters in a system of equations representing some natural system.

1.3 Model and assumptions

We assume a SIR-model with vaccination. We consider a large population that is

well mixed like the children of several large schools located close together (up to

a certain degree, these are contradicting assumptions and a mathematical �ction).
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We further assume that the immunes (who are immune either due to the disease

itself or because of immunisation) are completely protected for the rest of their lives.

The contact rate β = β(t) is assumed to be periodic with a period T̂ . We aim to

control the disease by a periodic vaccination rate. Primarily from mathematical and

practical reasons (annual periodicity) we assume the vaccination rate to be periodic

with a period T that is a multiple of T̂ ,

T = l T̂ , l ∈ N.

We use b to denote the in�ux rate into the population, µ the exit rate (which may

be rather related to the exit from the population compartment under consideration

than to mortality) and α the recovery rate. Furthermore, the vaccination rate ψ(t)
is assumed in L∞+ (0, T ) (the non-negative L∞ functions) as well as β ∈ L∞+ (0, T ).
The contact rate is also assumed to be bounded away from zero, β(t) ≥ β > 0. All
rates are non-negative, (b ≥ 0, µ ≥ 0 and α ≥ 0). The standard SIR-model reads

in this situation

d

dt
S = b− µS − ψ(t)S − β(t)S I

d

dt
I = −µI + β(t)S I − αI (1.1)

d

dt
R = −µR+ ψ(t)S + αI

We now investigate the uninfected periodic solution and its stability; the proofs of

the statements are rather standard but are nevertheless given for sakes of complete-

ness.

Proposition 1.3.1 For given ψ ∈ L∞+ (0, T ) there is a unique periodic solution with

I(t) ≡ 0. All initial conditions with I(0) = 0 tend to this solution.

Proof: If I(0) = 0 we �nd I(t) = 0 for all times, i.e. we are left with a linear set of

equations. Since the equation for S is independent of that for R, we �nd

S(t) = e−
∫ t
0 µ+ψ(τ) dτS(0) + b

∫ t

0
e−

∫ t
σ µ+ψ(τ) dτ dσ = H(t)S(0) + b

∫ t

0

H(t)
H(σ)

dσ

where we use the abbreviation H(t) = exp(−
∫ t

0 µ+ ψ(τ) dτ). We �rst look for the

periodic solution, which is given by S(T ) = S(0), i.e.

S(0) = b
H(T )

1−H(T )

∫ T

0

1
H(σ)

dσ.

Thus

S(t) = b
H(T )

1−H(T )

∫ T

0

H(t)
H(σ)

dσ + b

∫ t

0

H(t)
H(σ)

dσ
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is the only candidate for a periodic solution.

It is straight forward to check that it is (the unique) periodic solution and attracts

all trajectories: Let S(t0) be any solution, then u(t) = S(t) − Ŝ(t) satis�es u̇ =
−µu− ψ(t)u, i.e. u(t) = u(0)H(t)→ 0 exponentially fast for t→∞.

�

De�nition 1.3.1 For ψ ∈ L∞+ let S[ψ] : [0, T ] → R denote the susceptible compo-

nent of the unique determined, periodic solution of (1.1) with I(t) ≡ 0,

S[ψ](t) = b
p(T )Φ(T )

1− p(T )Φ(T )

∫ T

0

p(t)Φ(t)
p(σ)Φ(σ)

dσ + b

∫ t

0

p(t)Φ(t)
p(σ)Φ(σ)

dσ

where we used the abbreviation p(t) = exp(−µt) and Φ(t) = exp(−
∫ t

0 ψ(τ) dτ), s.t.

H(t) = p(t)Φ(t).

1.4 Asymptotic behavior of I(t).

It is standard to show that stability of disease free state is achieved if the infective

population, I(t) tends to zero asymptotically (for the reproductive number- R0 less

that unity) [Zhou 2003].

From the results of Floquet analysis in the next section, we observe that R0 < 1
if ∫ T

0
β(τ)S[ψ](τ)dτ ≤ T (µ+ α).

Proposition 1.4.1 The Infectious population I(t) tends to zero asymptotically for

R0 < 1 .

Proof

İ(t) = −{µ+ α− β(t)S(t)}I(t)

I(t) = I(0) exp
(
−
∫ t

0
((µ+ α)− β(τ)S(τ))dτ

)
= I(0) exp

(
−
∫ t

0
((µ+ α)− β(τ)S[ψ](τ))dτ −

∫ t

0
β(τ) {S[ψ](t)− S(τ)} dτ

)
= I(0) exp

(
−
∫ t

0
((µ+ α)− β(τ)S[ψ](τ))dτ

)
exp

(
−
∫ t

0
β(τ) {S[ψ](t)− S(τ)} dτ

)
= I(0) exp

(
−
∫ t

0
((µ+ α)− β(τ)S[ψ](τ))dτ −

∫ t

0
β(σ)S̃ exp

{
−
∫ t

0
(µ+ ψ(τ))dτ

}
dσ

)
= I(0)P0P1
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where

P0 = exp
(
−
∫ t

0
((µ+ α)− β(τ)S[ψ](τ))dτ

)
and

P1 = exp
(
−
∫ t

0
β(σ)S̃ exp

{
−
∫ t

0
(µ+ ψ(τ))dτ

}
dσ

)
Note that as t→∞, ψ(t)→∞.

Thus exp
{
−
∫ t

0 (µ+ ψ(τ))dτ
}
→ 0 and P1 → 1.

We further investigate P0.

We notice that if ∫ t

0
β(τ)S[ψ](τ)dτ ≤ t(µ+ α),

then P0 is decreasing. I(t) cannot exponentially grow hence no possibility of

outbreaks.

We proceed to show I(t) goes to zero. A quick note is that

P0 = exp
(
−
∫ t

0
((µ+ α)− β(τ)S[ψ](τ))dτ

)
= exp

(
−
∫ t

0
((µ+ α)dτ

)
exp

(∫ t

0
β(τ)S[ψ](τ))dτ

)
= exp (−t(µ+ α)) exp

(∫ t

0
β(τ)S[ψ](τ))dτ

)
As t→∞, exp (−t(µ+ α))→ 0 and P0 → 0.

Alternatively, let t = nT+t1 and 0 ≤ t1 < T (n denotes the number of periodic

circles as I(t) is periodic). As t→∞, n→∞ as well, since t = nT + t1.

P0(t) = exp
{
−
∫ nT

0
(µ+ α)− β(τ)S[ψ](τ)dτ +

∫ t

nT
(µ+ α)− β(τ)S[ψ](τ)dτ

}
= P0(nT ) exp

{
−
∫ t1

0
(µ+ α)− β(τ)S[ψ](τ)dτ

}
≤ P0(nT ).Q (1.2)

P0(nT ) = (P0(T ))n

= exp
(
−n
∫ T

0
(µ+ α)− β(τ)S[ψ](τ)dτ

)
= exp

(
−n
(
T (µ+ α)− F̃ [ψ]

))
where F̃ [ψ] =

∫ T
0 β(t)S[ψ](t) dt.

exp
{
−n
(
T (µ+ α)− F̃

)}
→ 0 as n→∞,
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P0(nT ) −→ 0 as n −→∞

and

P0(t) −→ 0 as n −→∞.

Notice that Q in (1.2)remains bounded if
∫ t1

0 β(τ)S[ψ](τ)dτ ≤ t1(µ+ α).
Hence

⇒ I(t)→ 0, as t→∞.

�

1.5 Positive Invariance and Uniqueness of Solutions

Denote system (1.1) by the equation

ẏ = f(y),

where vector y denotes (S, I,R)T . Assume f ∈ Cr(0,∞); 0 ≤ r ≤ ∞, a smooth

�ow. We show that solutions to system (1.1) live in an invariant positive domain

and are unique.

Theorem 1.5.1 Consider the ODE system ẏ = f(y), y ∈ R3, where y = (S, I,R)T

and f(y) continuous. Consider an invariant set M ∈ R3
+, for this system i.e.,

y(0) ∈ M, and y(t) ∈ M, ∀ t > 0. By the tangent condition, suppose f :

[0, T ] X M 7→ R3, and n(z) de�nes the outer normal vector at z to set M, then;

i) the closure of M is positively invariant if

〈n(z), f(t, z)〉 ≤ 0, ∀t ∈ [0, T ], z ∈ ∂M,

ii) if the following Lipschitz condition holds, then ẏ = f(y), y(0) = y0, y ∈

Rn, is uniquely solvable in [0,∞),

〈(y1 − y2), (f(t, y1)− f(t, y2)〉 ≤ L|y1 − y2|2

For proof, see [Wolfgang 2000, pp124]. �

Proposition 1.5.2 Based on the assumptions of theorem (1.5.1), system (1.1) de-

�ned by the equation

ẏ = f(y),
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where vector y denotes (S, I,R)T has solutions in a positively invariant set M ∈

R3. The solutions are unique.

Proof:

Part(i)

De�ne three boundary points to M by

z = {(S̃, Ĩ, 0), (S̃, 0, R̃), (0, Ĩ, R̃)}, S̃, Ĩ, R̃ ≥ 0.

De�ne corresponding outer normal vectors at these points by

n(z) = {(0, 0,−1), (0,−1, 0), (−1, 0, 0)}.

At each boundary point, the following condition should hold.

〈n(z), f(t, z)〉 ≤ 0, ∀t ∈ [0, T ], z ∈ ∂M,

〈(0, 0,−1), (f1(t, z), f2(t, z), f3(t, z))〉 = −f3(t, S̃, Ĩ, 0)

= −ψ(t)S̃ − αĨ
< 0; ψ(t), α, S̃, Ĩ ≥ 0

〈(0,−1, 0), (f1(t, z), f2(t, z), f3(t, z))〉 = −f2(t, S̃, 0, R̃)

= 0;

〈(−1, 0, 0), (f1(t, z), f2(t, z), f3(t, z))〉 = −f1(t, 0, Ĩ, R̃)

= −b
< 0; b ≥ 0)

??

Part (ii)

Lipschitz condition o�ers a su�cient condition for uniqueness of solutions, see

e.g., [Wolfgang 2000, pp124] and [Chicone 1999, pp120].

We have, y = (S, I,R)T , thus, y1 = (S1, I1, R1)T , y2 = (S2, I2, R2)T .
We show that given y1 and y2 that satisfy ẏ = f(y),

〈(y1 − y2), (f(t, y1)− f(t, y2))〉 ≤ L|y1 − y2|2.

Let

〈(y1 − y2), (f(t, y1)− f(t, y2))〉 = Q,

then
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Q = (S1 − S2)[f1(t, y1)− f1(t, y2)] + (I1 − I2)[f2(t, y1)− f2(t, y2)]

+(R1 −R2)[f3(t, y1)− f3(t, y2)]

= (S1 − S2)[(b− µS1 − ψ(t)S1 − β(t)S1I1)− (b− µS2 − ψ(t)S2 − β(t)S2I2)]

+(I1 − I2)[(−µI1 + β(t)S1I1 − αI1)− (−µI2 + β(t)S2I2 − αI2)]

+(R1 −R2)[(−µR1 + ψ(t)S1 + αI1)− (−µR2 + ψ(t)S2 + αI2)]

= −(µ+ ψ(t))(S1 − S2)2 − (µ+ α)(I1 − I2)2 − µ(R1 −R2)2

+ψ(t)(R1 −R2)(S1 − S2) + α(R1 −R2)(I1 − I2)

−β(t)(S1I1 − S2I2){(S1 − S2)− (I1 − I2)} (1.3)

≤ −(µ+ β(t)S2)(S1 − S2)2 − (µ− β(t)I1)(I1 − I2)2 − (µ− ψ(t)− α)(R1 −R2)2

≤ −µ{(S1 − S2)2 + (I1 − I2)2 + (R1 −R2)2} = L|y1 − y2|2.

Here, we need a continuous bounded Lipschitz function L, which we have ap-

proximated with µ . However, in the second last statement above,L is de�ned and

�nitely so if S2, and I1 or simply S(t) and I(t) are bounded functions and

this follows since S(t) + I(t) +R(t) = N(t), and we know that

˙N(t) = b− µN(t),

such that limt→∞N(t) = b
µ . The equation (1.3) is modi�ed using

(i) S1I1 − S2I2 = S1I1 − S2I1 + S2I1 − S2I2.

(ii) (S1 − S2)(I1 − I2) ≤ (S1 − S2)2 + (I1 − I2)2.

The solutions for (1.1) remain positive on the time interval [0, T ) and is unique,

for some set of initial conditions. Positivity of solutions for SEIR type model is also

illustrated in [Herzog 2004], for general cases and for quasi-monotone systems.

�

Theorem 1.5.3 Quasimonotonicity: Consider an ODE system ẏ = f(t, y), f :

[0,∞)XR3 7→ R3. Suppose f(t,y) is quasimonotone increasing and continuous, and

there exists some continuous function L : [0,∞) 7→ R , a de�ned function g(.) and

two possible solutions x and y, that satisfy the system, such that

g(f(t, y)− f(t, x)) ≤ L(t)g(y − x), ∀t ≥ 0, x ≤ y,

then ẏ = f(t, y), y(0) = y0 is uniquely solvable on [0,∞).

Proposition 1.5.4 The ODE system (1.1) is quasimonotone (cooperative) system

and by theorem (1.5.3), the system is uniquely solvable and solutions live in a

positively invariant corn R3
+.
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Proof: We make use of [Herzog 1998, Theorem 1] and the condition N =
S + I +R.

d

dt
S = b− µS − ψ(t)S − β(t)S (N − S −R)

d

dt
I = −µI + β(t)S I − αI (1.4)

d

dt
R = −µR+ ψ(t)S + αI

The general Jacobian matrix to the ODE system (1.4) reads,

J =

 −µ− ψ − β(N − S −R) + βS 0 βS

βI −µ− α− βS 0
ψ α −µ


The o� diagonal terms are positive, hence we have a cooperative system. By theorem

(1.5.3), the system is uniquely solvable, and positivity in the positive corn R3
+ of

solutions for this case, holds [Herzog 1998] .

�





Chapter 2

Stability Analysis

2.1 Orbital stability of periodic solution

We now investigate the stability of the solution in the full model. We use Floquet

Theory, whose direct object of study is a linear di�erential equation with periodic

coe�cients [Ioos 1990].

Proposition 2.1.1 The Floquet multipliers for the solution S[ψ](t) read

ρ1 = e−
∫ T
0 µ+ψ(τ) dτ , ρ2 = e−

∫ T
0 µdτ , ρ3 = e−(µ+α)T+

∫ T
0 β(τ)S[ψ](τ) dτ .

Proof:

Consider the linearization of (1.1) around a periodic solution by setting

S(t) = s+ S[ψ](t), R(t) = r +
(
b

µ
− S[ψ](t)

)
, and I(t) = i+ 0.

We �nd

d

dt
s = −µs− ψ(t)s− β(t)S[ψ](t) i

d

dt
i = −µi+ β(t)S[ψ](t) i− αi (2.1)

d

dt
r = −µr + ψ(t)s+ αi

A fundermental matrix of (2.1) consists of solutions satisfying the initial conditions

(1, 0, 0)T , (0, 1, 0)T , and (0, 0, 1)T .
Consider the initial condition (0, 0, 1)T . We note that

i(t) = i(0) exp
{
−
∫ t

0
µ+ β(τ)S[ψ](τ) + αdτ

}
= 0 since i(0) = 0

Then we consider the equation for s(t), i.e.,

s(t) = s(0) exp
{
−
∫ t

0
µ+ ψ(τ)dτ

}
−
∫ t

0
exp

{
−
∫ r

τ
µ+ ψ(τ)dτ

}
β(r)S[ψ](r)i(r)dr.

Since i(t) = 0 and s(0) = 0, s(t) = 0 ∀ t.
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Finally,

r(t) = r(0) exp
{
−
∫ t

0
µ

}
+
∫ t

0
exp

{
−
∫ r

0
µ

}
(ψ(r)s(r)+αi(r))dr = exp

{
−
∫ t

0
µ

}
Hence we obtain the solution, s

i

r

 =

 0
0
1

 e−µt

In a similar manner, we obtain the other two solutions. All the three independent

solutions with initial conditions (0, 0, 1)T (1, 0, 0)T , and (0, 1, 0)T read, s

i

r

 =

 0
0
1

 e−µt,

 s

i

r

 =

 exp(−
∫ t

0 µ+ ψ(τ) dτ)
0∫ t

0 exp(µ(t− τ))ψ(τ) exp(−
∫ τ

0 µ+ ψ(σ) dσ) dτ


and  s

i

r

 =

 ∗
exp(−

∫ t
0 µ+ αdτ +

∫ t
0 β S[ψ](τ) dτ)

*

 .

The Monodromy matrixM(T ), which is a fundamental matrix φ(t) of the linearized
system, evaluated at time T (the period), has the form exp(−

∫ T
0 µ+ ψ(τ) dτ) ∗ 0

0 exp(−
∫ T

0 µ+ αdτ +
∫ T

0 β S[ψ](τ) dτ) 0
* ∗ exp(−

∫ T
0 µdτ)


The entries (*) in the matrix are assumed equal to zero. The columns of the Mon-

odromy matrix are de�ned by the three independent solutions, and the matrix is

evaluated at period T. As M(T ) posseses a block structure, it is possible to read the
spectrum from the diagonal entries, which therefore de�ne the Floquet multipliers

as ρ1, ρ2 and ρ3. �

The local stability of the disease free equilibrium is satis�ed if

|ρi| < 1 i = 1, 2, 3.

That is, the eigen values should lie in a unit circle [Chicone 1999, Theorem 2.53,

pp168]. Since the absolute value of ρ1 and ρ2 are less than one, therefore, lo-

cal stability is determined by ρ3, especially by the value of the average quantity

1/T
∫ T

0 β(t)S[ψ](t) dt and we are led to the following de�nition.

De�nition 2.1.1 Let F̃ : L∞+ → R,

F̃ [ψ] =
1
T

∫ T

0
β(t)S[ψ](t) dt.

If F̃ [ψ] < (µ+ α) then the uninfected periodic orbit is orbital stable.
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2.2 Instantaneous Stability Analysis

2.2.1 Fast Epidemic

Now we assume a di�erent point of view. Consider a disease which is quite infectious

but has a short infective period in comparison with the period of the contact- and

vaccination rate. This situation may be given in cases like measles. Thus, β and α

are both large. We may express this fact in introducing a small parameter ε,

d

dt
S = b− µS − ψ(t)S − 1

ε
β(t)S I

d

dt
I = −µI +

1
ε
β(t)S I − 1

ε
αI (2.2)

d

dt
R = −µR+ ψ(t)S +

1
ε
αI

We want to know, if an epidemic is possible in this situation. It is important to

be precise what the statement �an epidemic is possible� means. The idea is, that

we start at time t0 close to the uninfected periodic solution (especially with I(t0)
nonzero, but small) and �nd - for short times - a trajectory that resembles the usual

epidemic model in case that the reproduction number is larger than one, i.e. the

trajectories resemble that of the ODE

s′ = −β̂s i, i′ = (β̂s i− α̂i), r′ = α̂i.

It is well known that there is an invariant functional x : R2 → R on these trajectories

of the form

x(s, i) = −s+ (α/β) ln(s)− i.

I.e., x(s(t), i(t)) is constant, or, equivalently, i = −s + (α/β) ln(s) − x where x <

max{−s + (α̂/β̂) ln(s) | s ∈ R+} = x0 = (α̂/β̂)(ln(α̂/β̂) − 1). We aim to apply

Singular perturbation theory. The theory requires clearly separated time scales

and an autonomous equation. Thus, we �rst (formally) decouple time and periodic

functions and augment the state space with a variable q ∈ [0, T ] where we identify
q ≡ q mod T , i.e. q ∈ S1 (note that this variable lives in a compact set) and obtain

d

dt
S = b− µS − ψ(q)S − 1

ε
β(q)S I,

d

dt
I = −µI +

1
ε
β(q)S I − 1

ε
αI

d

dt
R = −µR+ ψ(q)S +

1
ε
αI, (2.3)

d

dt
q = 1

The time scale t of (2.3) is the time scale of the population dynamics. If we transform

time to the fast time scale of the disease, using t = ετ and dropping the equation

for R since R(t0) = b/µ−S[ψ](t0) and equations for S, X and q do not depend on

R, we obtain the new system,
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d

dτ
S = ε{b− µS − ψ(q)S} − β(q)S I,

d

dτ
I = −εµI + β(q)S I − αI (2.4)

d

dτ
q = ε

Taking ε→ 0, (2.4) becomes an SIR-model without population dynamics, from

whose dynamics we obtain the constant relation X = −S+(α/β(q)) ln(S)−I. Since
X is constant on a fast system, it de�nes a slow variable in the context of Singular

perturbation theory, and hence our choice of X(q) to transform the system into a

distinct fast-slow system.

2.2.2 Variable transformation.

We observe that system (2.3) mixes the slow time scales of population dynamics and

vaccination with the fast dynamics of the epidemic. In order to use Singular pertur-

bation theory, we need to separate the time scales explicitly using a transformation

of variables.

The idea for a variable change is the following: on the fast time scale of the

epidemic, q is �xed. Thus if ε→ 0, we expect a trajectory of (2.4) to follow a pure

SIR-model without population dynamics or vaccination. That is, there is a relation

between S and I of the following form

−S + (α/β) ln(S)− I = constant.

The SI-plane is �bred by these curves, indicating the time course of epidemics with

di�erent initial values. This observation gives rise to the de�nition

X = −S + (α/β(q)) ln(S)− I

As S, I ≥ 0, X assumes values only below the maximum of −S + (α/β(q)) ln(S).
The maximum is assumed at S = β(q)/α, and thus

X ≤ X∗ = −β(q)/α+ (α/β(q)) ln(β(q)/α).

On the fast time scale, X is constant. Instead of the SI-plane we investigate

the system on the SX-plane.
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We �nd

d

dt
X = −S′ + αS′

β(q)S
− αβ′(q) q′

β2(q)
ln(S)− I ′

= −b+ µS + ψ(q)S +
1
ε
β(q)S I +

α [b− µS − ψ(q)S − 1
εβ(q)S I]

β(q)S

−αβ
′(q) q′

β2(q)
ln(S) + µI − 1

ε
β(q)S I +

1
ε
αI

= −b+ µS + ψ(q)S +
α [b− µS − ψ(q)S]

β(q)S
− αβ′(q) q′

β2(q)
ln(S) + µI

(2.5)

From the de�nition of X we have

I = −S + (α/β(q)) ln(S)−X

hence

d

dt
X = −b+ µS + ψ(q)S +

α [b− µS − ψ(q)S]
β(q)S

− αβ′(q) q′

β2(q)
ln(S)

+µ[−S + (α/β(q)) ln(S)−X] (2.6)

De�ne

g(S, q) := µS + ψ(q)S +
α [b− µS − ψ(q)S]

β(q)S
+ µ[−S + (α/β(q)) ln(S)]

(2.7)

then
dX

dt
= −b− µX + g(S, q)− αβ′(q) q′

β2(q)
ln(S)

We thus obtain the transformed, slow system

dX

dt
= −b− µX + g(S, q)− αβ′(q) q′

β2(q)
ln(S)

ε
dS

dt
= ε[b− µS − ψ(q)S]− β(q)S [−S + (α/β(q)) ln(S)−X] (2.8)

dq

dt
= 1

Since dq
dt = 1, we have,

dX

dt
= −b− µX + g(S, q)− αβ′(q)

β2(q)
ln(S)

ε
dS

dt
= ε[b− µS − ψ(q)S]− β(q)S [−S + (α/β(q)) ln(S)−X] (2.9)

dq

dt
= 1
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Using τ = t/ε, fast system reads

dX

dτ
= ε[−b− µX + g(S, q)− αβ′(q) q′

β2(q)
ln(S)]

dS

dτ
= ε[b− µS − ψ(q)S]− β(q)S [−S + (α/β(q)) ln(S)−X] (2.10)

dq

dτ
= ε

or

dX

dτ
= ε[b− µX + g(S, q)− αβ′(q) ε

β2(q)
ln(S)]

dS

dτ
= ε[b− µS − ψ(q)S]− β(q)S [−S + (α/β(q)) ln(S)−X] (2.11)

dq

dτ
= ε

Remark 2.2.1 Invariant Manifold {I = 0}

We know that in the original equation the plane {I = 0} is invariant. This is

also true for the transformed system, as this is de�ned by a regular transformation.

In the transformed system, this manifold, which we denote from now on by M∗, is

given by

M∗ = {(S, I, q) | I = 0} = {(X,S, q) | −X − S + αS/β(q) = 0}.

The dynamics in the (S, I, q)-system reads

d

dt
S = b− µS − ψ(q)S

d

dt
q = 1

and I = 0. As I resp. X is not involved in these equation, also in the transformed

coordinates (X,S, q) the dynamics on this manifold is given by these very equations,

where X is given by X = −S + αS/β(q).

It is necessary to note, that neither the manifold nor the dynamics on the man-

ifold depends on ε. Thus, also in the limit of ε → 0 (for the fast as well as for the

slow system, see below), this manifold will be conserved.

All feasible initial conditions (S, I, q) ∈ R+ × R+ × [0, T ] correspond to points

{(X,S, q) |X ≤ −S + αS/β(q) ∈ R+, q ∈ [0, T ]}.
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2.2.3 Limiting fast and slow systems.

Fast system

Consider the fast system, taking ε to zero,

dX

dτ
= 0

dS

dτ
= −β(q)S [−S + (α/β(q)) ln(S)−X] (2.12)

dq

dτ
= 0

On the time scale of the fast process (the epidemics), the trajectory for S resem-

bles that of a simple SIR-model without population dynamics. We determine the

stationary states of S, if X and q are given and �xed. Either S = 0, or

X = −S + (α/β(q)) ln(S).

As only X ≤ X∗ is allowed for X, we �nd additional stationary points. Given q,

the stationary points in the SX-plane are sketched in �gure 2.1. The parameters

used are β(q) = 3, α = 1.The stability of the branches is indicted by the linestyle,

where the dashed line indicates the unstable branch while the solid line indicates

the stable branch. The arrows indicate the direction of the fast �eld.
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Figure 2.1: Solution branches on the SX-plane, including fast and slow manifolds.

Slow system

Consider the slow system, taking ε to zero,

dX

dt
= −b− µX + g(S, q)− αβ′(q) q′

β2(q)
ln(S)

0 = β(q)S [−S + (α/β(q)) ln(S)−X] (2.13)

dq

dt
= 1.
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We are interested for the dynamics on the two unstable and the stable branch

of stationary points.

Case 1: Unstable branch S = 0:
The function g(S, q) becomes unbounded for S → 0. Thus, this branch is not

feasible. Neither can we compute for any solution X(t) that de�nes the slow mani-

fold.

Case 2: Unstable and stable branch S > 0:
On this branch, we have

X = −S + (α/β(q)) ln(S)

and hence

g(S, q) = µS + ψ(q)S +
α [b− µS − ψ(q)S]

β(q)S
+ µX (2.14)

and thus

X ′ = −b− µX + µS + ψ(q)S +
α [b− µS − ψ(q)S]

β(q)S
+ µX − αβ′(q) q′

β2(q)
ln(S)

= −b+ µS + ψ(q)S +
α [b− µS − ψ(q)S]

β(q)S
− αβ′(q) q′

β2(q)
ln(S)

=
(−β(q)S + α)[b− µS − ψ(q)S]

β(q)S
− αβ′(q) q′

β2(q)
ln(S) (2.15)

q′ = 1

One possibility is to express S in terms of X with help of the algebraic relation

between X and S. As this is not explicitly possible, we use the other way: We

express X ′ in terms of S and S′ and derive an ODE for S′ on this slow manifold.

X ′ = −S′ − αβ′(q)q′

β2(q)
ln(S) +

α

β(q)S
S′

That is,

− S′ − αβ′(q)q′

β2(q)
ln(S) +

α

β(q)S
S′ =

(−β(q)S + α)[b− µS − ψ(q)S]
β(q)S

− αβ′(q) q′

β2(q)
ln(S)

⇒ S′
(
−β(q)S + α

β(q)S

)
=

(−β(q)S + α)[b− µS − ψ(q)S]
β(q)S

⇒ S′ = b− µS − ψ(q)S (2.16)

We thus have an explicit solution for S(t) along the slow manifold, in the form,

S(t) = S(0)exp
{
−
∫ t

0
µ+ ψ(q)dq

}
+ b

∫ t

0
exp

{
−
∫ t

σ
µ+ ψ(q)dq

}
dσ,

and from the relation

X = −S + (α/β(q)) ln(S)− I,

we substitute S(t) and have an expression for X(t).
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2.2.4 Stability along slow manifold

From system (2.13), the slow manifold is given by

h(S) = −β(q)S [−S + (α/β(q)) ln(S)−X].

In order to determine the stability along the slow manifold, we inspect the deriva-

tive of the slow manifold. The derivative reads

h′(S) = −β(q)[−S + (α/β(q)) ln(S)−X]− β(q)S [−1 + (α/β(q))/S]

and h′(S) < 0 ⇒ stable branch. There are three solution branches for h(S) = 0.
The �rst branch is S = 0. The graph − S + (α/β(q)) ln(S) = X has two solution

branches for 0 < S < α/β(q) herein referred to as the middle branch and S >

α/β(q) which we refer to as the right hand outer branch.

(i) Since h′(S)→∞ for S → 0, branch S = 0 is thus unstable.

(ii) Consider − S + (α/β(q)) ln(S) − X = 0. If, β(q) 6= 0, andS 6= 0, then

h′(S) < 0 if

[−1 + (α/β(q))/S] > 1 ⇒ β(q)S/α < 1,

from which we de�ne R0. This condition is satis�ed in the middle branch only.

The middle branch is thus stable, the right hand outer branch (s > α/β)is

unstable.

As we start in {(X,S) |X 5 h(S)}, a perturbation close to the unstable branch

will jump to the stable part via the fast �eld.

For ε positive but small, there is a time layer O(ε) and a trajectory of (2.11)

that is ε-close to the lines X =constant, if we start close to the unstable branch of

the invariant manifold M∗. This is possible for initial conditions S(t0) = S[ψ](t0),
R(t0) = b/µ − S[ψ](t0), and I(t0) > 0, I(t0) = O(ε) if and only if the curve

(S[ψ](q), I[ψ][q], q) enters the unstable part of M∗, i.e. i� ‖β(t)S[ψ](t)/α‖L∞ > 1.
We are led to the proposition.

Proposition 2.2.1 For ε > 0 but su�ciently small, an epidemic is possible i�

‖β(t)S[ψ](t)/α‖L∞ > 1.

2.3 Comparison: Floquet Theory vs Singular perturba-

tion Theory

In �gure(2.2), we illustrate that Orbital stability of the uninfected periodic solution

may not play a role, but the instantaneous stability at a certain time point is the
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Figure 2.2: Epidemic scenario when Orbital stability holds, instantaneous stability

fails in-between.

decisive criterion if or if not an epidemic may happen. The �gure gives a simulation

of an epidemic for time independent contact rate (dashed curve) and slowly varying,

periodic contact rate (solid curve). Parameters used are b = 0.05, µ = 0.016666,
α = 1, ε = 0.3. For the constant case, β = 1.4 while for the varying case β =
0.9 + cos(t)0.5. We de�ne the instantaneous reproduction number as follows.

De�nition 2.3.1 The instantaneous reproduction rate (in presence of vaccination)

Rv is de�ned by

Rv(t) = β(t)S[ψ](t)/α.

We call the uninfected periodic orbit instantaneously stable, if

‖Rv‖L∞ < 1.

Note, that Rv is not well de�ned for every time point, since β is an L∞-function.

However, Rv ∈ L∞(0, T ). We reach the following conclusion.

Proposition 2.3.1 If the uninfected periodic orbit is instantaneously stable, it is

also orbital stable. In general, it is not true that Orbital stability implies Instanta-

neous stability.

On the �rst glance, the proposition seems to contradict itself. For ε small, but

positive, we may look at the system under the point of view of Orbital stability
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as well as under the point of view of instantaneous stability. There are situations,

where orbital stability is given, while instantaneous stability is not. Thus, if we start

close to the uninfected periodic orbit, we ultimately converge to this orbit though

an epidemic outbreak is possible, as depicted in �gure (2.2).

The reason for this seemingly contradiction is the fact, that orbital stability

only implies that eventually the density of infectives tends to zero. In between, the

number may (again and again, periodically) become quite large, s.t. an observer,

who only consider the prevalence of disease locally has the impression that local

outbreaks occur. However, these outbreaks become after each period T smaller and

smaller and eventually fade out. The case of measles which has clearly shorter time

scale relative to population dynamics would exhibit this scenario.

Let us consider the fate of a trajectory starting O(ε) close to the uninfected

solution at time points, where this solution is instantaneously unstable. If the I

component is su�ciently large, an instantaneous epidemic outbreak will happen.

However, as time changes, we will reach a parameter region where β(t)/α(t) < 1.
At the latest here, the epidemic breaks down and the trajectory comes close to M∗.

As the dynamics of the epidemic process is fast, we will �nd (for ε su�ciently small)

that we are e−1/ε-close to M∗ if we enter next a parameter region where we have

instantaneous instability. As we are very close to M∗, where dI/dt = 0, it takes a
long time until the perturbation grows s.t. I is in the magnitude ofO(ε), and another
instantaneous epidemic occurs. Indeed, we will leave the instantaneous unstable part

before this happens. This so-called slow passage e�ect yields the orbital stability of

a trajectory (S[ψ](t), 0, R[ψ](t)) with instantaneous unstable parts.





Chapter 3

Optimal Vaccination Strategies

3.1 De�nition of Optimal Control Problems

We assume as is often the case, that the budget for the control of the disease is

restricted. During one period for vaccination we want to spend at most C0 vaccina-

tion doses. The aim is to �nd a vaccination schedule that is as e�ective as possible.

The idea is to get an impression what can be gained by optimization concepts, as an

e�ective vaccination strategy. The e�ciency may be measured in terms of orbital

or instantaneous stability of disease free state.

Problem 3.1.1 For ψ ∈ L∞+ (0, T ), �nd the vaccination schedule that minimizes

F̃ [ψ] =
1
T

∫ T

0
β(τ)S[ψ](τ) dτ

under the constraint that the number of vaccination doses C̃[ψ] = C0 is given, where

C̃[ψ] is de�ned as

C̃[ψ] :=
∫ T

0
ψ(τ)S[ψ](τ) dτ.

Problem 3.1.2 For ψ ∈ L∞+ (0, T ), �nd the vaccination schedule that minimizes

‖Rv[ψ]‖L∞ =
∥∥∥∥β(t)S[ψ](t)

α

∥∥∥∥
L∞

under the constraint that the number of vaccination doses C̃[ψ] = C0 is given. Again,

C̃[ψ] :=
∫ T

0
ψ(τ)S[ψ](τ) dτ.

Problem (3.1.1) can be formulated as a classical Maximum Principles problem.

Considering all the details of the optimization problem(3.1.1), we de�ne the following

proposition.

Proposition 3.1.3 Consider the population pro�les S[ψ](t), I[ψ](t) ≡ 0, R[ψ](t).

De�ne the set of optimal vaccination strategies,

Ψ = {ψ|0 ≤ ψ ≤ ψmax; ψ ∈ L∞+ . },
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The optimal control problem is to minimize,

F [ψ](t) =
∫ T

0
β(τ)S[ψ](τ)dτ ;

subject to

Ṡ(t) = b− µS − ψS; S(0) = S(T )

Ċ(t) = ψS; C(0) = 0, C(T ) = C

0 ≤ ψ ≤ ψmax.

This problem is an optimal control problem with singular arc of in�nite local order.

Proof:

Using the Minimization principle of Pontryagin, we de�ne a Hamiltonian,

H(S,C, λ1, λ2, ψ) = λ1(b− µS − ψS) + λ2ψS + βS,

which is a�ne in the control variable ψ, and can be written as,

H = H0 + ψH1,

where H0 = λ1(b− µS) + βS, and H1 = (λ2 − λ1)S.
This is a singular case of optimal control [Robbins 1967] with a singular arc

when λ2 = λ1. The control variable ψ appears linearly in the Hamiltonian, thus

its optimal value ψ̂ will be piecewise constant function (A bang-bang control)

[Neubert 2003, pp845] of the form;

ψ̂ =


0, if λ2 − λ1 > 0;
ψmax, if λ2 − λ1 < 0;
∗, if λ2 = λ1.

One needs to know what happens whenH1 = λ2−λ1 = 0, in a de�ned interval of

time. To determine ψ̂ in this interval, one needs to di�erentiate H1 = λ2−λ1 = 0,
with respect to time t, until the derivative satis�es the condition

∂

∂ψ

{
d2pH1

dt2p

}
6= 0,

where p de�nes the local order of the singular arc [Robbins 1967, pp849]. Taking

the derivative of H1 with respect to t, one fails to achieve the above condition for

�nite p. Hence, the (local) order of the singular arc in the optimization problem

here is in�nite.

�
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Remark 3.1.1 (i) It turns out that the control Problem (3.1.3) is a classical

linear optimal control problem with a singular arc of in�nite order. This problem

has been already handled in literature [Baumann 1998]. However, the second problem

of minimizing an essential supremum is not a straightforward classical optimization

problem and may need reformulation to apply classical tools.

(ii) To match the orbital optimization problem with the alternative instantaneous

optimization problem, we choose to de�ne a set of solutions that would guarantee

existence of solutions for both optimal problems. We de�ne the set as S.

3.2 Characterizing the set of Optimal Solutions

The worst strategies maximize F̃ [ψ] and ‖Rv[ψ]‖∞, respectively. We aim to prove

existence for solutions. It turns out, that in general we do not �nd solutions for

ψ ∈ L∞+ . We need to extend our search to a larger set.

The success of a vaccination program can be de�ned in terms of how many

susceptible individuals are still in the population. An excellent vaccination program

implies no susceptibles in the population. We study vaccination strategies in terms

of a set of susceptible population pro�les S̃ = {S[ψ] |ψ ∈ L∞+ } ⊂ L∞(0, T ), whose

closure we denote by S.

First we show the set of all population pro�les originating from S̃ is bounded

and compact. We also need to show that it is convex.

3.2.1 S̃ is bounded and compact

Proposition 3.2.1 For any ψ ∈ L∞+ we �nd uniform bounds for ‖S[ψ]‖L∞ and

C̃[ψ], i.e.,

‖S[ψ]‖∞ 5 b/µ

and

C̃[ψ] 5 b T.

Proof:

The function S[ψ](t) satis�es the di�erential inequality Ṡ[0](t) 5 b−µS[0](t), under
no vaccination and thus the solution of σ̇ = b− µσ is a super-solution, where

S[0](t) := S[ψ](t)|ψ=0.



30 Chapter 3. Optimal Vaccination Strategies

This solution tends asymptotically to b/µ and S[ψ](t)‖ψ 6=0 stays periodic, bounded

above by b/µ . Thus,

0 ≤ S[ψ](t) ≤ b/µ ⇒ ‖S[ψ]‖∞ ≤ b/µ.

In order to estimate C̃[ψ] =
∫ T

0 ψ(τ)S[ψ](τ) dτ , we integrate the di�erential equation
for S, with respect to t over one period, (I(t) ≡ 0 assumed).

d

dt
S[ψ](t) = b− µS[ψ](t)− ψ(t)S[ψ](t)∫ T

0

d

dt
S[ψ](t)dt =

∫ T

0
bdt−

∫ T

0
µS[ψ](t)dt−

∫ T

0
ψ(t)S[ψ](t)dt

0 = bT − µ
∫ T

0
S[ψ](t)dt− C̃[ψ]

hence we �nd

C̃[ψ] = Tb − µ
∫ T

0
S[ψ](t) dt ≤ Tb

�

To investigate compactness, we use a remark [Evans 1998, pp274] that follows

from sobolev embedding theorem in [Evans 1998, Theorem 1, pp272]. We start with

both the remark and the theorem(without proof as this follows from the reference).

Theorem 3.2.2 Assume S̃ ⊂ Rn is open, bounded and Lipschitz domain, s.t.,

∂S̃ ∈ C1. Suppose 1 ≤ p ≤ ∞, then

W 1,p(S̃) ⊂⊂ Lq(S̃)

for 1 ≤ q < p∗ and p∗ = np
n−p .

Remark 3.2.1 If p∗ →∞, as p→ n, then

(i)

W 1,p(S̃) ⊂⊂ Lp(S̃)

for all 1 ≤ p ≤ ∞.

(ii)

W 1,p
0 (S̃) ⊂⊂ Lp(S̃)

even if ∂S̃ 6∈ C1.
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Using the above remark, we specify the following proposition.

Proposition 3.2.3 The set S̃ = {S[ψ] |ψ ∈ L∞+ } ⊂ L∞(0, T ) is a bounded subset

in W 1,1(0, T ) and is precompact in L1.

Proof:

We already showed that ‖S[ψ]‖∞ is uniformly bounded, and thus, we only consider

the bounded interval [0, T ]. ‖S[ψ]‖1 is also bounded in this interval. The norm of

the derivative can be derived using the di�erential equation,∫ T

0
| d
dt
S[ψ](t)| dt ≤

∫ T

0
(b+ µS[ψ](t)) dt+

∫ T

0
ψ(t)S[ψ](t) dt

= bT + µ‖S[ψ]‖1 + C̃[ψ].

All the terms in the last line are uniformly bounded, i.e. S̃ is a bounded subset of

W 1,1(0, T ). Since W 1,1(0, T ) is compact embedded in L1, then S̃ is precompact

in L1 and its closure S is a compact subset of L1. �

Remark 3.2.2 (1) Let S be the closure of S̃ under the L1-topology. Then, S is

a compact subset in L1. Furthermore, since the L∞-norm is bounded for all

elements in S̃, S is also a bounded subset of L∞.

(2) The cost functional C : S̃ → R,
(
C(S[ψ]) := C̃[ψ]

)
has an unique extension

C : S→ R, since this functional can be represented as a function of ‖S[ψ]‖1.

Since C is a bounded linear functional, and by Hahn-Banach theorem, C is

continuous on S.

(3) The vaccination e�ect functional F : S̃ → R,
(
F(S[ψ]) := F̃ [ψ]

)
has an

unique extension F : S→ R, since this functional depends on S[ψ] only via∫ T

0
β(τ)S[ψ](τ) dτ

which is a continuous, linear functional w.r.t. the L1-topology.

(4) We denote with C∞ the maximal possible costs. Since S is compact and C

continuous, the functional C assumes its maximum and the maximum (C∞)

is well de�ned.
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Theorem 3.2.4 If 0 ≤ C0 ≤ C∞, the problem 3.1.1 has a solution in S, where

C0 denotes the number of vaccination doses, and C∞ the maximum number of

doses available for the vaccination program.

Proof:

Since 0 ≤ C0 ≤ C∞, and since C is continuous, the set {S ∈ S |C(S) = C0} is
non-empty and compact. Thus, the continuous functional F assumes its minimum

within this set. �

Theorem 3.2.5 We assume β(t) ≥ β > 0. If 0 ≤ C0 ≤ C∞, the problem 4.2.1 has

a solution in S.

Proof:

We aim to minimize

||Rv||L∞ = supess{Rv}.

It is possible to control S(t) through vaccination, in order to minimize supess{Rv}.
Let m de�ne the optimal value for αRv under the usual cost constraint, where,

m = inf
S∈S

supess
t∈(0,T )

{β(t)S(t)}.

The problem has a solution if we could �nd a pro�le β(t)S(t) that corresponds to

m.

Let Si ∈ S s.t. the valuesmi = supesst∈(0,T ) β(t)Si(t) converge againstm. Since

S is w.r.t. the L1-topology compact, we �nd a subsequence of the Si that converge

in the L1-norm to S ∈ S.

We show that

supess
t∈(0,T )

β(t)S(t) ≤ m. (3.1)

If this is not the case, then there is an ε > 0, s.t. supesst∈(0,T ) β(t)S(t) = m+ε > m.

Hence, there is an measurable set J ⊂ (0, T )

J = {t ∈ (0, T ) |β(t)S(t) > m+ ε/2}

with measure larger than zero. For i > n0, for some arbitrary n0 ∈ R+ large

enough, we have mi < m+ ε/2. Hence,

‖S − Si‖L1 ≥
∫
J
|S − Si| dt =

∫
J
S − Si dt =

∫
J

1
β(t)

(β(t)S(t)− β(t)Si(t)) dt

≥ ε/2
∫
J

1
β(t)

dt ≥ ε |J |
2‖β‖∞

> 0

in contradiction to the fact that the Si tend to S in the L1-norm. Thus, (3.1) holds

and S is a solution of the problem. �
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3.2.2 Convexity of S

We show that S is convex and compact. According to the theorem of Krein and

Milman, the extremal points structure the complete set. Consequently, we investi-

gate this special set. The inside structure we obtain here is the centerpiece for later

considerations about the structure of the optimal points in S.

Proposition 3.2.6 The set S̃ is convex and so is its closure S.

Proof: Let Sτand Si = S[ψi]; i = 1, 2; ψi ∈ L∞+ be population pro�les in S. We

�nd an ε > 0 with Si > ε > 0, i.e. also Sτ is bounded away from zero.

If S is convex, then Sτ ∈ S can be expressed as a convex combination of

Si ∈ S : i = 1, 2.

Sτ (t) = τS1(t) + (1− τ)S2(t).

We check that Sτ ∈ S, that is, it satis�es the original di�erential equation for S(t)
for some vaccination rate ψτ (t).

d

dt
Sτ (t) = τ

d

dt
S1(t) + (1− τ)

d

dt
S2(t)

= τ (b− µS1(t)− ψ(t)S1(t)) + (1− τ) (b− µS2(t)− ψ(t)S2(t))

= b− µ (τS1(t) + (1− τ)S2(t))− τψ1(t)S1(t)− (1− τ)ψ2(t)S2(t)

= b− µSτ (t)− ψτSτ (t). (3.2)

where

ψτ (t) =
τψ1(t)S1(t) + (1− τ)ψ2(t)S2(t)

Sτ (t)
(3.3)

Since ψi(t) and Si[ψ](t) are periodic functions, ψτ (t) linearly depends on peri-

odic functions, hence it is periodic, and so is the solution Sτ (t).
We also show that ψτ ∈ L∞+ .

||ψτ (t)||L∞ =
∣∣∣∣∣∣∣∣τψ1(t)S1(t) + (1− τ)ψ2(t)S2(t)

Sτ (t)

∣∣∣∣∣∣∣∣
L∞

=
∣∣∣∣∣∣∣∣ψ1(t)

(
τS1(t)
Sτ (t)

)
+ ψ2(t)

(
(1− τ)S2(t)

Sτ (t)

)∣∣∣∣∣∣∣∣
L∞

≤ ||ψ1(t)||L∞ + ||ψ2(t)||L∞ <∞

Hence Sτ (t) ∈ S. Since S is the closure of a convex set, it is also convex.

Hence, S is a convex and compact set. By the theorem of Krein-Milman

[Yosida 1980, pp362], it can be characterized completely by the set of its extremal

points Σ(S). �
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3.2.3 De�nition of Vaccination Support for S[ψ](t) ∈ S

In order to obtain a better inside structure of the set Σ(S) of extremal points,

we de�ne the vaccination-support of a population pro�le S ∈ S, i.e. we derive a

criterion for these time points, where ψ does not vanish. If the rate ψ is in L∞+ , we

may use the di�erential equation, multiply this equation with a non-negative test

function φ ∈ C∞c (A,B) and integrate between arbitrary points (A,B) that is,∫ B

A
φ(t)

dS[ψ](t)
dt

dt = b

∫ B

A
φ(t)dt− µ

∫ B

A
φ(t)S[ψ](t)dt−

∫ B

A
φ(t)ψ(t)S[ψ](t)dt.

We integrate the LHS by parts and note that S[.](A) = S[.](B) = 0 since A and B

are boundary points of the function support. We then obtain∫ B

A
φ(t)ψ(t)S[ψ](t) dt =

∫ B

A
(φ′(t)−µφ(t))S[ψ](t) dt+b

∫ B

A
φ(t) dt =: H(S[ψ], φ;A,B).

Then, H is (for A, B, φ given) a continuous functional on S. For a given S ∈ S̃ and

given A, B, we �nd that H vanishes for all φ ∈ C∞c (A,B) if and only if ψ|(A,B) = 0
in L∞ : ψ|(A,B) ∈ L∞. We are led to the following de�nition.

De�nition 3.2.1 Let S ∈ S and θ ⊂ [0, T ) the set of points x so that A < x < B

exists, s.t.

H(s, φ;A,B) = 0 ∀φ ∈ C∞c (A,B), φ ≥ 0.

The vaccination-support suppv(S) of the population pro�le S is de�ned as [0, T ) \ θ.

Remark 3.2.3 (1) If ψ ∈ L∞+ , this function can be interpreted as a general-

ized function, and thus supp(ψ) is well de�ned. It is straight forward to see that

supp(ψ) = suppv(S[ψ]) through H(s, φ;A,B).

(2) Since H(S, φ;A,B) is non-negative for φ ≥ 0 and S ∈ S̃, this is also true

for S ∈ S.

3.2.4 Continuity of S[ψ](t) about discrete vaccination points.

In the next section, we will de�ne candidate optimal vaccination strategies that

vaccinate at discrete time points. We demonstrate that the functional S[ψ](t)
has well de�ned left hand and right hand limits at vaccination points, t0. Consider

following Lemmata:
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Lemma 3.2.7 Let t0 ∈ [0, T ] be �xed and ε > 0. De�ne two functions,

Aε = ess supS[ψ](t)|t ∈ [t0, t0 + ε],

Bε = ess inf S[ψ](t)|t ∈ [t0, t0 + ε],

Then, for 0 < ε′ < ε

1. Aε ≥ Aε′ ,

2. Bε ≤ Bε′ .

Proof:

The set,

{t ∈ [t0, t0 + ε′]|S[ψ](t) > A} ⊆ {t ∈ [t0, t0 + ε]|S[ψ](t) > A}

and

µ{t ∈ [t0, t0 + ε′]|S[ψ](t) > A} ≤ µ{t ∈ [t0, t0 + ε]|S[ψ](t) > A}

µ{t ∈ [t0, t0 + ε]|S[ψ](t) > A} = 0 ⇒ µ{t ∈ [t0, t0 + ε′]|S[ψ](t) > A} = 0

⇒ A|µ{t ∈ [t0, t0 + ε]|S[ψ](t) > A} = 0 ≥ A|µ{t ∈ [t0, t0 + ε′]|S[ψ](t) > A} = 0

⇒ Aε ≥ Aε′ ,

where µ{.} de�nes the measure of a set. Similarly,

Bε ≤ Bε′ .

Corollary 3.2.8 It follows that,

Aε ≥ Aε′ ≥ Bε′ ≥ Bε

for arbitrarily small positive real values ε′ ≤ ε

Lemma 3.2.9 The limε→0 |Aε −Bε| exists and is equal to zero.

Proof

We know that Aε ≥ Aε′ ≥ Bε′ ≥ Bε.
Thus |Aε −Bε| ≥ |Aε′ −Bε′ | for ε′ ≤ ε.
De�ne ∇(ε) := |Aε −Bε|, monotonously increasing in ε.

De�ne δ = lim infε→0{∇(ε)}. We show that the limit exists for δ = 0.
Suppose δ > 0. We know that for ε decreasing, Aε is monotonously decreasing
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and bounded function, Bε is monotonously increasing and bounded function,

hence the following limits exist:

limε→0Aε = A0

and

limε→0Bε = B0.

40 δ−A

40 δ+B

0A

0B

εA

εB

0t ε+0t00 ε+t

)]([ tS ψ

Figure 3.1: Limits of S[ψ](t) w.r.t a vaccination point t0.

Suppose δ > 0. We have S[ψ](t) monotonically increasing in (t0, t0 + ε). Since
B0 > Bε ∀ t ∈ (t0, t0 + ε),∃ ε0 ∈ (0, ε) s.t. S[ψ](t) ≤ B0 + δ/4 in the interval

(t0, t0 + ε0), thus S[ψ](t) ≤ A0 − δ/4 in (t0, t0 + ε0). Hence

µ{t ∈ [t0, t0 + ε0]|S[ψ](t) ≥ A0 − δ/4} = 0.

⇒ Aε̃ ≤ A0 − δ/4 ∀ ε̃ ∈ (0, ε0),

s.t. as ε̃→ 0, A0 ≤ A0 − δ/4.
⇒ 0 ≤ −δ/4. ⇒ δ ≤ 0, a contradiction. �

Lemma 3.2.10 limε→0− |Aε −Bε| exists and is equal to zero.

Proof:

The proof parallels that of lemma (3.2.9), reversing time and changing the roles

of the supremum and in�mum. �

Proposition 3.2.11 Consider any vaccination point t0 ∈ [0, T ]. Then the limits,

limt→t0+S[ψ](t) and limt→t0−S[ψ](t) are well de�ned.
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Proof: It follows from lemma (3.2.7) to lemma (3.2.10) that the limit is well

de�ned. �

Since S is compact and convex, we characterize it by its set of extremal points.

3.2.5 The set of extremal points, Σ(S).

Proposition 3.2.12 Let M ⊂ [0, T ) be a closed nonempty set, M ⊆ {suppv(S)}.

De�ne the map ∆ : [0, T ) \M → R+ by

∆(t) =

 t−max{x ∈M |x < t} if {x ∈M |x < t} 6= ∅

t+ (T −max{x ∈M}) if {x ∈M |x < t} = ∅
.

De�ne the function S∗ ∈ L∞+ (0, T ) by

S∗(t) =

 0 ; t ∈M

b/µ(1− e−µ∆(t)) ; else
,

then S∗ ∈ Σ(S).

Remark 3.2.4 Every compact subset of the space Rn is Lebesque measurable

[Amann 2001, Theorem 5.1, pp41]. For M compact subset in [0, T ), then M is

Lebesque measurable and for all time points x ∈M, S∗ ∈ L1

Proof:

Step I: We show that S∗ ∈ S.

We need to take care about the cyclic structure of [0, T ). Let M̂ = {x ∈ R | ∃i ∈
Z : x+ i T ∈M}.

Now we mollify M :

For n ∈ N, we de�ne the sequence of sets

Mn = {t ∈ [0, T ) | min
m∈M̂

(|t−m|) ≤ 1/n; m ≡ x+ iT ; i ∈ Z},

the rates ψn = n2 χMn(t) ∈ L∞+ (0, T ), periodically continued on R and denote

Sn = S[ψn].
Since Mn ⊃M, then, suppv(Sn) ⊃M and

∩n∈Nsuppv(Sn) = M.

Let x ∈M .We show that there exists a sequence Sn(x)→ 0, ∀x ∈M.
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Considering the lower interval, [x− 1/n, x] ⊂Mn. Since ψn ∈ L∞, the function
Sn ∈ C0. Thus we are able to inspect the functions Sn at the point x.

0 ≤ Sn(x) = Sn(x− 1/n)e−
∫ x
x−1/n(µ+ψn(t)) dt + b

∫ x

x−1/n
exp

(
−
∫ x

t
(µ+ ψn(t)) dt

)
dt

≤ b

µ
e
−

∫ x
x−1/n n

2 dt + b

∫ x

x−1/n
exp

(
−
∫ x

t
n2 dt

)
dt

=
b

µ
e−n +

b

n2
(1− e−n)→ 0 for n→∞.

We use the fact that limt→∞ S[ψ](t) = b/µ and that S[ψ](t) has b/µ as its upper

bound. Hence, we �nd that the convergence Sn|Mn → S∗ = 0|M is pointwise and

uniformly, supx∈M |Sn(x)− S∗(x)| → 0.

Now assume that x 6∈M .

We show that there exists a sequence Sn(x)→ S∗(x) = b/µ(1− e−µ∆(t)), ∀x 6∈
M.

Without restriction we assume that n is large enough to ensure x 6∈ Mn. Let

A = max{y ∈ M | y < x}. Then, An = A + 1/n ∈ ∂Mn, and (An, x] ⊂ R \Mn.

Therefore, the functions Sn satisfy S′n = b − µSn in (An, x], in other words,

(An, x] 6⊂ suppv(Sn). We thus have Sn(t) = b/µ(1 − e−µ(t−An)) and S∗(t) =
b/µ(1− e−µ(t−A)) in (An, x].

|Sn(x)− S∗(x)| = Sn(x)− S∗(x)

=
b

µ
exp{−µt}(exp{−µA} − exp{−µAn})

≤ b

µ
exp{−µt}(exp{−µA} − exp{−µ(A+ 1/n)})

=
b

µ
exp{−µt} exp{−µA}(1− exp{−µ/n})

= 0; n→∞

A similar argument like above shows us that Sn(An)→ 0 for n→∞, uniformly

for all right boundaries of connected components in Mn. Thus,

lim
n→∞

sup
x∈[0,T )

|Sn(x)− S∗(x)| → 0

and hence also ‖Sn − S∗‖L1 → 0.
Step II: We show that s∗ ∈ Σ(S).
Consider a time point x ∈M :
We know that both limt→x+ S

∗(t)and limx→x+ Si(t) are de�ned for time points

x ∈M where M is de�ned as a subset of the vaccination support of the susceptible

population pro�le, as shown in proposition (3.2.11).

By de�nition,

lim
t→x+

S∗(t) = 0,
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and by convexity, we have

S∗(t) = τS1(t) + (1− τ)S2(t);

From this expression and since

Si(t) ≥ 0; τ ∈ (0, 1),

it is not possible that convexity holds unless

lim
t→x+

Si(t) = 0, i = 1, 2.

(no sum of two non-negative numbers adds up to zero, unless the two numbers are

both zero). This applies in an open interval (A,B) ⊆M s.t.

S∗(t)|(A,B) = S1(t)|(A,B) = S2(t)|(A,B) = 0.

Thus for x ∈M, S∗ cannot be represented as a sum of two or more extremal points.

Now consider a time point x 6∈M :
Choose an interval (A,B) 6∈ M but such that A ∈ ∂M. (A,B) is then outside

the vaccination support (hence ψ = 0)and thus d
dtSi = b − µS; Si(A) = 0 and

d
dtS
∗ = b− µS∗; S∗(A) = 0.
Then, in (A,B) ∈ R \M,

S∗(t) = Si(t) =
b

µ
(1− exp{−µ∆t}).

Thus S∗ cannot again be represented as a sum of extremal points in S.

We conclude that S∗ is itself an extremal point. �

Remark 3.2.5 We know that S is compact and bounded. Since Σ(S) ⊂ S, the

closure of Σ(S) is compact. Thus, there is a sequence S∗n that approximates

S∗[ψ] ∈ M. Furthermore, any function in L1 can be approximated by a sequence

of step functions.





Chapter 4

Candidate Optimal Vaccination

Strategies

4.1 Candidate Optimal Strategies with respect to orbital

stability

To get an inside look into the set of solutions, we o�er a discrete (approximation)

version of problem (3.1.1) and thus, rede�ne vaccination rate in terms of vaccination

doses u(t) instead of the vaccination rate ψ(t).

Problem 4.1.1 Consider S[u](t), R[u](t) as solutions to

R[u](t) = b/µ− S[u](t)

d

dt
S[u](t) = b− µS[u](t)− ψS[u](t).

Let

U = {u|u =
n∑
i=1

diδ(t− ti) : i = 1, 2, ..., n}

Let furthermore, C[u](t) =
∫ T

0 u(t)dt represent the cost of vaccination.

We aim to minimize,

F [u](t) =
∫ T

0
β(τ)S[u](τ)dτ

subject to,

S[u](t) ≥ 0 ∀ t ∈ [0, T ]

R[u](t) = b/µ− S[u](t)

and the costs C[u](t) given.
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First we show that we may go back and forth between representations of vacci-

nation strategies by ψ(t) and u(t).

Lemma 4.1.2 Consider on the one hand ψ ∈ Ψ together with S[ψ] ≥ 0 and on the

other hand {u ∈ U|u =
∑n

i=1 diδ(t−ti)} together with S[u](t) ≥ 0. Given ψ(t) ∈ Ψn,

we �nd u ∈ U s.t. the periodic solution of S[u] = S[ψ] is true. Conversely, if we

have a non-negative solution S[u] for u =
∑n

i=1 diδ(t−ti), there is a strategy ψ ∈ Ψn

s.t. S[u] = S[ψ] is true.

Proof:

(a) Construction of u from ψ:

As S[ψ] is C∞([0, T ] \ {t1, .., tn}), the jump parameters di = S[ψ](ti−) −
S[ψ](ti+) are well de�ned. Furthermore, di ≥ 0 due to the monotonicity of S[ψ]
between the vaccination points.

d

dt
S[ψ](t) = b− µS[ψ] t 6= ti

On the other hand, for all time points t = ti, we have equality since

S[ψ](ti−)− S[ψ](ti+) = di

and

S[u](ti−)− S[u](ti+) = di.

For all t 6= ti,

d

dt
(S[ψ](t)− S[u](t)) = −µ(S[ψ](t)− S[u](t)).

and the solution converges to zero by uniqueness of solutions and we also have

equality.

(b) Construction of ψ from u:

De�ne

di = S[u](ti−)− S[u](ti+).

Take the interval (0, ti), as (ti, ti + 1) are assumed equal for all i = 1, 2, ..., n.
The solution

S[ψ](t) = S(0)exp{−
∫ t

0
µ+ ψ(τ)dτ}+ b

∫ t

0
exp{−

∫ t

σ
µ+ ψ(τ)dτ}dσ

= S(0)exp{−tµ− ci}+ b

∫ t

0
exp{−(t− σ)µ− ci}dσ

= S(0)exp{−ci}
{
exp{−tµ}+ b

∫ t

0
exp{−(t− σ)µ}dσ

}
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S[ψ](ti+) = e−ciS[ψ](ti−). (4.1)

Since di is the weight of the jump at ti, we denote it by

di = S[ψ](ti−)− e−ciS[ψ](ti−) = S[ψ](ti−)− S[ψ](ti+)

Of course,

di = S[u](ti−)− S[u](ti+).

So,

S[ψ](ti) = S[u](ti).

Note that

e−ci = 1− di
S[ψ](ti−)

.

Take di = S[ψ](ti−), indicating that everyone is vaccinated at ti, then ci =∞.
In the alternative, consider

ψ(t) =
1

S[ψ]

{
b− µS[ψ]− dS[ψ]

dt

}
If there exists a time point ti ∈ [0, T ] s.t. S[ψ](ti+) = 0, then ψ(ti) is large and

ci =
∫ ti+ε

ti−ε
ψ(τ) dτ =

∫ ti+ε

ti−ε

1
S[ψ]

{b− µS[ψ]}dτ −
∫ ti+ε

ti−ε

{
1

S[ψ]
dS[ψ]
dt

}
dτ,

' 0− {ln(S[ψ](ti+))− ln(S[ψ](ti−))}

' ln

(
S[ψ](ti−)
S[ψ](ti+)

)
As S[ψ](t) is bounded,

lim
ε→0

∫ ti+ε

ti−ε
b− µS(t) dt = 0.

This takes us back to (4.1) and we proceed similarly as above. �

We o�er some clari�cation on u(t). We consider ψS[ψ] as a given inhomogeneity,

u = ψS[ψ]. We also note that u(ti) is interpreted as the number of vaccination

dosages used at time point ti such that

u(t) = 0 ∀ t 6∈ {t1, t2, ..., tn}.

Furthermore, S is smooth outside the vaccination support and we consider the

integral ∫ ti+ε

ti−ε

d

dt
S(t) dt =

∫ ti+ε

ti−ε
b− µS(t) dt+

∫ ti+ε

ti−ε
u(t)dt

As before, we assume ∫ ti+ε

ti−ε
b− µS(t) dt = 0,



44 Chapter 4. Candidate Optimal Vaccination Strategies

follows if we are close to vaccination time and the susceptible population approaches

its maximum; S[ψ] ≈ b/µ. Thus ε→ 0,

S(ti−)− S(ti+) =
∫ ti+ε

ti−ε
u(t)dt

i.e., u(ti) re�ects the number of vaccinations that take place at ti. We may denote

the total number of vaccination doses used as

u =
n∑
i=1

diδti(t)

where di = S(ti−)− S(ti+) are the number of vaccinated persons.

Lemma 4.1.3 Let u =
∑n

i=1 diδti correspond to a strategy ψ, then the costs are

C[ψ] =
∑n

i=1 di.

Proof:

C[ψ] =
∫ T

0
ψ(t)S[ψ](t) dt

= −
∫ T

0

dS[ψ](t)
dt

dt+ bT − µ
∫ T

0
S[ψ](t) dt

= bT − µ
∫ T

0
s[u](t) dt (4.2)

due to periodicity, ∫ T

0

dS[ψ](t)
dt

dt = 0. (4.3)

Since
dS[u](t)
dt

= b− µS[u](t) −
n∑
i=1

diδ(t− ti),

then, ∫ T

0

dS[u](t)
dt

dt = bT − µ
∫ T

0
S[u](t) dt−

n∑
i=1

di

0 = C[ψ]−
n∑
i=1

di,

follows from (4.2) and (4.3) and thus,

C[ψ] =
n∑
i=1

di.

�
We intend to o�er a reformulation of the functional F : Ψn → R. We show that the

functional F [u] can be written as some constant minus the sum of the e�ects of all

vaccinations doses in a given vaccination strategy.
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Proposition 4.1.4 De�ne a function

G(t) =
∫ ∞
τ

β(t)e−µ(t−τ) dt.

Then, the functional F [.] for the problem (4.1.1) reads

F [u](t) :=
∫ T

0
β(t)b/µ dt−

∫ T

0
u(t)G(t) dt.

Proof: First, consider ψ ∈ L∞+ , and replace in the system (1.1) the vaccinateds

R(t) by a class of vaccinateds structured by time since vaccination.

Consider σ denotes S[ψ] while ρ(t, a) denotes an age structured immune

group, R[ψ](t, a), from which we obtain the marginal distribution R[ψ](t).

∂tσ = b− µσ − ψσ
(∂t + ∂a)ρ(t, a) = −µρ(t, a), ρ(t, 0) = ψ(t)σ(t) = u(t)

σ(0) = σ(T ), ρ(0, a) = ρ(T, a)

As ψ is periodic, we may replace the periodic boundary conditions by the require-

ment that σ and ρ are globally bounded functions for t ∈ R and a ∈ R+. Then,

d

dt

(
σ(t) +

∫ ∞
0

ρ(t, a) da
)

= b− µ
(
σ(t) +

∫ ∞
0

ρ(t, a) da
)
.

Thus, for t→∞, we have(
σ(t) +

∫ ∞
0

ρ(t, a) da
)
→ b/µ

and since we select the globally bounded, i.e. periodic, solution of the partial di�er-

ential equation, the solution is invariant under a time shift of nT , n ∈ N., Thus, the
limit can be replaced by equality,(

σ(t) +
∫ ∞

0
ρ(t, a) da

)
= b/µ

hence

S[u](t) = b/µ−R[u](t).

The PDE has a solution,

ρ(t, a) = u(t− a)e−µa

which we integrate w.r.t a to obtain the marginal distribution

R[ψ](t) =
∫ ∞

0
ρ(t, a) da =

∫ ∞
0

u(t− a)e−µada.

The boundary condition is de�ned in terms of u in u(t− a), we may de�ne,

R[u](t) :=
∫ ∞

0
u(t− a)e−µada
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and S[u](t) = b/µ−R[u](t),

F [u] :=
∫ T

0
β(t)S[u](t)dt

=
∫ T

0
β(t)

{
b/µ −

∫ ∞
0

ρ(t, a)da
}
dt

=
∫ T

0
β(t)

{
b/µ −

∫ ∞
0

u(t− a)e−µada
}
dt

= P −Q

where,

P =
∫ T

0
β(t)b/µ dt

Q =
∫ T

0

∫ ∞
0

β(t)u(t− a)e−µadadt

Let τ = t− a, then

Q =
∫ T

0

∫ −∞
t

−β(t)u(τ)e−µ(t−τ)dτdt

=
∫ T

0

∫ t

−∞
β(t)u(τ)e−µ(t−τ)dτdt

=
∫ T

0

{∫ t

0
+
∞∑
i=1

∫ (−i+1)T

−iT

}
β(t)u(τ)e−µ(t−τ)dτdt

=
∫ T

0

∫ t

0
β(t)u(τ)e−µ(t−τ)dτdt

+
∫ T

0

∞∑
i=1

∫ (−i+1)T

−iT
β(t)u(τ)e−µ(t−τ)dτdt

Alternating the integrals,

Q =
∫ T

0

∫ T

τ
β(t)u(τ)e−µ(t−τ)dtdτ

+
∞∑
i=1

∫ (−i+1)T

−iT

∫ T

0
β(t)u(τ)e−µ(t−τ)dtdτ

=
∫ T

0

∫ T

τ
β(t)u(τ)e−µ(t−τ)dtdτ

+
∞∑
i=1

∫ T

0

∫ T

0
β(t)u(τ ′)e−µ(t−τ ′+iT )dtdτ ′ (τ ′ = τ + iT )

=
∫ T

0

∫ T

τ
β(t)u(τ)e−µ(t−τ)dtdτ

+
∞∑
i=1

∫ T

0

∫ (i+1)T

iT
β(t′)u(τ ′)e−µ(t′−τ ′)dt′dτ (t′ = t+ iT )
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Due to periodicity, t′ ≡ t, τ ′ ≡ τ and we have,

Q =
∫ T

0

∫ T

τ
β(t)u(τ)e−µ(t−τ)dtdτ

+
∫ T

0

∞∑
i=1

∫ (i+1)T

iT
β(t)u(τ)e−µ(t−τ)dtdτ

=
∫ T

0

∫ ∞
τ

β(t)u(τ)e−µ(t−τ)dtdτ

thus,

F [u] =
∫ T

0
β(t)b/µ dt−

∫ T

0
u(t)G(t) dt

where

G(t) =
∫ ∞
τ

β(t)e−µ(t−τ) dt.

�

Corollary 4.1.5 Consider the optimization problem restricted to Ψn, where the vac-

cination support is given by the points

0 ≤ t1 < t2 <, · · · < tn < T.

At least one optimal strategy (possibly not all) can be characterized by means of the

function

G ∈ C0([0, T ],R+), t 7→
∫ ∞
t

β(τ)e−µ(τ−t) dτ.

That is, there is an optimal strategy of the restricted problem that satis�es the con-

ditions:

1. If {ti|limt→ti+S[ψ](t) = 0} := time when everyone is vaccinated and

{tj |limt→tj+S[ψ](t) ≥ 0} :=time point where not everyone is vaccinated, then

G(ti) ≥ G(tj).

2. If {ti|limt→ti+S[ψ](t) = 0} := everyone vaccinated,

{tlo|limt→tlo+S[ψ](t) > 0} := part of the population vaccinated and
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{tj |limt→tj+S[ψ](t) = S[ψ](tj−)} := no one vaccinated,

then

G(ti) ≥ G(tl0) ≥ G(tj).

3. In all points but one vaccination point, either the complete population is vac-

cinated or no one is vaccinated

We already know that there is at least one optimal strategy. All we have to do

is to show that there is one strategy among these that satis�es the three conditions

listed above. The proof will be shown using the following lemmata.

We establish conditions that allow to move vaccination doses from one time point

ti to another time point tj without changing the costs.

Lemma 4.1.6 Consider ψ, ψ′ ∈ Ψn corresponding to u =
∑n

i=1 diδti respectively

u′ =
∑n

i=1 d
′
iδti . If j, k ∈ {1, .., n} with dj > 0, S[u](tk+) > 0, then the strategy

with d′k = dk + ε and d′j = dj − ε is feasible for all ε ≤ dj s.t. s[u′](tk+) ≥ 0. If

G(tj) ≥ G(tk), its possible to obtain F [ψ′] ≤ F [ψ] for C[ψ′] = C[ψ]. Furthermore,

if G(tj) > G(tk), then F [ψ′] < F [ψ].

Proof: First of all, due to Lemma (4.1.2), a strategy ψ′ is feasible (i.e. there

is a strategy ψ′ that corresponds to u′).

Next, as the costs do not change, C(ψ) =
∑n

i=1 di =
∑n

i=1 d
′
i = C[ψ′].

Then,

F [ψ] =
∫ T

0
β(t)b/µ dτ −

n∑
1

diG(ti)

F [ψ′] =
∫ T

0
β(t)b/µ dτ −

n∑
1

d′iG(ti)

F [ψ]−F [ψ′] = −djG(tj)− dkG(tk) + d′jG(tj) + d′kG(tk)

= −G(tj)(dj − d′j)−G(tk)(dk − d′k)
= −εG(tj) + εG(tk)

= ε(G(tk)−G(tj))

F [ψ] = F [ψ′]− ε(G(tk)−G(tj)).

If G(tj)−G(tk) ≥ 0 or G(tj)−G(tk) ≤ 0 (depending on the case), the result follows.

�

Now we show that there is an optimal strategy satisfying conditions (1)-(3) of

corollary (4.1.5).
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Lemma 4.1.7 Consider a strategy ψ∗ that satis�es condition 1 of corollary (4.1.5).

There is an strategy ψ′ ∈ Ψn s.t. C[ψ′] = C[ψ∗] and F [ψ′] ≤ F [ψ∗], that satis�es

condition (1) of corollary (4.1.5).

Proof:

By the said condition 1, if everyone is vaccinated at time point ti, and part of

the population vaccinated at tj , then

G(ti) ≥ G(tj).

By results of Lemma (4.1.6), we may reduce vaccination doses at time ti and add

the same amount at time tj to obtain a new strategy ψ′ for which F [ψ′] ≤ F [ψ∗]. �

Lemma 4.1.8 Consider a strategy ψ∗ that satis�es conditions 1 and 2 of corollary

(4.1.5). There is a strategy ψ′ ∈ Ψn s.t. C[ψ′] = C[ψ∗], F [ψ′] ≤ F [ψ∗], that satis�es

condition (1) and (2) of corollary (4.1.5).

Proof:

Condition (2) reads: If tl0 is one time point, where only a part of the population

is vaccinated, ti is a time point where everyone is vaccinated, tj is a time point

where no one is vaccinated, then

G(ti) ≥ G(tl0) ≥ G(tj).

We already know that there is an optimal strategy ψ′ that satis�es condition 1

(Lemma 4.1.7). Then, in a similar manner, for G(ti) ≥ G(tl0) and G(tl0) ≥ G(tj),
we are able to �nd by means of Lemma (4.1.6) a better strategy than the optimal

strategy ψ∗. �

Lemma 4.1.9 There is an strategy ψ′ ∈ Ψn s.t. C[ψ′] = C[ψ∗], F [ψ′] ≤ F [ψ∗],

both satisfying condition (1), (2) and (3) of the corollary (4.1.5).

Proof:

Condition (3) reads: In all points but one vaccination point, either the complete

population is vaccinated or no one is vaccinated. We already know that there is an

optimal strategy satisfying conditions (1) and (2). Consider the set of points, where

all (or none) of the population is vaccinated. We are (via Lemma (4.1.6) allowed to

move vaccination doses back and forth between these points, as G(.) is necessarily
the same for these time points. Thus, it is possible to satisfy condition (3). �
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Corollary 4.1.10 We de�ne an optimal population pro�le using G(ti) and a con-

stant g. It is possible to conclude: there is a real number g, s.t.

i) G(ti) > g ⇒ everyone is vaccinated in ti

ii) G(ti) < g ⇒ no one is vaccinated in ti

iii) if only a part of the population is vaccinated in tl, then G(tl) = g.

The optimal vaccination strategy is given by,

ψ = c∞δM + cδ(t− ti) + 0.χ(0,T )\(M∩{ti}).

Here c∞ representing the number of doses that vaccinates all susceptibles at time

t ∈ M where M = {t|G(t) > g} and ti = {t|G(t) = g} denotes time points when

only part of the population is vaccinated.

4.1.1 Continuous limit

The idea now is to use the corollary (4.1.10) as starting point, to go to the limit, and

to characterize in this way one optimal strategy of the full problem (in degenerate

cases, there may be more than one optimal strategy, but it is su�cient for our

purposes to characterize one strategy).

Ingredient 1: (Approximation by the step function)

De�ne

Ψ :=
{
ψ

∣∣∣∣ suppv(ψ) ⊂ {0, T}; ψ ∈ L∞+
}

and

Ψn :=
{
ψ ∈ Ψ

∣∣∣∣ suppv(ψ) ⊂ {ti|0 ≤ ti ≤ T ; i = 1, 2, ..., n}
}

Then, Ψn ⊂ Ψ, and the sequence of sets Ψn approximate Ψ. We claim that ∃ψn ∈
Ψn : s.t ψn → ψ in the topology of Ψ, ∀ ψ ∈ Ψ.

Proof: This is true, as step functions are dense in L1(B) for some measure

space B [Mueller 1998]. �

Ingredient 2: (Cost constraint)

We can improve ingredient(1) by including a cost constraint:
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We claim that ∃ ψn ∈ Ψn ∩ {C[ψ] ≤ c} : s.t ψn → ψ in the topology of

Ψ, ∀ ψ ∈ Ψ ∩ {C[ψ] ≤ c}.
Proof: Let ψ∗n ∈ Ψn approximating ψ ∈ Ψ. As the costs are continuous, we

know

lim
n→∞

C[ψ∗n] = C[ψ] ≤ c.

Thus, we may construct a strategy ψ̃n by an convex combination of ψ∗n and the

extremal strategy ψ̂n ≡ 0, such that ψ̃n → ψn ∈ Ψ ∩ {C[ψ] ≤ c}.
The ψ̂n ≡ 0 component will vanish for n→∞ and thus,

lim
n→∞

C[λψ∗n + (1− λ)ψ̂n] = lim
n→∞

C[λψ∗n] = λC[ψ] ≤ c; 0 ≤ λ ≤ 1.

Thus, ψ̃n → ψ, and the statement is true. �

Ingredient 3: (The optimal strategy)

Let ψ∗n be an optimal strategy for the optimization problem for maximal cost

restriction c. For ψ∗n such that ingredients (1) and (2) are true, then ψ∗n → ψ∗ ∈
Ψ.

Proof: Assume there exists ψ̃n → ψ̃ an optimal strategy. By Lemma (4.1.6), it

is possible to construct a strategy ψ∗n by moving vaccination doses such that

C[ψ∗n] ≤ c, F(ψ∗n) ≤ F(ψ̃n).

where

F(ψ∗n) ∀ ψn ∈ Ψn.

is minimum. The sequence ψ∗n converges to a point in ψ∗ ∈ Ψ by compactness. �

Remark 4.1.1 If β(t) has only a �nite number of local minima and maxima in

[0, T ], then G(t) has a �nite number of minima and maxima.

Proposition 4.1.11 Let

Γg = {t ∈ [0, T ) |G(t) ≥ g}.

Then, Γg consist of a �nite number of closed intervals with a length larger zero, and

a �nite number of points. For any optimal vaccination strategy ψ∗, there is g ∈ R,

s.t. suppv(ψ∗) = Γg. Within the closed intervals of size larger zero, everyone is

vaccinated. We have only one point in the set of isolated points in Γg where only

a part of the population is vaccinated.
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Remark 4.1.2 As the points are isolated, there is only a �nite number of points.

Proof: As Ψ is compact, We know that there is a converging subsequence ψ∗n
that converges to ψ∗ ∈ Ψ.

First, we show that there is g ∈ R s.t. suppv(ψ∗) = Γg.
Due to corollary (4.1.10) and the ingredients (1) to (3), there is for all ψn a

number gn ∈ R, s.t.

(i) G(ti) > gn, everyone is vaccinated at ti,

(ii) G(tl) = gn, only a part of the population is vaccinated at tl,

(iii) G(ti) < gn, no one is vaccinated.

We may chose a subsequence (of our converging sequence) such that gn → g. Thus,

for all time points ti with G(ti) > g+ ε the vaccination strategies of the converging

subsequence will vaccinate everyone. As for n → ∞ the time points become dense

in {t |G(t) > g+ ε} and ψ∗ vaccinates everyone in this interval, for all ε > 0, hence
also true for {t |G(t) > g}. As the vaccination support is closed, this is also true

for the closure of the set {t |G(t) > g}. In this case, the last time point tN ∈ [0, T ]
corresponds to {t |G(t) = g} as we intend to use the only the remaining vaccination

doses at this point.

With a similar argument, we see that no one is vaccinated in {t |G(t) < g}. We

have only an isolated point of Γg, where only a part of the population is vaccinated.

�

4.2 Candidate Optimal Strategies w.r.t instantaneous sta-

bility

From the stability criterion derived from singular perturbation theory, we recall the

following de�nition,

De�nition 4.2.1 De�ne the instantaneous reproduction rate (in presence of vacci-

nation) Rv : [0, T ]→ R by

Rv(t) = β(t)S[ψ](t)/α.

We call the uninfected periodic orbit instantaneously stable, if

‖Rv‖L∞ ≤ R̃ < 1, for some constant R̃.
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We then de�ne the optimal control problem,

Problem 4.2.1 For ψ ∈ L∞+ (0, T ), �nd the vaccination schedule that minimizes

‖Rv[ψ]‖L∞ = ||β(t)S(t)||L∞ under the constraint that the number of vaccination

doses C̃[ψ] ≤ C∞ is given.

We seek an in�mum over S[ψ] since we can control it through vaccination. If we

consider an approximation of β(t) with step functions βn(t) for n = 1, 2, ..., N ; t ∈
[0, T ], then we would represent for each class of βn;

‖Rv[ψ]‖L∞ = ||βn(t)S(t)||L∞
= |βn| ||S(t)||L∞

4.2.1 Rectangular contact rate.

It is possible to represent a two level contact rate to mimic school holidays, when

contact rate is low by β1 and school terms when the contact rate is higher by

β2, s.t.

β(t) =
{
β1, t ∈ [0, T1];
β2, t ∈ [T1, T ].

where β1 > β2 and β(t) is a periodic.

Figure (4.1) depicts instantaneous control scenario for β(t) = βi : i = 1, 2. The
intervals [0, T1] and [T1, T ] assumed �xed. However, (τ1, τ2) ∈ suppv(ψ) depends

on the vaccination strategy used and may change.

1τ

2β

)()( tStβ

1β

2τ 1Τ Τ0
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Figure 4.1: Sketch graph of β(t)S[ψ](t) for two level of contact rate.
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Proposition 4.2.2 Assume that C∞ being the maximum number of vaccination

doses to be used in [0,T], is �xed. Let ψopt de�ne a solution of problem (4.2.1) s.t

R̃ := ess sup{β(t)S[ψopt](t)}. For ψopt, we �nd

β(t)S[ψopt](t) ≥ R̃ ∀ t ∈ suppv(ψopt)

and

β(t)S[ψopt](t) < R̃ ∀t ∈ [0, T ] \ suppv(ψopt).

Then, the optimal problem has a solution in the set,

Λ = {ψ|ψ = c1δ(t− τ1) + c2χ[τ1,τ2] + c3χ[τ2,T ]}

for some constants c1, c2, c3.

Proof:

The intervals [0, T1] and [T1, T ] are assumed �xed, being the beginning and

the end of school terms, or weather seasons. They are the contact rate intervals.

However, (τ1, τ2) ∈ suppv(ψ) depends on the vaccination strategy used.

Step 1:

We de�ne the constants c∗i : i = 1, 2, 3 corresponding to a a feasible optimal strategy

ψ∗ that is S[ψ∗] ∈ S. Below, we obtain c∗1 = ln
{
S[ψ](τ1−)
S[ψ](τ1+)

}
, c∗2 = β1b

R̃
− µ and

c∗3 = 0, for ψ∗ optimal.

(i) We de�ne c∗1 as the weight of a delta peak, an impulse vaccination input

that either ensures β(t)S[ψ](t) < R̃, or fails to meet this target. If it fails,

we de�ne c∗2 as a uniform distribution over [τ1, τ2] and vaccinate until

β(τ2)S[ψ](τ2) ≤ R̃. In [0, T ] \ [τ1, τ2], we have c∗3 = 0.

(ii) Consider the population at its equilibrium, i.e.,

dS(t)
dt

= b− µS(t)− ψ(t)S(t) = 0

ψ(t) =
1

S(t)
{b− µS(t)}.

Take |β1|S[ψ](τ2) = R̃ and c∗2 uniform over the same interval, hence

c∗2 =
β1b

R̃
− µ.
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At point τ1, we have a delta peak. Consider the interval [τ1 − ε, τ1 + ε] and
ψ(t) = c∗1δ(t− τ1),

S[ψ](t) = S[.](τ1 − ε) exp
{
−
∫ τ1+ε

τ1−ε
µ+ ψ(t)dτ

}
+b
∫ τ1+ε

τ1−ε
exp

{
−
∫ τ1+ε

σ
µ+ ψ(t)dτ

}
dσ

= e−c
∗
1S[ψ](τ1−)

⇒ S[ψ](τ1+) = e−c
∗
1S[ψ](τ1−)

c∗1 = ln

{
S[ψ](τ1−)
S[ψ](τ1+)

}
Step 2:

Show that ψ∗ is optimal.

De�ne any other optimal strategy ψ̃ ∈ Ψ.
In [0, T ] \ [τ1, τ2], ψ∗ = 0. We have two possibilities:

• the strategy ψ̃ either vaccinates no one in this interval,

S[ψ̃](t) = S[ψ∗](t),

• vaccinates at least someone in this interval, S[ψ̃](t) < S[ψ∗](t).

⇒ S[ψ̃](t) ≤ S[ψ∗](t) : t ∈ [T1, T ].

Consider [τ1, τ2], we know that ||β(t)S[ψ∗](t)||L∞ ≤ R̃ and C[ψ∗] ≤ C[ψ], for
all ψ ∈ Ψ. That there exists any strategy C[ψ̃] ≤ C[ψ∗] is a contradiction.

• ψ∗ optimal implies it has the minimal cost i.e., C[ψ∗] ≤ C[ψ] for ψ ∈ Ψ,
and we expect S[ψ̃](t) ≤ S[ψ∗](t). Furthermore, S[ψ̃](t) ≤ S[ψ∗](t), else

we do not have control over ||S[ψ̃]β(t)||L∞ .

Since S[ψ̃](t) ≤ S[ψ∗](t) : ∀ t ∈ [0, T ],
Hence, C[ψ∗] ≤ C[ψ̃], so ψ∗ is optimal. �

4.2.2 Approximating contact rate by size (n > 2) step function.

Now de�ne β(t) by
βi : t ∈ [ti, ti+1], i = 0, 1, 2, ..., n.

The aim is to approximate β(t) by a step function. Interest is the point(s) when

β̂ = max{β(t)}, as this gives information on when ||β(t)S(t)||L∞ is large. We

conjecture that {ti ∈ [0, T ] : β(ti) = β̂} = [T1, T2] =: Imax is an ideal vaccination

time.

Once we know the susceptible pro�le at T2 ∈ Imax and the vaccination doses used
after this time point, then by the periodic nature of [0,T], we know the susceptible

pro�le ∀ t ∈ [0, T ]. Hence the vaccination strategy is well known.
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Proposition 4.2.3 De�ne βn(t) =
∑n

i=1 βiχ[ti,ti+1]. For �xed maximum costs and

R̃ = ess sup{βn(t)S[ψ](t)}, the optimal problem w.r.t instantaneous stability has

a solution in the set

Λ =

{
ψ|ψ =

n∑
i=1

c
(i)
1 δ(t− ti) + c

(i)
2 χ[ti−τ1

i ,ti]
+ c

(i)
3 χ[ti,ti+τ2

i ]

}

s.t. for ψopt ∈ Ψ,

β(t)S[ψopt](t) ≤ R̃ ∀ t ∈ suppv(ψopt)

β(t)S[ψopt](t) < R̃ ∀t ∈ [0, T ] \ suppv(ψopt).

Proof:

Step 1:

We construct a strategy ψ∗ ∈ Ψ. Consider the interval (ti0 , ti0 + 1) in which

β(t) = β̂. Assuming (ti0 , ti0 +1) ⊂ suppv(S(t)), then we know that S(ti0 +1) = R̃
β̂.

As in the case of step size n = 2, we are able to de�ne the constants c
(i0)
j : j =

1, 2, 3 in the interval (ti0 , ti0 + 1) and by reconstruction, cij : ∀ i = 1, 2, ...n : j =
1, 2, 3 such that there is a strategy which meets the requirements of proposition

(4.2.3).

Step 2:

We seek to know if the strategy ψ∗ de�ned in step 1 is optimal. From the proof

of optimal strategy using step size n = 2 for β, we can easily extend the same

arguments for step size n > 2.
As a result ψ∗ is optimal. �

4.2.3 Continuous Limit

We have approximated β(t)S[ψ](t) by a series of step functions and now wish to go

to the limit. Suppose βn(t) goes to the limit, i.e., βn(t)→ β(t) in L∞. We seek

to know if βn(t)S[ψ∗n]→ β(t)S[ψ∗] in L1.

Theorem 4.2.4 Suppose βn(t) → β(t) in L∞, ψn → ψ in Ψ, and S[ψn](t) →

S[ψ](t) in L1, then βn(t)S[ψn](t)→ β(t)S[ψ](t) in L1.

‖βn(t)S[ψn]− β(t)S[ψ]‖L1 → 0

Proof.
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We show that

‖βnS[ψn]− βS[ψ]‖L1 = ‖(βn − β)S[ψn] + β(S[ψn]− S[ψ])‖L1

≤ ‖(βn − β)S[ψn]‖L1 + ‖β(S[ψn]− S[ψ])‖L1

≤ ‖(βn − β)‖L∞‖S[ψn]‖L1 + ‖β‖L∞‖(S[ψn]− S[ψ])‖L1

→ 0

The RHS converges to zero since β and ‖β‖L∞ are assumed bounded, ‖(βn−
β)‖L∞ → 0, ‖S[ψn]‖L1 is bounded since S[ψn](t)→ S[ψ](t) in L1, and ‖(S[ψn]−
S[ψ])‖L1 → 0. �

Corollary 4.2.5 If βn → β in L∞, ψoptn approximates an optimal strategy and

solution to problem (4.2.1), then there is a converging subsequence S[ψoptnl ]→ S[ψopt]

in S, where S[ψopt] is a candidate optimal strategy with minimum costs.

Proof:

We need theorem (4.2.4) and the compactness of S. Hence there exists an optimal

strategy that can be approximated by a series of step functions. �

Corollary 4.2.6 If β is piecewise continuous L∞ function and has a unique

maximum at time t̂, then the optimal strategy is characterized by

• For t̂ ∈ suppv(ψopt), S[ψopt](t̂+) = R̃/β̂,

• ∀ t ∈ suppv(ψopt), S[ψopt](t+) = R̃/β(t+),

• ∀ t 6∈ suppv(ψopt), S[ψopt](t+) < R̃/β(t+).





Chapter 5

Simulation

We consider the case of measles as one of the childhood diseases. Most childhood

diseases tend to have periodic outbreaks, occasioned by climatic factors and human

contact rate patterns, among other factors. The school going childhood age has

periodic contact due to school terms as one would expect higher contact rates during

school days and lower contact rates during holidays. Pre-vaccination era records

show a 2 year or less outbreak period for measles in most regions of the world, even

in sub-sahara Africa (Niger case [Ferrari 2008]). But this has improved to a �ve

year period in the post vaccination period. However, we use in this case a one year

vaccination period to match it with the contact period.

In most regions where vaccination is e�ciently done, the prevalence of measles

has been kept very low. In European countries, the incidence rate has been kept

at approximately 1 case per 1 million or even less. However, measles is endemic in

parts of Africa and Asia, going by the World Health organization (WHO) reports.

Statistics for deaths from measles by worldwide region are as follows: There were

about 311,000 deaths from measles in Africa in 2002, about 196,000 deaths from

measles in South East Asia in 2002, about 6,000 deaths from measles in Europe

in 2002, about 70,000 deaths from measles in Eastern Mediterranean in 2002 and

about 28,000 deaths from measles in Western Paci�c in 2002 (The World Health

Report, WHO, 2004).

In table (5.1), we have reports of measles incidence by country from US Census

Bureau, Population Estimates, 2004 and US Census Bureau, International Data

Base, 2004. The cases here are the reported cases. Values for Africa might be

higher, as many cases go unreported.

Going by the United Nations report [Reports 2007], life expectancy in Europe

and speci�cally in Germany stood at 79.4 years about year 2007, hence a mortality

rate of about 0.013 per year, while birth rate was 8.2 births per 1000. Consider a

developing country like Kenya where the birth rate around year 2007 stood at 39.2

births per 1000 and a life expectancy of 54.1 years (corresponding to a mortality

rate of 0.02 per year approximately).

We simulate control strategies for measles using the following parameters: A to-

tal population size N(t)=1 million was assumed. This is typical of most cities (or ef-

fective interacting populations) around the world. Measles incidence rate �uctuates

even in endemic populations such as sub-sahara Africa and Asia. One could assume

an incidence of any value between 0 and 3000 cases per 1 million [Reports 2007].

We used an incidence I0 = 100 for our simulations. The contact rate is considered
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Select countries Cases Population Incidence

Americas

USA 107 293,655,405 1 in 2 million

Canada 11 32,507,874 -

Mexico 38 104,959,594 -

Africa

Ethiopia 26 71,336,571 -

Kenya 12 32,982,109 3 in 1 million

Tanzania 13 36,070,799 -

Europe

Austria 3 8,174,762 -

Czech Republic 0 1,0246,178 -

Germany 30 82,424,609 3 in 1 million

Hungary 3 10,032,375 -

Table 5.1: Measles incidence by country: US Census Bureau, Population Estimates,

2004 and US Census Bureau, International Data Base, 2004

Parameter Symbol Value(time unit=1year)

Contact/Vaccination period T 1

Death rate µ 0.0166

Birth rate b= 106µ 16,600

Recovery rate α 52

Measles Incidence I0 0-3000

Table 5.2: Parameter values: Human population dynamics (not speci�c to any

particular region) and Measles dynamics.
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periodic and we used,

β(t) = {0.5 + 0.5cos(2πt/T ) + 5.0cos(4πt/T )} µα

b− αI0

Contact rate period may depict the school term and school holiday behavior among

school age children. During school term, the contact rate is higher and lower during

holidays. If vaccination rate is made periodic, then we may antagonize the spread

of the disease leading to e�ective control [Agur 1993]. The period T = 1 year was

therefore used. Measles has a short infectious period, one to two weeks infection

period. Hence the rate α = 52 denotes one week infection period or α = 26 for

two weeks infection period.
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Figure 5.1: G(t), the threshold criterion from Orbital Stability and the simulated

periodic contact rate.

Under orbital stability, the idea is to vaccinate when the functional G(t) exceeds

some maximum value. The maximum is depicted in �gure (5.1) at which point,

we have a vaccination time (ti ≈ 0.3) and (ti ≈ 0.8). We simulated a periodic

contact rate β(t) and notice that vaccination points come at time points when

the vaccination rate is on the verge of increase. Under these circumstances, the

idea is to concentrate vaccination doses at the time when the contact rate begins

to increase, such as at the beginning of school terms. We observe the vaccination

strategies under orbital stability criterion, where the function G(t) is used (�g.

5.2). In this case the susceptible pro�le is given for the case when the vaccination

pro�le vaccinates a fraction of susceptibles at vaccination time, and the vaccination

pro�le empties the number of available susceptibles at vaccination time. We simulate

the susceptible pro�le for the instantenious stability case, a case when vaccination

is done when the functional Rv hits a maximum threshold (see �gures (5.4) for

µ = 1.66 and (5.3) for µ = 0.0166 ).

The aim was to distinguish between orbital stability criterion and instantaneous

stability criterion. The hypothesis is that, for childhood diseases, we gain better



62 Chapter 5. Simulation

0.0 0.2 0.4 0.6 0.8 1.0

99
99

91
99

99
93

99
99

95
99

99
97

Vaccinate fraction of susceptibles

Time

S
us

ce
pt

ib
le

 P
ro

fil
e

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05

Vaccinate all susceptibles

Time

S
us

ce
pt

ib
le

 P
ro

fil
e

Figure 5.2: Susceptible pro�les and vaccination time, under orbital stability.

●●●●●●●●●●●●
●●●●

●●●
●●
●●
●●
●●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●

●●
●●
●●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

50
00

0
10

00
00

15
00

00
20

00
00

25
00

00

Time

S
[p

si
]−

In
st

an
t c

as
e

Figure 5.3: Susceptible population under the instantaneous vaccination strategy

(µ = 1.66).
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Figure 5.4: Susceptible population under the instantaneous vaccination strategy

(µ = 0.0166).
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Figure 5.5: Costs for minimizing F[psi] and Rv for (µ = 0.166)
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control if we use instantaneous stability criterion to develop an optimal vaccination

strategy than we do when we use orbital stability criterion.

Now we consider a real situation where the human lifespan or life expectancy

is assumed to be 60 years. This corresponds to µ = 0.0166. For such a case, the

mortality is small but the life span is too large in comparison to the period (T) of

contact and vaccination. The comparison of vaccination strategies under orbital and

instantaneous stabilities give the results of �gure (5.5). There is no clear di�erence

between the two vaccination strategies, whether we use orbital or instantaneous

stability criterion. This can be given the following interpretation: The precise time

or phase at which a person is vaccinated will have only a small in�uence on the

time course of the susceptible population at equilibrium dynamics; the person is

protected for many periods, that is, the reduction of the susceptible population by

a single vaccination is almost uniform in time. Therefore, the distribution of doses

in time has only a little in�uence on the performance w.r.t. the di�erent e�cacy

measures.
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Figure 5.6: Costs required to minimize F[psi] under the two strategies (µ = 1.66).

We consider a rather unrealistic situation. Suppose the human lifespan is short

and almost equal to the period of vaccination. We consider µ = 1.66 corresponding

to a human lifespan of only 7 months. It is only when the lifespan is in the same

magnitude or shorter than the period of vaccination that a vaccination dose achieves

a local e�ect in time. Consider the results of �gures (5.6) and (5.7), where µ = 1.66
is used. In this case, the two stability criteria behave di�erently. Since the Floquét

multiplier F [ψ] is an average over the complete period, it gives the same result for

both instantaneous strategy and orbital strategy, i.e., it is not important at which

time susceptibles are removed as long as the average value over [0,T] remains below
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Figure 5.7: Costs required to minimize Rv under the two strategies (µ = 1.66)

its threshold (�g. 5.6). But in the instantaneous stability criterion, there is a strong

e�ect on when to vaccinate. It may be important to place the vaccination doses at

any point when instantaneous stability is violated. We notice that instantaneous

stability is reached with less vaccination doses when we choose to minimize the

supremum Rv (�g. 5.7). The hypothesis that the instantaneous stability o�ers

some bene�t holds albeit in this extreme situation.

As a consequence and for practical purposes, these considerations and heuristical

arguments seem to imply that it is better to target at the instantaneous stability

criterion, as in most cases, this will lead to a Floquét multiplier that is close to the

optimal Floquét multiplier. Focusing only on the Floquét multiplier may lead to a

situation where the instantaneous stability is rather bad, and for some childhood

diseases such as measles, short time epidemics may appear.





SECTION B:

In this section, we model a speci�c case of Hepatitis B, centering attention on the

conditions that may lead to bi-stability in an age structured Hepatitis B model. Bi-

stability is also called Hysteresis in Bifurcation theory. Bi-stability may o�er a

great challenge to vaccination campaign, since even in cases when vaccination is

e�ective, the possibility of co-existence of higher and lower disease endemic states

may complicate a vaccination e�ort aimed at disease control, as analyzed in literature

such as Medley([Medley 2001]).





Chapter 6

Hepatitis-B: Bi-stability in an age

structured model.

6.1 Introduction

The dynamics of Hepatitis B Virus (HBV) have been extensively studied for various

regions in the world. A major classi�cation of HBV world prevalence regions is as

follows [Edmunds 1996]:

• Africa sub-sahara; where horizontal infection among lower age groups is the

dominant form of transmission, together with perinatal transmission (mother

to child transmission within the �rst year of the infant). The region is hyper-

endemic (over 10% carrier prevalence) since more infection among children

leads to more carrier prevalence.

• South East Asia where vertical transmission is reportedly more signi�cant.

Then other forms of childhood infection also contribute. This region is hyper-

endemic as well.

• Europe and North Americas where only transmission among adults contribute

to infection. Sexual contact and intra-venous drug use are the key contact

pathways. The region is low-endemic as very few adults develop to carrier

state after acute infection.

The model structure in this case largely depicts a scenario of a developing coun-

try where vertical transmission could play a role in transmission, immunization

largely done at childbirth without screening and only heterosexual behavior in the

community. The parameters also largely re�ect those of developing countries.

Although the disease Hepatitis B (HepB) can be e�ectively vaccinated against,

there are concerns about optimal vaccination against the disease. Recent develop-

ments in the dynamics of HepB virus indicate existence of complex dynamics such

as endemic state bi-stability, that may be of great concern to vaccination e�orts.

In the context of a developing country (Sub-Sahara Africa scenario), we examine

causes for existence of bi-stable endemic scenario in an age structured model. This

phenomenon has been observed in a model without age structure [Medley 2001]. The

main result is that hyper-endemic populations, with high carrier prevalence are likely

to exhibit bi-stable dynamics. Bi-stability may o�er a great challenge to vaccination
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campaign, since even in cases when vaccination is e�ective, the possibility of co-

existence of higher and lower disease endemic states may complicate a vaccination

e�ort aimed at disease control.

6.2 Model Structure

We develop a compartmental model in line with the formulation in [Edmunds 1996]

which modeled a study in Gambia-Africa, a hyper-endemic region.

We de�ne a as the age of an individual and t as time. The compartments in

the model include: S(a,t) are Susceptibles, L(a,t) are Latent individuals including

those infected but not yet infectious, I(a,t) are Acute Infected Individuals who are

very infectious, but move on quickly to Chronic infectious state hence contribute less

new infections. C(a,t) are Carriers who in some literature are referred to as chronic

infectious [Zhao 2000]. They stay in this state for so long and contribute more to

new infections than Acute infectious group. Finally R(a,t) are the Immunes, else

refereed to as recovered individuals.

Susceptibles-S(a,t)

Latent cases-L(a,t)

Infectious-I(a,t)

Carriers-C(a,t)

Immunes-R(a,t)

)()1())()(( tBtBtB cc υωω −+−

)(aμ
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)(aμ

)(aμ

)(tBcυω

)()1())()()(1( tBtBtB cc ωω −+−−
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Λ

σ

1)( γΛq1))(1( γΛ− q

2γ

Figure 6.1: Flow chart of Hepatitis B virus(HBV) transmission.

The following parameters de�ne movement among the compartments: Λ(t) is

the force of infection and varies with time; σ de�nes the rate of movement from

latent state to infectious state; q(Λ(t)) is the probability that an individual who

is infectious becomes a carrier, hence (1 − q(Λ(t))) is the probability that such a

person becomes immune; γ1, γ2 are recovery rates from infectious and carrier states

respectively; b(a) is the age dependent birth rate a�ecting boundary conditions into

S(a,t), L(a,t) and R(a,t) states, while µ(a) denotes the instantaneous mortality rate



6.2. Model Structure 71

at age a.

Λ de�nes the force of infection and takes the form of standard incidence rate.

Λ(t) =
∫ ∞

0
k(a)β(b){I(b, t) + αC(b, t)}db/P (t) (6.1)

where α is the infectiousness of carriers relative to acute infections and P (t) =∫∞
0 N(a, t)da. This form of transmission kernel k(a, b) = k(a)β(b) is refereed to in

literature as the separable mixing case [Thieme 2003] and is very handy for our

computations in the equation for force of infection. The case of separable mix-

ing k(a, b) = k(a)β(b) is also used in [Dietz 1983, Mueller 1998]. Other forms

of transmission coe�cient include constant case β(a, a′) = β, and k(a, b) = β(b)
[Gripenberg 1983].

The total population is given by

N(a, t) = S(a, t) + L(a, t) + I(a, t) + C(a, t) +R(a, t) (6.2)

and B(t) represents the total number of births, denoted by

B(t) =
∫ ∞

0
N(a, t)b(a)da. (6.3)

The assumption that a ∈ [0,∞) as in equation (6.3) is often used for computation

purposes, otherwise we know that an individuals age can never go beyond some

upper limit ā. We assume that ā = ∞. Bc(t) for total number of births due to

carrier mothers is given by the equation

Bc(t) =
∫ ∞

0
C(a, t)b(a)da (6.4)

Therefore {B(t)−Bc(t)} represent births from non-carrier mothers. The model also

assumes that vaccination is done to newborns only.

Given ω as the proportion of births that are not successfully immunized, (1−ω)
de�nes immunization coverage for new born children. Suppose also that a proportion

ν of newborns babies of carrier mothers develop carriage and (1-ν) such children do

not develop carriage. We have the following increments into S, L and R classes,

which de�ne the boundary conditions in the model.

• ω(B(t) − Bc(t)) + ω(1 − ν)Bc(t) = ω(B(t) − ωνBc(t)) into the Susceptible

class,

• νωBc(t) into the Latent class,

• (1 − ω)(B(t) − Bc(t)) + (1 − ω)Bc(t) = (1 − ω)B(t) increment into the the

Immune class.

Under the above assumptions, we then describe the spread of Hepatitis B by the

system of PDE's as
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(∂t + ∂a)S(a, t) = −ΛS(a, t)− µS(a, t)

S(0, t) = ω

∫ ∞
0

(N(a, t)− νC(a, t)) b(a)da

(∂t + ∂a)L(a, t) = ΛS(a, t)− σL(a, t)− µL(a, t)

L(0, t) = νω

∫ ∞
0

C(a, t)b(a)da

(∂t + ∂a)I(a, t) = σL(a, t)− γ1I(a, t)− µI(a, t) (6.5)

I(0, t) = 0

(∂t + ∂a)C(a, t) = q(Λ, a)γ1I(a, t)− γ2C(a, t)− µC(a, t)

C(0, t) = 0

(∂t + ∂a)R(a, t) = γ2C(a, t) + (1− q(Λ, a))γ1I(a, t)− µR(a, t)

R(0, t) = (1− ω)
∫ ∞

0
N(a, t)b(a)da

In matrix form we denote this by,

(∂t + ∂a)X(a, t) = AX(a, t)− µ(a)X(a, t); X(a, 0) = X0(a), (6.6)

where X(a, t) = (S(a, t), L(a, t), I(a, t), C(a, t), R(a, t))T and A:=A(a,t) is a con-

tinuous matrix valued function.

Consider the fractions of the compartments in the model at age a and time t :

s(a, t) :=
S(a, t)
N(a, t)

, l(a, t) :=
L(a, t)
N(a, t)

, i(a, t) :=
I(a, t)
N(a, t)

,

c(a, t) :=
C(a, t)
N(a, t)

, r(a, t) :=
R(a, t)
N(a, t)

and we also de�ne

p(a, t) =
N(a, t)
P (t)

→ p0(a) = p(a),

i.e., p(a, t) has an asymptotic convergence [Webb 1985, Pruess 1984]

The total population has an exponential growth (we obtain this from the sum

of the equations in the system (6.5))

(∂t + ∂a)N(a, t) = −µ(a)N(a, t)

N(0, t) =
∫ ∞

0
b(a)N(a, t)da

The projected susceptible population is thus obtained.

(∂t + ∂a)S(a, t)/N(a, t) =
(∂t + ∂a)S(a, t)

N(a, t)
− S(a, t)
N(a, t)

(∂t + ∂a)N(a, t)
N(a, t)

=
−ΛS(a, t)− µ(a)S(a, t)

N(a, t)
− S(a, t)
N(a, t)

−µ(a)N(a, t)
N(a, t)

(∂t + ∂a)s(a, t) = −Λs(a, t)



6.3. Case without vertical transmission 73

Proceeding the same way, we obtain the projected system (6.7), which is inde-

pendent of population dynamics. The birth rate however appears in the boundary

conditions.

De�ne

b̂(a) =
N(a, t)b(a)∫∞

0 N(a, t)b(a)da
,

the system reads,

(∂t + ∂a)s(a, t) = −Λs(a, t)

s(0, t) = ω − ων
∫ ∞

0
c(a, t)b̂(a)da

(∂t + ∂a)l(a, t) = Λs(a, t)− σl(a, t)

l(0, t) = νω

∫ ∞
0

c(a, t)b̂(a)da

(∂t + ∂a)i(a, t) = σl(a, t)− γ1i(a, t) (6.7)

I(0, t) = 0

(∂t + ∂a)c(a, t) = q(Λ)γ1i(a, t)− γ2c(a, t)

c(0, t) = 0

(∂t + ∂a)r(a, t) = γ2c(a, t) + (1− q(Λ))γ1i(a, t)

r(0, t) = 1− ω

6.3 Case without vertical transmission

Vertical transmission characterizes a situation where a fraction of newborns are born

positive of the disease, having been infected at birth. In this setting, the parameter

ν de�nes this fraction. If ν = 0, then we do not have vertical transmission. For such

a subcase (ν = 0), we know from a general and similar case in [Inaba 1990] that

if the initial age distributions are in L1 and are non-negative, then the solutions

exist globally, remain non-negative and stay in L1. The semi-group methods are

used to prove existence of solutions. The case of existence of solutions when ver-

tical transmission exists is also worked out in [Inaba 2006], again using semi-group

methods.

6.3.1 Fixed point equation for Λ

The equilibrium dynamics of model (6.7) can be classi�ed using a �xed point equa-

tion for the force of infection. The �xed point equation reads,

Λ = ΛG(Λ),

and its solutions represent the trivial(disease free) or the non-trivial(endemic) equi-

libriums of the system.
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Λ = 0 corresponds to the trivial solution, while solutions to 1 = G(Λ) correspond
to the endemic equilibrium solutions. Bi-stable scenario occurs when 1 = G(Λ) has
two endemic solutions.

We consider case without vertical transmission (ν = 0). To evaluate Λ(t), one
needs solutions of i(a, t) and c(a, t). We use model (6.7) at its equilibrium and

assume no time dependance,

d

da
s(a) = −Λk(a)s(a)

s(0) = ω

d

da
l(a) = Λk(a)s(a)− σl(a)

l(0) = 0
d

da
i(a) = σl(a)− γ1i(a) (6.8)

i(0) = 0
d

da
c(a) = q(Λ)γ1i(a)− γ2c(a)

c(0) = 0
d

da
r(a) = γ2c(a) + (1− q(Λ))γ1i(a)

r(0) = 1− ω

and

Λ =
∫ ∞

0
β(b){I(b) + αC(b)}db/P (t)

=
∫ ∞

0
β(b)

N(a, t)
P (t)

{i(b) + αc(b)}db

=
∫ ∞

0
p(b)β(b){i(b) + αc(b)}db (6.9)

To evaluate (6.9) for Λ, we make the following convenience transformation on

(6.8), l̃ = l/Λ, ĩ = i/Λ and c̃ = c/Λ, removing Λ dependance in all equations

except s(a). Thus,

d

da
l̃(a) = k(a)s(a)− σl̃(a)

l̃(0) = 0
d

da
ĩ(a) = σl̃(a)− γ1ĩ(a) (6.10)

ĩ(0) = 0
d

da
c̃(a) = (q0 + q1(Λ))γ1ĩ(a)− γ2c̃(a)

c̃(0) = 0
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Remark 6.3.1 We de�ne the operator Kj : L1
+ → L1

+ : j = 1, 2 and K̂j : L1
+ →

R+ : j = 1, 2 s.t.

x→ K1[x] :=
∫ a

0
exp {−γ1(a− τ1)}σ

∫ τ1

0
exp {−σ(τ1 − τ0)}x(τ)dτ0dτ1

x→ K2[x] :=
∫ a

0
h(a, τ2)

∫ τ2

0
exp {−γ1(τ2 − τ1)}

∫ τ1

0
exp {−σ(τ1 − τ0)}x(τ)dτ0dτ1dτ2

x→ K̂1[x] := k(a)
∫ ∞

0
β(b)p(b)K1 [x(τ)] db

x→ K̂2[x] := k(a)
∫ ∞

0
αβ(b)p(b)K2 [x(τ)] db

where h(a, τ2) = exp {−γ2(a− τ2)}σγ1.

Hence the solutions

ĩ(a) = ω

∫ a

0
exp {−γ1(a− τ1)}σ

∫ τ1

0
exp {−σ(τ1 − τ0)} exp{−Λτ0}dτ0dτ1

= ωK1[exp(−Λτ0)]

and

c̃(a) = ωq(Λ)
∫ a

0
h(a, τ2)

∫ τ2

0
exp {−γ1(τ2 − τ1)} l(τ0, τ1)dτ1dτ2

= ωq(Λ)K2[exp(−Λτ0)]

where l(τ0, τ1) =
∫ τ1

0 exp {−σ(τ1 − τ0)} exp{−Λτ0}dτ0 and replace the solutions

in (6.9) to obtain

Λ = Λk(a)
∫ ∞

0
β(b)p(b) {ωK1[exp{−Λτ0}] + αq(Λ)ωK2[exp{−Λτ0}]} db

= Λ
{
ωK̂1[exp{−Λτ0}] + αq(Λ)ωK̂2[exp{−Λτ0}]

}
=: ΛG(Λ) (6.11)

This is the characteristic equation for the force of infection. Any non-negative

root Λ of the characteristic equation corresponds to a stationary solution of the

epidemic model. There is always a solution Λ = 0 satisfying (6.11) that corresponds

to the trivial solution. In the center of our interest are endemic solutions, that is,

solutions Λ 6= 0. In this case, these are solutions satisfying G(Λ) = 1 where,

G(Λ) =
{
ωK̂1[exp{−Λτ0}] + αq(Λ)ωK̂2[exp{−Λτ0}]

}
(6.12)

The �xed point equation de�nes the next generation operator for the infec-

tive population and thus, if we set Λ = 0, then G(Λ)|Λ=0 is de�ned as the Ba-

sic Replacement Ratio if the population is not under vaccination or the Net Re-

placement Ratio if there is vaccination [Thieme 2003]. We consider the following

theorem[Thieme 2003, Theorem 22.1, pp350].
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Theorem 6.3.1 If q(Λ) is chosen such that G(Λ) is unimodal for Λ ∈ R+, then

G(Λ)=1 has two solutions if

(i) G(0) < 1

(ii) ∃ Λ∗ > 0, s.t. G(Λ∗) > 1.

(iii) limΛ→∞G(Λ) = 0

Lemma 6.3.2 For Λ ∈ R+,

lim
Λ→∞

G(Λ) = 0

Proof

lim
Λ→∞

G(Λ) = lim
Λ→∞

{
ωK̂1[exp{−Λτ0}] + αq(Λ)ωK̂2[exp{−Λτ0}]

}
= lim

Λ→∞

{
ωK̂1[exp{−Λτ0}]

}
+ lim

Λ→∞

{
αq(Λ)ωK̂2[exp{−Λτ0}]

}
= 0

This follows as K̂i ∀ i = 1, 2 approaches zero exponentially fast as Λ → ∞. This
is independent of the form of q(Λ).

�

Corollary 6.3.3 If conditions in theorem (6.3.1) hold, then the model (6.8) has two

endemic solutions if

(i) ωK̂1[1] + ωq(0)αK̂2[1] < 1,

(ii) ∃Λ∗ > 0, s.t. q(Λ∗) > (1−G(0))+ωK̂1[1−exp{−Λ∗τ0}]+ωq(0)αK̂2[1]

ωαK̂2[1−exp{−Λ∗τ0}]
.

Proof

Since,

G(Λ) =
{
ωK̂1[exp{−Λτ0}] + αq(Λ)ωK̂2[exp{−Λτ0}]

}
,

then G(0) < 1 implies,

G(0) = ωK̂1[1] + ωq(0)αK̂2[1] < 1.
If ∃ Λ∗ > 0, s.t. G(Λ∗) > 1, then,

G(Λ∗) =
{
ωK̂1[exp{−Λ∗τ0}] + αq(Λ∗)ωK̂2[exp{−Λ∗τ0}]

}
> 1

and we obtain the expression of condition (ii) from the expression of G(Λ∗).
�
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6.4 Case with vertical transmission

We consider the model (6.7) at its equilibrium, when vertical transmission occurs

at birth (ν 6= 0), and denote

Ω = ων

∫ ∞
0

c(a)b̂(a)da.

d

da
s(a) = −Λk(a)s(a)

s(0) = ω − Ω
d

da
l(a) = Λk(a)s(a)− σl(a)

l(0) = Ω
d

da
i(a) = σl(a)− γ1i(a) (6.13)

i(0) = 0
d

da
c(a) = q(Λ)γ1i(a)− γ2c(a)

c(0) = 0
d

da
r(a) = γ2c(a) + (1− q(Λ))γ1i(a)

r(0) = 1− ω

Assume

K3 := σ

∫ a

0
exp {−γ1(a− τ1)} exp{−στ1}dτ1

and

K4 := γ1

∫ a

0
exp{−γ2(a− τ2)}K3dτ2.

hence the solutions

ĩ(a) =
∫ a

0
h(a, τ1)

{
Ω exp{−στ1}+ (ω − Ω)

∫ τ1

0
exp {−σ(τ1 − τ0)} exp{−Λτ0}dτ0

}
dτ1

= ΩK3 + (ω − Ω)K1[exp(−Λτ0)]

where

h(a, τ1) = exp {−γ1(a− τ1)}σ
and

c̃(a) = γ1q(Λ)
∫ a

0
exp{−γ2(a− τ2)}̃i(τ2)dτ2

= Ωq(Λ)K4 + (ω − Ω)q(Λ)K2[exp(−Λτ0)]
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Thus,

Λ = Λk(a)
∫ ∞

0
β(b)p(b) (ΩK3 + (ω − Ω)K1[exp(−Λτ0)]) db

+Λk(a)
∫ ∞

0
β(b)p(b) (αΩq(Λ)K4 + (ω − Ω)q(Λ)K2[exp(−Λτ0)]) db

= Λω
{
K̂1[exp{−Λτ0}] + αq(Λ)K̂2[exp{−Λτ0}]

}
+ ΛΩ

{
K̂3 − K̂1[exp{−Λτ0}] + αq(Λ)

(
K̂4 − K̂2[exp{−Λτ0}]

)}
(6.14)

However, we have additional information in

Ω = ων

∫ ∞
0

c(a)b̂(a)da

= Λων
∫ ∞

0
(Ωq(Λ)K4 + (ω − Ω)q(Λ)K2[exp(−Λτ0)]) b̂(a)da

= ΛΩωνq(Λ)K5 + Λων(ω − Ω)q(Λ)K6[exp(−Λτ0)]

= ΛΩωνq(Λ) {K5 −K6[exp(−Λτ0)]}+ Λω2νq(Λ)K6[exp(−Λτ0)]

(6.15)

where

K5 :=
∫ ∞

0
K4b̂(a)da

and

K6 :=
∫ ∞

0
K2[exp(−Λτ0)]b̂(a)da.

6.4.1 Fixed point equation for Λ

We now have a two dimensional case �xed point equation, with Λ and the new

variable Ω. From (6.14) and (6.15), we form an eigenvalue problem,(
Λ
Ω

)
= A(Λ)

(
Λ
Ω

)
(6.16)

where

A(Λ) =
[
a11 a12

a21 a22

]
a11 = ω

{
K̂1[exp{−Λτ0}] + αq(Λ)K̂2[exp{−Λτ0}]

}
a12 = Λ

{
K̂3 − K̂1[exp{−Λτ0}] + αq(Λ)

(
K̂4 − K̂2[exp{−Λτ0}]

)}
a21 = ω2νq(Λ)K6[exp(−Λτ0)]

a22 = Λωνq(Λ) {K5 −K6[exp(−Λτ0)]}
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The eigen value problem (6.16) has a feasible solution (Λ∗,Ω∗) which corresponds
to the eigen value 1.

Proposition 6.4.1 If Λ ∈ R+, then Ω is well de�ned and positive for all

parameters.

Proof:

Consider two extreme cases of the model (6.13), one for which all newborns are

disease free, and another in which all newborns are infected by disease. We also

consider S(a) + l(a) + i(a) + c(a) + r(a) = 1, hence ignore the equation for r(a).
All the components x = (s, l, i, c, r)T of the system (6.13) are positive, i.e., x(a) ≥ 0.

Case 1: Suppose ω−Ω = 1, all newborns enter susceptible class. Then Ω = 0.

d

da
s0(a) = −Λk(a)s0(a)

s0(0) = 1
d

da
l0(a) = Λk(a)s0(a)− σl0(a)

l0(0) = 0
d

da
i0(a) = σl0(a)− γ1i0(a) (6.17)

i0(0) = 0
d

da
c0(a) = q(Λ)γ1i0(a)− γ2c0(a)

c0(0) = 0

Case 2: Suppose Ω = 1 and ω − Ω = 0. All newborns enter the latent class,

d

da
s1(a) = −Λk(a)s1(a)

s1(0) = 0
d

da
l1(a) = Λk(a)s1(a)− σl1(a)

l1(0) = 1
d

da
i1(a) = σl1(a)− γ1i1(a) (6.18)

i1(0) = 0
d

da
c1(a) = q(Λ)γ1i1(a)− γ2c1(a)

c1(0) = 0

The general equation is given by

x = x0(ω − Ω) + Ωx1
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for all the components x = (s, l, i, c, r)T . For example, if Ω = 0 and ω − Ω = 1,
then x = x0. Similarly, if Ω = 1 and ω − Ω = 0, then x = x1.

Considering the equation for Ω,

Ω = ων

∫ ∞
0

c(a)b̂(a)da

= ων

∫ ∞
0
{c0(a)(ω − Ω) + Ωc1(a)}b̂(a)da

=
ω2ν

∫∞
0 c0(a)b̂(a)da

1 + ων
∫∞

0 (c0(a)− c1(a))b̂(a)da
(6.19)

The numerator in (6.19) is positive, but we however need to investigate the

denominator. If 0 ≤ c0(a), c1(a) ≤ 1, c0(a) ≥ 0, we have c0(a) − c1(a) >

−c1(a) > −1. Hence, for c1(a) ≤ 1,

1 + ων

∫ ∞
0

(c0(a)− c1(a))b̂(a)da ≥ 1− ων
∫ ∞

0
c1(a)b̂(a)da

≥ 1− ων
∫ ∞

0
b̂(a)da

= 1− ων;
∫ ∞

0
b̂(a)da = 1.

≥ 0

Hence Ω is positive and well de�ned over all parameter values.

�

Remark 6.4.1 From lemma (6.3.2), we know that

lim
Λ→∞

G(Λ) = 0,

hence

lim
Λ→∞

G1(Λ) = lim
Λ→∞

{
G(Λ)

{
1− Ω

ω

}
+

Ω
Λ
A

}
= 0.

Proposition 6.4.2 Bi-stability. Consider the eigen value problem (6.16). Λ =

0 satis�es the eigen value problem and corresponds to a trivial solution of model

(6.7). Otherwise, there exists an equation G1(Λ) = 1 de�ned by equation (6.21)

whose solutions corresponds to a non-trivial solution of model (6.7). G1(Λ) = 1,

can only have more than one non-trivial solution if ω−Ω is increasing in Λ and

G1(Λ) = 1 satis�es conditions of G(Λ) = 1 in theorem (6.3.1)
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Proof:

Suppose G1(λ)1 statis�es conditions of theorem (6.3.1), then two non-trivial

solutions can occur. We proceed to prove that if ω −Ω is decreasing, then we can

only have one non-trivial (endemic) solution utmost.

Λ =
∫ ∞

0
p(b)β(b)(i(b) + αc(b))db

=
∫ ∞

0
p(b)β(b)(ωi0(b) + Ω(i0(b)− i0(b)) + αωco(b) + αΩ(c0(b)− c0(b))db

=
∫ ∞

0
p(b)β(b){(ω(i0(b) + αc0(b)) + Ω[(i0(b)− i1(b)) + α(c0(b)− c1(b))]}db

=
∫ ∞

0
p(b)β(b)(ω(i0(b) + αc0(b))db+ Ω

∫ ∞
0

p(b)β(b)[(i0(b)− i1(b)) + α(c0(b)− c1(b))]db

= ΛG(Λ)

+
ω2ν

∫∞
0 c0(a)b̂(a)da

1 + ων
∫∞

0 (c0(a)− c1(a))b̂(a)da

∫ ∞
0

p(b)β(b)[(i0(b)− i1(b)) + α(c0(b)− c1(b))]db

= ΛG(Λ)− ω

1 + (1−ων)+ων
∫∞
0 (1−c1(a))b̂(a)da

ων
∫∞
0 c0(a)b̂(a)da

(ΛG(Λ)/ω −A) (6.20)

The �xed point equation (6.20) has a solution Λ = 0 or solutions Λ∗i satisfying,

1 = G(Λ)
{

1− Ω
ω

}
+

Ω
Λ
A := G1(Λ) (6.21)

where

G(Λ) =
∫ ∞

0
p(b)β(b)(ω(i0(b) + αc0(b))db

Ω
Λ

=
ω

Λ + (1−ων)+ων
∫∞
0 (1−c1(a))b̂(a)da

ων
∫∞
0 c̃0(a)b̂(a)da

and

A =
∫ ∞

0
p(b)β(b){i1(b) + c1(b)}db.

Note that c̃0(a) is monotonously decreasing in Λ and c1(a) does not depend

on Λ. Hence Ω/Λ is decreasing in Λ.
If q(Λ) independent of Λ, then G(Λ) is monotonously decreasing in Λ.
G1(Λ) = 1 has two solutions if

1− Ω
ω

=
ω − Ω
ω

is increasing in Λ. �
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We therefore reach the following conclusion. An increasing (ω − Ω) implies an

increase in the newborns who join the susceptible class. If we limit the increase

in (ω − Ω), then we reduce the possibility of two non-trivial solutions and by im-

plication, no chances of bistable scenario. The possibility of reducing entry into

susceptible class is through mass infant vaccination. In epidemiological terms, re-

ducing the size of the susceptible class or entry into the susceptible class implies

in the long run, that we will have reduced the numbers of individuals who can get

infected (and hence individual who develop carriage) in the population.

The phenomenon of bi-stability for Hepatitis B model has been studied by Med-

ley [Medley 2001] in a model without age structure. Medley [Medley 2001] observes

that hyper-endemic populations, with high carrier prevalence are likely to exhibit

bi-stable dynamics. We try to extend his arguments to an age structured model to

further observe the causes of bi-stability. We note in the case when no vertical trans-

mission is present in the model (ν = 0), that q(Λ) which represents the probability

of infected individuals moving on to carrier state, is solely responsible for possible

occurrence of bi-stability. If q(Λ) does not depend on Λ, then bi-stability cannot

occur as the equation G(Λ) = 1 can have only one solution in the maximum.

In line with results in literature and our results from the case without vertical

transmission, we intended to show that even in the case with vertical transmission,

bi-stability may result from e�ect of an additional force of infection, such as the

situation caused by presence of carriers in Hepatitis B transmission. However, re-

sults for the case with vertical transmission show that other than just the role of

carriers, the number of susceptibles in a population also plays a signi�cant role. The

arguments are complimentary and not contradictory.



Chapter 7

Discussion and Prospects.

Section A.

Stability analysis for periodic driven systems is done using standard tool of

Floqúet theory. The averaging behavior that characterizes stability in the case of

Floqúet theory, may be its shortcoming in dealing with childhood related diseases.

Most childhood related diseases such as measles have short span of outbreaks, some

outbreaks small especially in the post vaccination era and availability of treatment.

We conjecture that stability analysis that returns an instantaneous stability criterion

is more useful for control of childhood diseases than the orbital stability criterion.

We show this through the simulations at the end of the �rst section.

We note some prospects of research based on this work:

(1) The work in this section involved an analysis of an SIR model with vaccination

in periodic settings. The analysis was carried out on a manifold I(t) = 0.
This scenario is true for the developed world where most childhood diseases are

almost extinct or a�ect a very small population of people if at all. A measles

epidemic would not a�ect more than 100 individuals before it is controlled.

The scenario is di�erent in a developing country; this assumption would not

be realistic. It requires assuming an infective population that is non-zero, at

least at an initial time.

(2) The optimal control problems were derived from Stability analysis conditions.

The idea is that a successful vaccination campaign should ensure the disease

is minimized or eradicated in a population. This is equivalent to the stabil-

ity of the disease free state. Hence we derived conditions for stability of the

disease free state, and used these conditions to de�ne optimal control prob-

lems for vaccination. The technique we used to solve the control problems

involved deriving a set of solutions( S ) that guarantees existence of optimal

solutions. Since the set has in�nitely many solutions, we derived candidate

optimal solution strategies that belong to this set of solutions.

The optimal control problem derived from Orbital stability turns out to be

a �ne classical optimal control problem, "A Pontryagin Maximum Principle

Optimal control problem with a singular arc with in�nite local order." We did

not tackle the problem fully in this direction and hence, one would wish to go
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further using any classical techniques of handling such problems available in

literature.

The optimal control problems derived from the instantaneous stability case

does not �t into the classical methods as it involves controlling a supremum of

a function. It would require certain modi�cations on the problem to �t it into

any classical form, hence seek optimal solutions using classical techniques.

Section B.

The phenomenon of bi-stability for Hepatitis B model has been observed by

Medley[Medley 2001] in a model without age structure. The main result in Medley's

paper is that hyper-endemic populations, with high carrier prevalence are likely to

exhibit bi-stable dynamics. This results concur with our case for a scenario when

no vertical transmission is present in the model(ν = 0). We observe that if the

probability of development of carriage q(Λ) does not depend on force of infection

Λ, then G(Λ) = 1 has only one solution in the maximum, implying no bi-stability.

In line with these results, we chose, in the case when vertical transmission is

allowed for, to prove the following conjecture:

Remark 7.0.2 conjecture Bi-stability can only be realized in the model when there

is an additional in�uence of force of infection at later steps of disease progression

other than at the �rst step of contact between susceptible and infected individuals.

We expected that,

1. If q(Λ(t)) :=the rate of development of carriers, does not depend on force of

infection Λ(t), then we cannot have a bi-stable scenario.

2. We conjecture that there is a Λ-dependent function q(Λ) that leads to multiple

equilibria.

3. Vertical transmission helps to reinforce the occurrence of a bi-stable condition.

The proof is not complete with similar results. We however found out that ω −Ω
which is a boundary condition into the susceptible class, plays the key role in bi-

stability.
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