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Abstract

The spectral properties of nonlinear turbulent dynamics, i.e., transfer functions, triad inter-
actions, and cascade direction of ideal quadratic invariants are studied by analyzing data from
high-resolution direct numerical simulations of incompressible two and three-dimensional hy-
drodynamic (HD) and magnetohydrodynamic (MHD) turbulence. The goal of our numerical
studies is to improve the understanding of the dynamics of such flows. An accurate numerical
approach toward analyzing nonlinear turbulent transfer functions and triad interactions is
presented. In this approach, every wavenumber triad in the inertial range associated with the
nonlinear terms of the differential equations of Navier-Stokes and MHD equations is numer-
ically examined. The technique allows us to compute the spectral transfer functions, fluxes,
and the spectral locality of the transfer functions. To this end, the geometrical shape of each
underlying wavenumber triad that contributes to the statistical transfer density function is
examined to infer the locality of the ideal invariant transport. In isotropic two-dimensional
hydrodynamic turbulence, the kinetic energy transfer is found to be nonlocal through nonlocal
triad interactions with an inverse cascade. The enstrophy transfer is found to be local through
nonlocal interactions with a direct cascade. In three-dimensional hydrodynamic turbulence,
the kinetic energy and helicity transfer functions are local through nonlocal triad interactions
with a direct cascade.
The total energy and cross helicity transfer functions are local through nonlocal interactions
with a direct cascade in decaying macroscopically isotropic 2D and 3D-MHD turbulence. Mean
square magnetic vector potential transfer is nonlocal through nonlocal interactions with an
inverse cascade in 2D-MHD turbulence. Magnetic helicity transfer is nonlocal with an inverse
cascade in isotropic 3D-MHD turbulence. In anisotropic 3D-MHD turbulence subject to a
strong mean magnetic field, the nonlinear total energy and cross helicity transfer functions
are generally weak with a weak direct cascade. They exhibit a moderate increase of nonlocal-
ity in both perpendicular and parallel directions compared to the isotropic case. These results
support the recent mathematical findings which also find that nonlinear transfer functions in
hydro- and magnetohydrodynamic turbulence are local and will help setting this controversial
issue.
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Kurzfassung

Die spektralen Eigenschaften der nichtlinearen turbulenten Dynamik, d.h. Transferfunktio-
nen, Triadenwechselwirkungen und Kaskadenrichtung der idealen quadratischen Invarianten,
werden durch die Analyse hoch aufgelöster direkter numerischen Simulationen inkompress-
ibler zwei- und dreidimensionaler hydrodynamischer (HD) und magnetohydrodynamischer
(MHD) Turbulenz betrachtet. Das Ziel der durchgeführten numerischen Untersuchungen ist
ein besseres Verständnis der Dynamik solcher Strömungen. Es wird ein präziser numerischer
Zugang zur Analyse nichtlinearer turbulenter Transferfunktionen und Triadenwechselwirkung
vorgestellt. Im Rahmen dieses Zugangs wird jede Wellenzahltriade im Inertialbereich, die
vom nichtlinearen Term der zugrunde liegenden Navier-Stokes bzw. MHD Gleichungen her-
rührt, numerisch untersucht. Die verwendete Methode erlaubt die Berechnung der spek-
tralen Transferfunktionen, der Flüsse und der spektralen Lokalität der Transferfunktionen.
Zur Bestimmung der Lokalität des resultierenden Transports wird dabei die geometrische
Gestalt jeder zugrundeliegendenWellenzahltriade, die zur statistischen Transferdichtefunktion
beiträgt, untersucht. Der kinetische Energietransfer verläuft in Simulationen der isotropen
zweidimensionalen hydrodynamischen Turbulenz nichtlokal vermittelt durch nichtlokale Tri-
adenwechselwirkung mit einer inversen Kaskade. Der Enstrophietransfer vollzieht sich lokal
über nichtlokale Wechselwirkungen mit einer direkten Kaskade. In der dreidimensionalen
hyrdodynamischen Turbulenz sind die kinetische Energie- und Helizitätstransferfunktionen
lokal und kommen durch die nichtlokale Triadenwechselwirkung mit einer direkten Kaskade
zustande. In Fall der zerfallenden, makroskopischen, isotropen 2D und 3D MHD-Turbulenz
sind die Gesamtenergie- und Kreuzhelizität-Transferfunktionen lokal und kommen durch die
nichtlokale Wechselwirkung mit einer direkten Kaskade zustande. Der Transfer des mittleren
magnetischen Vektorpotentials ist nichtlokal und läuft in der 2D MHD über nichtlokale Wech-
selwirkung mit einer inversen Kaskade ab. In der isotropen 3D MHD verläuft der Transfer
magnetischer Helizität nichtlokal über eine inverse Kaskade. In der aufgrund eines starken
magnetischen Feldes anisotropen 3D MHD Turbulenz sind die nichtlinearen Transferfunktio-
nen der Gesamtenergie und der Kreuzhelizität im Allgemeinen schwächer als ohne ein mittleres
Feld und besitzen eine schwache direkten Kaskade. Sie weisen eine schwache Zunahme der
Nichtlokalität sowohl senkrecht, als auch parallel zum Magnetfeld gegenüber dem isotropen
Fall auf. Die vorgestellten Ergebnisse unterstützen neueste mathematische Untersuchungen,
die ebenfalls die Lokalität der nichtlinearen Transferfuktionen für hydrodynamische und mag-
netohydrodynamische Turbulenz zeigen und werden zu Klärung dieses kontrovers diskutierten
Aspekts der turbulenten nichtlinearen Dynamik beitragen.
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Introduction

Turbulence is a widespread phenomenon in which a fluid flow is characterized by apparently
random, unsteady, irregular, and chaotic motions. Turbulent flows can be observed on Earth
in the atmosphere and the water of rivers and oceans. Structures formed in the flow are
called eddies. The motion of eddies is unpredictable [1], and they can span length scales of
kilometers or only a few centimeters. A turbulent flow is a flow that is disordered in time
and space. It may be three-dimensional or sometimes quasi two-dimensional, and may exhibit
well-organized structures or not [1].
The most common electrically conducting medium is an ionized gas called a plasma. In the
universe, plasmas constitute 99% of the visible material [2]. Electrically conducting media can
be described as fluids, if the dynamical time and length scales of interest are large compared
to those of the microscopic plasma constituents. In the context of this work, the single-fluid
approximation is used for studying turbulent systems. Experimental examples where this
approximation is justified are for example, the reversed-field pinch fusion experiment and
dynamo experiments investigating turbulence of electrically conducting fluids by using liquid
metals. Turbulent motions are also significant in many astrophysical systems: the convective
zone in stars, interstellar media (ISM), planetary cores, the intergalactic medium (IGM), and
the solar wind [2, 3]. The size of turbulent structures in astrophysical systems can span many
light years as in the ISM or IGM, or less than a kilometer size as in sub-structure of the
plasma in stars or cores of planets.
In the following two basic forms of turbulence will be studied: hydrodynamic (HD) Navier-
Stokes (NS) turbulence involving the velocity field only and magnetohydrodynamic (MHD)
turbulence which additionally features the magnetic field. In the study of turbulence, a set of
differential equations must be simultaneously solved to gain an understanding of the flow. This
set of equations includes nonlinear terms and so in general cannot be solved analytically. It
is conventionally characterized by certain non-dimensional parameters: the kinetic Reynolds
number in the case of HD turbulence, and in the case of MHD turbulence both kinetic and
magnetic Reynolds numbers and the Alfv́en number. The value of these numbers distinguishes
the type of flow. Beynod a critical Reynolds number, the flow is termed as turbulent. If the
Reynolds number is increased, the smaller scale motions survive [2]. There are several meth-
ods for solving the differential equations of the HD and MHD systems approximately. Some of
these methods are the eddy damped quasi-normal Markovian (EDQNM) approximation and
large eddy simulations (LES). The target of these methods is to get a solution of the equations
which to a certian degree resembles the systems in nature. These methods usually involve
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additional assumptions to solve the equations. However, the non-dimensional parameters in
the equations are not achievable numerically with the current computing facilities. Although,
the results from the methods mentioned above are far from the reality of what is seen in na-
ture, they give insights into the physical aspects of the turbulent flows. In this thesis, direct
numerical simulations (DNS) methods are used to solve the equations of turbulent systems.
DNS methods do not use any additional physical approximations to the equations, but solve
them as they are in their true form. Numerical simulations methods represent a valuable
tool that provide more detailed information about the examined systems compared to other
methods. The DNS methods stay closest to the underlying differential equations describing
the turbulent systems although they are computationally expensive. Therefore, we prefer to
use data obtained by DNS.
The physics of magnetohydrodynamic (MHD) turbulence is more complex than hydrody-
namic turbulence. There are two coupled vector fields, velocity and magnetic, and also two
dissipative parameters, viscosity and resistivity. In addition, when the system is exposed to a
mean magnetic field which cannot be transformed away like a mean velocity, the turbulence
becomes anisotropic. For simplicity of the MHD description, a simple single-fluid approxi-
mation is used, and the mass density of the magnetofluid is assumed to be constant in time
and spatially uniform. In addition, relativistic effects are neglected and fluid velocities are
assumed to be much smaller than the magnetosonic speeds in the plasma [4].
Phenomenological models exist to describe the nonlinear dynamics of Navier-Stokes and MHD
turbulence. These models were developed to understand certain aspects of turbulent flows.
They assume different mechanisms through which structures in the fields act to build-up or de-
stroy turbulence. The Kolmogorov (K41), Iroshnikov-Kraichnan (IK), and Goldreich-Sridhar
(GS) phenomenologies are presented in details in Chapter two of this work.
To understand the spectral properties, especially the dynamics of energy transfer in turbu-
lent systems, it is advantageous to solve the HD and MHD equations in Fourier space. Any
nonlinear term, e.g., a product of two functions in configuration space, transforms into a
convolution integral in Fourier space. In the case of the discrete Fourier transform, the con-
volution integral becomes a convolution sum. Thus the nonlinear terms of the HD and MHD
equations couple group of three wavevectors in Fourier space, forming a triad which satisfies
the relation k + p + q = 0. These triads are key to understanding the phenomenon of energy
transfer in turbulent flows. This phenomenon is central to the concept of triad interactions
and is a consequence of the quadratic nonlinearities of both HD and MHD equations. There
are ideal quadratic invariants in both incompressible HD and MHD [2]. Each of these quan-
tities is exchanged conservatively between the wavenumbers. Understanding the difference
between local and nonlocal traid interactions, local and nonlocal transfer function of an ideal
quadratic invariant is instrumental to understanding turbulent dynamical processes in the
inertial range.
Kraichnan [5, 6] studied the locality of the energy transfer and triad interactions analytically
using an ’almost Markovian Galilean invariant’ turbulence model in the inertial range of 2D
and 3D hydrodynamic fluid turbulence. Numerically, Domaradzki and Rogallo [7] computed
the strength of triad interactions and the energy transfers in fluid turbulence. The energy
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transfer is described in terms of shell-to-shell transfer functions and spherical energy-fluxes
in isotropic MHD turbulence by for example: Alexakis et al. [8] using numerical simulations.
Theoretically, the energy fluxes in MHD turbulence have been studied by Verma [9, 10] using
field-theoretic arguments. Alexakis et al. [11] have studied the locality of energy transfer
functions and the spectral interactions in anisotropic MHD turbulence.
The goal of this work to study the spectral properties of nonlinear turbulent dynamics, i.e,
transfer functions, triad interactions, and cascade direction of ideal quadratic invariants in
incompressible two and three-dimensional hydrodynamic and magnetohydrodynamic turbu-
lence by analyzing data from high-resolution direct numerical simulations. Nonlinear dynam-
ical processes help us to understand the nature and the sturcture formation of the turbulent.
This work introduces an accurate numerical approach for analyzing nonlinear turbulent trans-
fer functions and interactions. This approach includes the direct numerical examination of
every wavenumber triad in the inertial range associated with nonlinear terms in the differ-
ential equations of Navier-Stokes turbulence and MHD turbulence. This technique allows to
compute the spectral transfer functions, fluxes, and the spectral locality of the transfer func-
tions. The geometrical shape of each underlying wavenumber triad that contributes to the
statistical transfer density function Q(v) (where v is the ratio of the smallest wavenumber to
the middle wavenumber in the interacting triad) is examined to infer the locality of the ideal
invariant transport. Quantitatively, the locality function W (v) is computed to represent the
nature of the nonlinear transfer function. This function measures the part of the total trans-
fer that passes through the inertial range, that is due to all triad interactions in which the
ratio of the smallest wavenumber to the middle wavenumber is greater than v. The Fortran
code made for this purpose is based on an existing program developped by T. Hertkorn for
2D-HD simulations [12] and M. Haslehner for 3D-HD simulations [13]. In this work, we have
modified the program to implement the analysis of two- and three-dimensional magnetohy-
drodynamic turbulence. Analysis of fully-developed, driven turbulence stemming from large
pseudospectral simulations with high resolution conducted by A. Busse and W.-C. Müller is
used to investigate all turbulent systems which studied in this work.
The work is organized as follows. Chapter 1 introduces the basic concepts of fluid and mag-
netohydrodynamics turbulence, including the set of dynamical equations governing the in-
vestigated systems, and the nonlinear quadratic invariants. Chapter 2 explains current phe-
nomenological models that explain the spectral and spatial properties of hydrodynamic and
magnetohydrodynamic turbulence. These models result in simple power laws, which play an
important role in understanding the dynamical processes of turbulence. Chapter 3 discuss
the energy transfer function, nonlinear triad interaction, and detailed conservation in HD and
MHD turbulence. In addition, this chapter shows the difference between locality and nonlo-
cality of transfer function and triad interactions, and analyses the different types of cascade
directions. Chapter 4 outlines the numerical procedure employed to solve the equations of
HD and MHD turbulence. Chapters 5 presents the results of our calculations for the spectral
locality of transfer functions, triad interactions, and the type of cascade direction for ideal
invariants in two- and three-dimensional hydrodynamic turbulence. Chapters 6 presents the
results for the spectral locality of transfer functions, triad interactions, and the type of cascade



xvi Introduction

direction for ideal invaraints in two- and three-dimensional MHD turbulence. This chapter
also includes the results of our calculations for the spectral properties of ideal invariants in
forced-inverse cascade turbulence system.



Chapter 1

Theoretical concepts of fluid and
magnetohydrodynamic turbulence

In this chapter, basic concepts of fluid turbulence such as continuity and the Euler equations of
an ideal fluid1 are introduced. A derivation of the Navier-Stokes equations is presented. The
basic equations of magnetohydrodynamic (MHD) turbulence are discussed. Energy equations
in both fluid and magnetohydrodynamic turbulence are presented. Homogenous isotropic and
anisotropic turbulence are discussed. Navier-Stokes and magnetohydrodynamic equations in
spectral Fourier space are presented.

1.1 Fundamental equations of neutral fluids
1.1.1 Continuity and Euler equations of an ideal Fluid

Fluids obey the general laws of continuum mechanics, conservation of mass, energy and
linear momentum [14, 15]. The conservation of mass is expressed by the continuity equation,
which is a mathematical statment that, in a steady state process, the rate at which mass of
fluid enters the system is equal to the rate at which mass leaves the system. The differential
form of the continuity equation is

∂

∂t
�+∇ ⋅ (�v) = 0, (1.1)

where � is the fluid density, t is the time, and v is the fluid velocity vector. If the density �
is a constant, as in the case of incompressible flow, the mass continuity equation simplifies to
a volume continuity equation

∇ ⋅ v = 0, (1.2)

which means that the divergence of velocity field is zero everywhere.
The derivation of the Euler equation is based on the conservation of momentum, P. Let us
consider a small volume element in the fluid. The total force acting on this volume element
is given by the integral

F =
d

dt
P = −

∮
∂V

p df , (1.3)

1Ideal fluid is the fluid without viscosity; viscosity is the quantity that describes a fluid’s inner friction.
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where the integration domain is the boundary surface of the volume, and p is the scalar
pressure .
Transforming this integral over a closed surface into a volume integral using Gauss’s formula,
we find

−
∮
∂V

p df = −
∫

V
∇ p dV . (1.4)

where the force −∇ p acts on unit volume of the fluid.
Since the force can also be expressed as F = m dv

dt , Thus we have

�dV
dv

dt
= −∇pdV (1.5)

and therefore,
d

dt
P(t) = −

∫
V
∇ p dV =

∫
V
�

dv

dt
dV . (1.6)

The notation dv
dt = ∂v

∂t + (v ⋅ ∇)v refers to a substantial derivative, i.e., not the change of
velocity of the fluid at a fixed point, but at moving points in space. Then Eq.(1.6) can be
written ∫

V

(
−∇p − � ∂v

∂t
− � (v ⋅ ∇) v

)
dV = 0. (1.7)

Because this is valid for any arbitrary volume V , the integrand is also equal to zero.

∂v

∂t
+ (v ⋅ ∇)v = −1

�
∇p. (1.8)

This equation is called the Euler equation. It describes the motion of a volume element in an
ideal fluid. The state of a moving field is determined by five quantities (the three components
of the velocity, and for example, by the pressure and the density) that constitute complete
system of equations of an ideal fluid. They are thus given by the Euler, the continuity, and a
thermodynamic equations of state.

1.1.2 Navier-Stokes equations of a fluid flow

The equations for a viscous liquid can be derived from the equations of an ideal fluid
by taking into consideration the effects of an irreversible momentum transfer due to friction
between fluid particles. By fluid particle we mean elements of volume which are small com-
pared with the volume of the body but large in comparison with the distances between the
molecules [14]. Finite viscosity leads to energy dissipation. Although we are not primarily
interested in dissipation effects in this work, viscosity plays an essential role in the derivation
of the Navier-Stokes equations.
The most general form of the equations of motion for a viscous Newtonian fluid is given by
[14]

�

(
∂v

∂t
+ (v ⋅ ∇)v

)
= −∇p + �Δv + (� +

�

3
)∇(∇ ⋅ v), (1.9)

where � is the fluid density, � and � are the shear and volume viscosity, respectively. These
viscosities are set constant in space and are functions of the pressure and of the temperature.
However, In many cases, they may be regarded as constant [16]. The above equation can
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be simplified by assuming that the fluid is incompressible. This means that the density � is
constant

d�

dt
= 0. (1.10)

The continuity equation simplifies then to

∇ ⋅ v = 0. (1.11)

Finally,
∂v

∂t
+ (v ⋅ ∇)v = −1

�
∇p +

�

�
Δv, (1.12)

introducing the kinematic viscosity �, which is defined as the dynamic viscosity of the fluid
divided by the density of the fluid,

� :=
�

�
. (1.13)

We can write,
∂v

∂t
+ (v ⋅ ∇)v = −1

�
∇p + �Δv. (1.14)

and
∇ ⋅ v = 0. (1.15)

Eqs.(1.14) and (1.15), first found by Navier in 1827, are the Navier-Stokes equations in the
case of steady flow of an incompressible fluid. In this case (see Eq.1.11), the viscosity is
determined only by the so-called dynamic viscosity coefficient �. Since ∇⋅v = 0, the velocity
is determined by (∇ × v), according to the splitting into the sum of a rotation-free and a
divergence-free part.

1.1.3 Energy equation

Energy equations can be derived for compressible fluid turbulence and also in the incom-
pressible limit. For an incompressible fluid the energy equation can be constructed by using
Eq.(1.14). The energy equation for the kinetic energy can be written [14]

∂

∂t

(
1

2
�v2

)
= −∇ ⋅

[(
1

2
v2

)
�v

]
−∇ ⋅ pv + Φ. (1.16)

The l.h.s. of Eq.(1.16) is the rate of change of the kinetic energy in the fluid. The first term on
the r.h.s. is the energy flux, the second term is the work done by pressure and the third term
(Φ) is the energy change due to surface forces. For an incompressible fluids we can choose
� = 1, and treat the value 1

2v
2 as the total energy. For an ideal incompressible fluid (� = 0),

the energy evolution equation is

∂

∂t

1

2
v2 = −∇ ⋅

[(
1

2
v2 + p

)
v

]
.

By integrating the above equation over volume and applying Gauss′s law, we obtain

∂

∂t

∫
V

1

2
v2dV = −

∮ [(
1

2
v2 + p

)
v

]
⋅ dS . (1.17)
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For the boundary conditions, vn = 0 (i.e., the component of the fluid velocity normal to the
bounding surface must vanish if that surface is at rest) or periodic boundary condition, the
total energy is given by

E =

∫
V

1

2
v2dV (1.18)

and it is conserved. Several other conserved quantities in 2D and 3D Navier-Stokes turbulence
will be discussed in section 1.7.

1.2 Concepts and fundamental equations in magnetohydrody-
namic (MHD) turbulence

1.2.1 Magnetohydrodynamic (MHD) equations

Magnetohydrodynamic (MHD) or hydromagnetics is a branch which studies the dynamics
of electrically conducting fluids. In a MHD fluid, the local charges ions and electrons are
almost balance each other. The conductivity of MHD fluid is very high. As a consequence,
the magnetic field lines are frozen into the fluid. Ions and electrons are find to the field,
and the slight imbalance in the motion creates electric currents which in turn generate the
magnetic fields. In the MHD picture, the heavier ions are considered to carry momentum,
and the lighter electrons carry electric current. In an electromagnetic field with electric and
magnetic fields E and b respectively, a particle of charge qi is subjected to the Lorentz force
qi (E + vi × b/c), where c is the speed of light. The force on a macroscopic fluid element is
the sum of the forces acting on the individual particles in this element �q × E + �j × b/c,
where �q is the net charge and �j the electric current density carried by the the fluid element.
In the rest frame of the fluid element, the electric field E′ = j/�, where � is the electrical
conductivity. In the laboratory reference frame, the fluid element is moving by velocity v and
the electric field is obtained by the Lorentz transformation for nonrelativistic flows,

E′ = E +
v × b

c
=

1

�
j. (1.19)

Since, Ampere’s law states that

∇× b =
c

4�
j +

1

c

∂E

∂t
.

The last term of the above equation can be ignored, because it is (v/c)2 times smaller than
(∇× b). Therefore,

j =
c

4�
∇× b. (1.20)

Hence both E and j are dependent variables, and can be written in terms of b and v. In
MHD both magnetic and velocity fields are dynamic, so to determine the magnetic field we
can use Faraday’s equation which states that

∂b

∂t
= −c∇×E. (1.21)
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By applying Eqs.(1.19) and (1.20) in Eq.(1.21), we have the induction equation

∂b

∂t
= ∇× (v × b) + �∇2b.

Then we can write
∂b

∂t
+ (v ⋅ ∇)b = (b ⋅ ∇)v + �∇2b. (1.22)

The parameter � = c2/(4��) is called the magnetic diffusivity and � is the electrical conduc-
tivity. The magnetic field obeys the constraint:

∇ ⋅ b = 0. (1.23)

The time evolution of the velocity field is given by the momentum balance, which is [14, 17]

�

(
∂v

∂t
+ (v ⋅ ∇)v

)
= −∇pth +

1

c
j× b + �∇2v (1.24)

where � is the density of the fluid, pth is the thermal pressure, and � is the dynamic viscosity.
Substituting kinematic viscosity of the fluid, � = �/�, and of j in terms of b from Eq.(1.20)
into Eq.(1.24) we can obtain

∂v

∂t
+ (v ⋅ ∇) v =

1

�

[
−∇

(
pth +

b2

8�

)
+

1

4�
(b ⋅ ∇) b

]
+ �∇2v. (1.25)

In the above equation, the value (pth + b2

8� ) = p is called total pressure and the ratio pth8�/b2

describes the strength of the magnetic pressure relative to thermal pressure. Mass conservation
yields the continuity equation (cf. Eq.1.1) Pressure can be computed from � by using an
equation of state,

p = f (�). (1.26)

Eqs.(1.22),(1.25),(1.15) and (1.23) are the basic equations of magnetohydrodynamics (MHD).
The incompressibility approximation can be interpreted as the limit when mass density of a
fluid element does not change along its path, i.e., d�/dt = 0. From the continuity equation
(1.1), the incompressibility condition reduces to

∇ ⋅ v = 0. (1.27)

Incompressibility does not imply spatially constant density, but for simplicity one can take
the density to be spatially homogenous and equal to unity. Under this condition, Eqs. (1.22)
and (1.25) reduce to

∂v

∂t
+ (v ⋅ ∇)v = −∇p +

1

4�
(b ⋅ ∇)b + �∇2v, (1.28)

∂b

∂t
+ (v ⋅ ∇)b = (b ⋅ ∇)v + �∇2b. (1.29)
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Then the incompressible magnetohydrodynamic (MHD) equations are Eqs. (1.28), (1.29),
(1.27) and (1.23). Poisson’s equation for the pressure can be obtained by taking divergence
of Eq.(1.28) giving

∇ ⋅ [(v ⋅ ∇)v − (b ⋅ ∇)b] = −∇2p. (1.30)

Hence one can compute p subject to the constraints of Eqs. (1.27) and (1.23) for the velocity
and the magnetic field. Therefore, p is a passive quantity in the incompressible limit.
It is advantageous to work with a non-dimensional form of the set of magnetohydrodynamic
equations [Eqs. (1.28), (1.29), (1.27) and (1.23)]. The mean magnetic field is assumed to
be zero [18, 19]. The pressure term is eliminated from the equations by writing Eq.(1.28) in
terms of vorticity ! = ∇× v. The quantities are written in non-dimensional form, in terms
of the characteristic length scale L0 and velocity V0 of the configuration under consideration
as:

r′ ≡ r

L0
, v′ ≡ v

V0
, t ′ ≡ V0

L0
t , b′ ≡ b√

4�V0

and p′ ≡ p

V 2
0

. (1.31)

With these operations, the set of MHD equations (1.28), (1.29), (1.27) and (1.23) becomes:

∂t! −∇× (v × ! + SB j× b) = Re−1Δ!, (1.32)

∂tb = ∇× (v × b) + Rm−1Δb, (1.33)

! = ∇× v, (1.34)

j = ∇× b, (1.35)

∇ ⋅ v = ∇ ⋅ b = 0. (1.36)

The quantities are written without their respective primes (i.e., v′ as v and so on). This set
of equations contains three dimensionless parameters SB, Re and Rm which characterize the
system. SB is the interaction parameter (squared Alfvén number) and defined as SB =

V 2
A

V 2
0

where VA is characteristic Alfvén velocity2 [2, 4]. This parameter determines the relative
dynamical importance of the velocity compared to magnetic field and for the rest of the work
is set equal to 1. This means the magnetic field is measured in units of the characteristic Alfvén
velocity. Re and Rm are given by the dissipation coefficients � and � and the characteristic
length L0 and velocity V0 as

Re =
L0V0

�
= �̃−1, Rm =

L0 V0

�
= �̃−1, (1.37)

and are called the kinetic Reynolds number and the magnetic Reynolds number, respectively.
These Reynolds numbers are rough estimates of the strength of the nonlinearities compared to
the dissipative terms in Eqs.(1.32) and (1.33). The ratio between the the magnetic Reynolds
number and the kinetic Reynolds number is called the magnetic Prandtl number, Prm =

Rm/Re = �/� which is another significant parameter of incompressible MHD, for example
of importance in studies of magnetic field generation by MHD turbulence (turbulent dynamo

2The phase velocity of an Alfvén wave is given by b√
4�V0
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effect, see e.g., [20]). With the set of definitions given by Eq.(1.37), the final form of the
non-dimensional MHD equations read:

∂t! = ∇× (v × ! − b× j) + �̃Δ!, (1.38)

∂tb = ∇× (v × b) + �̃Δb, (1.39)

∇ ⋅ v = ∇ ⋅ b = 0. (1.40)

�̃ and �̃ are now the dimensionless dissipation coefficients.
By introducing Elsässer fields z± = v ± b, an equivalent formulation of the MHD equations
is also possible (e.g., [21, 22, 23]). The Elsässer variables are well studied for analyses of
nonlinear dynamics because the velocity and magnetic field equations in the Elsässer variables
possess an almost symmetric form

∂tz
± = −z∓ ⋅ ∇z± −∇p +

Re−1 + Rm−1

2
Δz± +

Re−1 − Rm−1

2
Δz∓, (1.41)

∇ ⋅ z± = 0. (1.42)

where p = (pth + b2

2 ) is the total pressure. These equations can be solved, and lead to exact
solutions in the form of counter-propagating Alfvén waves z− and z+ traveling in the same
and in the opposite direction along the mean field, respectively. The nonlinear dynamics
in the Elsässer picture is therefore represented by an ensemble of interacting Alfvén wave
packets. It follows from the structure of the nonlinear term that only counter-propagating
wave packets interact. In systems without mean magnetic field, it is supposed that the wave
packets propagate along a large-scale magnetic field that plays the role of a guide field [19].

1.2.2 Important significance of MHD equations

Of the non-dimensional MHD equations the first Eq.(1.38) is called the vorticity equation,
it represents the balance of momentum in the system. The first term on the r.h.s. of the
vorticity equation describes the advection by the velocity field. The second term represents
the influence of magnetic field on the velocity dynamics via the Lorentz force. It is responsible
for energy transfer between the magnetic field and the velocity field, resulting in driving or
suppression of velocity fluctuations [19].
Eq.(1.39) is the induction equation. The first term on the r.h.s. indicates to the nonlinear
interaction between velocity and the magnetic field, which influences the evolution of magnetic
field fluctuations. This term not only exchanges the energy between both the fields but also
redistributes this energy over different spatial scales of the magnetic field [19]. The non-
dimensional dissipation coefficients �̃ and �̃ in both Eqs.(1.38) and (1.39) are related to the
Reynolds numbers in Eq.(1.37). In the hydrodynamic case, the Reynolds number Re must be
greater than some critical Reynolds number (i.e, the critical Reynolds marks the transition
from laminar to turbulent flow), Recrit for turbulence generation to occur. This is because
its inverse, the normalized kinematic viscosity has a damping effect on turbulent fluctuations.
The critical kinetic Reynolds number depends on the geometry of the flow and typically



8 Theoretical concepts of fluid and magnetohydrodynamic turbulence

Recrit ∼ 102 [2]. This parameter determines the transition to turbulence at low Re and
properties of the turbulence itself at high Re of hydrodynamic flow. Additionally, very low
values of the magnetic Reynolds number Rm implies that the domination of the magnetic
dissipation, whereas very high Rm means that the magnetic flux through a surface moving
with the fluid remains almost constant. In other words, the parameter Rm quantifies the frozen
in property of magnetic fields, i.e., how much the magnetic field is dragged by the velocity
field, and how much it can slip through [24, 21]. Reynolds numbers determine the ratio of
large and dissipation scales in a flow and thereby their separation (see chapter 2). Turbulent
flows are characterized by large Reynolds numbers. Typically, the Reynolds numbers range
from 106 for laboratory plasmas to 1012−20 or more in the case of astrophysical systems [19].
These large Reynolds number regimes are not achievable in direct numerical simulations with
the current computational capabilities. Nevertheless the computations performed to give a
reliable impression of the inherent properties of these systems to a large extent. Another
parameter called the magnetic Prandtl number is introduced and defined as the ratio of the
two Reynolds numbers:

Prm =
Rm

Re
. (1.43)

This parameter measures the relative importance of viscous and Ohmic dissipation. The typ-
ical values are on the order of 10−10 to 10−5 in the interiors of certain celestial bodies. Prm

can be 102 in fusion plasma and 1014 for interstellar medium [19].
In this thesis the magnetic Prandtl number is always set to unity to achieve a formally sym-
metric configuration with regard to v and b [4]. Thus only the case where both the kinetic
and magnetic diffusivities are equal is considered. The terms in Eq.(1.40) signify the fact that
both the velocity and magnetic fields are solenoidal. Eqs.(1.41) and (1.42) contain Elsässer
fields z± = v ± b. These quantities are mathematically interesting in incompressible MHD
because their equations are symmetric in nature [18, 2]. Ideal invariants (see section 1.7) and
some properties like residual energy can also be expressed in terms of Elsässer fields (e.g., see
[2]). From Eq.(1.41), it can be seen that there is no self coupling in the nonlinear term but
a cross coupling of z+ and z− [2]. This forms the basis of the Alfvén effect, that describes a
fundamental nonlinear process. Where Kraichnan [25] noticed that in the presence of large
scale magnetic energy, Alfvén waves can bring small scale velocity and magnetic energies to
equipartition and relax triple correlations which due to triad interactions in a time which may
be shorter than the local eddy turnover time [26].

1.2.3 Energy equations and conserved quantities in magnetohydrodynamic
(MHD) turbulence

Using Eqs.(1.22) and (1.25), we can construct energy equations for incompressible fluids.
The energy equation for the kinetic energy is [14]

∂

∂t

(
1

2
v2

)
= −∇ ⋅

[(
1

2
v2

)
v

]
−∇ ⋅ (pv) +

1

c
v ⋅ (j× b) + Φ. (1.44)
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The first term on the r.h.s. is the nonlinear energy flux, and the second term is the work done
by the pressure. The third term on the r.h.s is work done by magnetic force on the fluid. Φ

is a complex function of the strain tensor, that represents the energy change due to surface
forces.
Similarly we can use Eq.(1.21) to obtain an equation for the evolution of magnetic energy [17]

∂

∂t

1

8�
b2 = − c

4�
b ⋅ ∇ ×E

= −∇ ⋅
[ c

4�
E× b

]
− j ⋅E. (1.45)

The first term on the r.h.s is the Poynting flux (energy flux of the electro-magnetic field), and
the second term is the work done by the electro-magnetic field on fluid. The second term is
the Joule dissipation term. The dynamical equation for the energy in MHD can be obtained
by combining equations (1.44) and (1.45)

∂

∂t

(
1

2
v2 +

1

8�
b2
)

= −∇ ⋅
[(

1

2
v2

)
v +

c

4�
E× b

]
−∇ ⋅ (pv) + Φ + j2/�. (1.46)

In the above equation,
(

1
2v

2 + 1
8� b

2
)
is the total energy. Eq.(1.46) simply says that the rate of

change of total energy is the sum of energy flux, the work done by the pressure, and losses from
viscous and resistive dissipation. Using a new variable for magnetic field b = bCGS/

√
4�. In

the terms of the new variable, the total energy is
(

1
2v

2 + 1
2b

2
)
. For an incompressible MHD

fluid we can treat with the value (v2 + b2)/2 as the total energy. For ideal incompressible
MHD (where � = � = 0) the energy evolution equation is then

∂

∂t

1

2
(v2 + b2) = −∇ ⋅

[(
1

2
v2 +

1

2
b2 + p

)
v

]
− 2∇ ⋅ [(b ⋅ v) b] . (1.47)

By integrating this equation over some volume and appling Gauss′s law to the r.h.s., we find

∂

∂t

∫
V

1

2
(v2 + b2)dV = −

∮ [(
1

2
v2 +

1

2
b2 + p

)
v + (b ⋅ v)b

]
dS . (1.48)

For vn = bn = 0 or periodic boundary condition, the total energy in incompressible MHD is
conserved

E =

∫
V

1

2
(v2 + b2)dV . (1.49)

Additional conserved quantities in 2D and 3D-MHD turbulence will be discussed in section
1.7.

1.3 Homogeneous isotropic turbulence
A turbulent flow (see the introduction of this thesis) is said to be homogeneous if it is

statistically invariant under translation. For example the total energy of the turbulent fluc-
tuations, E = 1

2⟨vi(x)vi(x)⟩, and the probability density function of the fluctuating velocity,
f(�vi)(x, t), where �vi(x, t) = vi(x, t) − ⟨vi(x, t)⟩ are average quantities and thus transla-
tion invariant. Correlation functions such as Cij(r) = ⟨vi(x)vj(x + r)⟩ are independent of x
and depend only on r. Turbulence is isotropic if, it is spatially homogenous and the velocity
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field is statistically invariant under rotation, meaning the field has no preferred direction,
then Cij = Cij(r). Isotropy implies that there is no mean velocity, since a nonzero mean
velocity would create a preferred direction. The simplest setting for studying turbulence is a
homogeneous isotropic field, which can be modelled by the flow behind a homogeneous grid
in a water or a wind tunnel. The grid is placed at right angles to the uniform stream of the
tunnel. One of the first experiments of this kind was devised in 1934 by Orszag [27] and Sim-
mons and Salter [28]. Each bar of the grid generates a wake, and wakes due to different bars
mingle leading to a turbulent velocity field downstream of the grid. The field, though highly
non-isotropic at the beginning, becomes more and more isotropic as it decays. The motion
far downstream consists of a nearly isotropic homogeneous random velocity field superposed
on the uniform stream velocity [27]. In addition, the turbulence is observed to be accurately
homogeneous in planes normal to the stream direction.
In hydrodynamic turbulence, homogeneous isotropic fields do not correspond to physical re-
ality. Turbulent fields in nature must be anisotropic, because they have boundaries, and
because turbulence is typically caused by mean gradients of velocity undergoing variations.
Despite these effects of inhomogeneity, turbulent flows are locally homogeneous at sufficiently
small scales. Homogenous isotropic fields constitute a way of simplifying the mathematical
problem. This simplification allows for the isolation of the self-interaction of fluctuating com-
ponents from the interaction between fluctuating components and the mean velocity field [27].
Isotropy in MHD turbulence should therefore be considered as a theoretical concept general-
izing isotropic hydrodynamic turbulence.
When the fluid system is subjected to a mean magnetic field, this field has a strong effect on
the turbulent dynamics, the fluid and the flow becomes highy anisotropic [21]. The motion
perpendicular to the mean magnetic field may develop small-scale structure that give rise to
turbulent dissipation and spatial variations along the mean magnetic field. In presence of a
mean magnetic field, isotropy can only be expected in the perpendicular plane.

1.4 Fourier represention of a flow

Fourier transforms can convert the differential operators into multipliers. Although the
Navier-Stokes equations have no known exact mathematical solution in the general case, the
use of Fourier transformations allows simplification of the whole problem by converting differ-
ential operators into algebraic ones [29]. Fourier transforms also permit the resolution of the
velocity field into spectral components. The Fourier component is a collective coordinate that
specifies the total excitation scale over the whole flow [27]. The concept of scale L of turbulent
fluctuations characterizes the size of the vortices via the relation L = 2�

k , where k = ∣k∣ is
the appropriate wavenumber and in turbulent state. This allows vortices of different scales
to be identified. The velocity fields must be homogeneous isotropic, because the existence
of a wall would be a contradiction to homogeneity. This causes a mathematical problem for
the expansion of the velocity components into an infinite series. Any periodic continuous
function can be expanded into an infinite Fourier series [1]. In typical flow realizations, v is
not periodic, however this difficulty can be avoided by virtually confining the turbulent flow
to a cubic box of size L× L× L with periodic boundary conditions. Any space can be filled
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with an infinite number of identical boxes, so that one obtains a periodic flow of period L

in three directions of space. Thus this flow within a box is a periodic flow, filling the whole
space, and whose features for scales smaller than L are close to the features of the real flow.
Let vi(x, t) be the periodic velocity field. Since it is periodic of period L, it can be expanded
as an infinite series as:

vi(x, t) = (2�)3(L−3)

+∞∑
n1,n2,n3=−∞

e(2i�/L)(n1x1+n2x2+n3x3)v̂i(n1,n2,n3, t)

where, n1, n2, n3 are integers. The coefficient in front of the r.h.s. of above equation has been
chosen for reasons of normalization. We introduce a wave-vector k of components,

k =

[
2�

L
n1,

2�

L
n2,

2�

L
n3

]
, n1,n2,n3 ∈ ℤ.

The above equation can be rewritten by

vi(x, t) = (2�)3(L−3)
∑

k

v̂i(k, t)e ik⋅x, (1.50)

where the sum is taken over the discrete set of k-vectors. The v̂i(k, t) are the velocity com-
ponents in Fourier space of the functions vi(x, t) and written as

v̂i(k, t) = (2�)−3

∫
box

vi(x, t)e−ik⋅xd3x . (1.51)

with the volume element is dV = dx1dx2dx3 = dx3. In the limit L→∞, the sum in Eq.(1.50)
is [1] ∑

k

⇔ Vbox(2�)−3

∫
d3k, (1.52)

Thus, we obtain the Fourier inversion formula to (1.51)

vi(x, t) =

∫
ℝ3

v̂i(k, t)e ik⋅xd3k . (1.53)

1.5 Navier-Stokes equations in Fourier space

As we mentiond in section 1.1, the Navier-Stokes equations can be represented by Eqs.(1.14)
and (1.15). These two equations can be expressed again by,

∂v

∂t
+ v ⋅ ∇v = −1

�
∇p + �∇2v. (1.54)

∇ ⋅ v = 0. (1.55)

For a function f(x1, x2, x3, t), we write the Fourier transform f̂ . The Fourier transform of
the derivative, ∂f

∂xi
, is ikif̂(k1, k2, k3, t), where ki is the i-component of the wavevector k. The
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sybmol ℱ represents the Fourier transform operator [1], we note

ℱ(f(x, t)) = f̂ (k, t).

ℱ
(
∂f

∂xi

)
= ikif̂(k, t).

ℱ(∇f ) = i f̂ (k, t)k.

ℱ(∇2f) = ℱ
(
∂2f

∂x2
1

+
∂2f

∂x2
2

+
∂2f

∂x2
3

)
= −(k2

1 + k2
2 + k2

3)f̂ = −k2f̂ .

Thus, we have
ℱ(∇ ⋅ v) = ik ⋅ v̂(k, t).

ℱ(∇× v) = ik× v̂(k, t).

Fourier transformation of the product of two functions f(x, t) and g(x, t) is given by

ℱ [f(x, t)g(x, t)] = [f̂ ∗ ĝ](k, t).

where ∗ is the convolution product
∫
k=p+q f̂(p, t)ĝ(q, t)dp. The incompressibility condition

∇ ⋅ v = 0 implies
k ⋅ v̂(k, t) = 0.

and the velocity v̂(k, t) is in a plane perpendicular to k.
Applying the above Fourier transformations to the Navier-Stokes equations (1.54) and (1.55),
we have the Navier-Stokes equations in Fourier space

∂v̂

∂t
(k, t) + v̂(k, t) ⋅ i v̂(k, t)k = −1

�
i p̂(k, t)k− �k2v̂(k, t). (1.56)

Because v̂(k, t) is in the plane perpendicular to k, ∂v̂
∂t (k, t) and �k2v̂(k, t) also belong to that

plane. However the pressure gradient ip̂(k, t) is parallel to k. As a consequence the Fourier
transform of the quantity v ⋅ ∇v + 1

�∇p is the projection on the plane perpendicular to k of
the Fourier transform of (v ⋅ ∇v). To make this projection clear, introducing the tensor,

Pij(k) = �ij −
ki kj

k2
.

which allows a vector such as v to be projected on a plane perpendicular to k. Thus, Pij (k)vj

is the i-component of the projection of the vector v upon the plane perpendicular to k. We use
the Einstein convention of summation over repeated indices. Then due to incompressibility

ℱ
(

vj
∂vi

∂xj

)
= ℱ

(
∂(vivj)

∂xj

)
= ikj

∫
k=p+q

v̂i(p, t)v̂j(q, t)dp.

Then the i-component of v ⋅ ∇v + 1
�∇p in Fourier space is equal to

ikmPij(k)

∫
k=p+q

v̂j(p, t)v̂m(q, t)dp.
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Finally the Navier-Stokes equation in Fourier space is written by(
∂

∂t
+ �k2

)
v̂i(k, t) = −ikmPij (k)

∫
k=p+q

v̂j(p, t)v̂m(q, t)dp.

The pressure has thus been eliminated by projection on the incompressibility plane. The
nonlinear interactions involve triad interactions between wavevectors such that k = p + q. A
structure of wavelength 2�

k will also often be associated with a wavenumber k.

1.6 MHD equations in the spectral domain
Nonlinear triad interactions and many other properties in MHD turbulence are best ex-

plained in the spectral domain. Hence the flow Eqs.(1.38)-(1.40) are expressed by Fourier
transformation by the same way as the Navier-Stokes equations. For example a quantity like
vorticity ! is transformed into the spectral domain as:

!(x, t) =

∫
d3k!̂(k, t)e ik⋅x (1.57)

here, the l.h.s. is the real space quantity and on the r.h.s. !̂(k, t) is its Fourier space
counterpart, eik⋅x is the basis function for the Fourier space and k is the spectral wavevector,
with x and k being the Fourier transform pair x = 2�/k. For simplicity of notation, the
quantities !(x, t) and !̂(k, t) will generally be referred to ! and !̂ respectively. With this
formulation the set of Eqs.(1.38)-(1.40) read

∂t!̂ = ik× [v̂ × ! − ˆb× (∇× b)]− �̃k2!̂, (1.58)

∂tb̂ = ik× v̂ × b− �̃k2b̂, (1.59)

ik ⋅ v̂ = ik ⋅ b̂ = 0. (1.60)

Here the symbol (̂...) means the convolution integral, for example

ˆ(v × !)(k) =

∫
d3k ′v̂(k′)× !̂(k− k′). (1.61)

When no mean magnetic field is imposed on a homogenous incompressible MHD system of
Eqs.(1.58)-(1.60), this system is called an isotropic MHD turbulent system. When a constant
mean magnetic field with a given strength is imposed on a MHD system, it is anisotropic
MHD turbulent system. The mean magnetic field greatly influences the turbulent flow and
its characteristics (ideal invariants). Nonlinear triad interactions are studied in both isotropic
and anisotropic cases.

1.7 Ideal invariants in Navier-Stokes and MHD turbulence
In order to describe and obtain more information about the turbulent dynamics in Navier-

Stokes (NS) and MHD systems, in particular the spectral nonlinear energy transfer, triad
interactions, and cascading directions processes, a number of ideal invariants are considered
[2]. This is especially for the ideal fluid (�=0 in NS, and � = � = 0 in MHD). Quadratic
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invariants are particularly important since they remain invariant when truncating the spatial
Fourier representation of the turbulent system at a finite wavenumber [30].

1.7.1 Ideal invariants in Navier-Stokes turbulence
∙ In 2D-NS: there are two ideal quadratic invariants

1- Kinetic energy: It is the kinetic energy of the system

EK =
1

2

∫
S
dSv2. (1.62)

2- Enstrophy: It is half the squared vorticity, it also called mean square vorticity

Ω =
1

2

∫
S
dS!2. (1.63)

where ! = ∇× v is the vorticity and S denotes the surface of the fully periodic domain.

∙ In 3D-NS: there are two ideal quadratic invariants
1- Kinetic energy

EK =
1

2

∫
V
dV v2. (1.64)

2- Kinetic helicity: It represents the twist of vortex lines and is defined as the volume
integral of the dot product of vorticity and velocity fields,

HK =
1

2

∫
V
dV (v ⋅ !). (1.65)

where V is the volume of the system under consideration. The results of direct numerical
simultions (DNS) of 3D-NS turbulence show that the turbulent structures are thin tubes of
high vorticity. This occurs due to vortex stretching and leads to the invariance of the kinetic
helicity in an ideal fluid 3D-NS turbulence [1]. In 2D-NS turbulence, vortex stretching is not
present but since vorticity is conserved, this leads to an inverse cascade of kinetic energy and
direct cascade of enstrophy [2]. We will discuss this in detail in Chapter five.

1.7.2 Ideal invariants in MHD turbulence
∙ In 2D-MHD: there are three quadratic ideal invariants

1- Total energy is the sum of the kinetic energy and magnetic energy of the system

Etot = EK + EM =
1

2

∫
S
dS(v2 + b2). (1.66)

2-Mean square vector potential: It represents half squared magnetic vector potential

A =
1

2

∫
S
dSa2 (1.67)

where a is the magnetic vector potential which is related to the magnetic field by
b = ∇× a.
3- Cross helicity: It is the surface integral of the dot product of the velocity field and
magnetic field. It gives the overall correlation of velocity and magnetic fields and it
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expressed dy:

HC =
1

2

∫
S
dS(v ⋅ b). (1.68)

∙ In 3D-MHD: there are three important quadratic invariants [18] which give a fair idea
of the large-scale dynamics of the system. These ideal invariants are:
1- Total energy is the sum of the kinetic energy and magnetic energy of the system

Etot = EK + EM =
1

2

∫
V
dV (v2 + b2). (1.69)

2- Magnetic helicity: It is the volume integral of the dot product of the magnetic vector
potential and the magnetic field. It measures the linkage and twist of the magnetic field
lines [31]

HM =
1

2

∫
V
dV (a ⋅ b) (1.70)

3- Cross helicity: It is the volume integral of the dot product of the velocity field and
magnetic field.

HC =
1

2

∫
V
dV (v ⋅ b). (1.71)

As mentioned above in section 1.6, the three ideal invariants in 3D-MHD in spectral space
read as :

Etot
k =

1

2

∫
d3k(∣v̂∣2 + ∣b̂∣2), (1.72)

HC
k =

1

2

∫
d3k v̂∗ ⋅ b̂, (1.73)

HM
k =

1

2

∫
d3k â ⋅ b̂∗. (1.74)

Here ∗ is the usual complex conjugate notation. In the Eqs.(1.73) and (1.74) the symmetry
property of the Fourier transforms for the real-valued functions e.g., f (−k) = f ∗(k) has been
used. Using these flow equations in the Fourier space, the nonlinear triad interactions in HD
and MHD are studied.

1.7.3 Selective decay

Turbulence occurs only in non-ideal systems, meaning systems with viscosity present. Vis-
cosity dissipates energy and thus the global energy of a system will decay unless it is sustained
by a driving mechanism. In decaying turbulent system it is interesting to quantify the rate
of decay of each of the ideal invariants. These decay rates are called selective dissipation and
their derivation is given in [2, 21].

∙ In 2D-HD: The decay rates of the energy and enstrophy are given by:

ĖK = −�K = −DEK = −�
∫
S
dS!2 = −2�Ω, (1.75)

Ω̇ = −� = −DΩ = −�
∫
S
dS(∇!)2. (1.76)
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∙ In 3D-HD: The decay rates of the energy and kinetic helicity are given by:

ĖK = −�K = −DEK = −�
∫
V
dV !2, (1.77)

ḢK = −� = −DHK = −�
∫
V
dV ! ⋅ (∇× !). (1.78)

∙ In 2D-MHD: The decay rates of the total energy, mean square vector potential and
cross helicity are given by:

Ėtot = −�tot = −DEtot = −
∫
S
dS(�!2 + �j2), (1.79)

Ȧ = −DA = −�
∫
S
dSb2, (1.80)

ḢC = −DHC = −� + �

2

∫
S
dS(j ⋅ !). (1.81)

where j = ∇× b is the current density of the system under consideration.

∙ In 3D-MHD: The decay rates of the total energy, magnetic helicity and cross helicity
are given by:

Ėtot = −�tot = −DEtot = −
∫
V
dV (�!2 + �j2), (1.82)

ḢM = −DHM = −�
∫
V
dV (j ⋅ b), (1.83)

ḢC = −DHC = −� + �

2

∫
V
dV (j ⋅ !). (1.84)

where the dot in above decay-rate equations represents the time derviative and � represents
the dissipation. From the total rate of energy dissipation Ėtot = −�tot in the 3D-MHD case,
one can obtain both of the rate of kinetic energy dissipation, ĖK = −�K = −�

∫
V dV !

2 and
the rate of magnetic energy dissipation, ĖM = −�M = −�

∫
V dV j

2.



Chapter 2

Hydrodynamic and
magnetohydrodynamic turbulence
phenomenological models

To understand the way that turbulent structures form, nonlinearly interact, and dissipate in
both hydrodynamic and MHD turbulence, there are several standard models: Kolmogorov(K41),
Iroshnikov-Kraichnan(IK) and Goldreich-Sridhar(GS). Each approach gives rise to a differ-
ent phenomenological description of turbulent flows. Kolmogorov’s phenomenology has eddy
interactions at it’s basis. In contrast the IK and GS phenomenologies have Alfvén wave inter-
actions as the central idea. Before these models are explained, important terms that appear
in them are discussed first. The concentration is only on briefly defining scales, ranges, non-
linear triad interactions, and interaction time scales, which will later be used to describe the
phenomenologies.

2.1 Aspects of the turbulence phenomenologies
2.1.1 Different scales and ranges

In order to understand the physical processes in different eddies of turbulence, eddies1

can be classified by length scale and then interactions among eddies of different scales can be
studied. These eddies are described as large, intermediate, and small-scale. Here the word
scale approximately represents the wavelength considered in these structures (in turbulence
studies the inverse of the wavelength, i.e., wavenumber, k is generally used). This classifica-
tion is highly subjective to the system under consideration [1, 32]. Intermediate eddies would
have sizes in between the largest and the smallest scaled eddies. Interaction between eddies
of various sizes, spanning over several orders of magnitude (in size).
Usually energy is injected into the system by some large-scale gradient. In the numerical sim-
ulations of forced turbulence, the driving mechanisms are placed in large-scales. Hence the
range associated with these scales is termed as ‘the drive range’. The large structures break
into smaller and smaller structures due to the shear stresses. In this process intermediate

1An eddy is a fluid current whose flow direction differs from that of the general flow; the motion of the
whole fluid is the net result of the movements of the eddies that compose it.
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size eddies are created, which in turn create small eddies. In an established turbulent flow,
structures of all scales can be observed. At small scales, dissipative processes such as heat
generation or radiation are dominant. This range is called ‘the dissipation range’. During
the transition from large scales to small scales and eventual dissipation, the eddies exhibit
self-similar behavior in some physical quantities, not influenced by either energy injection or
dissipation. The range over which self-similar behavior is present in the flow is called ‘the
inertial range’ and in this range large-scale driving and small-scale dissipation are negligible.
The inertial range gets its name from hydrodynamic turbulence studies where in this range,
the dynamics are supposed to be determined by nonlinear inertia terms of the Navier-Stokes
equation [1].

Figure 2.1: Schematic view of the Kolmogorov (K41) picture of turbulence using the energy spectrum as an
example from Müller and Biskamp [30].

Fig.2.1 shows the different rangs, scales and two ways by the energy can be transferred in
the inerial range: a direct cascade or an inverse cascade. Generally, the word cascade means
flow, but in this context it means nonlinear spectral transport. In the inertial range, it has
been observed that certain physical quantities transport smoothly from large scales to small
scales, without the influence of either of these two scales. Such quantities are said to have
shown a direct cascade. There exist some other quantities which spectrally transport from
small scales to large scales once again uninfluenced by either of the scales, such quantities
are said to have shown an inverse cascade behavior. A cascade can exit in both directions
only if the flux of the quantity remained constant over the inertial range of transport. This
means that the ideal invariants would show a cascade by virtue of their invariance (i.e., they
possess constant dissipation rates similar to transfer rate), which results in constant spectral
flux. In addition, Fig.2.1 shows that the energy in turbulent structures can span many orders
of magnitude between the small and the large scales. Because of the self-similar behavior of
the physical quantity in the inertial range, the observed curve is a straight line with a specific
slope when plotted in a log-log plot.
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2.1.2 Local and nonlocal interactions

The method which used to discretize the MHD equations in the Fourier domain is explained
in section 1.6. This discretization not only allows us to numerically solve the equations but
also is useful in applying the formalism of equilibrium statistical mechanics to continuum
fluid turbulence [2]. In this process, ideal invariants are not strictly conserved. However,
quadratic invariants remain invariant in the truncated system. To understand this property
we must examine the Fourier transform more closely. For any nonlinear term, e.g., a product
of two functions f(x)g(x) in configuration space, there corresponds a convolution integral in
the Fourier space

f̂ ∗ ĝ =

∫
f̂(p)ĝ(k− p)d3p =

∫ ∫
f̂ (p)ĝ(q)�(k− p− q)d3pd3q (2.1)

where
∫
�(k)dk=1, for the Dirac delta function �(k). Here k, p, and q are three wavevectors.

By using a discrete Fourier transform, the convolution integral becomes a convolution sum.
Thus the nonlinear terms of HD and MHD equations which are shown in section 1.6, make
three wavenumbers (i.e., three scales) appear in the Fourier space, defining a triad. By the
detailed conservation relation for elementary interaction between any triad of wavevectors
k, p, and q forming a triangle, i.e., k + p + q=0, a quadratic invariant, e.g., energy E(k)

satisfies
Ė(k) + Ė (p) + Ė (q) = T (k,p,q) + T (p,q,k) + T (q,k,p) = 0 (2.2)

where the dotted quantity represents time differentiation and T is the nonlinear transfer func-
tion. These interactions are called triad interactions and can be inferred from the nonlinear
terms of the MHD equations. These interactions are intrinsically related to the mathematical
nature of the MHD equations. They are classified into local and nonlocal types on the basis
of the topology of the triangle formed from the three wave vectors [33]. Different types of
nonlinear transfer and triad interactions will be discussed in detail in section 3.4.

2.1.3 Fluctuations and interaction time

Turbulent structures can be of various sizes and they can interact either locally or nonlo-
cally in spectral space. This work attemps to quantify these interactions. To this end, various
properties of turbulent flow are statistically measured and the interaction time scales quan-
tified. The velocity field v is used as an example to illustrate this approach. This velocity
field is viewed as a superposition of eddies characterized by a spatial scale, l. The associated
velocity fluctuation is given by

�vl ≃ [v(r + l)− v(r)] ⋅ l/l . (2.3)

On small scales statistical isotropy of the field is assumed. This assumption is valid because
of random mixing, where the fluid forgets the anisotropic way that turbulence is generated
[2]. The fluctuation in amplitude only depends on l, thus allowing the characteristic eddy
velocity to be defined as:

vl ∼
〈
�v2
l

〉1/2
. (2.4)
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In the inertial range, the statistical moments of the two-point probability distribution of the
turbulent field, the structure function of order p, is defined based on the velocity fluctuations

Svp (l) ∼ ⟨�vl⟩p ∼ l�p , (2.5)

where �p is a constant scaling exponent that can differ depending on the order of the struc-
ture function. This family of constants characterize the intermittency of flow structures by
establishing a connection between inertial range and dissipative range physics (see, [2]).
With the help of the spatial scale and the characteristic eddy velocity, the eddy turnover time
�l is now defined as:

�l ∼
l

vl
. (2.6)

Here �l is the typical time for a structure of size l to undergo a significant distortion due to
shear stresses. As incompressibility has been assumed, it is also the time for the transfer of
an excitation from one scale to another (i.e., a cascade time). It is achieved by the changes
in the shapes of the structures in order to preserve incompressibility. Typically in the case of
a direct cascade (i.e., physical quantity getting transferred to smaller scales), e.g., for energy
in 3D-HD, the flux can be defined

Π
′
l ∼

v2
l

tl
∼
v3
l

l
∼ �. (2.7)

Here � is the energy dissipation rate. Dimensional considerations are used in deriving Eq.(2.7)
(for more details see, [34]).
In the MHD case, the energy transfer is driven by shear Alfvén waves (the central idea of the
IK phenomenology). If b0 is a magnetic guide field, interacting with the eddies of size l, then

�A ∼ l/b0, (2.8)

is the duration of a collision of two counter-propagating shear-Alfvén wave packets. Since the
magnetic field is measured in Alfvén speed units, ∣b0∣ = b0, �A is typically much shorter than
�l, so the change in amplitude during one scattering event is small and many such events are
needed in order to produce a relative change of order unity [2].
In cases where a mean magnetic field is applied, the turbulent system is no longer isotropic,
leading to anisotropic MHD turbulence. In this case, the excitations are not uniformly trans-
ferred, but have a preferred direction. Typically if the wavevector k is resolved into parallel
and perpendicular components, k∣∣ and k⊥ respectively, small-scale modes are excited primar-
ily perpendicular to the magnetic field [2]. In this set up, the time scales corresponding to
the two components of k are different and are defined by

�A ∼ l∣∣/vA, (2.9)

and
�l⊥ ∼ l⊥/zl⊥ . (2.10)
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The length scale l is resolved into parallel and perpendicular directions l∣∣ and l⊥ being, vA
is the Alfvén velocity, and zl⊥ is the Elsässer field in the perpendicular direction. �A is called
Alfvén time and �l⊥ the eddy turnover time of the system.

2.2 Kolmogorov’s 1941 theory for fluid turbulence

The K41 phenomenology is useful to explain the turbulence phenomena in hydrodynamic.
Some predictions from this phenomenology have also been confirmed for the MHD case (e.g.,
[35, 36, 37, 38]), though the interaction mechanisms leading to such results are different from
the hydrodynamic case and still not well understood. The important aspects of this theory in
the hydrodynamic case are described below briefly, more detailed presentation can be found
in Müller and Biskamp [30], and Verma [39].
For the most ideal case, i.e, steady-state, large Reynolds number (Re→∞), and incompress-
ible isotropic turbulence, Kolmogorov derived the well-known the four-fifth law [40, 41, 42, 14]〈

(Δv)3
∥

〉
= −4

5
�l. (2.11)

where (Δv)∥ is the component of v(x + l)− v(x) parallel to the direction of the spatial
increment l. Here x, ⟨...⟩ is a standard notation for ensemble average2, � is the dissipation
rate, and l lies between characterize forcing scale L and dissipative scale ld, i.e., ld ≪ l≪ L.
This intermediate range of scales is called the inertial range. Fig.2.1 shows a schematic
representation of K41 picture, which uses three spatial scale ranges: (a) the energy containing
range at large-scales (small wavenumbers, k) where energy is supplied to the system by an
external force or an instability, (b) the dissipation range at smallest-scales (large wavenumbers,
k) where dissipative effects dominate and energy is removed from the system by viscosity or
resistivity, and (c) an intermediate region known as the inertial-range. In the inertial range it is
assumed that the influence of driving and dissipation are negligible and nonlinear interactions
that govern the dynamics of energy transfer. More convenient than Eq.(2.11) is its equivalent
statement on the energy spectrum. If we assume (Δv) to be fractal3, and � to be independent
of scale, we have 〈

(Δv)2
〉
∼ �2/3l2/3.

Under the assumption of quasi-stationarity condition, the nonlinear energy flux in the inertial
range is scale independent and equal to the energy dissipation as shown in Eq.(2.7). This
relatioin helps to determine the velocity scaling as

vl ∼ (�l)1/3.

2For a random variable x, the ntℎ realization of x is xn. The ensemble average of x is denoted as X or ⟨x⟩,
and is defined as

⟨x⟩ = lim
N→∞

1

N

∑
xn.

3Mathematically, fractal means a geometric pattern that is repeated at every scale and so cannot be
represented by classical geometry.
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Thus Eq.(2.11) can be written as [34]

Sv
3 (l) = −4

5
�l. (2.12)

Using (2.12), a relation v3
l ∼ l is obtained and it can be written in general form as:

Sv
p (l) ∼ (�l)p/3. (2.13)

In the spectral space, where k ∼ l−1, for the hydrodynamic case, the angle-integrated energy
spectrum E (k) is given by

E(k) =
1

2

∫
d3k ′�(∣k′∣ − k)∣v(k′)∣2, (2.14)

with v(k′) being the Fourier counter part of the velocity v. With the relation v2
l ≃ kE (k),

the scaling exponent of Sv
2 (l), �2 and the inertial range scaling of E (k) ∼ k−x can be linked

to get a relation between the two exponents as x = −(1 + �2). This particular relation yields
the most important K41-spectrum in incompressible hydrodynamic turbulence

E(k) = KK0�
2/3k−5/3, (2.15)

where KK0 ≈ 1.6 is a universal constant, commonly known as Kolmogorov’s constant. It is
to be noted that this power law could also be arrived using only the dimensional analysis of
the relation E (k) ∼ �ykx , where x and y are the constants to be determined. This spectral
relation has been verified experimentally and also seen in several natural phenomena like
atmospheric turbulences and ocean wave turbulences [34].
Eqs. (2.11) and (2.15) can be derived using scaling arguments (dimensional analysis) under
the following assumptions,

(i) The energy spectrum in the inertial range does not depend on the large-scaling forcing
processes and the small-scale dissipative processes, hence there must be a power-law in
the local wavenumber.

(ii) Energy transfer in fluid turbulence is local in the wavenumber space in the inertial
range. The energy supplied to the fluid at the forcing scale cascades to smaller scales.
Under steady state turbulence the energy cascade rate (the energy flux) is constant in
the wavenumber space and equal to the rate of energy dissipation, i.e., Π(k)= constant
=�.

Complex interactions among fluid eddies in various different situations can be well approxi-
mated by Eq.(2.15).
From Kolmogorov’s theory we learn:

(i) Kolmogorov’s theory assumes homogeneity and isotropy. In real flows, large scales (forc-
ing) as well as dissipative scales do not satisfy these properties. However, experiments
and numerical simulations show that in the inertial range (ld ≪ l ≪ L), the fluid flows
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are typically homogeneous and isotropic. So K41 is usually valid in the inertial range
of neutral fluid turbulence.

(ii) The velocity fluctuations at any scale l satisfy: vl ∼ (�l)1/3. Therefore, the effective
time-scale for the interaction among eddies of size l is: �l ∼ l

vl
∼ �−1/3l2/3.

(iii) An extrapolation of Kolmogorov’s scaling to the forcing and the dissipative scales yields

� ∼
v3
L

L
∼
v3
d

ld
.

Taking � ∼ vdld one obtains

ld ∼
(
�3

�

)1/4

.

This dissipation scale, also known as Kolmogorov’s length scale, depends on the large-
scale quantity � apart from kinematic viscosity, �.

(iv) From the definition of the Reynolds number

Re ∼ VLL

�
∼ VLL

vld ld
∼
(
L

ld

)4/3

,

where VL is the velocity in the forcing scale L. Onset of turbulence depends on geometry,
initial conditions, noise, etc. In most experiments turbulence becomes fully developed
above Re of 2000 or more. In three dimensions the number of active modes (L/ld)

3 is
large, which makes the problem computationally complex and challenging.

2.3 Iroshnikov-Kraichnan(IK) phenomenology
In magnetohydrodynamic turbulence, the velocity field is coupled to a magnetic field.

Iroshnikov and Kraichnan [43, 25] independently developed a phenomenology, called IK phe-
nomenology, that takes into account both velocity and magnetic fields. The important features
of this theory are explained briefly here following [2, 18]. This theory based is on the idea
that only oppositely directed Alfvén waves interact in incompressible MHD. Other important
assumptions of the IK theory are:

(i) Turbulence is statistically isotropic, and

(ii) The dominant interactions are those which couple three waves (i.e., triad interactions).

In the IK theory, the energy transfer is driven by Alfvén wave interactions. Energy is re-
distributed between different length scales by nonlinear scattering of colliding Alfvén-wave
packets, along a magnetic field line, traveling in opposite directions. Here the Elsässer quan-
tity zl is used in defining the major relations analogously to vl in the hydrodynamic case.
Elsässer variables have the special property that z± = 0 are exact nonlinear solutions of the
ideal incompressible MHD equations. The Elsässer variables represent Alfvén wave pulses
on a mean magnetic field. There is no distinction made between z− and z+ as the mean
alignment between the magnetic and velocity fields is restricted to small values. If a magnetic
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guide field b0 is present in the system, and if the perturbations �v and �b are small compared
to b0 then it is seen that �v ≃ ±�b [2, 18]. The interaction time of eddies of size l is

�A ∼ (l/b0).

The non-magnetic eddy-distortion time �l ∼ l/�zl is much longer than the interaction time
�A.
With the above differences, the IK phenomenology follows the same logic as the K41 phe-
nomenology, but with two dynamic time scales: the Alfvén time, and the time for distortion
of a wave packet by a counter propagating eddy, �A ≪ �l. Both time scales are associated
with the same scale l. Since the interaction time of two oppositely propagating wave packets
is �A, the change of amplitude △�zl during a single collision of two wave packets is small

△�zl
�zl

∼ �A
�l
≪ 1.

Because of the random nature of the interaction process, the number of elementary interactions
needed to produce a relative change in amplitude of order unity is N ∼ ( �zl

△�zl )
2 [2]. Hence

the energy-transfer time is defined by �in ∼ �2
l /�A. and if �l → �in then the dissipation rate is

defined by
� ∼ �z4

l �A/l
2. (2.16)

With the approximations presented above, and vl → zl, all of the K41 results can be modified
to the IK results. The basic inertial range scaling of the Elsässer fields in IK case is given by

zl ∼ (�b0l)
1/4

and this leads to
Szp(l) ∼ (�b0l)

p/4. (2.17)

Eq.(2.17) for the non-intermittent inertial range scaling leads to the spectral relation for total
energy

E(k) ∼ CIK(b0�)
1/2k−3/2, (2.18)

with a dissipation length

lIK =

(
b0�̃

2

�

)1/3

. (2.19)

The IK phenomenology relies on the isotropic nature of the turbulent fields. However the
magnetic field does not satisfy Galilean invariance and hence this assumption is not valid. Al-
though IK phenomenology appears to explain many aspects of the MHD turbulence, anisotropy
that sets in because of a mean magnetic field remains a major challenge. However, the triad
interaction assumption, which is fundamental to this phenomenology forms the basis for a
stochastic description of 3D-MHD through eddy-damped quasi-normal Markovian (EDQNM)
approximation [1, 26].
The IK phenomenology is valid in 2D-MHD turbulence, several numerical simulations confirm
that the scaling law for the energy is consistent with Eq.(2.18).
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2.4 Goldreich-Sridhar (GS) phenomenology
In both the isotropic K41 and the IK pictures, turbulent fluctuations are characterized

by a single length scale l. However, the presence of a magnetic field renders the turbulence
locally anisotropic. Alfvén wave packets on the scale of � propagate along the mean magnetic
field b0 with a characteristic time scale �� ∼ �/b0. Simultaneously, the field-lines are subject
to eddy-scrambling perpendicular to the mean magnetic field b0 on the turnover time-scale
�l ∼ l/zl, where l is the field perpendicular extent and zl the amplitude of the fluctuations. In
addition, it has been found that the nonlinear energy flux is much weaker along the direction
of the magnetic field [44, 45, 46, 47].
Goldreich and Sridhar take into account the anisotropic nature of the magnetic field, while
formulating the phenomenology for MHD turbulence [2, 48, 49, 18]. The wavevector k is split
into its parallel and perpendicular components with respect to the mean magnetic field. The
fundamental assumption in this phenomenology is that there exists a critical balance between
�A and �l defined as above in IK phenomenology, i.e., �A ∼ �l. This means that the magnetic
field deformations associated with the field-perpendicular turnover time �l propagate with
Alfvén speed b0 over a parallel distance � = b0�A in the same time. The nonlinear energy flux
is much weaker along the direction of the magnetic field.
Thus from the strong and intermediate MHD turbulence arguments, power law behavior
similar to the K41 spectra in the perpendicular direction and a new power law behavior in
the parallel direction, respectively, were predicted by the GS theory. The derived power law
behaviors are

E(k⊥) ∼ 1

2

∫
dk1

∫
dk2(∣v(k)∣2 + ∣b(k)∣2) ∼ k

−5/3
⊥ , (2.20)

and
E(k∥) ∼ k−2

∥ . (2.21)

Here k⊥ ∼ l−1 while k1 = k∥ ∼ �−1 and k2 ⊥ k∥, k⊥. However in numerical simulations of
strong MHD turbulence, this 5/3 law is not observed and instead a 3/2 behavior is found
[50, 35, 45]. Boldyrev [51] suggested an explaination of this deviation from the GS theory:
an increasingly parallel polarization of Alfvénic fluctuations results in weakening of nonlinear
turbulent interaction.
Recently, Gogoberidze [52] modified the IK model for anisotropic incompressible MHD so
that it yields a 3/2 spectrum in the perpendicular direction for the energy spectrum. In the
context of our own work, neither IK or GS phenomenologies are directly relevant, but due to
their importance for MHD turbulence, they have been briefly introduced here. They are also
not capable of explaining all the features observed in numerical simulations and observations
inspite of the recent modifications. In fact, no unique phenomenological model exists for this
purpose. Explaining all the features of 3D-MHD turbulence using an unique phenomenological
model is currently an area of research.
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Chapter 3

Nonlinear triad interactions and
detailed conservation

In this chapter, the concept of nonlinear triad interactions is introduced. The model of
energy transfer, the formulae of the combined energy transfer rate, and detailed conservation
in both hydrodynamic (HD) and magnetohydrodynamic (MHD) turbulence are explained.
The energy cascade rates or flux and how it plays an important role for studying the locality
and nonlocality of the nonlinear energy transfer and triad interactions in both HD and MHD
turbulence are discussed. Definition of the locality and nonlocality of the nonlinear transfer
function and triad interactions are presented. Different types of turbulent cascade directions
are shown. Finally, the transfer density functionQ(v) and locality functionW (v) of Kraichnan
[5, 6] are discussed.

3.1 The concept of nonlinear triad interactions

In this section, the importance of triad interactions in turbulence will be shown in more
details. As mentioned before that the set of equations of both hydrodynamic and magnetohy-
drodynamic turbulence systems includes nonlinear terms, these equations set must be solved
in Fourier space to understand the spectral properties and dynamics of energy transfer in
these systems of turbulence.
The Fourier transform of the nonlinear term, for example a product of two functions f(x)g(x)

can be computed using the series expansion of f(x) and g(x) (cf. section 1.4), and appyling
Eq.(1.51) on the nonlinear term f(x)g(x), we have

ℱ(fg)(k) =
1

(2�)3

∫
V

f (x)g(x)e−ik⋅xd3x

=
(2�)3

L6

∑
p

∑
q

f(p)g(q)

∫
V

e−i(k−p−q)⋅xd3x . (3.1)

Using the distribution definition of the Dirac delta-function,

�(k) =
1

V

∫
V

e−ik⋅xdx =
1

V

∫
V

e ik⋅xdx,
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where V = L3. This function is zero when k ∕= 0 , and when k = 0 it is infinite in such a way
as to make ∫

�(k)dk = 1.

Thus Eq.(3.1) can be written as

ℱ(fg)(k) =
(2�)3

L3

∑
p

∑
q

f (p)g(q)�(k− p− q). (3.2)

The sum and the integral signs were changeable here, because the Fourier series are converging
by definition of periodic functions. In Eq.(3.2) �(k − p − q) is the Kronecker delta symbol,
which is zero unless

k = p + q.

Now, taking the limit V →∞, Eq.(3.2) becomes

ℱ(fg)(k) =
V

(2�)3

∫∫
f(p)g(q)�(k− p− q)d3p d3q. (3.3)

This because the delta function in Eq.(3.2) is still discrete, and the continuous delta function
satisfies the relation

�c(k− p− q) =
(2�)3

V
�d (k− p− q).

which is obtained by computing the discrete and the continuous expressions:∑
k

�d (k)f(k) = f(0)

and ∫
f(k)�(k)dk =

(2�)3

V

∑
k

f(k)�(k) = f(0).

This finally leads to the expression for the Fourier transform of the nonlinear term f(x)g(x),

ℱ(fg)(k) =

∫ ∫
f (p)g(q)�(k− p− q)d3pd3q. (3.4)

The expression in Eq.(3.4) is nonzero only when the three vectors k, p, and q form a triangle,
i.e., when k− p− q = 0. The interpretaion of the double integral on the r.h.s. of Eq.(3.4)
is that the Fourier modes belonging to wavenumbers p and q can interact, e.g., exchange
energy with the third mode belonging to wavenumber k, provided that the three vectors form
a triangle.
Thus, the nonlinear terms of HD and MHD equations which are shown in section 1.6, makes
three wavevectors appear in the Fourier space, forming a triad and only the triads which satisfy
the relation k + p + q = 0. These triads are the key of understanding the phenomenon of
energy transfer in turbulent flows, this phenomenon is the central to the concept of "triad
interactions" and is a consequence of the quadratic nonlinearities of both hydrodynamic and
magnetohydrodynamic equations.
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3.2 Energy transfer in fluid turbulence

3.2.1 Combined energy transfer rate in fluid turbulence

In fluid and MHD turbulence, eddies of various sizes interact amongst themselves. The
energy exchange takes place between various Fourier modes during their interactions. These
interactions arise due to the nonlinearities present in these systems. The fundamental interac-
tions in turbulence involve a wavenumber triad (k,p,q) satisfying k + p + q = 0 as mentioned
in section 3.1. The formulae for combined energy transfer rate were used to study energy trans-
fer rates in HD and MHD by many authors (see, for example [53, 26, 54, 55, 56, 57]). Usually
energy gained by a mode (wavenumber) in the triad is computed using the combined energy
transfer from the other two modes [58].
The evolution equation for the kinetic energy in turbulent fluid in periodic box can be written
in simple form (see appendix A and more details in [59, 1])(
∂

∂t
+ 2�k2

)
1

2

〈
∣v(k)∣2

〉
=

1

2

∑
k+p+q=0

−ℑ [⟨(k ⋅ v(q))(v(p) ⋅ v(k))⟩+ ⟨(k ⋅ v(p))(v(q) ⋅ v(k))⟩] .

(3.5)

where ℑ denotes the imaginary part.
In this work, an ideal hydrodynamic case is considered where viscous dissipation is zero
(� = 0), then the evolution of energy equation is given in Lesieur [58]

∂

∂t

1

2
∣v(k)∣2 =

1

2

∑
k+p+q=0

−ℑ [(k ⋅ v(q))(v(p) ⋅ v(k)) + (k ⋅ v(p))(v(q) ⋅ v(k))] . (3.6)

The evolution equation of kinetic energy does not include any contribution from the pressure
field. This is because in incompressible flows, the pressure force is always perpendicular to
the velocity field, thus the incompressibility condition can be obtained k ⋅ v(k) = 0. Indeed,
the pressure force may however indirectly influence the evolution of the energy,

〈
∣v(k)∣2

〉
.

Consider a case in which only three modes v(k),v(p),v(q) and their conjugates are nonzero,
Eq.(3.6) yields

∂

∂t

1

2
∣v(k)∣2 =

1

2
T (k∣p,q), (3.7)

with
T (k∣p,q) = −ℑ [(k ⋅ v(q))(v(p) ⋅ v(k)) + (k ⋅ v(p))(v(q) ⋅ v(k))] . (3.8)

Eq.(3.8) gives the nonlinear quantity, which represents the combined energy transfer rate from
the modes p and q to the mode k (see, e.g., [39, 60, 58, 61, 62]). The evolution equations for
∣v(p)∣2 and ∣v(q)∣2 are similar to that for ∣v(k)∣2. By adding the energy equations for all the
three modes, we obtain

∂

∂t

1

2

[
∣v(k)∣2 + ∣v(p)∣2 + ∣v(q)∣2

]
= T (k∣p,q) + T (p∣q,k) + T (q∣k,p)

= ℑ [(q ⋅ v(q))(v(k) ⋅ v(p)) + (p ⋅ v(p))(v(k) ⋅ v(q)) + (k ⋅ v(k))(v(p) ⋅ v(q))] .

(3.9)
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According to incompressibilty condition k ⋅ v(k) for incompressible fluid, the r.h.s of Eq.(3.9)
is identically zero. Hence the energy in each of the interacting triad is conserved, i.e.,

∣v(k)∣2 + ∣v(p)∣2 + ∣v(q)∣2 = constant (3.10)

3.2.2 Effective mode-to-mode energy transfer rate in fluid turbulence

Dar et al. [61] tried to specify the combined energy transfer rate formula from two modes
to the third one in a triad (cf. Eq.3.8) by a formalism that takes in consideration the energy
transfer between a pair of modes in a triad with the third mode mediating the transfer,
e.g., the quantity T (k∣p∣q) represents the energy transfer from mode p to mode k via mode
q which acts as a mediator, the quantity by this formalism is called "mode-to-mode energy
transfer". They showed that mode-to-mode energy transfer formalism to be unique apart from
an irrelevant arbitrary constant. Even though they talk about mode-to-mode transfer, they
are still within the framework of triad interaction, i.e., a triad is still the fundamental entity
of interaction. Fig.3.1 shows the mode-to-mode energy transfer in a triad of fluid turbulence,
e.g., the kinetic energy transfer from mode p to kinetic energy in mode k with the mode
q acts as the mediator, T vv(k∣p∣q) and the kinetic energy transfer from mode q to kinetic
energy in mode k with the mode p acts as the mediator, T vv(k∣q∣p). In addition, Fig.3.1
shows the combined energy transfer of these two mode-to-mode quantities, T vv(k∣p,q) in the
same triad. Dar et al. [61] and Verma [39] showed that the nonlinear term of combined energy
transfer rate T vv(k∣p,q) can be split into a sum of two terms as

T vv(k∣p,q) = Rvv (k∣p∣q) + Rvv (k∣q∣p), (3.11)

The superscript symbol vv represents the kinetic energy transfer from one mode to kinetic
energy in another mode via the third mode in a triad. The r.h.s of Eq.(3.11) includes two
terms, the first one Rvv(k∣p∣q) denotes to the rate of kinetic energy transfer from the mode
p to the mode k via the mediator q, whereas the second one denotes to the rate of energy
transfer from the mode q to the mode k via the mediator p. Similarly, the nonlinear terms
of combined energy transfer rate T vv(p∣q,k) and T vv(q∣k,p) can be given by

T vv(p∣q,k) = Rvv (p∣q∣k) + Rvv (p∣k∣q), (3.12)

T vv(q∣k,p) = Rvv (q∣k∣p) + Rvv (q∣p∣k), (3.13)

The R quantities in Eqs.(3.11)-(3.13) are required to satisfy another condition, is that the
energy transfer from one mode to another should be equal and opposite to the energy transfer
from the latter to the former. Thus, the kinetic energy transferred from mode p to mode k

via mode q, Rvv(k∣p∣q) must be equal and opposite to the kinetic energy transferred from
mode k to mode p via mode q, Rvv(p∣k∣q). Thus,

Rvv(k∣p∣q) + Rvv (p∣k∣q) = 0, (3.14)

Rvv(p∣q∣k) + Rvv (q∣p∣k) = 0, (3.15)
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Figure 3.1: Schematic view of both the mode-to-mode, T vv( ∣ ∣ ) and the combined, T vv( ∣ , ) energy
transfer in a triad of fluid turbulence.

Rvv(q∣k∣p) + Rvv (k∣q∣p) = 0, (3.16)

Then there are six equations from Eq.(3.11) to Eq.(3.16) with six unknowns. However, the
value of the determinant fromed from these equations is zero. Therefore it is difficult to find
a unique Rvv just given these equations, but it is possible to expect that there is a definite
amount of energy transfer from one mode to another in the triad. Thus Dar et al. [61, 63]
used constraints based on invariance and symmetries to get a definite amount of Rvv using
Eqs.(3.11)-(3.16). They supposed that one solutions is given by the function,

T vv(k∣p∣q) = −ℑ [(k ⋅ v(q))(v(p) ⋅ v(k))] . (3.17)

From the above definition of the quantity T vv(k∣p∣q), it directly satisfies the properties in
Eqs.(3.11)-(3.13). Using the triad relationship k + p + q = 0 and because of the incom-
pressibilty constraint, [k ⋅ v(k)] = 0, the quantity T vv(k∣p∣q) also satisfies the conditions
in Eqs.(3.14)-(3.16). These results imply that the set of T vv( ∣ ∣ )’s is one instance of the
Rvv( ∣ ∣ )’s, i.e., Rvv(k∣p∣q) = T vv (k∣p∣q). However, T vv(k∣p∣q) is not a unique solution.
The second solution is Rvv(k∣p∣q) differs from the first solution T vv(k∣p∣q) by an arbitrary
function �Δ, i.e., Rvv(k∣p∣q) = T vv (k∣p∣q) + �Δ, then if we look at the equations that de-
scribe the energy transfer, one can easily see that the solution of Eqs.(3.11)-(3.16) must be of
the form

Rvv(k∣p∣q) = T vv (k∣p∣q) + �Δ, (3.18)

Rvv(q∣k∣p) = T vv (q∣k∣p) + �Δ, (3.19)

Rvv(p∣q∣k) = T vv (p∣q∣k) + �Δ, (3.20)

Rvv(q∣p∣k) = T vv (q∣p∣k)− �Δ, (3.21)

Rvv(k∣q∣p) = T vv (k∣q∣p)− �Δ, (3.22)

Rvv(p∣k∣q) = T vv (p∣k∣q)− �Δ. (3.23)

where, T vv(k∣p∣q) + �Δ gets transferred from mode p to mode k, T vv(q∣k∣p) + �Δ gets
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transferred from mode k to mode q and T vv(p∣q∣k) + �Δ gets transferred from mode q to
mode p. From Eqs.(3.18)-(3.20), it can be observed that the quantity �Δ flows from p along
k to q and again to p, circulating around the entire triad without changing the energy of any
of the modes. This quantity is called circulating transfer. The total energy transfer between
two modes, as from p to k is T vv(k∣p∣q)+�Δ, but only T vv(k∣p∣q) can bring about a change
in modal energy. The quantity �Δ transferred from mode p to mode k is transferred back to
mode p via mode q, i.e., the mode p transfers �Δ directly to mode k, and mode k transfers
�Δ back to p indirectly through mode q. By the same way the quantity −�Δ in Eqs.(3.21)-
(3.23) flows from p along q to k and again to p, thus this quantity −�Δ transfers from mode
p directly to mode q, and mode q transfers it back to mode p indirectly througth mode k.
Thus the energy that is effectively transferred from mode p to mode k is just T vv(k∣p∣q).
Therefore T vv(k∣p∣q) can be termed as "the effective mode-to-mode energy transfer" from
mode p to mode k mediated by mode q. Hence

Rvveff.(k∣p∣q) = T vv (k∣p∣q). (3.24)

Note that the quantity �Δ depends on the wavenumbers triad k, p, q and the Fourier com-
ponents v(k), v(p), v(q). It also must satisfy rotational invariance, galilean invariance, and
it should be finite. Dar et al. [61] attempted to obtain the quantity �Δ, but they showed that
�Δ is zero to linear order in the expansion. However, a general solution for �Δ could not be
found (for more details, see [63, 7]).

3.2.3 Energy cascade rates in fluid turbulence

The kinetic energy cascade rate (or flux) Π(r) in fluid turbulence is defined as the rate of
kinetic energy loss by the modes inside/outside a sphere of radius r in k-space to the modes
outside/inside the same sphere. Kraichnan [64] and Leslie [29], and others have computed the
quantity of the kinetic energy cascade rate or the kinetic energy flux Π(r) in fluid turbulence
using T vv(k∣p∣q). They have reported that the kinetic energy flux given by

Π(r) = −
∑
∣k∣<r

∑
∣p∣>r

1

2
T vv(k∣p∣q). (3.25)

where r is the radius of the sphere. Dar et al. [61] obtained an equivalent expression for the
flux in terms of the effective mode-to-mode energy transfer. This expression depends on the
quantity Rvv(k∣p∣q), which represents energy transfer from p to k with q as the mediator.
The energy loss from a sphere can be written as

Π(r) =
∑
∣k∣>r

∑
∣p∣<r

Rvv(k∣p∣q). (3.26)

Note that, Rvv(k∣p∣q) = T vv (k∣p∣q)+�Δ and the circulating transfer �Δ makes no contribu-
tion to the energy flux from the sphere because the energy lost from modes inside the sphere
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through �Δ returns to the sphere again. Hence, one can write the kinetic energy flux

Π(r) =
∑
∣k∣>r

∑
∣p∣<r

T vv(k∣p∣q). (3.27)

Dar et al. [63] showed that Eqs.(3.25) and (3.27) are equivalent. The kinetic energy cascade
in fluid turbulence Eq.(3.27) with Eq.(3.17) can be written as

Π(r) =
∑
∣k∣>r

∑
∣p∣<r

−ℑ [(k ⋅ v(q))(v(p) ⋅ v(k))] . (3.28)

and this is the energy cascade rate from modes v(p) inside a sphere of radius r to modes v(k)

that are outside the same sphere.

3.3 Energy transfer in magnetohydrodynamic turbulence

3.3.1 Combined energy transfer rate in the magnetohydrodynamic triad

As mentioned in section 1.2, the equation for the incompressible MHD turbulence in real
space are written as

∂v

∂t
+ (v ⋅ ∇)v = −∇p + (b ⋅ ∇)b + �∇2v, (3.29)

∂b

∂t
+ (v ⋅ ∇)b = (b ⋅ ∇)v + �∇2b, (3.30)

∇ ⋅ v = 0, (3.31)

∇ ⋅ b = 0. (3.32)

where v and b are the velocity and magnetic fields respectively, p is the total (kinetic+magnetic)
pressure divided by the density, and � and � are the fluid kinematic viscosity and magnetic
diffusivity respectively. In Fourier space, the kinetic energy and magnetic energy evolution
equations are given by [59]

∂Ev(k)

∂t
+ 2�k2Ev(k) =

∑
k+p+q=0

1

2
T vv (k∣p,q) +

∑
k+p+q=0

1

2
T vb(k∣p,q), (3.33)

∂Eb(k)

∂t
+ 2�k2Eb(k) =

∑
k+p+q=0

1

2
T bb(k∣p,q) +

∑
k+p+q=0

1

2
T bv (k∣p,q). (3.34)

where, Ev(k) = ∣v(k)∣2/2 is the kinetic energy, Eb(k) = ∣b(k)∣2/2 is the magnetic energy,
and the superscript Y X (where X, Y= v or b) represents the energy transfer from the field
X to the field Y . Eqs.(3.33) and (3.34) include four nonlinear terms, which are

T vv(k∣p,q) = −ℑ [(k ⋅ v(q))(v(p) ⋅ v(k)) + (k ⋅ v(p))(v(q) ⋅ v(k))] , (3.35)

T bb(k∣p,q) = −ℑ [(k ⋅ v(q))(b(p) ⋅ b(k)) + (k ⋅ v(p))(b(q) ⋅ b(k))] , (3.36)

T vb(k∣p,q) = ℑ [(k ⋅ b(q))(b(p) ⋅ v(k)) + (k ⋅ b(p))(b(q) ⋅ v(k))] , (3.37)

T bv(k∣p,q) = ℑ [(k ⋅ b(q))(v(p) ⋅ b(k)) + (k ⋅ b(p))(v(q) ⋅ b(k))] . (3.38)
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Figure 3.2: An example for the mode-to-mode TYX( ∣ ∣ ) and the combined, TYX( ∣ , ) energy transfer
in a triad MHD, X, Y= v or b.

These nonlinear terms are conventionally taken to represent the nonlinear energy transfer
rates from the modes p and q to the mode k of a triad formed by three wavenumbers k, p,
q, such that k + p + q = 0 in MHD turbulence [58, 59]. The term T vv(k∣p,q) represents the
net transfer of kinetic energy from the modes p and q to the mode k, the term T vb(k∣p,q)

is the net magnetic energy transferred from the modes p and q to the kinetic energy in the
mode k, the term T bv(k∣p,q) is the net kinetic energy transferred from the modes p and q

to the magnetic energy in the mode k, and the term T bb(k∣p,q) represents the transfer of
magnetic energy from the modes p and q to the mode k. Fig.3.2 shows an example for the
different mode-to-mode T Y X( ∣ ∣ ) and the combined, T Y X( ∣ , ) energy transfer in a triad
MHD.
It can be shown (see e.g., Stanis̆ic [59]) that these nonlinear terms satisfy the following
detailed conservation properties:

T vv(k∣p,q) + T vv (p∣k,q) + T vv (q∣k,p) = 0, (3.39)

T bb(k∣p,q) + T bb(p∣k,q) + T bb(q∣k,p) = 0, (3.40)

T vb(k∣p,q)+T vb(p∣k,q)+T vb(q∣k,p)+T bv (k∣p,q)+T bv (p∣k,q)+T bv (q∣k,p) = 0. (3.41)

Eqs.(3.39) and (3.40) imply that the kinetic (magnetic) energy are transferred conservatively
between the velocity (magnetic) modes of a wavenumber triad and Eq.(3.41) implies that the
cross energy transfers of kinetic and magnetic energy within a triad in MHD turbulence are
also energy conservative. The quantities in Eqs.(3.39)-(3.41) represent the combined energy
transfer in a MHD triad. In the next section, we will show the effective mode-to-mode energy
transfer rate in a MHD triad.
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3.3.2 Effective mode-to-mode energy transfer in MHD turbulence

Dar et al. [61, 63] showed that the formalism of the effective mode-to-mode in a MHD
triad is similar to that of a HD triad. They considered an ideal MHD fluid (� = � = 0). The
basic unit of nonlinear interaction in MHD is a triad involving modes v(k), v(p), v(q), b(k),
b(p) and b(q) with k + p + q = 0, and the mode-to-mode energy transfer is from velocity
to velocity, magnetic to magnetic, velocity to magnetic, and magnetic to velocity mode. We
will discuss these transfers briefly below.

Effective mode-to-mode energy transfer between two velocity modes

The transfer of kinetic energy between the velocity modes is due to the term (v ⋅ ∇v)

in both the Navier-Stokes (cf. Eq.1.14) and MHD equations (cf. Eq.3.29). Therefore, the
expression for the combined kinetic energy transfer in HD and MHD triad is the same (cf.
subsection 3.2.1). Consequently, the quantity Rvv( ∣ ∣ ) for MHD triad will satisfy the con-
straints given in Eqs.(3.11)-(3.16). As a result, the quantity Rvv(k∣p∣q) in a MHD triad can
be expressed as a sum of a circulating transfer �Δ and the effective mode-to-mode energy
transfer T vv(k∣p∣q), which defined in Eq.(3.17). So, we can write

Rvv(k∣p∣q) = T vv (k∣p∣q) + �Δ. (3.42)

The circulating transfer �Δ is irrelevant for the effective energy transfer as shown in subsection
3.2.2. Therefore, the quantity T vv(k∣p∣q) as the energy transfer rate from the mode v(p) to
the mode v(k) with the mediation of the mode v(q). Hence,

Rvveff.(k∣p∣q) = T vv (k∣p∣q). (3.43)

Effective mode-to-mode energy transfer between two magnetic modes

In MHD turbulence, there is a magnetic energy transfer from magnetic mode to another
one. This transfer is due to the term v ⋅ ∇b of induction equation (3.30), where the magnetic
field changes due to the field line stretching and to compression [2]. Consider the quantity
Rbb(k∣p∣q) represents the magnetic transfer from mode b(p) to mode b(k) in the triad (k,p,q)

as shown in Fig.3.2. The function Rbb(k∣p∣q) should satisfy the same relationships as in
Eqs.(3.11)-(3.16) with Rvv and T vv replaced by Rbb and T bb respectively. Similarly, as we
mentioned in subsection 3.2.2 the solution of Rbb is not unique and from following arguments,
we can show that

Rbb(k∣p∣q) = T bb(k∣p∣q) + �Δ. (3.44)

with
T bb(k∣p∣q) = −ℑ [(k ⋅ v(q))(b(p) ⋅ b(k))] , (3.45)

�Δ is the circulating energy transfer that is transferred from b(p) → b(k) → b(q) and back
to b(p). Then, �Δ does not cause any change in modal energy. Hence, the magnetic energy
effectively transferred from mode b(p) to mode b(k) is only given by the quantity T bb(k∣p∣q),
i.e.,

Rbbeff.(k∣p∣q) = T bb(k∣p∣q). (3.46)



36 Nonlinear triad interactions and detailed conservation

Then the quantity T bb(k∣p∣q) is "the effective mode-to-mode magnetic energy transfer" from
mode b(p) to mode b(k) mediated by the velocity mode v(q).

Effective velocity mode to magnetic mode and effective magnetic mode to velocity
mode energy transfer

Consider the functions Rvb(k∣p∣q) represents the energy transfer from mode b(p) to mode
v(k) and Rbv(k∣p∣q) represents the energy transfer from mode v(p) to mode b(k) in a MHD
triad. These functions satisfy the same relationships as in Eqs.(3.11)-(3.16). For example,
energy comes from to the mode v(k) from other two modes b(p) and b(q), we have

T vb(k∣p,q) = Rvb(k∣p∣q) + Rvb(k∣q∣p), (3.47)

and
Rvb(k∣p∣q) + Rbv (p∣k∣q) = 0, (3.48)

The solutions of these equations are not unique. Using arguments similar to those in subection
3.2.2, we can show that the general solution of R’s are

Rbv(k∣p∣q) = T bv (k∣p∣q) + 
Δ, (3.49)

Rvb(k∣q∣p) = T vb(k∣q∣p)− 
Δ, (3.50)

with
T bv(k∣p∣q) = ℑ [(k ⋅ b(q))(v(p) ⋅ b(k))] , (3.51)

T vb(k∣p∣q) = ℑ [(k ⋅ b(q))(b(p) ⋅ v(k))] . (3.52)


Δ is the circulating transfer, in this case the energy transfer from mode v(p) → b(k) →
v(q) → b(p) → v(k) → b(q) and back to v(p) without resulting in any change in modal
energy. This circulating transfer does not affect on the net energy transfer, we deal with the
functions T bv and T vb as "the effective mode-to-mode energy transfer rates". Then we have

Rbveff.(k∣p∣q) = T bv (k∣p∣q). (3.53)

Rvbeff.(k∣p∣q) = T vb(k∣p∣q). (3.54)

From the different types of mode-to-mode energy transfer in MHD turbulence, we can sum-
marize that
1- The energy evolution equations for a triad (k,p,q) in MHD turbulence as

∂

∂t

1

2
∣v(k)∣2 = T vv (k∣p∣q) + T vv (k∣q∣p) + T vb(k∣p∣q) + T vb(k∣q∣p), (3.55)

∂

∂t

1

2
∣b(k)∣2 = T bb(k∣p∣q) + T bb(k∣q∣p) + T bv (k∣p∣q) + T bv (k∣q∣p), (3.56)

2- The function T Y X(k∣p∣q), where (X, Y =v or b) is the mode-to-mode energy transfer rate
from the mode p of field X to the mode k of field Y with the mode q acting as a mediator.
3- The nonlinear triads interactions can also be written in terms of Elsässer variables. Here
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the participating modes are z(k), z(p) and z(q). The energy equations for these modes are

∂

∂t

1

2
∣z±(k)∣2 = T±(k∣p∣q) + T±(k∣q∣p), (3.57)

where, z± = v ± b and

T±(k∣p∣q) = −ℑ
[
(k ⋅ z∓(q))(z±(p) ⋅ z±(k)

]
. (3.58)

The energy transfer functions T Y X(k∣p∣q) in an ideal MHD triad have the following interesting
properties:
1- Energy transfer rate from X(p) to Y (k) is equal and opposite to that from Y (k) to X(p),
i.e.,

T Y X(k∣p∣q) = −T XY (p∣k∣q) (3.59)

2- Sum of all energy transfer rates along v → v, b → b, z+ → z+, and z− → z− channels are
zero, i.e.,

TXX(k∣p∣q) + T XX (k∣q∣p) + T XX (p∣k∣q) + T XX (p∣q∣k) + T XX (q∣k∣p) + T XX (q∣p∣k) = 0

(3.60)
where, X represents any vector field among v, b, z+ or z−.
3- Sum of all energy transfer rates along v → b and b → v channels is zero, i.e.,

T bv(k∣p∣q) + T bv (k∣q∣p) + T bv (p∣k∣q) + T bv (p∣q∣k) + T bv (q∣k∣p) + T bv (q∣p∣k)+

T vb(k∣p∣q) + T vb(k∣q∣p) + T vb(p∣k∣q) + T vb(p∣q∣k) + T vb(q∣k∣p) + T vb(q∣p∣k) = 0

(3.61)

4- The total energy in a triad interaction is conserved, i.e.,

Ev(k) + E v (p) + E v (q) + E b(k) + E b(p) + E b(q) = const (3.62)

Note that kinetic and magnetic energies are not conserved individually.

3.4 Important definitions of the nonlinear interactions
In order to understand and investigate the nonlinear processes in the spectral space, it

is important to distinguish between local and nonlocal transfer, local and nonlocal triad
interactions, local and nonlocal cascade, and cascade directions of an ideal quadratic invariant.
We will explain these concepts in this section as following

3.4.1 Locality and nonlocality of nonlinear transfer and triad interactions

Because of the quadratic form of the nonlinear terms in the incompressible
hydrodynamic and MHD equations, three wavenumbers are involved in any basic triad

interaction (see, Appendix A), with the ideal invariant being transferred between two of the
wavenumbers (say k and p) while the third wavenumber (say q) is acting as a mediator for

the transfer [39, 8, 54]. Because of the triad wavenumbers satisfy the condition
k + q + p = 0, at least two of the wavenumbers have to be of the same order, while the
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third can either be of the same order or much smaller than the other two. In order to
investigate the dynamics of the energy transfer processes, there are two aspects must be
considered: (1) The transfer process it self, and (2) Interactions beteen different scales of

motion which result in such energy transfers.

Figure 3.3: Local and Nonlocal triad interactions adapted from [33].

The spectral energy transfer in the turbulence is often implicitly assumed to involve only
two scales of motion, it is then possible following Domaradzki and Rogallo [7], to introduce
the following definitions:
(i) If the transfer takes place between two scales with similar sizes, i.e., the transfer exchanges
between two wavenumbers with similar sizes, then the transfer process is called local transfer,
(ii) If the transfer takes place between two scales with different sizes, i.e., the transfer exchangs
between two wavenumbers with different sizes, then the transfer is called nonlocal transfer.
A wavenumber triad represents interactions among three different scales of motion, and such
triad interactions can be classified on the basis of the topology of the triangle formed from
the three wavevectors [33] as Fig.3.3:
(i) Local triad interactions, in which all three scales are similar in size, i.e., all three legs of the
wavenumber triangle are of comparable lengths, k ≈ p ≈ q (where k = ∣k∣, p = ∣p∣, q = ∣q∣);
(ii) Nonlocal triad interactions, in which one scale is much larger than the remaining two
scales, i.e., one leg of the wavenumber triangle is much shorter than the other two, k ≈ p≫ q,
k ≈ q ≫ p, or p ≈ q ≫ k.
With these definitions, it is possible to state the following facts:
(i) Local triad interactions always imply local transfer,
(ii) Nonlocal energy transfer (as an example) due to nonlocal triad interactions is possible
only when the energy is exchanged between a large scale and two small scales,
(iii) Local energy transfer can take place through nonlinear triad interactions if the energy
is exchanged between two small scales (large wavenumbers) in the nonlocal triad, without
affecting the remaining large scale (small wavenumber).

3.4.2 Nonlinear cascade directions
The nonlinear triad interaction results in transport quasi-randomly directed towards smaller

scales (larger wavenumbers) or larger scales (smaller wavenumbers), on average the transfer
has a preferred direction which depends on the kind and number of ideal invariants as well as
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on the dimensionality of the system under consideration. The spectral nonlinear transfer pro-
ceeds in small steps, motivating the name turbulent cascade depending on its direction. There
are two types of nonlinear cascades in k-space. The cascade is called forward or direct cascade,
when the ideal quadratic invariant transfer takes place from large scales (small wavenumbers)
to small scales (large wavenumbers) and called inverse or indirect cascade, when it transfer
takes place from small scales to large scales [62, 65, 54]. According these types of nonlinear
energy cascade, one observed that when the energy cascade rate or flux Π(r) is positive, this
implies that the energy transfer occurs from modes with small wavenumber to modes with
large wavenumber direct cascade. when the energy cascade rate is negative, this implies that
the energy transfer occurs from modes with large wavenumber to modes with small wavenum-
ber inverse cascade. Table 3.1 shows the cascading of different ideal quadratic invariants in
NS and MHD turbulence [2, 4].

Cascade direction in 2D Cascade direction in 3D

Navier-Stokes EK inverse EK direct

Navier-Stokes Ω direct HK direct

MHD Etot direct Etot direct

MHD HC direct HC direct

MHD A2 inverse HM inverse

Table 3.1: Cascade directions of the different ideal quadratic invariants in NS and MHD turbulence.

3.5 The Q-graphs of Kraichnan
In this section, we will show how Kraichnan [5, 6] measured the locality of the energy

transfer and triad interactions in the inertial range of both two and three dimensions incom-
pressible isotropic hydrodynamic turbulence. In order to determine the localness of the energy
transfer and triad interactions, Kraichnan introduced a new function, Q(v) that depends on
the ratio of the norm of the vector with the smallest length of a given triad, and the norm of
the vector of middle length, in other words the ratio of the smallest wavenumber to the middle
wavenumber in the interacting triad [5]. This function serves to measure the contributions of
the energy transfer due to different triads in the inertial range, this function derived from the
flux Π(k) as following:
The energy balance equation in both two and three dimensions incompressible stationary
isotropic hydrodynamic turbulence is given by [6]

(
∂

∂t
+ 2�k2)E(k) = T (k), (3.63)

and
T (k) =

1

2

∫∫
ℝ6

T (k,p,q)d3pd3q . (3.64)

where E(k) is the turbulent spectral function, which contains the energy in the modes with
scalar wavenumbers lying in [k, k + �k], and it is the distribution of the turbulence intensity
over spatial scales [66]. In Eq.(3.64), T (k) is the nonlinear transfer term with the quantity
T (k,p,q) which defined in Eq.(3.8). The integrand on the r.h.s of Eq.(3.64) is a function of
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the scalar variables k, p, and q. Since the intergrals of the form

I(k, p, q) =

∫∫
f(k, p, q)�(k− p− q)d3pd3q (3.65)

are known as bipolar integrals are effectively double integrals over the scalar variables p and
q. Thus Eq.(3.65) can be written as

I(k, p, q) =

∫∫
(2�pq/k)f(k, p, q)dpdq (3.66)

The above integration is restricted to the part of the p, q plane in which k, p and q can form
a triad. The quantity (2�pq/k) depends on k that comes from the intergration over spherical
coordinates (for more details, see appendix in [29]). Applying Eqs.(3.65 and 3.66), Eq.(3.64)
can be written as

T (k) =
1

2

∫ ∞
0

∫ ∞
0

T (k, p, q)dpdq. (3.67)

Through the transfer function only the energy can be transferred between the modes (it does
not destroy or create) and this is the basis for the existence of the cascade. The integration
of the transfer term over all modes is zero and it represents the energy conservation law∫ ∞

0
T (k)dk = 0.

In addition, in Eq.(3.67) the quantity T (k, p, q) = T (k, q, p) is the net rate of energy transfer
into mode k from interactions with modes p and q (k = p + q, k = ∣k∣, p = ∣p∣, q = ∣q∣).
Also, this quantity is zero if k, p and q are cannot form the sides of a triangle [6, 67], and it
represents the combined energy transfer in fluid turbulence. According to conservation of the
total energy in both two and three dimensions of HD and MHD turbulence, we can write

T (k, p, q) + T (p, q, k) + T (q, k, p) = 0.

From the energy transfer function, the flux of kinetic energy through wavenumber k, Π(k)

can be derived, which is proportional to the transfer rate from wavenumbers smaller than k
to wavenumbers larger than k, and expreesed as

Π(k) =

∫ ∞
k

T (k′)dk′. (3.68)

where T (k′) is the nonlinear transfer term of the energy equation (see, appendix A) which has
to be brought into a more convenient from the integration over the scalars k, p, and q [29].
Using Eq.(3.68), the general form of the energy flux directly can be written by the energy
transfer function of the triads as in Eq.(3.27) (cf. subsection 3.2.3).
Thus by using Eq.(3.68) with Eq.(3.67), the mean rate of energy transfer (the flux Π(k)) into
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wavenumbers above k from wavenumbers below k becomes

Π(k) =

∫ ∞
k

T (k
′
)dk

′
=

1

2

∫ ∞
k

(∫ ∞
0

∫ ∞
0

T (k
′
, p, q)dpdq

)
dk
′
.

=
1

2

∫ ∞
k

dk
′
∫ k

0

∫ k

0
T (k

′
, p, q)dpdq − 1

2

∫ k

0
dk
′
∫ ∞
k

∫ ∞
k

T (k
′
, p, q)dpdq. (3.69)

where the first term at the end of Eq.(3.69) gives the total rate of energy gained into the
range k′ > k after triad interactions with p and q that are smaller than k, whereas the second
term gives the total rate loss of energy in the range k′ < k after triad interactions with p and
q that are bigger than k.
Using the symmetry of T (k

′
, p, q), where T (k

′
, p, q)=T (k

′
, q, p) we can write 2

∫ k
0 dp

∫ p
0 dq

instead of
∫ k

0 dp
∫ k

0 dq in the first integral and 2
∫∞
k dp

∫∞
p dq instead of

∫∞
k dp

∫∞
k dq in the

second integral, then we can write,

Π(k) =

∫ ∞
k

dk
′
∫ k

0

∫ p

0
T (k

′
, p, q)dpdq −

∫ k

0
dk
′
∫ ∞
k

∫ ∞
p

T (k
′
, p, q)dpdq. (3.70)

Choosing the following variable changes, p = k
u , k

′
= pw, q = pv in the first term and p = k

u ,
k
′

= pv, q = pw in the second term of the right hand side of Eq.(3.70), we have

Π(k) =

∫ 1

0
dv

∫ ∞
1

du

∫ ∞
u

dw
1

u

(
k

u

)3

T (
k

u
w,

k

u
,
k

u
v)

−
∫ 1

0
du

∫ ∞
1

dw

∫ u

0
dv

1

u

(
k

u

)3

T (
k

u
v,
k

u
,
k

u
w). (3.71)

This choice for the variable changes reveals the aim of expressing the ratios of the smallest to
the middle wavenumber (with v = q/p in the first, v = k/p in the second integral) and of the
largest to the middle wavenumber (with w = k/p in the first, w = q/p in the second integral).
Kraichnan assumed that the second and third order moments at the instant considered satisfy
the similarity laws [6]

E(k)/E(k) = a−n,

T (ak, ap, aq)

T (k, p, q)
= a−(1+3n)/2. (3.72)

where a is an arbitrary scaling factor and n is at first undetermined. The scaling factor of
T (k, p, q) in Eq.(3.72) is the same as that of [E(k)]3/2k−1/2 (which has the same dimensions)
and corresponds to a independence of the appropriately defined triple correlation cofficients
of the distribution on the Fourier amplitudes in the neighborhoods of the wavenumber argu-
ments. Eq.(3.72) is connecting directly to the inverse cascade, taking the scaling of energy
n = 5/3 in hydrodynamic turbulence (see section 2.2), so Eq.(3.72) becomes

T (ak, ap, aq)

T (k, p, q)
= a−3 ⇒ T (ak, ap, aq) = a−3T (k, p, q). (3.73)
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Using Eq.(3.73) with a = k/u, then Eq.(3.71) can be written by

Π(k) =

∫ 1

0
dv

∫ ∞
1

du

∫ ∞
u

dw
1

u
a3T (aw, a, av)−

∫ 1

0
du

∫ ∞
1

dw

∫ u

0
dv

1

u
a3T (av, a, aw).

=

∫ 1

0
dv

∫ ∞
1

du

∫ ∞
u

dw
1

u
T (w, 1, v)−

∫ 1

0
du

∫ ∞
1

dw

∫ u

0
dv

1

u
T (v, 1, w). (3.74)

Because of
∫∞

1 du
∫∞
u dw is equivalent to

∫∞
1 dw

∫ w
1 du in first integral and

∫ 1
0 du

∫ u
0 dv is

equivalent to
∫ 1

0 dv
∫ 1
v du in the second integral, Eq.(3.74) can be written by

Π(k) =

∫ 1

0
dv

∫ ∞
1

dw

∫ w

1
du

1

u
T (w, 1, v)−

∫ 1

0
dv

∫ ∞
1

dw

∫ 1

v
du

1

u
T (v, 1, w)

=

∫ 1

0
dv

∫ ∞
1

dwln(w)T (w, 1, v) +

∫ 1

0
dv

∫ ∞
1

dwln(v)T (v, 1, w)

=

∫ 1

0
dv

∫ ∞
1

dw [ln(w)T (w, 1, v) + ln(v)T (v, 1, w)] . (3.75)

With the consideration that T is non-zero only if w, 1 and v are form a triangle and w in the
first term in the r.h.s. of Eq.(3.70) can never reach infinity because of the triangle constraint,
w = k

′
/p < (p+ q)/p = 1 + v, thus in Eq.(3.75) the integration border ∞ replaced by 1 + v,

then we can write

Π(k) =

∫ 1

0
dv

∫ 1+v

1
dw [ln(w)T (w, 1, v) + ln(v)T (v, 1, w)] (3.76)

Introducing a new function, which is

Q(v) =
v

�

∫ 1+v

1
dw [ln(w)T (w, 1, v) + ln(v)T (v, 1, w)] . (3.77)

we get

Π(k) = �

∫ 1

0

dv

v
Q(v). (3.78)

where � is the total rate of energy dissipation. Therefore, the function Q(v) serves as a
measure of the localness of energy transfer, showing the structure of the inertial range energy
transfer, where v is the ratio of the smallest to middle wavenumber in the interacting triad.
The integrand in Eq.(3.77) represents to the total contribution to the energy transfer across
k from all possible shapes of the triangles formed by the wavenumbers k′ , p, q in Eq.(3.69).
Since v ≤ 1 and 1 < w ≤ 1+v, each pair of values v and w corresponds uniquely to a possible
shape of the triangle formed by the triad of interacting wavenumbers [5, 6]. The factors of
T in the mentioned integrand give the weights of the contributions of the different triangle
shapes and arise from integration over triangle size.

3.6 Direct calculation of Q(v)-graphs
In this work, we introduce a new and accurate approach of analyzing the nonlinear tur-

bulent interactions. This approach involves the direct numerical (not analtyical and model
dependent like Kraichnan [5]) examination of every wavenumber triad that is associated with
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the nonlinear terms in the differential equations of HD and MHD in inertial range of turbu-
lence. This technique allows us to compute the spectral energy transfer and the energy fluxes
as well as the spectral locality property of energy transfer by computing the transfer density
function Q(v) in Eq.(3.78). The basis of our approach depends on in the inertial range of
incompressible isotropic HD and 3D-MHD turbulence, the scaling factor is n = 5/3 as many
authors showed that the energy spectrum of incompressible isotropic HD [5, 6] and 3D-MHD
with no or small mean magnetic field [35, 37, 68] turbulence is Kolmogrov-like (k−5/3), where
the similarity range yields a k-independent energy flux Π(k). The convergence of the inte-
grals in this range implies that the energy transfer is accomplished locally in space, and this
local transfer is associated with the distortion of the fields by their own shear [6, 67]. This
implies that in the inertial range the total energy flux Π(k) is equal to the total rate of energy
dissipation � [64], so Eq.(3.78) can be written by:∫ 1

0

dv

v
Q(v) = 1 (3.79)

The above equation gives us a new meaning of Q(v) as a probability density function of v,
which measures the probability density of contributions to the nonlinear energy transfer of
the different shapes of triangles of interacting modes in k-space.

3.7 The W (v)-graphs of Kraichnan
Another useful way of quantitatively presenting the nature of the nonlinear transfer func-

tions and nonlinear triad interactions is to consider the contributions based on the geometry
of a triad, as was done by Kraichnan [5] using an analytical closure model. For a given k, the
geometry of a triad can be partially expressed as the ratio of the length of the smallest side to
the length of the middle side in a given triad. Thus, it is possible to measure the part of the
total energy transfer that passes through the inertial-range in different cases of incompressible
isotropic Navier-Stokes turbulence, isotropic and anisotropic MHD trubulence, that is due to
all triad interactions in which the ratio of the smallest to the middle wavenumber is greater
than a given value of v (v ≤ 1), namely by introducing a new function is called the locality
function W (v), where this function is given by,

W (v) =

∫ 1

v
Q(s)

ds

s
. (3.80)
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Chapter 4

Numerical Simulation Methods

In this chapter the numerical methods employed for the simulation of two and three dimen-
sional HD and MHD turbulence are described. First the calculation of the necessary turbulent
fields is outlined. Then the spectral scheme used for the simulation is discussed with the alias-
ing error problem and its solution. Next the integration scheme with the Leapfrog method
is discussed. A spectral calculation of quadratic nonlinearities is presented. Finally, the
numerical code is described, and a detailed account of the nonlinear terms is given.

4.1 Calculation of turbulent fields
To obtain the required turbulent fields such as velocity in hydrodynamic, or velocity

and magnetic fields in MHD, it is necessary to solve the Navier-Stokes and MHD equations
numerically. This is accomplished with a pseudospectral code. Both of vorticity and magnetic
vector potential are represented by a discrete Fourier series and solved in a regular cubic box
of length size 2� with N points in each direction, more details in next section.

4.2 Direct Numerical simulations (DNS)
Spectral properties of the nonlinear processes such as nonlinear transfer functions, triad

interactions, and cascade direction of the quadratic nonlinear invariants in hydrodynamic and
magnetohydrodynamics turbulence are best understood in the spectral domain. Hydrody-
namic flows demonstrate an inertial range of wavenumbers in the spectra of certian quantities
like kinetic energy, the enstrophy, and the kinetic helicity (cf. section 2.2). In MHD tur-
bulence, there is an inertial range for total energy, cross helicity, mean squared potential,
and magnetic helicity. In the inertial range, the spectra show self-similar power law behav-
ior, which is a predictable property of a randomly fluctuating system. The investigation of
inertial ranges and the universality of the power laws form one of the important aspects of
turbulence studies. Numerical simulations of turbulence in the spectral domain are performed
using several methods like large eddy simulations (LES)1, shell models2, or direct numerical

1Large eddy simulation (LES) is a popular technique for simulating turbulent flows. An implication of
Kolmogorov’s (1941) theory of self similarity is that the large eddies of the flow are dependant on the geometry
while the smaller scales more universal. This feature allows one to explicitly solve for the large eddies in a
calculation and implicitly account for the small eddies by using a subgrid-scale model (SGS model), for more
details, see [1].

2Shell models of turbulence are methods with simplified caricatures of the equations of the fluid mechanics in
wave-vector representation. Their main advantage is that they can be studied via fast and accurate numerical
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simulations (DNS) [1]. LES methods and shell models approximate the nonlinear terms of
Eqs.(1.58 - 1.60) in one or other form (see for e.g., [69]), whereas DNS methods do not use
any such approximations and deal with the equations in their true form. Thus methods other
than DNS usually involve additional assumptions. If the equation set is studied without any
additional physical approximations, a better understanding of the turbulent flows could be
obtained. The DNS methods stay closest to the underlying differential equations describing
the turbulent systems although they are computationally expensive. With appropriate choice
of numerical methods however the computational overhead can be reduced.
In the Fourier domain, the spatial derivatives are transformed into simple multiplications with
wavevectors. Here, the time evolution of the equations directly yields the spectra of the phys-
ical quantities. Fourier methods have several advantages, they also have a major drawback:
the Gibbs phenomenon. The Gibbs phenomenon manifests itself as characteristic oscillations
of Fourier series near steep gradients. The incompressibility assumption eliminates [19]. For
incompressible flows, spectral methods are more accurate than finite difference schemes. They
require fewer discretization points to achieve the same accuracy (for a detailed description of
different numerical schemes, see [70]).

4.3 Pseudospectral scheme
The HD and MHD equations are solved in the Fourier space. The computational domain

is a periodic square or cubic box with sides of length 2�. The domain is uniformly discretized
with N points in each direction. This corresponds to the Fourier wavenumber range −N

2 +1 ≤
k ≤ N

2 − 1. In the pseudospectral scheme, all physical fields are approximated by a finite
Fourier series, e.g., the velocity field

v(x, t) =
∑
k

v̂(k, t)e ik.x.

In its Fourier transformed form, the vorticity equation is

∂t!̂ = ik× ˆ(v × !)− �k2!̂.

The velocity field is algebraic in Fourier space from the vorticity field can be calculated as

v̂(k, t) = i
k× !̂(k, t)

∣k ∣2
.

The incompressibility condition is satisfied with the calculation accuracy. Nonlinear terms as
v × ! become convolutions in Fourier space

v̂ × !(k, t) =
∑
k′

v̂(k
′
, t)× !̂(k− k

′
, t).

All physical quantities are approximated by truncated Fourier series, e.g., for the Fourier

simulation, in which the values of the scaling exponents can be determined precisely.
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counterpart of the real quantity !(xj , t),

!̂(k, t) =
1

N 3

∑
j

!(xj , t)e−ik⋅xj where xj =
2�j

N
j = 0, ....,N− 1 for each direction.

(4.1)
The mode k = (0, 0, 0) of all physical quantities, i.e., their spatial average, is set to zero.
Where the original physical quantities are real-valued functions, they satisfy additional rela-
tions of symmetry in Fourier space, (!̂−k(t) = !̂∗k(t)) in Fourier space, hence it is enough to
only store one half of Fourier modes. This symmetry property reduces the memory require-
ment and also speeds up the calculations. Additionally, in Fourier space all spatial derivations
are replaced by multiplications with wavevectors. The nonlinear terms in Eqs.(1.58) and (1.59)
are convolution sums arising from the nonlinearities. In general form these may be represented
as

[̂a b]k =
∑

k=p+q

âp b̂q where ∣k∣, ∣p∣, ∣q∣ ≤ N

2
− 1. (4.2)

Direct calculation of the above expression in two dimensions requires O(N 4) operations and in
three dimensions requires O(N 6) operations [71]. This limits the application of spectral meth-
ods to small Fourier data sets [16]. To overcome this limitation the variables in Eq.(4.2) are
first transformed into real space. The multiplication is performed and the value retransformed
into the Fourier space. This mathematical operation is facilitated by the fact that a convo-
lution in Fourier domain is a multiplication in real space. This the basic idea of the method
which called the pseudospectral scheme [16]. This method reduces the complexity of the or-
der of operations performed to O(N 3log2N ), which is only possible with FFT (Fast Fourier
Transform). But this method suffers from aliasing error caused by the finite discretization,
the technique applied to remove the aliasing error is discussed in the next section.

4.3.1 Treatment of Aliasing Errors

The aliasing error of the pseudospectral scheme is removed by a truncation technique
known as de-aliasing [16]. This technique utilizes the calculation of extended Fourier fields of
size M ≥ 3N

2 instead of the original size of N . To this end, a Fourier variable resulting from
the pseudospectral procedure can be expressed as a sum of two contributions (for simplicity
only a one-dimensional convolution is considered). So, Eq.(4.2) is written as:

[̂a b]k =
∑
k=p+q

âp b̂q +
∑

k±N=p+q

âp b̂q. (4.3)

In the r.h.s of Eq.(4.3), the first term is the correct result of the convolution that is required
and the second term is the aliasing error. If original Fourier variables are padded with zeros
in the extra wavenumber range M

2 − 1 ≥ ∣p∣, ∣q∣ ≥ N
2 − 1, the second term in the equation

(4.3) vanishes and the exact result of the convolution is obtained. This de-aliasing procedure
is sometimes called the 3/2 rule. However, the number of operations performed in this case is
higher than in the normal pseudospectral calculation. In one dimension the truncation tech-
nique requires ≈ 50% more numerical operations. The computational effort increases with
number of dimensions, because modes that do not carry any physical information have to be
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included and evaluated [19].
The performance of the dealiasing step can be improved by reducing the number of extra
modes, this can be accomplished by introduced the spherical truncation of the Fourier vari-
ables in three dimensions. In this dealiasing method, a sphere of physical Fourier modes is
assumed that are padded to a square in 2D or cubic in 3D shape. The aliasing error due to
the modes in this sphere was empirically found to be of the order of discretization error, and
is negligible. This reduces the number of additional calculations by a factor of more than 2/3

compared to the full 3/2 dealiasing [72, 19].

4.4 Leapfrog Integration
The equation set (1.14)-(1.15) of the HD case and (1.58)- (1.60) of the MHD case is evolved

in time using a leapfrog scheme. The leapfrog scheme is a fast, explicit two-step algorithm
that uses a constant time step. The scheme is second order accurate, and suitable for non-
dissipative problems. However, the algorithm is unstable in the presence of diffusion terms. A
modification in the form of an integrating factor, is therefore required to avoid this property.
This method treats the linear diffusion term exactly [19, 18]. We integrate Eqs.(1.58) and
(1.59) of the MHD case in the form

∂t(!̂ke �̃k2t) = e �̃k2t ik× [v̂ × ! − b̂× (∇× b)] (4.4)

∂t(b̂ke �̃k2t) = e �̃k2t ik× v̂ × b (4.5)

Here the dissipation term is included implicitly, and does not appear explicitly in the equa-
tions. The stability and accuracy properties do not depend on the dissipation term, and are
given solely by the nonlinear term [16]. With this modification the leapfrog scheme for the
Eqs.(4.4) and (4.5) is:

!̂n+1 = !̂n−1 e−�̃k2Δt + 2Δte−�̃k2Δt [v̂ × ! − ˆb× (∇× b)]n (4.6)

b̂n+1 = b̂n−1 e−�̃k2Δt + 2Δte−�̃k2Δt [v̂ × b]n (4.7)

where n is a time step index and Δt denotes the time interval of one time step. The solution
obtained with this scheme is often modified by temporal oscillations with the period 2Δt (e.g.,
[16]). These oscillations arise due to inaccuracies in the approximation of time derivatives.
Temporal averaging of the obtained solution over every two subsequent time steps eliminates
the oscillations (see, [19, 18]). For nonlinear partial differential equations like the ones under
consideration there are no clear rules to guarantee the numerical stability of a simulation,
and therefore no recipes to indicate how small Δt ought to be. The Courant-Friedrichs-Lewy
(CFL) condition, an estimate originally developed for advection, provides the upper bound
as:

Δt ≤ Δx

vmax
∼ �

kmaxvmax
(4.8)

where vmax is the maximal speed of propagation in the system. Incompressibility is assumed,
so magneto-acoustic waves are excluded. A good estimate for the maximum speed of prop-
agation is vmax =

√
E tot. Although the CFL criterion in Eq.(4.8) provides a basic estimate
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for stability, the time step can be adjusted in particular simulations for maximum stability
[19, 18, 73].

4.5 Simulation program and Diagnostics
To gain a better understanding of the characteristics of nonlinear energy transfer and triad

interactions between turbulent flctuations, the analysis of fully-developed driven turbulence
stemming from a large direct numerical pseudospectral simulation is carried out.
To study the spectral properties of the quadratic nonlinearity invariants in incompressible
2D and 3D for both of hydrodynamic and magnetohydrodynamic turbulence, we extend the
approach of Smith and Lee [67]. They introduced a strategy for calculating the nonlinearity
of the Navier-Stokes equations over a finite number of triad interactions in wavenumber space.
An extension Fortran program developped by T. Hertkorn for 2D-HD simulations [12] and M.
Haslehner for 3D-HD simulations [13]. In this work, we have modified the program to imple-
ment the analysis of two- and three-dimensional magnetohydrodynamic turbulence. Analysis
of fully-developed, driven turbulence stemming from large pseudospectral simulations with
high resolution is used to investigate all turbulent systems which studied in this work. The
extension we develop is outlined below. We show the 3D case as an example.
Step 1: Consider a three-dimensional periodic cubic grid in Fourier space, and a set of
wavevectors k within this cubic grid in Fourier space given by,

K = {k = (kx , ky , kz ) ∣kx , ky , kz ∈ {−kmax,−kmax + 1, ....., kmax}} ,

We define the domains K+ and K−, respectively as

K+ = {k = (kx , ky , kz ) ∣Δk {kx > 0} ∪ {{kx = 0} ∩ {ky > 0}} ∪ {{kx = ky = 0} ∩ {kz > 0}}} .
(4.9)

is the set of wavevectors k within the cubic grid, where Δk is the distance between two
adjacent wavevectors in the grid.
and

K− = −K+
{
k∣−k ∈ K +

}
.

To show how we can calculate the energy transfer functions, we apply the so-called "reality
conditions" on the complex conjugates of velocity and magnetic field, where

v∗(k) = v(−k)⇔ v∗(−k) = v(k) (4.10)

b∗(k) = b(−k)⇔ b∗(−k) = b(k) (4.11)

These conditions lead to a condition on the transfer function,

T (k∣p∣q) = T ∗(−k∣ − p∣ − q). (4.12)

Thus the information only in the domain K+ is sufficient to construct the wavevectors field
over the entire cube K+ ∪K− (see, Fig.4.1).
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Figure 4.1: K+ is the domain in Fourier space and the triad Δkpq is in T+ with k < p, from [67].

Step 2: Define T+ as a set of non-collinear triads

Δkpq := {k,p,q : k + p + q = 0} (4.13)

with two wavevectors say k and p in the Fourier domain of K+ and the remaining vector q

in the Fourier domain of K−.
step 3: Let T− be the set of triads whose Fourier conjugate in T+ satisfies

T− =
{

Δkpq : Δ−k,−p,−q ∈ T+
}
. (4.14)

Then any triad in T− has two wavevectors in K− and the remaining wavevector in the domain
K+. Any non-collinear triad is in either T+ or T−, therefore the sum of the full nonlinear
term is taken over T+ ∪ T−.

4.5.1 Computing the nonlinear interactions

In this subsection, we describe a numerical procedure to compute the nonlinear interactions
over T which is a given subset of T+∪T−. For simplicity, for a fixed triad in the hydrodynamic
case, Δkpq is in T ∩T+ with k and p are in K+ and q is in K− as shown in Fig.(4.1). We use
the modes v(k), v(p) and v(−q) with the wavevectors in K+, then we compute the nonlinear
terms

T vv(k∣p,q) = T vv (k∣q,p) = T vv (k∣p∣q) + T vv (k∣q∣p),

T vv(p∣k,q) = T vv (p∣q,k) = T vv (p∣k∣q) + T vv (p∣q∣k),

T vv(−q∣ − k,−p) = T vv (−q∣ − p,−k) = T vv (−q∣ − k∣ − p) + T vv (−q∣ − p∣ − k),

The term T vv(q∣k,p) is not necessary because the wavevector q is not in the computation
domain of K+. However, its conjugate T vv(−q∣ − k,−p) must be computed because the
wavevector −q is in the domain of K−. Nonlinear terms are computed using the following
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reality conditions,⎧⎨⎩v∗(k) = v(−k)⇔ v∗(−k) = v(k), v∗(p) = v(−p)⇔ v∗(−p) = v(p) and

v∗(−q) = v(q)⇔ v∗(q) = v(−q)
(4.15)

In MHD turbulence, for a fixed triad Δkpq in T+ with k,p ∈ K +, and q ∈ K−, we need
only the modes v(k), v(p), v(−q), b(k), b(p) and b(−q) to compute the different nonlinear
terms, T Y X(k∣p,q), T Y X(p∣k,q) and T Y X(−q∣ − k,−p) (where X and Y are v or b field) by
using the following reality conditions,⎧⎨⎩

v∗(k) = v(−k)⇔ v∗(−k) = v(k), v∗(p) = v(−p)⇔ v∗(−p) = v(p),

v∗(−q) = v(q)⇔ v∗(q) = v(−q), b∗(k) = b(−k)⇔ b∗(−k) = b(k),

b∗(p) = b(−p)⇔ b∗(−p) = b(p), b∗(−q) = b(q)⇔ b∗(q) = b(−q).

(4.16)

It remains to discuss how we identify the triads in T . It suffices to solve for the triads in
T ∩T+ because of the reality conditions. This requires a systematic procedure to search over
all triads in T+. For this purpose, an order is introduced between wavevectors in the domain
K+, which is

∙ (1) in 2D turbulence
k < p, if either

k,p ∈ {{kx < px} ∪ {(kx = px ) ∩ (ky < py)}} . (4.17)

∙ (2) In 3D turbulence
k < p, if either

k,p ∈ {{kx < px} ∪ {(kx = px ) ∩ (ky < py)} ∪ {(kx = px ) ∩ (ky = py) ∩ (kz < pz )}} .
(4.18)

The use of this inequality is ordered to eliminate the collinear triads. Then, being aware of
the fact that q = −k− p, T+ is spanned for fixed k by numerically looping over all p in K+

with p > k. If p = k, the triad Δkpq is collinear and the nonlinear interactions among the
triad are identically zero. Thus it is sufficient to consider p that is strictly greater than k.



52 Numerical Simulation Methods



Chapter 5

Nonlinear tirad interactions in
hydrodynamic turbulence

In incompressible hydrodynamic (HD) turbulence, the quadratic ideal invariants are kinetic
energy and mean square vorticity (enstrophy) in the 2D case, and kinetic energy and kinetic
helicity in the 3D case. In this chapter, the spectral locality or nonlocality of the transfer
functions, triad interactions, and the inertial range cascade directions of these ideal invariants
in Fourier space are studied. These topics are investigated by computing the dependence of
the transfer density function Q(v) of triads on their legs ratio v, and the locality function
W (v). The results are reported for both 2D and 3D-HD turbulence.

5.1 Ideal invariants in 2D-HD turbulence
The Navier-Stokes equations for homogenous incompressible fluid are expressed in Eqs.(1.14)

and (1.15). By taking the curl of Eq.(1.14) we have

∂t! + v ⋅ ∇! − ! ⋅ ∇v = �̃Δ!, (5.1)

∇ ⋅ v = 0. (5.2)

where ! = ∇×v is the vorticity, and �̃ is the dimensionaless dissipation coefficient. The term
! ⋅∇v in Eq.(5.1) is the source of vorticity, which is proportional to the velocity gradient along
the vorticity. This term is often called the vorticity-stretching term [2]. Equation (5.1) can
be reduced to an advection-diffusion equation in two dimensions (restricting the fluid motion
with ∂z = 0 ) [2]

∂t! + v ⋅ ∇! = Re−1Δ!. (5.3)

where Re is the classical Reynolds number. Eq.(5.3) implies that in the 2D-HD case the
vorticity of a fluid element is constant and there is no source of vortex-stretching. This lead
us to rewrite Eq.(5.3)

∂t! + v ⋅ ∇! = �̃n(−1)n−1Δn! + f . (5.4)

where �̃n is the hyperviscous dimensionless dissipation coefficient, which used to extend the
inertial range and n is level of hyperviscosity (when n = 1, it is the dimensionless kinematic
viscosity). The quantity f is a stirring force applied to the system. The Reynolds number Re
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can be expressed with the help of macroscopic quantities characteristic of the flow, the total
kinetic energy per unit mass, EK = 1

2

∫
S v

2dS (S denotes the surface of the fully periodic
domain) and the rate of the kinetic energy dissipation, � = −ĖK for decaying turbulence
[2]. These allow using dimensional analysis to estimate a characteristic length scale L0 =

(EK)3/2/� and large-scale velocity V0 = (EK)1/2. Then the Reynolds number in a statistically
isotropic system can be defined as (cf. subsection 1.2.1)

Re =
L0V0

�
=

(EK)2

��
. (5.5)

Two-dimensional hydrodynamics is a simpler setting than three-dimensional hydrodynamics.
High Reynolds number implies a large separation between integral and dissipation scales and
thereby a wide inertial range is obtained. Scaling properties are expected to be better in
two-dimensional simulations than that in three-dimensional simulations as higher numerical
resolutions can be realized. The nonlinear dynamics of hydrodynamic turbulence is less com-
plicated than that of magnetohydrodynamic turbulence, because it does not involve effects of
magnetic fields. However, there are important differences between hydrodynamic turbulence
in two and three dimensions, mainly due to the inverse cascade of kinetic energy and the
special role of enstrophy in 2D-HD turbulence (which we discuss in detail in section 5.2).
In the 2D-HD turbulence case, two conserved ideal quadratic invariants exist, especially for
the ideal fluid (�=0): the kinetic energy

EK =
1

2

∫
S
v2dS , (5.6)

and the enstrophy (mean square vorticity)

Ω =
1

2

∫
S
!2dS. (5.7)

5.1.1 Scaling of energy and enstrophy spectra in 2D-hydrodynamic tur-
bulence

2D-HD energy and enstrophy spectra can be obtained by solving the 2D-Navier-Stokes
equations (5.2)-(5.3) on a 2�-biperiodic square using a standard pseudospectral method with
dealiasing according to the 2/3 rule [16]. The simulations with high-resolution conducted by
A. Busse and W.-C. Müller is performed with parameters which are shown in Table 5.1.

Parameters Energy Enstrophy
Resolution 40962 20482

�̃n 0.5e-47 0.16e-3
Reynolds number Re - 6.25× 103

Level of hyperviscosity, n 8 1
Forcing wavenumber, kf 600 –

Table 5.1: Simulation parameters for energy and enstrophy cases in 2D-HD turbulence.
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Figure 5.1: Energy spectrum in DNS of 2D-HD turbulence compensated by the inverse Kolmogorov inertial
range prediction of k5/3. The horizontal dash-dotted line is fitted to the inertial range where Kolmogorov-like
k−5/3 scaling is observed.

In Fourier space the value of kinetic energy EK(k) for a given vector k depends on the value
of velocity field v(k) for this vector:

EK(k) =
1

2
∣v(k)∣2. (5.8)

The value of the velocity for each given vector k depends on the vorticity !. The explicit
expression for the velocity, depending on the vorticity, is found using the condition of free
divergence of the field (∇ ⋅ v = 0). The vorticity can be expressed in terms of velocity in real
space

!(x) = ∇× v(x).

In Fourier domain this is
!(k) = ik× v(k).

The velocity can then be expressed explicitly via this relation, by calculating the rotation of
! in Fourier space,

∇× !(k) = [∇× (∇× v)] (k).

This equation leads us to
ik× !(k) = −k× (k× v(k)) .
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Applying the vector-product relation and using ∇ ⋅ v = 0, lead us to

v(k) = i
k× !(k)

k2
. (5.9)

This relation between velocity and vorticity can be used to compute the kinetic energy in
Eq.(5.8)

EK(k) =
1

2k2
!(k) ⋅ !∗(k) =

1

k2
Ω(k). (5.10)

where !∗(k) is the complex conjugate of !(k), and Ω(k) is the enstrophy. The cumulative
kinetic energy EK(k) of homogenous incompressible 2D-hydrodynamic turbulence calculated
using Eq.(5.10). The analysis has been done using high-resolution direct numerical simulations
(DNS) with parameters which are shown in Table 5.1. In the simulation for the inverse
cascade of energy, hyperviscous dissipation with a level of n = 8 is used in order to extend the
inertial range [74]. The dissipation is not involved in the cascade and has simply the role of
removing enstrophy at small scales. Energy is injected into the system by a random forcing
delta correlated in time that acts on a band of wavenumbers in the small scales region (large
wavenumbers) around kf = 600, adding a friction term removes energy at large scales (small
wavenumbers).
According to Kolmogorov’s (1941) theory, the inertial ranges of the energy and enstrophy
spectra are situated between the driving range and the dissipation range [40] (cf. section 2.1).
Through these inertial ranges the energy and enstrophy are cascaded by nonlinear processes to
the wavenumbers where they are dissipated. There is a double cascade in 2D-HD turbulence
with energy cascading to large length scales and enstrophy cascading to small length scales
[75]. Furthermore, the energy and enstrophy spectra in their inertial ranges depend only on
the wavenumbes, k and on the rate of their dissipation at which the energy and the enstrophy
are cascaded per unit mass. Therefore they have the forms [5, 76]

EK(k) = C�2/3k−5/3, Ω(k) = C
′
�2/3k−3. (5.11)

where � is the rate of kinetic energy transfer (cascaded) per unit mass and � is the rate of the
enstrophy transfer. C and C ′ are dimensionless constants.
Fig.5.1 shows the compensated energy spectrum at stationary turbulent flow. This spectrum
exhibits Kolmogorov scaling, EK(k) ∼ k−5/3 with logarithmic correction [5, 76]. The energy
spectrum shows the turbulence in this case is fully-developed in the inertial range. It is clear
that this compensated spectrum exhibits an inertial range extended over about one decade in
wavenumber space 30 ≲ k ≲ 270.
The enstrophy spectrum of incompressible 2D-HD turbulence is similarly obtained, where

the cumulative enstrophy Ω(k) computed by using Eq.(5.10). The simulation is performed
with the parameters specified for enstrophy in decaying isotropic 2D-HD (cf. Table 5.1).
Fig.5.2 shows the compensated enstrophy spectrum in DNS of 2D-MHD turbulence. The
enstrophy spectrum is compensated by the scaling factor k3 [5, 76]. The horizontal dashed
line in the plot indicates this scaling with the exponent −3. This is in agreement with the
scaling prediction k3 (cf. Eq.5.11). The inertial range of the enstrophy spectrum extends in
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Figure 5.2: Compensated enstrophy spectrum in DNS of decaying isotropic 2D-HD turbulence, the horizontal
dash-dotted line indicates the scaling k−3.

wavenumber space 30 ≲ k ≲ 100.

5.2 Nonlinear triad interactions in 2D-hydrodynamic turbu-
lence

5.2.1 Q(v) and W (v) Functions in 2D-HD Turbulence

The locality of the nonlinear energy and mean square vorticity transfer functions, triad
interactions, and the type of cascade in the inertial range of incompressible 2D-HD are mea-
sured by computing both the transfer density function Q(v) and the locality function W (v)

(cf. sections 3.6 and 3.7). The nonlinear terms in the 2D-HD equation (cf. Eq.5.3) conserve
both kinetic energy and enstrophy [6].
In order to measure the locality of the nonlinear energy transfer function and the triad inter-
actions in the energy inertial range in 2D-HD turbulence, Kraichnan [5] introduced a function
Q(v) that depends on v which is the ratio of the norm of the wavevector with the smallest
length of a given triad, and the norm of the wavevector of middle length, in other words it is
the ratio of the smallest wavenumber to the middle wavenumber in the interacting triad. This
function is derived from the energy flux Π(k) which can be expressed as (for more details see
section 3.5)

Π(k) =

∫ 1

0
dv

∫ 1+v

1
dw [ln(w)T (w, 1, v) + ln(v)T (v, 1, w)] . (5.12)
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Eq.(5.12) is valid for two and three dimensional hydrodynamic turbulence. The detailed
conservation of energy in both two and three dimensions for each triad interaction is expressed
by (cf. subsection 3.2.1)

T (k∣p,q) + T (p∣q,k) + T (q∣k,p) = 0. (5.13)

The quantity T ( ∣ , ) in each term of the l.h.s represents the combined energy transfer from
two wavenumbers (the second and third) to the first. The term T (k∣p,q) can be split into a
sum of two terms as,

T (k∣p,q) = T (k∣p∣q) + T (k∣q∣p).

where the first nonlinear term of the r.h.s. can be regarded as the rate of the energy transfer
from mode p to mode k via mode q which acts as a mediator (i.e., it is responsible for the
transfer), and the second term as the rate of the energy transfer from mode q to mode k via
the mediator p (cf. subsection 3.2.2). Each of these nonlinear terms is a mode-to-mode energy
transfer [39, 61]. The sum of transfer rates of the energy in a triad in 2D-HD turbulence is
zero, i.e.,

T (k∣p∣q) + T (k∣q∣p) + T (p∣k∣q) + T (p∣q∣k) + T (q∣k∣p) + T (q∣p∣k) = 0.

This result is detailed conservation of the energy in a triad interaction and means that the
energy is conserved in a given triad in 2D-HD turbulence, i.e.,

T (k) + T (p) + T (q) = const.

Similarly, the detailed conservation of enstrophy for each triad interaction in 2D-HD turbu-
lence can be expressed by

k2T (k∣p,q) + p2T (p∣q,k) + q2T (q∣k,p) = 0. (5.14)

where each term of the l.h.s gives the combined enstrophy transfer function from two modes
to the third in the interacting triad. Each of these terms can be split into a sum of two terms,
for example k2T (k∣p,q) can be written as

k2T (k∣p,q) = k2T (k∣p∣q) + k2T (k∣q∣p).

where the first nonlinear term of the r.h.s. gives the rate of the enstrophy transfer from mode
p to mode k mediated by mode q, and the second term of the same side gives the rate of
the enstrophy transfer from mode q to mode k via the mediator p. Each of these nonlinear
terms is called a mode-to-mode enstrophy transfer. The sum of the enstrophy transfer rates
in a triad in 2D-HD turbulence is zero

k2T (k∣p∣q) + k2T (k∣q∣p) + p2T (p∣k∣q) + p2T (p∣q∣k) + q2T (q∣k∣p) + q2T (q∣p∣k) = 0.
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This is the detailed conservation of the enstrophy in a triad interaction and means that that
the enstrophy is conserved in a given triad in 2D-HD turbulence,

Ω(k) + Ω(p) + Ω(q) = const.

Because of the detailed conservation of the energy and enstrophy in 2D-HD turbulence [6],
the over-all conservation laws of them can be written∫ ∞

0
T (k)dk = 0,

∫ ∞
0

k2T (k)dk = 0. (5.15)

Eq.(5.15) follows from the detailed conservation of energy and enstrophy in Eqs.(5.13) and
(5.14). These equations together give us some properties of an interacting triad formed by
three wavenumbers (k, p, q) with k = p + q, k = ∣k∣, p = ∣p∣, and q = ∣q∣ in 2D-HD turbulence
only written as

T (p∣q, k)/T (k∣p, q) = (q2 − k2)/(p2 − q2),

T (q∣k, p)/T (p∣q, k) = (k2 − p2)/(q2 − k2),

T (k∣p, q)/T (q∣k, p) = (p2 − q2)/(k2 − p2). (5.16)

Thus only one of the T ( ∣ , ) associated with a given triad interactions is linearly independent
[6].
Applying these properties to the nonlinear terms in the energy flux Eq.(5.12), we find

T (v, 1, w) = T (v, w, 1) =
w2 − 1

v2 − w2
T (1, v, w), and T (w, 1, v) =

1− v2

v2 − w2
T (1, v, w).

Then Eq.(5.12) for the energy flux Π(k), can be simplified in two dimensions only to

Π(k) =

∫ 1

0
dv

∫ 1+v

1
dw
[
ln(w)T (1− v2) + ln(v)T (w2 − 1)

] T (1, v, w)

v2 − w2
. (5.17)

Every pair of v and w values in Eq.(5.12) and Eq.(5.17) corresponds to a possible shape of
triangle created by the triad of interacting wavenumbers [6]. We introduce a new function,
which is called the transfer density function

Q(v) =
v

�

∫ 1+v

1
dw
[
ln(w)T (1− v2) + ln(v)T (w2 − 1)

] T (1, v, w)

v2 − w2
. (5.18)

Here � is the total rate of kinetic energy dissipation. The integrand in Eq.(5.18) represents
the total contribution to the energy transfer across k from all possible triads of a given shape.
The T factors in the integrand give the weights of the contribution of the different triangle
shapes. Eq.(5.17) for the energy flux in 2D-HD can be written

Π(k) =

∫ 1

0
dv
�

v
Q(v) = �

∫ 1

0
Q(v)

dv

v
. (5.19)
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Therefore, Q(v) serves as a measure of the locality of energy transfer. The Q(v) function
shows the structure of the inertial range energy transfer.
Repeating this procedure for the enstrophy (details given in Appendix B), the enstrophy flux
in 2D-HD can be written

Z(k) =

∫ 1

0
dv
�

v
Q(v) = �

∫ 1

0
Q(v)

dv

v
. (5.20)

Here � is the total rate of enstrophy dissipation.
Kraichnan’s approach for measuring the locality energy and enstrophy transfer functions
depends on the rule which states that in the inertial range of the energy spectrum, the the
total energy flux Π(k) is constant and equal to the total rate of energy dissipation � [64] (cf.
section 2.2). Similarly, in the inertial range of the enstrophy spectrum, the total enstrophy
flux Z(k) is equal to the total rate of enstrophy dissipation �. Eqs.(5.19) and (5.20) can be
written : ∫ 1

0

dv

v
Q(v) = 1 (5.21)

The above equation shows explicity howQ(v) can be regarded as a probability density function
of v (the ratio of the smallest wavenumber to the middle wavenumber in the interacting triad).
Q(v) measures the density of contributions to the nonlinear energy or enstrophy transfer of
the different shapes of triangles of interacting modes in k-space.
The nature of nonlinear transfer functions and nonlinear triad interactions can be approached
based on the geometry of a triad, following Kraichnan’s analytical closure model [5]. The
part of the total energy transfer function that passes through the inertial-range is measured
by our simulation. This part of the energy transfer is due to all triad interactions in which
the ratio of the smallest to the middle wavenumber is greater than v. We determine this by
the locality function W (v),

W (v) =

∫ 1

v
Q(s)

ds

s
. (5.22)

5.2.2 Locality of the energy in 2D-HD turbulence

To measure the locality of the nonlinear energy transfer function in incompressible isotropic
2D-HD turbulence, the function Q(v) can be used. This transfer density function depends
on v, the ratio of the smallest wavenumber to the middle wavenumber for a given interacting
triad. In our approach, the normalization of Q(v) in Eq.(5.21) shows how it represents as a
probability density function of v. Instead of a numerical integration of Q(v), the distribution
of the different triads implied in the energy transfer through the quantity, v is determined.
Thus for wavevectors k, p and q with k = p + q, which form a triad, we compute the ratio
v followed by the distribution of this ratio over the interval [0, 1]. Q(v) is appropriately
normalized over the total number of triads interactions. The normalized histogram of v
values shows the density of different wavevectors triangles. This histogram also shows the
locality of the nonlinear energy transfer in k-space in the inertial range of 2D-HD turbulence
(cf. Fig.5.3).
In our approach, to measure the locality of the nonlinear energy transfer function, the following
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Figure 5.3: Normalized transfer density functions Q(v) of the energy transfer for k = 50 (solid line), k = 100
(dotted line), and k = 200 (dashed line) in the inertial range of homogenous incompressible 2D-HD turbulence.

steps are used:

(1) An extension for Smith and Lee [67] approach is performed (cf. section 4.5 for
simulation details) with high resolution 40962 grid points of incompressible 2D-HD tur-
bulence.
(2) For an arbitrary fixed k-vector in the inertial range, graphs of the distribution of the
different shapes of nonlinear triads involved in energy transfer are computed. The distri-
bution give us more information about the interactions which are involved in changing
the energy.
(3) Contributions to the kinetic energy transfer associated with the density of the triad
interactions (k,p,q) are determined (i.e., belonging to each value of v) coming from the
combined energy transfer rates from modes belonging to p and q to mode k. For exam-
ple the kinetic energy transfer from modes belonging to p and q to the kinetic energy
in the third mode k, T vv(k∣p,q) (where T vv(k∣p,q) = T vv (k∣p∣q)+T vv (k∣q∣p)). Thus
the value of the combined kinetic energy transfer from two modes p and q to the kinetic
energy in mode k for each v-value is computed. The energy contributions normalized
over the total amount of energy transfer, due to the histograms of energy transfer for
the same arbitrary fixed k-vector.

It is important here to mention that all spectral results of the transfer density functions Q(v)

in the following sections are obtained by averaging over different independent states of fully
developed quasi-stationary turbulence. To separate the local and nonlocal transfer and triad
interactions, we used the parameter v (the ratio of the smallest wavenumber to the middle
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wavenumber in the interacting triad) to classify the transfer and interactions as local when
v ≥ 0.5 and nonlocal when v < 0.5.
Fig.5.3 shows the normalized transfer density functions Q(v) for k-values chosen in the inertial
range of the energy spectrum, say k = 50, 100, and 200. These k-values are chosen at different
positions of the inertial range (see Fig.5.1) to show how the strength of the function Q(v)

vary a long the inertial range. The contributions of the transfer density function Q(v) are
normalized by the rate of kinetic energy dissipation, � = �

∫
S !

2dS (cf. subsection 1.7.3).
Fig.5.3 shows three peaks with different amplitudes, each for a different value of k. These
amplitudes represent the strengths of the energy transfer functions and triad interactions.
The peaks of the functions Q(v) appear at v-values are close to zero, (v = 0.12, 0.18, and 0.22

for k = 50, 100, and 200, respectively). In other words, most of the nonlinear energy transfer
takes place in the region v < 0.5. This implies that the highest probability of nonlinear kinetic
energy transfer takes place between two wavenumbers of different size in any given interacting
triad. This indicates that most of the nonlinear kinetic energy transfer is highly nonlocal (cf.
section 3.4).
The positions of the peaks of the density functionsQ(v) in Fig.5.3 indicate that the magnitudes
of energy transfer which come from local triads (k ≈ p ≈ q) are small, while the magnitudes
which come from nonlocal triads (k ∕= p ∕= q) are large. The functions Q(v) vanish at v = 1,
because each triad interaction conserves both energy and enstrophy. This implies that the
energy transfer function T (k∣p,q) is zero if any two of the three wavenumbers are equal (cf.
Eq.5.13 and 5.14). Thus it can be envisaged that most of the interacting triads includes three
wavenumbers with different sizes in the inertial range. The total energy is exchanged between
two small scales (large wavenumbers) and a large scale (small wavenumber) in a given triad.
Thus the triad interactions are predominantly nonlocal in the energy inertial range of 2D-HD
turbulence. In addition, Fig.5.3 indicates that the strength of the function Q(v) increases
with decreasing k-value and v go to zero. This indicates that the kinetic energy is transferred
from small scales to large scales in the inertial range. Thus the kinetic energy flux is negative
and the nonlinear energy transfer has an inverse cascade. The graphs fall to zero for v-values
close to zero. Due to the fact that the triangles are elongated, they can not be represented
in a square box anymore. The highest density of triad interactions is given for triangles that
are elongated.
The nature of the nonlinear energy transfer functions and nonlinear triad interactions can

be quantified by considering the contributions based on the geometry of a triad. This is
accomplished by measuring the locality functionW (v) in Eq.(5.22). Fig.5.4 depicts the locality
functions W (v) for the transfer density functions Q(v) shown in Fig.5.3. Approximately 60%

of the total energy transfer comes from triad interactions in which the ratio of the smallest
wavenumber to the middle is greater than 0.09, 0.13, and 0.17 at k = 50, 100, and 200,
respectively. In other words, 40% of the total energy transfer involves wavenumber triads in
which the smallest wavenumber is less than 0.09, 0.13, and 0.17 of the middle wavenumber
at k = 50, 100, and 200, respectively. This implies that most of the nonlinear energy transfer
exchanges between two wavenumbers with different sizes in the interacting triad. The triad
interactions in this case have a high probability to be between wavenumbers triads with
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Figure 5.4: The locality-functions W (v) of the energy transfer for k = 50 (solid line), k = 100 (dotted line),
and k = 200 (dashed line) in the inertial range of homogenous incompressible 2D-HD turbulence

different size legs. These interactions predominantly occured between one large scale and
two small scales in a given triad. These results indicate that the total nonlinear energy
transfer in 2D-HD turbulence is nonlocal through nonlocal triad interactions with an inverse
cascade direction. The spectral results in this case show that there is no evidence of local
transfer or triad interactions between the modes in the inertial range. These results are in
good agreement with previous theoretical results of Kraichnan [5]. Kraichnan computed the
strength of the energy transfer and triad interactions in 2D-HD turbulence using an "almost
Markovian Galilean invariant" turbulence model. He showed that 40% of the total energy
transfer involves triads in which the smallest wavenumber is more than one-fifth of the middle
wavenumber.

5.2.3 Locality of the enstrophy in 2D-HD turbulence
The locality of the nonlinear enstrophy transfer and nonlinear triad interactions in the

inertial range of enstrophy in incompressible 2D-HD turbulence are measured in the same
way (that these quantities were measured for energy). In this case the contribution to the en-
strophy transfer function associated with the density of the triad interactions is determined.
Contributions come from the combined enstrophy transfer rates from modes p and q to a
third mode k, k2T vv(k∣p,q) = k2T vv (k∣p∣q) + k2T vv (k∣q∣p). Fig.5.5 shows the normal-
ized transfer density function Q(v) of the enstrophy for k = 80 in the inertial range of the
enstrophy spectrum. The function Q(v) is normalized by the rate of enstrophy dissipation
� = �

∫
S dS(∇!)2. The graph shows that the locality of the nonlinear transfer of enstrophy

is stronger than that of nonlinear energy transfer. Strong local transfer of enstrophy char-
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acterized by a strong peak that appears between v = 0.5 and 0.8. This implies that the
nonlinear enstrophy transfer occurs between two wavenumbers of a given triad that possess
nearly similar-size. This indicates that most of the nonlinear enstrophy transfer rates is local
in the inertial range. In addition, as in the case of the energy transfer, the Q(v) graph of en-
strophy falls to zero for v-values close to zero. Due to the fact that the triangles are elongated
in the inertial range, they can not be represented in the square box anymore.
The nonlinear enstrophy is exchanged between three wavenumbers of the interacting triad
(k,p,q) with k = p + q, and k = ∣k∣, p = ∣p∣, and q = ∣q∣. To determine the type of locality
or nonlocality for the triad interactions associated with the enstrophy transfer, the contribu-
tion of the combined enstrophy transfer rate k2T (k∣p,q) for every wavenumber triad (k,p,q)

for a fixed k-vector in the inertial range is calculated. Thus the combined enstrophy transfer
rate from two modes p and q to the enstrophy in mode k for each v-value in the interval [0,1]
is computed. Fig.5.6 shows the normalized contributions of the combined enstrophy transfer
rate k2T (k∣p,q) for fixed k = 40, 50 and 80 in the enstrophy inertial range. The graphs
show that most of the nonlinear enstrophy transfer exchanges between wavenumbers of triads
interactions at v ≈ 0.06, 0.07 and 0.09 for k = 40, 50 and 80, respectively (here v < 0.5)
and decreases with v values close to 1. This implies that the magnitudes of interactions for
nonlocal triads k ∕= p ∕= q are larger, while the interactions are small for local triads k ≈ p ≈ q.
Thus nonlinear triad interactions occur between three wavenumbers with different sizes in the
interacting triad. Most of the total enstrophy has a high probability to transfer between three
wavenumbers in the interacting triad with two wavenumbers of similar size that are longer
than the third wavenumber (k ≈ p≫ q, k ≈ q ≫ p, or p ≈ q ≫ k). Thus most nonlinear triad
interactions in the enstrophy inertial range is nonlocal (cf. section 3.4). This result indicates
that the important triads are elongated in the inertial range. It seems that in such triad
interactions the smallest wavenumber acts as a mediator, but does not lose or gain significant
enstrophy. Physically, this is consistent with idea that large scale straining of vortex sheets
is the mechanism for the enstrophy cascade. One can consider the enstrophy transfer to be
local in the sense that enstrophy is transferred only between the two wavenumbers of similar
size. Fig.5.6 shows also the enstrophy transfer function k2T (k∣p,q) abruptly drops to zero
at v ≈ 0.06. This confirms that the fact which is the nonlinear triads can not be represented
in the square box anymore. In addition, Fig.5.6 shows that the combined enstrophy transfer
rate is approximately the same for different k-values in the inertial range. Thus the flux
of enstrophy is constant, positive and transfers from large scales to small scales (i.e., direct
cascade) in the inertial range. Fig.5.7 depicts the locality function W (v) for the function
Q(v) was drawn in Fig.5.5. Approximately 60% and 80% of the total enstrophy transfer
comes from triad interactions in which the ratio of the smallest wavenumber to the middle is
greater than 0.23 and 0.10, respectively. 40% and 20% of the total enstrophy transfer involves
wavenumber triads in which the smallest wavenumber is less than one-fifth and one-tenth
of the middle wavenumber. This implies that most of nonlinear enstrophy transfer occurs
between two wavenumbers of similar size. It is clear that the influence of the large scales may
be communicated directly to all scales. In this cascade, information about the forcing scales
is gradually lost as enstrophy is transferred in small steps to small scales. The local enstrophy
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Figure 5.5: Normalized transfer density function Q(v) of enstrophy transfer for k = 80 in the inertial range
of homogenous incompressible 2D-HD turbulence.

Figure 5.6: Normalized contributions of the combined enstrophy transfer function k2T (k∣p,q) for fixed
k = 40, 50 and 80 in the enstrophy inertial range.
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Figure 5.7: The locality-function W (v) of enstrophy transfer for k = 80 in the inertial range of homogenous
incompressible 2D-HD turbulence.

flux is positive and there is a direct cascade to small scales. These results report that the
nonlinear enstrophy transfer in the inertial range of incompressible 2D-HD turbulence is local
via nonlocal triad interactions with a direct cascade direction. These reults are in are in good
agreement with Maltrud and Vallis [77], they determined the relative importance of the types
of wavevector triad interactions that transfer enstrophy in the inertial range using DNS of
2D-HD turbulence. They claimed that the triads are typically elongated and the enstrophy
transfer within these triads is directed from large scale to small scales. Our results show that
there is a dual cascade with energy cascading to large length scales and enstrophy cascading
to small length scales.
In Fig.5.7 approximately 80% of the enstrophy transfer comes from triad interactions in which
the ratio of the smallest to the middle wavenumber is greater than 0.10, in contrast to 60% of
the energy transfer in the energy inertial range (cf. Fig.5.4). Thus the triads that contribute
to the enstrophy transfer are more local than those that contribute to the energy transfer in
the energy inertial range in the sense that contributions to the total transfer are significant
even as the ratio of the smallest to the middle wavenumber approaches unity. In the next sec-
tion, the quadratic nonlinearity invariants in incompressible 3D-HD turbulence are discussed,
and the spectal properties of their transfer functions, triad interactions, and cascade direction
are explained.
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5.3 Ideal invariants in 3D-HD turbulence
The nonlinear terms in the vorticity equation (cf. Eq.5.1) include a vortex-stretching term

! ⋅ ∇v comparable to that in the 2D-HD case (cf. Eq.5.3). The vortex-stretching term mod-
ifies the nonlinear transfer of kinetic energy in the inertial range of 3D-HD turbulence. The
vorticity field is stretched in the direction parallel to velocity gradients. This process together
with incompressibility and angular momentum conservation leads to an increase of vorticity.
According to the Kelvin-Helmholtz theorem, the vorticity flux which is the intensity of the
vortex tube is a constant of the motion if the fluid is of uniform density and zero viscosity. If
the vortex tube is stretched in such a way that its cross section decreases, its mean vorticity
will increase. If one considers a thin vortex tube embedded in turbulence in a slightly viscous
flow, it will both be stretched by turbulence, and moved with the fluid particles. One can
consider turbulence as a collection of thin vortex tubes stretched by the induced velocity field.
This vortex-tube stretching can lead to the formation of regions of space characterized by a
high vorticity and high dissipation of kinetic energy. Such a state of the fluid, i.e., highly
dissipative structures embedded into an irrotational flow, is called internal intermittency [1].
The DNS results of three dimensional, isotropic, hydrodynamic turbulence have established
that the turbulent structures are in fact thin tubes of high vorticity due to the vortex stretch-
ing. The phenomenology of vortex-stretching is cannot be applied to 2D-HD case because
the vorticity is conserved and no vortex-stretching occurs. This leads to an inverse cascade
of kinetic energy (cf. section 5.2 and [2])
Two ideal invariants in three dimensional Navier-Stokes turbulence can be found by neglecting
dissipation effect (�=0) in the set of equations (5.1)-(5.2), kinetic energy and kinetic helicity
(cf. section 1.7).

5.3.1 Scaling of energy and kinetic helicity spectra in 3D-HD turbulence

To obtain the spectra of the kinetic energy and kinetic helicity in 3D-HD, the system of
3D Navier-Stokes equations (5.1)-(5.2) is solved on a periodic cube using a standard pseu-
dospectral method with dealiasing according to the 2/3 rule [16]. The simulation has been
performed by W.-C. Müller with resolution 10243, the dissipation coefficient �̃ = 5.2× 10−4,
and the Reynolds number Re ∼ 6300.
In the inertial range, both energy and kinetic helicity are cascaded through nonlinear pro-
cesses. The energy and kinetic helicity spectra in the inertial range depend only on the
wavenumbe, k and on the rate of dissipation at which the energy and the helicity are cas-
caded. Therefore, according to Kolmogorov scaling [40, 41]

EK(k) = CE�2/3k−5/3, HK(k) = CHK��−1/3k−5/3, (5.23)

where � is the dissipation rate of kinetic energy, and � is the dissipation rate of the kinetic
helicity. CE and CHK are dimensionless constants.
In Fourier space, the cumulative kinetic energy EK(k) of incompressible 3D-hydrodynamic
turbulence is calculated over spherical shell of radius k = ∣k∣ using Eq.(5.10). Fig.5.8 depicts
the compensated kinetic energy spectrum calculated by a DNS of 3D Navier-Stokes turbu-
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Figure 5.8: Compensated energy spectrum in DNS of 3D-HD turbulence, the horizontal dash-dotted line
indicates Kolmogorov-like k−5/3 inertial range.

lence. The scaling factor of the energy spectrum agrees with those of the transverse velocity
structure functions in the inertial range, consistent with the scaling prediction EK(k) ∼ k−5/3

(cf. Eq.5.23). The energy spectrum shows the turbulence is fully-developed inertial range.
The spectrum exhibits an inertial range extended over about one decade in wavenumber
3 ≲ k ≲ 40.
The cumulative kinetic helicity HK(k) in incompressible 3D-hydrodynamic turbulence cal-

culated in Fourier space via the velocity and vorticity by the following equation,

HK(k) = !∗(k) ⋅ v(k).

The kinetic helicity spectrum is compansated by the same scaling factor k−5/3 like energy
spectrum to make the inertial range clearly visible. Fig.5.9 depicts the compensated kinetic
helicity spectrum from our DNS of 3D Navier-Stokes turbulence. The kinetic helicity spec-
trum shows the turbulence is fully-developed in the inertial range. It exhibits an inertial range
extended in wavenumber 5 ≲ k ≲ 50. Both spectrum of kinetic helicity and the spectrum of
energy satsify a −5/3 law in the inertial range of 3D Navier-Stokes turbulence. Thus as we
will see, there is a joint cascade of the kinetic energy and kinetic helicity to small scales.
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Figure 5.9: Compensated kinetic helicity in DNS of 3D-HD turbulence, the horizontal dash-dotted line
indicates the scaling factor in the vicinity of k−5/3.

5.4 Nonlinear triad interactions in 3D-hydrodynamic turbu-
lence

5.4.1 Q(v) and W (v) functions in 3D-HD turbulence

The nonlinear terms of 3D Navier-Stokes equations conserves both kinetic energy and the
kinetic helicity [2, 58, 78]. To measure the locality of the nonlinear energy transfer function
and the triad interactions in the energy inertial range, the same steps used in 2D-HD are
repeated. The simulation program is extended from 2D to 3D (cf. section 4.5). The energy
is conserved in both 2D and 3D incompressible Navier-Stokes turbulence, thus the detailed
conservation of energy in 2D-HD for each triad interaction is also valid in 3D-HD.
To measure the locality of the nonlinear kinetic helicity, the transfer density function Q(v) and
locality function W (v) for the kinetic helicity are computed. The kinetic helicity is assumed
to be nonzero in our calculation,

HK =
1

2
⟨v ⋅ !⟩ .

Both kinetic energy and kinetic helicity are conserved in three dimensions [2, 58]. However,
an interesting pattern in the energy transfers among Fourier modes is obtained by focusing
on a single triad. For a single interacting triad (k,p,q) with k + p + q = 0, and k = ∣k∣, p =

∣p∣, q = ∣q∣. The evolution equation of kinetic helicity in a triad interaction is

∂HK(k)

∂t
=

1

2
ℛ
[
!∗(k) ⋅ ∂v(k)

∂t
+ v∗(k) ⋅ ∂!(k)

∂t

]
. (5.24)
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This equation can be written in our triad notation as

HK(k∣p,q) = H K (k∣p∣q) + H K (k∣q∣p), (5.25)

where

HK(k∣p∣q) =
1

2
ℑ [(k ⋅ v(q)) {!∗(k) ⋅ v(p) + !(p) ⋅ v∗(k)} − (k ⋅ !(q))(v∗(k) ⋅ v(p))] .

(5.26)
ℑ is the imaginary part. HK(k∣p∣q) represents the mode-to-mode kinetic helicity transfer
from mode p to mode k with mode q acting as a mediator [39]. The sum of transfer rates of
kinetic helicity in a triad (k,p,q) in decaying 3D-HD turbulence is zero

HK(k∣p,q) + H K (p∣q,k) + H K (q∣k,p) = 0. (5.27)

This is equivalent to

HK(k∣p∣q) + H K (k∣q∣p) + H K (p∣k∣q) + H K (p∣q∣k) + H K (q∣k∣p) + H K (q∣p∣k) = 0.

This result implies that kinetic heicity is conserved in a triad [39, 21], which is also referred to
as detailed conservation of kinetic helicity in a triad interaction in decaying 3D-HD turbulence,
i.e.,

HK(k) + H K (p) + H K (q) = const. (5.28)

The detailed conservation of the energy and helicity in 3D-HD turbulence, lead to global
conservation of these quantities:∫ ∞

0
T (k)dk = 0,

∫ ∞
0

HK(k)dk = 0. (5.29)

The kinetic energy is conserved in both 2D and 3D Navier-Stokes turbulence, so the same
transfer density function Q(v) which uesd in the 2D case (cf. Eq.5.19 with Eq.3.77), can
be used to measure the locality of the energy in the 3D case. Since the kinetic helicity is
conserved, the energy and helicity have a joint cascade and their spectra satisfy a −5/3 law in
the inertial range. By a similar analysis for the kinetic helicity, we obtain the transfer density
function Q(v) which serves to measure the locality of kinetic helicity in the inertial range.
This function can be derived from the kinetic helicity flux

ΠHK(k) = �

∫ 1

0
Q(v)

dv

v
(5.30)

where � is the rate of kinetic helicity dissipation.

5.4.2 Locality of the energy in 3D-HD turbulence

The simulation program discussed in subsection 5.3.1 is used to compute the transfer den-
sity function Q(v) and the locality function W (v). Thus the locality of kinetic energy in the
inertial range of energy spectrum can be measured.
Fig.5.10 shows the normalized transfer density functions Q(v) for chosen k-values in the en-
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ergy inertial range (see Fig.5.8). The functions Q(v) are normalized by the rate of kinetic
energy dissipation, � = �

∫
V !

2dV . Fig.5.10 shows that the locality of the kinetic energy
is charactericed by three peaks with different amplitudes at v-values are close to 1. The
maximum amplitudes appear at approximately v = 0.7, 0.8, and 0.85 for k = 10, 20, and 30,
respectively (note that v > 0.5). The inset graphs show a log-log plot of the same normal-
ized transfer density functions. The values of the density functions Q(v) do not vanish at
v = 1. This means that the energy transfer function T (k∣p,q) is not zero if any two of the
three wavenumbers are equal. This is contrary with the density function of energy in 2D-HD
turbulence (cf. Fig.5.3). Thus most of the nonlinear kinetic energy is transferred between
two wavenumbers with similar sizes in a given interacting triad. It also indicates that the
maximum energy transfer takes place between neighboring wavenumbers. Thus most of the
nonlinear kinetic energy transfer is highly local in the energy inertial range of incompressible
3D-HD turbulence.
Fig.5.11 shows the normalized contributions of the combined energy transfer rates T (k∣p,q)

for chosen k in the inertial range (cf. section 3.2). These functions have a maximum ampli-
tudes at v ≈ 0.17, 0.18 and 0.21 for k = 10, 20, and 30, respectively. All graphs fall to zero
with v-value close to 1. This implies that the magnitudes of interactions for nonlocal triads
k ≈ p ≫ q, k ≈ q ≫ p, or p ≈ q ≫ k are larger than those for local triads k ≈ p ≈ q.
Thus most nonlinear triad interactions associated with energy transfer takes place between
three wavenumbers with different sizes. Most of these triads have two wavenumbers with
similar sizes, longer than the third wavenumber. This indicates that in the triad interaction,
the largest scale acts as a mediator only when the energy transfers between the two small
scales and the triads are very elongated in the inertial range. Thus triad interactions in 3D-
HD energy inertial range are predominantly nonlocal. This result contradicts the classical
Kolmogorov phenomenological argument [40], in which Kolmogrov assumed that the energy
transferred locally via local triad interactions in the inertial range. Fig.5.10 shows that the
strength of the transfer density functions Q(v) increases with k value increases. The kinetic
energy is transferred from large scales to small scales with local energy transfer in the energy
inertial range. In addition, Fig.5.11 shows that the combined energy transfer rate is approxi-
mately the same for different k-values in the inertial range. These results indicates that the
flux of the kinetic energy is constant, positive and transfers from large scales to small scales
(i.e, direct cascade) in the inertial range. The there is no possibility for negative nonlocal
flux in the inertial range of homogenous incompressible 3D-HD turbulence. This observa-
tion is consistent with recent high Reynolds number simulations such as Mininni et al. [79].
Mininni et al. reported that the percentage of the nonlocal flux decreases as a power law of
the Reynolds number, suggesting that the flux in hydrodynamic turbulence is predominantly
local for large Reynolds number. Recent theoretical results of Aluie and Eyink [80] and Eyink
and Aluie [81] showed that the energy flux in hydrodynamic turbulence is local in Fourier
space in the limit of infinite Reynolds number. They claimed that the energy transfer is
dominated by local triad interactions and this in disagreement with our results. Fig.5.12
shows the locality functions W (v) that correspond to the functions Q(v) of Fig.5.10. Approx-
imately 80% of the total energy transfer comes from triad interactions in which the ratio of
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Figure 5.10: Normalized transfer density functions Q(v) of energy transfer for k = 10 (solid), 20 (dotted),
and 30 (dashed) in the inertial range of homogenous incompressible 3D-HD turbulence. The inset is log-log
plot of the same functions.

Figure 5.11: Normalized contributions of the combined energy transfer rate T (k∣p,q) for k = 10 (solid), 20
(dotted), and 30 (dashed) in the inertial range of homogenous incompressible 3D-HD turbulence.



5.4 Nonlinear triad interactions in 3D-hydrodynamic turbulence 73

Figure 5.12: The locality functions W (v) of energy transfer for k = 10 (solid), 20 (dotted), and 30 (dashed)
in the inertial range of homogenous incompressible 3D-HD turbulence.

Figure 5.13: Comparison between data from our 10243 simulation (black) and Kraichnan’s theoretical cal-
culation [5] (red) for the locality function W (v) of energy in 3D-HD turbulence.
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the smallest wavenumber to the middle is greater than 0.45, 0.5, and 0.5 for k = 10, 20, and
30, respectively. In other words, 20% of the total energy transfer involves wavenumber triads
in which the smallest wavenumber is less than 0.45 of the middle wavenumber at k = 10 and
less than one-half of the middle wavenumber at k = 20 and 30. Most of nonlinear energy is
transferred between two wavenumbers with similar sizes and the energy is transferred from
small wavenumbers to large wavenumbers. Thus the nonlinear energy transfer is predomi-
nantly local and exhibits a direct cascade.
Our results in agreement with the established theoretical result of Kraichnan [5], concerning
the strength of triad interactions and energy transfers in 2D and 3D fluid turbulence calcu-
lated from an "almost Markovian Galilean invariant" turbulence model. Kraichnan showed
that in 3D, 35% of the total energy transfer across a unit wavenumber sphere involves triads
in which the smallest wavenumber is more than one-half of the middle wavenumber for a
given triad. Hence, the energy transfer in 3D fluid turbulence is local. Verma et al. [82] also
computed the strength of the nonlinear triad interactions and the energy exchange between
wavenumbers shells in incompressible 3D fluid turbulence. They used first order perturba-
tive field theory for their computation, they reported that the shell-to-shell energy transfer
rate is local with a direct cascade via nonlocal triad interactions. In addition, our results
are compatible with the numerical simulations of Domaradzki and Ragallo [7], where they
showed that energy transfers in homogenous incompressible 3D fluid turbulence were always
local via nonlocal triad interactions. Domaradzki and Ragallo found their numerical results in
agreement with an eddy-damped quasi-normal Makrovian (EDQNM)1 calculation. They con-
jectured that the observed energy transfer was caused by triads with at least one wavenumber
in the energy-containing range. Zhou [83] numerically computed the energy transfers using
different wavenumber summation scheme, and found the energy transfers to be local. Waleffe
[65] investigated the nonlinear interactions in homogeneous turbulence using a decomposition
of the velocity field in terms of helical modes. He reported that the triad energy transfer due
to nonlocal interactions is mostly local. Ohkitani and Kida [84] analyzed the triad interactions
and concluded that nonlocal interactions were strong, but energy exchanged predominantly
between comparable scales. Our results confirm the presence of interactions between disparate
scales in a turbulent flow at large Reynolds numbers. Thus our results shed some light on the
dynamics of energy transfer, interactions between different scales and a cascade process in a
flow which are some fundamental properties of turbulence.
Fig.5.13 depicts a comparison between data from our 10243 simulation and Kraichnan’s the-
oretical calculation for the locality function W (v) of the energy in 3D-HD turbulence for all
possible ratios v ≤ 1. Theoretical data from Kraichnan’s work is estimated from his results
(see, Fig.2 in [5]). Fig.5.13 show that our simulation data has a clear deviation from the
classical prediction of Kraichnan which is W (v) ∝ v4/3 for v ≤ 1. Our results are shifted up-
wards from theoretical data, this shift indicates that the influence of the small wavenumbers
on the energy transfer to large wavenumbers is equivalent or stronger than that predicted by
the classical 4/3 scaling. The prediction of our simulation is W (v) ∝ v0.92 for v ≤ 1. This is
prediction deviates from DNS results of Domaradzki and Carati [85]. This observation implies

1More details about this approximation, see [1, 26].
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that the decay of nonlocal contributions in v is even faster than that proved by Eyink [86],
where he predicts W (v) ∝ v2/3 as a rigorous upper bound.

5.4.3 Locality of the kinetic helicity in 3D-HD turbulence
Kinetic helicity is one of two important quadratic invariants of inviscid incompressible 3D

fluid turbulence; it plays a role in the dynamics of turbulence. Kinetic helicity is typically
present in all rotating fluid systems, e.g., the earth, the sun, and the galaxies. In these astro-
physical systems, kinetic helicity generates magnetic fields [87]. Recent numerical calculations
of magnetohydrodynamic turbulence showed that kinetic helicity induces additional fluxes of
energy and magnetic helicity [70]. Studying the locality of kinetic helicity in incompressible
3D fluid turbulence can provide information about the dynamics of turbulence.
In the following parts of this work, the spectral locality of the nonlinear kinetic helicity transfer
function, triad interactions, and type of helicity cascade are studied. To measure the transfer
density function Q(v) of kinetic helicity, we determine the strength of the contributions to the
kinetic helicity transfer functions. These contributions associated with the density of the triad
interactions (i.e., each value of v) coming from the combined kinetic helicity transfer rates
from modes belonging to p and q to the third one k as shown in Eq.(5.25) with Eq.(5.26).
The kinetic helicity contributions are normalized over the total amount of helicity transfer.
Fig.5.14 shows the normalized transfer density functions Q(v) of the kinetic helicity for k-
values k = 10, 20, and 30. The functions Q(v) are normalized by the rate of kinetic helicity
dissipation, DHK = � = �

∫
V dV ! ⋅(∇×!). Fig.5.14 shows that the transfer density functions

of the helicity at k-values have the same behavior as those for kinetic energy in Fig.5.10. The
graphs of the functions Q(v) of the helicity are characterized by three peaks with different
amplitudes at v-values close to 1. These peaks appear at approximately v = 0.75, 0.82, and
0.88 for k = 10, 20, and 30, respectively. The positions of the peaks of the transfer density
functions of helicity are larger than those for the energy by small values (cf. Fig.5.12). This
implies that there is a strong joint between the nonlinear transfer rates of energy and helic-
ity simultaneously in the inertial range. Most of the nonlinear kinetic helicity is transferred
between two wavenumbers with similar sizes in a given interacting triad. This implies that
the nonlinear kinetic helicity transfer is predominantly local in the inertial range of 3D-HD
turbulence. In addition, Fig.5.14 shows that the strength of the transfer density functions
Q(v) for helicity increases with k value. The kinetic helicity is transferred from large scales to
small scales in the inertial range. Thus the kinetic helicity flux is positive and the nonlinear
helicity transfer has a direct cascade in the inertial range of incompressible 3D-HD turbulence.
The graphs of the Q(v) are smoother than those found for kinetic energy. Due to the strong
joint cascade of both energy and helicity in 3D-HD turbulence, most of the triad interactions
associated with helicity transfer is predominantly nonlocal in the inertial range.
Fig.5.15 shows the locality functions W (v) for the nonlinear energy transfer functions at

k = 10, 20, and 30 in the helicity inertial range. Approximately 80% of the total helicity
transfer comes from triad interactions in which the ratio of the smallest wavenumber to the
middle is greater than 0.5, 0.6, and 0.7 at k = 10, 20, and 30, respectively. Most of nonlinear
helicity is transferred between two wavenumbers with similar sizes from small wavenumbers to
large wavenumbers. The spectral results for kinetic helicity show that the nonlinear helicity
transfer is more local than energy. This result is in contradiction with the result obtained by
André and Lesieur [88], which states that the kinetic helicity transfer is less local than the
energy transfer in isotropic turbulence at high Reynolds number. Our results of the nonlinear
processes of kinetic helicity in isotropic 3D-HD turbulence are in good agreement with the
recent works, e.g., the results of Avinash et al. [89]. They applied the perturbative field-
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Figure 5.14: Normalized transfer density functions Q(v) of kinetic helicity transfer for k = 10 (solid), 20
(dotted), and 30 (dashed) in the inertial range of homogenous incompressible 3D-HD turbulence. The inset is
log-log plot of the same functions

Figure 5.15: The locality functions W (v) of kinetic helicity transfer for k = 10 (solid), 20 (dotted), and 30
(dashed) in the inertial range of homogenous incompressible 3D-HD turbulence.
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theoretic technique to helical turbulence. They found that the kinetic helicity flux is constant
and direct in the inertial range. Chen et al. [78] computed the transfer function of both
energy and kinetic helicity in 3D-HD turbulence, theoretically. They claimed that there is a
joint cascade of both energy and helicity simultaneously to small scales. Our results for the
spectral properties of the quadratic nonlinear invariants in both of 2D and 3D-hydrodynamic
turbulence are summarized in Table 5.2.

Ideal invariant Transfer function Triad interactions Cascade direction

2D-NS: Energy, EK nonlocal nonlocal inverse

2D-NS: Enstrophy, Ω weaker local nonlocal direct

3D-NS: Energy, EK local nonlocal direct

3D-NS: Kinetic helicity, HK local nonlocal direct

Table 5.2: The spectral properties of the quadratic nonlinear invariants in both of 2D and 3D-hydrodynamic
turbulence.

It is important to mention for conclusion, that our approach gives a direct result for the
spectral properties of the nonlinear ideal invariants. If the transfer density function Q(v) of
a physical quantity has a peak close to one, the transfer of this quantity is local with a direct
cascade and the triad interactions are considered as nonlocal (triad interactions occur between
two wavenumbers with similar sizes and longer than the third wavenumber in the interacting
triad). If the peak of the function Q(v) is close to zero, the transfer is nonlocal with an inverse
cascade and the triad interactions are considered as nonlocal (triad interactions occur between
three different wavenumbers in the interacting triad). Thus we suggest to apply our approach
for different turbulent systems, where it gives a direct results for the spectral properties of
these systems.
In the next chapter, the spectral properties of the nonlinear processes for different ideal
invariants will be studied both in incompressible isotropic 2D-MHD and isotropic, anisotropic,
and forced inverse 3D-MHD turbulence systems.
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Chapter 6

Nonlinear triad interactions in
magnetohydrodynamic turbulence

Physics of magnetohydrodynamic (MHD) turbulence is more complex than of neutral fluid
turbulence. This is because there are two coupled vector fields, velocity and magnetic, and two
dissipative parameters, viscosity and resistivity. In addition, when the system is subject to a
mean magnetic field b0, which cannot be transformed away using Galilean transformation, the
turbulence becomes anisotropic and thus giving special behavior in different directions. Two-
dimensional magnetohydrodynamics (2D-MHD) turbulence is the simplest case of a MHD
turbulent system commonly studied. Plasma dynamics in two dimensions can be seen as an
approximation to a three-dimensional system with a strong mean magnetic field, because the
turbulent dynamics are largely restricted to two-dimensional planes. In this chapter, we begin
by treating two-dimensional MHD turbulence simulation without a mean magnetic field. Then
isotropic, anisotropic, and forced inverse cascade three-dimensional MHD turbulence systems
will be presented. In incompressible MHD turbulence, the nonlinear quadratic invariants are
total energy, cross helicity, and mean square magnetic vector potential in the 2D-MHD case.
In 3D-MHD case they are total energy, cross helicity, and magnetic helicity. The spectral
locality of the transfer functions, triad interactions and the inertial range cascade directions
of the ideal invariants in Fourier space are discussed. Both the transfer density function Q(v)

and the locality functionW (v) are computed. Results are reported for both 2D and 3D-MHD
turbulence.

6.1 Ideal invariants in 2D-MHD turbulence
The non-dimensional MHD equations (cf. Eqs.1.38-1.40) are presented in section 1.2. In

the 2D-MHD approximation (where ∂z = 0), the system of equations can be reduced and
written in terms of the vertical vorticity ! and the magnetic field b [2].

∂t! + v ⋅ ∇! − b ⋅ ∇j = �̃∇2!, (6.1)

∂tb + v ⋅ ∇b = �̃∇2b, (6.2)

∇ ⋅ v = 0, ∇ ⋅ b = 0. (6.3)
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Here j = (∇×b)⋅ez is the current density and �̃ and �̃ are dimensionless dissipation coefficients
related to the kinematic viscosity and magnetic diffusivity, respectively (cf. Eq.1.37). The
vorticity and current density are now scalar functions in the direction perpendicular to the
xy- plane where turbulent dynamics take place. The magnetic field in the 2D-MHD is usually
expressed in terms of one scalar function  that corresponds to the modulus of the magnetic
vector potential that is perpendicular to the xy-plane. Instead of Eq.(6.2), the following
equation for the evolution of this scalar function is used [2]

∂t + (v ⋅ ∇) = �̃∇2 . (6.4)

The magnetic field and the current density are related to  , b = ∇ × ez and j = −∇2 ,
respectively. Eq.(6.4) is an advection-diffusion equation for an active scalar, since  influences
via the Lorentz force on the time evolution of the velocity field. From the structure of this
equation and from the absence of any driving term, clearly  decays in time and the magnetic
energy is dissipated as well. Therefore, there is no possibility for dynamo action in 2D-MHD
[90, 91]. However, it is possible to amplify the magnetic energy during the initial phase when
 -field is distorted by the velocity field, and may form very steep gradients.
In incompressible 2D-MHD turbulence (� = � = 0), Eqs.(6.1) and (6.4) possess three
quadratic nonlinear invariants: the total energy

Etot = EK + EM =
1

2

∫
S
dS(v2 + b2),

the mean square magnetic vector potential

A =
1

2

∫
S
dS 2,

and the cross helicity

HC =
1

2

∫
S
dS(v ⋅ b).

6.1.1 Spectra of the total energy and mean square magnetic vector po-
tential in 2D-MHD turbulence

To obtain the spectra of energy and mean square magnetic vector potential, the set of
Eqs.(6.1)-(6.3) is solved on a 2�-periodic square using a standard pseudospectral method
with dealiasing according to the 2/3 rule [16]. The simulation is performed with the resolution
10242 (the simulation is conducted byW.-C. Müller and A. Busse). The dissipation coefficients
are �̃ = �̃ = 5 × 10−4, value chosen to obtain the maximal extension of the inertial ranges
of both fields. The Reynolds numbers based on the typical velocity V0 = (EK)1/2 and on
the associated length L0 = (Etot)3/2/� (� is the total energy dissipation) are approximately
Re = Rm ≈ 7× 104 [2, 4], where

Re ≈ (EK)1/2(Etot)3/2

��
, Rm ≈ (EK)1/2(Etot)3/2

��
.
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This corresponds to magnetic Prandtl number Prm = 1 to allow us to achieve a formally
symmetric configuration with regard to non-dimensional v and b fields. All spectral results
presented in the 2D-MHD turbulence case are obtained from this simulation. As discussed in
subsection 5.1.1, the kinetic energy in Fourier space is computed from

EK(k) =
1

2k2
!(k) ⋅ !∗(k). (6.5)

The magnetic energy EM (k) in Fourier space is computed in terms of the magnetic vector
potential a

EM (k) =
1

2
[a(k) ⋅ a∗(k)] k2. (6.6)

The magnetic field b(k) in Fourier space is

b(k) = i [k× a(k)] ,

where b = ∇× a. In addition, the mean square magnetic vector potentail A(k) is expressed
in terms of the magnetic vector potential a in spectral space

A(k) =
1

2
[a(k) ⋅ a∗(k)] . (6.7)

The cumulative total energy Etot(k) = E K (k) + E M (k) of incompressible decaying isotropic
2D-MHD turbulence is calculated using Eqs.(6.5) and (6.6) for the cumulative kinetic energy
EK(k) and magnetic energy EM (k), respectively. Kinetic and magnetic energy are injected
into the system over a narrow band of large wavenumbers. If no magnetic energy is injected
into the system, the inverse cascade could not take place since the mean square magnetic
vector potential ⟨A⟩ would decrease. Through the energy and mean square magnetic vector
potential inertial ranges, these quantities are cascaded nonlinearly to large wavenumbers,
where they are dissipated. Furthermore, the spectra of energy and mean square magnetic
vector potential in the inertial ranges depend only on the wavenumbers k and on the rate of
dissipation. Therefore, the energy and mean square magnetic vector potential have the forms
[2, 56]

Etot(k) = CIK(b0�)
1/2k−3/2, A(k) = CAD

2/3
A k−7/2.

Here b0 is the magnetic field guide, � =
∫
S dS(�!2 + �j2) is the rate of the total energy

dissipation, and DA = �
∫
S dSb2 is the rate of the mean square magnetic vector potential

dissipation. The dimensionless constants are determined numerically to be CIK = 1.8 and
CA = 2.6 (see, e.g., [2]).
In Fig.6.1a total energy spectrum of decaying 2D-MHD turbulence is compensated to make the
inertial range clearly visible. The spectrum of total energy denoted by the solid line exhibits
approximate Iroshnikov and Kraichnan (IK) behavior E(k) ∼ k−3/2 [43, 25] (see section 2.2).
The total energy spectrum shows a well-developed inertial range with an associated scaling
exponent of −3/2. The initial ratio EK/EM is unity. The total energy spectrum exhibits an
inertial range extended over 5 ≲ k ≲ 20, see some related work, e.g, D. Biskamp [92] and D.
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a)

b)

Figure 6.1: a) Compensated energy spectra produced from DNS of 2D-MHD turbulence: total energy (solid
line), kinetic energy (dotted line) and magnetic energy (dashed line). The horizontal dash-dotted line indicates
an IK-like ∼ k−3/2 inertial range. b) Compensated mean square magnetic vector potential produced from
DNS of 2D-MHD turbulence, the horizontal dash-dotted line indicates the scaling k−3.5.
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Škandera [93]. The spectra of kinetic energy EK(k) and magnetic energy EM (k) exhibit com-
parable amplitudes and scaling consistent with the IK picture. The validity of this 2D-MHD
turbulence phenomenology is somewhat controversial because it neglects anisotropies caused
by the magnetic field. However, we find that direct numerical simulation of two dimensional
MHD turbulence [92] agree well with established scalings.
Fig.6.1b shows the spectrum of the mean square magnetic vector potential, obtained by com-
puting the cumulative mean square magnetic vector potential of incompressible decaying
isotropic 2D-MHD (cf. Eq.6.7). The spectrum is compensated by k−3.5. The magnetic
potential A exhibits roughly an inertial-range scaling as well. In Fig.6.1b, the horizontal
dash-dotted line indicates the scaling k−3.5. The scaling exponent is found close to the value
−3.5 and the spectrum of the mean square magnetic vector potential has a well-developed
inertial range. The spectrum of the mean square magnetic vector potential exhibits an iner-
tial range for wavenumbers 7 ≲ k ≲ 20. In the next section, the spectral properties of the
nonlinear processes of the ideal invariants in the 2D-MHD turbulence are discussed.

6.2 Nonlinear triad interactions in 2D-MHD turbulence

6.2.1 Locality of the total energy in 2D-MHD turbulence

The locality of total energy is studied by computing the strength of the nonlinear transfer
function and its triad interactions in the inertial range. Both the transfer density function
Q(v) and locality function W (v) are computed in the same way as for hydrodynamic tur-
bulence. For a fixed k-vector, various graphs of the distributions of the different shapes of
nonlinear triads implicated in the total energy transfer are computed. The contributions to
the total energy transfer associated with the density of the triad interactions (k,p,q) are de-
termined. We compute the combined kinetic energy transfer from modes belonging to p and
q to the magnetic energy in the third mode k, T bv(k∣p,q); also we examine the analogously
defined T vv(k∣p,q), T bb(k∣p,q), and T vb(k∣p,q). These functions are computed for the ratio
between the smallest and middle wavenumbers, v in the interacting triads. The sum of these
quantities gives the total nonlinear energy transfer for each v-value. These contributions are
normalized over the total amount of energy transfer using histograms of the total energy
transfer for the same arbitrary fixed k-vector in the inertial range.
All spectral results for the transfer density functions Q(v) in this section are obtained by

averaging over different independent states of fully developed quasi-stationary turbulence.
Fig.6.2a shows the normalized transfer density function Q(v) for a chosen value k = 10 in
the total energy inertial range. The function Q(v) is normalized by the rate of total energy
dissipation � =

∫
S dS(�!2 + �j2). The inset graph shows a log-log plot for the normalized

transfer density function Q(v). The locality of the nonlinear transfer of the total energy is
characterized by a strong peak that appears close to v = 1. Because v ∼ 1 means that
two wavenumbers are of the same size, most of the total nonlinear energy transfer takes
place between two wavenumbers of similar size and a negligible energy is transferred between
wavenumbers with different sizes. Thus the nonlinear energy transfer is predominantly local.
Total energy is exchanged between three wavenumbers of the interacting triad (k,p,q) with
k = p + q, and k = ∣k∣, p = ∣p∣, q = ∣q∣. To determine the type of triad interactions in which
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a) b)

c)

Figure 6.2: a) Normalized transfer density function Q(v) of the total energy transfer in decaying 2D-MHD
turbulence. The inset is log-log plot for the same function. b) Normalized contributions of the combined total
energy transfer function T (k∣p,q) for k = 10 in the inertial range of 2D-MHD turbulence. c) The locality
function W (v) of the total energy transfer in decaying 2D-MHD turbulence.

the total energy can be transferred, the contribution from the combined total energy transfer
rate for every wavenumber triad for a fixed k-vector in the inertial range is computed. Fig.6.2b
shows the normalized contributions of the combined total energy transfer rate T (k∣p,q) for
k = 10 in the inertial range. The function T (k∣p,q) is characterized by a high amplitude peak
at v ≈ 0.17 and falls to zero for v-values close to 1. Thus the highest probabilty of nonlinear
total energy is exchanged between three wavenumbers with different sizes in the interacting
triad. Most of these triads are formed by two wavenumbers with similar sizes that are longer
than the third wavenumber, i.e., k ≈ p ≫ q, k ≈ q ≫ p, or p ≈ q ≫ k. It is likely that the
total energy is exchanged only between two similar small scales without affecting the remaing
large scale in the interacting triad. The smallest wavenumber in the interacting triad acts
as a mediator only between the largest wavenumbers. Thus most of the interacting triads
are nonlocal. Note that most of the nonlinear triad interactions associated with total energy
transfer appears in the region of v < 0.5. In Fig.6.2b, the function T (k∣p,q) abruptly drops
to zero to the left of v ≈ 0.15. This occurs because the nonlinear triads can not be represented



6.2 Nonlinear triad interactions in 2D-MHD turbulence 85

in the square box anymore. The position of the peak of the transfer density function Q(v) in
Fig.6.2a indicates that most of the total energy transferred from large scales to small scales
in the inertial range. Thus the total energy flux is positive and transferred with a direct cas-
cade. This result is in a agreement with well-established by theoretical results from Pouquet
[56]. Pouquet used a statistical model, the eddy-damped quasi-normal Markovian (EDQNM)
approximation. She showed that the energy cascades to small scales. Our approach of per-
forming a DNS of the 2D-MHD equations with high resolution leads to a good understanding
of the small scale structures of fully-developed turbulence. Fig.6.2c shows the locality func-
tion W (v) for the density function Q(v) that is plotted in Fig.6.2a. Approximately 60% of
the total energy transfer comes from triad interactions in which the ratio of the smallest to
the middle wavenumber is greater than 0.7. Most of the total energy transfer occurs between
two wavenumbers of similar size. In addition, this notation indicates that the total energy
is transferred from small wavenumbers to large wavenumbers. The total nonlinear energy
transfer in decaying 2D-MHD turbulence is local with a direct cascade direction through non-
local triad interactions. Our results are compatible with Dar et al., [61]. They computed the
cascade rates (or flux) and shell-to-shell energy transfers using the formalism of the effective
mode-to-mode transfer by DNS in 2D-MHD turbulence (see section 3.3). They showed that
the flux of the nonlinear total energy transfer is positive and transferred from large scales to
small scales in the inertial range.

6.2.2 Locality of the cross helicity in 2D-MHD turbulence

Cross helicity is a conserved ideal invariant and plays an important role in the dynamics
of MHD turbulence [2, 39, 94]. The phenomenon of scale-dependent dynamic alignment is
closely related to the conservation of cross helicity. Cross helicity has only recently become
an object of systematic study, as it becomes clear that it plays a fundamental role in driven
MHD turbulence [95, 94].
Cross helicity is assumed to be nonzero in the inertial range of decaying 2D-MHD

HC =
1

2
⟨v ⋅ b⟩ . (6.8)

Here ⟨.......⟩ represents the ensemble average. Both total energy and cross helicity are con-
served in 2D-MHD turbulence [2, 21, 39]. However, if we focus on a single triad a pattern
in the energy transfers among Fourier modes can be obtained. For a single interacting triad
(k,p,q) with k = p + q, and k = ∣k∣, p = ∣p∣, q = ∣q∣, the evolution equation of cross helicity
in a triad interaction is [39]

∂HC(k)

∂t
=

1

2
ℛ
[
b∗(k) ⋅ ∂v(k)

∂t
+ v∗(k) ⋅ ∂b(k)

∂t

]
. (6.9)

This equation can be simplified in our triad notation as

HC(k∣p,q) = H C (k∣p∣q) + H C (k∣q∣p). (6.10)
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a) b)

Figure 6.3: a) Normalized transfer density function Q(v) of cross helicity for k = 10 in the 2D-MHD inertial
range. The inset is log-log plot for the same function. b) The locality function W (v) of cross helicity at k = 10
in the 2D-MHD inertial range.

where the transfer rate of cross helicity in a triad is

HC(k∣p∣q) =
1

2
ℑ [(k ⋅ v(q)) {b∗(k) ⋅ v(p) + b(p) ⋅ v∗(k)} − (k ⋅ b(q))(v∗(k) ⋅ v(p))] .

(6.11)
This formula stands for the mode-to-mode cross helicity transfer from mode p to mode k with
mode q acting as a mediator [39]. Here ℑ represents the imaginary part of the argument.
The sum of transfer rates of cross helicity in a triad (k,p,q) is zero

HC(k∣p∣q) + H C (k∣q∣p) + H C (p∣k∣q) + H C (p∣q∣k) + H C (q∣k∣p) + H C (q∣p∣k) = 0. (6.12)

This is the detailed conservation of cross helicity, which implies that cross helicity is conserved
in a triad [39, 21], i.e.,

HC(k) + H C (p) + H C (q) = const. (6.13)

The locality of cross helicity is measured using an analysis similar to that discussed above
for the total energy. Fig.6.3a shows the normalized transfer density function Q(v) of the
nonlinear cross helicity transfer for k = 10 in the inertial range. The density function is
normalized by the rate of cross helicity dissipation DHC = −�+�

2

∫
S dS(j ⋅!). The locality of

the cross helicity transfer function is characterized by a strong peaks close to v ≈ 1. Most of
the nonlinear cross helicity is transferred between two wavenumbers with similar sizes. Thus
most of the nonlinear cross helicity transfer is local in the inertial range. Also, Fig.6.3a shows
that the behavior of the cross helicity dynamics is similar to that of the total energy. The
positions of the peaks indicate that most of the nonlinear cross helicity is transferred from
large scales to small scales. This implies that the cross helicity transfer has a direct cascade.
In addition, most of the nonlinear triads associated with cross helicity transfer is formed by
two wavenumbers with similar sizes, longer than the third wavenumber, i.e., k ≈ p ≫ q,
k ≈ q ≫ p, or p ≈ q ≫ k. Thus most of the interacting triads are nonlocal in the inertial
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range. Fig.6.3b shows the locality function W (v) for the transfer density function Q(v) of
the cross helicity in the inertial range. Approximately 40% of the cross helicity transfer
involves wavenumber triads in which the smallest wavenumber is less than 0.40 of the middle
wavenumber. This implies that most of the cross helicity is transferred locally between two
wavenumbers with similar legs through nonlocal triad interactions. In Fig.6.2c approximately
60% of the total energy transfer comes from triad interactions in which the ratio of the smallest
to the middle wavenumber is greater than 0.7, in contrast to 25% of the cross helicity transfer
in the inertial range (cf. Fig.6.3b). This is because the cross helicity decays more slowly
than energy in the inertial range. There is a strong local alignment between the velocity
fields and magnetic field, so the cross helicity plays an important role in dynamo action. Our
calculation supports the results obtained by Hattori [96], who studied the alignment structure
of 2D-MHD turbulence using DNS with high resolution.

6.2.3 Locality of the mean square magnetic vector potential in 2D-MHD
turbulence

The enstrophy as well as the energy is an ideal invariant of 2D-HD turbulence due to the
lack of vortex stretching. As a result, the energy is transferred from small to large scale (inverse
cascade direction) as mentioned in section 5.2. In 2D-MHD turbulence, a magnetic field allows
the possibility of generation of vorticity by the Lorentz force, breaking the conservation of
enstrophy [56]. The mean square magnetic vector potential becomes an ideal invariant in
2D-MHD turbulence. The spectral locality of the mean square magnetic vector potential in
its inertial range is measured by using our approach.
The nonlinear terms of the set of equations of incompressible decaying 2D-MHD (cf. Eqs.6.1-
6.3) conserve the total energy and the mean square magnetic vector potential [56]

Etot =

∫ ∞
0

(EK(k) + EM (k))dk. (6.14)

and
A =

∫ ∞
0

k−2EM (k)dk. (6.15)

The total energy and the mean square magnetic vector potential satisify detailed conservation
for each triad interaction

T (k∣p,q) + T (p∣q,k) + T (q∣k,p) = 0, (6.16)

k−2T bb(k∣p,q) + p−2T bb(p∣q,k) + q−2T bb(q∣k,p) = 0. (6.17)

Here T (k∣p,q) in Eq.(6.16) is the combination of the total energy transfer from modes p and
q to mode k. The global conservation of the total energy and mean square magnetic vector
potential implies: ∫ ∞

0
T (k)dk = 0,

∫ ∞
0

k−2T bb(k)dk = 0. (6.18)
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a) b)

Figure 6.4: a) Normalized density transfer functions Q(v) of the mean square magnetic vector potential for
k = 10, 15, and 20 in the inertial range of 2D-MHD turbulence. b) The locality functions W (v) for the density
functions in (a).

Following the detailed properties of the energy transfer rate for each triad [39], the detailed
properties of the mean square magnetic vector potential transfer rate can be derived

A(k∣p,q) = k−2T bb(k∣p,q). (6.19)

This equation represents the nonlinear term of combined mean square magnetic vector poten-
tial transfer rate from two modes p and q to mode k, which can be split into a sum of two
terms

A(k∣p,q) = A(k∣p∣q) + A(k∣q∣p) = k−2T bb(k∣p∣q) + k−2T bb(k∣q∣p). (6.20)

The first nonlinear term on the r.h.s. of Eq.(6.20) gives the rate of the mean square magnetic
vector potential transfer from the mode p to mode k through the mediator q. The second
term gives the rate of the mean square magnetic vector potential transfer from the mode q

to mode k via the mediator p. Each of these nonlinear terms is called mode-to-mode mean
square magnetic vector potential transfer. The sum of transfer rates of the mean square
magnetic vector potential in a triad is zero, i.e.,

k−2T bb(k∣p∣q)+k−2T bb(k∣q∣p)+p−2T bb(p∣k∣q)+p−2T bb(p∣q∣k)+q−2T bb(q∣k∣p)+q−2T bb(q∣p∣k) = 0.

(6.21)
Eq.(6.21) expresses that the mean square magnetic vector potential is conserved in a given
triad, which is also referred to as detailed conservation of the mean square magnetic vector
potential in a triad interaction

A(k) + A(p) + A(q) = const. (6.22)

The locality of the mean square magnetic vector potential transfer is measured by computing
the transfer density function Q(v) and the locality function W (v). More details for the mean
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square magnetic vector potential transfer density and locality functions, see Appendix B.
Fig.6.4a shows the normalized transfer density functions Q(v) of the mean square mag-
netic vector potential for k-values in the inertial range (see Fig.6.1b). The density func-
tions are normalized by the rate of the mean square magnetic vector potential dissipation
DA = �

∫
S dSb2. Q(v) is characterized by three peaks with different amplitude at v-values

close to zero: v = 0.03, 0.035, and 0.06 for k = 10, 15, and 20, respectively. Most of the
interacting triads are in the region of v < 0.5. Thus mean square magnetic vector poten-
tial is transferred between two wavenumbers of the interacting triad with different sizes. In
addition, the most probability of the mean square magnetic vector potential is exchanged
between three wavenumbes with different sizes in the interacting triad. Most of the transfer
takes place between one large scale and two small scales in the interacting triad. The transfer
of the mean square magnetic vector potential is predominantly nonlocal with nonlocal triad
interactions (cf. section 3.4). Fig.6.4a shows that the amplitude of the density functions Q(v)

increases with v value close to zero and decreasing k-value. The cascade rate of the mean
square magnetic vector potential is negative and transferred from small scales to large scales
in the inertial range, i.e, the mean square magnetic vector potential has an inverse cascade.
Fig.6.4b shows the locality functions W (v) that correspond to the density functions Q(v) of
Fig.6.4a. Approximately 60% of the total mean square magnetic vector potential transfer
comes from triad interactions in which the ratio of the smallest wavenumber to the middle is
greater than 0.025, 0.035, and 0.048 for k = 10, 15, and 20, respectively. The mean square
magnetic vector potential is transferred from large wavenumbers to small wavenumbers with
nonlocal transfer through nonlocal triad interactions in the inertial range of 2D-MHD turbu-
lence. These results also agree with the work of Pouquet [56]. Pouquet suggested that the
mean square manetic potential is transferred from small scales to large scales (i.e., an inverse
cascade) using the EDQNM closure approximation. The locality functions for the total en-
ergy, cross helicity, and squared magnetic potential (cf. Figs.6.2c, 6.3b and 6.4b) show that
the triads that contribute to the total energy and cross helicity transfer are more local than
triads that contribute to the mean squared potential in the inertial range, especially for v
close to 1.
Our results for the spectral properties of the nonlinear ideal invariants in the inertial range
of decaying 2D-MHD turbulence are summarized in Table 6.1.

Ideal invariant Transfer function Triad interactions Cascade direction

Total energy, Etot local nonlocal direct

Cross helicity, HC local nonlocal direct

Mean square magnetic vector potential, A nonlocal nonlocal inverse

Table 6.1: The spectral properties of nonlinear ideal invariants in the inertial range of incompressible 2D-
MHD turbulence.

Our approach toward the transfer density function and locality function is a direct technique
to shed light on the nature of transfer functions, triad interactions, and small scale structure of
fully developed turbulence. In the next part of this work, the spectral properties for different
quadratic nonlinear invariants in incompressible 3D-MHD turbulence will be studied.
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6.3 Nonlinear triad interactions in 3D-MHD turbulence
Motions of plasma in 3D-MHD are not restricted to a two-dimensional plane as in the

setup studied in section 6.1, so the turbulent flow is able to explore the third direction drag-
ging the magnetic field with it. Thus magnetic field becomes twisted and stretched, receiving
energy from the velocity field. Such motions are supposed to be responsible for an amplifica-
tion of magnetic energy, a process called a turbulent dynamo. This work does not focus on
the amplification process itself, but investigates the dynamics of the nonlinear processes of
incompressible 3D-MHD turbulence.

6.3.1 Conservative forms of the nonlinear terms and ideal invariants in
3D-MHD turbulence

From the structure of the individual MHD equations in the set of Eqs.(1.32)-(1.36), the
nonlinear dynamics, especially of the magnetic field, differs in three dimensional MHD from the
two-dimensional case. It is therefore important from the point of view of nonlinear dynamics
to recall the main consequence of this difference. The nonlinear terms from the equation for
velocity fluctuations (cf. Eq.1.32) multiplied by v can be expressed as

v ⋅ [−v (v ⋅ ∇) v + j× b] = −v ⋅ [(v ⋅ ∇) v]− 1

2
∇ ⋅
(
b2v

)
+ v ⋅ [(b ⋅ ∇) b] . (6.23)

where,

−v ⋅ [(v ⋅ ∇) v] = −1

2
∇ ⋅
(
v2v

)
,

v ⋅ [(b ⋅ ∇) b] = ∇ ⋅ (v ⋅ bb)− b ⋅ [(b ⋅ ∇) v] . (6.24)

Similarly, the nonlinear term from the equation for magnetic field fluctuations (cf. Eq.1.33)
multiplied by b can be also reformulated

b ⋅ [∇× (v × b)] = b ⋅ [(b ⋅ ∇) v]− b ⋅ [(v ⋅ ∇) b] . (6.25)

where,

−b ⋅ [(v ⋅ ∇) b] = −1

2
∇ ⋅
(
b2v

)
,

b ⋅ [(b ⋅ ∇) v] = ∇ ⋅ (v ⋅ bb)− v ⋅ [(b ⋅ ∇) b] . (6.26)

The above relations imply an important difference with respect to the two-dimensional case.
Over a period of long-term evolution, the magnetic field can gain energy from the velocity
field through the magnetic field stretching term on the l.h.s. of Eq.(6.26). The equation for
the magnetic potential contains a source of stretching term, so it cannot be expressed in the
form of an advection-diffusion equation as in the two-dimensional case. The second term on
the r.h.s. of Eq.(6.26) is identical to the term on the l.h.s. of Eq.(6.24). Therefore, the terms
that exchange energy, i.e., the terms on the l.h.s. of Eqs.(6.24) and (6.26), summed together
can be expressed in a divergence form. This means that the energy is exchanged between the
velocity and the magnetic field, and is conserved during this process. Moreover, in the limit
of infinite electrical conductivity, the magnetic flux through a surface moving with the fluid
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remains constant and magnetic field is "frozen into" the velocity field [97, 98].
In the case of pure magnetohydrodynamics, there exist three ideal invariants: the total energy,
cross helicity, and magnetic helicity (cf. subsection 1.7.2).

6.3.2 Energy spectra of isotropic and anisotropic 3D-MHD turbulence
The scaling of the energy spectra of incompressible isotropic and anisotropic 3D-MHD tur-

bulence is obtained by analyzing data from pseudospectral DNS conducted by W.-C. Müller.
This is acomplished by extending the program which used for analysis in the case of 2D-MHD
to 3D-MHD (cf. section 4.5). In the decaying isotropic case, the simulation is performed using
a high-resolution DNS (5123 grid points). The dissipation coefficients are �̃ = �̃ = 3× 10−4.
The Reynolds numbers are approximately Re = Rm ≈ 3300, and magnetic Prandtl number
Prm = 1. Initially the ratio EK/EM is unity so that we treat a formally symmetric configu-
ration with regard to velocity and magnetic fields.
Fig.6.5 depicts the compensated energy spectra in DNS of decaying isotropic 3D-MHD tur-
bulence. The horizontal dash-dotted line indicates a Kolmogorov-like ∼ k−5/3 inertial range.
The total energy spectrum shows the turbulence in this case is fully-developed as well as a
region of wavenumbers that correspond to the self-similar −5/3 - inertial range, this in agree-
ment with solar wind measurements (see, e.g., [38]). The same observation has been obtained
in previous related work (see, e.g., [35, 68]. The spectrum of total energy exhibits an inertial
range for wavenumbers k ≈ (4− 28).

Figure 6.5: Compensated energy spectra from DNS of decaying isotropic MHD turbulence: total energy
(solid line), kinetic energy (dotted line), and magnetic energy (dashed line). The horizontal dash-dotted line
indicates a Kolmogorov-like ∼ k−5/3 inertial range.

In case of incompressible anisotropic 3D-MHD turbulence, a 10242×256 grid points pseu-
dospectral forced turbulence simulation with an imposed constant mean magnetic filed of
strength b0 = ∣b0∣ = 5 in units of the large-scale rms (root mean square) magnetic field
brms = vrms ≈ 1 conducted by W.-C. Müller is carried out. The simulation is performed
with dissipation coefficients �̃ = �̃ = 9 × 10−5. A strongly anisotropic system is gener-
ated due to the depletion of small scale turbulent fluctuations along the mean magnetic field
b0. This allows for reduced numerical resolution along the corresponding axis. The forcing
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Figure 6.6: Compensated total energy spectrum in field-perpendicular (solid line), total energy in x-direction
(dotted line), total energy in y-direction (dashed line), and total energy spectrum in field-parallel (dash-dotted
line) produced by DNS of 3D-MHD turbulence with a strong mean magnetic field. The dash-dotted line
indicates IK-like scaling ∼ k−3/2.

keeps the ratio of fluctuations to mean field approximately constant. The cumulative total
energy in different directions is computed. The compensated field-perpendicular and paral-
lel spectra for the kinetic and magnetic energy are measured, which are defined as; E(k⊥) =∫
dk
′
�(∣k′⊥∣ − k⊥)(∣v̂(k

′
)∣2 + ∣b̂(k

′
)∣2) andE(k∥) =

∫
dk
′
�(∣k′∥∣ − k∥)(∣v̂(k

′
)∣2 + ∣b̂(k

′
)∣2) (where

k⊥ = (k2
x + k2

y)
1/2 and k∥ = ∣kz∣). Iroshnikov [43] and Kraichnan [25] postulated that the

time-scale for the nonlinear interactions of incompressible anisotropic MHD turbulence is pro-
portional to the mean magnetic field strength b0. This leads to the Iroshnikov and Kraichnan
energy spectrum of incompressible anisotropic MHD turbulence (IK)-like scaling ∼ k−3/2 (cf.
section 2.2). The IK scaling is well-established for E⊥ (see, [35, 50, 51, 99]). Fig.6.6 depicts
the compensated total energy spectra in one-dimensional parallel and perpendicular to the
mean magnetic field. The kinetic and magnetic energy as well as the ratio EK/EM are ap-
proximately unity. Müller and Grappin [35] observed that the field-parallel dissipation length
is larger than in field-perpendicular directions, because the magnetic field-lines are stiff and
the magnetic field intensity is in cascade. This leads to a steepening spectrum in the field-
parallel direction (k∥) [11]. There is no distinguishable inertial range for the field-parallel
spectrum. For the field-perpendicular spectrum, the inertial range is more clear k ≈ (5− 28).
The spectral properties of the nonlinear transfer functions, triad interactions and cascade di-
rections of ideal invariants in the energy inertial range of isotropic and anisotropic 3D-MHD
are studied in the next sections.
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6.4 Locality of the total energy in isotropic and anisotropic
3D-MHD turbulence

The locality of the nonlinear total energy transfer of incompressible isotropic and anisotropic
3D-MHD turbulence is studied by computing the strength of the nonlinear total energy ex-
changes between the wavenumbers (i.e., the total energy transfer function) and the nonlinear
triad interactions in the interacting triads in the energy inertial range. For this purpose,
both the transfer density function Q(v) and locality function W (v) are computed using our
approach.

6.4.1 Locality of the total energy in isotropic 3D-MHD turbulence
Fig.6.7 shows the normalized transfer density functions Q(v) of the total energy at inde-

pendent states of fully developed quasi-stationary turbulence t = 0.5 − 9 for fixed k in the
energy inertial range. The density fumctions are normalized by the total energy dissipation
� =

∫
V dV (�!2 + �j2). The graphs with different colors from black at t = 0.5 to red at t = 9

correspond to amplitudes of the density functions Q(v) (from low to high). As time progress,
the amplitude of the function Q(v) increases. The total energy transfer and triad interactions
increase in turbulent flow. For simplicity, Fig.6.8a depicts the strength of the density function
at time t = 9. The function Q(v) is characterized by a high-amplitude peak at v-value close
to 1. Most of the nonlinear total energy is transferred between two wavenumbers of similar
size and a negligible amount of the total energy is transferred between two different scales in
the interacting triad. Thus the nonlinear total energy transfer is predominantly local in the
inertial range.

Figure 6.7: The normalized transfer density functions Q(v) of the total energy in decaying isotropic MHD
turbulence taken at regular time intervals in the simulation. The inset is a log-log plot for the same functions.

In Fig.6.8a, the peak of Q(v) shows that the total energy is transferred from samll
wavenumbers to large wavenumbers. So the nonlinear total energy transfer is a direct cascade
in the inertial range with a constant and positive flux.
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a)

b) c)

Figure 6.8: a) Normalized transfer density function Q(v) for the total energy in decaying isotropic 3D-MHD
turbulence at t = 9. The inset is a log-log plot for the same function. b) Normalized contributions of the
combined total energy transfer rate T (k∣p,q) for for k = 10 (solid), 20 (dotted), and 25 (dashed) in the inertial
range of decaying isotropic 3D-MHD turbulence. c) The locality-function W (v) of the total energy in decaying
isotropic MHD turbulence in (a).

Fig.6.8b shows the normalized contributions of the combined total energy transfer rate T (k∣p,q)

for k-values in the inertial range. These functions have a maximum amplitudes at v ≈
0.05, 0.06 and 0.09 for k = 10, 20, and 25, respectively. All graphs fall to zero with v-value
close to 1. The magnitudes of interactions for nonlocal triads k ≈ p ≫ q, k ≈ q ≫ p, or
p ≈ q ≫ k are larger than those for local triads k ≈ p ≈ q. Thus most nonlinear triad in-
teractions associated with total energy transfer takes place between three wavenumbers with
different sizes. These triads have two wavenumbers with similar sizes, longer than the third
wavenumber. This indicates that in the triad interaction, the largest scale acts as a mediator
only when the energy transfers between the two small scales and the triads are very elongated
in the inertial range. Thus triad interactions in isotropic 3D-MHD energy inertial range are
predominantly nonlocal. In Fig.6.8b, the combined total energy functions T (k∣p,q) abruptly
drops to zero, thus nonlinear triads can no longer be represented in the cubic box. The spec-
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tral properties of the total energy in decaying isotropic 3D-MHD turbulence are similar to
those of kinetic energy in decaying isotropic 3D-HD turbulence. The interacting triads in the
inertial range of isotropic 3D-MHD are more nonlocal compared to the triads in the inertial
range of 3D-HD turbulence (cf. Fig.5.11). Fig.6.8b shows that the combined total energy
transfer rate is approximately the same for different k-values in the inertial range. These
results indicates that the flux of the total energy is constant, positive and transfers from large
scales to small scales.
These results are compatible with the result of Alexakis et al. [8, 54], who investigated the
transfer of energy from large scales to small scales in fully developed 3D-MHD turbulence us-
ing a shell-to-shell approach. The DNS of Alexakis et al. is not used to examine the situation
of an externally imposed uniform magnetic field. They showed that the transfer of energy
from large scales to small scales is local with a highly nonlocal process in Fourier space. The
contributions of the total energy transfer could depend on the geometry of the triad. The
locality function W (v) is computed to express the nature of the locality of the total energy
transfer. Fig.6.8c shows the locality function W (v) for the transfer density function Q(v) in
Fig.6.8a. Approximately 60% of the total energy transfer comes from triad interactions in
which the ratio of the smallest to the middle wavenumber is greater than 0.58. This implies
that most of the total energy transfer takes place between two wavenumbers with similar sizes.
Our results report that the total nonlinear energy transfer in the inertial range of isotropic
3D-MHD turbulence is predominantly local through nonlocal triad interactions with a direct
cascade to small scales.
Fig.6.9 shows the normalized transfer density functions and the locality functions for the
nonlinear energy transfer, T vv(k∣p,q) and k, T bb(k∣p,q). Similarly, Fig.6.10 shows the nor-
malized transfer density functions and the locality functions for the nonlinear energy transfer,
T bv(k∣p,q) and T vb(k∣p,q). The transfer density function Q(v) for each quantity is charac-
terized by a peak close to 1. The transfer of these quantities is predominantly local between
two wavenumbers of similar size with positive flux in the inertial range. This set of figures
indicates that there are transfers of kinetic energy from large scales to small scales, magnetic
energy from large scales to small scales, kinetic energy from large scales to magnetic energy
at small scales, and magnetic energy from large scales to kinetic energy at small scales. These
types of transfers are local with a direct cascade in the inertial range of isotropic 3D-MHD
turbulence and there is no possibility for nonlocal transfers. These results are compatible
with simulation results by Debliquy et al. [62], who have studied the energy fluxes and shell-
to-shell interactions in decaying 3D-MHD turbulence using a high-resolution (5123) DNS.
They claimed that the energy transfer from one field to another is local with a direct cascade.
Recently, Aluie and Eyink [100] have shown that the velocity to velocity and magnetic to
magnetic fluxes are local in the limit of infinite Reynolds number. The fluxes coupling veloc-
ity and magnetic fields are also local. Our results are in contradiction compared with Verma
results in [60, 10]. Verma used the field-theoretic calculations to compute the shell-to-shell
transfers and concluded that the transfers T vv and T bb were local, but the transfers T vb and
T bv were nonlocal.
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a) b)

Figure 6.9: a) Normalized transfer density function Q(v) of kinetic-to-kinetic, T vv (magenta) and magnetic-
to-magnetic, T bb (blue) energy transfer in isotropic 3D-MHD turbulence. The inset is a log-log plot for the same
functions. b) The locality-functions W (v) of kinetic-to-kinetic, T vv (magenta), and magnetic-to-magnetic, T bb

(blue) in isotropic 3D-MHD turbulence.

a) b)

Figure 6.10: a) Normalized transfer density functions Q(v) of kinetic-to-magnetic, T bv (magenta), and
magnetic-to-kinetic, T vb (blue) energy transfer in isotropic 3D-MHD turbulence. The inset is a log-log plot
for the same functions. b) The locality-functions W (v) of kinetic-to-magnetic, T bv (magenta), and magnetic-
to-kinetic, T vb (blue) in isotropic 3D-MHD turbulence.
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6.4.2 Locality of the total energy in anisotropic 3D-MHD turbulence
The transfer density functionsQ(v) and locality functionsW (v) of the total energy transfer

perpendicular to the mean magnetic field, k⊥ = 25 (where kz=0 and kx and ky are chosen in
the inertial range of the field-perpendicular spectrum) and parallel, k∥ = 5 (where k∥ = ∣kz∣,
kx = 0, and ky is chosen in the inertial range) are computed.

a)

b) c)

Figure 6.11: a) Normalized transfer density functions Q(v) of the total energy in both parallel (red line)
and perpendicular (blue line) directions in anisotropic 3D-MHD turbulence. b) Normalized contributions of
the combined total transfer rates T (k∣p,q) in both parallel (red line) and perpendicular (blue line) directions
to the mean magnetic field. c) The locality-functions W (v) of the total energy in both parallel (red line) and
perpendicular (blue line) directions in anisotropic 3D-MHD turbulence.

Fig.6.11a shows the normalized transfer density functions in the parallel and perpendicular
directions. These functions are normalized by the total energy dissipation. In Fig.6.11a, Q(v)

in both parallel and perpendicular directions has the same strength and amplitude, and is
characterized by peaks at v-values between 0.4 and 0.5. This can be explained by a significant
a mount of magnetic helicity in the system. The transfer of magnetic helicity is predominantly
nonlocal with an inverse cascade (will be shown in section 6.6). The magnetic helicity pulls
magnetic energy along with it to large scales. The maximum value of the total energy transfer
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appears at a v-value, at which the middle wavenumber is 1− 2 times larger than the smallest
wavenumber. This observation implies that the transfer of total energy between modes that
travel in the same direction is local where the energy is exchanged between two wavenumbers
with approximately similar sizes. The positioning of the peaks in Fig.6.11a shows that most
of the energy is transfered from large scales to small scales. The total energy transfer is
predominantly a direct cascade in both perpendicular and parallel directions, but it is weaker
than that in the isotropic case (cf. Fig.6.8a). When the injected magnetic field increases the
energy transfer function becomes nonlocal with nonlocal triad interactions in both parallel and
perpendicular directions. Also, Fig.6.11a shows that the density function Q(v) in the parallel
direction has more fluctuation than that in the perpendicular direction. This is because of
the stiffness of magnetic field-lines and the turbulent depletion along the mean magnetic field
that reduces the extent field-parallel Fourier ensemble. This is in agreement with the fact
that, in incompressible anisotropic MHD turbulence the turbulent fluctuations are elongated
along the guiding magnetic field lines [44, 7]. These results confirm the claim by Alexakis et
al. [11], who investigated the locality of the energy transfer and the spectral interactions for
anisotropic 3D-MHD for varying intensity. They claimed that the energy transfer functions
are local in the parallel and perpendicular directions to the magnetic guide field regardless of
magnetic field strength.
Fig.6.11b depicts the normalized contributions of the combined total transfer rates T (k∣p,q)

parallel to the mean magnetic field (k∥) and perpendicular (k⊥). These functions are char-
acterized by a maximum value at approximately v ≈ 0.12 and falls to zero for v-values close
to 1. The magnitudes of interactions for nonlocal triads, which formed by two wavenumbers
with similar sizes and longer than the third wavenumber are larger than those for local triads
(note that most of these nonlocal triads are in the region v < 0.5). Thus nonlinear triad
interactions are found to be nonlocal in both the parallel and perpendicular directions.
Fig.6.11c shows the locality functions W (v) that correspond to the Q(v) in Fig.6.11a. 60% of
the total energy transfer comes from triad interactions in which the ratio of the smallest to
the middle wavenumber is greater than 0.20. Most of the total energy transfer is exchanged
between two wavenumbers with similar sizes. Thus most of the total nonlinear energy transfer
in anisotropic 3D-MHD turbulence is local through nonlocal triad interactions with a direct
cascade for both parallel and perpendicular quantities. Our results for the spectral properties
of the total energy transfer in the inertial range of 3D-MHD are summarized in Table 6.2.

— Decaying isotropic Forced anisotropic
Total energy transfer function local local

Triad interaction nonlocal nonlocal
Cascade direction direct direct

Table 6.2: The spectral properties of nonlinear total energy transfer in the inertial range of 3D-MHD turbu-
lence.
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6.5 Locality of the cross helicity in isotropic and anisotropic
3D-MHD turbulence

Cross helicity is a nonlinear quadratic invariant of the 3D-MHD system. The locality
of nonlinear transfer function and triad interactions, and the cascade of cross helicity are
discussed.
Since the sum of transfer rates of the cross helicity in a MHD triad is zero, the cross helicity
is conserved in a MHD triad. The locality properties of the cross helicity in incompressible
3D-MHD turbulence is measured by extending the simulation program used for cross helicity
calculations in the case of 2D-MHD to 3D-MHD with the same parameters specified for the
incompressible isotropic and the anisotropic 3D-MHD turbulence (cf. subsection 6.3.2).

6.5.1 Locality of the cross helicity in isotropic 3D-MHD turbulence
Fig.6.12a shows the normalized transfer density function Q(v) of the nonlinear cross helic-

ity transfer function for k = 25 in the inertial range. The density function Q(v) for the cross
helicity exhibits properties similar to the density function for the total energy in isotropic
3D-MHD. Q(v) is characterized by a high-amplitude peak close to v ≈ 1. Most of the nonlin-
ear cross helicity is transferred between two wavenumbers with similar sizes. Thus nonlinear
cross helicity transfer is local. In addition, Most of nonlinear triads associated with cross
helicity transfer arew formed by three wavenumbers with different sizes. These triads have
two wavenumbers with similar sizes, longer than the third wavenumber. Thus nonlinear triad
interactions are predominantly nonlocal in the inertial range of isotropic 3D-MHD turbulence.

a) b)

Figure 6.12: a) The normalized transfer density function Q(v) of the cross helicity for k = 25 in isotropic
3D-MHD turbulence. b) The locality function W (v) of cross helicity for Q(v) in (a).

Fig.6.12b shows the locality functionW (v) for the function Q(v) in Fig.6.12a. Approximately
60% of the cross helicity transfer comes from triad interactions in which the ratio of the
smallest to the middle wavenumber is greater than 0.55. 40% of the cross helicity transfer
involves wavenumber triads in which the smallest wavenumber is less than one-half of the
middle wavenumber. Thus most of the cross helicity transferred between two wavenumbers of
similar size. Our results show that the nonlinear cross helicity transfer in isotropic 3D-MHD
turbulence is local through nonlocal triad interactions with a direct cascade.
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6.5.2 Locality of the cross helicity in anisotropic 3D-MHD turbulence
Figs.6.13a and b show the normalized transfer density functions Q(v) and their correspond

locality functions W (v) for the nonlinear cross helicity transfer parallel and perpendicular to
the mean magnetic field guide. These figures look similar to those of total energy transfer in
anisotropic MHD (cf. subsection 6.4.2). This similarily can be explained by the fact that field
is imposed on a MHD system, most of the nonlinear cross helicity transfer becomes local with
a direct cascade. Most of the triads interactions are nonlocal. Thus when a small magnetic
field is imposed, the cross helicity is transfered from large sclaes to small scales with local di-
rect cascade, but when the injected magnetic field increases the cross helicity transfer function
becomes more nonlocal with nonlocal triad interactions in both parallel and perpendicular
directions.

a) b)

Figure 6.13: a) The normalized transfer density functions Q(v) for cross helicity in both parallel and per-
pendicular directions of anisotropic MHD. b) The locality W -functions for cross helicity in both parallel and
perpendicular directions of anisotropic MHD.

Our results for the spectral properties of the nonlinear cross helicity in the inertial range of
3D-MHD are summarized in Table 6.3.

— Decaying isotropic Forced anisotropic

Cross helicity transfer function local local

Triad interaction nonlocal nonlocal

Cascade direction direct direct

Table 6.3: The spectral properties of the nonlinear cross helicity transfer in the inertial range of 3D-MHD
turbulence.

6.6 Locality of the magnetic helicity in 3D-MHD turbulence
Magnetic helicity is an ideal invariant of 3D-MHD turbulence. The magnetic helicity in a

given volume is the volume integral of the dot product of the magnetic vector potential a and
the magnetic field b (cf. subsection 1.7.2). The name helicity is thus appropriate as it gauges
the relative curling or braiding of the lines of a and b. Magnetic fields can include many types
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of structures that have high magnetic helicity: twisted, kinked, knotted or linked magnetic flux
tubes, sheared layers of magnetic flux and force-free fields. Magnetic helicity quantifies various
aspects of the magnetic field structure. Magnetic helicity is conserved in ideal MHD and is
approximately conserved during magnetic reconnection1. In a confined volume, widespread
reconnection may reduce the magnetic energy of a field while approximately conserving its
magnetic helicity [102]. As a result, the field relaxes to a minimum energy state, called the
Taylor state, where the current is parallel to the force-free field [102]. Such relaxation processes
are important to both fusion (especially in reversed field pinch devices) and astrophysical
plasmas [103]. Inverse cascade of magnetic helicity in 3D-MHD turbulence is believed to be
responsible for the formation of large-scale magnetic structures in the universe. In celestial
bodies with rotation, the difference between kinetic helicity (twists in the velocity field) and
magnetic helicity (twists in the magnetic field) results in the so called �-dynamo. An �-
dynamo results when kinetic helicity injection enhances the magnetic field [2], but does not
necessarily lead to stable large-scale magnetic structure formation.
The total magnetic helicity is given by

HM =
1

2
⟨a ⋅ b⟩ , (6.27)

where b = ∇ × a and a is the magnetic vector potential. For a single triad (k,p,q) with
k = p + q, k = ∣k∣, p = ∣p∣, and q = ∣q∣, the evolution equation of magnetic helicity in a
triad interaction is [39]

∂HM (k)

∂t
=

1

2
ℛ
[
b∗(k) ⋅ ∂a(k)

∂t
+ a∗(k) ⋅ ∂b(k)

∂t

]
. (6.28)

Eq.(6.28) can be simplified to

HM (k∣p,q) = H M (k∣p∣q) + H M (k∣q∣p). (6.29)

where

HM (k∣p∣q) =
1

4
ℛ [b(k) ⋅ (v(p)× b(q))]

+
1

4
ℑ [(k ⋅ b(q))(a(k) ⋅ v(p))− (k ⋅ v(q))(a(k) ⋅ b(p))] . (6.30)

The quantity HM (k∣p∣q) in Eq.(6.30) represents the mode-to-mode magnetic helicity transfer
from mode p to mode k with mode q acting as a mediator [39]. We can define the second
term in the r.h.s of Eq.(6.29) similarly.
The sum of magnetic helicity transfer rates in a triad is zero,

HM (k∣p∣q)+H M (k∣q∣p)+H M (p∣k∣q)+H M (p∣q∣k)+H M (q∣k∣p)+H M (q∣p∣k) = 0. (6.31)

1Magnetic reconnection is a process in which there is a change of magnetic connectivity of plasma elements
due to the presence of a localized diffusion region where ideal MHD breaks down [101].
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a) b)

Figure 6.14: a) The normalized transfer density function Q(v) for magnetic helicity for k = 25. The inset is
a log-log plot for the same function. b) The locality function W (v) for magnetic helicity at k = 25. The inset
is a log-log plot for the same function.

Magnetic helicity is conserved in a triad, also referred to as detailed conservation of magnetic
helicity in a triad interaction,i.e.,

HM (k) + H M (p) + H M (q) = const. (6.32)

The locality of the magnetic helicity in isotropic and anisotropic 3D-MHD turbulence can be
measured by using our approach. To this end, the transfer density function Q(v) and the
locality function W (v) of magnetic helicity transfer are computed.

6.6.1 Locality of the magnetic helicity in isotropic 3D-MHD turbulence

Fig.6.14a shows the normalized transfer density function Q(v) of the nonlinear magnetic
helicity transfer function for k = 25 in the inertial range. The density function is normalized
by the rate of the magnetic helicity dissipation DHM = −�

∫
V (j ⋅ b)dV. Here most of the

nonlinear magnetic helicity transfer occurs in the region v < 0.5. The density function Q(v)

is characterized by a peak with a high amplitude at v ≈ 0.03. Thus most of the magnetic
helicity is transferred between two wavenumbers with different sizes. The transfer of magnetic
helicity is dominantly nonlocal. Most of the triads associated with magnetic helicity transfer
are formed by three wavenumbers with different sizes. Thus the triad interactions are nonlocal
in the inertial range of incompressible isotropic 3D-MHD turbulence. The locality function
that correspond to the transfer density function Q(v) is shown in Fig.6.14b. This cumulative
function shows that approximately 60% of the total magnetic helicity transfer comes from
triad interactions in which the ratio of the smallest to the middle wavenumber is greater than
0.024. Thus most of the magnetic helicity transfer occurs between two sides with different
lengths in the interacting triad. The transfer of magnetic helicity is nonlocal through nonlocal
triad interactions.
Fig.6.15a shows the normalized transfer density functions Q(v) for k-values chosen in the
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a) b)

Figure 6.15: a) The normalized transfer density functions Q(v) for magnetic helicity at k = 15, 20, and 25.
The inset is a log-log plot for the same functions. b) The locality functions W (v) for magnetic helicity at
k = 15, 20, and 25. The inset is a log-log plot for the same functions.

Figure 6.16: Time evolution of transfer density functions Q(v) of magnetic helicity. Red solid line: Q(v)
at initial state at t=0.3, magenta dotted line: Q(v) at t=4.5, dashed blue line: Q(v) at t=9. The inset is a
log-log plot for the same functions.



104 Nonlinear triad interactions in magnetohydrodynamic turbulence

inertial range. In this figure, the strength of the density function Q(v) increases with v value
close to zero, and also increases as the k-value decreases. Fig.6.15b shows the locality functions
W (v) for the functions Q(v) in Fig.6.15a. 40% of the total magnetic helicity transfer involves
wavenumber triads in which the ratio of the smallest wavenumber to the middle is greater than
0.020, 0.022, and 0.024 at k = 15, 20, and 25, respectively. The nonlinear magnetic helicity
is transferred from large wavenumbers to small wavenumbers, so the cascade direction of the
magnetic helicity transfer is inverted in incompressible decaying 3D-MHD turbulence. These
results agree with the works of Pouquet et al. and Alexakis et al. [26, 104].
In the above discussion, we focus on the transfer and triad interactions of magnetic helicity in a
particular instant of time (selected from a quasi-stationary or stationary state of the turbulent
flow). We now focus on how the transfer and interactions evolve through time to reach their
final states. The time evolution of Q(v) for magnetic helicity in isotropic turbulence is shown
in Fig.6.16. From an initial state in which the transfer functions of magnetic helicity are less
nonlocal, they reach a state over time that is maximally nonlocal and remain in that state
for the rest of the simulation time. Thus for magnetic helicity, the strength of transfer and
the triad interactions in the initial states are different but when a quasi-stationary state is
reached in the turbulent flow, the average nature of these transfers and interactions does not
change any further.

6.6.2 Locality of the magnetic helicity in anisotropic 3D-MHD turbulence

a) b)

Figure 6.17: a) The normalized transfer density function Q(v) for magnetic helicity in both parallel and
perpendicular directions at t = 49.225. b) The locality function W (v) for magnetic helicity in both parallel
and perpendicular directions at t = 49.225.

The locality of the magnetic helicity parallel and perpendicular to the mean magnetic field
is measured. This accomplished by computing the transfer density functions Q(v) and the
locality functions W (v) of magnetic helicity transfer in both directions.
Fig.6.17 shows the normalized density functions Q(v) and their correspond locality functions
W (v) parallel and perpendicular to the mean magnetic field. In these figures, the density
function of the magnetic helicity transfer in both directions is characterized by the typical
peak at the same v-value ≈ 0.08. Most of the magnetic helicity transfer takes place between
two wavenumbers with different sizes. Thus the transfer of magnetic helicity is nonlocal
through nonlocal triad interaction with an inverse cascade. When the mean magnetic field



6.7 Nonlinear triad interactions in forced inverse cascade turbulence 105

increases, the nonlinear transfer of magnetic helicity becomes more nonlocal through nonlocal
triad interactions in the parallel and perpendicular directions. Our results for the spectral
properties of the magnetic helicity transfer in the inertial range of 3D-MHD turbulence are
summarized in Table 6.4.

— Decaying isotropic Forced anisotropic

Magnetic helicity transfer function nonlocal nonlocal

Triad interaction nonlocal nonlocal

Cascade direction inverse inverse

Table 6.4: The spectral properties of the nonlinear magnetic helicity transfer in the inertial range of 3D-MHD
turbulence.

We conclude that the fluxes of the total energy and cross helicity are dominated by local trans-
fer with direct cascade directions. Flux of magnetic helicity is dominated by nonlocal transfer
through nonlocal triad interactions with an inverse cascade. Also, the magnetic stretching
term is dominated by nonlocal triads interactions with local magnetic energy transfer. Our
results for magnetic helicity, magnetic energy transfer, and triad interactions are in agreement
with Aluie and Eyink [100].
In the next part of this work, the locality of some quadratic nonlinear invariants with forced in-
verse cascade for magnetic helicity in 3D-MHD turbulence are studied by using high-resolution
(10243) direct numerical simulation.

6.7 Nonlinear triad interactions in forced inverse cascade tur-
bulence

In most DNS of 3D-MHD turbulence, the forcing mechanisms and initial conditions are
in small wavenumber region. The energy containing scales usually the large scales [105, 106].
In this section, we explore the nature of the transfer functions and triad interactions of ideal
invariants in a forced inverse cascade turbulence system based on DNS conducted by S. K.
Malapaka [107]. We particularly examine the magnetic helicity when the forcing and initial
conditions of the DNS are placed in large wavenumber k of the spectra by using our approach
for the density function Q(v) and locality function W (v). Such a system would help toward
understand the true nature of local transfer, triad interactions and how the inverse cascade
operates.
The forcing occurs at small scales of 3D-MHD turbulence system, and this results in two
inertial ranges one to the left and one to the right of the forcing [107]. The nature of the
transfer functions and triad interactions in each of these spectral ranges are studied using a
reference wavenumber from each region. Two cases are discsussed, one in which both kinetic
and magnetic helicities are supplied by the forcing, and a second where only magnetic helicity
is supplied.

6.7.1 Supplying both magnetic and kinetic helicities through the forcing
In this case, the forcing terms in the equations of the MHD turbulence system supply both

kinetic and magnetic helicities [107]. Fig.6.18a shows the transfer density functions Q(v) of
magnetic helicity, kinetic helicity, total energy, and magnetic energy generated using the high
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a)

b)

c)

Figure 6.18: a) The transfer density functions Q(v) of magnetic helicity (magenta dotted line), kinetic
helicity (dashed blue line), total energy (red solid line), and magnetic energy (brown dashed-dotted line) with
large k = 300 as the reference wavenumber. b) The locality functions W (v) of the quantities in (a). c) The
contributions of the combined transfer rates for total energy (red solid line), magnetic energy (magenta dotted
line), and kinetic helicity (blue dashed line) with large k = 300 as the reference wavenumber. The time at
which this analysis was done is t=6.28.
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Figure 6.19: The transfer density functions Q(v) of magnetic helicity (magenta dotted line), kinetic helicity
(dashed blue line), total energy (red solid line), and magnetic energy (brown dashed-dotted line) with small
k = 30 as the reference wavenumber. The time at which this analysis was done is t=6.28.

wavenumber as reference. Fig.6.18b shows the locality functions W (v) of the same quantities
as the functions Q(v) in Fig.6.18a. In Fig.6.18a, the strength of magnetic helicity density
function is in the range 0.1 <v<0.2, while the strengths of the total energy and magnetic
energy are 0.4<v<0.5, and for the kinetic helicity 0.6<v<0.8. This implies that the transfer
of magnetic helicity is the most nonlocal of all the quantities. The transfer of total energy
and magnetic energy have nearly the same level of locality (they are more local than magnetic
helicity). The transfer of kinetic helicity is the most local one of all the quantities. In addition,
the positions of the functions Q(v) in Fig.6.18a indicate that the nonlinear triad interactions
of magnetic helicity are the most nonlocal of all the quantities. Triad interactions in total
energy and magnetic energy show similar levels of nonlocality. The triad interactions in kinetic
helicity show the least nonlocal behavior, because the kinetic helicity is transferred locally
between the wavenumber triads with two wavenumbers of approximately similar size (small
scale) that are much larger than the third wavenumber (large scale). The triad interactions
of magnetic helicity occur betwen three wavenumbers with disparate sizes. In Fig.6.18b, it is
clearly seen that for the locality functions, the amplitudes of the quantities are converse to that
of the values in the density functions and the spread of the function also is complementary.
Thus magnetic helicity which has the highest amount of nonlocal interactions, has the least
amount of spread followed by total energy, magnetic energy and kinetic helicity. In other
words, approximately 50% of the magnetic helicity spread occurs in the area in which v > 0.1

compared to 90% of total energy, 94% of magnetic energy, and 96% of kinetic helicity.
Fig.6.18c shows the contributions of transfer rates for total energy T (k∣p,q), magnetic energy
T bb(k∣p,q), and kinetic helicity HK(k∣p,q) for the triad interactions associated with the
transfer of these quantities. These functions have maximum amplitudes at v = 0.09, 0.16 and
0.20 for total energy, magnetic energy, and kinetic helicity, respectively. All graphs fall to zero
with v-value close to 1. Thus the magnitudes of interactions for nonlocal triads k ∕= p ∕= q
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are larger than those for local triads k ≈ p ≈ q. Most nonlocal triads have two wavenumbers
of similar size that are much larger than the third wavenumber (k ≈ p ≫ q, k ≈ q ≫ p,
or p ≈ q ≫ k). Triad interactions in total energy is more nonlocal than those in magnetic
energy and kinetic helicity (all peaks are in the region v < 0.5).
From Figs.6.18a, b, and c, the important conclusions that could be drawn are: the nonlinear
transfer of magnetic helicity is highly nonlocal. The triad interactions in magnetic helicity
are predominantly nonlocal and thus, it is possible that these nonlocal interactions drive the
magnetic helicity flux towards the large scales resulting in the so called inverse cascade. The
transfer of the other quantities predominantly local with a direct cascade. Although it is
possible to have few nonlocal interactions for magnetic helicity (from the non-zero amplitude
of the density function Q(v)), other quantities have a significant for highly nonlocal triad
interactions (see Fig.6.18c). Our results show that nonlocality of the nonlinear total and
magnetic energy transfer functions in forced MHD turbulence is more pronounced as in both
freely decaying isotropic HD and MHD turbulence (cf. Figs.5.10 and 6.8a). Fig.6.19 depicts
the functions Q(v) for the same quantities in Fig.6.18a with the reference wavenumber in the
small k region. Both the nonlocality and amplitude of the same magnetic helicity transfer are
more than in the large k (cf. Fig.6.18a). The amplitude of the functions Q(v) of the other
quantities (total energy, magnetic energy, and kinetic helicity) also show a slight increase
but not as strongly as magnetic helicity, in which the amplitude almost shows an order of
increase from about 0.03 to 0.3. The nature of nonlinear transfer and triad interactions in
these quantities remains the same as in the large k case.

6.7.2 Supplying only magnetic helicity through the forcing

Figs.6.20a shows the transfer density functions Q(v) of the same quantities as in Fig.6.18a,
when only magnetic helicity is supplied through the forcing, keeping the fraction of kinetic
helicity at zero. The same reference wavenumbers that were used in large k and small k

regions above are used here for computing the density functions.
Fig.6.20a shows Q(v) when large k is used as reference number. This figure shows the strength
of the nonlocal transfer and nonlocal triad interactions in magnetic helicity is larger than that
when both kinetic and magnetic helicities are supplied, when the reference wavenumber is in
the large k (cf. Fig.6.18a). The nature of transfer functions and triad interactions in the other
three quantities is different from the case in Fig.6.18a. They do not exhibit any significant
peak but have a flat profile, that indicates local transfer functions with nonlocal triad inter-
actions. This result is shown in Fig.6.20b which depicts the contributions of transfer rates for
total energy, magnetic energy, and kinetic helicity. These functions show that triad interac-
tions in these quantitiesre are nonlocal. Fig.6.20c shows that the transfer function and triad
interactions in magnetic helicity in small k are similar to that in Fig.6.19, but the interactions
in the other three quantities are negligible compared with Fig.6.19.
From Figs.6.18a, 6.19, 6.20a, and 6.20c, we can conclude that when both magnetic and

kinetic helicities are supplied through the forcing at small scales, there are two means of
transfer and types of triad interactions in magnetic helicity, which bring down the strength
of these interactions. When only magnetic helicity is supplied through the forcing, the in-
teraction strength is significantly larger. The transfer functions and triad interactions in the
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a)

b)

c)

Figure 6.20: a) The transfer density functions Q(v) of magnetic helicity (magenta dotted line), kinetic
helicity (dashed blue line), total energy (red solid line), and magnetic energy (brown dashed-dotted line) with
large k = 300 as the reference wavenumber. The time at which this analysis was done is t=6.9. b) The
contributions of the combined transfer rates for total energy (red solid line), magnetic energy (magenta dotted
line), and kinetic helicity (blue dashed line) with large k = 300 as the reference wavenumber. c) The same as
in (a) with small k = 30 as the reference wavenumber.
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small scales for total energy, magnetic energy and kinetic helicity are significant when both
magnetic and kinetic helicities are supplied through the forcing. But when only magnetic
helicity is supplied through the forcing, this affect is absent. This behavior is similar for the
transfer functions and triad interactions in the large scales. When kinetic helicity is supplied
through the forcing along with the magnetic helicity, it increases the transfer and triad in-
teractions in the small scales compared to the normal triad interactions in magnetic helicity.
At the same time a signficant nonlocal presence, increasing the nonlocal triad interactions in
the three quantities mentioned above. In the large scales, the effect of triad interactions of
kinetic helicity are negligible. In this region, the triad interactions of magnetic helicity show
a similar behavior to the case where only magnetic helicity is supplied through the forcing.
From our results for the spectral properties of magnetic helicity and other quantities (total
energy, magnetic energy, and kinetic helicity) in the forced inverse cascade system, we con-
clude that several quantities show inverse spectral transfer. This is mainly due to the inverse
spectral transfer of magnetic helicity which pulls all these quantities along with it. In Figs.6.19
and 6.20c, strong nonlocal transfer with nonlocal triad interactions are present in magnetic
helicity. These transfers are predominantly local with nonlocal triad interactions in the other
quantities. Thus our results support the argument that, because of the magnetic helicity has
inverse cascade with predominantly nonlocal transfer, other quantities get transferred to large
scales. The same behavior is also expected for the decaying MHD turbulence case. Even at
small scales (see Figs.6.18a and 6.20a) magnetic helicity is highly nonlocal while all other
quantities have less nonlocal transfers with nonlocal triad interactions. These nonlocal triad
interactions are responsible for a small-scale dynamo that can operate and enhance magnetic
energy at the expense of kinetic energy, while the flux of magnetic helicity is an inverse cas-
cade.
While magnetic energy itself has a strong local transfer with several degrees of nonlocal triad
interactions, linkages and twists in the magnetic field-lines could span several scales and are
mostly nonlocal. In the large scale magnetic structure formation process, the twisted field
lines play a more significant role than the local strength of the magnetic field itself. Malapaka
[107] observes that the velocity of the flow slows down and kinetic helicity becomes weaker
as the simulation progresses. This was explained in terms of magnetic energy gain at the
expense of kinetic energy. The twists in the velocity field (which would be represented by
kinetic helicity) aid in the enhancement of the nonlocality of triad interactions of magnetic
field lines. The same process hinders the flow, thus keeping the twists in the velocity field
local.
In this analysis for the forced inverse cascade MHD-turbulence case, we find that the transfer
function and triad interactions of the nonlinear magnetic helicity are highly nonlocal in both
small scales and large scales. Transfer functions and triad interactions of other quantities
are significantly less nonlocal in nature. The strength of nonlocal transfer and triad interac-
tions in large scales region for magnetic helicity do not change in any of the simulations we
performed. However, in small scales region, the strength of these transfers and interactions
varied depending on whether only magnetic helicity was applied through the forcing or both
kinetic and magnetic helicities are supplied. In addition, our results show that the nature
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of the transfer for other ideal invariants such as total energy, magnetic energy, and kinetic
helicity changes from highly nonlocal, when the forcing is present to significantly local when
the decaying turbulence takes over.
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Chapter 7

Summary and Conclusions

The main objective of this thesis is to better understand the nonlinear dynamical processes
of hydrodynamic (HD) and magnetohydrodynamic (MHD) turbulence. These processes play
an important role in understanding the nature of energy transfer and structure formation
in a turbulent flow. For this purpose, the spectral properties of transfer functions, triad
interactions, and cascade directions of ideal quadratic invariants of incompressible two and
three-dimensional HD and MHD turbulent flows are studied by analyzing data from high-
resolution direct numerical simulations. High resolution is necessary to resolve the inertial
range of a turbulent flow, where the nonlinear dynamics of turbulence are dominant and non-
universal large- and small-scale effects can be neglected. All turbulent systems studied in this
thesis are investigated using analysis of fully-developed, driven turbulence produced by large
direct numerical pseudospectral simulations. The main advantage of the DNS method is that it
does not use any additional physical approximations to solve the underlying equations. This
point is of fundamental importance for turbulence investigations because no simplification
of the nonlinear terms is employed. In addition, the DNS approach has the possibility of
comprehensive diagnostics since calculated turbulent fields are known at all grid points in a
computional box at all time steps. The nonlinear terms in the differential equations of Navier-
Stokes and MHD turbulent flows lead to the property that three wavevectors k, p and q are
involved in any basic triad interaction between turbulent fluctuations with k + p + q = 0,
k = ∣k∣, p = ∣p∣, and q = ∣q∣. The transfer of an ideal invariant is typically between two
Fourier modes with the third mode being regarded as responsible for the transfer; thus the
triad interaction takes place between three wavenumbers.

We introduce an accurate approach for analyzing nonlinear turbulent transfer functions,
triad interactions, and cascade processes in systems of incompressible HD and MHD turbu-
lence. This approach involves a direct numerical examination of every wavenumber triad in
the inertial range associated with the nonlinear terms in the differential equations of Navier-
Stokes and MHD turbulent flows. The technique allows us to compute the spectral transfer
functions, fluxes, and the spectral locality of the transfer functions and triad interactions.
Our approach computes the transfer density functions Q(v) and locality functions W (v) for
all triads with regard to the shape of the underlying wavenumber triads for each ideal invari-
ant. The density function indicates the locality of the nonlinear transfer and triad interactions
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between different scales of the wavenumber triads. The cascade direction of ideal invariant
quantities in the inertial range can also be inferred from this diagnostic.

Ananlysis of Q(v) and W (v) helps us to understand the different types of cascade direc-
tions, which are useful for diagnostic astrophysical settings such as solar wind, interstellar
clouds and intergalactic media. Our DNS results confirm the theoretical results of Kriachnan.
Thus DNS illustrates the theory of energy transfer due to the nonlinear interactions of the
modes in wavevectors space. The transfer density function Q(v) and locality function W (v)

analysis is a powerful and straightforward tool for understanding the nature of transfer of
physical invariants like energy, and the interaction of different spatial scales in triads. The
density function analysis along with analysis of fluxes (see, O. Debliquy et al. [62]) could shed
light on the nature of energy cascades or spectral transfer.

As a simple case of incompressible turbulence, isotropic hydrodynamic turbulence (two
dimensions) is considered first. The simulation in this case is performed at high resolution
(40962 grid points). The spectral properties of energy and enstrophy are studied. Results
show that the nonlinear energy transfer is predominantly nonlocal from small scale (large
wavenumbers) to large scales (small wavenumbers) with nonlocal triad interactions. There
is a dual cascade with energy cascading toward large length-scales and enstrophy cascading
toward small length-scales. Thus the nonlinear enstrophy transfer is characterized by local
transfer through nonlocal triad interactions and a direct cascade direction. These results agree
with the theoretical predictions of Kraichnan [5, 6] and the numerical analysis of Chen et al.
[108] and Boffetta [75].

To understand the nonlinear dynamics of turbulent flow in real observable systems, a
simulation is performed for three-dimensional hydrodynamic turbulence at a resolution of
10243 and Reynolds number, Re ≈ 6300. We observe Kolmogorov’s 5/3 power-law for both
energy and kinetic helicity spectra. In the inertial range, spectrally local transfer between
two similar-size wavenumbers in a triad is dominant for both energy and kinetic helicity. The
energy and kinetic helicity fluxes are positive and cascading from large scales to small scales in
the inertial range. Thus there is a strong joint cascade of energy and helicity simultaneously
in the inertial range.

The simplest model that involves the effects of a magnetic field on turbulent flow is the
two-dimensional magnetohydrodynamic turbulence system. This configuration is attractive
because it allows us to apply higher Reynolds numbers than the three-dimensional case. The
dynamics of plasma in 2D-MHD systems can be seen as an approximation to fully 3D-MHD
systems with a strong mean magnetic fields, where the turbulent dynamics are restricted to
planes perpendicular to the mean magnetic field. In an incompressible isotropic 2D-MHD
turbulent system, the simulation is performed with high resolution of 10242 and Reynolds
number, Re = Rm ≈ 7 × 104. The transfers of energy and cross helicity are highly local
between two similar-size wavenumbers in a given triad, with nonlocal triad interactions in the
inertial range. The cross helicity cascades more slowly than the energy. The mean square
magnetic vector potential is characterized by nonlocal transfer with inverse cascade from small
scales to large scales through highly nonlocal triad interactions.

In 3D-MHD turbulence, the dynamics of the nonlinear processes are studied for three
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cases: isotropic, anisotropic and forced-inverse cascade turbulence. For isotropic 3D-MHD
turbulence, the simulation is performed with a resolution of 5123 and Reynolds numbers
Re = Rm ≈ 3300. The initial ratio between kinetic and magnetic energy is unity. The
statistics of the transfer density function Q(v) and locality function W (v) evidence both
energy and cross helicity transfer between two similar-size wavenumbers. The total, kinetic,
and magnetic energy transfer is local with a direct cascade through nonlocal triad interactions
in the inertial range of decaying macroscopically isotropic MHD turbulence. The transfer of
magnetic helicity is dominantly nonlocal through nonlocal triad interaction with an inverse
cascade.

When the system is subject to a strong mean magnetic field, the turbulence becomes
anisotropic. The simulation of anisotropic 3D-MHD is performed at a resolution of 10242×256

forced turbulence is simulated. The nonlinear transfer of the total energy and cross helicity
is weaker and exhibits a moderate increase of nonlocality in both perpendicular and parallel
directions compared to the isotropic case. Statistically, the total energy and cross helicity
transfer functions are weakly local with a direct cascade through nonlocal triad interactions
compared to the isotropic case. Magnetic helicity is characterized by nonlocal transfer through
nonlocal triad interactions with an inverse cascade in both perpendicular and parallel direc-
tions to the mean magnetic field.

Studies of the spectral properties of ideal quadratic invariants in two approximate scaling
ranges are performed for the first time for forced-inverse cascade 3D-MHD turbulence using
high resolution of 10243. Forcing is applied to the system in two different ways, one in large
wavenumber region and other in small wavenumber region for all quantities in the forced tur-
bulent system. Two cases are studied: one in which both kinetic and magnetic helicities are
injected by the forcing and one in which only magnetic helicity is injected. Analyses of the
transfer density function Q(v) and locality function W (v) show that the nonlinear transfer of
magnetic helicity is highly nonlocal with an inverse cascade. Transfer of other quantities (i.e.,
total, magnetic energy, and kinetic helicity) is significantly local in nature. The strength of
nonlocal interactions at large scales for magnetic helicity is the same in both cases studied.
At small scales, the strength of the interactions vary depending on whether only magnetic
helicity is forced, or both kinetic and magnetic helicities are forced.

From the spectral results of several different cases of turbulence investigated in the pre-
sented work, the transfer functions for kinetic energy in 2D-HD, mean-square magnetic vector
potential in 2D-MHD, and magnetic helicity in 3D-MHD are nonlocal through nonlocal triad
interactions with an inverse cascade. For all other quantities (e.g., total energy and cross
helicity in 2D and 3D-MHD ), the transfer functions are predominantly local through non-
local triad interactions with a direct cascade. The transfer between velocity and magnetic
modes is local and there is no evidence of nonlocal transfer. The results show that nonlocal
triad interactions dominate for all studied cases. Indeed, nonlocal triad interactions in MHD
turbulence are significantly more pronounced than in HD turbulence. Thus nonlocal interac-
tions have an effect on the dynamics of a turbulent cascade. Moreover, our results could be of
interest to experimentalists working on 3D hydrodynamic turbulence, since we can perform
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diagnostics that would be difficult to develop in laboratory experiments. The investigation of
three-dimensional magnetohydrodynamic turbulence system is particularly attractive because
it represents a useful model for a detailed study of the spectral properties of nonlinear tur-
bulent dynamics. Understanding the turbulent dynamics in MHD could impact such diverse
scientific fields as Fusion or satellite design.

We use two different forcing techniques and find that the type of forcing leaves a unique
signature in both the density function and locality function. An analysis of these two functions
could determine where and how energy is entering a turbulent system. An inverse cascade of
magnetic helicity can create large-scale magnetic structures. Thus the development of large-
scale magnetic structure is because of the highly nonlocal triad interactions in the twists
of the field-lines rather than slightly nonlocal interactions of the magnetic field itself. We
see an evidence of the formation of these large-scale structure in our simulation of 3D-MHD
with highly nonlocal triad interactions. It is suggested that performing the transfer density
function Q(v) analysis for the magnetic field data obtained from different space missions.
Such an analysis would help in better understanding of the physics of large-scale magnetic
structure formation in the universe. Also, it is suggested that it is important to extend the
analysis of the density function Q(v) to various possible turbulent flow systems to shed light
on the fundamental spectral properties of turbulent flows.



Appendix A

The Fourier transformed energy
equation and conservation theory of
kinetic energy in fluid turbulence

In order to show the theorem of detailed conservation of the kinetic energy in fluid turbulence,
firstly the Fourier transformed of the energy equation must be shown. Since we are interested
in a statistical form of the Fourier transformed Navier-Stokes equations, in this appendix the
velocity will be replaced in this equation by its pair correlation function.
However, from sections 1.5 and 3.1, the Fourier transformed Navier-Stokes equations can be
written as

(
∂

∂t
+ �k2)vi(k) = − i

2
Pijm(k)

∫∫
ℝ6

v̂j (p)v̂m(q)�(k− p− q)d3pd3q , (A.1)

where
Pijm := [km(�ij −

kikj
k2

) + kj(�im −
kikm
k2

)]. (A.2)

The operator Pijm has thus been converted from a differential operator to an algebraic one,
which makes calculations much easier. Eq.(A.1) do not completely describe stationary tur-
bulence although time did not yet appear explicitly in it. A turbulent flow is said to be
stationary if its velocity statistics do not change with time, i.e., if its probability density
function is invariant under a shift of time. Like in the case of homogeneity of space, the
moments of higher order of the velocity only depend on the velocity differences over time
intervals, and the velocity correlation function becomes

⟨vi(k, t)vj (k
′, t ′)⟩ = wij (k, t − t ′)�k,k ′ = Pij (k)w(k , t − t ′)�k,k ′ . (A.3)

where wij(k) is the tensor describing the pair correlation function and it must be depend on
the vector direction and it must have the general form

wij(k) = A(k)�ij + B(k)ki kj + C (k)�ijl kl ,
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where A,B and C depend on the norm of the vector k, k = ∣k∣. the symmetry condition
wij(k) = wji(−k) and the incompressibility condition in Fourier space kjwij = 0 lead C = 0

and Aki +Bkik
2 = 0, thus B = −A/k2. Taking w instead A, the tensor wij finally written as

wij(k) = w(k)(�ij −
ki kj

k2
),

Introducing, (�ij − kikj
k2

) = Pij(k) is the projection tensor, then we can write

wij(k) = Pij (k)w(k).

This lead us to write the velocity correlation function with time intervals by Eq.A.3
In other hand, in non-stationary turbulent flows, the dissipative effects of viscosity usually
transform these flows rapidly into laminar flows. In order to keep the flow turbulent, thus
stationary, a hypothetical (homogeneous isotropic) stirring force1 fi(k) is introduced into
Eq.(A.1)

(
∂

∂t
+ �k2)vi(k) = − i

2
Pijm(k)

∫∫
vj (p)vm(q)�(k− p− q)d3pd3q + fi(k). (A.4)

But since the nature of the force is not known, authors leave it away[29] in the remaining
calculations. In order to compute the evolution equation for the density of kinetic energy for
the stationary case, multiply Eq.(A.1) by vi(k ′, t) (for the non-stationary case, by vi(k′, t ′)).
We omit writing the time-dependance of the velocity components for brevity in the following
computations, but we keep in mind the presence of the time variable t in the latter. Then we
have

∂

∂t
(vi(k)vi(k

′)) = vi(k)
∂vi(k

′)

∂t
+ vi(k

′)
∂vi(k)

∂t

= vi(k)

[
−�k ′

2
vi(k

′)− i

2
Pijm(k ′)

∫∫
ℝ6

vj (p)vm(q)�(k ′ − p− q)d3pd3q

]
+ vi(k

′)

[
−�k2vi(k)− i

2
Pijm(k)

∫∫
ℝ6

vj (p)vm(q)�(k− p− q)d3pd3q

]
.

(A.5)

Averaging gives

(
∂

∂t
+ �(k2 + k ′

2
))⟨vi(k)vi(k

′)⟩ = − i
2

∫∫
ℝ6

[
Pijm(k′)⟨vi(k)vj (p)vm(q)⟩�(k′ − p− q)

+ Pijm(k)⟨vi(k
′)vj (p)vm(q)⟩�(k− p− q)d3pd3q . 71(A.6)

Since the ensemble averages on the r.h.s. are proportional to delta-functions, we can momen-
tarily set them to

⟨vi(k)vj (p)vm(q)⟩ =: f (p,q)�(k + p + q), (A.7)

1This force has a "non-real" character, since in real life it arises by effects that are in contradiction with
homogeneity and isotropy
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⟨vi(k′)vj (p)vm(q)⟩ =: f (p,q)�(k′ + p + q). (A.8)

and replace the averages on the l.h.s. by the expression for the correlation tensor (cf. Eq.A.3),
which is the standard form of the correlation function in homogeneous isotropic turbulence,

⟨vi(k)vj (k
′)⟩ = Pij (k)w(k)�(k + k′).

Thus Eq.(A.6) can be written as

(
∂

∂t
+ �(k2 + k′2))2w(k)�(k + k′)

= − i
2

∫∫
ℝ6

[
Pijm(k′)f (p,q)�(k + p + q)�(k′ − p− q)

+ Pijm(k)f (p,q)�(k′ + p + q)�(k− p− q)
]
d3p d3q

= − i
2
�(k + k′)

∫
ℝ3

[
Pijm(k′)f (k′ − q,q) + Pijm(k)f (k′ − q,q)

]
d3q .

(A.9)

At this stage, the �(k + k′)-function can be cancelled out on both sides of the equation.
Reintroducing the ensemble averages on the r.h.s. using (A.7) for k′ = −k, we get

(
∂

∂t
+ 2�k2)2w(k)

= − i
2

∫∫
ℝ6

[Pijm(−k)f (p,q)�(k + p + q) + Pijm(k)f (p,q)�(p− k + q)] d3q d3p

= −
∫∫

ℝ6

Pijm(k)
i

2
[−⟨vi(k)vj (p)vm(q)⟩+ ⟨vi(−k)vj (p)vm(q)⟩] d3qd3p. (A.10)

Since the integrals are symmetric with respect to p and q, they remain unchanged by a change
of variables in the second summ and of the integrals into −p and −q,

(
∂

∂t
+ 2�k2)w(k)

= −1

2

∫∫
ℝ6

Pijm(k)
i

2
[−⟨vi(k)vj (p)vm(q)⟩+ ⟨vi(−k)vj (−p)vm(−q)⟩] d3q d3p

= −1

2

∫∫
ℝ6

Pijm(k)
i

2

[
⟨v∗i (k)v∗j (p)v∗m(q)⟩ − ⟨vi(k)vj (p)vm(q)⟩

]
d3q d3p (A.11)

Taking z := ⟨vi(k)vj (p)vm(q)⟩ and using the expression Im(z) = i
2(z∗ − z), we finally have

(
∂

∂t
+ 2�k2)w(k) = −1

2
Pijm(k)

∫∫
ℝ6

Im [⟨vi(k)vj (p)vm(q)⟩] d3q d3p (A.12)

The ensemble average on the r.h.s. in equation (A.12) already contains a delta-function,
�(k + p + q), according to equation (A.7). This implies that the integrals vanish if the vectors
k, p and q do not form a triangle, i.e., if their sum is nonzero.
Using the characteristic notations of (A.3) for stationary flows, the resulting equation with
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reintroduced time variables

(
∂

∂t
+ �k2)w(k, t− t′) =

1

2
S(k, t− t′), (A.13)

where

S(k, t− t′) := −Pijm(k)

∫∫
ℝ6

Im
(
⟨vi(k, t

′)vj (p, t)vm(q, t)⟩
)

d3p d3q , (A.14)

describes the evolution of the density of kinetic energy2.
In order to get an equation for non-stationary flows as well, we write t′ as a full variable by
replacing w(k, t− t′) and S(k, t− t′) by w(k, t, t′) and by S(k, t, t′) respectively. Then, since
w(k, t, t′) is symmetric for fixed k with respect to an interchange of its variables t and t′ [109],
the partial derivative ∂

∂tw(k, t, t) is

∂

∂t
w(k, t, t) =

∂

∂t1
w(k, t1, t2)∣t1=t2=t +

∂

∂t2
w(k, t1, t2)∣t1=t2=t

= 2
∂

∂t1
w(k, t, t) = −2(�k2w(k, t, t)− 1

2
S(k, t, t)), (A.15)

where we used equation (A.13) to derive the last equality.
Thus, in the non-stationary case and for t = t′, the evolution equation for the density w of
kinetic energy per unit mass is

(
∂

∂t
+ 2�k2)w(k, t, t) = S(k, t, t), (A.16)

where
S(k, t, t) = −1

2
Pijm(k)

∫∫
ℝ6

Im (⟨vi(k, t)vj (p, t)vm(q, t)⟩) d3p d3q . (A.17)

For simplicity of notation, let us write S(k, t) instead of S(k, t, t) when necessary. S is called
the kinetic energy transfer. It has to be emphasized that this nonlinear term in wavenumber
space only appears if the three vectors p,k,q form a triangle, i.e., if their sum is zero. In this
case, they form a so-called triad. These triads are the key of understanding the phenomenon
of energy transfer in turbulent flows, representing the fundamental object of interest in the
study of Navier-Stokes turbulence. The triads existence comes from the presence, under the
integral sign, of the delta-function, because the triple correlation is proportional to a delta
function in the case of isotropy. If these vectors do not form a triangle, then the nonlinear
term vanishes.
The nonlinear term on the r.h.s of the evolution equation (A.16), S(k, t, t), can be brought
into a form which shows an interesting kind of conservation of the kinetic energy. Recall the
expression for the transfer function

S(k, t, t) = −1

2
Pijm(k)

∫∫
ℝ6

Im (⟨vi(k, t)vj (p, t)vm(q, t)⟩) d3p d3q , (A.18)

2It can been shown in [29] (see the Appendix) that the expression for S in fact depends on the modulus of
the vector k. We therefore use the notation S(k, t− t′) introduced by Leslie.
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where
Pijm(k) = [km(�ij −

ki kj

k2
) + kj (�im −

ki km

k2
)]. (A.19)

Neglecting time for the present calculations, using the convention of summation for double
indices and the incompressibility condition in Fourier space kivi(k) = 0, we have

Pijm(k) ⟨vi(k)vj (p)vm(q)⟩

=

〈
[km(�ij −

ki kj

k2
) + kj (�im −

ki km

k2
)]vi(k)vj (p)vm(q)

〉
=

〈
km(�ij −

ki kj

k2
)vi(k)vj (p)vm(q)

〉
+

〈
kj (�im −

ki km

k2
)vi(k)vj (p)vm(q)

〉
= ⟨(k ⋅ v(q)) (v(p) ⋅ v(k))⟩+ ⟨(k ⋅ v(p)) (v(q) ⋅ v(k))⟩ . (A.20)

Thus the evolution equation of energy becomes

(
∂

∂t
+ 2�k2)w(k, t, t) =

− 1

2

∫∫
ℝ6

Im [⟨(k ⋅ v(q))(v(p) ⋅ v(k))⟩+ ⟨(k ⋅ v(p))(v(q) ⋅ v(k))⟩] d3pd3q .

(A.21)

Using the following abbreviation

T (k∣p,q) = −Im [⟨(k ⋅ v(q))(v(p) ⋅ v(k))⟩+ ⟨(k ⋅ v(p))(v(q) ⋅ v(k))⟩] , (A.22)

a cyclic permutation of k, p and q results in

T (k∣p,q) + T (p∣q,k) + T (q∣k,p) = 0. (A.23)

This is the "theorem of detailed conservation" [76], which shows that for a single triad

{v(k),v(p),v(q); k + p + q = 0} , (A.24)

and this implies that the kinetic energy is conservatively exchanged between these modes3. In
other words, energy is not lost within the triad, thus rendering the meaning of "detailed" con-
servation more explicit. A consequence of detailed conservation is the conservation of kinetic
energy in a certain region of wavenumbers called inertial range, where the energy spectrum
exhibits self-similar behaviour and where turbulent energy production and dissipation are
negligible. The key information throughout these considerations is the fact that the turbulent
energy is conserved by the non-linear terms of the Navier-Stokes equations.

3Note that Rose and Sulem ([76], p.447) derived this "theorem" using the evolution equation for the
quantity ∣v(k)∣2 and starting with the Fourier transformed, incompressible Euler equation, instead of using
the evolution equation for the averaged energy density.



122
The Fourier transformed energy equation and conservation theory of kinetic

energy in fluid turbulence

The energy equation (cf. Eq.A.21) can now be written as

(
∂

∂t
+ 2�k2)w(k, t) =

1

2

∫∫
ℝ6

T (k∣p,q)d3pd3q , (A.25)

where
T (k∣p,q) = −Im [⟨(k ⋅ v(q))(v(p) ⋅ v(k))⟩+ ⟨(k ⋅ v(p))(v(q) ⋅ v(k))⟩] .

This expression for the nonlinear term is in fact the starting point of the models made for
numerical calculations. The quantity, T (k∣p,q) has been interpreted by Lesieur [1] as the
"combined energy transfer" rate from the modes p and q to the mode k, then used by many
authors (see, for example [53, 26, 54, 55, 56, 57]).



Appendix B

Transfer density function, Q(v) of the
enstrophy

The enstrophy (mean square vorticity), Ω(k) balance equation in 2D-HD is given by Kriachnan
[6]

Ω(k) =

∫ ∞
0

∫ ∞
0

k2T (k, p, q)dpdq. (B.1)

with k = ∣k∣, p = ∣p∣, q = ∣q∣,k = p + q in the ineracting triad.
where the quantity k2T (k, p, q) = k2T (k, q, p) is the net rate of enstrophy transfer into mode
k from interactions with modes p and q. Then the mean rate of transfer of enstrophy from
below k to above k is

Z(k) =

∫ ∞
k

(k
′
)2T (k

′
)dk

′
=

∫ ∞
k

(∫ ∞
0

∫ ∞
0

(k
′
)2T (k

′
, p, q)dpdq

)
dk
′
.

=

∫ ∞
k

(k
′
)2dk

′
∫ k

0

∫ k

0
T (k

′
, p, q)dpdq −

∫ k

0
(k
′
)2dk

′
∫ ∞
k

∫ ∞
k

T (k
′
, p, q)dpdq. (B.2)

where the first integral on the r.h.s. of Eq.(B.2) gives the total rate of enstrophy gained into
the range k′ > k after triad interactions with p and q that are smaller than k, while the second
integral gives the total rate loss of enstrophy in the range k′ < k after triad interactions with
p and q that are bigger than k.
Repeating the procedure which showed in section 3.5 for the enstrophy flux, Z(k) in Eq.(B.2),
with putting n = 3 as a power of the scaling factor in Kraichman’s assumption [6], we can
obtain

Z(k) =

∫ 1

0
dv

∫ 1+v

1
dw
[
ln(w)w2T (w, 1, v) + ln(v)v2T (v, 1, w)

]
. (B.3)

Again by applying the properties of 2D-HD, which in Eq.(5.16) into Eq.(B.3), we obtain

Z(k) =

∫ 1

0
dv

∫ 1+v

1
dw
[
ln(w)w2T (1− v2) + ln(v)v2T (w2 − 1)

] T (1, v, w)

v2 − w2
. (B.4)

Introducing a new function,

Q(v) =
v

�

∫ 1+v

1
dw
[
ln(w)w2T (1− v2) + ln(v)v2T (w2 − 1)

] T (1, v, w)

v2 − w2
. (B.5)
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where � is the total rate of enstrophy dissipation, then Eq.(B.4) for the enstrophy flux in
2D-HD can be written by

Z(k) =

∫ 1

0
dv
�

v
Q(v) = �

∫ 1

0
Q(v)

dv

v
. (B.6)

The function Q(v) in Eq.(B.6) serves as a measure of the locality or nonlocality of enstrophy
transfer of a given interacting triad in 2D-HD turbulence, showing the structure of the inertial
range enstrophy transfer in 2D-HD.



Appendix C

Transfer density function, Q(v) of the
mean square magnetic vector
potential

The mean square magnetic vector potential A balance equation in 2D-MHD is given by [56]

A(k) =

∫ ∞
0

∫ ∞
0

k−2T bb(k, p, q)dpdq. (C.1)

where the quantity k−2T bb(k, p, q) = k−2T bb(k, q, p) is the net rate of mean square magnetic
vector potential transfer into mode k from interactions with modes p and q. Then the mean
rate of transfer (the flux) of the squared magnetic vector potential from below k to above k is

Y (k) =

∫ ∞
k

(k
′
)−2T bb(k

′
)dk

′
=

1

2

∫ ∞
k

(∫ ∞
0

∫ ∞
0

(k
′
)−2T bb(k

′
, p, q)dpdq

)
dk
′
.

=
1

2

∫ ∞
k

(k
′
)−2dk

′
∫ k

0

∫ k

0
T bb(k

′
, p, q)dpdq − 1

2

∫ k

0
(k
′
)−2dk

′
∫ ∞
k

∫ ∞
k

T bb(k
′
, p, q)dpdq.

(C.2)

where the first integral on the r.h.s. of Eq.(C.2) gives the total rate of the mean square
magnetic vector potential gained into the range k′ > k after triad interactions with p and q
that are smaller than k, while the second integral gives the total rate loss of the mean square
magnetic vector potential in the range k′ < k after triad interactions with p and q that are
bigger than k.
Using the symmetry of T bb(k′ , p, q), where T bb(k′ , p, q)=T bb(k′ , q, p) we can write 2

∫ k
0 dp

∫ p
0 dq

instead of
∫ k

0 dp
∫ k

0 dq in the first integral and 2
∫∞
k dp

∫∞
p dq instead of

∫∞
k dp

∫∞
k dq in the

second integral, then we can write

Y (k) =

∫ ∞
k

(k
′
)−2dk

′
∫ k

0

∫ p

0
T bb(k

′
, p, q)dpdq

−
∫ k

0
(k
′
)−2dk

′
∫ ∞
k

∫ ∞
p

T bb(k
′
, p, q)dpdq. (C.3)
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Choosing the following variable changes, p = k
u , k

′
= pw, q = pv in the first term and p = k

u ,
k
′

= pv, q = pw in the second term of the right hand side of Eq.(C.3), we have

Y (k) =

∫ 1

0
dv

∫ ∞
1

du

∫ ∞
u

dw
1

u

(
k

u

)
w−2T bb(

k

u
w,

k

u
,
k

u
v)

−
∫ 1

0
du

∫ ∞
1

dw

∫ u

0
dv

1

u

(
k

u

)
v−2T bb(

k

u
v,
k

u
,
k

u
w). (C.4)

Kraichnan assumed that the double and triple moments at the instant considered satisfy [6]

T (ak, ap, aq)

T (k, p, q)
= a−(1+3n)/2.

where a is an arbitrary scaling factor and n is unknown. Putting n = 1/3, where the magnetic
energy spectrum can be expressed in terms of the mean square magnetic vector potential by
[110]

EMk = k2Ak ∝ k−1/3. (C.5)

then we obtain
T (ak, ap, aq)

T (k, p, q)
= a−1 ⇒ T (ak, ap, aq) = a−1T (k, p, q). (C.6)

Using Eq.(C.6) with a = k/u, then Eq.(C.4) can be written by

Y (k) =

∫ 1

0
dv

∫ ∞
1

du

∫ ∞
u

dw
1

u
aw−2T bb(aw, a, av)−

∫ 1

0
du

∫ ∞
1

dw

∫ u

0
dv

1

u
av−2T bb(av, a, aw).

=

∫ 1

0
dv

∫ ∞
1

du

∫ ∞
u

dw
1

u
w−2T bb(w, 1, v)−

∫ 1

0
du

∫ ∞
1

dw

∫ u

0
dv

1

u
v−2T bb(v, 1, w).

(C.7)

Because of
∫∞

1 du
∫∞
u dw is equivalent to

∫∞
1 dw

∫ w
1 du in first integral and

∫ 1
0 du

∫ u
0 dv is

equivalent to
∫ 1

0 dv
∫ 1
v du in the second integral, Eq.(C.7) can be written by

Y (k) =

∫ 1

0
dv

∫ ∞
1

dw

∫ w

1
du

1

u
w−2T bb(w, 1, v)−

∫ 1

0
dv

∫ ∞
1

dw

∫ 1

v
du

1

u
v−2T bb(v, 1, w)

=

∫ 1

0
dv

∫ ∞
1

dwln(w)w−2T bb(w, 1, v) +

∫ 1

0
dv

∫ ∞
1

dwln(v)v−2T bb(v, 1, w)

=

∫ 1

0
dv

∫ ∞
1

dw
[
ln(w)w−2T bb(w, 1, v) + ln(v)v−2T bb(v, 1, w)

]
. (C.8)

With the consideration that T bb is non-zero only if w, 1 and v are form a triangle, so in
Eq.(C.8) the integration border ∞ replaced by 1 + v, then we can write

Y (k) =

∫ 1

0
dv

∫ 1+v

1
dw
[
ln(w)w−2T bb(w, 1, v) + ln(v)v−2T bb(v, 1, w)

]
(C.9)

The above equation expresses for the flux (the cascade rate) of the mean square magnetic
vector potential as integrals over contributions from all possible shapes of the triangles formed
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by the wavenumbers k, p, q in Eq.(C.2). If we introduce a new function, which is

Q(v) =
v

DA

∫ 1+v

1
dw
[
ln(w)w−2T bb(w, 1, v) + ln(v)v−2T bb(v, 1, w)

]
. (C.10)

we get

Y (k) = DA

∫ 1

0

dv

v
Q(v). (C.11)

where DA is the rate of the mean square magnetic vector potential dissipation. Therefore,
the function Q(v) serves as a measure of the localness of the mean square magnetic vector
potential transfer.
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