
Institut für Informatik

Technische Universität München

Action-Related Places for Mobile
Manipulation

Dissertation

Andreas Fedrizzi

TECHNISCHE UNIVERSITÄT MÜNCHEN
Institut für Informatik

Lehrstuhl für Bildverstehen und wissensbasierte Systeme

Action-Related Places for Mobile Manipulation

Andreas Fedrizzi

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Darius Burschka

Prüfer der Dissertation: 1. Prof. Michael Beetz, PhD

2. Prof. Rachid Alami,
LAAS/CNRS, Toulouse, Frankreich

Die Dissertation wurde am 09.11.2010 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 27.06.2011 angenommen.

Abstract

Today’s autonomous robots cannot perform everyday manipulation tasks with human dexterity
and flexibility. One of the main reasons is that even seemingly simple tasks such as picking
up an object turned out to be surprisingly difficult decision making problems. To pick up an
object the robot must decide where to stand in order to pick up the object, which hand(s) to
use, how to reach for the object, which grasp type to apply, where to grasp, how much grasp
force to apply, how and where to hold the object, how to lift the object, and how much force to
apply to lift it. The decision problems are even more complex because many decisions depend
on task context, which requires the robot to take many factors into account in order to achieve
the best possible performance.

Humans deal with this complexity by selecting and parameterizing their actions based on
predicted action consequences. For example, when considering the problem of choosing a
location from which an object should be grasped, then humans prefer locations from which the
grasping action will likely succeed. This dissertation thesis presents the framework of Action-
Related Places, which is a novel approach for computing manipulation places that maximize
expected utility. The framework of Action-Related Places advances the state of the art by:
(1) Introducing a compact and precise representation of manipulation places; (2) Learning an
internal model of manipulation place through experience-based learning; (3) Enabling online-
reasoning about manipulation places with ARPlace probability distributions.

Manipulation places for robot positioning are represented by internal models that are learned
knowledge of places that lead to successful manipulation. They implicitly take the robot’s
skills into account. As a result, the proposed manipulation places are not only kinematically
promising, but have led to successful manipulation in actual manipulation tasks. We call the
internal model for robot positioning Generalized Success Model and use experience-based
learning to develop it. A robot performs several exemplary manipulation actions and stores
whether the action succeeded or failed. Support vector machines and point distribution mod-
els are used to generalize over the gathered data. We chose point distribution models as the
basis for Generalized Success Models because they are compact, can be queried quickly, and
it is possible to take state estimation uncertainties into account.

III

The Generalized Success Model is used online in order to compute Action-Related Places
(ARPLACEs), which map base positions to the probability that the robot will be able to suc-
cessfully perform the manipulation task when it is executed from there. ARPLACE probability
distributions are updated iteratively when new sensor information arrives. Moreover, taking
state estimation uncertainties into account makes the resulting manipulation place more ro-
bust than approaches that assume ground truth data. Because ARPLACEs capture grasp suc-
cess probability for all places, it is possible to find optimal manipulation places. The principle
of optimality can also be met when there are multiple, potentially conflicting task goals by
utilizing decision theory.

The framework of Action-Related Places was fully implemented and evaluated in the Gazebo
simulator. Evaluations showed that manipulation places that are proposed by the ARPLACE

framework are better in a statistically significant manner than manipulation places that were
proposed by other place-finding strategies. Manipulation places from the ARPLACE frame-
work are especially more robust when the robot is not able to precisely locate the target object.
Applying transformational planning reduced the average execution time from 48 seconds to
32 seconds when multiple objects had to be grasped.

Kurzfassung

Menschen sind heutzutage autonomen Robotern bei der Verrichtung von Manipulationsauf-
gaben im Alltag weit überlegen. Einer der Hauptgründe ist, dass sogar einfache Aufgaben wie
ein Objekt auf einem Tisch zu greifen sich als Sequenz erstaunlich komplizierter Entschei-
dungsprobleme herausgestellt haben. Um ein Objekt zu greifen muss sich der Roboter über-
legen wo er sich für den Greifvorgang positionieren soll, welche Hand er benutzen soll, ob er
nicht sogar beide Hände benötigt, wie und wo das Objekt am besten zu Greifen ist, wieviel
Kraft beim Griff angewendet werden sollte, und wieviel Kraft beim Hochheben sinnvoll ist.
Die Entscheidungsprobleme sind sogar noch komplizierter weil bei vielen Entscheidungen der
Aufgabenkontext eine wichtige Rolle spielt und berücksichtigt werden muss.

Menschen werden mit dieser Komplexität fertig, indem sie Aktionsentscheidungen und Ak-
tionsparametrisierungen auf Basis von prognostizierten Aktionskonsequenzen treffen. Wenn
Menschen sich beispielsweise für einen Platz entscheiden müssen von dem aus sie ein Ob-
jekt greifen, dann präferieren sie Orte von denen aus die Greifaktion vermutlich erfolgre-
ich sein wird. Die vorliegende Dissertation stellt das Action-Related Places Framework vor,
welches ein neuer Ansatz ist um Plätze zu finden die den erwarteten Nutzen einer Manip-
ulationsaktion maximieren. Das Action-Related Places Framework erweitert den aktuellen
Stand der Forschung wie folgt: (1) Es führt eine kompakte und präzise Repräsentation von
Manipulationsplätzen ein; (2) Es entwickelt interne Modelle von Manipulationplätzen durch
erfahrungsbasiertes Lernen; (3) Zur Laufzeit ermöglicht es logisches Schliessen über Manip-
ulationsplätze anhand von ARPLACE Wahrscheinlichkeitsverteilungen.

Manipulationsplätze zur Roboterpositionierung werden in internen Modellen repräsentiert.
Die internen Modelle werden anhand von Wissen gelernt, welche Manipulationsplätze für
bestimmte Manipulationsaufgaben zum Erfolg führten und welche nicht und spiegeln dadurch
implizit die Hardware-Fähigkeiten des Roboters wieder. Als Konsequenz sind die berechneten
Manipulationsplätze nicht Orte welche nur auf einer kinematischen Ebene gut sein müssten,
sondern Manipulationsplätze für die sich in der Vergangenheit gezeigt hat, dass sie in tat-
sächlichen Manipulationsaufgaben erfolgreich sind. Wir nennen diese internen Modelle zur
Roboterpositionierung Generalized Success Models und verwenden erfahrungsbasiertes Ler-

V

nen um sie zu akquirieren. Dazu führt ein Roboter einige Manipulationsaktionen aus und spe-
ichert ob die jeweilige Aktion erfolgreich war oder nicht. Support Vector Machines und Point
Distribution Models werden verwendet um über die gewonnenen Daten zu generalisieren.
Wir haben uns für Point Distribution Models als Basis für das Generalized Success Model
entschieden, da sie kompakt sind, schnell abgefragt werden können, und es möglich ist Un-
sicherheiten bezüglich der aktuellen Zustandsschätzung des Roboters zu berücksichtigen.

Das Generalized Success Model wird zur Laufzeit benutzt um Action-Related Places (kurz:
ARPLACEs) zu berechnen, welche für beliebige Manipulationsplätze die Wahrscheinlichkeit
widerspiegeln, daß die Manipulationsaufgabe erfolgreich ausgeführt werden kann, wenn sie
von dort gestartet wird. ARPLACE Wahrscheinlichkeitsverteilungen werden iterativ aktua-
lisiert wenn neue Sensorinformation eintrifft. Darüberhinaus werden Unsicherheiten bezüglich
der aktuellen Zustandsschätzung des Roboters explizit berücksichtigt. Dieses Vorgehen macht
die Bestimmung von Manipulationsplätzen erheblich robuster als Verfahren, die von ground
truth Daten ausgehen. Dadurch, dass ein Action-Related Place die Greifwahrscheinlichkeit für
alle Manipulationsplätze berechnet, lassen sich Aussagen bezüglich der Güte von Manipula-
tionsplätzen treffen und es ist möglich optimale Manipulationsplätze zu bestimmen. Wir ver-
wenden Entscheidungstheorie um das Prinzip der Optimalität auch dann zu wahren, wenn in
einer Manipulationsaufgabe mehrere, sich potentiell widersprechende Ziele verfolgt werden.

Das ARPLACE Framework wurde komplett implementiert und im Gazebo Simulator um-
fangreich evaluiert. Es konnte gezeigt werden, dass Manipulationsplätze, die vom Action-
Related Places Framework vorgeschlagen wurden, statistisch signifikant besser sind als Mani-
pulationsplätze die von anderen Strategien vorgeschlagen wurden. Insbesondere sind Mani-
pulationsplätze des ARPLACE Framework deutlich robuster, wenn der Roboter das Zielobjekt
nicht exakt lokalisieren kann. Die Anwendung eines Transformationsplaners ermöglichte es
zudem die Ausführungszeit von durchschnittliche 48 Sekunden auf 32 Sekunden zu reduzieren
wenn mehrere Objekte gleichzeitig manipuliert werden mussten.

Acknowledgements

I want to thank everybody who supported me during my research and during the writing of this
thesis. First, I want to thank my advisor Prof. Michael Beetz for giving me the opportunity to
work in the exciting field of robotics research. In the Intelligent Autonomous Systems Group
he managed to bring together a group of talented people that are passionate about robotics.
To work with them was inspiring and the numerous discussions at the chair were an impor-
tant aspect for the success of this thesis. In this context I want to especially thank Dr. Freek
Stulp and Dominik Jain. Additionally I want to thank Lorenz Mösenlechner, Moritz Tenorth,
Dr. Jan Bandouch, and Dr. Franziska Zacharias for the fruitful collaboration during our joint
publications. Furthermore I am grateful to Prof. Rachid Alami for being my second advisor.
With his input and stimulating discussions he helped to strengthen the thesis.

It is a challenging task to build and maintain autonomous robots. Therefore I am grateful
to all the people that contributed to making the B21 robot a working mobile manipulation
platform. Special thanks goes to Alexis Maldonado, Federico Ruiz, Ingo Kresse, and Ulrich
Klank. Finally I want to thank Dr. Jan Bandouch for being a pleasant room mate over years
and my family and friends for their past and ongoing support.

This work was funded by the Technische Universität München, the CoTeSys cluster of
excellence, part of the Excellence Initiative of the DFG, and the DFG ActAr project. I owe to
Prof. Giorgio Metta and the Italian Institute of Technology for being able to work there as a
guest researcher. Becoming familiar with the robot platform iCub was a valuable experience.

VII

Contents

Abstract III

Kurzfassung V

Acknowledgements VII

Contents IX

List of Figures XIII

List of Algorithms XIX

List of Symbols XXI

List of Abbreviations XXIII

1 Introduction 1
1.1 Problem Statement . 2

1.1.1 Cognitive Motor Control . 3
1.1.2 Bayesian Modeling and Bayesian Brain 4
1.1.3 ARPLACEs as Cognitive Approach to find Manipulation Places . . . 5

1.2 Scientific Contributions . 6
1.2.1 Representation of Places for Successful Manipulation 7
1.2.2 Learning a Model of Places for Successful Manipulation 7
1.2.3 Online-Reasoning with Action-Related Places 8
1.2.4 Evaluations and Publications . 8

1.3 Outline of the Thesis . 10

2 Preliminaries 13
2.1 Manipulation Scenario . 13
2.2 System Overview . 19

IX

2.3 Related Work . 23

2.3.1 Kinematics and Dynamics . 23

2.3.2 Locomotion, Localization, and Mapping 24

2.3.3 Planning in AI . 25

2.3.4 Perception . 26

2.3.5 Motion Planning . 27

2.3.6 Manipulation and Grasp Planning 29

2.3.7 Coupling of Navigation and Manipulation 31

3 Learning Generalized Success Models 35
3.1 Introduction . 36

3.1.1 Problem Statement . 37

3.1.2 Related Work . 37

3.2 Gathering Training Data . 40

3.2.1 Experiment Setup . 41

3.2.2 Labeling Training Data . 44

3.2.3 Gathering Training Data . 46

3.3 Computing Classification Boundaries . 47

3.3.1 Relative Feature Space . 47

3.3.2 Computing Classification Boundaries 51

3.3.3 Evaluation of learned Classification Boundaries 53

3.4 Generalization over Classification Boundaries 54

3.4.1 Aligning Classification Boundaries 55

3.4.2 Point Distribution Model . 55

3.4.3 Relation to Task-Relevant Parameters 58

3.4.4 Performance Analysis of Learning Generalized Success Models . . . 59

3.5 Human Activity Data for Biased Exploration 60

3.6 Learning GSMs for Different Objects . 63

3.6.1 Grasping Different Objects . 63

3.6.2 A Generalized Success Model for Grasping from the Top 67

4 Action-Related Places 73
4.1 Related Work . 74

4.2 Computing Action-Related Places . 75

4.2.1 From Robot Coordinate Systems to the Relative Feature Space 76

4.2.2 Querying the Generalized Success Model 83

4.3 Evaluation . 90

4.3.1 Impact of Object’s Distance to Table Edge 90

4.3.2 Impact of Object’s Distance along Table Edge 94

4.3.3 Impact of Object Orientation . 96

4.3.4 Impact of Uncertainty into Object’s Pose 98

4.3.5 Impact of Uncertainty into Robot’s Pose 102

4.4 ARPLACE Information for High-Level Planning 106

4.4.1 Raising Manipulation Chances . 106

4.4.2 Analysing Unexpected Failure . 108

4.5 Results from the Simulated Robot . 110

5 Refining Action-Related Places 113
5.1 Related Work . 114

5.2 ARPLACEs for Grasping from the Top . 115

5.3 Multi Modal ARPLACEs . 116

5.4 ARPLACEs for Grasping with the Left Arm 118

5.5 Taking Obstacles into Account . 120

5.5.1 Obstacle Probability Distribution 121

5.5.2 Including State Estimation Uncertainties 122

5.5.3 Performance Analysis . 126

5.6 ARPLACEs for Multi-Arm Manipulation . 127

5.6.1 Merging ARPLACEs for Multi-Arm Manipulation 128

5.6.2 Evaluation . 132

5.6.3 High Level Planning System . 136

5.7 Dealing with Uncertainty into the Object’s Type 141

5.8 Integration of Unexpected Experience . 142

6 Utility Framework for Action-Related Places 145
6.1 Related Work . 147

6.2 Utility Framework . 148

6.2.1 Unifying Heterogenous Utilities . 149

6.2.2 Utility Pertaining to Execution Success 150

6.2.3 Utility Pertaining to Execution Time 152

6.3 Evaluation . 155

6.3.1 Default Scenario . 156

6.3.2 Impact of Importance of Success . 157

6.3.3 Impact of Importance of Time . 159
6.3.4 Impact of Initial Robot Position . 162
6.3.5 Impact of Object Pose . 164
6.3.6 Average Behavior . 165

7 Case Study 169
7.1 The Scenario . 169
7.2 Finding Target Objects . 170
7.3 Computing Manipulation Places . 172

7.3.1 Grasp Success Probability . 172
7.3.2 Considering Obstacles . 176
7.3.3 Computing Grasp Utility . 177

7.4 Updating ARPLACEs . 179
7.5 Handling Multiple Objects . 180

7.5.1 Merging ARPLACEs based on Utility 182
7.5.2 Overall Utility of Plans . 184

7.6 Handling Sudden Changes . 186
7.7 Performing the Task . 188

8 Conclusion and Future Research 191
8.1 Summary . 191
8.2 Open Challenges and Future Research . 194

A Robot Platform 197
A.1 Arm Kinematics . 198
A.2 Perception . 198
A.3 Computational Framework . 200

B Modeling through Experience-Based Learning 203
B.1 Building Models of Tasks . 203
B.2 Adaptation to Changes in Complex Environments 204
B.3 Dealing with Uncertainty . 206

Bibliography 207

List of Figures

1.1 B21r mobile robot grasps a cup in the Assistive Kitchen 3
1.2 Illustration of ARPLACE concept . 6
1.3 Mobile manipulation platforms . 9

2.1 Manipulation scenario . 13
2.2 Robot enters kitchen . 15
2.3 Updating ARPLACEs online . 16
2.4 Utility distributions for grasping a second object 17
2.5 Robot detects an obstacle . 18
2.6 Robot changes belief about target object’s type 19
2.7 Embedding of ARPLACE framework into robot system 20
2.8 Overview of computational components in the ARPLACE framework 21

3.1 Visual overview of chapter 3 . 36
3.2 B21r mobile robot and Assistive Kitchen in Gazebo simulator 40
3.3 Reaching motion for grasping a cup . 41
3.4 Invariance of grasping task when moving object relative to table edge 42
3.5 Cup poses for performing navigate-reach-grasp action sequence 43
3.6 Gathering trainning data . 44
3.7 Inverse capability map . 46
3.8 Excerpt of gathered training data . 48
3.9 Classification boundary for a certain cup pose 49
3.10 Coordinate frames for similar manipulation tasks 49
3.11 Relative feature space . 50
3.12 Translating class. boundary from world coordinates to relative feature space . 51
3.13 Classification boundaries for 16 cup poses 54
3.14 Aligning classification boundaries . 56
3.15 Point Distribution Model with 3 deformation modes 57
3.16 Runtime for learning a GSM for side grasps 59

XIII

3.17 Gathering human data for biasing exploration 60
3.18 Comparing human and robot data . 62
3.19 Grasp point and approach vector . 64
3.20 Reaching motion for grasping plates . 65
3.21 Reaching motion for grasping knifes . 65
3.22 Reaching motion for grasping glasses . 66
3.23 15 household items to evaluate model-free grasping 66
3.24 Gathered training data for top grasps . 68
3.25 Aligned classification boundaries for top grasps 69
3.26 Point Distribution Model for top grasps . 70
3.27 Runtime for learning a GSM for top grasps 71

4.1 ARPLACE probability distribution . 73
4.2 Visual overview of chapter 4 . 76
4.3 Coordinate frames for computing the relative feature space 77
4.4 Relative feature spaces for different table edges 81
4.5 Deriving the object’s pose within the relative feature space 82
4.6 Applying a Generalized Success Model to different table shapes 83
4.7 Computing an ARPLACE with ground truth data 84
4.8 Reconstructing classification boundaries for a target object 85
4.9 Computing an ARPLACE probability distribution 86
4.10 Probability distributions of robot’s base position 87
4.11 Conditioning of ARPLACE with probability distribution of robot’s base position 88
4.12 Runtime for computing an ARPLACE . 90
4.13 Impact of ∆xobj on ARPLACE . 91
4.14 Maximum GSP for ∆xobj ∈ {0.00m, .., 0.60m} 94
4.15 Impact of ytab

obj on ARPLACE . 95
4.16 Maximum GSP for ytab

obj ∈ {−0.20m, .., 0.20m} 96
4.17 Impact of ∆ψobj on ARPLACE . 97
4.18 Maximum grasp success probability (left plot) and runtime (right plot) for

∆ψobj ∈ {−π, .., π} . 98
4.19 Impact of σ∆xobj

on ARPLACE . 99
4.20 Maximum GSP for σ∆xobj

,σ∆yobj
, and (σ∆xobj

,σ∆yobj
) 100

4.21 Impact of σytabobj
on ARPLACE . 101

4.22 Impact of (σ∆xobj
, σytabobj

) on ARPLACE . 102
4.23 Impact of σ∆xrob

on ARPLACE . 103

4.24 Maximal GSP for σ∆xrob
,σ∆yrob , and (σ∆xrob

,σ∆yrob) 104

4.25 Impact of σ∆yrob on ARPLACE . 105

4.26 Impact of (∆xrob,∆yrob) on ARPLACE . 106

4.27 ARPLACEs with low maximum GSP . 107

4.28 Scenario where robot is too certain about object’s pose 109

4.29 How FIXED strategy computes manipulation places 111

4.30 Manipulation places of ARPLACE framework compared to FIXED strategy . 112

5.1 Visual overview of chapter 5 . 114

5.2 ARPLACE for grasping a glass from the top 116

5.3 Impact of task-relevant parameters on ARPLACE for top grasps 117

5.4 ARPLACEs for different table edges . 118

5.5 Manipulator configurations of right and left arm 119

5.6 ARPLACE for grasping with right arm . 120

5.7 Computing ARPLACEs for grasping with left arm 121

5.8 Multi modal ARPLACE revisited . 122

5.9 Obstacle probability distribution for ground truth data 123

5.10 Obstacle probability distribution for probabilistic state estimation 124

5.11 Merging ARPLACE and obstacle probability distribution 125

5.12 Runtimes for obstacle probability distribution 126

5.13 Scenario for grasping multiple objects at once 128

5.14 ARPLACEs for sequentially grasping 2 objects 129

5.15 ARPLACE for grasping 2 objects with RL grasp combination 130

5.16 ARPLACE for grasping 2 objects with LR grasp combination 131

5.17 Example of an invalid ARPLACE for grasping two objects at once 131

5.18 Combining RL and LR grasp combinations 132

5.19 Analyzing impact of the objects’ distance to each other on ARPLACE 133

5.20 Analyzing impact of the objects’ distance to table edge on ARPLACE 134

5.21 Merged ARPLACEs for different object poses 135

5.22 Plan optimization of transformational planning system 138

5.23 Plan transformation . 140

5.24 ARPLACE when robot is uncertain about object type 142

5.25 Merging ARPLACE and repeller probability distribution 143

5.26 Repeller probability distribution and resulting ARPLACE 143

6.1 ARPLACE probability distribution based on CGSP 145

6.2 Visual overview of chapter 6 . 146
6.3 Overview of utility framework . 149
6.4 Motion model for estimating travel time . 153
6.5 Search tree for estimating travel time . 154
6.6 Estimated travel time from robot’s current position 155
6.7 Default evaluation scenario . 156
6.8 Utility distributions for different values of wS 158
6.9 Expected utilities for grasping tasks A) - C) 159
6.10 Utility distributions for different values of wT 160
6.11 Results for experiments with varying wT . 161
6.12 Utility distributions when importance of time is critical 161
6.13 Utility distributions for different initial robot positions 162
6.14 Estimated travel time for different initial robot poses 162
6.15 Results for experiments with varying initial robot pose 163
6.16 5 different initial object poses and corresponding utility distributions 164
6.17 Results for experiments with varying initial object poses 165
6.18 GSP for different initial object poses . 166
6.19 Different robot and cup poses for evaluating average behavior 167
6.20 Comparing ARPLACEUTIL and ARPLACEPROB 167
6.21 Results of comparing ARPLACEUTIL and ARPLACEPROB 168

7.1 Scenario of case study . 170
7.2 Robot enters kitchen . 171
7.3 GSP for grasping from the top with the right arm 173
7.4 Merging ARPLACEs for top and side grasps with the right arm 174
7.5 Merging ARPLACEs for top and side grasps with the left arm 175
7.6 Merging ARPLACEs for right and left arm 176
7.7 Taking obstacles into account . 177
7.8 Computing utility-based ARPLACEs . 178
7.9 Updating ARPLACEs online . 180
7.10 Robot detects a second object . 181
7.11 Utility distributions for grasping the second object 181
7.12 Assigning arms to objects for multi-joint manipulation 183
7.13 Utility distribution for multi-joint manipulation 184
7.14 Navigation trajectory for executing plan A) 185
7.15 Overall utility of different plans . 186

7.16 Detection of an obstacle . 187
7.17 Most promising base positions before and after detecting an obstacle 188
7.18 Overall utility of different plans. 188
7.19 Robot changes belief state about target object’s type 189
7.20 Steps for computing a utility-based ARPLACE 190

8.1 Different robot orientations for grasping a cup 195

A.1 Overview of B21r mobile robot and Assistive Kitchen 197
A.2 B21r robot seen from top . 198
A.3 Coordinate frames of Powercube arms . 199
A.4 DH parameters of Powercube arms . 200
A.5 Illustration of the robot’s software systems 201

List of Algorithms

1 Computing a Generalized Success Model . 59
2 Computing ARPLACE probability distributions 89

XIX

List of Symbols

Symbols related to positions and pose estimations

x, y, and z x-, y-, and z-coordinate
φ, θ, and ψ Roll-, pitch- and yaw-angle
〈x, y〉 2D position
〈x, y, ψ〉 2D pose
〈x, y, z〉 3D position
〈x, y, z, φ, θ, ψ〉 3D pose
The above symbols are used with the following suffixes

◦rob ground truth coordinate/angle of the robot (◦ ∈ {x, y, ψ})
◦obj ground truth coordinate/angle of the object (◦ ∈ {x, y, z, φ, θ, ψ})
Furthermore, we define the following prefixes

∆◦ coordinate/angle with respect to relative feature space
µ◦ mean of the coordinate/angle as estimated by robot
σ◦ standard deviation of coordinate/angle as estimated by robot
Examples

xrob: true position of the robot with respect to the x-axis of the world frame
∆ψobj: true yaw angle of the object with respect to the x-axis of the RFS
µxrob

: robot’s estimation of its base position with respect to the x-axis of the world frame
σ∆ψobj

: robot’s estimated standard deviation of the object’s ψ-angle with respect to the RFS

Symbols related to ARPLACE distributions

(x, y) Grid cell at index x and y
c(x, y) Center position of grid cell (x,y)
f(x, y) Function that maps grid cells to its ARPLACE value
f ∗ max(x,y) f(x, y): Maximum ARPLACE value among all grid cells
(x∗, y∗) arg max(x,y) f(x, y): Grid cell with maximum ARPLACE value
pO Obstacle probability distribution
pO(x, y) Probability that grid cell (x, y) is occupied

XXI

pU(x, y) Probability that grid cell (x, y) is unoccupied
pR Repeller probability distribution
pR(x, y) Probability value of grid cell (x, y) of repeller distribution
p ARPLACE probability distribution
prl ARPLACE probability distribution for grasping two objects at once; obj1

with the right arm and obj2 with the left arm
plr ARPLACE probability distribution for grasping two objects at once; obj1

with the left arm and obj2 with the righ arm
pS(x, y) Basic grasp success probability at grid cell (x, y)

p(x, y) Combined grasp success probability at grid cell (x, y)

wS Importance of success
uS(x, y) Utility of success at grid cell (x, y) (= p(x, y) · uS)
p∗ max(x,y) p(x, y): maximum grasp success probability among all grid cells
(xp∗ , yp∗) arg max(x,y) p(x, y): grid cell with maximum grasp success probability
t(x, y) Estimated travel time to grid cell (x, y)

wT Importance of time
uT (x, y) Utility of time at grid cell (x, y)

t∗ min(x,y) t(x, y): minimum estimated travel time among all grid cells that
have a grasp success probability of more than 0%

(xt∗ , yt∗) arg min(x,y) t(x, y): grid cell with minimum estimated travel time
e(x, y) Consumed energy for performing task from grid cell (x, y)

uE(x, y) Utility of saving energy at grid cell (x, y)

wE Importance of saving energy
u ARPLACE utility distribution
u(x, y) Expected utility at grid cell (x, y)

u∗ max(x,y) u(x, y): maximum utility value among all grid cells
(xu∗ , yu∗) arg max(x,y) u(x, y): grid cell with maximum utility value

List of Abbreviations

ARPLACE Action-Related Place
ARPLACEPROB Action-Related Place based on grasp success probability
ARPLACEUTIL Action-Related Place based on utility
BGSP Basic Grasp Success Probability
CGSP Combined Grasp Success Probability
DOF Degrees Of Freedom
GSM Generalized Success Model
GSP Grasp Success Probability
IK Inverse Kinematics
MCMC Markov Chain Monte Carlo
PDM Point Distribution Model
RFS Relative Feature Space
SLAM Synchronous Localization and Mapping
SVM Support Vector Machine

XXIII

CHAPTER 1

Introduction

In their roadmap for US robotics, Hollerbach et al. (2009) consider robotics as a “key eco-
nomic enabler”. The authors acknowledge industrial robots to “provide increased accuracy
and throughput for particular, repetitive tasks, such as welding, painting, and machining, in
hazardous, high volume manufacturing environments”, but believe that “the applications for
such first generation robotics solutions have proven to be relatively narrow and largely re-
stricted to static indoor environments, due to limitations in the enabling technology”. It is
claimed that second generation robots will be applicable to a whole new range of applications
such as agile manufacturing, logistics, medicine, and healthcare. “Owing to the inexorable
aging of our population, the emergence of such a next generation, robotech industry will even-
tually affect the lives of every American and have enormous economic, social, and political
impact on the future of our nation”. Hollerbach et al. (2009) believe that “human-like dexter-
ous manipulation” is one of the “critical capabilities” for realising second generation robots.
Only robots that are able to physically interact with their environment are able to perform
sophisticated tasks like cooking a meal, cleaning the floor, or setting a table.

Mobile manipulation, however, is one of the problems that are very easy for human people
to perform but hard to reproduce artificially. A human person can interact with its environment
without even consciously thinking about it. But when actually asked how the interaction was
exactly done, then it is hard to articulate this in a comprehensive manner. The problem is
similar to natural language. Human people are able to speak without consciously thinking
about it. However, computers did not yet manage to acquire human speaking skills. So far,
no computer system has passed the Turing test where a human person talks to a computer
without seeing it. If the human person can not tell that the dialog partner is a computer, then
the computer must have really understood the principle of human speech. The Turing test
can be seen as a benchmark for speaking skills. Rosenbaum et al. (2006) adapts this idea to
a Turing test of robot action and proposes it as a benchmark test of motor intelligence. “If

1

CHAPTER 1 Introduction

[Elana] watched a robot dancing and thought it was a human being, she could say the designer
of the dancing robot had captured, and truly understood, the control of dance.”

In a final report on a NSF/NASA workshop on autonomous mobile manipulation, Brock
and Grupen (2005) attribute “significant economical, societal, and scientific importance” to
the challenge of creating “robotic agents capable of performing physical work in unstructured
and open environments”. The workshop participants identified reserach areas such as Mobility,
Representing Objects and Environments, Grasping and Dexterous Manipulation, Perception,
and Human-Robot Interaction among the most important in the context of autonomous mobile
manipulation.

Kemp et al. (2007) present insights from an international RSS workshop about “Manip-
ulation for Human Environments”. Several important lines of research are identified in this
roadmap paper: Perception, Learning, Working with People, Platform Design, and Control.
These topics make mobile manipulation in human environments a research challenge for the
upcoming decades.

Even seemingly simple tasks such as picking up an object from a table requires complex
decision making. To pick up an object the robot must decide where to stand in order to pick up
the object, which hand(s) to use, how to reach for the object, which grasp type to apply, where
to grasp, how much grasp force to apply, how and where to hold the object, how to lift the
object, and how much force to apply to lift it. The decision problems are even more complex
because many decisions depend on task context, which requires the robot to take many factors
into account in order to achieve the best possible performance.

1.1 Problem Statement

The decision problem that we will examine in this thesis is to which base positions robot
should move in order to perform manipulation actions. Figure 1.1 depicts an exemplary scen-
raio where a B21r mobile robot has to grasp a cup on a table.

A trivial approach to solve this task is to go to a position such that the target of manipulation
is well in reach. However, a more careful look at the question raises some serious issues. What
is a good place in the context of an intended manipulation action? Does well-in-reach always
imply that the target object can really be reached given the hardware and control software of
the robot? What if hardware parameters such as friction in the joints change over time? How
can the robot take into account uncertainties about its self-localization and the estimated posi-
tion of the target object? And finally, can a robot that is able to perform the task in a European
kitchen be successful in a Japanese kitchen? Simply navigating to a location that is close to

2

SECTION 1.1 Problem Statement

FIGURE 1.1 A reach and grasp trajectory performed by the B21r TUM kitchen assistant during
a public demonstration. Left: Robot navigates to table so that the cup is well in reach. Right:
Arm reaches for cup. Note that the operator is holding a camera, not a remote control.

the target object is not enough because the robot not only has to account for its navigation
and manipulation skills, but also requires knowledge of the interactions and coupling between
them.

When the vision system revises its hypothesis for the target object’s pose, then the optimal
base position may change. When a second object is detected, then grasping both objects at
once may save time. And when an obstacle is detected that blocks promising base positions,
then alternative solutions have to be found. Moreover, robots have to deal with the problem
that their skills may change over time. Motors may loose power due to aging, joint friction
may increase over time, and hardware as well as software components may be updated.

1.1.1 Cognitive Motor Control

For humans all these decisions and online-adjustments seem to be simple. A human person can
interact with its environment without even consciously thinking about it. Trying to understand
the human’s manipulation system may help to advance robotic manipulation skills. Jordan and
Wolpert (1999) identify four important areas of human motor control. Motor planning, the
representation of motion with internal models, state estimation, and using multiple internal
models for motor control. They claim that “it is important to emphasize that an internal model
is a form of knowledge about the environment”. As we shall see later, Generalized Success
Models that capture promising base positions for manipulating objects are internal models for
robot positioning.

According to Wolpert and Kawato (1998) the internal model of the human motion system
consists of multiple paired forward and inverse models. Inverse models are used for controlling

3

CHAPTER 1 Introduction

motions and forward models are used to predict the outcome of motor control inputs. Forward
and inverse models are tightly coupled in the acquisition (motor learning) and execution phase.
This model suggests that human motor control is a closed loop system and that action and
prediction is tightly coupled.

Shadmehr and Mussa-Ivaldi (1994) investigated how the central nervous system learns
reaching movements in the presence of externally imposed forces. They found that subjects
initially perform trajectories that differ from their usual paths and velocity profiles. But over
time the subjects adapted to the force fields and returned to natural movement. Interesting is
that “subjects modeled the force field by a combination of computational elements” and Shad-
mehr and Mussa-Ivaldi (1994) explicitly state that “adaptation was not via composition of a
look-up table”. This also speaks in favor of multiple forward and inverse models.

In robotics, a system that consists of a closed perception-action loop is the one presented
by Katz and Brock (2008). It deals with the problem of building kinematic models of a priori
unknown objects. Therefore, the robot watches and analyzes its interactions with the world and
is able to reveal information that would otherwise remain hidden. They call their approach for
coupling perception and action interactive perception.

1.1.2 Bayesian Modeling and Bayesian Brain

Bayesian models are a current technique to understand human intelligence in terms of rational
probabilistic inference. Griffiths et al. (2008) present a thorough overview of this topic and
study the question why people are so good in domains such as how the mind infers the intrinsic
properties of a object, or how children infer the rules of grammar. “In each of these cases, the
available data severely underconstrain the inferences that people make, and the best the mind
can do is to make a good guess, guided - from a Bayesian standpoint - by prior probabilities
about which world structures are most likely a priori”.

Another concept that is closely related to bayesian modeling is the bayesian brain. Knill
and Pouget (2004) broadly cover this topic and present the bayesian coding hypothesis: “the
brain represents sensory information probabilistically, in the form of probability distributions”.
This seems to be a promising concept for finding base positions for manipulation, as well.
Compute the probability that the manipulation action will succeed from certain base positions
and choose the one that maximizes this grasp success probability.

The research areas of cognitive motor control, bayesian modeling and bayesian brain sug-
gest that the human’s ability to robustly act in unconstrained environments is grounded in sev-
eral abilities. Among them are the abilities to take state estimation uncertainty into account, to
dynamically parameterize actions by dynamically adapting to the context of the current task,

4

SECTION 1.1 Problem Statement

and to be able to make elaborate decisions even if the the task is underconstrained. These
findings suggest that pre-programmed solutions will not enable robots to autonomously act in
unconstrained environments.

The goal is to develop compact control programs that are able to handle the process
of complex decision making and can adapt to complex and changing environments in a
natural and cognitive way.

1.1.3 ARPLACEs as Cognitive Approach to find Manipulation Places

In this thesis we present an example of such control programs, namely finding promising
base positions for robots that want to perform manipulation tasks. We call such promising
base positions places or manipulation places. Manipulation places are represented by Action-

Related Places (ARPLACEs). The following Lisp code is the robot’s internal representation of
a place description. It specifies an entitity of the category ARPLACE for successfully picking
up an object.

(the ARPLACE

(task (a task (task-action pick-up)

(objectActedOn (a object on table)))))

This specification of a manipulation place is abstract and symbolic but not yet effective as it
does not tell where the robot should exactly position itself in order to perform the pick up task.
Instead of inferring the right position for picking up a target object and setting the respective
parameter, our robot control system instantiates an ARPLACE for this task: the position for
picking up the object. Having the respective concept instantiation represented explicitly during
the course of action enables the robot to reconsider and reevaluate the decision whenever new
evidence arrives.

But how is an ARPLACE represented? We considered grasp success probability to be
appropriate, which assigns to every base position the probability with which the manipulation
action will succeed when it is performed from there. To illustrate this point, consider the
scenario depicted in Figure 1.2, in which the robot has to pick up cups from a table.

Consider the place where the robot should position itself in order to pick up the cups as an
ARPLACE. When entering the room the robot sees a cup on the table but can only localize it
inaccurately and therefore the specification of the place from where to pick up the object is
uncertain (step 1). As the robot moves closer, its position estimate of the cup becomes more
precise and therefore the place becomes better defined (indicated by deeper green in step 2).

5

CHAPTER 1 Introduction

Step Scene ARPLACE

1

2

3

4

FIGURE 1.2 The dynamic update of an Action-Related Place in which the robot approaches
a table in order to pick up a cup. The images on the right side visualize the robot’s cur-
rent information about its environment. The black circles depict uncertainty of the robot’s
estimations about its own position (black circle in blue robot shape), and about the cup po-
sitions (black circles around cups). Bigger circles represent higher uncertainty. The green
area is the ARPLACE. Deeper green marks higher grasp success probability.

Upon noticing a second cup on the table in step 3, the robot checks whether there is a ma-
nipulation place from which it can reach both cups, and updates the ARPLACE accordingly.
In the final step, the localization of the second cup becomes more precise and therefore the
manipulation place is better defined (deeper green). This scenario shows that ARPLACEs pro-
vide context-adapted manipulation places throughout the episode, and enable online updating
of these places.

1.2 Scientific Contributions

This dissertation thesis presents the framework of Action-Related Places. ARPLACEs solve
the problem of finding optimal places for performing subsequent manipulation actions. They

6

SECTION 1.2 Scientific Contributions

are therefore relevant to researchers in the robotics community that perform mobile manipu-
lation. The main contributions of the framework of Action-Related Places are as follows.

1.2.1 Representation of Places for Successful Manipulation

Good manipulation places significantly depend on the skills of a robot such as the robot’s
kinematics, its controllers, as well as motion planning systems that are used. We propose
Generalized Success Models as a compact and precise internal model of manipulation places
that explicitly takes the robot’s hardware skills into account. Generalized Success Models can
be seen as compiled knowledge of successful manipulation places according to the robot’s
skills. An important aspect of Generalized Success Models is that the robot is treated as a
black box, so that algorithms and control routines that are running on the robot are compiled
into the Generalized Success Model.

Online, successful manipulation places are computed by instantiating Generalized Success
Models and the result is represented in an Action-Related Place. Given a table and an object
that is positioned on the table, an Action-Related Place is the set of pairs 〈pos, p〉, where pos

is the robot’s base position relative to the table, and p is the predicted success probability for
grasping the object from base position pos. By maximizing p, optimal manipulation places can
be found. Therefore, Action-Related Places represent places from where the current manip-
ulation task is estimated to be successful. From a bayesian standpoint ARPLACE probability
distributions are closely related to the way of human decision making.

1.2.2 Learning a Model of Places for Successful Manipulation

Generalized Success Models are learned through experience-based learning, just as humans
develop internal models. In simulation, the robot navigates to many different base positions
and tries to grasp target objects from there. Support vector machines are used to generalize
over the training data and point distribution models are used to learn a compact, yet precise
model of successful manipulation places. The approach of experience-based learning is able
to capture robot skills that are hard to discover and represent in analytical modeling. It is less
error-prone, too.

There are several advantages of using point distribution models as the basis for Generalized
Success Models. First, point distribution models are very compact with approximately 1800
bytes. Second, they can be queried very quickly with just 40ms on a current laptop computer.
Fast computation time is critical in order to enable least commitment planning. Third, it is
possible to take state estimation uncertainties of the robot into account.

7

CHAPTER 1 Introduction

1.2.3 Online-Reasoning with Action-Related Places

Having explicit representations of ARPLACEs does not only tell the robot where to go in order
to pick up an object. It also enables other inferences. For example, it tells the robot the optimal

manipulation place, which is the global maximum of the ARPLACE probability distribution.
Another application is to determine whether the current position of the robot is good enough
or repositioning is necessary. In situations where the robot has to consider additional task
constraints pertaining to execution time or energy consumption, these task goals are unified to
utility values.

Usually, a robot has no ground truth data and must explore its environment with its per-
ception systems. Sensor information, however, is noisy which leads to uncertainty of the per-
ception systems into the world’s state. ARPLACEs are able to take uncertainty of the vision
system into the object’s pose and uncertainty of the localization system into the robot’s base
position into account. This allows for more robust manipulation places when state estimation
uncertainty is high.

Although sensor data is noisy, state estimation uncertainty tends to decrease as the robot
moves closer or new sensor data comes in. Action-Related Places can be updated almost in-
stantaneously and are therefore able to take incremental sensor information into account. This
enables a robot to start moving with a good enough guess about promising manipulation places
without committing to a particular place. Thus, the decision about the final manipulation place
can be delayed until maximal sensor information is available.

Planning is also supported by the ARPLACE framework. Transformational planning can
be used to optimize places when multiple manipulation tasks can be performed at once.
ARPLACEs do not only enable the robot to reason about multiple manipulation tasks but also
to reason about sequences of actions. The robot is able to compute a place where an object can
be picked up and put down at the same time.

Moreover, ARPLACEs are a valuable source of information for high-level planning systems.
In case grasp success probability is low and state estimation uncertainty is high, additional
exploration may lead to a more exact determination of manipulation places. If grasp success
probability is low and state estimation uncertainty is low, then the task seems to be challenging
and the robot may be better off by either aborting task execution or asking a human for help.

1.2.4 Evaluations and Publications

The validity of the above claims are evaluated in the Gazebo simulator. It is shown that moving
to a base position that is proposed by the framework of Action-Related Places results in ma-

8

SECTION 1.2 Scientific Contributions

nipulation places that are superior to other place-finding strategies in a statistically significant
manner. Moreover, it is shown that the statistical significance of superiority increases as state
estimation uncertainty increases. Applying transformational planning reduced the average ex-
ecution time from 48 to 32 seconds when multiple objects had to be grasped at once.

Action-Related Places were implemented on the B21r real robot and evaluated as described
by Beetz et al. (2010). However, it was not possible to prove superiority of manipulation places
in a statistically significant manner. The reason is that the performance of Action-Related
Places can not be measured in isolation, but has to be measured with respect to the overall
performance of the robot in manipulation tasks where many systems such as localization,
navigation, arm control, and computer vision interact. While it is possible to implement robot
systems that robustly perform mobile manipulation in simulation, this task is not yet solved in
the real world.

A case study provides a hands-on presentation of how ARPLACEs are computed in complex
scenarios. It further gives an intuition of how ARPLACEs change under varying environmental
settings. Research on Action-Related Places resulted in several peer-reviewed publications
(Beetz et al., 2010; Stulp et al., 2009b,a; Fedrizzi et al., 2009; Stulp et al., 2009c).

Figure 1.3 depicts three robots that are used in our lab. All three are mobile manipulation
platforms whose manipulation skills can significantly benefit from the framework of Action-
Related Places. The work within this thesis was performed on the B21r robot.

FIGURE 1.3 Left: B21r mobile robot with Powercube arms. Center: TUM-Rosie. A Kuka-
based mobile manipulation platform. Right: PR2 manipulating milk and Frosties.

9

CHAPTER 1 Introduction

1.3 Outline of the Thesis

The remainder of this dissertation thesis is structured as follows.

Chapter 2. Preliminaries: Lays the groundwork for the framework of Action-Related
Places. A manipulation scenario where a robot has to clean a table is introduced in section
2.1. Several pitfalls for computing optimal manipulation places and how these pitfalls are
addressed by the ARPLACE framework are described in an informal way. Section 2.2 de-
scribes interfaces of the ARPLACE framework to other robot subsystems and the interplay of
ARPLACE components. Section 2.3 discusses related work.

Chapter 3. Learning Generalized Success Models: Presents Generalized Success Models
which are a precise, yet compact model of promising manipulation places. An introduction
in section 3.1 specifies the problem statement and discusses related work. We describe how
training data is gathered in section 3.2, how support vector machines transform the data into
classification boundaries in section 3.3, and how point distribution models generalize over
classification boundaries in section 3.4. Section 3.5 addresses the question of how to speed
up the time for gathering training data, and section 3.6 explains how we can generalize the
learning process so that Generalized Success Models that were learned for grasping a certain
object can be applied to grasping other objects.

Chapter 4. Action-Related Places: After describing related work in section 4.1 we show
how Generalized Success Models are used to compute Action-Related Places in section 4.2.
An important part of this section is how the robot accounts for state estimation uncertainties
that arise from its localization and vision system. A performance analysis evaluates how fast
ARPLACEs can be computed. We vary all task-relevant parameters in section 4.3 and compute
corresponding ARPLACEs in order to illustrate how manipulation places change for different
manipulation tasks. In section 4.4 we explain that ARPLACEs provide valuable information
for high-level planning systems and how this information can be used. Section 4.5 shows that
manipulation places that are proposed by the ARPLACE framework lead to a higher probabil-
ity of successful manipulation than places that are proposed by an optimal ad-hoc approach.

Chapter 5. Refining of Action-Related Places: Presents methods that improves the gen-
erality of Action-Related Places towards many directions. Section 5.1 discusses related work.
Section 5.2 describes how ARPLACEs are computed for grasping objects at different grasp
points and from different approach directions. Section 5.3 introduces multi-modal ARPLACEs
that can emerge when the target object is reachable from multiple table edges. How ARPLACEs

10

SECTION 1.3 Outline of the Thesis

are computed for grasping with the left arm when there is only a Generalized Success Model
for grasping with the right arm is explained in section 5.4. Section 5.5 shows how to take ob-
stacles into account, and 5.6 presents how to grasp multiple objects at once. How uncertainty
into the target object’s type is taken into account is described in 5.7, and 5.8 introduces the
repeller probability distribution for integrating unexpected experience such as failing to grasp
an object when the ARPLACE predicted the grasp to succeed with high probability.

Chapter 6. Utility Framework for Action-Related Places: Presents a utility framework
that enables the ARPLACE framework to be applied to a broad range of scenarios with many,
potentially conflicting task goals. Section 6.1 describes related work, and section 6.2 intro-
duces the utility framework. The utility heuristic is created online by a high-level planner
in order to precisely reflect the importance of different constraints for the task at hand. An
evaluation in section 6.3 concludes the chapter.

Chapter 7 Case Study: Presents a hands-on analysis of the ARPLACE framework in a
complex scenario. The scenario is introduced in section 7.1, and section 7.2 describes the
robot’s actions until it finds the first target object. Section 7.3 describes how a manipulation
place for the particular situation is computed, and section 7.4 shows how the ARPLACE is
updated as new sensor data comes in. How the ARPLACE changes when the robot detects a
second object is analyzed in section 7.5, and how the robot reacts when suddenly detecting an
obstacle that blocks the most promising manipulation places is described in section 7.6.

Chapter 8 Conclusion and Future Directions: We conclude with a summary of this
dissertation thesis and a discussion of future work.

11

CHAPTER 2

Preliminaries

This chapter lays the groundwork for the framework of Action-Related Places. In section
2.1 we introduce a manipulation scenario where a robot has to clean a kitchen table and the
problems that arise during task execution. We further give an intuition of how Action-Related
Places can help to solve these problems. We proceed by giving an overview of the system
architecture of the ARPLACE framework in section 2.2. Related work is discussed in section
2.3.

2.1 Manipulation Scenario

Imagine a scenario as depicted in the left image of Figure 2.1. A mobile robot has to “clean
the kitchen table” after its owners finished breakfast. We see that there are two target objects
on the kitchen table: a glass and a cup.

M a x p ro b _ g s p r

Kitchen Table

TV Table

Worktable

Glass

Cup

Dishwasher

Stove

Fridge

Small
Cupboard

FIGURE 2.1 Left: Scenario before robot enters the kitchen. Right: The robot’s internal repre-
sentation of the scenario according to its current knowledge.

The robot knows the position of the dish washer, because the robot remembers the dish-
washer to be next to the stove and the fridge, and the position of all these objects remained

13

CHAPTER 2 Preliminaries

static in the past. The robot however is not completely certain where the kitchen table is lo-
cated. Although the robot has a good guess, it experienced that the kitchen table’s position
changes several centimeters from time to time. Additionally, the robot does not know how
many and which objects are located on the kitchen table. The right image of Figure 2.1 shows
the robot’s internal representation of the scenario according to its current knowledge.

The robot uses his knowledge base to infer that “cleaning the kitchen table” means to pick
up all objects that are located on the table and put them into the dishwasher. The robot divides
the task of “clean the kitchen table” into a plan with several subtasks.

1. Find the kitchen table

2. Find target objects on the kitchen table

3. Grasp target objects and put them into the dishwasher

As the robot enters the kitchen, new sensor data arrives. The robot is able to detect several
objects, including the kitchen table and an object (obj1) that is located on it. The vision system
predicts obj1 to be a glass, because the detected shape matches with cups and glasses. But
because no handle is detected, the probability of obj1 being a glass is higher. The updated
internal state of the robot is depicted in the left image of Figure 2.2. Regarding the above plan,
the robot now has to pick up the target object and put it into the dishwasher. But what is a good
base position for grasping? Especially when taking into account that the robot prefers to grasp
glasses by approaching them with the gripper coming from the top. Is it more promising to
use the left or the right arm? A naive approach would consider the arm length of the robot and
propose any base position from where the target object is within reach. Such base positions
are colored green in the left image of Figure 2.2. This raises another issue. From which table
edge should the grasp be performed?

The boolean estimation of promising base positions is very coarse. Manipulation might not
succeed from all base positions within green regions, although it is kinematically possible.
This can have several reasons. Motion planning systems might not find satisfying reaching
trajectories even if there is one. Controllers might wind up in singularities or local minima
while executing a reaching trajectory. Perception systems might not be able to satisfyingly
locate the target object, or the robot moves to a base position which he believes is in a red
region but because of localization uncertainties the robot’s real base position is not.

The framework of Action-Related Places is able to provide a more detailed analysis of
promising manipulation places that is based on grasp success probability. Action-Related
Places explicitly take the robot’s skills into account such as manipulator kinematics, the con-
trollers it uses, the parameterization of these controllers, as well as uncertainties that arise

14

SECTION 2.1 Manipulation Scenario

FIGURE 2.2 Left: Robot enters kitchen and discovers the kitchen table and an object on top of
it. The cyan squares visualize the robot’s uncertainty into its base position (cyan square in
robot) and into the target object’s pose (cyan square around object). The bigger the square,
the higher the uncertainty. Green regions mark an ad-hoc approximation of the area from
where the object is probably within reach. Right: Grasp success probability for grasping
the object. (xp∗ , yp∗) is the grid cell with maximum grasp success probability. Isobars are
plotted at levels of 20% and 50% grasp success probability.

during state estimation. This is achieved by learning a precise model of successful manipula-
tion places called Generalized Success Model.

Generalized Success Models are used online to compute Action-Related Places (ARPLACEs).
Space is discretized into grid cells and for every grid cell the Generalized Success Model is
used to estimate the probability that the robot is able to successfully perform the manipulation
action when it is executed from within this grid cell. The right image of Figure 2.2 depicts
an ARPLACE probability distribution. (xp∗ , yp∗) represents the grid cell that maximizes grasp
success probability. Isobars would be plotted at levels of 20%, 50%, and 80% grasp success
probability. Considering that only the 20% and 50% isobars are drawn indicates that in this
case the most promising base positions have a grasp success probability of more than 50% and
less than 80%. Please note that it is not the fault of the ARPLACE framework that there are
no manipulation places with higher grasp success probability. The problem is that the robot
is far away from the target object, making it hard to predict its pose. However, if the object’s
pose is highly uncertain it is impossible to be sure about good manipulation places, because
the object’s true pose might be far away from the estimated one. Therefore, the ARPLACE

framework computes optimal manipulation places for given state estimations, but maximum
grasp success probability is limited by state estimation quality.

Although grasp success probability in our example is not particularly high, it is clear that the
robot should perform the grasping action from the left table side. This is enough information
to start moving. While moving towards the left table side, new sensor data comes in and enable

15

CHAPTER 2 Preliminaries

the vision system to estimate the object’s pose with higher accuracy. This can be seen in the left
image of Figure 2.3, where lower state estimation uncertainty is reflected by a smaller cyan
square around the cup. As a result the ARPLACE probability distribution gets more certain
about good manipulation places and maximum grasp success probability p∗ approaches 100%.

FIGURE 2.3 Left: ARPLACEs get updated as new sensor data arrives. Center: The robot’s nav-
igation trajectory in order to execute plan A. Each path is annotated with the corresponding
plan step in brackets and the estimated travel time for this path segment. Right: Estimated
travel time from the robot’s current base position to every grid cell. Green indicates low
travel time, white and red successively longer times. Unreachable cells are black.

Instead of committing to a specific base position in advance, the ARPLACE framework
enables least-commitment planning because a whole range of base positions are predicted
to be successful or at least probable. A least-commitment implementation enables the robot
to start acting with a good enough guess, while delaying the final decision until it has to be
made. This assures that maximum sensor information is available when actually committing to
a goal position. The principle of least commitment is especially powerful in real environments,
where complete information that is required to compute optimal goal positions is not available.
Even if the environment is completely observable, dynamic properties can make an optimal,
pre-planned base position suboptimal or inaccessible.

As the robot continues moving, it recognizes a second object (obj2) on the kitchen table.
This introduces new possibilities of cleaning the table. The following plans all achieve the
goal of “clean the kitchen table”.

A) Grasp obj1 | Put obj1 into dishwasher | Grasp obj2 | Put obj2 into dishwasher.

B) Grasp obj2 | Put obj2 into dishwasher | Grasp obj1 | Put obj1 into dishwasher.

C) Grasp obj1 | Grasp obj2 with other arm | Put obj1 and obj2 into dishwasher.

D) Grasp obj2 | Grasp obj1 with other arm | Put obj1 and obj2 into dishwasher.

E) Grasp obj1 and obj2 from same position | Put obj1 and obj2 into dishwasher.

16

SECTION 2.1 Manipulation Scenario

The robot’s navigation trajectory in order to perform plan A) is depicted in the center image
of Figure 2.3. Finding the optimal plan is not straightforward. When only taking grasp success
probability of the next manipulation action into account, then the robot will never perform
plan E). The reason is that grasping just one object, but from the perfect place always results
in higher grasp success probability. Plan E) leads to faster task execution, but at the drawback
of moving to a base position that is not optimally for grasping either obj1 or obj2. In order to
find the optimal plan for the current situation, the robot has to know about the task context
and trade task constraints such as successful grasping, execution time, or energy consumption.
The ARPLACE framework optimizes manipulation places by using decision theory and elab-
orating the concept of grasp success probability to grasp utility. The right image of Figure 2.3
visualizes the robot’s estimated travel time. Space is discretized into the same grid cells as for
estimating grasp success probability. A motion model is used for estimating travel time from
the robot’s current base position to each grid cell. The grasp utility of a grid cell is computed
by merging its estimated grasp success probability and estimated travel time.

Figure 2.4 depicts utility distributions for grasping obj1 (left plot), grasping obj2 (center
plot), and grasping both objects at once (right plot). To distinguish ARPLACEs that are based
on grasp success probability and ARPLACEs that are based on grasp utility, grid cells with
high grasp utility are colored blue instead of green. It can be seen that the best manipulation
places for grasping both objects at once are between the objects. Furthermore, the ARPLACE

framework found out that when grasping both objects at once, then obj1 should be grasped
with the right arm and obj2 should be grasped with the left arm.

(xuobj1, yuobj1)* * (xuobj2, yuobj2)* * (xuobj12, yuobj12)* *

FIGURE 2.4 Left: ARPLACE utility distribution for grasping obj1. (xu∗obj1
, yu∗obj1

) is the grid
cell with maximum grasp utility for grasping obj1. Center: ARPLACE utility distribution for
grasping obj2. Right: ARPLACE utility distribution for grasping obj1 with the right hand
and obj2 with the left hand. Blue indicates high grasp utility, white and red successively
lower utility.

The plots in Figure 2.4 depict grasp utility for the next action. In this case, moving to
(xu∗obj1

, yu∗obj1
) and grasping obj1 from there is the optimal solution because it has the high-

17

CHAPTER 2 Preliminaries

est utility among all three utility distributions which is indicated by the dark blue color and
the isobars in the plots. However, when computing overall plan utility considering all plan
steps, then plan E is optimal. Mainly because execution time is significantly lower. Plan A and
plan B, for example, require twice as much time. That is why the new goal position is set to
(xu∗obj12

, yu∗obj12
) for grasping obj1 and obj2 at once..

As the robot moves around the table, it discovers a chair that was previously hidden. Unfor-
tunately, the chair blocks the current goal position. An open-loop system that chooses the goal
position in advance may bump into the chair. Least commitment planning enables the robot to
refine its decision. The updated ARPLACE utility distributions are depicted in Figure 2.5. The
utility distributions show that grasping both objects at once is not promising any more. The
robot decides to execute plan D): start with grasping obj2 from base position (xu∗obj2

, yu∗obj2
),

then grasp obj1 from base position (xu∗obj1
, yu∗obj1

), and then bring both objects to the dish-
washer.

(xuobj1, yuobj1)* *
(xuobj2, yuobj2)* *

(xuobj12, yuobj12)* *

FIGURE 2.5 ARPLACE utility distributions after the robot discovered the chair. Utility distri-
bution for grasping obj1 (left plot), grasping obj2 (center plot), and grasping both objects at
once (right plot).

After the robot grasped obj2 it moves towards (xu∗obj1
, yu∗obj1

). After finishing the last turning
motion, the vision system detects that obj1 has a handle, which was previously hidden by the
object’s body. The robot realizes that obj1 is a cup and not a glass. Cups however are not
grasped like glasses. Glasses are grasped by approaching them from the top, while cups are
grasped at their handle by approaching them from the side. Base positioning also depends
on the grasping motion the robot executes. Figure 2.6 depicts ARPLACE utility distributions
before the robot detected the handle on the left image, and after the robot detected the handle
on the right image. It can be seen that the ARPLACE for grasping from the side is smaller and
has lower maximum utility. The reason is that grasping from the side puts additional kinematic
constraints on the manipulator, like endeffector orientation.

This concludes a short glimpse on how the ARPLACE framework finds optimal manipula-

18

SECTION 2.2 System Overview

approach
vector

(xuobj1, yuobj1)* * (xuobj1, yuobj1)'* *

FIGURE 2.6 Left: Utility distribution for grasping a glass. Right: Utility distribution after the
robot discovered the handle and realized that obj1 is a cup that has to be grasped from the
side. The arrow visualizes from which direction the gripper has to approach the handle.

tion places. We will revisite the scenario in chapter 7 and examine it in greater detail.

2.2 System Overview

Figure 2.7 depicts how the ARPLACE framework is embedded within a robot system. The
ARPLACE framework receives data from three subsystems. The localization system provides
estimations about the robot’s base position, which is a 2D pose 〈xrob, yrob, ψrob〉 that repre-
sents the robot’s mean base position and angular orientation with respect to the world frame.
The localization system further provides a 3×3 covariance matrix that reflects the uncertainty
of the localization system into the estimated mean base position. The vision system provides
estimations about poses of target objects. Each pose estimation is represented by a 3D pose
〈xobj, yobj, zobj, φobj, θobj, ψobj〉 that represents the object’s mean pose and orientation with re-
spect to the world frame. A 6 × 6 covariance matrix reflects the uncertainty of the vision
system into the estimated mean pose. A high-level planning system is aware of the task con-
text and knows whether it is mandatory to perform a task as quickly as possible, or whether
manipulation quality is the primary goal. If new sensor data arrives, all mentioned subsystems
immediately update their state estimation and forward it to the ARPLACE framework.

The online part of the ARPLACE framework iteratively receives the above mentioned input
parameters and uses Generalized Success Models in oder to compute ARPLACEs. The opti-
mal manipulation place is the one that maximizes grasp success probability or grasp utility
within the ARPLACE distribution. The optimal manipulation place is forwarded to the navi-

gation system as the current goal position. The ARPLACE distribution is further transmitted
to a transformational planning system and the high-level planner. The transformational plan-
ning system is able to further analyse the ARPLACE distribution. For example, it can decide

19

CHAPTER 2 Preliminaries

whether it is preferable to move towards a base position that enables the robot to grasp mul-
tiple objects at once. If this is the case, then the transformational planning system transmits
the new goal pose to the navigation system and overwrites the place that was proposed by the
ARPLACE framework. The high-level planning system uses the ARPLACE distribution as a
source of information for being able to reason about manipulation tasks. If, for example, the
ARPLACE distribution does not contain promising manipulation places, this can have several
reasons. If the robot is currently uncertain about its base position or about the target object’s
pose, then additional exploration might lead to an improved understanding of the environment,
and hence better manipulation places will be found. However, if the robot is already certain
about its environment, then the task is probably difficult and the robot may be better off by
either aborting the task, or asking a human person for help.

FIGURE 2.7 Overview of how the ARPLACE framework is embedded in a robot system. Red
rectangles refer to robot subsystems. The ARPLACE framework is a subsystem as well, but
colored green to visualize that it is in the center of interest. Blue rectangles refer to data that
is transmitted from one subsystem to another. Arrows visualize the direction of information
flow.

An overview of the ARPLACE framework is depicted in Figure 2.8. It can be divided into an
offline and an online part. The offline part develops models of promising manipulation places
for grasping different types of objects. This is done by executing navigate-reach-grasp action
sequences in simulation and analyzing the resulting data through experience-based learning.
The learned model is called Generalized Success Model, which is a Point Distribution Model
that is a precise, yet compact model of successful base positions. The approach of experience-

20

SECTION 2.2 System Overview

based learning ensures that the robot’s skills, such as manipulator kinematics, motion con-
trollers, and the parameterization of these motion controllers are implicitly compiled into the
Generalized Success Model. Further details are provided in chapter 3.

FIGURE 2.8 Overview of the ARPLACE framework. The overview depicts computational
components of the offline part (yellow area) and the online part (orange area), and how
they are related to each other. Components in the pink area are described in chapter 3,
components in the green area are described in chapter 4, and components in the blue and
red area are described in chapters 5 and 6. Red rectangles indicate subsystem that do not
belong to the ARPLACE framework, but provide required information.

The online part is for finding the optimal base position from where the manipulation action
can be performed as easily as possible. The robot probabilistically estimates its base position

21

CHAPTER 2 Preliminaries

and the poses of target objects. A Monte Carlo simulation approach is used to sample object
poses, and to query the Generalized Success Model. The result is a probabilistic representation
of promising manipulation places. The next step is to take the robot’s uncertainty into its base
position into account by performing probabilistic conditioning. The result is an ARPLACE that
maps base positions to the probability that the subsequent manipulation action will succeed,
when it is performed from this base position. We call such Action-Related Places ARPLACEs
that are based on (basic) grasp success probability. Further information on how ARPLACEs are
computed online by querying the Generalized Success Model and considering state estimation
uncertainties is described in chapter 4.

There are many examples, where one ARPLACE is not enough. When grasping a single
object, it has to be decided which arm to use. When there are several target objects, the ques-
tion emerges if multiple objects should be grasped at once. If this is the case, then it has to be
decided which object to grasp with which arm. In case objects can be grasped from multiple
table edges, a multimodal ARPLACE emerges. When the robot is uncertain about the type of
an object, multiple ARPLACEs have to be computed in order to account for the different types
of grasps that may be required. In all these examples, the ARPLACE has to be refined by com-
puting multiple ARPLACE probability distributions and merging them into a new ARPLACE

probability distribution that represents all these aspects. A special type of ARPLACE refine-
ment is to consider obstacles. While the above operations are optional in order to find better
manipulation places, taking obstacles into account is mandatory to avoid the robot being dam-
aged. The ARPLACE probability distribution that results after taking all additional aspects into
account is said to be based on (combined) grasp success probability. Refining Action-Related
Places is explained in chapter 5.

However, grasp success may not be the robot’s only concern. In the presence of humans,
the robot should prefer to stay within the humans’ field of view. If a task is urgent, performing
the task as quickly as possible has priority. A utility framework generalizes the framework of
Action-Related Places to take all, potentially conflicting task goals into account, and makes
it applicable to a broader range of tasks and goals. The utilities we consider here are travel
time and utility of successful grasping. Travel time is estimated by applying classical search
techniques in combination with a motion model that is tailored towards the robot’s navigation
system. The importance of saving time and utility of success are evaluated by a high-level
planning system according to the robot’s current believe state, current task constraints, and
the current task context. Together with the ARPLACE based on combined success probabil-
ity the ARPLACE framework computes a utility-based ARPLACE. The base position with
maximum utility is proposed as the goal position for navigation. The utility framework for

22

SECTION 2.3 Related Work

Action-Related Places is explained in 6.

The above computations are repeated when the localization system, vision system, or high-
level planner provide new data. Instead of committing to a manipulation place in advance, the
ARPLACE framework iteratively refines ARPLACE distributions, leading to more elaborate
suggestions of promising manipulation places.

2.3 Related Work

There are many research fields that partly address the mobile manipulation problem such as
manipulator kinematics and dynamics, motion and manipulation planning, as well as control of
mobile manipulators. What makes mobile manipulation particularly challenging is that fields
that seem to be unrelated to mobile manipulation must be considered as well. Perception and
computer vision are necessary for a robot to find target objects, locomotion, localization and
mapping is required so that the robot can move to a position where this object is within reach,
and AI planning techniques are indispensable for obtaining a broader picture of the task in
order to coordinate all subsystems. As described in the last section, the ARPLACE framework
especially relies on data from the localization subsystem, vision subsystem, and the high-level
planner.

To sum up, mobile manipulation is only possible if all required subsystems sturdily perform
their task in a changing, partially observable environment where the robot system has to meet
several constraints such as dynamic or real-time constraints. And even if all these precondi-
tions are met a robot will not be able to successfully perform manipulation tasks if its design
is poor, so that the repertoire of motions is limited by the robot’s hardware.

In this section we present related work that is required to build robot systems that are able
to autonomously perform manipulation tasks. A thorough overview of the field of robotics is
given by Siciliano and Khatib (2008).

2.3.1 Kinematics and Dynamics

Robot kinematics studies the motion of robots, especially robot manipulators. Classic text-
books in this field were written by Craig (1986) and Sciavicco and Siciliano (2000). The
foundational convention used for studying robot kinematics was introduced by Denavit and
Hartenberg (1955). In a kinematic analysis, the position, velocity, and acceleration of links
are calculated. Forward kinematics is used to compute the endeffector pose in 3D space when
all joint angles are given, and to infer endeffector movements from joint angle movements

23

CHAPTER 2 Preliminaries

(Orin and Schrader, 1984). Inverse kinematics (IK) assigns an angular configuration to every
joint in order to bring the endeffector to a desired goal pose as described by Pieper (1968)
and Manocha and Canny (1992). Paul and Zhang (1984) showed how inverse instantanious
kinematics is used for computing smooth trajectories from an initial to a goal configuration.
Kinematics made it possible to develop concepts such as the dextrous workspace of a manip-
ulator that was introduced by Waldron and Kumar (1980). Kinematics was also fundamental
to find efficient manipulator designs as described by Vijakumar et al. (1986) and Tsai (1999).

The field of dynamics examines the relation between forces and motions. Featherstone and
Orin (2000) applied inverse dynamics of rigid bodies to the problem of calculating actuator
forces that are required to create a desired effector acceleration. This knowledge is important
for designing motor controllers that are able to track desired trajectories. Knowledge in the
fields of inverse kinematics and inverse dynamics were particularly important to make fac-
tory manipulators become a valuable aid in manufacturing from early hydraulically actuated
Unimation platforms (Nof, 1999) to current light weight arms with advanced force-control
abilities (Hirzinger et al., 2002).

In industrial manufacturing, however, the manipulator is mounted stationary in an environ-
ment that is well under control. The problem of mobile manipulation in everyday environ-
ments is more difficult, because mobile robots have to move around in an environment that is
complex, dynamic, and partially observable.

2.3.2 Locomotion, Localization, and Mapping

A motion system enables mobile robots to move around and towards target objects. This
makes mobile robots much more flexible than factory manipulators where the objects have
to be brought to the robot. Different types of robot locomotion concepts have been developed
with wheeled and legged locomotion systems being the most popular. Wheeled robots exist
with different types of wheels, such as passively driven wheels, passive caster wheels, actively
driven caster wheels, actively orientable wheels, swedish, or spherical wheels. Asama et al.
(1995), for example, use three spherical wheels for omnidirectional locomotion. The wheels
can be placed in various ways in order to ensure certain kinematic and dynamic properties such
as irreducability, controllability, nonholonomy, and stability. Frequently used wheel configu-
ration include two wheels, three wheels such as synchronous drive or omnidirectional drive
robots, or car-like wheel structures with four wheels. Takahashi et al. (2001) present move-
ments that can be obtained by driving a wheel chair robot that has two wheels. Wada and Mori
(1996) describe how omnidirectional locomotion can be achieved by using three conventional
wheels.

24

SECTION 2.3 Related Work

Research for legged locomotion focussed on achieveing static and dynamic stability. The
analysis of cyclic walking led to robots that were able to walk passively. This line of research
was pioneered by McGeer (1990). Especially the zero-moment point (ZMP) is considered
to be an important result in robotics research. Vukobratovic and Borovac (2004) presents a
comprehensive overview about the zero-moment point. Controllers that are based on forward
dynamics and the zero-moment point enabled biped robots such as Johnnie (Gienger et al.,
2001) and ASIMO (Masato and Tooru, 2001) to walk.

In order to keep track of its position, a mobile robot has to build models of its environment,
usually referred to as maps. Moravec and Elfes (1985) were among the first that created maps
from sensor data. They used a sonar sensor as information source. The problems of localization
and mapping are related to each other. It is difficult for a robot to localize itself without a
map, and it is difficult to build a map when the robot does not know the position of its base.
Therefore, techniques that perform synchronous localization and mapping (SLAM) have been
proposed. Moutarlier and Chatila (1989) adressed the SLAM problem by implementing an
algorithm that is based on Kalman filtering. Leonard and Durrant-Whyte (1991) tried to reduce
the uncertainty that arises because of imprecise and erroneous sonar information. They use
multiple sonar sensors that identify landmarks and continuously track them.

Today’s state of the art localization algorithms are probabilistic. Fox et al. (1999) introduced
Monte-Carlo localization based on particle filters are considered to be especially well suited
for representing and maintaining a probability distribution about the robot’s position with high
accuracy and acceptable computational cost. Laser range scanners such as triangulation sen-
sors, phase-modulation sensors, and time-of-flight sensors are currently the dominant type of
sensor in order to acquire data for localization and mapping. Blais (2004) presents a thorough
overview of 20 years of laser range sensor development from single point laser scanners to
time-of-flight systems.

2.3.3 Planning in AI

Generalized Success Models are a form of action models, and concepts such as ARPLACE

probability distributions are typically represented in AI planning as components of action
models, such as preconditions that must be verified by the planning algorithm to ensure that
an action will succeed and have their specified effects. In the context of Action-Related Places,
the precondition for a grasping action would be that the robot has moved its base to a position
where grasp success probability is high. Action models are often stated in a variant of the plan-
ning competition language PDDL. Fox and Long (2003) extended PDDL in order to improve
planning in temporal domains. Younes (2003) extended PDDL to include probabilistic models

25

CHAPTER 2 Preliminaries

and to restrict forms of concurrent and continuous effects. Approaches to make action models
more realistic were described by Schmill et al. (2000). They allow to express the effects of a
robot’s action in a dynamic, partially-observable environment. Operator models were learned
by getting data from simple interactions between an agent and its environment, such as moving
and turning the base or lifting and lowering the gripper. Clustering and decision tree induc-
tion was subsequently applied on the acquired data. Another approach that was presented by
Gravot et al. (2003) and Cambon et al. (2004a) proposes to ground action preconditions like
being within reach in the existence of a motion plan.

While the representations listed above are almost exclusively designed for the computation
of action plans, action-related concepts such as Action-Related Places are designed to enable
much broader reasoning functionality. For example, ARPLACEs equip the robot with predic-
tive decision making capabilities. Wolpert and Kawato (1998) and Flanagan et al. (2003) have
shown that prediction-based control is a powerful concept in the context of human and animal
motion.

An interesting line of research that shares paradigms with action-related concepts like learn-
ing the relation between objects and actions, or building prediction models are Object-Action
Complexes (OACs). Geib et al. (2006) and Wörgötter et al. (2009) present OACs that can be
used to integrate high-level artificial intelligence planning technology and continuous low-
level robot control. The work stresses that objects and actions are inseparably intertwined
and should therefore be paired in a single interface. By physically interacting with the world
and applying machine learning techniques, OACs allow to acquire high-level action represen-
tations from low-level control representations. OACs are meant to generalize the principle of
affordances that was introduced by Gibson (1977). Affordances represent the relation between
a situation usually including an object of a defined type, and the actions that it allows.

2.3.4 Perception

Objects are constantly changing their position in everyday environments, mostly because of
pick and place actions of human people. Mobile robots that perform manipulation tasks need
techniques for finding required objects. Computer vision plays a crucial role in this context.
Klank et al. (2009a) describe the 3D perception system that is used at our chair. The perception
system uses 2D RGB images and images from a 3D time-of-flight camera. The system is able
to detect, localize, and track objects in cluttered household scenes. It is implemented within
a robot system and especially designed for grasping applications. Furthermore, it provides
pose estimation uncertainties via covariance matrices, which is valuable information for the
ARPLACE framework. Other vision systems that tackle the task of detecting objects from

26

SECTION 2.3 Related Work

images are presented by Hoover et al. (2008), Vahrenkamp et al. (2008), and Saxena et al.
(2008). The last two also especially deal with object detection for performing manipulation
tasks.

Although the location of household items is dynamic, it is usually not random. Televisions
are found in living rooms. Knives, forks, or plates are found in the kitchen, and a bottle of
milk is presumably located in the fridge. Knowledge based systems that develop common
sense representations of their environment are presented by Gupta and Kochenderfer (2004)
and are able to support computer vision systems by providing initial guesses on where to start
searching. Semantic maps are an important way to represent this knowledge that are currently
developed by Rusu et al. (2009), Nüchter and Hertzberg (2008), and Galindo et al. (2008).

2.3.5 Motion Planning

After knowing the pose of an object, the robot has to grasp it. Locomotion systems, as de-
scribed above, are required to enable the robot to move close to the target object. In order not
to bump into obstacles while moving, robots have to find collision-free paths. This problem is
called motion planning. Lozano-Perez (1980) presents the configuration space, which is more
appropriate for planning motions than 2D or 3D euclidean space.

Combinatorial approaches to motion planning were the first that have been studied. Combi-
natorial approaches include shortest path roadmaps which were introduced by Nilsson (1969),
or cell decomposition methods as described by Schwartz et al. (1987) and Zhu and Latombe
(1991). Combinatorial algorithms are exact and complete. If there is a solution to a motion
planning query, the algorithm will find it. Otherwise the algorithm will correctly report that
there is no solution. This requires to explore the whole state space of a problem. The state space
grows according to the robot’s number of degrees of freedom and additional properties of the
motion planning problem such as the presence of dynamic obstacles, uncertainty about mo-
tion execution, or differential constraints. Combinatorial algorithms and their computational
complexity have been analyzed thoroughly in the work of Canny (1988b). Important results
are that Reif (1979) found out that the "generalized mover’s problem" is PSPACE-hard, as
well as several other motion planning problems with static obstacles that were published by
Hopcroft et al. (1984). According to Reif and Sharir (1985) motion planning in the presence of
obstacles that move with unbounded velocity modulus is NP-hard, and Canny and Reif (1987)
discovered that motion planning in the presence of control uncertainty is NEXPTIME-hard.
The authors “believe this to be the first instance of a provably intractable problem in robotics”.

Concluding, the motion planning problem is difficult. While combinatorial planners may
be applicable to problems with small state spaces such as navigation on a 2D plane, they are

27

CHAPTER 2 Preliminaries

not tractable for larger state spaces that arise when planning motions of manipulators or en-
tire robot systems. That is why newer research published by Barraquand and Latombe (1990)
and Brooks and Lozano-Perez (1985) abandoned the property of completeness and proposed
sampling-based approaches. Sampling-based approaches do not search the whole configura-
tion space but construct a search tree where each node represents a robot configuration. The
robot’s current state and the robot’s goal state are initially inserted into the search graph and
the algorithm tries to connect them. New robot configurations are sampled and inserted into
the search tree, if the new state is collision free and can be connected to an existing node. Yer-
shova et al. (2005) and LaValle (2006, chap. 5) present sampling techniques that are mainly
tailored towards achieving fast exploration of the state space. Yershova and LaValle (2007)
describes how to efficiently find the nearest neighbor for a sampled configuration. Rapidly
Exploring Random Tree algorithms (RRTs), as presented by LaValle (1998), are sampling-
based planners which are considered to be the current state of the art in motion planning. The
framework of RRT-based motion planning was significantly improved by LaValle and Kuffner
(2001). RRTs incrementally construct a search tree that gradually improves resolution until the
tree densely covers the space, as described by Lindemann and LaValle (2006). The exploration
heuristic can be tailored towards motion planning problems and usually shows a Voronoi bias,
which enables RRTs to quickly cover large portions of the state space. Lindemann and LaValle
(2004) examines exploration strategies and the Voronoi bias of RRTs.

The solution to a motion planning problem is usually forgotten, after it has been computed
and executed. When the robot can expect to face similar motion queries in the future, then it is
reasonable to store parts of the constructed search tree, called roadmap, for later reuse. Canny
(1988a) was among the first that proposed geometric roadmap methods, and Kavraki et al.
(1996) introduced sampling-based roadmap planners. Bohlin and Kavraki (2000) applied the
principle of lazy evaluation for building probabilistic roadmaps and were able to significantly
reduce the number of required collision checks.

While all above methods can be applied to all motion planning problems, this may be
overkill for the navigation problem due to its lower dimensionality. Borenstein and Koren
(1991) developed the Vector Field histogram that is especially designed to address the nav-
igation problem. It is based on potential fields that were investigated by Khatib (1986), and
adds mechanisms for explicitly dealing with uncertain sensor information. Vector Field his-
tograms can be used for online path planning. However, they are not complete and prone to
local minima. Stilman and Kuffner (2004) and Stilman et al. (2006) considered the problem
of navigation among movable obstacles from a motion planning point of view. This enables
robots to move obstacles out of the way if they block paths to the goal position.

28

SECTION 2.3 Related Work

Textbooks by Latombe (1991), LaValle (2006), and Choset et al. (2005) give a detailed
overview of classic and recent motion planning techniques, with the last one having a strong
bias towards actual implementation on robots. Laumond (1998) focusses on non-holonomic
path planning. Concluding, it can be said that motion planning is difficult and positioning the
robot at a base position that simplifies the motion planning problem is a reasonable goal.

2.3.6 Manipulation and Grasp Planning

The research fields of manipulation and grasp planning try to solve the motion planning prob-
lem for specific applications. Manipulation refers to the process of moving or re-arranging
objects in the environment. In order to perform manipulation actions, the robot has to estab-
lish physical contacts with a target object and subsequently move it by exerting forces and
moments, as investigated by Mason and Salisbury (1985). In contrast to motion planning,
where all collisions are considered harmful, manipulation planning tries to avoid collisions
with obstacles but needs to find a way to position the gripper so that it collides with the target
object and grasps it in a stable manner. Although many techniques from the motion planning
community like sampling-based motion planning are still used, the special structure of ma-
nipulation or grasp problems is exploited to acquire faster and more robust algorithms. Alami
et al. (1995) present two planners that address the manipulation planning problem by build-
ing manipulation graphs. A starting point for developing manipulation planning algorithms is
OpenRAVE that was developed by Diankov and Kuffner (2008). OpenRAVE enables users to
focus on planning, while providing modules to handle low-level aspects such as kinematics,
dynamics, or collision checking.

Miller and Allen (1999) explores the field of grasp stability and Miller and Allen (2000)
present a publicly available grasp planner that computes grasp points that lead to physically
stable grasps. Fearing and Hollerbach (1985) present an approach where grasp stability is
optimized by a heuristic and can be computed for arbitrary objects. Databases that contain
stable grasps for many objects can help to reduce computation time. The Columbia Grasp
Database (Goldfeder et al., 2009), for example, stores 238.737 grasps for 7.256 object models
and several hands. Maldonado et al. (2010) describe a system for grasping objects that are not
known a-priori. A vision system uses a time-of-flight range camera in order to estimate the
object’s center and an approximation of its shape. An algorithm for grasp pose optimization
ensures that the grasp is physically stable. The problem of efficiently generating collision-free
force-closure grasps for dexterous hands is adressed by Berenson and Srinivasa (2008).

When the grasp planner found an endeffector pose that is able to grasp the target object
in a physically stable manner, then the next problem is to compute a manipulator configu-

29

CHAPTER 2 Preliminaries

ration that brings the endeffector to the required grasping pose. Usually, the manipulator’s
goal configuration is computed by solving the inverse kinematics problem and the result is the
goal configuration for the subsequent manipulation planning query. However, most IK queries
have multiple, sometimes infinitely many goal configurations. Therefore, the approach of us-
ing inverse kinematics to compute just one goal configuration is suboptimal. It is possible that
the IK solution to the inverse kinematics query is not reachable from the manipulator’s ini-
tial configuration, but another IK solution is reachable, as described by Bertram et al. (2006).
Berenson et al. (2009a) tackle this problem by introducing workspace goal regions. Bertram
et al. (2006) avoid to compute goal configurations at all. RRT-based motion planning is per-
formed from the manipulator’s current configuration, and for every node that is attached to the
RRT it is checked if it brings the manipulator closer to the goal pose by computing the node’s
forward kinematics. In other words, manipulation planning is done in configuration space, but
the check whether the new node is closer to the goal pose is performed in workspace. Van-
deweghe et al. (2007) studied a similar approach that is called Jacobian Transpose-directed
Rapidly Exploring Random Trees (JT-RRT).

Further algorithms exist that apply RRTs to manipulation planning. BiSpace manipulation
planning was developed by Diankov et al. (2008) and produces fast plans to complex high-
dimensional problems by simultaneously exploring multiple spaces. An approach that consid-
ers uncertainty in manipulation planning is presented by Berenson et al. (2009b), where Task
Space Regions are used for deciding whether the task can be achieved at all. When this is
the case, then a RRT-based motion planning algorithm is used for finding a path. Vahrenkamp
et al. (2009) introduce an algorithm for efficiently computing a trajectory for dual-arm ma-
nipulation and re-grasping tasks. The inverse kinematics problem is addressed by performing
gradient-descent in the manipulator’s pre-computed reachability space and two RRT-based al-
gorithms are used for finding a path. The problem of planning manipulator motions in the
presence of endeffector constraints is addressed by Berenson and Srinivasa (2010).

aSyMov is a roadmap-based path planner that solves complex multi-robot manipulation
planning problems. It is described in the work of Cambon et al. (2003), Cambon et al. (2004a),
and Cambon et al. (2004b). aSyMov explicitly takes geometric constraints into account and
uses symbolic knowledge in order to guide the search. It is worth mentioning, that aSyMov
builds high-level plans of manipulation actions, where positions for grasping are represented
in an abstract way.

Zacharias et al. (2007) investigate the capability map, that is a data structure that allows to
quickly decide whether an object is reachable or not. Capability maps are generated by sep-
arating the workspace into discrete grid cells and trying to solve multiple inverse kinematics

30

SECTION 2.3 Related Work

queries for every grid cell. Capability maps can be used to find regions that are reachable,
provide a measure of the manipulator’s dexterity, and can be used online to find motion tra-
jectories by searching paths through connected grid cells that are labeled as being reachable
(Zacharias et al., 2008).

2.3.7 Coupling of Navigation and Manipulation

Several papers studied the question of how to control robot manipulators that are mounted
on mobile bases. Yamamoto and Yun (1999) and Tan et al. (2003) are two examples. A topic
that attracted a lot of attention was the one about concurrently controlling a robot base and
a manipulator. Seraji (1993) and Bayle et al. (2000) published important work within this
field. Cameron et al. (1993) proposed reactive control concepts to solve this task. Brock and
Khatib (2002) explored the elastic strips framework that is a recent approach of controling
robot manipulators. It combines reactive control with motion planning in order to address
the obstacle avoidance problem. All the aforementioned methods were primarily concerned
with studying kinematics, dynamics, and control of robot manipulators and did not address
the question of where to position the robot’s base in order to perform manipulation actions.
Seraji (1995) provides an analytic offline solution to determine appropriate base locations from
which the robot can reach a target point. The concept of reachability, however, is boolean. A
target object is either in reach or it is not. The approach is not able to handle state estimation
uncertainties.

It is possible to find manipulation places for grasping objects that are out of reach by solving
a motion planning query where the degrees of freedom of the mobile base and the manipulator
degrees of freedom are considered together in a single motion planning problem. However,
this leads to state spaces with high dimensionality. For example, when a robot is moving on
a plane and has a manipulator with six degrees of freedom, then the corresponding motion
planning problem has nine degrees of freedom. When the robot considers to use both arms for
concurrent grasping, then the motion planning problem has 15 degrees of freedom.

As a result, Berenson et al. (2008) analyze pick-and-place tasks and argue that dividing
them into the following subproblems is necessary in order to reduce complexity. “1) move
the robot [...] to a configuration [...] near the object, 2) grasp the object, 3) move the robot
[...] to some configuration which places the object into its goal configuration”. The coupling
between subproblems is addressed by optimizing the overall robot configuration using a metric
that considers grasp quality, configuration desirability, and configuration clutter. The approach
simultaneously addresses the base positioning and manipulator planning problem. Action-
Related Places on the other side particularly address problem 1) of base positioning, but do this

31

CHAPTER 2 Preliminaries

in an elaborate manner by taking additional aspects into account. State estimation uncertainty,
for example, is considered. The computation of grasp success probability enables high-level
planning systems to reason about the manipulation task at hand and qualitative aspects such
as from which table side an object should be grasped are addressed. Moreover, Berenson
et al. (2008) compute the metric for base positioning completely online, while the ARPLACE

framework performs the computationally expensive part of learning a model of successful
manipulation places offline.

Zacharias et al. (2009) describes a method that uses capability maps in order to position a
robot for performing manipulation tasks. Diankov et al. (2008) presents a similar approach.
Both approaches are different to Action-Related Places in many aspects. They start with com-
puting a reaching trajectory based on a reachability analysis of the manipulator’s workspace.
The base position is subsequently chosen so that positional constraints for the computed reach-
ing trajectory are met. Both approaches simultaneously address the base positioning and ma-
nipulator planning problem. Action-Related Places on the other side particularly address the
problem of base positioning, but do this by taking additional aspects into account such as
state estimation uncertainties, providing a qualitative measure of promising grasp positions by
computing grasp success probability, enabling high-level planning systems to reason about the
manipulation task, and are able to take multiple, potentially confliting task goals into account
by using decision theory.

Pin and Culioli (2005) deal with the problem of optimizing a robot’s configuration when
changes occur in task requirements or task constraints. Especially load and position constraints
that are applied at the end-effector are considered. But obstacle avoidance, maneuverability,
and several torque functions are also taken into account. The problem of optimally position-
ing the robot base in order to perform a manipulation action is also treated. The resulting
optimization heuristic, however, is complex.

Okada et al. (2006) call a good base placement for grasping a spot. Different spots are
defined for different tasks, such as manipulating a faucet, a cupboard, or a trashcan. In their
work, spot information is hand-coded, while the ARPLACE framework uses experience-based
learning to learn a model of successful manipulation places.

Hsu et al. (1999) examine the problem of choosing a position for mounting factory ma-
nipulators in cluttered environments. Randomized path planning is used to minimize exe-
cution time for performing manipulator motions between two endeffector frames. Because
factory manipulators are immobile and the environment is well under control, no issues of
re-positioning the robot’s base, no uncertain state estimation, no least commitment planning,
and no predicitve abilities are required.

32

SECTION 2.3 Related Work

Gienger et al. (2008) optimize whole body postures for grasping an object. The goal is to
obtain fluent approach and grasp motions. The approach motion specifically takes constraints
on the final grasp into account and considers comfort measures on intermediate configurations.
This is achieved by using object-specific task maps and combining existing techniques for
grasp optimization, trajectory optimization, and attractor-based movement representation.

Ansari and Hou (1992) search an optimal base trajectory for a mobile manipulator in order
to perform a sequence of tasks. A set of feasible base placements is computed and genetic
algorithms are proposed for planning a path between these base placements. The approach
is computationally intensive because the set of base placements is determined by exhaustive
search. Obstacles are not considered, and the approach does not qualitatively evaluate how
promising a base placement is.

33

CHAPTER 3

Learning Generalized Success Models

This chapter describes how a compact and precise representation of successful manipulation
places is learned. We call this representation Generalized Success Model (GSM). In analytic
modeling, the way to develop a model of successful manipulation places would be to analyze
the kinematics and dynamics of the robot at hand. However, this requires extensive knowledge
about the robot system. Moreover, there are many factors that are difficult to model analytically
but have an impact on successful manipulation places such as the controllers the robot uses, the
parameterization of these controllers, as well as uncertainties that arise during state estimation.

That is why we use experience-based learning for developing Generalized Success Models.
A robot performs a mobile manipulation task many times from different base positions and
records whether the manipulation task was executed successfully or not. This allows to learn
a model of successful manipulation places without requiring knowledge of the robot system
itself, because the robot’s skills are compiled into the recorded experiment data. The robot can
be considered as a black box that executes the manipulation task. The Generalized Success
Model is then learned from the training data and is a compact and precise of the robot’s skills
and successful manipulation places. An important advantage of this approach is that it is not
important which algorithms and control systems are actually running on the robot, because the
Generalized Success Model is able to abstract them. Another benefit of Generalized Success
Models is that they can be queried very fast, as we will see in chapter 4. This is a critical aspect
to enable least commitment planning.

An outline of the chapter is depicted in Figure 3.1. The chapter is structured as follows.
Section 3.1 presents the problem statement and discusses related work. Section 3.2 describes
the process of gathering training data in simulation by performing a navigate-reach-grasp ac-
tion sequence with Player and Gazebo. The B21r robot in Gazebo and exemplary data that is
acquired during exploration are depicted in the first and second image at the bottom of Fig-
ure 3.1. Section 3.3 explains how support vector machines (SVMs) classify the training data

35

CHAPTER 3 Learning Generalized Success Models

in order to compute classification boundaries that capture areas of successful base positions
for particular object poses. A classification boundary is depicted as a green hull in the third
image at the bottom of Figure 3.1. A point distribution model (PDM) is used in section 3.4 to
generalize over classification boundaries. The learned PDM is the Generalized Success Model
that captures successful manipulation places for arbitrary object poses. The fourth image at the
bottom of Figure 3.1 depicts several classification boundaries (colored green) and the mean of
the corresponding Generalized Success Model (colored blue). Section 3.5 presents two tech-
niques for learning an accurate Generalized Success Model with significantly less training
data, and section 3.6 describes how Generalized Success Models that were learned for grasp-
ing a particular object can be used for grasping similar objects.

FIGURE 3.1 Computational steps for learning a GSM. Green circles represent algorithms that
create and transform data. Blue rectangles represent data that is generated and passed from
one algorithm to another. Images at the bottom are visualizations of data structures.

3.1 Introduction

This section provides a problem statement in 3.1.1 that explains why experience-based learn-
ing is superior to analytical modeling for developing a model of successful manipulation
places. Section 3.1.2 presents related work.

36

SECTION 3.1 Introduction

3.1.1 Problem Statement

There are many factors that determine from which base positions a robot can successfully
perform a manipulation action, such as the kinematics of the robot, the controllers it uses, the
parameterization of these controllers, as well as uncertainties that arise during state estimation.
This is why positioning the base depends on many factors, which are difficult to capture in an
analytical model. Moreover, manually designing an analytical model that takes all these factors
into account is tedious and error-prone. An alternative to analytical modeling is advocated in
a recent roadmap paper for manipulation by Kemp et al. (2007): “it seems almost inevitable
that learning will play an important role in robot manipulation”.

This is one of the reasons why we chose to learn Generalized Success Models through
experience-based learning. The advantages of using experience-based learning for developing
a model of successful manipulation places are as follows. Experience-based learning enables
a robot to

• develop a concept of manipulation place that is tailored towards the robot’s skills such
as the hardware and control programs it uses

• ground the model in real experience from interactions of the robot with the environment

• capture complex robot behavior that emerges from complex subsystems and their inter-
play

Appendix B provides a more thorough discussion to support the claims above. The General-
ized Success Model is learned offline, and used by the online part of the ARPLACE framework
in order to compute Action-Related Places. Please see Figure 2.8 for a visualization of how
the Generalized Success Model relates to the overall ARPLACE framework.

3.1.2 Related Work

Using a heuristics-driven search in task space has proven to be a very effective approach to
plan motion, even in complex cluttered scenes (Berenson et al., 2007). However, if everyday
situations are encountered frequently, then having a set of standard solutions like skills or
motor primitives for these standard situations is more effective than treating each repeated
task as a novel task that requires search. Because humans use standard motion primitives so
frequently, they can be optimized over time, which leads to stereotypical human motion, and
improves the predictability of motions. We believe that these are desirable properties for robot
behavior as well. If more complex, novel situations do happen to arise, a standard solution will

37

CHAPTER 3 Learning Generalized Success Models

not suffice, and motion planning algorithms can be used to perform search in order to find a
solution. The two approaches complement each other well.

Kuipers et al. (2006) present a bootstrapping approach that enables robots to develop high
level ontologies from low level sensor data including distinctive states, places, objects, and
actions. These high level states are used to choose trajectory-following control laws in order
to move from one distinctive state to another. Our approach is exactly the other way around:
given the manipulation and navigation skills of a robot which are far too high-dimensional to
learn with trajectory-following control laws, learn places from which these skills (e.g. grasp-
ing) can be executed successfully. Our focus is on action and affordance, not recognition and
localization. For us, place means ’a cluster of locations from which I can execute my (grasp-
ing) skill succesfully’, whereas for Kuipers et al. (2006) it rather refers to locations that are
perceptually distinct from others. Furthermore, their work has not yet considered the physical
manipulation of objects, and how this relates to place.

Capability maps that were developed by Zacharias et al. (2007) are an alternative approach
to modelling robot configurations that lead to successful grasping. Capability maps are gen-
erated by separating the workspace into discrete regions and trying to solve multiple inverse
kinematics queries for every region. Because capability maps focus on kinematic aspects, they
do not take more subtle skills of a robot into account, such as motor controllers or joint friction.

Learning success models is a form of precondition learning. Most research on learning pre-
conditions focusses on learning symbolic predicates from symbolic examples (Clement et al.,
2007). These approaches have not been applied to robots, because the used representations do
not suffice to encapsulate the complex conditions that arise from robot dynamics and action
parameterizations. In robotics, the focus in pre-condition learning is on grounding precondi-
tions in robot experience. For instance, ‘Dexter’ learns sequences of manipulation skills such
as searching and then grasping an object. This work is described by Hart et al. (2006). Declar-
ative knowledge such as the length of its arm is learned from experience. Learning success
models has also been done in the context of robotic soccer, for instance learning the success
rate of passing (Buck and Riedmiller, 2000), or approaching the ball (Stulp and Beetz, 2008).
Our methods extend these approaches by explicitly representing the region in which successful
instances were observed, and computing Generalized Success Model from these regions.

Stoytchev (2009) stresses the importance of grounding the behavior of robots in observed
experience. It is stated that “grounding of information based on a single act-outcome pair is not
sufficient” because the result may be coincidence. Therefore, “the outcome must be replicated
at least several times in the same context” which enables the robot to “build up probabilistic
confidence”. Sinapov and Stoytchev (2010) consider exploration to be “one of the hallmarks

38

SECTION 3.1 Introduction

of human and animal intelligence”. Applied to the domain of object recognition, the question
is examined why exploratory behavior of robots are able to significantly improve recognition
rates. The paper further establishes a link between empirical studies of exploratory behaviors
in robotics and theoretical results on boosting in machine learning.

Support vector machines were developed within the community of statistical learning. Vap-
nik (1995) gives a good overview of statistical learning theory. Support vector machines are
a family of algorithms for supervised learning that are used for classification and regression.
A collection of early papers is published by Schölkopf et al. (1999). Classic textbooks are
written by Schölkopf and Smola (2001) and Shawe-Taylor and Cristianini (2004).

Point distribution models are a technique for modeling the shape of 2D and 3D objects and
were introduced by Cootes et al. (1995b). Cootes and Taylor (2004) is a more thorough and
updated description. Point distribution models are used in the research community of image
understanding and are especially suitable for modelling variations in medical images (Cootes
et al., 1995a) and faces (Wimmer et al., 2008).

Recently, similar methods to the ones presented here have been used to determine success-
ful grasps rather than manipulation places for grasping. For instance, Detry et al. (2009) de-
termine a probability density function that represents the graspability of specific objects. This
function is learned from samples of successful robot grasps which are biased by observed hu-
man grasps. However, this approach does not take examples of failed grasps into account. The
distance between a failed and a successful grasp can be quite small and can only be determined
by considering failed grasps. The classification boundaries presented in section 3.3 are similar
to Workspace Goal Regions that were developed by Berenson et al. (2009a). They differ in
that classification boundaries represent base positions that lead to successful grasping for a
particular object pose, whereas Workspace Goal Regions represent goal configurations in a
manipulation planning query.

An interesting line of research that shares some paradigms with the ARPLACE framework,
such as learning the relation between objects and actions, or building prediction models are
Object-Action Complexes (OACs). Geib et al. (2006) and Pastor et al. (2009) present OACs
that can be used to integrate high-level artificial intelligence planning technology and contin-
uous low-level robot control. The work stresses that, for a cognitive agent, objects and actions
are inseparably intertwined and should therefore be paired in a single interface. By physically
interacting with the world and applying machine learning techniques, OACs allow to acquire
high-level action representations from low-level control representations. OACs are meant to
generalize the principle of affordances that was introduced by Gibson (1977).

39

CHAPTER 3 Learning Generalized Success Models

3.2 Gathering Training Data

Gathering data with a real robot is time consuming, tedious, and error prone. Current simu-
lators have reached a decent level of maturity. However, the applicability of data gathered in
simulation to the real world is highly dependent on the quality of the geometric and kinematic
model of the real robot, as well as the ability of the simulator to simulate dynamic properties
of the environment. Another issue that has to be achieved is that software systems that control
the real and simulated robot must behave identically. We achieve this by using the robotic mid-
dleware Player (Gerkey et al., 2003), which is a language and platform independent network
server for robot control and provides a consistent API for abstracting from low level hardware
functionality. Gazebo is a high-quality 3D multi-robot simulator for indoor and outdoor envi-
ronments. Gazebo is also Player-compatible which means that programs that are written for a
simulated robot can be applied to a robot that is interacting with the real world, and vice versa.
It uses the Open Dynamics Engine library (Smith, 2004) for a proper simulation of rigid body
physics. A wide range of robot platforms such as a Pioneer2DX, a SegwayRMP, or our RWI
B21r mobile robot can be simulated, as well as numerous sensors including laser range-finders
or stereo cameras. We created an accurate Gazebo model of our B21r robot which assures that
the data that is gathered in simulation is applicable for the real robot. The left and center im-
ages in Figure 3.2 depict the real and simulated robot. Appendix A gives a detailed insight
into hardware and software components of the B21r mobile robot.

X
Y

Z

XT

YT
ZT

FIGURE 3.2 Left: Real B21r robot. Center: B21r robot in the Gazebo simulator. Right:
Overview of the Assistive Kitchen. The coordinate frames of the world (x, y, z) and the
table (xT , yT , zT) are visualized. The white object on the brown table is the cup that the
robot wants to grasp. The ground has a pattern of darker and brighter blue squares which
measure 1m x 1m.

40

SECTION 3.2 Gathering Training Data

3.2.1 Experiment Setup

The right image of Figure 3.2 depicts an overview of the Assistive Kitchen. The world origin is
located in the lower left corner of the room. Objects that are important during the experiments
are the table which is located at pose 〈3.1m, 1.7m, 0.0m, 0◦, 0◦, 90◦〉, the robot’s inital base po-
sition that is located at 〈1.0m, 1.9m, 0◦〉, and the cup which is located at 〈2.9m, 1.7m, 0.727m,

0◦, 0◦, 270◦〉 with respect to the world frame.
The robot acquires experience by executing the following action sequence: 1) navigate from

the initial base position to a specified position near the table; 2) reach for the object with the
right arm; 3) close the gripper; 4) lift the object. In this action sequence, the task context is
determined by the following parameters:

1. Type of the target object

2. Pose of the target object on the table

3. Base position from which the robot starts the reaching motion

The first task parameter is the object’s type. We started by using a cup that had to be grasped
at its handle. This experiment setup leads to an arm trajectory that is depicted in Figure 3.3.
First, the arm moves down while concurrently rotating the endeffector so that the gripper is
parallel to the cup handle. The arm continues to move down and inward, while keeping the
gripper parallel to the handle. The goal pose is reached, when the handle can be grasped by
closing the gripper. After successful grasping, the cup is lifted to see whether the grasp is
stable or not.

(a) (b) (c) (d)

FIGURE 3.3 a) Robot reached target base position and is ready for grasping. b) Robot opened
its gripper and started to move the arm. The endeffector is already nearly parallel to the
cup’s handle. White dashes visualize the remaining trajectory. c) Endeffector reached the
cup’s handle and closed the gripper. d) Robot successfully lifted the cup.

The second task parameter is the object’s pose. The cup is located in 3D space, and thus its
pose (obj) can be described by a 6D vector:

41

CHAPTER 3 Learning Generalized Success Models

obj = 〈xobj, yobj, zobj, φobj, θobj, ψobj〉

Please note that xobj and ψobj are the only cup parameters of concern because of the follow-
ing reasons. The cup is positioned on a table that is a planar surface and restricts the roll (φobj)
and pitch angle (θobj) to 0◦. The height of the target object (zobj) is constrained by the height
of the table, which is 0.727m. Furthermore, successful manipulation places are invariant with
respect to the object’s position along the table edge (yobj). When the object is re-positioned by
a certain distance towards the left or right table side, then the robot can adapt its base position
by the same distance. This is shown in Figure 3.4, where the right image shows a cup that
is shifted 0.4m to the right. When the robot adapts its base position 0.4m to the right, then
it faces the same manipulation task as in the left image. So there is a linear relation between
yobj and manipulation place, which can be captured in an analytical model. Because there is
no such simple relation from xobj and ψobj to manipulation places we use experience-based
learning to capture these parameters in a Generalized Success Model.

FIGURE 3.4 The cup is moved 0.4m along the table edge. When the robot changes its base
position accordingly, then it faces the same manipulation task.

In order to learn xobj and ψobj, the robot has to grasp the cup from 64 different cup poses,
namely eight different values for the cup’s distance to the long table edge (xobj), and eight
different angular orientations (ψobj). As depicted in the left image of Figure 3.5, xobj varies
from 2.80m to 3.50m with a step size of 0.1m. Higher values would not lead to successful
grasping, because the robot’s manipulator length is 0.84m and the table edge is located at
xobj = 2.73m. Therefore, a object that is located at xobj = 3.60m is out of reach. ψobj varies
from 190◦ to 330◦ in a step size of 20◦. The exact values for cup poses are:

xobj ∈ {2.80m, 2.90m, 3.00m, 3.10m, 3.20m, 3.30m, 3.40m, 3.50m} ;

42

SECTION 3.2 Gathering Training Data

2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5

190°

270°

2.7 2.8 3.1 3.3 3.4 3.53.23.02.92.5 2.6

2.2

2.1

2.0

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

x

y

1.7 1.9 2.5 2.9 3.1 3.32.72.32.11.5

2.9

2.7

2.5

2.3

2.1

1.9

1.7

1.5

1.3

1.1

0.9

x

y

FIGURE 3.5 Left: The robot has to grasp the cup from 64 different cup poses. For clarity only
cup orientations with 190◦ and 270◦ are annotated. Right: Every dot marks a base position
from where the robot performs a manipulation action.

ψobj ∈ {190◦, 210◦, 230◦, 250◦, 270◦, 290◦, 310◦, 330◦} ;

yobj = 1.7m ; zobj = 0.727m ; φobj = 0◦ ; θobj = 0◦ ;

The third task parameter that influences grasp success is the base position from where the
robot performs the grasping motion. The robot moves on a planar 2D surface, and thus its base
position (rob) can be described by the vector:

rob = 〈xrob, yrob, ψrob〉

In order to learn successful base positions, the robot has to grasp the cup from 693 different
base positions that are uniformly distributed in a rectangular area. More precisely, we use 21
different values for the robot’s distance to the table and 33 values for its position along the
table edge. As depicted in the right image of Figure 3.5, xrob varies from 1.60m to 2.60m
with a step size of 0.05m. yrob varies from -0.6m to 1.0m with a step size of 0.05m. The area
of robot base position is chosen loosely. Hence, further enlarging this area into any direction
would not lead to successful grasping, because the robot would either be too far away from
the object, or bump into the table. The exact values for robot base poses are:

xrob ∈ {1.60m, 1.65m, 1.70m, 1.75m, .., 2.55m, 2.60m} ;

yrob ∈ {1.10m, 1.15m, 1.20m, 1.25m, .., 2.65m, 2.70m} ;

ψrob ∈ {0◦} ;

43

CHAPTER 3 Learning Generalized Success Models

ψrob = 0◦ because we only consider robot orientations where the robot faces the table
perpendicularly.

3.2.2 Labeling Training Data

Overall, the robot has to grasp the cup at 64 different cup poses from 693 different base posi-
tions, resulting in 44.352 experiments. After each experiment, the robot logs if the manipula-
tion action was successful, or if it failed. Figure 3.6 depicts three experiment runs. While the
cup pose remains the same, the base position from where the robot starts the grasping action
changes. It can be seen that grasp success is determined by the base position from where the
robot starts the grasping action.

FIGURE 3.6 Three experiment runs with different samples for the robot’s base position. The
cup is always located at pose 〈2.9m, 1.7m, 0.727m, 0◦, 0◦, 270◦〉. The action sequence
in the top row succeeds from base position 〈2.3m, 1.3m, 0◦〉 (green square in center right
image). It fails in the center row from base position 〈2.1m, 1.55m, 0◦〉 (red circle), because
the vector field controller for reaching gets stuck in a local minimum. The action sequence
in the bottom row from base position 〈1.60m, 1.1m, 0◦〉 (white circle) fails, because the
cup is out of reach.

The result of an experiment of whether the robot was successful at grasping the object or
not is visualized by a green square, a red circle, or a white circle.

44

SECTION 3.2 Gathering Training Data

Green squares: Manipulation action successful. These are base positions from which the
robot was able to successfully grasp the cup. The task execution is considered successful when
the cup is more than 10cm above the table after the lift action is completed, which can only be
the case if the robot is holding it.

White circles: Object theoretically unreachable. From many base positions the cup can-
not be grasped. Considering that one experiment takes approximately 50 seconds to execute,
performing all 44.352 experiments would last 26 days. Therefore we use analytical models to
filter out experiments where we know that the robot will fail to grasp the cup before executing
the experiment. This significantly speeds up the data acquisition process.

An obvious theoretical bound we implemented was that the robot’s distance to the table
must be at least as big as the robot’s radius. Otherwise the robot would bump into the table.
As the robot’s radius is 0.25m, we can immediately label experiments from base positions
xrob ∈ {2.50m, 2.55m, 2.60m} as failures, without executing them.

From many base positions the target object cannot be grasped simply because the arm is not
long enough. More formally, for these base positions, the kinematics of the arm is such that
no inverse kinematics solution exists for having the end-effector at the position required to
grasp the target object. The analytic model we use here is a capability map that is a compiled
representation of the robot’s kinematic workspace (Zacharias et al., 2007). Capability maps are
usually used to answer the question: given the position of my base, which end-effector poses
are reachable? Within the ARPLACE framework we use the capability map to answer the
inverse question: given the position of the target object, and therefore the desired pose of my
end-effector, from which base positions can I reach this end-effector position? In Figure 3.7,
the answer to this question is visualized for a specific object pose. The depicted area is a
theoretical kinematic upper bound on the base positions from which the robot can reach the
object.

Before executing an experiment, we use the capability map to determine if the target object
is theoretically reachable from the current base position. If this is not the case, we do not exe-
cute the navigate-reach-grasp action sequence, but directly label the corresponding experiment
as failure (white circle).

Overall, we were able to filter out 6.336 experiments where the robot would have bumped
into the table, and 30.780 experiments where the robot arm kinematics would not have led to
successful grasping. As a result, we had to execute only 7.236 out of 44.352 experiments and
were able to reduce the overall time for gathering training data from 26 days to 4 days.

45

CHAPTER 3 Learning Generalized Success Models

1.93 2.33 2.73 3.13
1.2

1.7

2.2

2.7

3.53

inverse

capabilit
y m

ap

target
object

theoretically
possible base
positions for

grasping

x

y

FIGURE 3.7 Inverse capability map for a specific object pose. Please note that the target
object is not located in the middle of the inverse capability map. The inverse capability
map is shifted to the top because it represents kinematic reachability for base positions.
Base positions, however, are specified with respect to the robot’s center, while the arms are
mounted with an offset to the robot’s center.

Red circles: Object practically unreachable. Please note that the capability map only
considers the theoretical reachability from a base position, given the kinematics of the robot’s
arm. It does not take self-collisions into account, or the constraints imposed by our vector-
field controller for reaching, or the specific hardware of our gripper, and the way the gripper
interacts with the target object. Red circles represent experiments where the manipulation ac-
tion is kinematically viable according to the capability map but nevertheless leads to a failure.
Reasons for failurs can be that the vector field controller gets caught in a local minimum, the
robot hits the cup before grasping it, the robot closes gripper without the cup handle being in
it, the cup slips from the gripper after successful grasping, or the robot bumps into the table
due to imprecision in the navigation routine.

3.2.3 Gathering Training Data

Figure 3.8 shows an outtake of all acquired data. The visualization illustrates that the data has
some intuitive properties. First, as the cup moves further away from the table edge, more and
more robot base positions are out of reach (white markers). This can be seen when examining
one of the image rows from left to right. As xobj increases from 2.8m to 3.1m, more white
markers appear for robot positions that are far away from the table. Second, as the cup handle
rotates away from the robot, the base positions from where the robot is able to successfully
manipulate the cup shifts towards the table. This can be seen, when examining one of the
image columns. As ψobj increases from 210◦ to 330◦, the area of green markers shifts from

46

SECTION 3.3 Computing Classification Boundaries

the left plot side, which indicates base positions that are far away from the table, to the right
side of the plot, which indicates base positions that are closer to the table. The reason is that
when the cup handle points away from the robot, then the robot has to approach the handle
from behind the cup’s body, requiring the robot to position itself closer to the table. Moreover,
a slight shift to the bottom of the plot can be observed, which makes the robot position its base
more to the right of the object. This is intuitive, because the robot needs more space to the
right to be able to grasp around the cup in order to approach it from behind. Third, as the cup
moves away from the table edge or as the handle rotates away from the robot, the number of
base positions for successful manipulation shrinks and finally reaches zero for the cup poses
〈3.0m, 1.7m, 0.727m, 0◦, 0◦, 330◦〉 and 〈3.1m, 1.7m, 0.727m, 0◦, 0◦, 330◦〉.

Please note that some of the failures surrounded by successes correspond to manipulator
singularities while others are due to noise. We observed that the navigation controller is a
frequent source of noise, as it is not always able to position the robot parallel to the table edge.
We observed that the rotational error could be as high as 5◦, which leads to an endeffector
offset of up to 7cm compared to a properly aligned robot.

3.3 Computing Classification Boundaries

In this section we will use Support Vector Machines (SVMs) to generalize over the acquired
training data in order to compute classification boundaries. One classification boundary is
learned for each of the target object’s poses. The classification boundary for a certain object
pose is a polygonal region that captures robot base positions from which grasping the target
object at the corresponding pose will succeed. Figure 3.9 depicts a classification boundary
for cup pose 〈2.9m, 1.7m, 0.727m, 0◦, 0◦, 290◦〉, which corresponds to the plot in the second
column of the third row in Figure 3.8.

3.3.1 Relative Feature Space

Before applying SVMs, we convert the gathered training data from global world coordinates
into a relative coordinate frame. By doing so, a Generalized Success Model that is learned
for a certain table position is also valid for tables with different positions and orientations.
As stated previously, the base position from where an object can be grasped successfully is
only determined by the target object’s type, the target object’s pose on the table, and the
relative base positions of the robot to the target object, but not by the absolute position of
the table or the robot. Figure 3.10 depicts two similar manipulation tasks. While the table’s

47

CHAPTER 3 Learning Generalized Success Models

FIGURE 3.8 Every subplot shows the training data that corresponds to the cup pose that is
visualized with the black cup. In every image row, cup orientation ψobj remains static while
cup pose xobj varies from 2.8m to 3.1m. In every image column, xobj remains static while
ψobj varies from 210◦ to 330◦. Markers correspond to the center of the robot base in an
experiment. Green squares and red circles represent successful and failed grasps. White
circles were not executed, because a successful grasp is theoretically impossible. For clarity,
the results are depicted for only 16 of the 64 object poses and only 187 of the 693 base
positions. T16 indicates all combinations of xobj and ψobj that are plotted.

position relative to the world frame changed, the pose of the cup with respect to the table frame
remained the same. Therefore, when omitting external effects, then a relative position of the
robot with respect to the cup that enabled the robot to successfully grasp the cup from table
position 1 will also enable the robot to successfully grasp the cup from table position 2 when
the cup’s pose relative to the table frame remains static.

The origin of the relative feature space is defined by the table’s edges and the pose of the
cup on the table. First, we compute the normal −−→nTE from the object to the table edge

−→
TE that

is closest to the robot. The orientation of
−→
TE is chosen so that the table is on the left side of the

vector. The origin of the relative feature space is located at the intersection of −−→nTE and
−→
TE,

48

SECTION 3.3 Computing Classification Boundaries

FIGURE 3.9 Classification boundary for cup pose 〈2.9m, 1.7m, 0.727m, 0◦, 0◦, 290◦〉.

Y
X

XTYT

Xc

Y
X

XTYT

Xc

FIGURE 3.10 Two similar manipulation tasks. While the global position of the ta-
ble changed from 〈3.1m, 1.7m, 0.727m, 0◦, 0◦, 90◦〉 to 〈2.1m, 2.2m, 0.727m, 0◦, 0◦, 135◦〉,
the relative pose of the cup with respect to the table remained the same
〈0.0m, 0.2m, 0.0m, 0◦, 0◦, 180◦〉. The depicted frames are the world frame, the table frame
T , and the cup frame C. All frames are right-handed with the z-axis pointing upward. For
clarity, Yc is not depicted but can be deduced from the other two axis.

as depicted in the left image of Figure 3.11. The z-axis of the relative feature space ∆z points
upward. ∆x points towards the object, so it is identical to−−→nTE but rotated by 180◦ around ∆z.
∆y is defined by the other two axis, and in the left image of Figure 3.11 it is identical to

−→
TE

but rotated by 180◦ around ∆z.

Now we are able to compute the poses of the robot and the object with respect to the relative
feature space, as depicted in the right image of Figure 3.11. The robot’s relative position is
defined through ∆xrob (distance from the robot’s base to the table edge) and ∆yrob (distance
of the robot’s base on the table edge). In the following, we call ∆xrob and ∆yrob controllable

parameters, because the robot can change them as he likes by moving around.

The object’s relative pose is defined through ∆xobj and ∆ψobj. Please note that ∆yobj is

49

CHAPTER 3 Learning Generalized Success Models

always 0.0m, because we chose the origin of the relative feature space to assure that. Besides
Figure 3.4, this is another explanation why we are able to avoid additional experiments by
varying the object’s y-pose. In the following, we will call ∆xobj and ∆ψobj task-relevant

parameters. The robot can estimate these parameters with its vision system, but can influence
them only by performing a manipulation action. More specific, the robot can choose the pose
from where to perform the grasp, but it cannot choose the pose of the target object.

(0,0) nTE

TE

Δxrob

Δxobj

Δ
y
rob

ΔΨobj

(0,0)

FIGURE 3.11 Left: Finding the origin of the relative feature space. It is labeled with (0, 0).
The axis of the relative feature space are not shown for clarity, but ∆z points upward, ∆x

is identical to −→nte but rotated by 180◦ around ∆z, and ∆y is identical to
−→
TE but rotated

by 180◦ around ∆z. Right: Relative feature space with controllable parameters ∆xrob and
∆yrob, and observable parameters ∆xobj and ∆ψobj.

The poses of the cup and the robot that were acquired in the data gathering process were
relative to the world frame. When we transform these poses into poses that are relative to the
relative feature space, we get:

∆xrob ∈ {-1.13m, -1.08m, -1.03m, -0.98m, .., -0.18m, -0.13m};

∆yrob ∈ {-0.60m, -0.55m, -0.50m, -0.45m, .., 0.95m, 1.00m};

∆ψrob = 0◦ ;

∆xobj ∈ {0.07m, 0.17m, 0.27m, 0.37m, 0.47m, 0.57m, 0.67m, 0.77m} ;

∆ψobj ∈ {190◦, 210◦, 230◦, 250◦, 270◦, 290◦, 310◦, 330◦} ;

∆yobj = 0.0m ; ∆zobj = 0.727m ; ∆φobj = 0◦ ; ∆θobj = 0◦ ;

50

SECTION 3.3 Computing Classification Boundaries

3.3.2 Computing Classification Boundaries

A classification boundary is a model that maps an input with two parameters to a boolean
value. In our case the input vector is the robot’s relative base position 〈∆xrob,∆yrob〉 when
starting a manipulation action. The resulting boolean value is the classification boundary’s
prediction whether the manipulation action will succeed or fail from there. Therefore, a clas-
sification boundary implements a mapping

f : R× R→ {0, 1}

where f(∆xrob,∆yrob) = 1 if the manipulation action succeeds when performed from base
position 〈∆xrob,∆yrob〉, and f(∆xrob,∆yrob) = 0 if it fails. Figure 3.12 depicts a classifica-
tion boundary for a particular cup pose.

FIGURE 3.12 Left: Gathered training data with respect to the world frame for cup pose
〈2.9m, 1.7m, 0.727m, 0◦, 0◦, 290◦〉. Right: Training data with respect to the relative fea-
ture space. The dark green hull is the classification boundary that was learned with support
vector machines.

It is a polygonal region, where f(∆x,∆y) = 1 when (∆x,∆y) is inside the classification
boundary, and f(∆x,∆y) = 0 otherwise. Applied to our scenario, a classification boundary is
a polygonal region that represents robot base positions for successfully manipulating a target
object that is located at a certain pose. Therefore, the classification boundary has to find regions
that contain as many green markers as possible, and exclude as many red and white markers
as possible. We learn such classification boundaries by using support vector machines. In
principle, any binary classification algorithm can be used to learn classification boundaries,
but support vector machines have several properties that make them especially suitable for the
problem at hand.

First, support vector machines compute the maximally separating hyperplane or set of hy-
perplanes. This means that the hyperplanes are chosen in order to maximize the distance to

51

CHAPTER 3 Learning Generalized Success Models

the nearest training datapoints of any class – in our case these classes are ‘successes’ and ‘fail-
ures’. Choosing maximally separating hyperplanes has the advantage that the learned model
generalizes well. In contrast to support vector machines, other classification algorithms like
neural nets and decision trees try to find any separating hyperplane.

Second, we prefer to obtain smooth classification boundaries, because the point distribution
model that is used to generalize over classification boundaries works better when classification
boundaries are smooth. Support vector machines have the property of creating smooth bound-
aries. The support vector machine implementation we use even has a parameter that allows to
influence boundary smoothness.

Third, support vector machines are easy to use and scale well. Support vector machines
use kernel methods that map the input space into a higher dimensional state space in which
the problem is linearly separable. This process is called kernel trick and can be computed
efficiently. As a result, support vector machines find promising state spaces by themselves. In
other classification algorithms, the algorithm designer has to analyse the domain very carefully
in order to define the state space (input parameters) in which the classification takes place.
Manually designing the state space is time consuming, error prone, does not scale well, and
might lead to state spaces that are inferior.

The SVM implementation we use is called “Shogun” and was implemented by Sonnenburg
et al. (2006). It is freely available as open source code. Shogun allows to customize support
vactor machine by specifying a kernel, and supports the creation of combined kernels which
can be constructed by a weighted linear combination of several sub-kernels. For the rest of
this thesis, we will use a Gaussian kernel. A cost parameter C controls the trade off between
allowing training errors and forcing rigid margins. This means that it is a parameter that can
be tweaked to make the classification more tight but prone to overfitting (higher values for C),
or more loose but at the risk of incorrectly labeling large amounts of data (lower values for
C). Lower values for C will also result in smoother classification boundaries. For the rest of
the thesis we choose C to be 40.0, which we consider to be a good tradeoff.

As input for support vector machines, we label green markers as ‘1’ (success), and red and
white markers as ‘0’ (failure). Because we want to find classification boundaries, we have to
ensure that regions of grasp success are surrounded by failed experiments towards all direc-
tions. That is why we chose xobj and yobj generously, ensuring that theoretically unreachable
base positions will occur towards every direction for every target object pose. For example,
we included xobj ∈ {2.50m, 2.55m, 2.60m}, although we knew that the robot will bump into
the table before performing the experiment (compare Figure 3.12). As successful grasps are
rarer, we weight them twice as much as failed grasp attempts.

52

SECTION 3.3 Computing Classification Boundaries

Because classification boundaries capture regions of successful grasping only for a certain
object pose, one classification boundary has to be learned for every target object pose. In our
case we have to learn 64 classification boundaries. Figure 3.13 depicts 16 out of 64 classifica-
tion boundaries that were learned for the training data that was depicted in Figure 3.8.

The classification boundaries visualize some intuitive properties. First, as the cup moves
further away from the table edge, the corresponding classification boundary approaches the
table edge. This can be seen when watching one of the image rows from left to right. While
the shape of classification boundaries remains relatively constant for cup poses near the table
edge, the shape changes when the cup’s distance to the table edge exceeds a certain threshold.
The reason is that the robot can compensate movements of the cup towards the table center
by moving closer to the table by the same distance. However, if the robot’s body reaches the
table edge, then this compensation is not possible anymore, because the robot would bump
into the table. That is why the classification boundary gets clipped at its front, when the cup’s
distance to the table edge exceeds a certain threshold. Second, as the cup handle rotates away
from the robot, the classification boundaries shift. When ∆ψobj increases from 210◦ to 330◦,
then classification boundaries shift closer to the table. This can be seen when watching one of
the image columns from top to bottom. Moreover, a slight shift to the right of the table can be
observed, which is due to the robot requiring more space in order to grasp around the cup.

3.3.3 Evaluation of learned Classification Boundaries

In the following, we evaluate if the support vector machine was able to learn classification
boundaries, that precisely represent the structure of successful manipulation places. The eval-
uation was performed as follows. First, we partitioned the training data into two sets S1 and
S2. S1 contained 1

3
and S2 contained 2

3
of the data. Then a support vector machine with a

Gaussian kernel and the parameter C set to 40.0 was used to learn classification boundaries.
The resulting classification boundaries were used to classify the data from set S2. The result
was that 95% of the data was labeled correctly, which indicates that overfitting is well under
control.

In a second experiment, we evaluated if no underfitting occured either. Therefore, we learned
classification boundaries on the whole training data. When using the classification boundaries
to classify the training data, 97% of the data was labeled correctly. This indicates that no
underfitting occured and suggests that the parameter C was chosen in a meaningful way.

53

CHAPTER 3 Learning Generalized Success Models

FIGURE 3.13 Classification boundaries for the training data that was depicted in Figure 3.8.
Coordinates are specified with respect to the relative feature space.

3.4 Generalization over Classification Boundaries

Classification boundaries capture polygonal regions for successfully manipulating an object
at a particular pose. A robot could use classification boundaries to compute promising base
positions. However, classification boundaries cannot interpolate between object poses. When
the robot estimated an object’s pose, it would have to find the corresponding classification
boundary even if no classification boundary was learned for the observed object pose. A naive
approach would be to find the closest object pose for which a classification boundary was
learned. A loss of accuracy however, would be inevitable. Moreover, the impossibility of in-
terpolating object poses would prevent to take state estimation uncertainties into account, as
will be explained in chapter 4.

In this chapter we will generalize over classification boundaries and compile them into a
single point distribution model (PDM). The PDM is more compact than classification bound-
aries, supports the interpolation between object poses, and can be computed quickly.

54

SECTION 3.4 Generalization over Classification Boundaries

3.4.1 Aligning Classification Boundaries

A PDM requires n landmarks as input that are distributed over a contour. We distribute 20
landmarks equidistantly over each classification boundary, and determine the correspondence
between landmarks on different boundaries by minimizing the sum of the squared distances
between corresponding landmarks, while maintaining order between the landmarks on the
boundary. We essentially perform a Procrustes analysis, and at the same time determine the
optimal position of the landmarks.

Figure 3.14 depicts the process of aligning classification boundaries. In the top left image,
two classification boundaries from Figure 3.13 are drawn. More specific, the classification
boundaries are the ones that correspond to object pose 〈∆xobj,∆ψobj〉 = 〈0.07m, 210◦〉 (black
color) and 〈∆xobj,∆ψobj〉 = 〈0.07m, 250◦〉 (dark green color). The next step is to distribute
20 landmarks equidistantly on both boundaries, which is depicted in the top right image. Every
fifth landmark is numbered. There is no particular rule, where the numbering has to be started.
Landmark 1 of the black classification boundary is at its top, while landmark 1 of the dark
green classification boundary is at the lower left.

The bottom left image shows how the classification boundaries are aligned by aligning their
landmarks. The rule is to find correspondences between landmarks on different classification
boundaries is twofold.

• minimize the sum of squared distances between corresponding landmarks on different
boundaries

• maintain order between landmarks and try to maximize the distance between landmarks
on the same boundary

Regions with many landmarks indicates an area where minimizing the sum of squared dis-
tances between corresponding landmarks is the dominant factor. Regions with few landmarks
indicate an area where maximizing the distance between landmarks on the same boundary
is more important. The bottom right image depicts four aligned classification boundaries.
The aligned classification boundaries correspond to the four classification boundaries of Fig-
ure 3.13 where ∆xobj = 0.07m (first image column). Landmark 2 on classification bound-
ary 1 (black color) is colored red. The position of this landmark is 〈∆xc1_l2,∆yc1_l2〉 =

〈−0.67m, 0.20m〉, and also colored red.

3.4.2 Point Distribution Model

Given the aligned landmarks on the classification boundaries we are able to compute a point
distribution model. Although PDMs are most well-known for their use in computer vision

55

CHAPTER 3 Learning Generalized Success Models

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

Δx (m)

Δ
y

 (
m

)

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

Δx (m)

Δ
y

 (
m

)

1

5

10

15

20

1

20 15

10

5

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

Δx (m)

Δ
y

 (
m

)

region with
many landmarks

region with
few landmarks

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3
0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

Δx (m)

Δ
y

 (
m

)

Δxc1_l2 = -0.67m

Δyc1_l2 = 0.20m

Landmark 2

Classification
Boundary 1

FIGURE 3.14 Process of aligning classification boundaries by aligning landmarks that are
distributed on the classification boundary. A detailed description is presented in the text.
Lines indicate that the corresponding landmarks are aligned.

systems that analyse medical images (Cootes et al., 1995a) and faces (Wimmer et al., 2008),
we use the notation by Roduit et al. (2007) that focusses on robotic applications. First, the
64 classification boundaries are merged into one 40x64 matrix H, where the n.th column is
the concatenation of the ∆x and ∆y coordinates of the 20 landmarks along the classification
boundary. Each column thus represents one classification boundary.

H =

∆xc1_l1 ∆xc2_l1 ∆xc3_l1 ... ∆xc63_l1 ∆xc64_l1

∆yc1_l1 ∆yc2_l1 ∆yc3_l1 ... ∆yc63_l1 ∆yc64_l1

∆xc1_l2 ∆xc2_l2 ∆xc3_l2 ... ∆xc63_l2 ∆xc64_l2

∆yc1_l2 ∆yc2_l2 ∆yc3_l2 ... ∆yc63_l2 ∆yc64_l2

...

∆xc1_l20 ∆xc2_l20 ∆xc3_l20 ... ∆xc63_l20 ∆xc64_l20

∆yc1_l20 ∆yc2_l20 ∆yc3_l20 ... ∆yc63_l20 ∆yc64_l20

56

SECTION 3.4 Generalization over Classification Boundaries

The next step is to compute P, which is the matrix of eigenvectors of the covariance matrix
of H. P represents the principal modes of variation. Given H which is the mean of all clas-
sification boundaries, and P, each classification boundary h1..64 can be decomposed into the
mean boundary and a linear combination of the columns of P as follows hk = H + P · bk.
Here, bk is the deformation mode of the kth classification boundary. This is the point distri-
bution model. To get an intuition for what the PDM represents, the first three deformation
modes are depicted in Figure 3.15. In the left image, the values of the first deformation mode
is varied between the maximal and minimal value, whilst the other deformation modes are set
to 0. In the center image, the second deformation mode is varied, and the right image depicts
variation of the third deformation mode.

Δ
y

Δx

1 0.8 0.6 0.4

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

1..16

Δ
y

Δx

1 0.8 0.6 0.4

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

Δ
y

Δx

1 0.8 0.6 0.4

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

0.3

0.4

FIGURE 3.15 The first three deformation modes of the PDM. Variation of the first (left plot),
second (center plot), and third deformation mode (right plot). Dashed green boundaries: 16
classification boundaries. They are the same in each plot. Blue boundary: Mean classifica-
tion boundary. Solid green boundaries: Deformation modes of the learned PDM.

The eigenvalues of the covariance matrix of H indicate that the first two deformation modes
contain 96% of the deformation energy. As a result, the first two deformation modes are al-
ready a model that precisely captures the shapes of all classification boundaries. This becomes
obvious when watching the plots in Figure 3.15. While the left and center plot add signifi-
cant deformation information, the right plot does not add a lot of information any more. It is
mostly located around the mean deformation mode. For reasons of compactness and in order
to achieve better generalization, we use only the first two deformation modes without losing
much accuracy.

The advantage of the PDM is not only that it substantially reduces the high dimensional-
ity of the initial 40D classification boundaries. The PDM also allows to interpolate between
initial boundaries in a principled way using only two deformation parameters. The PDM is
therefore a compact and general, yet accurate model for the classification boundaries that we

57

CHAPTER 3 Learning Generalized Success Models

call Generalized Success Model.

3.4.3 Relation to Task-Relevant Parameters

The final step of model learning is to acquire a mapping from task-relevant parameters T (ob-
ject poses) that are varied during data gathering to the specific deformation of each bound-
ary: B = f(T). Here, T contains the 64 relative coordinate combinations of cup poses
〈∆xobj,∆ψobj〉. 16 of them are depicted in Figure 3.13 as ∆T16. For this mapping, we apply
a second order polynomial regression model, because it yields high coefficients of determina-
tion of R2 = 0.99 and R2 = 0.96 for the first and second deformation modes respectively. The
coefficients of the polynomial model are stored in two 3x3 upper triangular matrices W1 and
W2, such that B ≈ [diag([T 1] ·W1 · [T 1]T) diag([T 1] ·W2 · [T 1]T]. The Generalized
Success Model now consists of

• 1) H, the mean of the classification boundaries

• 2) P, the principal modes of variation of the classification boundaries

• 3) W1,2, the mapping from task-relevant parameters to deformation modes

Given a novel relative position of the cup on the table tnew = 〈∆xnewobj ,∆ψ
new
obj 〉, the General-

ized Success Model estimates the area for successful grasping as follows. First, the appropriate
deformation values from the cup pose are computed with bnew = [q ·W1 ·qT q ·W2 ·qT],
where q = [tnew 1]. Then the boundary is computed with hnew = H + P · bnew. If the robot’s
base position 〈∆xrob,∆yrob〉 is within the boundary hnew, then the model predicts that the
robot will be able to successfully grasp the object. Please note that this prediction can be made
very quickly because it requires less than ten simple matrix operations.

To summarize the estimation of successful manipulation places: given the task-relevant pa-
rameters in a situation, the algorithm computes the deformation modes. The better deformation
modes are used to reconstruct a classification boundary, which predicts from which base posi-
tions manipulation will succeed. This approach adheres to the proposed strategy of “learning
task-relevant features that map to actions, instead of attempting to reconstruct a detailed model
of the world with which to plan actions” (Kemp et al., 2007).

An overview of all steps that are required in order to learn a Generalized Success Model is
depicted in Algorithm 1.

58

SECTION 3.4 Generalization over Classification Boundaries

input : T ; (task relevant parameters (object poses))
C ; (controllable parameters (robot positions))

output : gsm ; (generalized success model)

forall objectxψ in T do
experience_set.clear();
forall robotxy in C do

success? = executescenario(robotxy, objectxψ);
experience_set.add(〈objectxψ, robotxy, success?〉);

end
experience_set_rel = transform(experience_set) ; (transform to rel. feature space)
boundary = classify(experience_set_rel) ; (with SVM)
boundary_set.add(〈objectxψ,boundary〉);

end
H = alignpoints(boundary_set);
〈H,P,B〉 = computePDM(H);
W = [1 T]/BT ; (mapping from task relevant parameters to B)
gsm = 〈H,P,W〉

Algorithm 1: Computing a Generalized Success Model

3.4.4 Performance Analysis of Learning Generalized Success Models

The runtime for learning a Generalized Success Model for a training set with 44.352 experi-
ments is presented in Figure 3.16.

Computational Step Time (in seconds)

1. Learn Classification Boundaries 8.0

2. Align Classification Boundaries 158.7

3. Learn Point Distribution Model 36.5

4. Relation to Task-Relevant Parameters 0.03

Overall 203.2
FIGURE 3.16 Runtime for learning a Generalized Success Model.

With 203.2 seconds learning a Generalized Success Model is not realtime. We do not con-
sider this to be problematic because it can be done offline and has to be done only once. It can
be seen that the runtime is dominated by aligning the classification boundaries. For the com-
plete training set an overall of 140.185.600 distances between landmarks had to be computed
in order to obtain an optimal distribution of landmarks across all classification boundaries.

59

CHAPTER 3 Learning Generalized Success Models

3.5 Human Activity Data for Biased Exploration

This section presents an approach for further reducing the number of experiments that are
required in order to learn Generalized Success Models. As can be seen in Figure 3.13, only
the data points that are near to a classification boundary actually contribute to the classifica-
tion boundary’s shape. Therefore, it is advantageous to find the transition from successful to
failed examples with as little experiments as possible. The idea is to analyse the places from
which human people perform manipulation actions and use this knowledge in order to bias the
robot’s exploration process. Of course this is only possible when we can reasonably assume
that the robot’s and human’s places are similar. This is the case for our B21r mobile robot
because its manipulator is similar to a human arm when considering joint lengths. The next
two paragraphs explain work that has been implemented by other members of the chair.

Bandouch and Beetz (2009) developed a markerless tracking system at our chair that is
able to observe humans in our Assistive Kitchen environment while they perform mobile ma-
nipulation tasks. Video data from four ceiling-mounted cameras is used as input. The system
is capable of tracking human manipulation actions with a 51 DOF articulated human model,
as depicted in the left and center image of Figure 3.17. Markerless tracking is unintrusive
and unconstrained, enabling the humans to perform as natural as possible. The video data
is complemented by object detections from Radio Frequency IDentification (RFID) sensors.
For example, a RFID sensor under the table detects known objects and stores the time when
they were placed on or removed from the table. The acquired data is published in the publicly
available TUM Kitchen Data Set, which is described by Tenorth et al. (2009).

FIGURE 3.17 Left: A markerless fullbody tracking system observes a human that places a
cup on the table. Center: Playback of the recorded action trajectory. Right: The circles
correspond to human actions of putting an object down onto the table (green), into the sink
(blue), or into the dishwasher (red).

60

SECTION 3.5 Human Activity Data for Biased Exploration

To use the data in order to guide exploration, the system has to select relevant human poses
from the continuous stream of tracked motions. First, the observed positions are loaded into
a knowledge processing system and clustered with respect to their Euclidean distance. These
clusters are represented as “places” in a knowledge base. Then, based on the RFID tag de-
tections, the system learns a mapping of action properties to human “places”. Given such a
model, it is possible to either obtain a place for an action, like a place for picking up a cup, or
to find the most probable action when an observation is given. The right image of Figure 3.17
depicts an example of learned action places in the knowledge base, with the circle in the front
marking places where humans are standing when putting objects onto the table, into the sink,
or into the dishwasher. A more detailed description of the knowledge processing system and
the acquisition of action models as abstract specifications of action-related concepts is given
by Tenorth and Beetz (2009). Summarizing, the human activity data is a model of places from
which humans perform manipulation actions.

The gray area in the left image of Figure 3.18 depicts places that humans use for manip-
ulation. It can be seen that the area is extremely dense, measuring just about 10cm × 10cm.
Although the training set was too small to provide statistically significant results, the assump-
tion is admissible that humans have a precise, low-variance model of promising manipulation
places.

The idea for learning a Generalized Success Model with fewer experiments is to use the
human model as a bias for exploration. Therefore, the robot randomly samples base positions
that have different distances to the area of human manipulation places. The robot starts with
base positions that are in the area of human manipulation places, and continues to sample
base positions that are more far away. Because the kinematics of the B21r’s manipulators is
similar to that of humans regarding link lengths we expected that the robot would be able to
grasp the target object when manipulation is performed from the same places that humans
use for manipulation. As the distance to human places increases we expected that more and
more failures would occur, until the distance is above a certain threshold and only failures
would occur. When this happens, we have the boundary that separates successes from failures
and support vector machines can learn the coresponding classification boundary. With this
exploration strategy we avoid wasting additional time for performing experiments in areas
that lead to failure, although the capability map considers them to be kinematically possible.

The left plot of Figure 3.18 visualizes the results of this exploration strategy. It can be seen
that successful manipulation (green squares) indeed occurs when the robot performs manipu-
lation actions from places that are within or near human manipulation places. As the distance
increases more manipulation actions fail (red dots). The distance from manipulation places

61

CHAPTER 3 Learning Generalized Success Models

to the human model is visualized by black isobars that are drawn in increments of 5cm. The
robot starts with randomly sampling base positions within the convex hull that represents hu-
man manipulation places, then within the first isobar, then within the second isobar and so
on. Exploration is stopped when all randomly sampled base positions within an isobar fail,
because we then know that successful experiments are completely surrounded by failures. Re-
member that this has been the precondition for learning classification boundaries. In the left
image of Figure 3.18 it can be seen that exploration is stopped after exploring manipulation
places in six isobars.

5

-0.9

ΔX

ΔY

-0.7 -0.5 -0.3

-0.6

-0.4

-0.2

0

0.2

0.4

Boundary

Success

Failure

Unused

Human data

0

3

6

4

2
1

Distance to human data(m)

#
 o
cc
u
re
n
ce
s

0 0.2 0.4 0.6

0

5

10

15

20

25

30

35

40

Success

Failure

Unused

Unused data

0 3 65421
Increments

0.325

Halt
Number of training examples

P
e
rc
e
n
ta
g
e
 c
o
rr
e
ct
ly
 c
la
ss
ifi
e
d

0 50 100 150 200 250 300
70

75

80

85

90

95

100

H
um
an
 d
at
a

D
ef
au
lt

C
ap
. m
ap
s

FIGURE 3.18 Left: The gray area visualizes places from where humans perform manipula-
tion actions. Green squares, red dots and black points visualize experiment results of robot
manipulation when using human data as bias. The black circles are isolines of equal dis-
tance to the convex hull around human manipulation places. Center: Histogram that depicts
the number of successful (green) and failed (red) grasp attempts dependent on the distance
of the robot’s base to human manipulation places. Right: Quality of GSM according to
exploration strategy and number of experiments.

The center plot of Figure 3.18 depicts a histogram that plots for every isobar the number of
successful (green bars) and failed (red bars) manipulation places. It can be seen that there are
two successful manipulation places within isobar five, but none within isobar six. Isobar 7 and
onwards are not explored any more.

The right image of Figure 3.18 plots the quality of the Generalized Success Model for sev-
eral exploration strategies with respect to the number of used training data. Three exploration
strategies are plotted. The default strategy performs grid-based exploration by trying out all
base positions. When watching at Figure 3.13, then the default strategy executes experiments
for base positions with green squares, red dots, and white dots. The capability map strategy
knows that white dots will lead to failure and therefore only executes experiments for base
positions with green squares and red dots. The exploration strategy based on human data

62

SECTION 3.6 Learning GSMs for Different Objects

performs exploration by randomly sampling base positions within isobars around human ma-
nipulation places, as described above. The result is that the capability map approach is clearly
superior to the default strategy. The exploration strategy based on human biasing is another
improvement, but the difference to the capability map approach is minor.

The exploration algorithm based on human biasing is quite simple and has some disadvan-
tages. For instance, it could not discover multi-modal distributions of successful examples if
failures lie in between. However, if the goal is to start acting as soon as possible, and to de-
velop a satisfyingly good Generalized Success Model as fast as possible, then the exploration
strategy based on human biasing will speed up the exploration process.

3.6 Learning GSMs for Different Objects

Until now this chapter explained how to learn a model of successful manipulation places for
grasping cups. In everyday manipulation a robot will face a multitude of different objects with
different shapes and sizes. It is infeasible to learn Generalized Success Models for all kinds
of objects. In this section we will show how to address this problem by learning Generalized
Success Models for grasps instead of for learning GSMs for objects. A grasp is determined
by

• a grasp point

• an approach vector

A grasp point is a 3D position in space where the target object can be grasped in a stable
manner. An approach vector specifies from which direction the gripper should approach the
grasp point. The grasp point for a cup, for example, is located at its handle and the approach
vector points from the side towards the handle as can be seen in Figure 3.3. Now we will
present a Generalized Success Model for grasping objects by approaching them from top
to bottom. Further research by Maldonado et al. (2010) found out that most objects can be
grasped by either approaching them from the side or from the top.

3.6.1 Grasping Different Objects

If robots act in everyday environments, they have to face a broad variety of different objects.
It is not feasible to learn a specific Generalized Success Model for every object. Nevertheless,
the goal is to use the ARPLACE framework for computing manipulation places for all kinds of
objects. A solution to this dilemma is to learn places for performing different grasps instead of

63

CHAPTER 3 Learning Generalized Success Models

learning how to grasp different objects. The idea is that there are significantly less possibilities
to grasp an object, than there are objects. A grasp primarily consists of a grasp point and an
approach vector that specifies the direction from where the gripper approaches the grasp point.
Consider a plate, for example. The grasp point is usually somewhere on the plate’s edge, and
the approach vector faces sideways into the plate as can be seen in Figure 3.19. This is very
similar to the grasp point and approach vector of cups.

FIGURE 3.19 Grasp point (red dot) and approach vector (red arrow) for grasping a cup (left
image) and a plate (right image). The grasp points and approach vectors are nearly iden-
tical. The major difference is that the gripper orientation is vertical for grasping cups and
horizontal for grasping plates.

A reaching motion for grasping plates is shown in Figure 3.20. The reaching motions that
the vector field controller generates in order to grasp cups and plates are very similar, as can
be seen when comparing Figure 3.20 to Figure 3.3. The major difference is that the robot will
have to rotate its gripper by 90◦because the handle of a plate is horizontal, while the handle
of a cup is vertical. When considering that the sixth arm joint (joint 5 in Figure A.3 because
joint labeling starts with ‘0’) is for rotating the gripper, it is obvious that grasping a plate is
the same as grasping a cup for the first five joints, while the sixth joint is turned by additional
90◦. Please note that the gripper for grasping the plate is oriented in a way that the dark gray
box, that indicates the laser scanner that is mounted on the gripper, is on top in order not to
collide with the table.

Cutlery or writing utensils are best grasped in the center with the gripper approaching from
top to bottom. The reaching motion for grasping a knife together with the grasp point and
approach vector is depicted in Figure 3.21.

Please note that the knife is positioned on a white sponge for safety reasons. It is possible
that our vision system erroneously estimates the target object’s pose to be beneath the table.
In this case the robot manipulator would consequently try to grasp the target object at the

64

SECTION 3.6 Learning GSMs for Different Objects

(a) (b) (c) (d) (e)

FIGURE 3.20 Reaching motion for grasping plates. a) Robot reached target base position. b)
Robot opened gripper and started to rotate the arm. c) Robot gripper now faces to the left
with the gap between the gripper being horizontal. d) Endeffector positioned around plate
and gripper closed. e) Robot successfully lifted the plate.

FIGURE 3.21 Reaching motion for grasping knifes.

estimated pose and crash into the table. Because our Powercube manipulator does not have
force control this can lead to severe damage. That is why the height of the table is coded
into the vector field controller. In the vector field, the table plate applies a huge repelling
force in regions that are close to the table plate (approximately in the 2cm above the table
plate). When an object is small and located directly on the table, then it is within the region of
repelling force, and manipulator oscillation might occur. The manipulator tries to approach the
object and is pushed away from the table plate by the repelling force. When the manipulator’s
distance to the table plate is big enough so that the attracting force of the target object exceeds
the repelling force of the table, then the manipulator approaches the table plate again. Although
this behavior is not desired, it prevents the manipulator from crashing into the table and has
proven to be stable. The only drawback is that no objects can be grasped that are less than 2cm
above the table plate, and the reason why we put the knife on a sponge that is 3cm high.

Finally, there are objects that can be grasped in multiple ways. A glass for example is usually
grasped from top to bottom at its opening, but it is possible to grasp it from the side at its body.
The default reaching motion for grasping a glass from top to bottom is depicted in Figure 3.22
together with grasp points and approach vectors.

Several grasp planners were developed that compute grasp points that lead to physically
stable grasps. Miller and Allen (2000), for example, implemented GraspIt! that is publicly
available. In order to find stable grasps like form and force closure grasps, a heuristic has to
be optimized that captures grasp stability (Miller and Allen, 1999). Research done by other
researchers of our group developed a system for model-free grasping. Maldonado et al. (2010)

65

CHAPTER 3 Learning Generalized Success Models

FIGURE 3.22 Reaching motion for grasping glasses.

describe the system that enables a robot to grasp unknown objects. A vision system uses a
time-of-flight camera that is mounted on a pan-tilt unit in order to find the object’s center and
an approximation of its shape. The grasp pose is optimized based on gaussian point distribu-
tions, which ensures that the endeffector can grasp the target object in a physically stable way.
It was found that grasps from the side and from the top are the most important grasps. “The
result is intuitive: if an object is placed upright on a table, we only have to evaluate if we better
grasp from the top or from the side. This does not hold for any inclined objects or any objects
placed on a ramp, but it is valid for most household items and all our test objects” (Maldonado
et al., 2010). The system was tested with the household items that can be seen in Figure 3.23.

FIGURE 3.23 15 household items that were used to evaluate model-free grasping

In an evaluation on a real robot 48 out of 59 grasps succeeded, which leads to an overall
success probability of 80%. The result is even stronger when it is considered that the Nivea
shower gel was particularly difficult to grasp. As a result it was tested the most with eight
grasps instead of three to four grasps for the other objects. Seven out of eight attempts for
grasping the Nivea shower gel failed. Overall, the evaluation indicates that most household
objects can be grasped from the side or from the top. Based on these results, we decided to
learn Generalized Success Models for these two grasps.

66

SECTION 3.6 Learning GSMs for Different Objects

3.6.2 A Generalized Success Model for Grasping from the Top

In this section we present a Generalized Success Model for grasping from the top. This section
visualizes important results in the data acquisition and model learning phase and shows how
grasping from the top differs from grasping from the side. In order to learn a Generalized
Success Model for grasping objects from the top, we chose a glass as target object that was
positioned at the following poses with respect to the relative feature space.

∆xobj ∈ {0.07m, 0.17m, 0.27m, 0.37m, 0.47m, 0.57m, 0.67m}

∆ψobj ∈ {210◦, 240◦, 270◦, 300◦, 330◦}

This results in an overall of 35 object poses. The robot has to grasp the object from 693
different base positions that are uniformly distributed in a large rectangular area.

∆xrob ∈ {-1.13m, -1.08m, -1.03m, -0.98m, .., -0.18m, -0.13m} ;

∆yrob ∈ {-0.60m, -0.55m, -0.50m, -0.45m, .., 0.95m, 1.00m} ;

∆ψrob = 0◦ ;

Figure 3.24 depicts all 24.255 experiments. Only a small portion had to be executed, because
the capability map enabled us to label experiments as failures, that did not have a theoretical
chance of succeeding (indicated by white circles). Please note, that although the object that is
plotted seems to be a cup, the experiments were performed with a glass. The problem is that
plotting a round glass makes it impossible to visualize its orientation. That is why a “handle”
was included for plotting.

The data shows interesting properties. The orientation of the target object has no significant
impact on manipulation places for successfully grasping from the top. This can be seen, when
watching at each column of plots. A column of plots depicts configurations where the distance
of the target object to the table edge remains static, while its orientation changes. All images
in a column of plots have approximately the same distribution of successful grasps (indicated
by green squares), and therefore the classification boundaries are very similar. The plots on
the bottom below a black arrow depict all five classification boundaries from above in a single
plot. The bottom left plot for example (shown in greater detail in the left image of Figure 3.25)
depicts all classification boundaries for plots with ∆xobj = 0.07m. It can be seen that the
classification boundaries mostly overlap. As a result, the classification boundaries’ alignment
can hardly be seen although it is plotted. This is a difference to grasping objects from the side,

67

CHAPTER 3 Learning Generalized Success Models

ΔXobj

Δψobj

0.07m 0.17m 0.27m 0.37m

240°

210°

0.47m 0.57m 0.67m

270°

300°

330°

axis of symmetry

Aligned
Classification
Boundaries

Aligned
Classification
Boundaries

FIGURE 3.24 Gathered training data and learned classification boundaries for grasping objects
from the top. Every subplot shows the training data that corresponds to the pose that is
visualized with the black glass. The ‘handle’ visualizes the orientation of the glass. The
black line in the top left plot indicates the axis of symmetry for the classification boundary.
The classification boundaries for the data of a row or column of plots and their aligned
classification boundaries are shown in special plots on the right and at the bottom.

where the orientation of the object had a significant impact on the place from where successful
grasping actions can be performed.

Another effect of the fact that object orientation does not matter is that all classification
boundaries are almost symmetrical. The black line in the top left plot of Figure 3.24 visualizes
the axis of symmetry. The reason for this is that the robot does not have to grasp around an
object, which was the case for grasping from the side. When grasping from the top the robot
prefers to position itself in a way that its shoulder is approximately in front of the object. This
means that the axis of symmetry is shifted slightly to the left of the object when grasping with
the right arm.

It can be seen that the region for successful grasping gets smaller as the distance of the
object to the table edge gets bigger. This property was already observed for grasping from

68

SECTION 3.6 Learning GSMs for Different Objects

∆X

∆Y

∆X

∆Y

FIGURE 3.25 Left: Aligned classification boundaries for ∆xobj = 0.07m and ∆ψobj ∈
{210◦, 240◦, 270◦, 300◦, 330◦}. Right: Aligned classification boundaries for ∆ψobj =
210◦ and ∆xobj ∈ {0.07m, 0.17m, 0.27m, 0.37m, 0.47m, 0.57m, 0.67m}. There are only
five classification boundaries, because the object is not reachable from ∆xobj ∈
{0.57m, 0.67m}.

the side (compare Figure 3.13). The classification boundary approaches the table edge as the
object moves further away from the table edge. While its shape remains relatively constant
for object poses near the table edge, it changes when the object’s distance to the table edge
exceeds a certain threshold. The object cannot be grasped any more when the distance to the
table edge is 0.57m or higher. Therefore, no classification boundaries can be computed for
∆xobj ∈ {0.57m, 0.67m}.

The plots on the right of a black arrow in Figure 3.24 depict the classification boundaries
from the corresponding row of plots. The top right plot for example (shown in greater detail in
in the right image of Figure 3.25) depicts all classification boundaries for plots with a object
orientation of ∆ψobj = 210◦. It can be seen that the shape of the five classification boundaries
are approximately the same, while their size differs. The right border is straight because the
table limits the robot’s base position in this direction. The left border is circular with the size
depending on the distance of the object to the table edge. The alignment of the points on the
classification boundaries can be seen clearly.

Figure 3.26 depicts the first three deformation modes of the point distribution model for
grasping from the top. It can be seen that the first deformation mode represents the boundaries
stretching to the back, that is dependent on the object’s distance to the table edge. The other
two deformation modes add only little additional deformation information because the solid
bright green lines are nearly identical. All three deformation modes contain 99.3% of the
deformation energy, while the first two deformation modes contain 99.0% of the deformation

69

CHAPTER 3 Learning Generalized Success Models

energy, and the first deformation mode already contains 94.3% of the deformation energy.
Only storing the first deformation mode therefore results in a very compact, yet precise model
of manipulation place for grasping from the top.

0.5

1 0.5 0

0

0.5

1

1 0.5 0

0.5

0

0.5

1

1 0.5 0

0.5

0

0.5

1

h1..25

ΔX ΔX ΔX

ΔYΔY ΔY

FIGURE 3.26 The first three deformation modes of the point distribution model for grasp-
ing from the top. The dashed green lines are the classification boundaries, as seen in Fig-
ure 3.24. The blue line is the mean of the deformation mode, and the solid bright green line
are reconstructed classification boundaries for the corresponding deformation mode.

The fact that the target object’s orientation has only minor impact on manipulation places
opens a possibility to reduce the required number of experiments. The runtime for learning
a Generalized Success Model for the complete training set with 24.255 experiments is pre-
sented in the second column of Figure 3.27. Additionally, we learned a Generalized Success
Model where all distances to the table edge were considered as before (therefore the values
of ∆xobj were as follows: ∆xobj ∈ {0.07m, 0.17m, 0.27m, 0.37m, 0.47m, 0.57m, 0.67m}),
but this time we deleted all experiments that were not performed with an object orientation
of ∆ψobj = 270◦. A reduced training set with 4.851 experiments remained. The Generalized
Success Model that was learned from the reduced training set is almost identical to the model
that was learned for the complete training set. The runtime for learning a Generalized Success
Model for the complete and the reduced training set is presented in Figure 3.27.

When studying the code, linear computational complexity could be assumed for all com-
putational steps with the exception of aligning classification boundaries is linear. The results
shown above support this assumption. Computational complexity of aligning classification
boundaries, however, is quadratic. 64.000.000 distances between landmarks had to be com-
puted for the complete training set, while 2.560.000 distances had to be computed for the

70

SECTION 3.6 Learning GSMs for Different Objects

Computational Step Time (in seconds) Time (in seconds)

1. Learn Classification Boundaries 4.3 0.8

2. Align Classification Boundaries 71.1 2.8

3. Learn Point Distribution Model 24.4 5.5

4. Relation to Task-Relevant Parameters 0.03 0.003

Overall 99.8 9.1
FIGURE 3.27 Runtime for learning a Generalized Success Model with the complete training

set (2nd column) and the reduced training set (3rd column).

reduced training set.

71

CHAPTER 4

Action-Related Places

On an implementation level, an Action-Related Place (ARPLACE) discretizes 2D space into
grid cells that are unambiguously identified by their indexes along the x-axis and y-axis. A
probability value is assigned to every grid cell that captures the predicted probability of suc-
cessfully grasping the target object when the grasping action is performed from within this
grid cell. Therefore, given a robot, a target object, and an environmental context, an ARPLACE

provides a mapping from grid cells to grasp success probability p:

f(x, y) : Z× Z→ p ; p ∈ [0, .., 1]

The optimal manipulation place is the center of the grid cell that maximizes this function.
The proposed manipulation place is therefore the one that maximizes the chance of successful
grasping. An exemplary ARPLACE is depicted in Figure 4.1.

FIGURE 4.1 The robot, a chair, a table, and an ARPLACE for grasping the cup. A hole is
bumped into the ARPLACE because the chair blocks several promising grid cells.

73

CHAPTER 4 Action-Related Places

On a symbolical level we define ARPLACEs as the set of pairs 〈 pos, p 〉, where pos is
a robot pose relative to the table, and p is the predicted grasp success probability which we
request to be higher than the threshold value θ:

ARPLACE (pickup(o)) := { 〈 pos, p 〉 |
p = P(successful(ev) | occurs(ev,t), holds(at(rob,pos),t),

event-type(ev,pickup), object-acted-on(ev,o))
≥ θ }

In the last chapter we showed how to learn Generalized Success Models which are very
compact models of grasp success probability for manipulation places. In this chapter we ex-
plain how Generalized Success Models are used online in order to compute ARPLACEs that
are based on grasp success probability. The algorithm that computes grasp success probability
explicitly takes the entropy of an environmental state into account. Within our robot system,
the entropy of a state is measured by its perception systems, namely the localization system
and the vision-based object detection system. The entropy is then represented in covariance
matrices that represent the uncertainty of the robot into its estimations of the robot’s base posi-
tion (for the localization system) and of the object’s pose (for the vision-based object detection
system). Taking entropy into account by representing it through state estimation uncertainties
leads to recommended manipulation places that are more robust.

In order to compute grasp success probability the robot probabilistically estimates its own
base position and the poses of target objects, and uses these state estimations as input for
querying the Generalized Success Model. Instead of committing to a specific manipulation
place in advance, ARPLACE gets updated as new sensor data comes in. This is possible be-
cause ARPLACEs can be computed very fast and enables least commitment planning.

The remainder of this chapter is structured as follows. Related work is presented in Section
4.1. In Section 4.2 we show how the robot computes ARPLACEs that are based on grasp
success probability. Section 4.3 presents an evaluation that analyzes the impact of all task-
relevant parameters on the resulting ARPLACE probability distribution. Section 4.4 describes
that ARPLACEs provide valuable information for high level planning systems, and section 4.5
presents results from the simulated B21r robot.

4.1 Related Work

Okada et al. (2006) denote a good base placement for grasping a ‘spot’. Different spots are
hand-coded for different tasks, such as manipulating a faucet, a cupboard, and a trashcan.

74

SECTION 4.2 Computing Action-Related Places

These symbolic representations of place are then used by a LISP-based motion planner to
perform tool manipulation behavior. ARPLACE extends the concept of a spot by learning it
autonomously, grounding it in observed behavior, and providing a probabilistic representation
of place.

Berenson et al. (2008) address the issue of finding optimal start and goal configurations
for manipulating objects in pick-and-place operations. They explicitly take the placement of
the mobile base into account. As they are interested in the optimal start and goal configura-
tions instead of a probabilistic representation, this approach does not enable least-commitment
planning.

Diankov et al. (2008) use a model of the reachable workspace of the robot arm to decide
where the robot may stand in order to grasp an object and to guide the search. However,
uncertainties in robot base position or object poses are not considered and thus can not be
compensated.

Zacharias et al. (2009) examine the question of how robot manipulators and the robot’s lo-
comotion system can complement each other in order to successfully perform a manipulation
action in household tasks. For a given task such as opening a closet, a 3D manipulator trajec-
tory is generated by searching the manipulator’s capability map using correlation, and validat-
ing candidate trajectories. The robot’s base pose is determined by aligning the end point of the
3D trajectory with the target object and choosing the robot’s base in a way that the manipula-
tor is aligned with the start point of the trajectory. The difference between this approach and
ours is the importance that is attributed to finding good manipulation places. Zacharias et al.
(2009) start with computing a 3D manipulator trajectory and subsequently choose the robot’s
base pose in a way that the manipulator trajectory can be executed. ARPLACEs start with
finding optimal base positions by taking state estimation uncertainties into account. However,
ARPLACEs do not create manipulator trajectories, but delegate this task to the manipulation
system.

4.2 Computing Action-Related Places

In this section, we describe the online computation ARPLACEs. Figure 4.2 serves as an outline
of this section.

The image depicts that the online part of the ARPLACE framework expects three inputs.
First, the Generalized Success Model that was learned by the offline part of the ARPLACE

framework, as explained in chapter 3. Second, the robot’s base position that is estimated by the
localization system. And third, the target object’s pose that is estimated by the vision system.

75

CHAPTER 4 Action-Related Places

ARPlace

Monte Carlo
S imulation

Generalized
Success
Model

Probabilistic
Robot Position

Probabilistic
Object Pose

Compute Suc-
cess Probab.

Conditioning

FIGURE 4.2 Visual outline of the chapter. Green ellipses represent computational steps for
computing ARPLACEs. Blue rectangles represent data structures that are used in the com-
putations. Images near blue rectangles are exemplary visualizations of the corresponding
data structure.

Careful readers will remember that Figure 2.7 depicted that a high level planner transmits
parameters of task context. However, this chapter deals with ARPLACE distributions that are
based on grasp success probability. Parameters of task context such as how important it is
to perform the task as quickly as possible are only required if the more general utility-based
ARPLACEs are computed. We will adress this topic in chapter 6.

Because the localization system estimates the robot’s base position with respect to the world
frame, and the vision system estimates object poses with respect to the camera’s coordinate
frame, we have to transform base positions and object poses to the relative feature space.
How this is done is described in section 4.2.1. Section 4.2.2 explains the algorithms (green
ellipses in Figure 4.2) that are used to compute ARPLACE. First, it is shown how to compute
ARPLACEs when there is ground truth data in section 4.2.2.1. Sections 4.2.2.2 and 4.2.2.3
describe how the ARPLACE framework takes state estimation uncertainty into account.

4.2.1 From Robot Coordinate Systems to the Relative Feature Space

Our robot uses a variety of coordinate systems. The localization system for example estimates
the robot’s base position with respect to the world frame. The target object’s pose is estimated

76

SECTION 4.2 Computing Action-Related Places

with respect to the camera of the vision system. In the Generalized Success Model however,
robot positions and object poses are encoded with respect to the relative feature space, that
was described in secion 3.3.1. The reason to use the relative feature space was that a single
Generalized Success Model is enough to

• capture manipulation places for grasping from any table side

• handle translations and rotations of supporting tables

When we want to query the Generalized Success Model, we have to compute the matrix
∆TO that describes the target object’s pose with respect to the relative feature space. In the
following we present the required coordinate frames and how they are transformed in order to
obtain ∆TO. The coordinate frames depicted in Figure 4.3 are involved in the transformation:
the world frame FW , the robot frame FR that is centered in the robot’s base position at the
floor, the frame of the pan-tilt unit where the camera is mounted FPT , the camera frame FC
that is centered in the camera’s sensor chip, the table frame FT that is centered in the middle
top of the table, and the relative feature space F∆.

(0
,0
)

FT

Fw

FRFS
FR

Fc

FP
T

FIGURE 4.3 Relevant coordinate frames for computing the target object’s pose with respect to
the relative feature space.

The first step is to compute the object’s pose with respect to the world frame WTO. Because
the robot is not able to get this information directly it has to perform the following coordinate
transformations

WTO = WTR ∗ RTPT ∗ PTTC ∗ CTO (4.1)

All four homogenous transformation matrices on the right side are known or can be inferred
by the robot as we will describe now. The base position of the robot with respect to the world
frame is estimated continually by the robot’s localization system. The estimation includes the

77

CHAPTER 4 Action-Related Places

values 〈xrob, yrob, ψrob〉 for the mean position that can be transformed into a 4x4 homogenous
transformation matrix WTR. In general, 4x4 homogenous transformation matrices in 3D space
(HT3D) have six degrees of freedom 〈x, y, z, φ, θ, ψ〉 and look as follows

HT3D =

rot11 rot12 rot13 x

rot21 rot22 rot23 y

rot31 rot32 rot33 z

0 0 0 1

The top left 3x3 matrix represents the rotation between coordinate frames as specified by
the roll, pitch, and yaw angle 〈φ, θ, ψ〉. The top right 3x1 matrix represents the translation as
specified by 〈x, y, z〉. The same is done with the covariance values 〈∆xrob,∆yrob,∆ψrob〉 in
order to compute the covariance matrix WTRcov that represents the uncertainty of the local-
ization system into the estimated mean position. In general, covariance matrix for a 3D pose
(Cov3D) is a 6x6 matrix and looks as follows

Cov3D =

Cov(x, x) Cov(x, y) Cov(x, z) Cov(x, φ) Cov(x, θ) Cov(x, ψ)

Cov(y, x) Cov(y, y) Cov(y, z) Cov(a, φ) Cov(a, θ) Cov(a, ψ)

Cov(z, x) Cov(z, y) Cov(z, z) Cov(z, φ) Cov(z, θ) Cov(z, ψ)

Cov(φ, x) Cov(φ, y) Cov(φ, z) Cov(φ, φ) Cov(φ, θ) Cov(φ, ψ)

Cov(θ, x) Cov(θ, y) Cov(θ, z) Cov(θ, φ) Cov(θ, θ) Cov(θ, ψ)

Cov(ψ, x) Cov(ψ, y) Cov(ψ, z) Cov(ψ, φ) Cov(ψ, θ) Cov(ψ, ψ)

The matrices WTR and WTRcov however do not have full rank because we assume the robot
to remain upright on planar ground. That is why zrob, φrob, and θrob are not estimated by
Player’s AMCL localization system. WTR is therefore a simplified version of HT3D.

78

SECTION 4.2 Computing Action-Related Places

WTR =

cos(ψrob) − sin(ψrob) 0 xrob

sin(ψrob) cos(ψrob) 0 yrob

0 0 1 0

0 0 0 1

The localization system estimates the covariance valuesCov(xrob, xrob) andCov(yrob, yrob),

so WTRcov is a simplified version of Cov3D.

WTRcov =

Cov(xrob, xrob) 0

0 Cov(yrob, yrob)

The standard deviations σ(xrob, xrob) and σ(yrob, yrob) are the positive square roots of the

above covariance values Cov(xrob, xrob) and Cov(xrob, xrob).

σ(xrob, xrob) =
√
Cov(xrob, xrob) (4.2)

σ(yrob, yrob) =
√
Cov(yrob, yrob) (4.3)

Compared to covariances standard deviations have the advantage that they are measured
in the same unit as the underlying parameter. In this case meters. A standard deviation of
σ(xrob, xrob) = 0.04m for example, indicates that the robot believes that its estimated mean
position with respect to the x-axis is not further away than 0.04m from the true position with a
probability of 68.3%, not further away than 0.08m with a probability of 95.4%, and not further
away than 0.12m with a probability of 99.7%. In the following we will refer to σ(xrob, xrob)

and σ(yrob, yrob) with the abbreviations σxrob
and σyrob .

The pan tilt unit is mounted tightly to the robot platform. As there is no slip, the pose of the
pan tilt unit with respect to the robot’s base RTPT is fix and does not change during operation.
The corresponding 6x6 covariance matrix RTPTcov is the zero matrix 06,6. The distances and
angular offsets from the B21r robot base to the pan tilt unit were carefully measured by hand.
The acquired values were used in order to compute RTPT . We assume maximum errors of
1mm for the distance measurements along the x-, y-, and z-axis, and 2◦ for the yaw angle
measurements. Roll and pitch angles are zero, as the pan tilt unit is mounted level with respect
to the ground.

79

CHAPTER 4 Action-Related Places

The pan tilt unit is panned and tilted by the robot in order to focus the camera to the region
of interest. Therefore, the pose of the camera’s sensor relative to the pan tilt unit PTTC changes
according to the current pan and tilt angles. This information can be obtained from the pan tilt
unit’s driver with high accuracy and is transformed into the homogenous transformation matrix
PTTC . No uncertainty is measured by the pan tilt unit’s driver, so we set the 6x6 covariance
matrix PTTCcov to the zero matrix 06,6.

The object’s pose relative to the robot’s camera is estimated continuously by a vision-based
object detection system. The vision system matches CAD models for finding objects in an
image and estimates their full 3D pose with all six degrees of freedom. The estimation includes
a 4x4 homogenous transformation matrix CTO with full rank for estimating the object’s mean
pose. The uncertainty into this mean pose is captured in a 6x6 covariance matrix CTOcov where
the diagonal elements are estimated, and the other values are zero. In the following we will
compute the standard deviations of the covariance values and refer to σ(xobj, xobj) as σxobj

, to
σ(yobj, yobj) as σyobj

, to σ(zobj, zobj) as σzobj
, to σ(φobj, φobj) as σφobj

, to σ(θobj, θobj) as σθobj
,

and to σ(ψobj, ψobj) as σψobj
.

When the target object is a cup, then typical values along the diagonal of CTOcov are σxobj
=

0.04m, σyobj
= 0.04m, σzobj

= 0.07m, σφobj
= 0.06rad, σθobj

= 0.06rad, and σψobj
= 0.8rad.

The values indicate that the estimation of a cup’s pose is quite accurate except for . The vision
system has problems to detect the handle which is important for estimating yaw-orientation
(ψ). For more information about the vision-based object detection system, please have a look
at the publications of Klank et al. (2009a) and Klank et al. (2009b).

By using the above four homogenous transformation matrices, we can compute the object’s
mean pose with respect to the world frame WTO as specified in formula 4.1.

WTO = WTR · RTPT · PTTC · CTO

Please note that the estimated pose of the localization system WTR is critical, because er-
rors are magnified by subsequent matrix multiplications. The uncertainty of the robot into the
object’s mean pose is represented by WTOcov and computed as follows

WTOcov = WTRcov · RTPTcov · PTTCcov · CTOcov (4.4)

The next step is to compute the origin of the relative feature space with respect to the
world frame WTRFS . Therefore, the pose of the table with respect to the world frame WTT

is required. There are two possibilities to determine WTT . For static tables, all values can be
directly derived from a map. In dynamic environments the vision system has to estimate the

80

SECTION 4.2 Computing Action-Related Places

values. The vision system estimates the pose of the table relative to the camera CTT in the
same way as it estimates the pose of objects CTO. If the robot detected a table in the image, it
can derive length, width, and height of the table from the matching CAD model. Subsequently,
WTT can be computed as follows

WTT = WTR · RTPT · PTTC · CTT (4.5)

The next step is to find the origin of the relative feature space. Section 3.3.1 already de-
scribed the computation when the closest table edge is known. This is the case for the offline
part of the ARPLACE framework, because for model learning it is sufficient to perform ma-
nipulation from just one table edge. In the online part, however, the robot has to choose the
most appropriate manipulation place among all table edges. Figure 4.4 depicts that there is
one relative feature space for every table edge. This is intuitive, because the robot can per-
form manipulation actions from any table edge. And therefore a separate ARPLACE has to be
computed for every table edge.

Δxobj

ΔΨobj ΔΨobj

Δxobj

ΔΨobj

Δxobj

ΔΨobj

Table Edge 1

Table Edge 2

Table Edge 3

Table Edge 4

ΔxobjRFS1

RFS2

RFS4

RFS3

FIGURE 4.4 Because the robot can grasp the target object from any table edge, one ARPLACE

has to be computed for every table edge. The relative feature space assures that a learned
GSM is valid for all table edges. The picture depicts a table with four table edges and the
origins of the relative feature spaces RFS1, RFS2, RFS3, and RFS4.

The following enumeration lists the computational steps that are required to derive the pose
of the target object with respect to the relative feature space of table edge 1 (RFS1TO). We
indicate parameters that are specified with respect to the relative feature space with a leading
∆. A more thorough explanation is presented in Section 3.3.1. All computational steps of the
enumeration are illustrated in Figure 4.5.

1. Use WTT , table length, and table width to derive the vector of table edge 1 (
−−→
TE1)

2. Use WTO and
−−→
TE1 to derive the normal of table edge 1 (−→n TE1)

81

CHAPTER 4 Action-Related Places

3. Use
−−→
TE1 and −→n TE1 to derive the origin of RFS1 with respect to the world frame

(WTRFS1). The x-axis of RFS1 points from RFS1 to the object and the y-axis of RFS1

points along
−−→
TE1.

4. Use WTRFS1 , −→n TE1 , and WTO to derive the distance of the object to table edge 1. This
is the task-relevant parameter ∆xobj

5. Use x-axis of WTRFS1 and WTO to derive the angular orientation of the object with
respect to RFS1. This is the task-relevant parameter ∆ψobj

ΔΨobj

TE
1

width

le
n
g
th

XT

YT TE
1

XO

YO
nTE1

TE
1

nTE1
XRFS1

YRFS1

XRFS1

YRFS1

XO

YO
Δxobj

XRFS1

YRFS1

XO

YO

1. 2. 3.

4. 5.

TW RFS1

TO
WTT

W

FIGURE 4.5 Each image visualizes a computational step from the enumeration above. Black
elements are used as input. In the corresponding step red elements are the ones that are
computed.

After performing the above steps, we get the required values ∆xobj and ∆ψobj. The covari-
ance values σxobj

and σψobj
are transformed accordingly in order to obtain σ∆xobj

and σ∆ψobj
.

Please note that ∆yobj is 0.0m by definition. What does change is the origin of the relative
feature space with respect to the table edge. So for different positions of the object, the origin
of the relative feature space will be at different locations with respect to

−−→
TEn. However, there

is uncertainty into the object’s position along the y-axis (σ∆yobj
).

A Generalized Success Model that was learned for a certain table can be applied to tables
with different table shapes, as long as step 1. for computing table edges is adapted accordingly.
Figure 4.6 depicts a hexagonal table and a round table. It is straightforward to extend the

82

SECTION 4.2 Computing Action-Related Places

presented method to hexagonal tables. One solution to handle round tables is to divide it into a
polygon with several vertices. Each vertix can be seen as a table edge from where the robot can
manipulate. For every table edge, however, an ARPLACE has to be computed. Dividing the
circle into more vertices will lead to a more precise approximation of the table, but increases
computational time.

TE1
TE2

TE3

TE4

TE5

TE6TE7

TE8

TE9

TE10

TE11
TE1

TE2

TE3

TE4

TE5

TE6

FIGURE 4.6 A GSM that was learned for a certain table can be applied to tables with different
shapes. Left: Hexagonal table with six table edges. Right: Round table that is approximated
by a polygon with eleven vertices (colored red). Each vertix can be treated like a table edge.

4.2.2 Querying the Generalized Success Model

In section 4.2.1 we described how the robot processes data from its localization and vision
system in order to compute the homogenous transformation matrices WTO and WTT , and how
these matrices are used in order to estimate the target object’s mean pose with respect to the
relative feature space. The resulting variables ∆xobj and ∆ψobj are called task relevant param-
eters. Task-relevant parameters (the pose of the target object) specify the context of a manipu-
lation action and the robot is not able to directly control them. We furthermore explained how
to derive the covariance matrix WTOcov that describes the vision system’s uncertainty into the
estimated object pose. This uncertainty is specified with the parameters σ∆xobj

and σ∆yobj
.

Moreover, section 4.2.1 showed how the localization system estimates the robot’s base po-
sition WTR. The position of the robot with respect to the relative feature space is specified by
〈∆xrob,∆yrob〉. We call ∆xrob and ∆yrob controllable parameters, because the robot can con-
trol them directly by using its navigation system in order to move around. The uncertainty into
the robot’s estimated base position with respect to the world is represented by the covariance
matrix WTRcov from which we derive σ∆xrob

and σ∆yrob .

83

CHAPTER 4 Action-Related Places

4.2.2.1 Computing an Action-Related Place with Ground Truth Data

At the end of Section 3.4.3, we demonstrated how task relevant parameters are used to recon-
struct a classification boundary h. The Generalized Success Model predicts that whenever the
robot moves to a base position 〈∆xrob,∆yrob〉 that is within the reconstructed classification
boundary so that 〈∆xrob,∆yrob〉 ∈ h and performs the manipulation action from there, then
the manipulation action will succeed.

Figure 4.7 depicts a scenario where a cup is located on a table and the robot has ground truth
data about the cup’s pose. It furthermore depicts the reconstructed classification boundary and
the manipulation places that the ARPLACE framework proposes for performing the manipu-
lation action. Please note that the ARPLACE distribution that is presented here is boolean. A
manipulation place is either considered to be promising (colored in bright green in Figure 4.7),
or it is not (all other places). Due to sensor noise and other factors that influence state esti-
mation, the task relevant parameters are usually not known exactly, and uncertainty into pose
estimations must be modeled.

ΔX

Δ
Y

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

, for cup pose

Cup Pose
(ground truth)

FIGURE 4.7 Target object is a white cup. The dark green line is the classification boundary
that was reconstructed for the cup’s pose. The GSM proposes to perform manipulation
from places within the classification boundary (colored in bright green).

4.2.2.2 Uncertainty in Object Pose

Because of uncertainties of the vision system into the object’s pose, it does not suffice to
compute only one classification boundary given the most probable object pose. This might
lead to failure if the object is not at the position where the robot expects it to be. Our solution
to this problem is not to reconstruct one classification boundary for the object’s estimated

84

SECTION 4.2 Computing Action-Related Places

mean pose, but to reconstruct many classification boundaries by sampling object poses from
the gaussian distribution that is defined by the estimated mean pose and the covariance matrix.
We perform a Monte Carlo simulation by sampling object poses from this distribution, and
reconstruct a classification boundary for each sample.

We sample 100 object poses given its mean pose 〈∆xobj,∆ψobj〉 and standard deviations
〈σ∆xobj

, σytabobj
, σ∆ψobj

〉. The sampling step results in 100 pose samples tsi , where tsi = 〈∆xsobj,∆ψ
s
obj〉

and i is the index of the sample ranging from 1 to 100. For every pose sample, the correspond-
ing classification boundary hsi is reconstructed. Figure 4.8 depicts the mean pose of a cup, 20
out of 100 cup poses that were sampled, and 20 reconstructed classification boundaries that
correspond to the 20 sampled cup poses. Because the target object is a cup, the Generalized
Success Model for grasping from the side was used for reconstructing the classification bound-
aries. The task relevant parameters used in this example are 〈∆xobj,∆ψobj〉 = 〈0.2m,−π

2
〉,

and 〈σ∆xobj
, σ∆yobj

, σ∆ψobj
〉 = 〈0.03m, 0.03m, 0.3rad〉.

ΔX

Δ
Y

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 0.2

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

Sampled cup
poses

, for mean cup pose

i , for sampled cup poses

Mean cup
pose

Classification
Boundaries
mostly overlap
here

FIGURE 4.8 Monte-Carlo simulation of object poses. The white cup visualizes the robot’s
estimation of the cup’s mean pose. The black cups are 20 out of 100 cup poses that were
sampled (tsi). The dark green polygon is the reconstructed classification boundary for the
mean cup pose. The light green polygons are the reconstructed classification boundaries
(hsi). The black lines connect two sampled cup poses with their reconstructed classification
boundary.

After having reconstructed the classification boundaries, we discretize space. The left image
of Figure 4.9 depicts the 20 reconstructed classification boundaries from Figure 4.8 together
with a grid where each grid cell measures 2.5x2.5cm. For every grid cell we compute by how
many classification boundaries it is surrounded. Three grid cells are colored. The red grid cell
for example is surrounded by 0 classification boundaries, the orange grid cell is surrounded
by 7 classification boundaries, and the green grid cell is surrounded by all 20 classification

85

CHAPTER 4 Action-Related Places

boundaries. This means that when the robot moves to the green grid cell it will be able to
successfully perform the grasp for any sampled object pose. It will never be successful when
moving to the red grid cell. It is obvious that classification boundaries will be more spread out
when the uncertainty about the object’s pose increases. If the uncertainty is above a certain
threshold, there will be no grid cell any more that is included in all classification boundaries.

ΔX

Δ
Y

0.8 0.7 0.6 0.5 0.4 0.3 0.2

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

00.20.4

ΔX

Δ
Y

0.
2

0.2

0
.2

0.2

0.2

0
.8

0.8
0.

8

0.8

0.8 0.7 0.6 0.5 0.4 0.3 0.2

0.5

0.4

0.3

0.2

0.1

0

0.1

0.2

00.20.4

steep decline

FIGURE 4.9 Computing an ARPLACE probability distribution. Left: The red, orange, and
green grid cells are included in 0, 7, and 20 classification boundaries. Center: A color is
assigned to each grid cell according its grasp success probability. Isobars are shown for grid
cells with 20% and 80% grasp success probability. Right: Center plot in 3D.

The next step is to transform the number of classification boundaries that include a grid cell
into a probability value. This is done by computing the percentage of classification boundaries
which surround a grid cell. In our example, the red grid cell has a grasp success probability of
0%, while the orange and green grid cells have grasp success probabilities of 35% and 100%.
A grasp success probability of 35% for a grid cell means that the robot is able to grasp the
object from 35% of the sampled object poses. For a high enough sample number, we consider
that the sampled object poses are a good approximation of the real object pose. Therefore, we
conclude that the robot will be able to successfully grasp the target object 35% of the time,
when moving to the grid cell and performing the grasping action from there. The center image
of Figure 4.9 depicts grasp success probability. Grid cells with low grasp success probability
are colored red. White and green grid cells have successively higher grasp success probability.
Please note, that the orange grid cell from the left image falls into the white region. We used
orange color in the left image only for visual distinction from its surrounding white grid cells.
The right image of Figure 4.9 depicts grasp success probability from an isometric perspective.

Please note the steep decline on the right side of the probability distribution near the table.
Grasp success probability drops from 80% to 20% in just 5cm. This is intuitive because the
table is located on the right side, and in simulation the robot bumped into the table always

86

SECTION 4.2 Computing Action-Related Places

when moving too far to the right, leading to an unsuccessful experiment. Therefore, none of
the 20 boundaries contain this area, and the variation in P on the right side of the PDM is low.
Variations in B do not have a large effect on this boundary, as can be seen in the left image
of Figure 4.9, where the classification boundaries mostly overlap on the right side, while they
are spread out more on the other sides. However, when the robot stays just a small distance
away from the table it does not bump into it and is able to successfully perform the grasp.
When summing over the sampled boundaries, this leads to a steep decline in the probability
distribution.

4.2.2.3 Uncertainty in Self-Localization

The robot is not only uncertaint about the target object’s pose, but also about its own base
position. This uncertainty is specified by 〈σ∆xrob

, σ∆yrob〉 and has to be taken into account. For
example, although all grid cells near to the left of the steep decline in the center image of Fig-
ure 4.9 have high grasp success probability, performing manipulation actions from there might
still fail if there is a localization error and the robot’s real base position is actually more to the
right than expected. This would make the robot bump into the table unexpectedly. Therefore,
the robot considers the uncertainty into its base position and analyzes how its real base posi-
tion might be distributed around the estimated mean position. This is done by selecting 100
random samples in the x-y-plane and assigning the samples to the grid cell that contain them.
For example, when the grid size is 2.5x2.5cm, then a random sample 〈0.04m,−0.01m〉 would
be assigned to the grid cell where the following condition holds

∆xrob ∈ [0.025m, 0.05m[∧ ∆yrob ∈ [−0.025m, 0.0m[

∆Xrob∆Yrob ∆Xrob∆Yrob

FIGURE 4.10 Probability distributions that were sampled from the robot’s uncertainty into its
base position. The probability distributions are centered around the robot’s estimated mean
base position. Left: σ∆xrob

= σ∆yrob = 0.03m. Right: σ∆xrob
= σ∆yrob = 0.05m.

Two examples of such probability distributions can be seen in Figure 4.10. The probabil-

87

CHAPTER 4 Action-Related Places

ity value at coordinate 〈0.0m, 0.0m〉 represents the probability that the estimated mean base
position is the robot’s true base position. When the robot’s uncertainty is low, then the prob-
ability distribution is more peaked around the estimated mean position. This can be seen in
Figure 4.10, where the maximal probability value for an uncertainty of 0.03m nearly 35% (left
image), while the probability distribution in the right image reaches only 12% (right image).
Additionally, high uncertainties lead to probability plots with more grid cells, meaning that it
is possible that the robot’s real base position is farther off. In the left image of Figure 4.10 the
probability distribution has a grid size of 4× 4 grid cells, while the right image has a grid size
of 6× 6.

The probability distribution of the robot’s base position is then conditioned with the grasp
success probability distribution. The conditioning process is visualized in Figure 4.11. In this
example, the robot’s uncertainty into the target object’s pose was σ∆xobj

= σ∆yobj
= 0.02m

and the uncertainty into its own pose was σ∆xrob
= σ∆yrob = 0.03m. It can be seen that the

conditioning leads to smoother borders of the probability distribution. The conditioning step
also works for multi-modal distributions as returned by particle filters.

∆X

∆Y

∆X

∆Y

X

Y

FIGURE 4.11 Conditioning of an ARPLACE probability distribution with a probability dis-
tribution of the robot’s base position. Cyan rectangles depict the robot’s uncertainty into
the target object’s pose and into its own pose. The bigger the rectangle, the bigger the
uncertainty. Left: Grasp success probability for grasping the cup. Center: Probability distri-
bution of robot’s base positions. Right: Resulting probability distribution after convolving
the prior distributions. Coordinates were transformed from the relative feature space to the
world frame.

The probability distribution that results after the conditioning step is an ARPLACE prob-
ability distribution. It is specified with respect to the relative feature space. To be useful
for the robot’s navigation system, the ARPLACE is transformed so that it is relative to the
world frame. This coordinate transformation was already performed in the right image of Fig-
ure 4.11.

88

SECTION 4.2 Computing Action-Related Places

An overview of the whole process of computing ARPLACE probability distributions is pre-
sented in algorithm 2.

input : gsm = 〈H,P,W〉 ; (generalized success model)
robotposition uncertainty ; (covariance matrix)
objectpose + uncertainty ; (mean pose, covariance matrix)

output : arplace ; (probability distribution)

for i=1 to #samples do
ts = samplefromdistribution(objectpose,objectuncertainty);
bs = ([1 ts] ·W)T ;
classif_boundary_set.add(H + P · bs);

end
arplace =

∑#samples
i=1 grid(boundary_seti) / #samples;

arplace = arplace * robotposition uncertainty ; (Conditioning)
Algorithm 2: Pseudo-code for computing ARPLACE probability distributions.

4.2.2.4 Performance Analysis

The online computation of ARPLACEs is fast. Figure 4.12 depicts the time that is required for
computing the ARPLACE from Figure 4.11. The ARPLACE was computed for grid cell sizes
of 5cm x 5cm and 2.5cm x 2.5cm. The first number represents the runtime that is averaged
over 100 experiments, and the value in brackets is the standard deviation. It can be seen that the
computation of an ARPLACE takes approximately 44 milliseconds for a grid cell size of 5cm
x 5cm which allows to compute ARPLACEs with 23 Hz. Querying the Generalized Success
Model in order to recunstruct classification boundaries, which is done in step 1., is extremely
fast with only 2 milliseconds. This is one of the main reasons why we learned a Generalized
Success Model. Runtimes of step 3. and step 4. are even lower. Overall runtime of the algo-
rithm is dominated by step 2. where it is evaluated in how many classification boundaries every
grid cell is included. This requires looping over all grid cells and all classification boundaries.
Looping however, is relatively slow in Matlab and it would be interesting to see what speedup
can be achieved by implementing this piece of code in C. Standard deviations are low for all
steps. To sum up, the computation of an Action-Related Place is fast. Fast enough for support-
ing least commitment planning. This is one of the main reasons why we chose the presented
approach.

89

CHAPTER 4 Action-Related Places

Computational Step Time (in ms) Time (in ms)

Grid size 5 x 5cm Grid size 2.5 x 2.5cm

1. Reconstruct classification boundaries 2.1 (0.2) 2.2 (0.4)

2. Sum over classification boundaries 41.1 (1.6) 114.2 (3.3)

3. Robot localization uncertainty 0.6 (0.5) 1.0 (0.1)

4. Conditioning 0.0 (0.0) 0.0 (0.0)

Overall 44.0 (1.6) 117.3 (3.3)
FIGURE 4.12 Mean of runtime for computing 100 ARPLACEs. Runtimes are depicted for a

grid cell size of 5cm x 5cm (2nd column) and 2.5cm x 2.5cm (third column). Numbers in
brackets are standard deviations.

4.3 Evaluation

In this section, we evaluate the impact of all task-relevant parameters on an ARPLACE prob-
ability distribution. Please remember that there are the following task-relevant parameters,
namely A) object pose (variables (1) - (3) below); B) uncertainty into object pose (variables
(4) and (5) below); C) uncertainty into robot position (variables (6) and (7) below).

• (1) ∆xobj : object’s pose along x-axis of relative feature space (distance to table edge)

• (2) ytab
obj : object’s pose along table edge with respect to table frame

• (3) ∆ψobj : object’s angle with respect to relative feature space

• (4) σ∆xobj
: uncertainty into object’s distance to table edge

• (5) σ∆yobj
: uncertainty into object’s pose along table edge

• (6) σ∆xrob
: uncertainty into robot’s base position along x-axis

• (7) σ∆yrob : uncertainty into robot’s base position along y-axis

We perform seven experiments, and in each experiment one task-relevant parameter is var-
ied while the other six parameters are fix. The resulting ARPLACE probability distributions
will illustrate the effect of the varied parameter. For clarity, we exclusively consider ARPLACE

probability distributions for grasping from the side and for grasping from table edge 1.

4.3.1 Impact of Object’s Distance to Table Edge

In this section we vary the distance of the cup to the table edge ∆xobj. The other parameters
are set to the following default values: (2) ytab

obj = 0.00m which means that the cup’s distance

90

SECTION 4.3 Evaluation

∆xobj =

0.10m 0.20m 0.30m

∆xobj =

0.40m 0.50m 0.60m

FIGURE 4.13 Visualization of how the ARPLACE changes for different values of ∆xobj. Every
ARPLACE is visualized from a top-down (first and third image row) as well as an isometric
perspective (second and fourth image row). The value of ∆xobj for two corresponding
ARPLACE plots is denoted above the plots. Uncertainty into the object’s pose is depicted
by the cyan square in the cup’s center. Uncertainty into the robot’s base position is depicted
by the cyan square in the left bottom corner. Further annotations are explained in the text.

to table edge 2 and table edge 4 is equal; (3) ∆ψobj = −π
2

which means that the cup’s handle
is pointing down, parallel to table edge 1; (4) σ∆xobj

= 0.025m indicating small uncertainty of

91

CHAPTER 4 Action-Related Places

the robot into ∆xobj; (5) σytabobj
= 0.025m indicating small uncertainty of the robot into ∆yobj;

(6) σ∆xrob
= 0.04m indicating medium uncertainty of the robot into its base position along the

x-axis of the relative feature space; (7) σ∆yrob = 0.04m indicating medium uncertainty of the
robot into its base position along the y-axis of the relative feature space. Figure 4.13 depicts
ARPLACE probability distributions for the following values of ∆xobj

∆xobj ∈ {0.10m, 0.20m, 0.30m, 0.40m, 0.50m, 0.60m}

For developing a better intuition of how ARPLACE probability distributions look a top-
down view and an isometric perspective is presented for every value of ∆xobj. Uncertainties
are drawn to scale, so a standard deviation of 0.025m leads to a square where each edge is
0.05m long. That is why the cup’s uncertainty can be seen only in the top-down view. Because
the radius of the cup is 4cm, the square representing cup pose uncertainty is hidden by the
cup’s body, when viewed from an isometric perspective. The black isobars within ARPLACE

probability distributions refer to grasp success probability levels of 20%, 50%, and 80%.

Several observations can be made when analyzing Figure 4.13. When looking at the ARPLACEs
where xobj = 0.10m, then several grid cells with a grasp success probability of more than 80%
can be seen. Therefore, the corresponding task seems to be not very challenging. The reason
is that the target object is well in reach, because it is near the table edge. Moreover, the uncer-
tainties into the object’s pose and into the robot’s base position are relatively low. Good state
estimations simplify the search for good manipulation places, and as a result the manipulation
action is more likely to succeed.

When the object’s distance to the table edge increases, grasping becomes more difficult.
When comparing the images where ∆xobj = 0.10m and ∆xobj = 0.20m, it can be seen
that the cup’s distance to the table edge got bigger. The ARPLACE probability distribution
for ∆xobj = 0.20m shifted towards the table edge while it has almost the same shape as for
∆xobj = 0.10m. The reason is that the ARPLACE tried to maintain its relative position with
respect to the object. Therefore, the distance of the ARPLACE to the left image border shifted
by exactly the same distance that the cup shifted: 10cm. The distance of the ARPLACE to
the table edge only decreased from 25cm to 20cm, as is illustrated in the center top image of
Figure 4.13. The Generalized Success Model does not allow the robot to move closer to the
table, because it learned that the robot may bump into it which leads to manipulation failure.
That is why the ARPLACE got a bit compressed on the right side, although this is hardly
visible in the image for ∆xobj = 0.20m.

When the object’s distance to the table edge increases even more, then the compression be-
comes more obvious. When ∆xobj = 0.30m, for example, this requires the robot to perform

92

SECTION 4.3 Evaluation

the manipulation action even closer to the table. The distance of the ARPLACE probability
distribution to the table edge however, remained at 20cm which is the case for all higher val-
ues of ∆xobj as well. For ∆xobj = 0.40m the area of promising manipulation places gets
significantly smaller. At least there are some remaining grid cells with a grasp success prob-
ability of more than 80%. When ∆xobj = 0.50m, then the grasping task gets considerably
more difficult, reaching a maximum grasp success probability of just above 50%. When trying
to grasp the cup for ∆xobj = 0.60m, then the robot rightfully expects that the manipulation
action will most likely fail, even when performed from the most promising base position.

The question could arise, why the ARPLACE probability distribution in the above plots
does maintain a minimum distance of just 20cm, while the robot’s radius is 25cm. The answer
is the uncertainty of the robot into its base position. The conditioning process stretches and
smoothes the borders of an ARPLACE probability distribution into any direction.

Another observation is that the most promising grid cells are in front of the cup, or shifted
a bit to the right. This can be seen when imagineing a line that is parallel to the x-axis of the
relative feature space and goes through the center of the cup, as depicted in the top left image
of Figure 4.13. Then the most promising grid cells are near to that line or slightly more to the
right of it when looking at the cup from the ARPLACE probability distribution. The reason
for that is the reaching trajectory that is generated by the vector-field controller as depicted in
Figure 3.3. The arm first moves down and to the side of the cup’s handle while making the
gripper parallel to the handle. Then the gripper moves inwards in order to position the gripper
around the handle. When using the right arm for grasping, then it is preferable to start this
type of reaching motion with the arm being to the right of the target object. This gives the arm
more space to smoothly glide inwards in order to position the gripper around the target object.
The reason why the ARPLACE probability distribution is not shifted even more to the right is
because ARPLACEs capture the probability that the manipulation action will succeed, when
the robot performs the manipulation from a base position within the corresponding grid cell.
The arms of the robot, however, are not mounted in the center of the robot’s base but slightly
to the front and to the side as can be seen in Figure A.2. This brings the arm another 12cm to
the right of the cup.

The left plot of Figure 4.14 depicts maximum grasp success probability for different values
of ∆xobj. It can be seen that grasp success probability is very high for values between 0.10m
and 0.42m. When the object’s distance to the table edge gets bigger than ≈ 0.42m, then
maximal grasp success probability shrinks significantly which is intuitive because the object
is hardly reachable any more. It is not intuitive that values of 0.09m and below do not lead
to higher grasp success probability. The reason is that our minimum value for ∆xobj when

93

CHAPTER 4 Action-Related Places

learning the Generalized Success Model was 0.07m. Values that are smaller than 0.07m are
therefore outside the parameter space of the Generalized Success Model and therefore no
classification boundaries were learned for them. When learning future versions of Generalized
Success Models this should be taken into account and the minimum value for ∆xobj should be
reduced.

FIGURE 4.14 Maximum grasp success probability (left plot) and runtime (right plot) for
∆xobj ∈ {0.00m, .., 0.60m}.

The right plot of Figure 4.14 depicts the runtime for computing ARPLACEs. It can be seen
that the runtime peaks at 44ms for xobj ∈ {0.09m, .., 0.24m}. The same values where grasp
success probability reaches its maximum. For smaller values of xobj, the the runtime is low.
The reason is that small values of xobj are outside the parameter space of the Generalized
Success Model. As a consequence, no classification boundaries are reconstructed for these
inputs. Fewer classification boundaries, however, lead to low runtime because the most time
consuming step is to sum over classification boundaries.

4.3.2 Impact of Object’s Distance along Table Edge

In this section we vary the distance of the cup along the table edge (task-relevant parameter (2)
ytab

obj . The other parameters are set to their default values: (1) ∆xobj = 0.15m; (3) ∆ψobj = −π
2
;

(4) σ∆xobj
= 0.025m; (5) σ∆yobj

= 0.025m; (6) σ∆xrob
= 0.04m; (7) σ∆yrob = 0.04m.

Figure 4.15 depicts ARPLACE probability distributions for the following values of yobj

ytab
obj ∈ {−0.20m, 0.00m, 0.20m}

It can be seen that the ARPLACE distribution includes many base positions with high grasp
success probability. Because the cup pose only moves along the table edge, the ARPLACE

probability distribution remains its shape, while moving along the table edge by the same

94

SECTION 4.3 Evaluation

ytab
obj =

0.20m 0.00m −0.20m

FIGURE 4.15 Visualization of how the ARPLACE changes for different values of ytab
obj . Every

ARPLACE is visualized from a top-down (first image row) and an isometric perspective
(second image row).

amount as the object. More precisely: The cup’s pose between the images for ytab
obj = 0.20m

and ytab
obj = 0.00m changes by 20cm towards the bottom of the image. The corresponding

ARPLACE probability distribution changes by exactly the same vector. Maximum grasp suc-
cess probability is similar in every plot. This is as expected. Because ytab

obj only shifts classifi-
cation boundaries after they have been reconstructed, ytab

obj does influence the position of the
ARPLACE probability distribution, but not its shape. When ARPLACEs for different values of
ytab

obj look a bit different, then this is due to variations in the sampling process.

Figure 4.16 depicts maximum grasp success probability and runtime for several ARPLACEs
with different values of ytab

obj . Maximum grasp success probability is between 98.9% and 100%
and runtime is between 47ms and 51ms. Please note that the first experiment for ytab

obj =

−0.20m had a runtime of 72ms. Because this outlier was peculiar we repeated the experi-
ment with the same outcome. After that we found that runtime was longer because of memory
allocation operations that were not necessary for subsequent experiments. That is why we
perform the first experiment twice and store only the runtime of the second experiment.

95

CHAPTER 4 Action-Related Places

FIGURE 4.16 Maximum grasp success probability (left plot) and runtime (right plot) for ytab
obj ∈

{−0.20m, .., 0.20m}.

4.3.3 Impact of Object Orientation

In this section we vary the orientation of the cup (task-relevant parameter (3) ∆ψobj). The
other parameters are set to their default values: (1) ∆xobj = 0.15m; (2) ytab

obj = 0.00m; (4)
σ∆xobj

= 0.025m; (5) σ∆yobj
= 0.025m; (6) σ∆xrob

= 0.04m; (7) σ∆yrob = 0.04m.

Figure 4.17 depicts ARPLACE probability distributions for the following values of ∆ψobj

∆ψobj ∈ {−
9

10
π,−2

3
π,−1

3
π, 0,

1

3
π,

2

3
π}

For ∆ψobj = − 9
10
π the ARPLACE probability distribution represents grasp success proba-

bility for grasping the target object with the right arm. There is no grid cell with grasp success
probability of above 0% for the left arm. The reason is that the Powercube arm is not dextrous
enough. The ARPLACE for ∆ψobj = − 9

10
π is different to the ARPLACEs we saw until now in

that it is rounder, more far away from the table, and shifted more to the left of the cup (when
the cup is seen from a position in front of the table). Until now we always saw ARPLACEs
that were shifted towards the right of the cup in order to enable the arm to smoothly approach
the cup’s handle. But in previous scenarios the handle was always oriented so that it pointed
to the right (∆ψobj = −π

2
). Now the handle is oriented so that it nearly points towards the

robot. When using our vector field controller for grasping, this leads to a different approach
vector. The vector field controller adapts the gripper’s orientation so that it is parallel to the
handle, and then approaches the handle parallel to the grasping point. The approach vector for
∆ψobj = − 9

10
π is from the front of the cup instead of from the right side, as depicted in the

top left image of Figure 4.17. Therefore, the robot needs more space towards the front and
less space to the right side. That is why the most promising base positions are found more far
away from the table, and more to the left of the cup.

96

SECTION 4.3 Evaluation

∆ψobj =

− 9
10π −2

3π −1
3π

∆ψobj =

0π 1
3π

2
3π

FIGURE 4.17 Visualization of how the ARPLACE changes for different values of ∆ψobj. The
approach vectors depict from which direction the robot approaches the handle with the
gripper.

For ∆ψobj = −2
3
π, the approach vector of the gripper is shifted a bit towards the right. As a

result, the ARPLACE probability distribution is closer to the table and shifts more to the right.
The most promising base positions are now directly in front of the cup. This effect is amplified
when the cup is rotated further to ∆ψobj = −1

3
π. Now the robot has to approach the cup from

the back and from the side, requiring it to be even closer to the table because it has to reach
behind the cup first in oder to approach it from the back. When ∆ψobj = 0π then the robot
is not able to grasp the cup. Its manipulator is not dextrous enough to perform a satisfying
reaching motion in this case.

Until now all ARPLACEs represented grasp success probability for grasping with the right
arm. The ARPLACEs for the cup orientations ∆ψobj = 1

3
π and ∆ψobj = 2

3
π are for performing

the grasp with the left arm. There is no grid cell with a grasp success probability of above 0%
for the right arm. In fact, the ARPLACEs for ∆ψobj = 1

3
π and ∆ψobj = 2

3
π are mirrored

versions of ARPLACEs for ∆ψobj = −1
3
π and ∆ψobj = −2

3
π, but for grasping with the left

97

CHAPTER 4 Action-Related Places

instead of the right arm. This is intuitive, because the kinematics (axes of rotation, link lengths,
joint limits) of the Powercube arms are mirrored versions of each other.

Figure 4.18 depicts maximum grasp success probability and runtime for several ARPLACEs
with different values of ∆ψobj. Because the robot is not able to grasp the cup when its handle
points away from the robot (∆ψobj ∈ [−0.503rad, .., 0.503rad]), or when it directly faces the
robot (∆ψobj ∈ [−π, ..,−3.016rad]∪ [3.016rad, .., π]), no classification boundaries can be re-
constructed in this case and grasp success probability is 0%. When no classification boundary
can be reconstructed, grasp success probability is 0% everywhere and further computations
are aborted.

FIGURE 4.18 Maximal grasp success probability (left plot) and runtime (right plot) for
∆ψobj ∈ {−π, .., π}.

4.3.4 Impact of Uncertainty into Object’s Pose

In this section we vary the uncertainty of the robot into the object’s pose, which is specified by
the task-relevant parameters (4) σ∆xobj

and (5) σ∆yobj
. First we evaluate the impact of σ∆xobj

.
The other parameters are set to their default values: (1) ∆xobj = 0.15m; (2) ytab

obj = 0.00m; (3)
∆ψobj = −π

2
; (5) σ∆yobj

= 0.025m; (6) σ∆xrob
= 0.04m; (7) σ∆yrob = 0.04m.

Figure 4.19 depicts ARPLACE probability distributions for the following values of σ∆xobj

σ∆xobj
∈ {0.00m, 0.04m, 0.08m, 0.16m, 0.23m, 0.30m}

For σ∆xobj
= 0.00m, the corresponding ARPLACE probability distribution has a large num-

ber of grid cells where grasp success probability is above 80%. It even reaches 100% at 3-4
grid cells, which is indicated by a plateau at the top.

For σ∆xobj
= 0.04m, the ARPLACE is very similar, although the area where grasp success

probability is above 80% is slightly smaller. This decrease in grasp success probability contin-

98

SECTION 4.3 Evaluation

σ∆xobj
=

0.00m 0.00m 0.04m

σ∆xobj
=

0.08m 0.16m 0.30m

FIGURE 4.19 Visualization of how the ARPLACE changes for different values of σ∆xobj
.

ues as σ∆xobj
increases. When σ∆xobj

= 0.08m there are only a few grid cells left with a grasp
success probability of above 80%. For σ∆xobj

= 0.16m maximum grasp success probability
reaches only 60%, and for a huge uncertainty of σ∆xobj

= 0.30m the most promising grid cells
reach only 30% grasp success probability.

As expected, grasp success probability decreases when the uncertainty about the object’s
pose increases. The reason is that when the robot is uncertain about ∆xobj, it is hard to decide
how close to move to the table. In Figure 4.19, the real pose of the target object could be
anywhere within the cyan rectangle with a probability of 68.3% because the cyan rectangle
visualizes the standard deviation of the object’s pose. Even worse it could be outside the
cyan rectangle with a probability of 31.7%. When the robot moves too close to the table and
the target object is closer to the table edge than expected (the estimated value of ∆xobj is
bigger than the true value of ∆xobj), then chances are high that the robot hits the cup with
its gripper because there is too little space to execute the reaching trajectory that makes the
gripper parallel to the handle. On the other side when the robot stays far away from the table,

99

CHAPTER 4 Action-Related Places

but the target object is more far away from the table edge than expected (the estimated value
of ∆xobj is smaller than true value of ∆xobj), then the object might be out of reach.

Figure 4.20 depicts maximum grasp success probability and runtime for several ARPLACEs
with different values of σ∆xobj

. It can be seen that maximum grasp success probability de-
creases when σ∆xobj

increases. The correlation seems to be linear although there are some
“jumps” which are most likely due to sampling variations. The level of maximum grasp suc-
cess probability falls below 80% when σ∆xobj

exceeds 0.10m.

FIGURE 4.20 Maximal grasp success probability (left plot) and runtime (right plot) for
σ∆xobj

∈ {0.00m, .., 0.30m}, σ∆yobj
∈ {0.00m, .., 0.30m}, and (σ∆xobj

, σ∆yobj
) ∈

{(0.00m, 0.00m), .., (0.30m, 0.30m)}.

We continue with evaluating the impact of σ∆yobj
on the ARPLACE probability distribution.

The other parameters are set to their default values: (1) ∆xobj = 0.15m; (2) ytab
obj = 0.00m; (3)

∆ψobj = −π
2
; (4) σ∆xobj

= 0.025m; (6) σ∆xrob
= 0.04m; (7) σ∆yrob = 0.04m.

Figure 4.21 depicts ARPLACE probability distributions for the following values of σ∆yobj

σ∆yobj
∈ {0.00m, 0.04m, 0.08m, 0.16m, 0.30m}

For σ∆yobj
= 0.00m, where the robot is completely certain about the object’s pose along

the table edge, the ARPLACE probability distribution has a large number of grid cells where
grasp success probability is above 80%. The same is the case for σ∆yobj

= 0.04m. For σ∆yobj
=

0.08m the most promising grid cells are still very good, although it is clearly visible that the
number of grid cells with maximal grasp success probability of more than 80% decreases.
While maximum grasp success probability decreases, the ARPLACE probability distribution
gets bigger, meaning that there are more grid cells with a grasp success probability above 0%.
This is most noticeable at the borders of the ARPLACE that stretch out more than previously.
The decrease of maximum grasp success probability and increase of ARPLACE area continues
for σ∆yobj

= 0.16m and σ∆yobj
= 0.30m.

100

SECTION 4.3 Evaluation

σ∆yobj
=

0.00m 0.04m 0.08m

σ∆yobj
=

0.16m 0.30m 0.30m

FIGURE 4.21 Visualization of how the ARPLACE changes for different values of σ∆yobj
.

Figure 4.20 depicts maximum grasp success probability for several values of σ∆yobj
. The

correlation between maximum grasp success probability and σ∆yobj
seems to be linear and

there are fewer “jumps” than for the plot of σ∆xobj
. The level of grasp success probability falls

below 80% when σ∆yobj
exceeds 0.19m. The plot further reveals that maximum grasp success

probability is always higher when the uncertainty of σ∆yobj
and σ∆xobj

is set to the same value.
This result suggests that the robot is more robust towards uncertainties of σ∆yobj

than it is to-
wards uncertainties of σ∆xobj

. Or less formal: the robot can handle uncertainties of the object’s
pose along the table edge better than it can handle uncertainties of the object’s distance to the
table edge. Another hint is given when comparing Figure 4.21 to Figure 4.19. For example,
maximum grasp success probability for σ∆yobj

= 0.16m is above 80%, while maximum grasp
success probability for σ∆xobj

= 0.16m is below 80%. Actually, the ARPLACE probability
distribution for σ∆yobj

= 0.16m is very similar to that of σ∆xobj
= 0.08m when comparing

maximum grasp success probability.

The reason may be that the robot’s motion system can compensate for errors along table

101

CHAPTER 4 Action-Related Places

edges more easily by stretching the arm out farther to the left or right. When considering the
robot’s arm length of 0.84cm to the front of the gripper, then the robot can stretch out his
arm 0.84cm to either direction. So the span width of the arm along the table edge is 1.68m.
The span width of the arm from the front to the back is also 1.68cm. However, for the task of
grasping the cup, only the span width to the front is relevant, which is only 0.84m. Although
we have not proven this yet, our claim is that the limited span width is the reason why the
robot can handle uncertainties of σ∆yobj

more robustly than uncertainties of σ∆xobj
.

To conclude this section, we evaluate the impact of varying σ∆xobj
and σ∆yobj

simultane-
ously. Figure 4.22 depicts ARPLACE probability distributions for the following values of
(σ∆xobj

, σ∆yobj
)

(σ∆xobj
, σ∆yobj

) ∈ {(0.00m, 0.00m), (0.08m, 0.08m), (0.16m, 0.16m)}

(σ∆xobj
, σ∆yobj

) =

(0.00m, 0.00m) (0.08m, 0.08m) (0.16m, 0.16m)

FIGURE 4.22 Visualization of how the ARPLACE changes for different values of (σ∆xobj
,

σ∆yobj
.

Maximum grasp success probability for more values of (σ∆xobj
, σ∆yobj

) and the runtime for
computing them is depicted in Figure 4.20.

4.3.5 Impact of Uncertainty into Robot’s Pose

In this section we vary the uncertainty of the robot into its base position, which is specified
by the task-relevant parameters (6) σ∆xrob

and (7) σ∆yrob . We start with evaluating the impact
of σ∆xrob

. The other parameters are set to their default values: (1) ∆xobj = 0.15m; (2) ytab
obj =

0.00m; (3) ∆ψobj = −π
2
; (4) σ∆xobj

= 0.025m; (5) σ∆yobj
= 0.025m; (7) σ∆yrob = 0.04m.

Figure 4.23 depicts ARPLACE probability distributions for the following values of σ∆xrob

102

SECTION 4.3 Evaluation

σ∆xrob
∈ {0.00m, 0.08m, 0.16m, 0.24m, 0.30m}

σ∆xrob
=

0.00m 0.00m 0.08m

σ∆yrob =

0.16m 0.24m 0.30m

FIGURE 4.23 Visualization of how the ARPLACE changes for different values of σ∆xrob
.

For σ∆xrob
= 0.00m, the corresponding ARPLACE probability distribution has a large num-

ber of grid cells where grasp success probability is above 80%. It even reaches 100% at several
grid cells, which is indicated by a plateau at the top. The plateau is more noticeable than the
plateau in Figure 4.19. An answer to the question why the plateau is more pronounced is not
trivial. An easy but incorrect answer to the question of the more pronounced plateau would
be that the default object pose uncertainty (0.025m) in the current case is lower than the de-
fault base position uncertainty in the case of Figure 4.19 (0.04m), resulting in an ARPLACE

probability distribution with higher maximum grasp success probability. However, the impact
of object pose uncertainty and base position uncertainty can not be compared. Object pose
uncertainty is taken into account when reconstructing classification boundaries. Figure 4.8
depicts that even if there is a considerable amount of object pose uncertainty, there are still
several grid cells that are included in all classification boundaries, leading to a grasp success

103

CHAPTER 4 Action-Related Places

probability of 100%. Only if object pose uncertainty raises above a certain threshold, then
there is no grid cell anymore that is included in all reconstructed classification boundaries. On
the other side, when base position uncertainty increases, then it immediately impacts maxi-
mum grasp success probability because of the conditioning step that is shown in Figure 4.11.
The reason for the more defined plateau in Figure 4.23 is that object pose uncertainty is low
enough (σ∆xobj

= σ∆yobj
= 0.025m) so that there are several grid cells where all classifi-

cation boundaries overlap, while the immediately affecting base position uncertainty is low
(σ∆xrob

= 0.00m, σ∆yrob = 0.04m). Although object pose uncertainty was lower in the top left
image of Figure 4.19 (σ∆xobj

= 0.00m and ∆yobj = 0.025m), the immediately affecting base
position uncertainty was higher (σ∆xrob

= σ∆yrob = 0.04m).
The remaining images for σ∆xrob

∈ {0.08m, 0.16m, 0.24m, 0.30m} show that increasing
σ∆xrob

continually lowers maximum grasp success probability and stretches out the overall
area of the ARPLACE probability distribution. This is also shown in the left plot of Figure 4.24
that depicts maximum grasp success probability for several values of σ∆xrob

. The right plot
depicts the corresponding runtimes which are all close to 44ms.

FIGURE 4.24 Maximal grasp success probability (left plot) and runtime (right plot) for
σ∆xrob

∈ {0.00m, .., 0.30m}, σ∆yrob ∈ {0.00m, .., 0.30m}, and (σ∆xrob
, σ∆yrob) ∈

{(0.00m, 0.00m), .., (0.30m, 0.30m)}.

We continue with evaluating the impact of σ∆yrob on the ARPLACE probability distribution.
The other parameters are set to their default values: (1) ∆xobj = 0.15m; (2) ytab

obj = 0.00m; (3)
∆ψobj = −π

2
; (4) σ∆xobj

= 0.025m; (5) σ∆yobj
= 0.025m; (6) σ∆yrob = 0.04m.

Figure 4.25 depicts ARPLACE probability distributions for the following values of ∆yrob

σ∆yrob ∈ {0.00m, 0.16m, 0.30m}

and image of Figure 4.24 depicts maximal grasp success probability and runtime for σ∆yobj
∈

{0.00m, .., 0.30m}.

104

SECTION 4.3 Evaluation

σ∆yrob =

0.00m 0.16m 0.30m

FIGURE 4.25 Visualization of how the ARPLACE changes for different values of σ∆yrob . The
values of σ∆yrob are denoted above the plots.

The images show that while σ∆yrob is increasing, maximum grasp success probability gets
lower, and the overall area of the ARPLACE probability distribution stretches out. The de-
crease in grasp success probability however is slower when increasing σ∆yrob than it is when
increasing σ∆xrob

. This indicates that the robot can handle uncertainties of its base position
along the table edge better than it can handle uncertainties of the distance between the table
and the base position. We assume that the same explanation as in the last section holds: The
span width of the robot’s arms to the front is limited to 0.84m while the span width to both
sides is 1.68m.

To conclude this section, we evaluated the impact of varying σ∆xrob
and σ∆yrob simulta-

neously. Figure 4.22 depicts ARPLACE probability distributions for the following values of
(σ∆xrob

, σ∆yrob)

(σ∆xrob
, σ∆yrob) ∈ {(0.00m, 0.00m), (0.16m, 0.16m), (0.30m, 0.30m)}

Because the condition σ∆xrob
= σ∆yrob holds for the plots, the ARPLACE probability dis-

tribution shares strong similarities with bivariate Gaussian distributions when base position
uncertainty is the dominant factor. This is the case for the center and right plot of Figure 4.22.
Figure 4.20 depicts maximal grasp success probability and runtime for (σ∆xrob

, σ∆yrob) ∈
{(0.00m, 0.00m), .., (0.30m, 0.30m)}.

105

CHAPTER 4 Action-Related Places

(σ∆xrob
, σ∆yrob) =

(0.00m, 0.00m) (0.16m, 0.16m) (0.30m, 0.30m)

FIGURE 4.26 Visualization of how the ARPLACE changes for different values of σ∆xrob
and

σ∆yrob . The values of (σ∆xrob
, σ∆yrob) are denoted above the plots.

4.4 ARPLACE Information for High-Level Planning

This section describes that Action-Related Places provide valuable information for high-level
planning systems. This information can be used in order to forestall which actions to perform
in order to raise the chances of successful manipulation. In section 4.4.1 we will examine
what high-level planning systems can do in order to raise manipulation chances when the
ARPLACE reports low maximum grasp success probability. How high-level planning systems
can find the reason when a manipulation action failed that was predicted to be successful with
high probability is discussed in section 4.4.2.

4.4.1 Raising Manipulation Chances

When an ARPLACE finds very promising manipulation places with grasp success probabil-
ity of more than 90% there is mostly no need for high-level planning systems to take fur-
ther actions. But consider the ARPLACE probability distributions in Figure 4.27 for example
that were taken from the evaluation in the last section. The high-level planning system can
not honestly assume to successfully perform manipulation actions in any of these situations.
And although the Action-Related Places look similar to a certain degree, the corresponding
situations should be handled differently. A high-level planner that is able to interpret the in-
formation that is represented by an ARPLACE can quickly decide which actions will help to
improve the situation.

Consider the situation in the left image of Figure 4.27, which was computed for the fol-
lowing task relevant parameters: (1) ∆xobj = 0.15m; (2) ytab

obj = 0.00m; (3) ∆ψobj = −π
2
;

(4) σ∆xobj
= 0.16m; (5) σ∆yobj

= 0.16m; (6) σ∆xrob
= 0.04m; (7) σ∆yrob = 0.04m. The

106

SECTION 4.4 ARPLACE Information for High-Level Planning

FIGURE 4.27 ARPLACE probability distributions where the robot can not expect to success-
fully perform the manipulation action. The high-level planner should consider additional
actions in order to increase grasp success probability. Left: σ∆xobj

= σ∆yobj
= 0.16m.

Center: σ∆xrob
= σ∆yrob = 0.30m. Right: ∆xobj = 0.60m.

ARPLACE covers a large area but does reach a maximum grasp success probability of only
48.2%. The high-level planner could try to improve the situation by analysing the reasons why
the ARPLACE does not find more promising manipulation places. When examining the task
relevant parameters it is obvious that the estimation of the object’s pose is very uncertain with
σ∆xobj

= 0.16m and σ∆yobj
= 0.16m. Therefore, additional measurements from the the vi-

sion system are the primary action for being able to find better manipulation places. This is
a perfect example where additional exploration and reducing uncertainty may lead to better
manipulation chances.

When examining the ARPLACE in the center image of Figure 4.27 it can be seen that
the ARPLACE is diffuse. Maximum grasp success probability is as low as 21.6%. The ma-
nipulation task is unlikely to succeed and the high-level planner should not execute it in
order not to risk injuries. When analysing the task-relevant parameters for computing the
ARPLACE: (1) ∆xobj = 0.15m; (2) ytab

obj = 0.00m; (3) ∆ψobj = −π
2
; (4) σ∆xobj

= 0.025m;
(5) σ∆yobj

= 0.025m; (6) σ∆xrob
= 0.30m; (7) σ∆yrob = 0.30m. The reason for low grasp

success probability is clear. The robot’s uncertainty into its base position is extremely high
with σ∆xrob

= 0.30m and σ∆yrob = 0.30m. The primary goal is therefore trying to obtain a
better localization. Additional range finder measurements, or moving around in order to find
landmarks are appropriate actions.

The ARPLACE on the right image of Figure 4.27 is small and has a maximum grasp success
probability of only 7.5%. However, additional exploration will not help in this situation. Con-
sidering the task relevant parameters (1) ∆xobj = 0.60m; (2) ytab

obj = 0.00m; (3) ∆ψobj = −π
2
;

(4) σ∆xobj
= 0.025m; (5) σ∆yobj

= 0.025m; (6) σ∆xrob
= 0.04m; (7) σ∆yrob = 0.04m it can

be seen that the distance of the object to the table edge is ∆xobj = 0.60m. So the robot has to
completely stretch out his arm making the reaching motion complicated. Of course there is the

107

CHAPTER 4 Action-Related Places

possibility of moving around the table and grasping the object with the left hand, but this will
be discussed in the next chapter. For now let us assume that the robot wants to grasp the object
with the right arm from the nearby table edge. There is not much that the robot can do in this
situation in order to improve its chances because low maximum grasp success probability is
the consequence of a difficult manipulation task. The important aspect is that a high-level plan-
ner can infer this fact by examining the ARPLACE and the task-relevant parameters. Knowing
that a task is difficult saves time because the high level planner can immediately focus on the
primary question. Is it worth to perform the task at the drawback of a presumable failure, or is
aborting the task the better option?

4.4.2 Analysing Unexpected Failure

Even when ARPLACEs are used for positioning the robot’s base, it is possible that a manipu-
lation action fails. This can have several reasons.

A) The task is difficult

B) The robot made errors in the state estimation process

C) Effects occured that are not familiar to the robot

Tasks are difficult when the target object is hardly reachable. In the left plot of Figure 4.28
for example, there are several reasons why the task is hard. The target object is far away from
the table border and the chair blocks the most promising base positions for grasping (con-
sidering obstacles in the ARPLACE framework is discussed in the next chapter). Moreover,
the cup’s handle requires the robot to approach it from a direction that makes it necessary to
completely stretch the arm. And finally the uncertainty into the target object’s pose is high
with σ∆xobj

= σ∆yobj
= 0.1m. That is why the most promising base positions reach a grasp

success probability of just above 20%. The robot could try to solve this situation by either
trying to succeed, aborting the task, or asking a human person for help. However, when per-
forming the task and failing, then the high-level planning system knows the reason for failing.
It was a difficult task because of circumstances like blocking obstacles, huge distances to the
manipulation place, or awkward object orientation. Failing had to be taken into account before
performing the manipulation.

In case B) the robot failed because it made assumptions that do not hold. Maybe the robot
overlooked an obstacle, or was too certain about the position of the target object. Please note
that high state estimation uncertainty and erroneous state estimation are not the same.

Erroneous state estimation is not observed by the robot and leads to wrong ARPLACEs.
The robot will perform the manipulation action in the face of misleading certainty. The center

108

SECTION 4.4 ARPLACE Information for High-Level Planning

FIGURE 4.28 Reasons why a manipulation action may fail. Left: The grasping task is difficult.
Center: The robot overlooked the chair and will bump into it. Right: The robot estimates
the cup to be at a wrong pose.

plot of Figure 4.28 depicts a scenario where the robot overlooked the chair at the kitchen table.
As a result, the area of promising grid cells that is occupied by the chair was not erased. The
robot will navigate towards the region with grasp success probability of more than 80% and
bump into the chair. The right plot of Figure 4.28 depicts a scenario where the robot is too
certain about its estimation. The robot predicts the object to be located at the wrong pose and
additionally being inappropriately certain that his estimation is right. The consequence is that
the robot computes a wrong ARPLACE.

High state estimation uncertainty on the other side leads to an ARPLACE with low grasp
success probability, but an ARPLACE that is correct. The left and center image of Figure 4.27
are examples for ARPLACEs with high state estimation uncertainty. Because the robot is aware
of high uncertainty the success probability can be improved by performing additional explo-
ration.

In case C) the robot fails because of reasons that have an impact on the manipulation action
but are not considered by the robot. A manipulator joint might have been exchanged lately
which leads to lower friction, or a new motor controller has been added. These are robot skills
that are encoded in Generalized Success Models. Significant changes in the robot’s skills there-
fore requires the robot to re-learn Generalized Success Models, while small gradual changes
like an increase in joint friction over time may be included by continually updating the Gener-
alized Success Model. However, updating Generalized Success Models online is not done yet,
but would be a tempting topic for future research. To sum up, if the robot’s skills change but
this is not reflected in the Generalized Success Model, then the computed ARPLACE proba-
bility distribution will overestimate grasp success probability.

The question is how high-level planning systems should react if a manipulation action fails.
When maximum grasp success probability is low, we already discussed that the high-level

109

CHAPTER 4 Action-Related Places

planning system can infer the problematic aspects of the manipulation task. In case state es-
timation uncertainties are low, then the task is either difficult or additional exploration is re-
quired. This can mean to either advise the vision system to predict the target object’s pose
more precisely, or to make the localization system find out more about the current base po-
sition. Whatever might be the reasons, the high-level planning system can infer them and act
rationally.

The hard problems are those where the ARPLACE predicts a grasping action to succeed
with high probability, but it fails nevertheless. In this case the high-level planning system
has to guess about the reasons. The robot could learn new Generalized Success Models in
order to reflect changed robot skills or perform additional exploration. However, the high-
level planning system is not certain which action might improve the situation. Additionally,
updating Generalized Success Models requires a significant amount of time and should be
delayed until idle periods.

4.5 Results from the Simulated Robot

In this section we evaluate if manipulation places that are proposed by the ARPLACE frame-
work are superior to other place-finding strategies. In this evaluation, the position to which
the robot navigates is the position for which the ARPLACE framework computed the highest
probability that grasping the target object will succeed. We call this ARPLACE-based naviga-
tion strategy. We compare this strategy to a place-finding strategy that is called FIXED, which
always navigates to a location that has the same relative offset to the target object, whilst at
the same time taking care not to bump into the table. FIXED chooses the manipulation pose by
trying to keep a distance of ∆xrob + ∆xobj = 0.68m and ∆yrob = −0.09m between its base
position and the target object. If the robot would bump into the table, because the target object
is too far away from the table edge, then the robot approaches the table as close as possible in
order to try to keep the distance between its shoulder and the target object small.

The left image of Figure 4.29 depicts an example where the cup’s distance to the table
edge is 0.3m. The robot therefore chooses to keep a distance of 0.38m to the table, and sets
∆yrob = −0.09m. In the right image of Figure 4.29 ∆xobj = 0.5m. Because the robot wants
to keep a distance of at least 0.25m in order not to bump into the table, it chooses the minimum
value of ∆xrob = 0.25m and the default value of ∆yrob = −0.09m.

The reason why we chose the FIXED navigation strategy for comparing it to the ARPLACE

navigation strategy is that FIXED achieved the highest number of successful manipulation
actions among all navigation strategies that propose to move to a specific offset with respect

110

SECTION 4.5 Results from the Simulated Robot

Δxrob=
0.38m

Δxobj=
0.3m

Δ
y
rob=

-0
.0
9
m Δxrob=

0.25m

Δxobj=
0.5m

Δ
y
rob=

-0
.0
9
m

FIGURE 4.29 Manipulation places that are proposed by the FIXED navigation strategy. The
origin of the relative feature space is colored red.

to the target object. That is why FIXED is the intuitive benchmark navigation strategy.

In the experiments, we vary the uncertainty of the robot into its base position 〈σ∆xrob
, σ∆yrob〉,

and into the pose of the cup 〈σ∆xobj
, σyobj

〉. For each combination of these parameters, the robot
performs navigate-reach-grasp-lift sequences and records the result just as during data acqui-
sition for learning the Generalized Success Model. To simulate the uncertainty, we sample a
specific ‘perceived’ robot and cup position from the probability distribution that is defined by
their mean and covariance matrix. The result of the action is determined by the true simulated
state of the world, but the robot grounds its decisions in the perceived samples.

The results of this evaluation are summarized in the three bar plots in Figure 4.30, which de-
pict the success ratios of the ARPLACE-based and FIXED navigation strategies. Each ratio is
computed from over 100 examples. We performed a hypothesis test for the following hypoth-
esis: “when performing a manipulation action from manipulation places that are proposed by
the ARPLACE framework, then the probability of successful grasping is significantly higher
than when performing a manipulation action from places that are proposed by the FIXED strat-
egy”. The p-value above each pair of bars is computed with a χ2 test in order to support this
hypothesis.

The first graph depicts the success ratios for increasing uncertainty about the object pose
(σ∆xobj

∈ {0.00m, 0.05m, 0.75m, 0.10m, 0.15m, 0.20m}) when robot position uncertainty is
set to σ∆xrob

= 0.05m. In all cases, the ARPLACE strategy significantly outperforms the
FIXED strategy (p < 0.01). Furthermore, the performance of ARPLACE is much more robust
towards increasing uncertainty of object pose. For example, when the uncertainty into the ob-
ject’s pose σ∆xobj

= 0.15m then manipulation was successful 90% of the time when performed
from places that were proposed by the ARPLACE framework. Manipulation was successful

111

CHAPTER 4 Action-Related Places

p<0.01 p<0.01 p<0.01 p<0.01

p<0.01

p<0.01

S
u
cc
e
ss
 r
a
tio

0 0.05 0.075 0.10 0.15 0.20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p<0.01

p<0.01

p<0.01

p=0.17

p=0.96

p-=0.45

S
u
cc
e
ss
 r
a
tio

00 0.05 0.075 0.10 0.15 0.20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ARPLACE

Fixed

p<0.01

p<0.02

p<0.01

p<0.05

p=0.09

p=0.54

S
u
cc
e
ss
 r
a
tio

0 0.05 0.075 0.10 0.15 0.20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Object uncertainty Robot uncertainty Robot and object uncertainty ,

FIGURE 4.30 Success ratios of the ARPLACE and FIXED navigation strategies when changing
the uncertainties into object pose (left imaag), robot position (center image), and robot and
object position (right image).

only 50% of the time, when performed from places that were proposed by the FIXED strategy.
This indicates that the design goal of making the ARPLACE framework robust against state
estimation uncertainties into the object’s pose was accomplished.

The same trend can be observed when increasing the uncertainty of the robot into its base
position from 0.00m to 0.20m and setting object pose uncertainty to σ∆xobj

= 0.05m. It can
be seen that manipulation places proposed by the ARPLACE framework are significantly
superior when σ∆xrob

< 0.10m. However, when σ∆xrob
> 0.10m, then the difference be-

tween ARPLACE and FIXED is no longer significant. The last graph depicts the success ratios
when increasing both robot and object uncertainty. Again, ARPLACE significantly outper-
forms FIXED.

Summarizing, ARPLACE is more robust towards state-estimation uncertainties than the
benchmark navigation strategy FIXED. The effect is more pronounced for uncertainties into
object pose than it is for uncertainties into robot position.

112

CHAPTER 5

Refining Action-Related Places

The last chapter described how Action-Related Places are computed online by estimating the
robot’s base position and the target object’s pose, and using these estimations as input for
querying the Generalized Success Model. It was explained how Monte-Carlo simulation and
conditioning techniques are used to derive an Action-Related Place that is based on grasp
success probability. In order to focus on the basic ARPLACE algorithm we constrained the
considered task to grasping cups from a specific table edge. In this chapter we will extend the
concept of Action-Related Places and present how ARPLACEs are refined in order to make
them more general.

Figure 5.1 depicts an overview of the refinement techniques that are explored in this chapter
and depicts exemplary ARPLACE plots that illustrate the corresponding refinement technique.

The rest of this chapter is structured as follows. Section 5.1 presents related work. Sev-
eral ARPLACEs for grasping from the top are depicted in section 5.2, and it is analyzed what
impact the varying of task-relevant parameters has on the resulting ARPLACE probability dis-
tribution. Section 5.3 introduces multi modal ARPLACE probability distributions and section
5.4 describes how ARPLACEs for grasping with the left arm can be computed without learning
an additional Generalized Success Model. Section 5.5 deals with the question how obstacles
can be taken into account. Section 5.6 investigates how ARPLACEs for grasping multiple ob-
jects from a single base position are computed, and presents how a transformational planning
system decides whether grasping multiple objects at once is advantageous or not. How the
ARPLACE framework accounts for uncertainty into the target object’s type is studied in sec-
tion 5.7, and section 5.8 describes how to refine ARPLACEs when grasping from a promising
manipulation place was not successful in the first attempt.

113

CHAPTER 5 Refining Action-Related Places

ARPlace

Top GraspSide Grasp

Different
Grasps

Arm S ideLef t arm

Right arm

Obstacles

Bef ore conside-
ring obstacles

Af ter conside-
ring obstacles

Unexpected
Experience

Bef ore
f ailed grasp

Af ter
f ailed grasp

Multi-Modal
ARPlaces

Grasping f rom
all table sides

Multi-Arm
Manipulation

Grasping two
objects at once

Uncertainty in
Object Type

Merged ARPlace f or
side and top grasp

FIGURE 5.1 Visual overview of chapter 5. Green circles depict refinement techniques.
ARPLACE plots next to refinement techniques viusalize an examplary application of the
corresponding refinement technique.

5.1 Related Work

Friedman and Weld (1996) demonstrate the advantages of least-commitment planning. They
showed that setting open conditions to abstract actions and later refining this choice to a par-
ticular concrete action can lead to exponential savings. The principle of lazy evaluation was
applied to motion planning by Bohlin and Kavraki (2000). They were able to significantly
reduce the number of collision checks for building probabilistic roadmaps.

Sussman (1973) was the first to realize that bugs in plans do not only lead to failure, but
are actually a source of information to construct improved and more robust plans. Although
this research was done in the highly abstract symbolic blocks world domain, this idea is still
fundamental to transformational planning.

114

SECTION 5.2 ARPLACEs for Grasping from the Top

Beetz (2001) described the declarative and expressive plan language RPL that is the basis of
our transformational planning system. The constraints for plan design, especially the specifica-
tion of declarative goals that indicate the purpose of code parts, have been shown by Beetz and
McDermott (1992). Our system scales with respect to the modeling of navigation tasks, and
to reasoning about perception that is based on computer vision, the relation between objects
and their representation in the robot’s belief, as well as reasoning about complex manipulation
tasks.

Temporal projection is an integral component of a transformational planning system. Mc-
Dermott (1997) developed a powerful, totally ordered projection algorithm that is capable of
representing and projecting various kinds of uncertainty, concurrent threads of execution, and
exogenous events. Beetz and Grosskreutz (2000) extended the language for specifying action
models and grounded their representation into probabilistic hybrid automata as a formal un-
derpinning. The representation language was shown to be rich enough to accurately predict
reactive navigation behavior of an autonomous robot office courier.

5.2 ARPLACEs for Grasping from the Top

ARPLACE probability distributions for grasping objects from the top are computed just like
ARPLACEs for grasping from the side. That is why the algorithm for computing ARPLACEs
that was described in section 4.2 also applies here. However, ARPLACEs for grasping from
the side and ARPLACEs for grasping from the top are not identical because the Generalized
Success Model that is used for reconstructing classification boundaries is different.

This section presents several examples for ARPLACEs for grasping objects from the top.
24.255 experiments were used to learn the corresponding Generalized Success Model as was
described in section 3.6.2. Figure 5.2 depicts an ARPLACE for grasping a glass from the top.
The following task relevant parameters were used: (1) ∆xobj = 0.15m; (2) ytab

obj = 0.00m;
(3) ∆ψobj = −π

2
; (4) σ∆xobj

= 0.025m; (5) σ∆yobj
= 0.025m; (6) σ∆xrob

= 0.04m; (7)
σ∆yrob = 0.04m.

In the following, we will briefly examine the effect that varying each task-relevant parameter
has on the ARPLACE. Figure 5.3 depicts how the ARPLACE changes when a certain task-
relevant parameter is varied. One task-relevant parameter is changed in the first five plots,
while the other six parameters are set to their default value. In the last plot on the bottom right,
∆xrob and ∆yrob are jointly varied.

The following results can be observed.

• Top left image: When the object’s distance to the table edge increases, the ARPLACE

115

CHAPTER 5 Refining Action-Related Places

FIGURE 5.2 Visualization of an ARPLACE for grasping a glass from the top.

moves closer to the table, and the overall area of promising base positions shrinks.

• Top center image: When the object moves along the table edge, the ARPLACE follows
by the same distance without changing its shape

• Top right image: When the angle of the object changes, the ARPLACE remains the same

• Bottom left image: When the uncertainty into the object’s distance to the table edge in-
creases, grasp success probability decreases while the contours of the ARPLACE remain

• Bottom center image: When the uncertainty into the object’s position along the table
edge changes, grasp success probability decreases and the ARPLACE stretches out more
along the table edge

• Bottom right image: When the uncertainty into the robot’s base position increases, the
area of the ARPLACE gets bigger and grasp success probability decreases

The results are similar to the results for grasping from the side. One major difference re-
mains. Changing the object’s orientation does not have an impact on the ARPLACE probability
distribution.

5.3 Multi Modal ARPLACEs

Until now we considered grasping the target object from the left table edge. However, grasp-
ing from any table edge has to be possible. The solution is straightforward because of the
relative feature space. The robot estimates the target object’s pose in world coordinates, and
then computes the object’s pose relative to all table edges. This enables the robot to compute
an ARPLACE probability distribution for every table edge. The top left image of Figure 5.4
depicts a scenario where the robot estimates the cup’s pose to be 〈3.02m, 2.1m,−3

4
π〉 relative

116

SECTION 5.3 Multi Modal ARPLACEs

∆xobj = 0.30m ytab
obj = 0.20m ∆ψobj = π

σ∆xobj
= 0.15m σ∆yobj

= 0.15m (σ∆xrob
, σ∆yrob) = (0.15m, 0.15m)

FIGURE 5.3 Visualization of the impact of changing task-relevant parameter on the ARPLACE

that is depicted in Figure 5.2. The task-relevant parameter(s) that change is depicted above
the subplot. All other parameters are set to their default value.

to the world frame. Subsequent images show the cup’s pose relative to every table edge and
the corresponding ARPLACEs. It can be seen that the cup can be grasped from the left and top
table edge.

The resulting ARPLACE is computed by merging the ARPLACEs for each table edge. The
merging is done by using the max-operator as follows

p(x, y) = max(pi(x, y)) ; i ∈ 1, .., n (5.1)

where pi(x, y) is grasp success probability of grid cell (x, y) when computing an ARPLACE

for tabel edge i. n is the overall number of table edges. The resulting ARPLACE is depicted in
the bottom right image of Figure 5.4. It can be seen that a multi modal ARPLACE probability
distribution emerges.

Because an ARPLACE has to be computed for every table edge the runtime for computing
multi-modal ARPLACEs increases accordingly. If the target object is reachable from every
table edge, then worst case runtimes of 180ms are required. The runtime for computing the

117

CHAPTER 5 Refining Action-Related Places

Xobj = 0.3225m

Ψobj = -(3/4)*π

Xobj = 1.0m

Ψobj = (3/4)*π

Xobj = 0.4225m

Ψobj = (1/4)*π

Xobj = 0.20m

Ψobj = -(1/4)*π

<3.0225m, 2.10m, -(3/4)*π>

Multi modal ARPlace

FIGURE 5.4 Top left: Scenario with the robot’s estimation of the cup’s absolute pose. The
other plots depict ARPLACEs for grasping the cup from the left table edge (top center
plot), from the bottom table edge (top right plot), from the right table edge (bottom left
plot), and from the top table edge (bottom center plot). In every plot, the cup’s pose with
respect to the relative feature space (∆xobj and ∆ψobj), the origin of the relative feature
space (big black dot), and the x-axis of the relative feature space (black arrow) is drawn.
Bottom right: Multi modal ARPLACE for grasping from any table edge.

ARPLACEs in the above example was 89ms. 45ms for the ARPLACE from the left table edge,
43ms for the ARPLACE from the top table edge, and 1ms for the ARPLACEs of the bottom and
right table edge. Because the computation of different ARPLACEs share no data, computing
multi-modal ARPLACEs scales very well when it is distributed among multiple CPUs. The
step of merging all ARPLACEs with the max operator took only 0.14ms.

5.4 ARPLACEs for Grasping with the Left Arm

The Generalized Success Models that we presented in chapter 3 were learned for grasping with
the right arm. However, computing manipulation places for grasping with the left arm has to be
supported by the ARPLACE framework. In the general case an additional Generalized Success

118

SECTION 5.4 ARPLACEs for Grasping with the Left Arm

Model needs to be learned for grasping with the left arm. Learning an additional Generalized
Success Model and using it in order to compute ARPLACEs is straightforward. However, this
approach requires additional time in the offline phase because we have to perform additional
experiments.

If the kinematics of the robot’s arms have the property of being mirror images of each other,
then a Generalized Success Model that was learned for one arm can be used for computing
ARPLACEs for both arms. Figure A.3 depicts the arm kinematics of the Powercube arms. It
can be seen that the coordinate frames were chosen so that one arm is a mirror image of the
other arm. When the corresponding joints of both arms are turned to the same angle, each arm
moves to the mirrored direction of the other arm. Figure 5.5 depicts examples.

FIGURE 5.5 Different manipulator configurations show that the kinematics of the Pow-
ercube arms are mirror images of each other. The joint angles in the following arm
configurations are specified in radians. Left image: Home pose with a configuration of
〈0.0, 0.0, 0.0, 0.0, 0.0, 0.0〉 for both arms. Center image: First two joints are rotated. The
configuration of both arms is 〈0.6, 0.8, 0.0, 0.0, 0.0, 0.0〉. Right image: Both arms are set to
configuration 〈0.8, 3.0,−1.0,−2.6,−2.0, 0.0〉.

The mirror property of manipulator kinematics makes it possible to use the Generalized
Success Model that was learned for grasping with the right arm to compute ARPLACEs for
grasping with the right and left arm. Figure 5.6 depicts an ARPLACE for grasping the cup
with the right arm.

It can be seen that there is no grid cell where grasp success probability is above 0%, so
grasping with the right arm seems to be impossible. This is intuitive because the cup is ori-
ented in a way that would require the right arm to be extremely rotated, which is beyond the
manipulator’s joint limits. However, when observing the scenario, then a grasp with the left
arm seems to be possible.

Figure 5.7 visualizes the computational process for computing the ARPLACE for grasping
with the left arm. The top left image depicts the scenario. The first step is to find the equivalent
problem for grasping with the right arm. Because the kinematics of the manipulators are mirror
images of each other, the equivalent problem can be found by mirroring the cup’s pose with

119

CHAPTER 5 Refining Action-Related Places

FIGURE 5.6 ARPLACE for grasping the cup with the right arm.

respect to an axis that is normal to the table edge and goes through the center of the cup.
The result of the mirroring can be seen in the top right image of Figure 5.7. The pose of the
cup with respect to the relative feature space of the left table edge changes from 〈0.15m, π

4
〉

to 〈0.15m,−π
4
〉. The second step is to compute the ARPLACE probability distribution for

grasping with the right arm. The result can be seen in the bottom right image of Figure 5.7.
The third step is to mirror the ARPLACE with respect to the mirror axis that has already been
used in step 1. The resulting ARPLACE for grasping the cup with the left arm is depicted in
the bottom left image of Figure 5.7.

The runtimes for the three steps that are depicted in Figure 5.7 are below 0.1ms for mir-
roring object pose, 45ms for computing the ARPLACE, and below 0.1ms for mirroring the
ARPLACE.

When we apply the extended algorithm to the example of multi modal ARPLACEs from the
last section, we recognize that the cup is not only graspable with the right arm from the left
and top table edge, but can also be grasped with the left arm from the right table edge. The
resulting ARPLACE probability distribution is depicted in Figure 5.8.

5.5 Taking Obstacles into Account

Until now ARPLACE probability distributions mapped grid cells to the probability that the
grasping action would succeed. It was not checked if grid cells are blocked by obstacles. Even
base positions with a grasp success probability of 1.0 are meaningless when they are occupied.
Clearly, a robot must consider potential obstacles when choosing manipulation places. In this
section we explain how obstacles are taken into account by computing a obstacle probability
distribution and merge it with grasp success probability.

120

SECTION 5.5 Taking Obstacles into Account

2. compute
ARPlace

1. mirror
object pose

3. mirror
ARPlace

axis for mirroring

axis for mirroring

FIGURE 5.7 Top left: Scenario where cup should be grasped with left arm. Top right: Object
pose was mirrored. Bottom right: ARPLACE for grasping the mirrored cup with the right
arm. Bottom left: ARPLACE for grasping the cup with the left arm.

5.5.1 Obstacle Probability Distribution

A obstacle probability distribution maps grid cells to the probability that it is occupied by an
obstacle. It is therefore a mapping

pO(x, y)→ [0; 1];x ∈ Q, y ∈ Q
where x and y refer to the grid cell’s index along the x- and y-axis. The algorithm for dis-
cretizing space into grid cells is the same as the one for discretizing space into grid cells for
computing grasp success probability. As a result, the grid cells of grasp success probability
and obstacle probability are aligned.

The left image of Figure 5.9 depicts a scenario where the robot wants to grasp a cup on
the table. To compute the obstacle probability distribution, the robot has to identify obstacles
in its environment. The center image of Figure 5.9 depicts the (boolean) obstacle probability
distribution when the robot has access to ground truth data. Every grid cell (x, y) that is known
to be occupied by an obstacle is colored red, indicating that the grid cell is occupied with

121

CHAPTER 5 Refining Action-Related Places

Left arm

Right arm

Right arm

FIGURE 5.8 Revisiting the multi modal ARPLACE that was depicted in the bottom right image
of Figure 5.4. The robot now considers grasping with the left arm. Because this is possible
from the right table edge, a third cluster of promising grid cells emerges. The label above
each ARPLACE cluster denotes which arm side has to be used when performing a grasp
from grid cells within the cluster.

probability pO(x, y) = 1.0. A grid cell is considered to be occupied if an obstacle covers it,
even if the coverage is partial. Green grid cells are known to be free and have a occupancy
probability of 0%. When obstacle shapes of multiple objects overlap, like the kitchen table
and the chair nearby, their probability values pO(x, y) are added, and capped by a probability
value of 1.0. In the center plot of Figure 5.9, adding obstacle probabilities has no effect on the
obstacle probability distribution, because all probability values are either 0.0 or 1.0. However,
adding obstacle probabilities will have an effect later when we consider uncertainties into
obstacle poses and probability values may be between 0.0 and 1.0.

It is obvious that not every grid cell that is green in the center image of Figure 5.9 is reach-
able, like the area between the kitchen table and the worktable below. The reason is that the
robot is not point-like, but has a circular body. To be able to treat the robot as a point, we grow
the obstacles by the robot’s radius. The result is depicted in the right image of Figure 5.9. It
can be seen that the obstacle probability distribution is still boolean, and the obstacle regions
of the kitchen table, and the worktables have merged to a single, big obstacle region.

5.5.2 Including State Estimation Uncertainties

In real environments the robot has no access to ground truth data, but uses its vision system to
estimate obstacle poses. Mean pose, length, and width are estimated together with a covariance
matrix Covobs

122

SECTION 5.5 Taking Obstacles into Account

Region not reachable
because of robot's body

Multiple obstacles overlap

Obstacle regions have merged

FIGURE 5.9 Left: Kitchen scenario. Center: Obstacle probability distribution for ground truth
data. The borders of grid cells are colored black. Grid cells that are colored red inside
are known to be occupied and have a occupancy probability of 100%. Green grid cells
are known to be free and have a occupancy probability of 0%. Right: Obstacle probability
distribution that has been grown by the robot’s radius.

Covobs =

Cov(xobs, xobs) Cov(xobs, yobs)

Cov(yobs, xobs) Cov(yobs, yobs)

that reflects the robot’s uncertainty into the obstacle’s pose. In the following, we compute the
standard deviations σ(xobs, xobs) =

√
Cov(xobs, xobs) and σ(yobs, yobs) =

√
Cov(yobs, yobs)

and abbreviate σ(xobs, xobs) by σxobs
and σ(yobs, yobs) by σyobs

. In order to take pose uncertainty
of obstacles into account, we use the same approach as we did for considering uncertainties
into the robot’s base position: Selecting random samples from the covariance matrix, summing
over these samples to acquire a probability distribution of the obstacle’s pose, and conditioning
this probability distribution with the object’s shape. An example of this process can be seen in
Figure 5.10.

The left plot depicts the obstacle probability distribution for the estimated mean pose of a
kitchen table. The center plot depicts a probability distribution that was derived by taking 1000
samples from the robot’s uncertainty into the table’s pose where the positional uncertainty is
σxtable

= σytable
= 0.1m.

The probability distribution stretches out to approximately three standard deviations along
each axis. The obstacle probability distribution that does consider obstacle pose uncertainty is
obtained by conditioning the two above probability distributions. The result is depicted in the
right plot of Figure 5.10. It can be seen that many grid cells are not completely green or red
any more. Grid cells (x, y) that have a obstacle probability of pO(x, y) ∈]0, .., 1[are colored

123

CHAPTER 5 Refining Action-Related Places

∆Xobj∆Yobj

P(x,y)

FIGURE 5.10 Taking uncertainty into an obstacle’s pose into account. The obstacle we con-
sider here is a kitchen table. Left: Boolean obstacle probability distribution for the table’s
estimated mean pose. Center: Sampled probability distribution for the uncertainty into the
table’s pose (σxtable

= σytable
= 0.1m). Right: Obstacle probability distribution for kitchen

table when robot’s uncertainty into the kitchen table’s pose is taken into account. It is the
result of conditioning the probability distributions in the left and center plot.

in lighter red, lighter green, or white.

A ARPLACE probability distribution p(x, y) that considers obstacles is computed as follows

p(x, y) = pS(x, y) · pU(x, y) (5.2)

where pS(x, y) is the grasp success probability that represents the robot’s estimated grasp
success probability if no obstacles are present. pU(x, y) is the probability that grid cell (x, y)

is unoccupied. Because the obstacle probability distribution computes the probability that a
grid cell is occupied (pO(x, y)), we compute pU(x, y) as

pU(x, y) = 1− pO(x, y) (5.3)

In the following, we will refer to an ARPLACE probability distribution pS(x, y) that does

not take obstacles into account as an ARPLACE probability distribution that is based on ba-

sic grasp success probability. An ARPLACE probability distribution p(x, y) that does take
obstacles into account is referred to as a ARPLACE probability distribution that is based on
combined grasp success probability.

Probabilistically, equation 5.3 can be read as

P (CombinedSuccess) = P (Success,Unoccupied)

= P (Success | Unoccupied) · P (Unoccupied)

because P (Success,¬Unoccupied) = 0. It is the application of Bayes’ theorem for the combina-

124

SECTION 5.5 Taking Obstacles into Account

tion of conditional probabilities.

Figure 5.11 depicts a more complex example of how the ARPLACE framework takes ob-
stacles into account. The covariance matrices for the kitchen table Covtable, the chair at the
kitchen table Covtabchair, chair 1 at the TV table Covtvchair1, and chair 2 at the TV table
Covtvchair2 are as follows

Covtable =

0.01 0

0 0.01

 , Covtabchair =

0.0016 0

0 0.0016

Covtvchair1 =

0.0016 0

0 0.0016

 , Covtvchair2 =

0.04 0

0 0.04

Ground truth data is assumed for all other objects.

FIGURE 5.11 Merging an ARPLACE and an obstacle probability distribution. Wre omitted
grid lines for clarity. Left: ARPLACE for grasping the cup based on basic grasp success
probability. Center: Obstacle probability distribution for the robot’s current believe state.
Right: ARPLACE probability distribution based on combined grasp success probability.

The uncertainty into chair 2 at the TV table is highest. This leads to the result that the shape
of this chair in the obstacle probability distribution is blurred the most, followed by the shape
of the kitchen table and the other chairs. Furthermore, the obstacle probability shapes of the
kitchen table and the chair nearby, as well as the obstacle probability shapes of the chairs at
the TV table overlap, and therefore uncertainty values at these grid cells are added as indicated
in the center plot of Figure 5.11. Figure 5.11 shows that the area of promising manipulation
places in the right plot is significantly smaller than the area of promising manipulation places
in the left plot. The reason is that the chair at the kitchen table blocks several grid cells at the
bottom of the ARPLACE and the kitchen table blocks some grid cells on the right side.

125

CHAPTER 5 Refining Action-Related Places

5.5.3 Performance Analysis

The runtime for computing an obstacle probability distribution was analyzed along two lines.
The runtime for computing boolean obstacle probability distributions for the object’s mean
pose (compare left image of Figure 5.10) is mainly influenced by the number of obstacles
and the number of grid cells that are occupied. We created four scenarios to evaluate this. In
the first scenario the only obstacle is a chair, and in the second scenario the only obstacle is
a kitchen table. The third scenario (called ‘small’) consisted of two chairs, two tables, and
a small cupboard. The fourth scenario (called ‘big’) consisted of all obstacles in the kitchen
scenario that is depicted in the left image of Figure 5.9.

The second parameter that is varied is the number of samples that were used for computing
the obstacle’s sampled probability distribution that takes state estimation uncertainty of the
object’s pose into account (compare center image of Figure 5.10). We used 10, 100, and 1000
samples.

The results are depicted in Figure 5.12. Every data point is the mean of 25 experiments.
Standard deviations have been computed as well, but were under 10% of the mean value for
all experiments. It can be seen that there is a linear relation between the number of samples
and the runtime for computing the sampled probability distribution. We found 100 samples to
be a good tradeoff between precision and computation time.

FIGURE 5.12 Runtimes for computing the boolean obstacle distribution for the obstacle’s es-
timated mean pose (left), the sampled probability distribution for taking object uncertainty
into account (center), and the overall obstacle probability distribution (right).

The overall computation time of an obstacle probability distribution is almost exclusively
determined by the computation times of the boolean obstacle probability distribution and the
sampled probability distribution. The merging of these two probability distribution is almost
instantaneous at under 0.1ms. For 100 samples, the runtime for computing the obstacle prob-
ability distribution is between 8.3ms when there are very few obstacles (scenario ‘chair’), and
135.5ms when the environment is full of obstacles (scenario ‘big’). We consider this to be
sufficiently fast.

126

SECTION 5.6 ARPLACEs for Multi-Arm Manipulation

Currently the obstacle probability distribution is computed for many grid cells. Even for
grid cells from where the object is out of reach. Further runtime improvements could be made
if the capability map is used for limiting the obstacle probability distribution to grid cells from
where the object is theoretically within reach.

5.6 ARPLACEs for Multi-Arm Manipulation

So far, we have explained how the ARPLACE framework computes the optimal manipulation
place for grasping one target object. Subsequently, the robot navigates to the manipulation
place and grasps the object. When there are multiple target objects this action-sequence can be
applied sequentially. The robot estimates required parameters, decides which object to grasp
next, and computes an ARPLACE for the chosen object. When the task is to clean a kitchen
table, which means to bring objects from the table to the dishwasher, then this approach re-
quires n grasping actions in order to clean a table with n objects. 2 · n navigation actions are
required, because for every object the robot has to navigate to the object, grasp it, and then
navigate to the dishwasher in order to put it down.

In everyday activities, opportunities for optimizing the course of action arise constantly, as
tasks can be interleaved or executed in parallel. For instance, when setting the table, plates
can be stacked instead of carrying them one at a time, cupboards can be left open during the
task in order not to open them again, or multiple target objects can be grasped from a single
base position. Being able to perceive, predict, and exploit such opportunities leads to more
efficient and robust behavior. Applied to the above problem of cleaning a table with n objects
this could mean that the robot tries to grasp as many objects as possible from a single base
position. Our B21r mobile robot has two manipulators and is therefore able to grasp and carry
two objects at once. If it is possible to always grasp two objects at once, then the robot requires
2 · dn

2
e instead of 2 · n navigation actions to clean the table. Although the robot has to perform

n grasping actions as before, the time for performing the n grasping actions can be reduced
because the robot can perform two grasping actions in parallel.

In order to thoroughly exploit possibilities of multi-arm manipulation, the robot must: 1) use
least-commitment planning, so not prematurely commit to a specific plan when it is not nec-
essary, because optimization chances may arise during the course of action; 2) have rules
for transforming suboptimal plans into more efficient ones. In section 5.6.1, we show how
ARPLACE probability distributions are merged with the goal of finding optimal manipula-
tion places for grasping multiple objects at once. Section 5.6.2 evaluates the impact of differ-
ent object configurations on ARPLACEs for multi-arm manipulation. Section 5.6.3 gives an

127

CHAPTER 5 Refining Action-Related Places

overview of our high level planning system that evaluates whether performing multiple grasps
at once is advantageous, or if the default approach of sequentially grasping objects is more
desirable.

5.6.1 Merging ARPLACEs for Multi-Arm Manipulation

Figure 5.13 depicts a scenario with two cups as target objects. The cups’ poses are obj1 =

〈3.0m, 1.85m, 4
3
π〉 and obj2 = 〈3.0m, 2.0m, 2

3
π〉 with respect to the world frame. The un-

certainty into the objects’ poses are σxobj1
= σyobj1

= σxobj2
= σyobj2

= 0.04m, and the
uncertainty into the robot’s base position is σxrob

= σyrob = 0.03m.

FIGURE 5.13 Scenario where two objects are located close to each other and can be grasped
from a single base position. The cups are positioned at obj1 = 〈3.0m, 1.85m, 4

3
π〉 and

obj2 = 〈3.0m, 2.0m, 2
3
π〉.

The cups are close to each other and the handles are oriented in a way that it seems possible
to grasp both objects from a single base position. In order to find such base positions, the robot
has to compute ARPLACEs for grasping each object individually, and then search for grid cells
that have a grasp success probability of > 0% in both ARPLACEs. The ARPLACE probability
distribution for grasping obj1 is depicted in the left plot of Figure 5.14, and the ARPLACE

probability distribution for grasping obj2 is depicted in the right plot of Figure 5.14. It can be
seen that obj1 can be grasped with the right arm from table edge 1 and table edge 4, and with
the left arm from table edge 3. obj2 can be grasped with the right arm from table edge 3 and
table edge 4, and with the left arm from table edge 1.

The next step is to compute grasp success probability for grasping both objects from the
same grid cell. The computed grasp success probability should reflect the probability that all

grasps succeed. Therefore, the grasp success probabilities of grasping individual objects are
multiplied. Applied to the problem of grasping two objects at once this means that grasp suc-
cess probability of a grid cell (x, y) for successfully grasping both objects at once (pobj12(x, y))

128

SECTION 5.6 ARPLACEs for Multi-Arm Manipulation

R

R

L

R

RL

obj1

obj2

FIGURE 5.14 ARPLACEs for individually grasping the target objects. Left: ARPLACE for
grasping obj1. Right: ARPLACE for grasping obj2. The letters R and L next to ARPLACE

clusters indicate if the cluster is for grasping the object with the Right or Left arm.

is the product of grasp success probability for obj1 (pobj1(x, y)) and grasp success probability
for obj2 (pobj2(x, y)). A naive approach to compute pobj12(x, y) would be

pobj12(x, y) = pobj1(x, y) · pobj2(x, y)

However, there is a constraint to that definition, because it is not possible to grasp two
objects with the same arm. There are only two valid schemes for grasping both objects at
once.

• Grasp obj1 with the right arm and obj2 with the left arm (abbreviated with RL).

• Grasp obj1 with the left arm and obj2 with the right arm (abbreviated with LR).

The abbreviations RL and LR specify the order of how to grasp the objects. The first letter
refers to the arm of grasping obj1, and the second letter refers to the arm of grasping obj2.
The correct formula for computing grasp success probability for grasping two objects from a
single manipulation place is as follows

pobj12(x, y) = max(ps1obj1(x, y) · ps2obj2(x, y)) ; s1, s2 ∈ {L,R}; s1 6= s2 (5.4)

where pobj12(x, y) is grasp success probability of grasping both objects from grid cell (x, y),
s1 and s2 specify the arm side for grasping, ps1obj1(x, y) is grasp success probability of grasping
obj1 with any arm from grid cell (x, y), and ps1obj2(x, y) is grasp success probability of grasping
obj2 with any arm from grid cell (x, y). The constraint “s1, s2 ∈ {L,R}; s1 6= s2” prevents that
multiple objects are grasped with the same manipulator. The maximum operator is required
because in case the target objects can be grasped with both arm combinations (RL and LR),
then the more promising combination is preferred.

129

CHAPTER 5 Refining Action-Related Places

We illustrate equation 5.4 by presenting an example. Figure 5.15 depicts the computations
for grasping obj1 with the right arm and obj2 with the left arm.

obj1 obj1

obj2

RL

* =obj2

R L

FIGURE 5.15 Computing ARPLACEs for grasping obj1 with the right arm and obj2 with the
left arm (grasp scheme RL). Symbols in the top left corner indicate which arm is used
for grasping. Left: ARPLACE for grasping obj1 with the right arm. Center: ARPLACE for
grasping obj2 with the left arm. Right: ARPLACE for grasping obj1 with the right arm and
obj2 with the left arm from a single base position. This is the combination of the left and
center plot through equation 5.4.

It can be seen that both target objects can be grasped at once, if the robot performs the
manipulation action from table edge 1. There are even several grid cells that predict a grasp
success probability of more than 80%. The reason why multi-arm manipulation is possible is
that the clusters with grasp success probabilities of more than 0% of the left and center plot in
Figure 5.15 overlap, and therefore the product of these grasp success probabilities is also above
0%. However, this is only the case for the ARPLACE clusters at table edge 1. The ARPLACE

cluster for grasping obj1 with the right arm from table edge 4 is cancelled out because obj2

cannot be grasped with the left arm from table edge 4.
Figure 5.16 depicts the ARPLACE probability distributions for grasping obj1 with the left

arm (left plot) and obj2 with the right arm (center plot). It can be seen that this grasp scheme
is not possible, because the right plot of Figure 5.16 does not contain a grid cell with grasp
success probability of above 0%. The reason is that there are no corresponding grid cells with
grasp success probability of more than 0% in the left and center plot. There is almost an
overlap at table edge 3, but a gap of 10cm remains.

Figure 5.17 depicts an example of an invalid ARPLACE. The plot shows that there would be
grid cells for grasping both objects with the right arm. However, obj1 would fall to the ground
when the robot opens the right gripper in order to grasp obj2.

When computing the ARPLACE for grasping both objects at once, we merge the ARPLACEs
for the valid grasping schemes RL and LR. We do this by using the max operator. For every
grid cell, the higher grasp success probability is stored together with meta information that

130

SECTION 5.6 ARPLACEs for Multi-Arm Manipulation

obj1

LR

obj2* =
obj1

obj2

RL

FIGURE 5.16 Left: ARPLACE for grasping obj1 with the left arm. Center: ARPLACE for
grasping obj2 with the right arm. Right: ARPLACE for grasping both objects at once.

obj1

RR

obj2* =
obj1

obj2

RR

FIGURE 5.17 Left: ARPLACE for grasping obj1 with the right arm. Center: ARPLACE for
grasping obj2 with the right arm. Right: Invalid ARPLACE for grasping both objects at
once.

indicates if the corresponding grasp success probability was derived from the RL or LR grasp-
ing scheme. In this example, the merged ARPLACE is identical to the ARPLACE for the RL
grasping scheme, because the ARPLACE for the LR grasping scheme is zero everywhere.

Figure 5.18 depicts a more interesting example. The task is to grasp two glasses by ap-
proaching them from the top. The left and center plot show that both objects can be grasped
either with the RL or LR grasp scheme. At table edge 1, grasp success probability for the LR

grasp scheme is included in grasp success probability for the RL grasp scheme, meaning that

• the set of promising grid cells for the LR grasping scheme is a subset of the set of
promising grid cells for the RL grasping scheme

• grasp success probability of every grid cell (x, y) is higher for the RL grasp scheme than
for the LR grasp scheme

That is why in the resulting ARPLACE probability distribution that is plotted in the right
plot of Figure 5.18, the ARPLACE probability distribution at table edge 1 looks identical to

131

CHAPTER 5 Refining Action-Related Places

that of the RL grasping scheme. It is labeled accordingly. For grasping from table edge 3 it
is the other way around. Grasp success probability for the RL grasping scheme is included in
the LR grasping scheme. Therefore, the resulting ARPLACE probability distribution at table
edge 3 looks identical to that of the LR grasp scheme. At table edge 4, no grasping scheme is
included in the other. There are grid cells with a grasp success probability of above 0% for the
RL grasp scheme that do have a grasp success probability of 0% for the LR grasp scheme, and
vice versa. Therefore, the resulting ARPLACE cluster at table edge 4 consists of grasp success
probability values of both grasp schemes.

obj1

obj2,)=
obj1

obj2

LRRL

max(
RL

RLLR

LR
obj2

obj1

FIGURE 5.18 Left: ARPLACE for grasping both objects with theRL grasping scheme. Center:
ARPLACE for grasping both objects with the LR grasping scheme. Right: ARPLACE for
grasping both objects at once. The labels RL and LR represent meta information that is
stored for every grid cell in order to know if the corresponding grasp success probability
refers to the RL or LR grasping scheme.

5.6.2 Evaluation

In this section we evaluate the impact of different object configurations on ARPLACEs for
multi-arm manipulation. We examine (1) the impact of different distances between two ob-
jects; (2) the impact of the distance of two objects to the table edge, and (3) the impact of
different angular orientations of two objects. We use cups as objects.

5.6.2.1 Impact of Object Distance

Figure 5.19 shows several ARPLACEs for grasping two cups at once. The first cup is always
positioned at obj1 = 〈3.0m, 1.8m, 4

3
π〉 with respect to the world frame, while the pose of

the second cup changes from obj2 = 〈3.0m, 1.9m, 2
3
π〉 to obj2 = 〈3.0m, 2.15m, 2

3
π〉 with

increments of 5cm along the y-axis. Therefore, the distance between both cups varies from
0.1m to 0.35m.

132

SECTION 5.6 ARPLACEs for Multi-Arm Manipulation

d=0.1m d=0.15m d=0.2m

d=0.25m d=0.3m

obj2 = <3.1,1.9,2/3π> obj2 = <3.1,1.95,2/3π> obj2 = <3.1,2.0,2/3π>

obj2 = <3.1,2.05,2/3π> obj2 = <3.1,2.1,2/3π>

d=0.35m

obj2 = <3.1,2.15,2/3π>

RL RLRL

RL

d
obj2

obj1

FIGURE 5.19 Merged ARPLACEs for different cup configurations. The pose of the first cup
is always obj1 = 〈3.0m, 1.8m, 4

3
π〉. The pose of the second cup (obj2) and the distance

between the cups (d) is denoted in the images. The black line in the first two plots visualizes
that ARPLACE proposes the robot to navigate to base positions that are approximately
between the cups.

It can be seen that the most promising grid cells in all ARPLACEs are approximately in
between both cups (visualized by a black line in the first two plots). The ARPLACE proposes
the robot to navigate to base positions where the distance of the arms to both cups is approxi-
mately equal. All ARPLACEs prefer the RL grasp scheme.

The ARPLACE for a cup distance of 0.15m has the largest area of promising manipulation
places and reaches the highest maximal grasp success probability. The ARPLACEs for a cup
distance of 0.1m and 0.2m have approximately equal area of promising manipulation places,
with a slight advantage in maximal grasp success probability for the ARPLACE with a cup
distance of 0.2m. The ARPLACE for a cup distance of 0.25m is the first that does not reach a
maximal grasp success probability of 80%. When the cup’s distance reaches or exceeds 0.3m,
ARPLACE does not find promising manipulation places for grasping both objects at once any
more.

Overall, the ARPLACE predicts that the robot will be successful if the cups are close to
each other. Grasp success probability is predicted to decrease, as cup distance increases. The
maximal cup distance where ARPLACE assumes the robot being able to successfully grasp
both cups at once is between 0.25m and 0.3m.

133

CHAPTER 5 Refining Action-Related Places

5.6.2.2 Impact of Distance to Table Edge

The next criterion we want to evaluate is the distance of the objects to the table edge, as
depicted in Figure 5.20. The distance of the cups to the table edge ∆xobj1 = ∆xobj2 = d is set
to d = 0.3725m, d = 0.2725m, and d = 0.1725m, while the cup’s distance to each other and
the angular orientations of the handles remain the same.

It can be seen that the ARPLACE probability distribution for d = 0.1725m and d =

0.2725m are nearly identical. A difference is that the ARPLACE for d = 0.2725m is shifted
approximately 10cm towards the table, in order to compensate for the increased distance of the
objects to the table edge. When the distance to the table edge increases further to d = 0.3725m,
then parts at the front of the ARPLACE probability distribution are cut off because the robot
would bump into the table, and the overall area of the ARPLACE therefore shrinks. The most
promising grid cells are again in between both cups for all three ARPLACEs.

x=3.0725mx=2.9725mx=2.8275m

d=0.3725md=0.2725md=0.1725m

d
RL RL RL

obj2
obj1

obj2
obj1

obj2
obj1

FIGURE 5.20 Merged ARPLACEs for different distances of the cups to the table edge. The
poses of the cups are obj1 = 〈x, 1.8m, 4

3
π〉, and obj2 = 〈x, 2.0m, 2

3
π〉 with the x-coordinate

being set to 2.8725m, 2.9725m, and 3.0725m with respect to the world frame. The x-value
and the distance of the objects to the table edge d is specified in each plot.

5.6.2.3 Further Scenarios

Figure 5.21 depicts three further scenarios. The objects are positioned at varying poses. In the
first scenario the cup orientations are varied. When comparing the new orientation to earlier
cup poses in this evaluation, both cups are turned clockwise. Therefore, the robot has to grasp
obj2 more from the back, requiring the robot to grasp around obj2 and having to perform the
manipulation action more closely to obj2. obj1 on the other side has to be approached more
from the front than before. As a result, the merged ARPLACE is not between the cups any
more, but shifted towards obj2 as indicated by the black line in the left plot of Figure 5.21.

In the second scenario, the cup handles were rotated so that each handle points towards the
other cup, and not away from it. The result is that the merged ARPLACE proposes to grasp

134

SECTION 5.6 ARPLACEs for Multi-Arm Manipulation

obj1 obj1

obj2obj2
RL

RL

RL
LR

obj2
obj1

FIGURE 5.21 Merged ARPLACEs for different object poses. Left: 1st scenario. obj1 =
〈3.0m, 1.8m, 5

4
π〉, and obj2 = 〈3.0m, 2.0m, 1

2
π〉. The black line depicts that the

ARPLACE is shifted towards obj2. Center: 2nd scenario. obj1 = 〈3.0m, 1.8m, 2
3
π〉 and

obj2 = 〈3.0m, 2.0m, 4
3
π〉. Right: 3rd scenario. obj1 = 〈3.3m, 1.9m, 2

3
π〉 and obj2 =

〈3.15m, 2.2m, 5
3
π〉.

obj1 with the left arm and obj2 with the right arm. Because the orientation of the cups’ handles
is symmetric, the ARPLACE proposes to position the robot’s base between the cups. Please
note that the LR grasping scheme will probably not enable the robot to perform the grasping
actions in parallel, but to perform them sequentially in order to prevent self collision of the
manipulators.

In the third scenario the robot has to grasp a cup (obj1) and a glass (obj2). ARPLACE clusters
emerge at table edge 3 and 4 and the overall area of promising manipulation places increases
when compared to the scenarios of grasping two cups. The reason is that a glass can be grasped
from the top which puts fewer kinematic constraints on the manipulator.

To conclude this section, we evaluated scenarios where two target objects were positioned at
various configurations. Multiple target objects can only be grasped at once when they are near
each other. If the distance between objects exceeds a certain threshold, multi-arm grasping is
not possible anymore. In the scenario presented in section 5.6.2.1, the maximal distance for
multi-arm manipulation was between 0.25m and 0.3m. In case the objects can be approached
symmetrically, manipulation places between target objects are preferred, but as the objects’
orientations and approach vectors change, this is not the case any more. Because grasping from
the top puts fewer kinematic constraints on the manipulator, the area of promising grid cells is
bigger than for grasping from the side. As a result, it is easier to grasp multiple objects when
they can be approached from the top. The best base position for grasping multiple objects at
once are not necessarily between the target objects. In order to decide whether it is preferable
to grasp multiple objects at once or not we use a high level planning system. The high level
planning system itself was implemented by other researchers of our group. That is why section
5.6.3 should not be considered as original research of this thesis, but is presented to give

135

CHAPTER 5 Refining Action-Related Places

a comprehensive overview of the ARPLACE framework. For detailed information about the
high level planning system, please refer to the work of Mösenlechner and Beetz (2009) and
Müller (2008).

5.6.3 High Level Planning System

In the last section we computed ARPLACEs for grasping multiple objects at once. We found
that grasp success probability for multi-arm manipulation is computed as the product of grasp
success probabilities for grasping single objects. Please note that multiplying two input prob-
ability values always leads to an output probability that is equal or less than either input prob-
ability. Therefore grasp success probability for grasping multiple objects at once can not be
higher than grasping either object separately. This is an intuitive but important result, because
it never makes sense to grasp multiple objects at once when the only goal is to maximize grasp
success probability. However, we described that multi-arm manipulation can significantly re-
duce the amount of execution time. The challenge is how the robot decides whether to prefer
sequential manipulation to maximize grasp success probability or parallel manipulation to
minimize execution time.

In this section we present an approach where this decision is made by a transformational
planning system. The transformational planning system requests the ARPLACE framework
to compute promising base positions for a given manipulation task. The ARPLACE frame-
work then computes ARPLACE probability distributions for grasping objects sequentially,
and probability distributions for grasping multiple objects at once and returns them. Finally,
the transformational planning system analyzes the results and chooses the most suitable base
position.

We explain how plans are represented in section 5.6.3.1, how plans are modified in general
by a transformational planner in section 5.6.3.2, and how the transformational planner specif-
ically handles ARPLACE probability distributions for finding optimal manipulation places in
section 5.6.3.3.

5.6.3.1 Plan Design

We define plans as robot control programs that cannot only be executed, but also reasoned
about. This is important, because it enables a transformational planner to reason about the
intention of a specific code part. Standard control programs written in the Lisp dialect RPL,
that was developed by McDermott (1991), are annotated in order to indicate their purpose and
make them transparent to the transformational planner. For example, manipulation actions

136

SECTION 5.6 ARPLACEs for Multi-Arm Manipulation

that must be performed from a certain base position are executed within the context of an at-

location block. The most important RPL instructions for semantic annotation in the context
of mobile manipulation are achieve, perceive and at-location.

The achieve statement asserts that the logical expression within the achieve statement holds
after execution. This means that we can test if a certain action like a particular manipula-
tion action was performed successfully. For example, the statement (achieve (entity-picked-up

?object)) states that after executing this instruction, the object referenced by variable ?object

must be in the robot’s gripper. Before manipulating objects, the robot must find the objects
and instantiate them in its belief state. The statement (achieve (perceive ?object)) guarantees
that after executing it, the object referenced by ?object has been found and a reference to its
internal representation is returned.

Mobile manipulation implies the execution of actions from specific locations. Therefore,
it must be guaranteed that grasping actions are only executed when the robot is at a specific
location. (at-location ?location ...) asserts that code within its context is either executed at the
specified location, or fails. Please note that plan transformations which change the location
of actions, directly modify the ?location parameter of at-location expressions. Therefore, at-

location is the most important declarative plan expression for optimizing ARPLACEs.

5.6.3.2 Transformational Planning System

Transformational planning enables robots to detect and fix behavior flaws, such as 1) collisions
that can be caused by under-specified goal locations; 2) blocked goals, like when a chair is
positioned at a location the robot wants to navigate to; 3) flaws affecting performance. Our
task of deciding, whether to sequentially or parallely grasp objects is a member of the third
category, because a plan that decides to sequentially grasp objects will take longer to execute
than a plan that saves a lot of navigation actions and enables parallel grasping. Additional
execution time is unnecessary if grasp success probability for multi-arm manipulation is not
much worse, and should be considered as a performance flaw.

A transformational planning system consists of three main components

A) a projection mechanism for predicting the outcome of a plan

B) a mechanism for detecting flaws within the predicted plan outcome

C) mechanisms to fix detected flaws by applying transformation rules to the plan code

Planning is performed by repeatedly performing these steps until the resulting plan cannot
be further optimized. Subsequently the plan is executed. A visualization of this process is
depicted in Figure 5.22.

137

CHAPTER 5 Refining Action-Related Places

FIGURE 5.22 Overview of how the transformational planning system optimizes plans.

ad A) Plan Projection: One component of a transformational planning system is an accurate
prediction mechanism that generates a temporally ordered set of events. For projecting plans,
we use the Gazebo simulator. For every point in time the projection of a plan generates an
execution trace that contains the state of the plan, the robot’s belief state, and the state of the
simulated world.

ad B) Behavior Flaws and Reasoning about Plan Execution: The second component of a
transformational planner is a reasoning engine that finds pre-defined flaws in robot behav-
ior. As mentioned earlier, we are interested in fixing performance flaws. Listing 5.1 shows
the specification of the performance flaw that is created when two manipulation actions are
executed at different initial locations.

1 (def−b e h a v i o r−f l aw unop t imized− l o c a t i o n s
2 : s p e c i a l i z e s pe r fo rmance−f l aw
3 : f l aw (and
4 (t a s k−g o a l ? t a s k −1
5 (a c h i e v e (e n t i t y −p icked−up ? o b j e c t −1)))
6 (t a s k−g o a l ? t a s k −2
7 (a c h i e v e (e n t i t y −p icked−up ? o b j e c t −2)))
8 (t h n o t (== ? t a s k −1 ? t a s k −2))
9 (o p t i m i z e d−a c t i o n− l o c a t i o n

10 ? o b j e c t −1 ? o b j e c t −2
11 ? o p t i m i z e d− l o c a t i o n)))

LISTING 5.1 Definition of a performance flaw.

138

SECTION 5.6 ARPLACEs for Multi-Arm Manipulation

More specifically, listing 5.1 shows the definition of behavior flaws. The flaw is in the class
of performance flaws, specializing the flaw performance-flaw (line 2). In lines 4 to 8, two dif-
ferent grasping tasks are matched, and the corresponding variables are bound. In line 9, the
ARPLACE framework is queried for a manipulation place for grasping both objects at once,
?object-1 and ?object-2. The predicate only holds true when the probability of this manip-
ulation place is sufficiently high (>0.85). This means that grasping two objects sequentially
will not be transformed, when there is no good place for multi-arm manipulation. Note that
we used a hard-coded parameter for defining, what is “sufficiently high”. However, the real
value for “sufficiently high” depends on the task context. In robotic soccer for instance, it can
be beneficial to choose fast and risky moves, whereas in human-robot interaction certainty of
successful execution is more important than speed.

ad C) Plan Transformations and Transformation Rules: After a flaw has been detected, the
planner applies a transformation rule to the plan code in order to fix the flaw. A transformation
rule consists of an input schema, a transformation part, and an output plan.

Input Schema
Output Plan Transformation

The input schema is matched against the plan part with the flaw. If they match the transfor-
mation part is applied to the input schema. The result is new plan code, which is the output
plan that achieves the same goals as the input scheme but got rid of flaws. Listing 5.2 shows
the transformation rule for fixing the flaw shown in listing 5.1.

1 (def−t r−r u l e f i x−unop t imized− l o c a t i o n s
2 : i n p u t−schema
3 ((and (t a s k−g o a l ? l o c a t i o n−t a s k −1
4 (a t− l o c a t i o n (? l o c a t i o n −1) . ? code −1))
5 (sub−t a s k ? l o c a t i o n−t a s k −1 ? t a s k −1))
6 (and (t a s k−g o a l ? l o c a t i o n−t a s k −2
7 (a t− l o c a t i o n (? l o c a t i o n −2) . ? code −2))
8 (sub−t a s k ? l o c a t i o n−t a s k −2 ? t a s k −2)))
9 : o u t p u t−p l a n

10 ((a t− l o c a t i o n (? o p t i m i z e d− l o c a t i o n) . ? code−1)
11 (a t− l o c a t i o n (? o p t i m i z e d− l o c a t i o n) . ? code −2)))

LISTING 5.2 Transformation rule for fixing the performance flaw of performing manipulation
actions from different base positions.

Applied to the task of merging ARPLACEs, the transformation rule would expand to the
plan transformation in Figure 5.23.

139

CHAPTER 5 Refining Action-Related Places

Input Schema

Output Schema

Transformation

If Cup1 picked up at L1 and
Cup2 picked up at L2...

Perform both pick up actions at Lopt

Get Lopt from ARPLACE

FIGURE 5.23 Plan transformation for performing multi-arm manipulation.

5.6.3.3 Optimizing ARPLACEs

ARPLACEs are not only integrated into the robot control program, they are also integrated
into the reasoning engine of the transformational planner. Using two manipulation places for
grasping is considered a performance flaw if both grasps could be performed from a single
base position. A parser investigates the execution trace for the occurrence of two different
grasping actions, where one is executed at location L1, and the other is executed at location L2.
Then we query ARPLACE for a location L3 which is the manipulation place with the highest
grasp success probability for performing both actions at once. If grasp success probability is
sufficiently high, we apply a plan transformation and replace locations L1 and L2 by location
L3.

We evaluated the merging of ARPLACEs for grasping two objects at once. Two cups were
placed on a table, and the distance between them was varied between 20cm and 60cm, in
increments of 5cm. Average execution time of the following action sequences was evaluated

• Move to best manipulation place of object1; Grasp object1; Move to best manipulation
place of object2; Grasp object2

• Move to best manipulation place between object1 and object2; Grasp object1 and ob-
ject2 in parallel

Our evaluation shows that grasping two cups from different base positions requires 48 sec-
onds on average. The variance is low because the grasping actions take almost equal times.
The parameter that varies is the distance between the cups, but the second navigation action
takes almost equal time because the effect of moving 20cm or 60cm is negligible. When we
applied transformation rules for performing multi-arm manipulation, average execution time
was reduced to 32 seconds, which is a significant performance gain (t-test: p < 0.001). Please
note that the transformational planner never tried to grasp both cups at once, when the dis-
tance between cups was above 45cm. The reason is that no grid cell with sufficiently high
grasp success probability existed.

140

SECTION 5.7 Dealing with Uncertainty into the Object’s Type

5.7 Dealing with Uncertainty into the Object’s Type

Many everyday activities do not specify which objects are involved. A task like “clean the
table” for example, does not tell the robot which objects it will have to manipulate. Imagine a
robot moving through a kitchen door in order to clean a table. The robot detects an object that is
located on a table. Because the robot is far away its vision system is not able to fully recognize
the type of the object. It rather predicts that the target object is a glass with a probability of
70% or a cup with a probability of 30%. The problem with this predicition is that the grasp
point and approach vector for these objects are different. The robot would prefer to grasp a
cup at its handle by approaching it from the side. A glass is better grasped by approaching it
from the top. Because there are different Generalized Success Models to handle grasps from
the side and from the top, the robot is uncertain which ARPLACE to compute. A possible
solution would be to compute the ARPLACE for grasping the object with higher probability.
In this example this would mean to compute an ARPLACE for grasping a glass. But this would
also mean to throw away information. A superior approach is to compute both ARPLACE

probability distributions and merge them as the sum that is weighted by the corresponding
object probabilities.

In general, if a robot estimates the type of a target object among n objects (o1,..,on) that are
known to the robot, then the robot ends up with an object probability vector (p1, .., pn). The
corresponding ARPLACE probability distributions A1, .., An are then merged by computing
each grid cell’s grasp success probability p(x,y) as follows

∀(x, y) : p(x,y) =
n∑
i=1

pi · Ai(x,y) (5.5)

where Ai(x,y) is the grasp success probability at grid cell (x, y) in the ARPLACE computed for
object oi.

Figure 5.24 depicts the process of merging ARPLACEs if the robot is uncertain about the
target object’s type. The left image depicts the ARPLACE probability distribution for the as-
sumption that the target object is a cup. This would require the robot to grasp the object from
the side. The center image shows the ARPLACE probability distribution for the assumption
that the target object is a glass, which leads to the result that the robot grasps it from the top.
The right image shows the resulting ARPLACE probability distribution. It can be seen that the
grid cells with the highest grasp success probability are in a region, where the ARPLACEs for
side and top grasps overlap. This is intuitive, because if there are places which are promising
for grasping any kind of object, then the robot should prefer to go there.

141

CHAPTER 5 Refining Action-Related Places

Side Top Merged

0.3
0.7+ =

R R

L

FIGURE 5.24 Merging ARPLACEs when the robot is uncertain about the target object’s type.
Left image: ARPLACE for grasping a cup from the side. Center: ARPLACE for grasping a
glass from the top. Right: ARPLACE when the robot estimates the target object to be a cup
with 30% probability and a glass with 70% probability. The label next to the ARPLACE

cluster indicates the arm side for grasping. The number inside the ARPLACE cluster repre-
sents the probability that the robot attributes to the object type.

5.8 Integration of Unexpected Experience

In section 4.4.2 we discussed that a manipulation action may fail unexpectedly because the
robot made errors in the state estimation process or effects occured that are not familiar to the
robot. The problem with unexpected failure is that the high-level planning system does not
know why the failure happened and has to guess about the reasons. Maybe learning a new
Generalized Success Model helps, but this requires a significant amount of time and should be
delayed to idle periods.

In order to enable the robot to act immediately, a repeller probability distribution is intro-
duced as an ad-hoc solution. The reason why a repellor distribution is required is that when a
manipulation action failed and ARPLACE is immediately queried for another promising base
position to re-try grasping the object, then ARPLACE will return the same or – due to sam-
pling variances – very similar manipulation places. The repeller probability distribution is an
ad-hoc approach that pushes the robot away from the current grid cell where the manipulation
action failed.

The left plot in Figure 5.25 depicts an ARPLACE probability distribution. It can be seen that
three ARPLACE clusters emerge, because the cup is graspable from table edge 1, table edge 3,
and table edge 4. The robot located the target object correctly, but overlooked the chair at the
table. That is why the ARPLACE cluster at table edge 1 has a larger area and bigger maximal
grasp success probability than it should reasonably have. The ARPLACE cluster also includes
the grid cell with maximal grasp success probability. Therefore, the robot tries to grasp the
cup from table edge 1 and bumps into the chair.

142

SECTION 5.8 Integration of Unexpected Experience

grasping action failed
from this position

taken as center for
repeller distribution

50cm

* =

new maximum

FIGURE 5.25 Left: Original ARPLACE probability distribution. Center: Repeller probability
distribution with the priorly proposed base position as origin and a diameter of 50cm. Right:
ARPLACE that considers the repeller probability distribution. It is the result of multiplying
the probabilities of the left and center plot.

Because the task is urgent, the robot wants to re-try the manipulation action immdiately but
tells the ARPLACE framework that the manipulation action failed from the priorly proposed
base position. The ARPLACE framework therefore computes a repeller probability distribution
(pR), as seen from a top-down view in the center plot of Figure 5.25 and from an isometric
perspective in the left plot of Figure 5.26. The repeller probability distribution is implemented
as a paraboloid of revolution with the priorly proposed base position defining the origin. This
origin has a probability value of 0.0. A parameter specifies the radius until the paraboloid of
revolution reaches a probability value of 1.0. Probability values above 1.0 are mapped to 1.0.

FIGURE 5.26 Left: Isometric version of repeller probability distribution shown in center plot
of Figure 5.25. Right: Isometric version of grasp success probability shown in right plot of
Figure 5.25.

In order to compute an ARPLACE probability distribution p′ that considers the repeller
probability distribution, the probability value of every grid cell in the original ARPLACE prob-
ability distribution p(x, y) is multiplied with the probability value of the corresponding grid
cell in the repeller probability distribution pR(x, y).

143

CHAPTER 5 Refining Action-Related Places

∀(x, y) : p′(x, y) = p(x, y) · pR(x, y) (5.6)

The new ARPLACE probability distribution is shown from a top-down view in the right
plot of Figure 5.25 and from an isometric perspective in the right plot of Figure 5.26. It can
be seen that the repeller probability distribution knocked out the region with maximal grasp
success probability. The new grid cell with maximal grasp success probability is now found
in the ARPLACE cluster at table edge 4.

Repeller probability distributions do not significantly deteriorate computation time of Action-
Related Places. For an overall of 25 experiments, the mean computation time was 0.42ms with
a standard deviation of 0.06ms.

144

CHAPTER 6

Utility Framework for Action-Related
Places

In the last two chapter chapters, we showed how to compute and refine ARPLACEs that are
based on grasp success probability. We mapped grid cells to the predicted probability that a
manipulation action will succeed when it is performed from this grid cell (see Figure 6.1). By
optimizing grasp success probability more robust mobile manipulation is achieved.

FIGURE 6.1 The robot, a chair, a table, and a ARPLACE based on grasp success probability
for grasping the cup on the table. The ARPLACE discretizes space into grid cells, where
each cell represents the predicted probability of successfully grasping the cup when the
grasping action is performed from a base position within this cell. A hole is bumped into
the distribution of grasp success, because the chair blocks several promising grid cells.

However, grasp success may not be a robot’s only concern. Sisbot demonstrated that in the
presence of humans, the robot should prefer to stay within the humans’ field of view, especially

145

CHAPTER 6 Utility Framework for Action-Related Places

when moving around (Sisbot et al., 2007) or interacting with humans (Sisbot, 2008). If a task
is urgent, performing the task as quickly as possible has priority. On the other hand, if the
robot’s battery is low, saving energy becomes a vital goal. But how can we evaluate whether
it is preferable for a robot to perform a manipulation action quickly but with the drawback of
higher energy consumption, or slowly but with accordingly reduced energy consumption? We
do so by using decision theory that was introduced by von Neumann and Morgenstern (1944).
The core principle of decision theory is to assign comparable utilities to each of the potentially
conflicting task goals and to subsequently maximize expected utility.

In this chapter, we extend and generalize the concept of probabilistic ARPLACEs to a util-
ity framework. Utility-based ARPLACEs are thus able to represent arbitrary task constraints,
which allows robots to make the most sensible trade-off between them by computing overall
expected utility. The utilities we consider here are travel time and utility of successful grasp-
ing. Taking these utilites into account enables the robot to trade off efficiency and robustness
during planning and navigation. Utility-based ARPLACEs therefore apply to a much broader
range of tasks and goals. Figure 6.2 depicts the computational process for computing utility-
based ARPLACEs and serves as an outline of this chapter.

ARPlace
(Based on Suc-

cess Probability)

ARPlace
(Based on Utility

of Success)

Estimated
Travel Time

Utility of
Success

Importance
of Time

Estimate
Travel Times

Motion Model

Specified online by
high-level planner

Compute Utility
Values

FIGURE 6.2 Overview of computational process for computing utility-based ARPLACEs.
Green circles represent algorithms that create and transform data. Blue rectangles repre-
sent data that is generated and passed from one algorithm to another. Images near blue
rectangles are exemplary visualizations of the corresponding data structure.

The remainder of this chapter is structured as follows. In the next section, we present related
work. Section 6.2 introduces the utility framework where section 6.2.1 describes how utilities

146

SECTION 6.1 Related Work

pertaining to heterogeneous objectives can be unified. The computation of the utilities pertain-
ing to success and execution time is described in sections 6.2.2 and 6.2.3. An evaluation in
section 6.3 illustrates the advantages of utility-based ARPLACEs.

6.1 Related Work

Maximizing expected utility of actions is the core principle of decision theory. Decision theory
tackles the problem of making optimal decisions in the presence of uncertainty and multiple,
potentially conflicting task goals. Decision theory has been widely studied in the field of eco-
nomics by Smith (1988) and in the field of game theory by von Neumann and Morgenstern
(1944). The utility framework that is introduced in this thesis is inspired by influence diagrams,
as introduced by Howard and Matheson (1984).

In robotics, Dias and Stentz (2000) used decision theory for coordinating large groups of
robots. Gerkey and Matarić (2003) employ decision theory in order to solve the problem of
task allocation in multi-robot systems. Zlot et al. (2002) applied a market approach to the
problem of multi-robot mapping and exploration. Their market architecture tries to maximize
information gained while minimizing travel costs, thus aiming to maximize utility. We also
consider the utility/costs of movement, but use an accurate time-based cost that enables us to
measure utility of time more precisely in time-based cost scale, namely seconds. Zlot et al.
(2002) use a distance-based approximation, but admit that a time-based cost scale “facilitates
a more straightforward way to prioritize some types of tasks, for example if there are other
mission objectives in addition to exploration.” Haddawy and Hanks (1993) compare goal-
oriented and decision-theoretic agents. They show how these paradigms can be merged with a
utility framework for goal-oriented agents and how to rank different plans in the presence of
uncertainty and deadlines.

McFarland and Spier (1997) introduce basic cycles which represent the utility of the robot’s
owner. The method allows judgements about the robot’s use of travel time and energy con-
sumption. While basic cycles focus on finding optimal policies to refuel a robot, our utility
framework is applied to mobile manipulation. Basic cycles assume that the goal task always
succeeds, while our utility framework has a probabilistic representation of task success and
takes state estimation uncertainties into account. Larkin (1981) examines the role of time and
energy in decision making of anmials.

Koenig and Simmons (1996a) applied utility functions to robot navigation in indoor envi-
ronments. They were able to demonstrate how utility functions can be used to model given risk
attitudes and soft deadlines. While Koenig and Simmons primarily consider execution dura-

147

CHAPTER 6 Utility Framework for Action-Related Places

tion, our utility framework is explicitly designed to take arbitrary task constraints into account.
Furthermore, Koenig and Simmons use exponential utility functions to enable risk-sensitive
planning. We assume a linear utility function for execution time, yet a high-level planner is
able to specify the importance of every utility component in order to reflect the relevance
that this component plays in the current task. Another approach that focusses on navigation
planning under uncertainty is presented by Wellman et al. (1995).

Berenson et al. (2008) deal with the problem of finding optimal start and goal configurations
for manipulating objects. Their approach considers multiple criteria such as grasp quality,
configuration desirability, and configuration clutter in order to optimize the grasp itself within
a high-dimensional motion planning context. In contrast, we consider numerous factors in
order to find optimal manipulation places taking state estimation uncertainties into account.
ARPLACE probability distributions enable high-level planning systems to reason about the
manipulation task at hand, and qualitative aspects such as from which table side an object
should be grasped are addressed.

6.2 Utility Framework

For a given robot, a target object, and an environmental context, the framework of Action-
Related Places provides a mapping f(x, y) : Z× Z → R from grid cells to the real numbers.
In previous chapters, the function f(x, y) that maps grid cells to ARPLACE values was based
on grasp success probability (p(x, y)). The proposed manipulation place was the grid cell that
maximized grasp success probability. In the following, we extend the notion of Action-Related
Places to a utility framework in which we compute the expected utility u(x, y) of grid cells.
The utility framework is schematically depicted in Figure 6.3.

Formally, we compute the utility of performing a grasping action at grid cell (x, y) as

u(x, y) =

p(x, y) · wS +

∑
i ui(x, y) · wi if p(x, y) > 0

−∞ if p(x, y) = 0

(6.1)

The expected utility of success uS(x, y) is therefore grasp success probability p(x, y) scaled
with the importance of success wS . Furthermore, we consider other factors that influence util-
ity but are independent of success. These supplemental utilities ui(x, y) are weighted by fac-
tors wi that indicate their importance relative to grasp success. We effectively filter unpromis-

ing grid cells for which grasp success probability is 0, eliminating the possibility of failure
being outweighed by other utilities. In order to maximize expected utility with respect to cur-

148

SECTION 6.2 Utility Framework

FIGURE 6.3 Overview of the utility framework, illustrating the schematic calculation of the
expected utility of selecting a particular grid cell (x, y) for performing a manipulation ac-
tion. Oval nodes indicate probability values while diamond-shaped nodes indicate utility
values.

rent task constraints, a robot must simply find the maximal utility value u∗ in the resulting
ARPLACE utility distribution u(x, y)

u∗ = max
(x,y)

u(x, y) (6.2)

and choose the grid cell (xu∗ , yu∗) as goal position for which the utility distribution reaches its
maximum value:

(xu∗ , yu∗) = arg max
(x,y)

u(x, y) (6.3)

In the following, we describe how the utility framework outlined above is implemented for
a concrete robot platform in order to maximize expected utility when selecting manipulation
places.

6.2.1 Unifying Heterogenous Utilities

If we are to combine the utilities pertaining to success, travel time, and energy consumption
in a way that can be considered sound from a decision-theoretic point of view, then we will

149

CHAPTER 6 Utility Framework for Action-Related Places

need to find a common unit of measurement that allows us to adequately describe any of these
aspects. We found that all the aforementioned utilities can reasonably be reduced to time, and
we therefore measure utility of manipulation places in seconds.

The utility pertaining to execution time is directly related to time. Because increased time
should imply decreased utility and we consider linear decay of utility to be appropriate, we set
the utility of time uT (x, y) to uT (x, y) = −t(x, y), where t(x, y) is the time required by the
robot to move to grid cell (x, y) and perform a grasp.

To define the utility of success, please observe that failing to grasp the target object implies
that the grasping action will have to be repeated which requires additional time. Therefore,
the utility of success can be defined as the time the robot typically saves by not having to
reposition its base for a second grasp attempt plus the time for redoing the grasp itself. Let
that time be tredo. Since a given grid cell (x, y) will lead to manipulation success only with
some probability p(x, y), we can expect to save only the corresponding fraction of tredo, which
is why we set the utility to p(x, y) · tredo (in Equation 6.1, wS corresponds to tredo).

We can define the utility of saving energy in a similar fashion: Any amount of energy e(x, y)

(measured in Joules) used by the robot to move to grid cell (x, y) and perform a grasp requires
the robot to recharge its battery with the respective amount of energy in the future. Assuming
that the robot’s battery can be recharged with power P (measured in J/s), the time required
to regain the energy that is lost is e(x, y)/P . Therefore, the utility of saving energy uE(x, y)

can be computed as uE(x, y) = −e(x, y)/P . As a result, the performance of battery chargers
will have immediate impact on the overall utility of ARPLACE grid cells: A robot that knows
that it can quickly recharge its batteries will prefer to save time, while a robot that knows that
recharging is slow might trade task execution time for energy.

Once all utility components use the same unit of measurement, the sum of utility compo-
nents is well-defined and the weight that we additionally assign to each of the supplemental
utility components (wi in Equation 6.1) simply becomes the importance that we attribute to
the respective component relative to grasp success. By default, weights should be 1. However,
a high-level planning system that is aware of current task requirements may have good reasons
to modify weights. If, for example, the high-level planning system can infer that energy con-
sumption is irrelevant because it knows that there will certainly be enough time to recharge
in-between tasks, it can simply set the importance of saving energy wE to wE = 0.

6.2.2 Utility Pertaining to Execution Success

In order to compute expected utility of success uS(x, y), the combined grasp success proba-
bility p(x, y) is multiplied with importance of success wS .

150

SECTION 6.2 Utility Framework

uS(x, y) = p(x, y) · wS (6.4)

6.2.2.1 Combined Grasp Success Probability

For every grid cell, the combined grasp success probability represents the probability that the
robot will be able to successfully grasp the target object when the grasp is performed from
within that grid cell. It is computed as the product of basic grasp success probability pS(x, y)

and the probability that the grid cell is unoccupied.

p(x, y) = pS(x, y) · pU(x, y) (6.5)

Probabilistically, equation 6.5 can be read as

P (CombinedSuccess) = P (Success,Unoccupied)

= P (Success | Unoccupied) · P (Unoccupied)

because P (Success,¬Unoccupied) = 0.

6.2.2.2 Importance of Success

The importance of success wS is defined as the (saved) time that is typically required to
successfully redo the task. It is evaluated by the high-level planner and transferred to the
ARPLACE framework as a parameter. Intuitively, the importance of success is the high-level
planner’s measure of how important it is to succeed in performing the subsequent manipula-
tion action. We present three robot tasks and describe how the importance of success could be
reasonably set by the high level planner.

A) Grasp an empty plastic cup

B) Grasp a plastic cup filled with juice

C) Grasp an empty ceramic cup

For task A), wS = 30s because in case of failure the robot needs 10s to reposition its base and
20s to perform an additional grasping action. For task B), wS = 330s because failure implies
that juice will be spilled, and the robot thus estimates the time for redoing the grasp plus an
additional five minutes to clean up. For task C), wS = 2520s because in case of failure the cup
will break with probability 0.5, requiring to spend 60 minutes in order to go to a supermarket
and buy a new cup which costs 4 Euros. Assuming that 24 minutes are required to earn 4

Euros, this leads to a total of 0.5 · (60min + 24min) = 42min.

151

CHAPTER 6 Utility Framework for Action-Related Places

6.2.3 Utility Pertaining to Execution Time

In this section, we present a method for computing the utility pertaining to execution time
uT (x, y). This enables robots to take action duration into account whenever the expected utility
of grasp success is not the only concern.

Please keep in mind that ARPLACEs find globally optimal manipulation places, and there-
fore compute a complete mapping from grid cells to utilities. In order to consider the utility
pertaining to execution time, the robot has to compute - for every grid cell - the execution
time that it can expect for moving to the grid cell and performing the grasp. We found that the
time required to perform the grasp itself varies only marginally and is dominated by the time
required to travel to a particular target position.

A viable but computationally expensive approach to estimate travel time would be to run the
robot’s motion planner in order to find trajectories to all relevant grid cells and subsequently
estimate the time that is required for each trajectory. However, this is very time consuming
because we would have to solve a separate motion query for every grid cell. Because our robot
uses Player’s Wavefront planner, which performs global path planning based on finding short-
est paths, we approximate Wavefront’s behaviour by using Dijkstra’s algorithm. This enables
us to find trajectories to all relevant grid cells in a single run and significantly reduces run-
time. In the following, we present an accurate motion model that is tailored towards our B21r
mobile robot. The motion model allows to precisely estimate travel time for given trajectories.

6.2.3.1 Navigation Time Model

The B21r mobile robot uses a synchro drive which allows the robot to move forward, move
backward, and turn to the left and right at any time. These motion opportunities are depicted in
the left image of Figure 6.4. The robot can move to any of the eight neighboring grid cells, as
long as its orientation is correct. It can change its orientation by turning 45◦ in either direction.
For example, if the robot is initially facing left, as shown in the left image of Figure 6.4, it can
move upward by either turning right by 45◦ twice and moving forward, or turning left by 45◦

twice and moving backward. The former alternative leads to the state that is framed blue in
the right image of Figure 6.4.

To associate travel times to trajectories we measured the robot’s translational velocities for
moving forward (vfor) and backward (vback), as well as the robot’s rotational velocities for
turning to the left (vleft) and right (vright):

• vfor = vback = 0.1 m
s

• vleft = vright = 6
◦

s

152

SECTION 6.2 Utility Framework

65 66 67

63

64

65

X

Y

x=66 y=64
͈Ψ=180° t=0.0

mf mb

tl

tr

65 66 67

63

64

65

X

Y x=65 y=65 x=66 y=65

Ψ=135° t=8.2Ψ=90° t=15.5

FIGURE 6.4 Left: Illustration of our robot’s motion model. Each grid cell measures 5cm ×
5cm. Atomic movement actions: move forward (mf), move backward (mb), turn right (tr),
turn left (lf). The robot state is defined by the values x, y, and ψ. The estimated travel time
is denoted by t. Right: The robot’s estimated travel time for moving from its initial position
to the position with the blue frame is 15.5s (15s for turning right 90◦ and 0.5s for moving
forward 5cm). The green frame is reachable within 8.2s by turning right 45◦ and moving
forward 7.1cm.

The motion model implicitly defines the search tree of our path planning problem. As shown
in Figure 6.5, every node is connected to four successor nodes representing the states reached
through the four atomic movements.

By applying Dijkstra’s algorithm, we obtain travel times to all unoccupied grid cells. The
travel time to occupied grid cells is set to∞. Eight time values are stored for every grid cell,
because we consider eight angular orientations of the robot. The left image of Figure 6.6 visu-
alizes estimated travel times from the robot’s current base position to all grid cells. For every
grid cell, the time value that is plotted corresponds to the robot facing right. For comparison,
the right image of Figure 6.6 visualizes estimated travel times where the robot finally faces
down.

Several abrupt color changes can be observed in both images, with the green line in the
right image of Figure 6.6 being the most obvious. The reason for this green line is that the
turning speed of our B21r robot is slow. It is important to keep in mind that the robot’s initial
position is rob = 〈xrob, yrob, ψrob〉 = 〈4.5m, 3.9m, 3

2
π〉. So the robot is facing down. The

grid cells of the right image of Figure 6.6 represent travel times where the robot also faces
down at the goal position (ψ′rob = 3

2
π). Therefore, when moving to any target position where

x′rob = 4.5m, no turning motion is required. Estimated travel time for moving to target pose
rob′ = 〈4.5m, 2.4m, 3

2
π〉 for example is 15.0s, because the robot moves forward by 1.5m with

a velocity of 0.1m
s

. For any target pose where x′rob 6= 4.5m, at least two turning motions

153

CHAPTER 6 Utility Framework for Action-Related Places

x=66
y=64
a=180°
t=0.0

x=67
y=64
a=180°
t=0.5

x=65
y=64
a=180°
t=0.5

x=66
y=64
a=135°
t=7.5

x=66
y=64
a=225°
t=7.5

mf mb tr tl

x=65
y=65
a=135°
t=8.2

x=67
y=63
a=135°
t=8.2

x=66
y=64
a=90°
t=15.0

mf trmb

x=66
y=65
a=90°
t=15.5

x=66
y=63
a=90°
t=15.5

x=66
y=64
a=45°
t=22.5

mf mb tr

Level 0

Level 1

Level 2

Level 3

x=66
y=64
a=180°
t=15.0

tl

x=66
y=64
a=135°
t=22.5

tl

FIGURE 6.5 Search tree for estimating travel time. The green and blue nodes correspond to
the robot states that are shown in the right image of Figure 6.4. The subtrees that are rooted
at nodes that are crossed out are pruned during search, as their root nodes correspond to
states that have been explored previously.

of 45◦ are required. One turning motion to the left or right for enabling the robot to move
diagonal, and one turning motion into the opposite direction to make the robot face down
again. Estimated travel time for moving to target position rob′ = 〈4.7m, 3.7m, 3

2
π〉 would be

17.8s, although the grid cell is much closer. Generally, abrupt changes in estimated travel time
happen at neighboring grid cells where one grid cell requires more turning motions than the
other one.

6.2.3.2 Utility Pertaining to Execution Time

In order to compute the utility pertaining to execution time, utility of time uT (x, y) is multi-
plied with the importance of time wT . Utility of time is derived from the estimated travel time
t(x, y) as computed in the last section. Because lower estimated travel time should have higher
utility, we set the utility of time to

uT (x, y) = −t(x, y) (6.6)

154

SECTION 6.3 Evaluation

FIGURE 6.6 Estimated travel time from the robot’s inital position to every grid cell. Green in-
dicates low travel time, white and red successively longer times. Unreachable grid cells are
black. Obstacles have been grown by the robot’s radius so that the robot can be considered
as a point for collision checks. Left: Travel times for robot facing right at the goal grid cell.
Right: Travel Times for robot facing down. Grid borders are omitted for clarity.

In the left image of Figure 6.6, the utility of time ranges from -0.0s for the grid cell where the
robot is currently located to -84.3s for the farthest grid cell. Grid cells that are occupied by an
obstacle have a utility value of −∞s.

The importance of time is chosen by the high level planner according to the importance
that is attributed to the goal of performing the task as quickly as possible. Small values of
wT result in a tendency to prefer manipulation places that maximize combined grasp success
probability, even if they are far away. High values of wT result in a tendency to save time and
and prefer manipulation places nearby, even if combined grasp success probability is low.

6.3 Evaluation

In this evaluation we consider a concrete task scenario and illustrate the effect of different
problem parameterizations on the choice of the manipulation place. According to equation
6.1, the expected utility of utility-based ARPLACEs is computed as follows when considering
grasp success probability and execution time.

u(x, y) = p(x, y) · ws + ut(x, y) · wt

The four parameters that determine expected utility are combined grasp success probability
p(x, y), importance of success ws, utility of time ut(x, y), and the importance of time wt.

155

CHAPTER 6 Utility Framework for Action-Related Places

While p(x, y) and ut(x, y) are computed by the ARPLACE framework, ws and wt are com-
puted by a high-level planning system in order to reflect if grasp quality or execution time is
more important for the task at hand. The parameters ws and wt are passed by the high-level
planning system to the ARPLACE framework. Utility-based ARPLACEs then find optimal
manipulation places for trading-off grasp success probability and execution time.

We start our evaluation by presenting the default evaluation scenario in section 6.3.1, where
every of the above mentioned four parameters is set to a default value. In sections 6.3.2 to
6.3.5 we change one parameter while keeping the other three parameters fix, and observe
the impact on the resulting ARPLACE utility distribution. To get an intuition about how the
utility-based ARPLACE and the ARPLACE that is based on grasp success probability differ,
we compare the manipulation places that are proposed by these approaches. We finish our
evaluation in section 6.3.6 where a series of experiments is performed in order to analyze the
average trade-off between grasp success probability and execution time.

6.3.1 Default Scenario

The images of Figure 6.7 depict the default evaluation scenario. The pose of the target object
with respect to the world frame is obj = 〈3.05m, 1.9m,−π

2
〉. The initial pose of the robot is

rob = 〈4.5m, 3.9m,−π
2
〉. The positional uncertainties of the robot into its base position and

the cup’s pose are σxrob
= σyrob = σxobj

= σyobj
= 0.04m.

FIGURE 6.7 Default evaluation scenario. Left: ARPLACE based on grasp success probability.
Right: Utility-based ARPLACE. Grid cells with high utility are colored blue in order to
distinguish utility plots from probability plots.

The left image of Figure 6.7 depicts an ARPLACE that is based on (combined) grasp success
probability. p∗ refers to the maximum probability value of the probability distribution, and

156

SECTION 6.3 Evaluation

(xp∗ , yp∗) is the grid cell with maximal grasp success probability. (xp∗ , yp∗) is labeled black
in the left image of Figure 6.7. c(xp∗ , yp∗) refers to the coordinates of the center of the grid
cell with maximal grasp success probability. It can be seen, that for the probability-based
ARPLACE p∗ = 96.7% and c(xp∗ , yp∗) is 〈2.30m, 1.85m〉.

Please note that the target object is reachable from the left and right table side, and therefore
a multi-modal ARPLACE distribution emerges. Because the target object’s pose is slightly
more on the left side of the table, grasp success probability is generally higher in the left
ARPLACE cluster. However, it is obvious that the cluster on the right table side is closer to the
robot’s initial position and can be reached faster.

The right image of Figure 6.7 depicts a utility-based ARPLACE. Please note that grid cells
with high utility values are colored blue in order to make utility plots distinguishable from
probability plots. The robot expects the target object to be a cup that is filled with juice, so
the importance of success is wS = 330s. There are no time constraints, so the robot uses the
default value for importance of time and sets wt = 1.0. u∗ refers to the maximal utility value
of the utility distribution. (xu∗ , yu∗) is the grid cell with maximal utility and labelled black in
the right image of Figure 6.7. c(xu∗ , yu∗) refers to the coordinates of the center of the grid cell
with maximal utility. It can be seen, that for the utility-based ARPLACE u∗ = 247.6s. It was
computed as

u∗ = 0.967 · 330.0s + 1.0 · (−71.47s) = 247.6s

The above equation shows that - for the current task - the utility distribution is clearly domi-
nated by grasp success probability. c(xu∗ , yu∗) is 〈2.30m, 1.85m〉. In this scenario the probability-
based and utility-based ARPLACE propose the same manipulation place because (xp∗ , yp∗) =

(xu∗ , yu∗). This is intuitive, as the risk of performing a bad grasp, hitting the cup, and spilling
the juice over the ground is not worth trying to save execution time. Especially when execution
time is not particularly important, which is not the case for this task because wT = 1.0.

6.3.2 Impact of Importance of Success

In this section we evaluate the impact of the importance of success wS on the utility distribu-
tion. Therefore we change wS while keeping the other values fix at their default values, so the
importance of time is wT = 1.0, the pose of the target object is obj = 〈3.05m, 1.9m, 3

2
π〉, and

the initial position of the robot is rob = 〈4.5m, 3.9m, 3
2
π〉.

Importance of success is computed by the high-level planner in order to reflect the impor-
tance that the manipulation action succeeds. Section 6.2.2.2 presented three tasks and showed

157

CHAPTER 6 Utility Framework for Action-Related Places

how the corresponding values for uS are computed. The results were wS = 30s for task A)
of grasping an empty plastic cup, wS = 330s for task B) of grasping a plastic cup filled with
juice, and wS = 2520s for task C) of grasping an empty ceramic cup. Figure 6.8 depicts utility
distributions for performing task A) in the left image and task C) in the right image.

ur = -17s

ul = 2267sul = -42s

ur = 1715s
c(xur, yur) = 〈3.80,1.65〉

c(xul, yul) = 〈2.30,1.85〉 c(xul, yul) = 〈2.35,1.80〉

c(xur, yur) = 〈3.80,1.65〉

*
* *

* *
*

*
* *

*
*

*

FIGURE 6.8 Utility distributions for different values of wS . Left: Utility distribution for per-
forming task A), where wS = 30s (experiment 1 in Figure 6.9). Right: Utility distribution
for performing task C), where wS = 2520s (experiment 3).

The plots visualize the maximum utility value of the left ARPLACE cluster which is denoted
by u∗l , and the maximum utility value of the right ARPLACE cluster which is denoted by u∗r .
It can be seen that for task A) where grasp success is relatively unimportant, u∗r = −17s

and u∗l = −42s. Because u∗r > u∗l the ARPLACE proposes to perform the grasping action
from the right table side and proposes c(xu∗ , yu∗) = 〈3.80m, 1.65m〉 as manipulation place.
The explanation is that the robot prefers to perform the grasp from a nearby position in order
to save execution time. For task C) where grasp success is more important u∗r = 1715s and
u∗l = 2267s. Because u∗l > u∗r the ARPLACE proposes to perform the grasping action from
the left table side and proposes c(xu∗ , yu∗) = 〈2.35m, 1.80m〉 as manipulation place. This
requires the robot to move around the table in order to have the advantage of higher grasp
success probability.

Figure 6.9 depicts a table with all important values for computing expected utility of per-
forming task A), B), and C). The plots that are depicted in Figure 6.8 refer to the data that
is specified in experiment 1 (left image) and 3 (right image) of the table. For each task, the
maximum utility value u∗ is shown for the ARPLACE cluster on the left and right table side.
As expected, grasp success probability is higher for grid cells on the left table side with maxi-
mum probabilities ranging from 93% to 97% compared to 65% to 69% on the right table side.

158

SECTION 6.3 Evaluation

Exper L/R c(xu∗ , yu∗) u∗ p(xu∗ , yu∗) wS wT uT (xu∗ , yu∗)

1 L 〈2.30m, 1.85m〉 -42s 0.97 30s 1.0 -71.0s

R 〈3.80m, 1.65m〉 -17s 0.67 30s 1.0 -36.9s

2 L 〈2.35m, 1.80m〉 238s 0.94 330s 1.0 -71.3s

R 〈3.80m, 1.65m〉 177s 0.65 330s 1.0 -36.9s

3 L 〈2.35m, 1.80m〉 2267s 0.93 2520s 1.0 -71.3s

R 〈3.80m, 1.65m〉 1715s 0.69 2520s 1.0 -36.9s

FIGURE 6.9 Expected utilities for manipulation tasks A) - C). Varying the manipulation task
leads to different values of wS (colored red). Abbreviations: L/R: values in this row refer to
utility distribution on the L(eft)/R(ight) table side; c(xu∗ , yu∗): center of grid cell with maxi-
mum expected utility; u∗: maximum expected utility; p(xu∗ , yu∗): grasp success probability
at grid cell (xu∗ , yu∗); wS: importance of success; wT : importance of time; uT (xu∗ , yu∗):
utility of time at grid cell (xu∗ , yu∗).

There are slight variations in grasp success probability because of the random sampling steps
that take uncertainties into robot position and object pose into account. On the other side, esti-
mated travel time to the right table side is shorter with 36.9s compared to approximately 71.0s
to manipulation places on the left table side.

6.3.3 Impact of Importance of Time

In this section we evaluate the importance of time wT on the ARPLACE utility distribution.
The other parameters are set to their default values. Importance of time is computed by the
high-level planner and represents the importance to perform the manipulation task as quickly
as possible. High values of wT represent the need for short execution time, while low values
represent that the task is not urgent. Figure 6.10 depicts the utility distributions for wT = 0.0

in the left image and wT = 3.0 in the right image.

It can be seen that for wT = 0.0 the ARPLACE proposes to perform the manipulation
action from the left table side, because u∗l = 28s and u∗r = 20s. The reason is that a value of
wT = 0.0 means that execution time is completely irrelevant, making grasp success probability
the only criterion for choosing a manipulation place. When the high-level planner computed
the importance of time to be wT = 3.0, then performing the task as quickly as possible is
important. As a result, the ARPLACE utility distribution changes significantly which can be
seen when comparing the images of Figure 6.10. Now u∗l = −186s and u∗r = −88s. Because
u∗r > u∗l the ARPLACE framework proposes to move to base position 〈3.80m, 1.75m〉 which
trades grasp success probability for saving time.

159

CHAPTER 6 Utility Framework for Action-Related Places

ur = 20s

ul = -186sul = 28s

ur = -88s
c(xur,yur) = 〈3.80,1.65〉

c(xul,yul) = 〈2.35,1.85〉 c(xul,yul) = 〈2.35,1.85〉

c(xur,yur) = 〈3.80,1.75〉

*

*
*

* *

*

*

*
**

**

FIGURE 6.10 Utility distributions for different values of wt. Left: Utility distribution for wT =
0.0 (experiment 1 in Figure 6.11). Right: Utility distribution for wT = 3.0 (experiment 4).

The table in Figure 6.11 depicts a detailed overview of all relevant values of eight experi-
ments, where the plots in Figure 6.10 refer to experiment number 1 and 4. It can be seen, that
u∗l > u∗r is only valid for wT = 0.0 (experiment 1). For all other values of wT the utility-based
ARPLACE proposes to move to a base position on the right table side. This can be attributed
to the small utility of success of task A). That is why we performed additional experiments to
further analyse the importance of time. We performed task B) where wS = 330s. In this case
u∗l > u∗r for values up to wT = 1.0 (experiment 6), and even when wT = 3.0 u∗l is only slightly
smaller than u∗r (experiment 7).

A very interesting result is that for all experiments so far the utility-based ARPLACE pro-
posed manipulation places at or near 〈3.80m, 1.65m〉 when u∗r > u∗l , and manipulation places
at or near 〈2.30m, 1.85m〉 when u∗l > u∗r . This is not the case for experiment 5, where
wT = 10.0. It is so important to save time in this experiment that the utility-based ARPLACE

proposes the nearest available grid cell that has a grasp success probability of more than 0%.
Grasp success probability itself is rendered unimportant. Figure 6.12 depicts the correspond-
ing ARPLACE from a top-down view and from an isometric perspective.

The proposed base position is 〈3.85m, 2.10m〉 with an estimated travel time of 32.7s which
is smaller than the estimated travel times of about 37.0s for the manipulation places that have
been proposed so far. Grasp success probability is 0.002%. The grid cell with maximal utility
in the left ARPLACE cluster is also the one that is closest to the robot 〈2.35m, 2.25m〉. This is
an extreme example, but demonstrates that wT has to be chosen with care. When performing
task B) that has a higher utility of success and setting wT = 10.0, then the base position
〈3.80m, 1.70m〉 is proposed that is still on the right table side, but less extreme with a grasp

160

SECTION 6.3 Evaluation

Exper L/R c(xu∗ , yu∗) u∗ p(xu∗ , yu∗) wS wT uT (xu∗ , yu∗)

1 L 〈2.35m, 1.85m〉 28s 0.93 30s 0.0 -71.3s

R 〈3.80m, 1.65m〉 20s 0.66 30s 0.0 -37.4s

2 L 〈2.35m, 1.85m〉 7s 0.95 30s 0.3 -71.3s

R 〈3.80m, 1.70m〉 9s 0.68 30s 0.3 -36.9s

3 L 〈2.35m, 1.90m〉 -42s 0.95 30s 1.0 -70.8s

R 〈3.80m, 1.70m〉 -16s 0.66 30s 1.0 -36.9s

4 L 〈2.35m, 1.85m〉 -186s 0.94 30s 3.0 -71.3s

R 〈3.80m, 1.75m〉 -88s 0.66 30s 3.0 -36.4s

5 L 〈2.35m, 2.25m〉 -672s 0.00002 30s 10.0 -67.3s

R 〈3.85m, 2.10m〉 -326s 0.00002 30s 10.0 -32.7s

6 L 〈2.35m, 1.85m〉 244s 0.96 330s 1.0 -71.3s

R 〈3.80m, 1.65m〉 193s 0.69 330s 1.0 -37.4s

7 L 〈2.35m, 1.90m〉 100s 0.95 330s 3.0 -70.8s

R 〈3.80m, 1.70m〉 104s 0.65 330s 3.0 -36.9s

8 L 〈2.35m, 1.90m〉 -398s 0.94 330s 10.0 -70.8s

R 〈3.80m, 1.70m〉 -147s 0.67 330s 10.0 -36.9s

FIGURE 6.11 Experiments 1-5 show expected utilities for performing task A) and varying wt.
Experiments 6-8 show expected utilities for performing task B) and varying wT .

ur = -326s

ul = -672s

c(xur, yur) = 〈3.85,2.10〉

c(xul, yul) = 〈2.35,2.25〉
*

* *

* *
*

FIGURE 6.12 ARPLACE utility distributions when the task is urgent. The utility distributions
are depicted from a top-down view (left image) and from an isometric perspective (right
image).

success probability of 67% (experiment 8).

161

CHAPTER 6 Utility Framework for Action-Related Places

6.3.4 Impact of Initial Robot Position

In this section we evaluate the impact of the robot’s initial base position on the utility distri-
bution. Changing the robot’s initial position leads to a change of the grid cell’s utility of time
uT (x, y). The other parameters are set to their default values. The assumption is that when the
robot’s initial position is on the right table side, then it will prefer to grasp the target object
from the right table side, while grid cells on the left table side are prefered when the initial
base position is on the left table side. Experiments are performed from four different initial
base positions that can be seen in the left image of Figure 6.13.

ur = 4s

ul = 6sul = -48s

ur = -43s
c(xur,yur) = 〈3.80,1.60〉

c(xul,yul) = 〈2.35,1.80〉 c(xul,yul) = 〈2.35,1.80〉

c(xur,yur) = 〈3.85,1.60〉

*

*
*

* *

*

*

*
**

**

FIGURE 6.13 Left: Different initial base positions of the robot. The single number next to a
initial position refers to the experiment number in which it is used. The numbers in brackets
specify coordinates of the initial position. Center: Utility distribution for initial position of
experiment 2. Right: Utility distribution for initial position of experiment 3.

The first initial base position is the robot’s default initial position. The second initial posi-
tion is near to the probability cluster on the right table side, and the third and fourth initial
positions are near to the probability cluster on the left table side. The plots in Figure 6.14
depict estimated travel time from all four initial robot positions. This information is useful in
the following discussion.

1 2 3 4

FIGURE 6.14 Time plots for different initial robot positions. Each plot is labeled with the
corresponding experiment number. For every grid cell, the time value is plotted where the
robot faces right.

The center and right image of Figure 6.13 depict resulting utility distributions for exper-

162

SECTION 6.3 Evaluation

iment 2 and 3. It can be seen that our assumption holds. When the robot’s initial base po-
sition is rob = 〈4.2m, 2.0m, π〉, which is close to the right table side, then u∗r = 4s and
u∗l = −48s. The main reason why u∗r > u∗l is that estimated travel time is significantly lower
with 17.5s to c(xu∗r , yu∗r) compared to 76.5s to c(xu∗l , yu∗l). When the robot’s initial base posi-
tion is rob = 〈2.0m, 2.7m, 5.1rad〉, which is close to the left table side, then u∗r = −43s and
u∗l = 6s. In this case, the estimated travel time to c(xu∗r , yu∗r) is 63.5s compared to 22.0s for
moving to c(xu∗l , yu∗l).

The table in Figure 6.15 depicts a detailed overview of the values of the experiments. In
experiment 1, the utility-based ARPLACE proposes the manipulation place 〈3.80m, 1.65m〉,
which is at the right table side. The reason is that the estimated travel time to u∗r is shorter than
to u∗l (36.9s compared to 70.8s), which outweighs the increase of grasp success probability
(66% compared to 94%). Experiments 2 and 3 were already discussed above. The utility-based
ARPLACE unsurprisingly proposes to perform the manipulation action from the left table side
in experiment 4 because estimated travel time is shorter and grasp success probability is higher.

Exper L/R c(xu∗ , yu∗) u∗ p(xu∗ , yu∗) uS wT uT (xu∗ , yu∗)

1 L 〈2.35m, 1.85m〉 -42s 0.94 30s 1.0 -70.8s

R 〈3.80m, 1.65m〉 -17s 0.66 30s 1.0 -36.9

2 L 〈2.35m, 1.80m〉 -48s 0.94 30s 1.0 -76.5s

R 〈3.80m, 1.60m〉 4s 0.70 30s 1.0 -17.5s

3 L 〈2.35m, 1.80m〉 6s 0.93 30s 1.0 -22.0s

R 〈3.85m, 1.60m〉 -43s 0.67 30s 1.0 -63.5s

4 L 〈2.35m, 1.80m〉 2s 0.93 30s 1.0 -26.4s

R 〈3.80m, 1.65m〉 -60s 0.67 30s 1.0 -80.0s

5 L 〈2.35m, 1.85m〉 237s 0.95 330s 1.0 -76.0s

R 〈3.80m, 1.65m〉 209s 0.69 330s 1.0 -17.2s

FIGURE 6.15 Experiments 1-4 show expected utilities for performing task A) from different
initial base positions. Experiment 5 shows expected utility for performing task B) from the
same initial base position as in experiment 2.

The robot’s initial base position in experiment 5 is the same as in experiment 2, but this
time task B) is performed instead of task A). Now the ARPLACE framework proposes to
perform the manipulation action from the left table side although starting at the right table
side. Experiment 5 shows that it is advantageous to maximize grasp success probability when
importance of success increases even when estimated travel time is longer.

163

CHAPTER 6 Utility Framework for Action-Related Places

6.3.5 Impact of Object Pose

In this section we evaluate the impact of the target object’s initial pose on the utility distri-
bution. Changing the object’s initial pose leads to a change of grasp success probability. The
other parameters are set to their default values. The assumption is that when the object’s initial
pose is closer to the right table side, then the robot will prefer to grasp the target object from
the right table side, while grid cells on the left table side are prefered when the object is closer
to the left table side.

Experiments are performed for five different cup poses that can be seen in the left image of
Figure 6.16. Please note that the cup poses are specified with respect to the table frame. The
poses start from being closer to the left table side, and stop at being closer to the right table
side. The second cup pose is the cup’s default pose. The center and right image of Figure 6.16
depict resulting utility distributions for experiment 3 and 5, and the table in Figure 6.17 depicts
a detailed overview of all values of the experiments.

ur = 255s

ul = -31sul = 177s

ur = 292s
c(xur,yur) = 〈3.80,1.60〉

c(xul,yul) = 〈2.35,1.80〉 c(xul,yul) = 〈2.40,1.80〉

c(xur,yur) = 〈3.90,1.65〉

*

*
*

* *

*

*

*
**

**

FIGURE 6.16 Left: Different initial poses of the target object. The single number next to
an object pose refers to the corresponding experiment number. The numbers in brackets
specify the pose. Center: Utility distribution for experiment 3, where the distance of the
cup to each table side is equal. Right: Utility distribution for experiment 5.

The results show that the assumption holds. In experiment 1, the utility-based ARPLACE

proposes to perform the manipulation from position 〈2.30m, 1.80m〉 at the left table side, be-
cause the u∗l = 257s is higher than u∗r = 5s. The reason is that grasp success probability of
the grid cell (xu∗l , yu∗l) is higher than grasp success probability of grid cell (xu∗r , yu∗r). More
specific, p(xu∗l , yu∗l) = 0.99 and p(xu∗r , yu∗r) = 0.13. This compensates the higher estimated
travel time of 71.5s for traveling to c(xu∗l , yu∗l) which is 71.5s compared to 36.9s for traveling
to c(xu∗r , yu∗r). The same is the case in experiment 2 where grasp success probability is 96%
for (xu∗l , yu∗l) and 67% for (xu∗r , yu∗r). Experiment 3 is the borderline case, where the cup is
positioned so that the distance to the right and left table side is equal with 0.3725m. Therefore,
grasp success probability is similar with 75% for (xu∗l , yu∗l) compared to 88% for (xu∗r , yu∗r). In

164

SECTION 6.3 Evaluation

Exper L/R c(xu∗ , yu∗) u∗ p(xu∗ , yu∗) uS wT uT (xu∗ , yu∗)

1 L 〈2.30m, 1.80m〉 257s 0.99 330s 1.0 -71.5s

R 〈3.80m, 1.65m〉 5s 0.13 330s 1.0 -36.9s

2 L 〈2.30m, 1.85m〉 247s 0.96 330s 1.0 -71.0s

R 〈3.80m, 1.65m〉 183s 0.67 330s 1.0 -36.9s

3 L 〈2.35m, 1.80m〉 177s 0.75 330s 1.0 -71.3s

R 〈3.80m, 1.60m〉 255s 0.88 330s 1.0 -37.4s

4 L 〈2.40m, 1.80m〉 107s 0.54 330s 1.0 -71.1s

R 〈3.90m, 1.65m〉 283s 0.96 330s 1.0 -36.5s

5 L 〈2.40m, 1.80m〉 -31s 0.12 330s 1.0 -71.1s

R 〈3.90m, 1.65m〉 292s 0.99 330s 1.0 -36.5s

FIGURE 6.17 Expected utilities for performing task B) where the target object is located at
different locations.

such a situation, the robot will choose whatever position can be reached faster. In this experi-
ment the robot’s intitial base position is to the right of the table, which leads to manipulation
places with higher utility values on the right table side with u∗r = 255s compared to u∗l = 177s.

For experiments 4 and 5 the preference for manipulation places on the right table side in-
creases, because the cup’s distance to the right table side decrease, and grasp success prob-
ability increases accordingly. Actually, grasp success probability in experiments 4 and 5 are
mirror images to experiments 1 and 2. This can be seen when studying the probability values
p(xu∗l , yu∗l) in Figure 6.17. It is particularly obvious when watching Figure 6.18 where a plot
of grasp success probability is depicted for every experiment.

6.3.6 Average Behavior

In the second part of the evaluation we compare the newly introduced utility-based ARPLACEs
(ARPLACEUTIL) to ARPLACEs that are based on grasp success probability (ARPLACEPROB).
We considered the following 21 target object poses (obj) and 21 initial robot positions (rob),
both equally distributed along a line segment parallel to the x-axis.

obj ∈ {〈2.92m, 1.9m, 3
2
π〉, 〈2.94m, 1.9m, 3

2
π〉, .., 〈3.32m, 1.9m, 3

2
π〉}

rob ∈ {〈1.82m, 2.9m, 3
2
π〉, 〈1.95m, 2.9m, 3

2
π〉, .., 〈4.42m, 2.9m, 3

2
π〉}

Four out of 21 initial robot positions and six out of 21 object poses are depicted in Figure 6.19.
For each pair of positions and each of the tasks A) - C), we computed ARPLACEUTIL as well
as ARPLACEPROB, resulting in a total of 21 · 21 · 3 · 2 = 2646 ARPLACE computations.

Figure 6.20 summarizes the results in a table, and Figure 6.21 visualizes them in plots.

165

CHAPTER 6 Utility Framework for Action-Related Places

1 2 3

4 5

FIGURE 6.18 Plots of grasp success probability for all experiments. Each plot is labeled with
the corresponding experiment number.

For task A), the average grasp success probability of the proposed manipulation place was
95% when using ARPLACEPROB compared to 77% when using ARPLACEUTIL. The average
travel time of the proposed manipulation place was 45.6s and 33.9s respectively. Therefore,
on average, the robot using ARPLACEUTIL traded 18% of CGSP for 11.7s of travel time, which
amounts to an increase in utility of 36.8%.

We also computed standard deviations for grasp success probability and estimated travel
time. When performing task A) the standard deviation of grasp success probability is signifi-
cantly higher when using ARPLACEUTIL with 0.28 compared to a standard deviation of 0.06
when using ARPLACEPROB. This is intuitive because when time is the dominant factor, then
ARPLACEUTIL will often choose grid cells with suboptimal grasp success probability. In fact,
from a total of 441 experiments on performing task A), ARPLACEUTIL chose a grid cell with
suboptimal grasp success probability in 153 cases.

When performing task B), this occurred in only 14 out of 441 experiments. The reason is
that as the importance of success increases, the importance of saving execution time decreases
relative to grasp success probability. This also explains why, when performing task B), aver-
age grasp success probability of the manipulation place that is proposed by ARPLACEUTIL ap-
proaches grasp success probability of the manipulation place that is proposed by ARPLACEPROB

(0.955 compared to 0.956). Moreover, average estimated travel time of ARPLACEUTIL ap-
proaches estimated travel time of ARPLACEPROB with 45.1s and 46.2s respectively. When
performing task B), ARPLACEUTIL proposes manipulation places that, on average, have 1%

166

SECTION 6.3 Evaluation

FIGURE 6.19 Left: Robot and object positions that are considered in the experiments for
evaluating average behavior. Only four robot and six cup positions are shown for clarity.
Right: Our B21r robot grasping a cup in the Gazebo simulator.

Task A) Task B) Task C) Overall

µ[p(xp∗ , yp∗)] / µ[p(xu∗ , yu∗)] 0.95 / 0.77 0.96 / 0.95 0.96 / 0.96 0.95 / 0.89

σ[p(xp∗ , yp∗)] / σ[p(xu∗ , yu∗)] 0.06 / 0.28 0.04 / 0.05 0.04 / 0.04 0.05 / 0.19

µ[t(xp∗ , yp∗)] / µ[t(xu∗ , yu∗)] 45.6s / 33.9s 46.2s / 45.1s 46.2s / 46.2s 46.0s / 41.7s

σ[t(xp∗ , yp∗)] / σ[t(xu∗ , yu∗)] 15.0s / 12.4s 14.6s / 14.7s 14.6s / 14.6s 14.7s / 15.0s

FIGURE 6.20 Analysis that compares the manipulation places that are proposed by
ARPLACEPROB and ARPLACEUTIL. Compared are mean grasp success probability
(µ[p(xp∗ , yp∗)] / µ[p(xu∗ , yu∗)]), mean travel time (µ[t(xp∗ , yp∗)] / µ[t(xu∗ , yu∗)]), and the
corresponding standard deviations σ[·] for tasks A) - C). The rightmost column aggregates
the data for all three tasks. In each pair “A / B”, A is the value for ARPLACEPROB and B the
value for ARPLACEUTIL.

less grasp success probability, but can be performed faster by 1.1s. Utility is increased by
a mere 0.3%. When performing task C) the results are completely identical, because grasp
success probability is clearly the dominant factor.

Averaging over the entire set of experiments, we observe that grasp success probability
was 95% when using ARPLACEPROB and 89% when using ARPLACEUTIL. Average travel
time was 41.7s when using ARPLACEUTIL and 46.0s when using ARPLACEPROB. Therefore,
ARPLACEUTIL chose base positions that, on average, saved 9% of travel time but lead to a
grasp success probability that was 6% below the optimum. In terms of performance, this im-
plies that ARPLACEUTIL led to an expected 12.4% increase in utility.

With a further series of experiments, we show that this expected increase in performance
is indeed observed when the model is applied to our B21r manipulation platform in simula-

167

CHAPTER 6 Utility Framework for Action-Related Places

FIGURE 6.21 Left: Visualization of average grasp success probability of manipulation places
that are proposed by ARPLACEPROB and ARPLACEUTIL. This is a visualization of the data
in the first row of Figure 6.20. Right: Visualization of average travel time (third row of
Figure 6.20).

tion (see Figure 6.19 (right)). We considered 25 of the 441 experiment configurations named
above (five initial robot positions and five cup positions) and applied, to each configuration,
both ARPLACEPROB and ARPLACEUTIL six times for each of the tasks A)-C) (i.e. 900 experi-
ments in total). In these experiments, the performance (i.e. the true utility) for tasks A)-C) was
increased by 16.9%, 2.8% and 0% respectively (6.6% on average). Although we do not reach
the predicted 12.4% increase, we observe that applying the more elaborate utility model leads
to a performance increase whenever an increase is indeed possible to achieve.

The degree to which the observed utilities match the predicted utilities is determined exclu-
sively by the accuracies of the underlying grasp success model and the navigation-time model.
In our experiments, the navigation-time model described in section 6.2.3.1 had an average rel-
ative error of 18.3%. While this number may seem excessively large, we found that the motion
controller exhibits a mean deviation of 14.4% in the actual execution times that are observed
when it is applied a particular navigation problem. This is due to the controller’s behaviour
when overshooting waypoints (which occurs non-deterministically) and the corresponding re-
covery routines. Therefore, no navigation-time model can do significantly better. Indeed, a
conceptually much simpler model that uses only distance to estimate navigation time results
in an average relative error of 32.2% (even if the empirically optimal factor for the conversion
from distance to time is used).

168

CHAPTER 7

Case Study

In this chapter we revisite the scenario that was introduced in chapter 2 and describe in detail
how the ARPLACE framework tackles the questions that were raised. The goal of this chapter
is twofold. First, the case study elaborates the evaluation of the last chapter. It is shown that
utility-based ARPLACEs are robust and keep proposing promising base positions in complex
scenarios. Second, the reader should get an intuition for how ARPLACEs behave and what
manipulation places will be proposed in complex situations.

7.1 The Scenario

The task of the robot is to “clean the kitchen table” after its owners finished breakfast. The
robot uses its knowledge base to infer that “cleaning the kitchen table” means to pick up all
objects that are located on the table and put them into the dishwasher. The robot also knows
the position of the dishwasher, because it remembers the dishwasher to be next to the stove
and the fridge, and the position of all these objects remained static in the past.

The robot however, is not completely certain where the kitchen table is located. Although
the robot has a good guess, it experienced that the position of the kitchen table changes several
centimeters from time to time. Additionally, the robot does not know how many and which
objects are located on the kitchen table. Therefore, the robot divides the task “clean the kitchen
table” into a plan with several subtasks.

1. Find the kitchen table

2. Find target objects on the kitchen table

3. Pick up target object and put it into the dishwasher

The first subtask has to be achieved before the second and third subtask. The second subtask
has to be achieved before the third subtask. When at least one target object is detected, the sec-

169

CHAPTER 7 Case Study

ond and third subtask can be executed interleaved. In case there are multiple target objects, the
robot has to perform the third subtask multiple times. The base positions from where the robot
performs manipulation actions are computed by the ARPLACE framework. If appropriate, the
ARPLACE framework can propose base positions from where two objects can be grasped at
once.

The left image of Figure 7.1 depicts an overview of the scenario before the robot enters
the kitchen. We see that there are two target objects on the kitchen table: a glass and a cup.
Another cup is positioned between the stove and the sink. Because it is not located on the
kitchen table, it is no target object in the current task. The right image of Figure 7.1 shows
the robot’s internal representation of the scenario according to its current knowledge. Only the
static objects are in its map.

M a x p ro b _ g s p r

Kitchen Table

TV Table

Worktable

Glass

Cup

Dishwasher

Stove

Fridge

Small
Cupboard

FIGURE 7.1 Left: Scenario before robot enters the kitchen. Right: The robot’s internal view
on the world according to its current knowledge.

7.2 Finding Target Objects

As the robot enters the kitchen, new sensor data arrives. In the left image of Figure 7.2 the
robot discovered several objects by analyzing its laser range data. The discovered objects are
the TV table on the top of the image, the small cupboard beneath it, the two worktables on
the bottom of the image, and a chair at the left worktable. The bright blue square in the robot
represents the robot’s uncertainty into its current base position, as computed by its particle
filter based Adaptive Monte Carlo Localization algorithm. The robot’s current positional un-
certainty is σxrob

= σyrob = 0.04m. The robot also maintains corresponding uncertainties for
object positions, but they are not depicted.

170

SECTION 7.2 Finding Target Objects

FIGURE 7.2 Left: Robot enters kitchen and discovers several objects by analyzing its laser
range data. The bright blue square in the robot visualizes its localization uncertainty. Right:
The robot discovered the kitchen table and a target object. The bright blue square around
obj1 is the robot’s uncertainty about the object’s pose.

The robot continues to move into the kitchen and finds the kitchen table. Plan step 1) “Find
the kitchen table” is achieved. The next plan step is “Find target objects on the kitchen table”.
Therefore, the robot starts to turn towards the kitchen table. While turning, the robot’s vision
system detects an object (obj1) on the table, as can be seen in the right image of Figure 7.2. The
estimated pose of the object is obj = 〈2.93m, 1.50m, undef.〉. The robot also tries to estimate
the type of the target object. Therefore, the vision system matches the shape of obj1 against
an internal database of 3D CAD models and considers obj1 to be a glass or a cup. Because
no handle is detected there is a slight preference for a glass. The estimation about a target
object’s type is stored in a probability vector typobj . For n different objects {o1, .., on} that can
be recognized by the vision system, typobj = {p1, .., pn} stores the probabilities pi that obj is
of a certain object type, where i ∈ {o1, .., on}. In our case typobj1 = {pcup, pglass} with two
elements that store the probability that the target object is a cup (pcup) or a glass (pglass). As
no handle is detected, the vision system has a slight preference for a glass and the probability
distribution is typobj1 = 〈0.45, 0.55〉. Moreover, the lack of a handle impedes the robot from
computing the object’s angle on the table. This is why the angle in the pose of obj1 is estimated
as being “undef.”. The uncertainty into the pose of obj1 is high (σxobj1

= σyobj1
= 0.12m)

because the object is small, far away, and little sensor data is available yet.

171

CHAPTER 7 Case Study

7.3 Computing Manipulation Places

Plan step 2) “Find target objects on the kitchen table” is achieved and the robot now executes
plan steps 2) and 3) interleaved. The primary goal now is to “Pick up target objects and put
them into the dishwasher”, but if new target objects are detected then they will be taken into
account immediately. In order to find a promising manipulation place for grasping obj1, the
robot queries the ARPLACE framework. This includes five steps: (1) use Generalized Success
Models for computing grasp success probability; (2) compute the probability that positions
are blocked by obstacles; (3) merge grasp success probability and obstacle probability into
a single probability value; (4) estimate travel time; (5) merge grasp success probability and
estimated travel time to a utility value. The center of the grid cell with highest utility will be
the proposed manipulation place and chosen as the robot’s goal position for navigation.

Figure 7.20 at the end of the chapter presents an overview of all computational steps and
intermediate representations that are computed.

7.3.1 Grasp Success Probability

The rest of this section describes how to compute the ARPLACE under the condition that
the target object’s type is uncertain. Because the robot is not completely certain whether obj1

is a cup or a glass, grasps from the side for grasping a cup at its handle and from the top
for grasping a glass at its body have to be considered. Therefore the robot has the following
options to grasp obj1

• Grasp obj1 from the top with the right arm

• Grasp obj1 from the side with the right arm

• Grasp obj1 from the top with the left arm

• Grasp obj1 from the side with the left arm

7.3.1.1 Grasping with the Right Arm

We start by considering grasps with the right arm. Both plots in Figure 7.3 show the ARPLACE

probability distribution for grasping obj1 from the top with the right arm. It can be seen that
there are three clusters with grasp success probabilities that are higher than 0%. Every cluster
corresponds to a table edge from where the manipulation action can be performed. There is no
cluster for te4, because obj1 is out of reach from there. The probability to grasp obj1 from te3

is low. The reason is that although within reach, the object is far away which would require the

172

SECTION 7.3 Computing Manipulation Places

robot to significantly stretch its arm, which leads to a difficult reaching motion. Even worse,
if the robot’s estimation about its base position is slightly off, then obj1 could be out of reach.

Grasp success probability from te2 is higher, because obj1 is nearer. When grasping a glass
from the top, then the angular orientation of the glass can be neglected because there are
no constraints on the final yaw-orientation of the gripper. There are two black isobars drawn
within clusterte2 . Isobars are drawn at grasp success probability levels of 20%, 50%, and 80%.
Therefore, the maximal grasp success probability for grasping obj1 from te2 has a probability
of more than 50% but less than 80%. Please note that all furniture is drawn at a height of 0.5
and so the probability distribution of grid cells with lower grasp success probability than 50%
is hidden.

Grasp success probability from te1 includes the grid cell with the highest probability of
success p∗rt. The index rt means that in this case we consider grasps with the right arm from
the top. In the left image of Figure 7.3 p∗rt = 81.3% and the center of the corresponding grid
cell is located at c(xp∗rt

, yp∗rt
) = 〈2.35m, 1.65m〉. The reason why grasp success probability

does not approach 100% is that the robot’s uncertainty into the object’s pose is high and there
is medium uncertainty into its base position.

FIGURE 7.3 Left: ARPLACE probability distribution for grasping obj1 from the top with the
right arm. The black lines are isobars that visualize areas with a grasp success probability
of more than 20%, 50%, and 80%. The black square marks (xp∗ , yp∗) which is the grid cell
with the highest grasp success probability. Right: Same plot from an isometric perspective.

There is the possibility that the handle of obj1 is hidden by its body, and obj1 is a cup instead
of a glass. This possibility is reflected by the robot’s believe state about the type of obj1 which
was found to be typobj1 = {0.45, 0.55}, so the robot expects obj1 to be a cup with a probability
of 45%. If obj1 is a cup, the robot wants to grasp it from the side at its handle. The ARPLACE

probability distribution for grasping obj1 from the side with the right arm is depicted in the
center image of Figure 7.4. It can be seen that grasping obj1 from the side is possible only

173

CHAPTER 7 Case Study

from the cluster at te1. p∗rs = 80.8% at the grid cell that is centered at 〈2.20m, 1.50m〉. The
index rs means that in this case we consider grasps with the right arm from the side.

The next step is to compute the ARPLACE probability distribution for grasping obj1 with the
right arm without considering the type of grasp. This is done by merging the ARPLACE prob-
ability distributions for grasping obj1 from the top and from the side according to the robot’s
believe state of how probable the corresponding grasp will be. The merging of ARPLACEs
is depicted in Figure 7.4, where the left plot corresponds to grasping obj1 from the top and
the center plot corresponds to grasping obj1 from the side. The right plot visualizes the re-
sulting ARPLACE probability distribution. It is the weighted sum of the two source plots.
Although both source plots have manipulation places with a grasp success probability above
80%, the merged plot lacks such a region. The reason is that the most promising manipu-
lation places of the two source plots do not overlap. This can be seen in the right image of
Figure 7.4, where the maximal values for all ARPLACE probability distributions are marked
black. For the resulting plot, p∗r = 66.2% and is located at the grid cell that is centered at
c(xp∗r , yp∗r) = 〈2.30m, 1.50m〉, which is roughly between the maximum probabilities for top
and side grasps. The index r means that we consider grasps with the right arm and any ap-
proach direction.

0.55 * 0.45 *

+ =

M a x p ro b _ g s p r

right arm
top grasp

right arm
side grasp

right arm
any grasp

prs*

prt*

pr = 66.2% *
prt = 81.3%* prs = 80.8% *

c(xprt, yprt) = 〈2.35,1.65〉* * c(xprs, yprs) = 〈2.20,1.50〉* *
c(xpr, ypr) = 〈2.30,1.50〉* *

FIGURE 7.4 Left: ARPLACE probability distribution for grasping obj1 with the right arm from
the top (left image) and from the side (center image). Right: Merged ARPLACE probability
distribution for grasping obj1 with the right arm when considering that the robot expects
that obj1 has to be grasped from the top with a probability of 55% and from the side with
a probability of 45%. Grid cells with the highest grasp success probability are marked in
each plot.

7.3.1.2 Grasping with the Left Arm

The same computations are performed for grasping obj1 with the left arm. The results are
depicted in Figure 7.5.The maximal probability for grasping obj1 from the top with the left

174

SECTION 7.3 Computing Manipulation Places

arm is p∗lt = 84.6% at the grid cell that is centered at 〈2.35m, 1.40m〉, as can be seen in the
left image of Figure 7.5. The maximal probability for grasping obj1 from the side with the left
arm is p∗ls = 41.4% at the grid cell that is centered at 〈2.75m, 0.60m〉, as can be seen in the
center image of Figure 7.5.

The right plot in Figure 7.5 depicts the ARPLACE probability distribution for grasping obj1

with the left arm and any type of grasp. It is obtained by merging the left and center plot.
p∗l = 46.5% at the grid cell that is centered at c(xp∗l , yp∗l) = 〈2.35m, 1.40m〉, which is the
same grid cell as p∗lt.

0.55 * 0.45 *

+ =

M a x p ro b _ g s p r

left arm
top grasp

left arm
side grasp

left arm
any grasp

pl= 46.5% *plt = 84.6%* pls= 41.4% *

c(xplt, yplt) = 〈2.35,1.40〉* * c(xpls, ypls) = 〈2.75,0.60〉* * c(xpl, ypl) = 〈2.35,1.40〉* *

FIGURE 7.5 ARPLACE probability distribution for grasping with the left arm from the top
(left image) and with the left arm from the side (center image). Right: Merged ARPLACE

probability distribution for grasping with the left arm.

Because subsequent processing steps make use of the grasp success probability value with-
out considering if it was derived from the right or left arm we can safely merge the ARPLACEs
for grasping with the right arm and the and the ARPLACE for grasping with the left arm into
a single ARPLACE. This enables us to save computation timein further computations because
they have to be performed only on the merged ARPLACE.

7.3.1.3 Merging ARPLACEs for Left and Right Arm

Merging is done by using themax-operator as shown in Figure 7.6. It can be seen that the area
that is not completely red grows, meaning that the number of grid cells with a grasp success
probability of more than 0% increases. When analyzing the merged ARPLACE probability
distribution, it can be seen that the cluster at te1 is dominated by the cluster of the right arm,
while the cluster of the left arm stretches it out to the bottom and a little bit to the right.
The grid cell with maximum grasp success probability is centered at position c(xp∗ , yp∗) =

〈2.35m, 1.50m〉, has a grasp success probability of p∗ = 66.2%, and proposes to use the right
arm for grasping. Overall it is intuitive that the ARPLACE framework proposes to perform the
manipulation action with the right arm from 〈2.35m, 1.50m〉. The reason is that the robot is

175

CHAPTER 7 Case Study

not certain about the type of the target object. It could be a glass or a cup. The proposed base
position reaches high grasp success probabilities for both types of objects.

,)=

M a x p ro b _ g s p r

right arm
any grasp

left arm
any grasp

any arm
any grasp

p = 66.2% *pr = 66.2%* pl = 46.5%*

c(xpr, ypr) = 〈2.30,1.50〉* * c(xpl, ypl) = 〈2.35,1.40〉* * c(xp, yp) = 〈2.30,1.50〉* *

max(

FIGURE 7.6 ARPLACE probability distribution for grasping obj1 with right arm (left image)
and with left arm (center image). Right: Merged probability distribution for grasping with
any arm. For every grid cell, the merged grasp success probability is the maximal probabil-
ity of successfully grasping with the right or left arm.

7.3.2 Considering Obstacles

Grasp success probability is based on the estimated pose of the target object and the state
estimation uncertainties that the robot has into its base position and the target object’s pose.
Another important issue is to take obstacles into account which may block promising base
positions. The robot estimates an obstacle in 2D space by its mean pose, length, width, and
angular orientation, as well as a covariance matrix that represents the robot’s uncertainty into
the estimated obstacle pose. The center image of Figure 7.7 visualizes an obstacle probability
distribution for the current situation. Please note that obstacles are grown by the robot’s radius.
While the robot is absolutely certain about the pose of the fridge, cooker and sink, it has a high
uncertainty into the table’s pose (σxtab

= σytab
= 0.06m), because the robot just discovered it

and little sensor data is available. The uncertainty into the other objects is relatively low with
standard deviations around 0.02m for the x-axis and y-axis.

Because the obstacle probability distribution is discretized into the same grid cells as the
ARPLACE probability distribution, both probability distributions can be merged easily. For
every grid cell, its (basic) grasp success probability is multiplied by the probability that it is
unoccupied. The resulting probability value is the new (combined) grasp success probability.
After this computational step, the cluster for te3 got smaller at the bottom as can be seen in
the right image of Figure 7.7. The reason is that this area of promising manipulation places is
blocked by the chair at worktable 1. Even grid cells with high grasp success probability are
cancelled out, if the grid cell is known to be occupied. The cluster at te2 gets much smaller at

176

SECTION 7.3 Computing Manipulation Places

the right side, because it is blocked by worktable 1. The kitchen table makes the cluster at te2

a little bit smaller at the top. Furthermore, the kitchen table reduces the size of the cluster at
te1 at the right side.

The obstacle probability distribution also affects grid cells inside the ARPLACE probability
distribution. Maximum (basic) grasp success probability for grasping with the left arm, for
example, was p∗l = 0.465 at the grid cell that is centered at 〈2.35m, 1.40m〉. This was de-
picted in Figure 7.5. The probability that this grid cell is unoccupied is pU(xp∗l , yp∗l) = 0.968,
and combined grasp success probability therefore is 0.465 ∗ 0.968 = 0.450. The distance
of (xp∗r , yp∗r) that is centered at 〈2.30m, 1.50m〉 to the table is bigger by 5cm, and because
pU(xp∗r , yp∗r) = 1.0 at this grid cell combined grasp success probability remains at 66.2%.

* =

M a x p ro b _ g s p r

FIGURE 7.7 Left: ARPLACE probability distribution based on basic grasp success probability.
Center: Obstacle probability distribution. Green grid cells are predicted to be completely
free, so the probability of being unoccupied is 100%. White and red grid cells are pre-
dicted to be unoccupied with successively lower probability. Right: ARPLACE probability
distribution based on combined grasp success probability.

7.3.3 Computing Grasp Utility

If the robot’s only concern is to grasp target objects as robustly as possible, then manipulation
actions should be performed from within the grid cell with the highest combined grasp success
probability. However, sometimes robust grasping is not the robot’s only concern. There may
be additional constraints like execution time or power consumption that have to be taken into
account. Therefore, we want to optimize the following utility heuristic

u(x, y) = p(x, y) · wS + uT (x, y) · wT

where p(x, y) is combined grasp success probability at grid cell (x, y), wS is importance of
success, uT (x, y) is the utility of time at grid cell (x, y), and wT is the weight for weighting the

177

CHAPTER 7 Case Study

utility of time. wS and wT are computed by a high-level planner according to the task context.
Higher values for wT represent that it is urgent to perform the task as quickly as possible, and
higher values for wS represent that it is important to successfully perform the grasping task
in order to avoid undesired drawbacks such as spilling juice over the ground, or breaking the
object. In this scenario the task is not urgent because the owners do not need the kitchen in
the near future and no other tasks are scheduled for the robot. That is why wT is set to 0.1
by the high-level planner. wS is set to 30 seconds because the target object is empty and not
particularly valuable.

The center image of Figure 7.8 depicts the result of estimating travel time from the robot’s
current base position to every grid cell. The grid cell that can be reached fastest and has a grasp
success probability of more than 0% is abbreviated (x∗t , y

∗
t) and is centered at 〈3.85m, 2.10m〉

with an estimated travel time of t∗ = 40.1s. The travel time to the grid cell with maximal
utility of success is estimated to be 66.3s.

The right image of Figure 7.8 depicts the resulting utility distribution. Compared to the left
image where grasp success probability is plotted, the area of promising grid cells seems to
have grown. Several grid cells that were completely red in the left plot changed their color to
a brighter red. This is an effect of our filter that sets the utility value of every grid cell with
a grasp success probability of 0% to −∞s. Therefore, grid cells that have a grasp success
probability of slightly over 0% are almost completely red in the left plot, while their utility
value in the right plot is low but high enough to result in a brigther red than the grid cells that
have a utility value of −∞s.

+ →
uS(xp, yp) =
30s * 0.662 = 19.86s

* * uT(xp, yp) = 0.1 * -66.3s
= -6.63s

* * u(xp, yp) = u = 13.23s*

c(xp, yp)=c(xu, yu)=〈2.30,1.50〉* ** *
* *

(xt, yt)** (xt, yt)**

FIGURE 7.8 Left: ARPLACE probability distribution. Center: Estimated travel time from the
robot’s current position to every grid cell. Green indicates low travel time, white and red
successively longer times. Unreachable cells are black. Right: Merged ARPLACE utility
distribution.

In this example, the grid cell with maximum utility value (u∗) is identical to the grid cell
with the highest grasp success probability. The corresponding grid cell (xu∗ , yu∗) is centered

178

SECTION 7.4 Updating ARPLACEs

at 〈2.30m, 1.50m〉, has a grasp success probability of 66.2% and an estimated travel time of
66.3 seconds. Its utility value is computed as follows

u∗ = 30s · 0.662 + 0.1 · (−66.3s) = 13.23s

The center of the grid cell with the highest utility c(xu∗ , yu∗) is transferred from the
ARPLACE framework to the navigation system as the proposed manipulation place. It is fur-
thermore returned to the transformational planning system and the high-level planner.

Overall, it is intuitive that ARPLACE chose 〈2.30m, 1.50m〉 as manipulation place. First, the
robot is certain that the grid cell is not blocked by an obstacle (pU(xu∗ , yu∗) = 1.0). Second,
the robot is not certain about the type of the target object. It could be a glass or a cup. The
proposed base position reaches high grasp success probabilities for both types of objects. The
only drawback is that the estimated travel time is higher than for any grid cell in the cluster
of te3. But since the difference is not striking (66.3s compared to at least 40.1s), and reducing
execution time is only a minor goal in the current task, the robot should prefer base positions
with high grasp success probability.

7.4 Updating ARPLACEs

After having located a target object and finding the most promising manipulation place, the
robot moves towards the manipulation place. While moving, new sensor data arrives. The
ARPLACE framework takes the new data into account as can be seen in Figure 7.9. The
left image shows the robot at base position 〈4.2m, 3.2m, 5

4
π〉. The updated versions of the

ARPLACE probability and utility distributions are depicted in the center and right image.
Due to additional laser range information, the positional uncertainties of all furniture ob-

jects decreased. For example, the standard deviation of the kitchen table decreased from
σxobj1

= σyobj1
= 0.06m to σxobj1

= σyobj1
= 0.02m. And the standard deviation of the

target object’s pose decreased from σxtab
= σytab

= 0.12m to σxtab
= σytab

= 0.05m. Reduced
uncertainty leads to higher grasp success probability. The number of grid cells with high grasp
success probability increased as can be seen when comparing the isobars in the center im-
age of Figure 7.9 and the right image of Figure 7.7. There are several grid cells with a grasp
success probability of 80% and more in Figure 7.9. p∗ changed from 66.2% in Figure 7.7
to 89.6% in Figure 7.9. The proposed manipulation place changed from 〈2.30m, 1.50m〉 to
〈2.30m, 1.55m〉.

Another fact worth mentioning is that the robot did not detect a handle yet, and the prob-
ability of obj1 being a glass raised from typobj1 = 〈0.45, 0.55〉 to typobj1 = 〈0.3, 0.7〉. As a

179

CHAPTER 7 Case Study

result, the grasp success probability cluster at te1 got more symmetric. This can be seen when
observing the bottom left part of the ARPLACE cluster at te1 of Figure 7.7 and Figure 7.9.
The utility value changed from 13.23s in Figure 7.7 to 20.77s in Figure 7.9. The higher utility
value can be attributed mostly to higher grasp success probability, but the estimated travel time
got shorter as well.

FIGURE 7.9 ARPLACEs get updated as new sensor data arrives.

To sum up, new sensor data allowed the robot to reduce its state estimation uncertainties,
without detecting major flaws in the previous state estimation. As a result grasp success prob-
ability of the most promising base position increased considerably from 66.2% to 89.6%.
The most promising manipulation place itself remained nearly the same by changing from
〈2.30m, 1.50m〉 to 〈2.30m, 1.55m〉. This is the new navigation goal that ARPLACE reports to
the navigation system.

7.5 Handling Multiple Objects

The robot keeps moving forward and detects a second object on the kitchen table, as can be
seen in the left image Figure 7.10. The robot estimates the pose of obj2 to be 〈3.0m, 1.9m, undef.〉
with a positional uncertainty of σxobj2

= σyobj2
= 0.08m. The object’s type is estimated

as typobj2 = 〈0.25, 0.75〉. The second target object introduces an additional subtask and the
robot’s plan now consists of the subtasks

• “put obj1 into the dishwasher”

• “put obj2 into the dishwasher”

that can be accomplished in any order.

Figure 7.11 depicts the robot’s preferred base positions for grasping obj1 and obj2. u∗obj1 is in
the grid cell that is centered at 〈2.30m, 1.55m〉 and proposes to use the right arm for grasping.

180

SECTION 7.5 Handling Multiple Objects

FIGURE 7.10 Left: Scenario when robot detects a second target object. Right: The robot’s
internal view on the world according to its current knowledge.

Grasp success probability is 90.0% and the estimated travel time is 56.57s, which leads to a
utility value of 21.3s. u∗obj2 is in the grid cell that is centered at 〈2.35m, 2.05m〉 and proposes
to use the right arm for grasping. Grasp success probability is 86.1% and the estimated travel
time is 51.36s, which leads to a utility value of 20.7s.

uobj1 = 21.3s* uobj2 = 20.7s*
c(xuobj2, yuobj2) = 〈2.35,2.05〉* *c(xuobj1, yuobj1) = 〈2.30,1.55〉* *

FIGURE 7.11 ARPLACE utility distributions for grasping obj1 (left image) and obj2 (right
image).

However, the manipulation of multiple objects provides opportunities to further optimize
base positioning, because the subgoals can be achieved with different action sequences.

A) Grasp obj1 | Put obj1 into dishwasher | Grasp obj2 | Put obj2 into dishwasher
B) Grasp obj2 | Put obj2 into dishwasher | Grasp obj1 | Put obj1 into dishwasher
C) Grasp obj1 | Grasp obj2 with other arm | Put obj1 and obj2 into dishwasher
D) Grasp obj2 | Grasp obj1 with other arm | Put obj1 and obj2 into dishwasher
E) Grasp obj1 and obj2 from same position | Put obj1 and obj2 into dishwasher

181

CHAPTER 7 Case Study

Because the ARPLACE framework only considers the next grasping action, plan A) and C)
leads to the utility value of grasping obj1, while plan B) and D) leads to the utility of grasping
obj2. The following section will show, how the utility value of plan E) is computed, which
requires to compute the utility value u∗obj12 of grasping both objects at once from the same
base position.

7.5.1 Merging ARPLACEs based on Utility

Grasping both objects at once can be achieved by the following possibilities.

1. Grasp obj1 with the right arm and obj2 with the left arm (RL grasp scheme)

2. Grasp obj1 with the left arm and obj2 with the right arm (LR grasp scheme)

Grasp success probability for successfully grasping both objects from the same base posi-
tion is the product of the ARPLACE probability distribution for grasping obj1 and the ARPLACE

probability distribution for grasping obj2. When considering the RL grasp scheme, then grasp
success probability for successfully grasping both objects at once is the product of success-
fully grasping obj1 with the right arm and grasping obj2 with the left arm. We call the resulting
ARPLACE probability distribution prl. plr is the ARPLACE probability distribution of using
the LR grasp scheme. for grasping both objects at once. plr is computed as the product of
successfully grasping obj1 with the left arm and grasping obj2 with the right arm. Figure 7.12
depicts the computation of prl (images on top) and plr (images at bottom).

In our scenario p∗rl = 60.9% at the grid cell that is cenetered at 〈2.35m, 1.80m〉. p∗lr =

17.9% at the grid cell that is cenetered at 〈2.40m, 1.75m〉. This means that grasp scheme RL

is preferred. This is intuitive, as grasp scheme LR would require the robot to reach far to the
left with the right arm, and far to the right with the left arm. In order to compute the utility
of grasping obj1 and obj2 from the same base position, we merge prl and plr with the max-
operator, and combine it with the utility of time. Figure 7.13 depicts the resulting ARPLACE

utility distribution. u∗obj12 is at the grid cell that is centered at 〈2.35m, 1.80m〉 and proposes to
grasp obj1 with the right arm and obj2 with the left arm. Maximum grasp success probability
for successfully grasping both at once objects is 60.9% and the estimated travel time is 53.9s,
which leads to a utility value of 12.9s.

u∗obj12 is considerably lower than the utilities of u∗obj1 which was 21.3s, and u∗obj2 which was
20.7s. The default approach would lead to plan A) or plan C), because when the high level
planner asks for a suitable base position for grasping, then ARPLACE will return the grid cell
with maximal utility c(x∗obj1 , y

∗
obj1

).

182

SECTION 7.5 Handling Multiple Objects

* =

Grasping
obj1 with
right arm

Grasping
obj2 with
left arm

Grasping
obj1 and obj2
at once

prl = 60.9%*

c(xprl, yprl) = 〈2.35,1.80〉* *

*

M a x p ro b _ g s p r

Grasping
obj1 with
left arm

Grasping
obj2 with
right arm

Grasping
obj1 and obj2
at once

plr = 17.9%*

c(xplr, yplr) = 〈2.40,1.75〉* *

=

FIGURE 7.12 Top: Grasp success probability for grasping obj1 with the right arm (left image),
grasp success probability for grasping obj2 with the left arm (center image), and grasp
success probability for grasping both objects at once (right image). Bottom: The same for
grasping both object at once and using the left arm for obj1 and the right arm for obj2.

However, the utility heuristic presented above is not fair to the plan of grasping both ob-
jects at once. It is obvious that plans E) might save overall execution time. The current utility
heuristic accounts only for the next action and does not consider future actions. Therefore,
the utility of moving to the best manipulation place for grasping a single object will always
be higher than the utility for grasping multiple objects at once. The reason is that finding the
most promising base position for grasping multiple objects means to find a base position that
is a good compromise between the probabilities of successfully grasping obj1 and obj2. Mov-
ing to a base position that is better suited to grasp the one object will usually lead to a base
position that is worse for grasping the other object. The only exception where u∗obj12 is equal to
max(u∗obj1 , u

∗
obj2

) is when the condition (xu∗obj1
, yu∗obj1

) = (xu∗obj2
, yu∗obj2

) holds. Or less formal:
The grid cell with maximal utility for grasping obj1 is identical to the grid cell with maximal
utility for grasping obj2

There are two possibilities to make the decision whether the robot should grasp both objects
from a single base position. One opportunity is to use a transformational planning system, as
described in 5.6.3.2. The other possibility is to compute overall utility of plans and choose the
one that maximizes it. In this chapter we will focus on the utility-based approach.

183

CHAPTER 7 Case Study

* =
c(xuobj12, yuobj12) = 〈2.35,1.80〉* *
uobj12 = 12.9s*

FIGURE 7.13 Left: ARPLACE probability distribution for grasping obj1 with the right arm and
obj2 with the left arm. Center: Estimated travel time. Right: Resulting utility distribution.
The grid cell with maximal utility is marked.

7.5.2 Overall Utility of Plans

The overall utility of a plan is the sum of the utilities of its plan steps. Plan A), for example,
consisted of the following steps (1) Grasp obj1; (2) Put obj1 into dishwasher; (3) Grasp
obj2; (4) Put obj2 into dishwasher. We can further divide the plan into the following steps.

• Move to c(xu∗obj1
, yu∗obj1

)

• Grasp obj1 with any arm
• Move to dishwasher
• Place obj1 into dishwasher
• Move to c(xu∗obj2

, yu∗obj2
)

• Grasp obj2 with any arm
• Move to dishwasher
• Place obj2 into dishwasher

Please note that every two consecutive steps (matching colors) involve a movement action
followed by a manipulation action, and therefore can be seen as an ARPLACE query. There-
fore, the overall utility of plan A) is the sum of the utilities of four ARPLACEs. This is a
drawback of computing overall utility of whole plans. Increasing the lookahead of plan steps
increases the number of required ARPLACEs, and leads to higher computation time. That is
why computing overall utility of plans should be considered as an option that is only used
when there are sufficient computational resources. The default solution to address the prob-
lem of finding manipulation places for grasping multiple objects at once is the transformational
planning system. Figure 7.14 depicts the robot’s trajectory in order to execute plan A) and the
times that are required for each navigation action.

184

SECTION 7.5 Handling Multiple Objects

FIGURE 7.14 Navigation trajectories for executing plan A). Each path is annotated with the
corresponding plan step in brackets. The following number represents the estimated nav-
igation time for moving along the path. For clarity, corresponding paths and numbers are
drawn in the same color.

According to the numbers that are presented in Figure 7.14, and the fact that one manipu-
lation action requires an additional 20s, the overall execution time of plan A) is predicted to
be

t(planA) = 56.5s + 40.0s + 35.2s + 35.2s + (4 · 20.0s) = 246.9s

The grasp success probability for the two grasping tasks are 90.0% for grasping obj1 from
base position c(xu∗obj1

, yu∗obj1
), and 86.1% for grasping obj2 from base position c(xu∗obj2

, yu∗obj2
).

The overall utility of plan A) is

u(planA) = 0.900 · 30.0s + 0.861 · 30.0s +−246.9s · 0.1 = 28.1s

Figure 7.15 depicts an overview of the relevant values for all plans including their overall
utilities. There are several observations that can be made. Overall, plan E) for grasping both
objects at once has the highest utility. As expected, its execution time is significantly smaller
than for any other plan. However, the sum of its grasp success probabilities is the lowest with
84.7% for grasping obj1 and 71.8% for grasping obj2. This was also expected because plan E)
has to find a manipulation place that is a good compromise for grasping both objects. Plan C)
and D) have significantly lower execution times than plan A) and B) because both objects are
grasped one after the other. This saves two navigation actions. One navigation action towards
the dishwasher and one back to the table. Moreover, plan C) and D) have a lower sum of
grasp success probabilities than plan A) and B). This is because plan A) and B) can grasp both

185

CHAPTER 7 Case Study

objects from the perfect base position, which proposes to use the right arm for both objects.
This is not possible in plan C) and D), because when performing the second grasping task,
one gripper is already occupied. So the robot has to decide whether to perform the first or the
second grasping action with the suboptimal left arm. In this scenario, the utility for grasping
obj1 with the left arm and obj2 with the right arm is higher than vice versa.

Plan p(xu∗obj1
, yu∗obj1

) p(xu∗obj2
, yu∗obj2

) t(plan◦) u(plan◦)

A) 0.900 0.861 247.0s 28.1s

B) 0.900 0.861 246.6s 28.2s

C) 0.847 0.861 181.0s 33.2s

D) 0.847 0.861 192.6s 32.0s

E) 0.847 0.718 133.8s 33.6s

FIGURE 7.15 Grasp success probabilities, estimated execution time, and overall utility for
different plans. ◦ refers to the plan as specified in the left column.

Based on the overall plan utilities, the robot decides to grasp both objects at once and moves
towards c(xu∗obj12

, yu∗obj12
) .

7.6 Handling Sudden Changes

While moving, the robot encounters a chair that was previously hidden behind the kitchen
table. The chair exactly blocks the robot’s current navigation goal. This leads to a dramatic
change in the ARPLACE utility distributions. The utility distributions before and after discov-
ering the chair are depicted in Figure 7.16.

It can be seen that the chair significantly changes all utility distributions and additionally
changes the most promising base position for all manipulation actions. The proposed base po-
sition for grasping obj1 changes from 〈2.35m, 1.60m〉 to 〈2.35m, 1.15m〉, and leads to a drop
of grasp success probability from 91.8% to 66.8%. The estimated travel time increases from
41.9s to 52.3s. The proposed base position for grasping obj2 changes from 〈2.35m, 2.00m〉
to 〈3.10m, 2.65m〉. This is the first time that ARPLACE proposes to grasp one of the objects
from another table edge than te1. Although grasp success probability dropped from 98.2% to
81.6%, the estimated travel time got shorter and is estimated to be 13.5s now compared to
37.4s previously. In fact, the robot’s current base position is very close to c(xu∗obj2

, yu∗obj2
) ′.

The impact of the discovered chair on the base position for grasping both objects at once is
most striking, because the chair exactly blocks the area that consists the most promising base
positions. Grasp success probability drops from 83.3% for grasping obj1 with the right arm

186

SECTION 7.6 Handling Sudden Changes

M a x p ro b _ g s p r

c(xuobj1, yuobj1) = 〈2.35,1.60〉* * c(xuobj2, yuobj2) = 〈2.35,2.00〉* * c(xuobj12, yuobj12) = 〈2.35,1.80〉* *

c(xuobj1, yuobj1)' = 〈2.35,1.15〉* * c(xuobj2, yuobj2)' = 〈3.10,2.65〉 c(xuobj12, yuobj12)' = 〈2.40,2.15〉* *

FIGURE 7.16 Utility distributions before (top image row) and after (bottom image row) the
robot discovered the chair. Left: Utility distributions for grasping obj1. Center: Utility dis-
tributions for grasping obj2. Right: Utility distributions for grasping both objects from the
same base position. The grid cells with maximum utility are marked in each plot. Grid cells
that are labeled without a trailing ’ refer to places before discovering the chair, and places
with a trailing ’ refer to places after discovering the chair.

and 83.6% for grasping obj2 with the left arm to 13.7% and 12.5% respectively. As a result,
the newly proposed base position 〈2.40m, 2.15m〉 has a utility value of rather low -2.8s as
opposed to 16.9s previously.

Figure 7.17 depicts values of the most promising base positions before and after discovering
the chair. Each row presents values of a base position with maximum utility that is depicted in
Figure 7.16.

After determining the new promising manipulation places, the overall utilities of plan A) -
E) are computed. Figure 7.18 depicts the corresponding resulting values. It can be seen that
plan D) is preferred with a utility of 21.8s. This requires the robot to move to c(xu∗obj2

, yu∗obj2
) ′

in order to grasp obj2 with the right arm, then move to c(xu∗obj1
, yu∗obj1

) ′ in order to grasp obj1

with the left arm, and finally move to the dishwasher and put down both objects. ARPLACE

transfers c(xu∗obj2
, yu∗obj2

) ′ = 〈3.10m, 2.65m〉 as the new goal position to the navigation system.

187

CHAPTER 7 Case Study

Place c(xu∗obj◦
, yu∗obj◦

) p(xu∗obj1
, yu∗obj1

) p(xu∗obj2
, yu∗obj2

) t(xu∗obj◦
, yu∗obj◦

) u∗obj◦

obj1 〈2.35m, 1.60m〉 0.918 (R) - 41.9s 23.3s

obj2 〈2.35m, 2.00m〉 - 0.982 (R) 37.4s 25.7s

obj12 〈2.35m, 1.80m〉 0.833 (R) 0.836 (L) 39.4s 16.9s

obj′1 〈2.35m, 1.15m〉 0.668 (L) - 52.3s 14.8s

obj′2 〈3.10m, 2.65m〉 - 0.816 (R) 13.5s 23.1s

obj′12 〈2.40m, 2.15m〉 0.137 (R) 0.125 (L) 35.7s -3.1s

FIGURE 7.17 Manipulation places and relevant values before and after the robot discov-
ers the chair. c(x∗uobj·

, y∗uobj·
) indicates the proposed base position. p(xu∗obj1

, yu∗obj1
) and

p(xu∗obj2
, yu∗obj2

) indicate grasp success probability for the target objects. (R) and (L) in
these columns represent whether grasp success probability refers to a grasping action with
the Right or Left arm. t(x∗uobj◦

, y∗uobj◦
) refers to estimated travel time, and u∗obj◦ is the result-

ing utility value. ‘◦’ refers to the object as specified in the left column.

Plan p(xu∗obj1
, yu∗obj1

) p(xu∗obj2
, yu∗obj2

) t(plan◦) u(plan◦)

A) 0.668 0.816 292.6s 15.3s

B) 0.668 0.816 249.0s 19.6s

C) 0.668 0.816 239.0s 20.6s

D) 0.668 0.816 227.4s 21.8s

E) 0.137 0.125 150.1s -7.1s

FIGURE 7.18 Grasp success probabilities, estimated execution time, and overall utility for
different plans. ‘◦’ refers to the plan as specified in the left column.

7.7 Performing the Task

Because no further observations have an impact on the proposed base position, the robot
grasps obj2 from 〈3.10m, 2.65m〉 with the right arm. Subsequently, the robot moves towards
c(xu∗obj1

, yu∗obj1
) ′ = 〈2.35m, 1.15m〉 in order to grasp obj1.

The robot moves around the chair and turns towards the table in order to grasp obj1, which
the robot believes is a glass although it is a cup. After finishing the turning motion, the vi-
sion system detects a handle at obj1 that was previously hidden by the cup’s body. The robot
is now sure that obj1 is a cup and the belief state changes from typobj1 = 〈0.15, 0.85〉 to
typobj1 = 〈1.0, 0.0〉. Because a cup is grasped from the side at its handle, the ARPLACE util-
ity distribution changes as well. Figure 7.19 depicts the ARPLACEs before and after observing
the cup’s handle.

Although the proposed base position changes only insignificantly from 〈2.35m, 1.15m〉 to

188

SECTION 7.7 Performing the Task

〈2.25m, 1.15m〉, grasp success probability shrinks from 82.8% to 69.1%. The reason is that
the cup’s handle puts a kinematic constraint on the arm that inhibits the robot to use the left
arm for grasping that was preferred previously. The robot has to use its right arm for grasping
and stretch it far to the right.

p(xu, yu) = 82.8%* *

c(xu, yu) = 〈2.35,1.15〉* * c(xu, yu)' = 〈2.25,1.15〉* *

p(xu, yu)' = 69.1%* *

FIGURE 7.19 ARPLACE utility distributions before (left image) and after (right image) the
robot discovered the cup’s handle.

Because the right arm is currently occupied by obj2, the robot puts obj2 into the dishwasher,
then moves to the proposed base position, grasps obj1 with the right arm, and moves back to
the dishwasher.

189

CHAPTER 7 Case Study

+p us wt ut

1. Merge Grasp
 Types

+ +

max(pr,pl)

*

2. Merge Arm Sides

3. Include Obstacles

4. Consider Utility of Time

pS pO

prt prs

pr

plt pls

pl

* *

FIGURE 7.20 Steps for computing a utility-based ARPLACE.

190

CHAPTER 8

Conclusion and Future Research

Mobile manipulation is a challenging task and involves complex decision making. But it is
highly desirable to develop robust manipulation skills, because it is one of the enabling tech-
niques for building truely autonomous robots. The ability to find optimal manipulation places
is one of the decisions that have to be made and it is an important one because it sets the
context under which other manipulation subsystems such as motion planning, trajectory gen-
eration, or manipulator control have to perform the manipulation action. Finding manipulation
places that are tailored towards the robot’s skills makes the task of these subsystems as easy
as possible and leads to more robust manipulation.

In this dissertation thesis we presented the ARPLACE framework which is a compact con-
trol program for robot positioning in mobile manipulation tasks. Section 8.1 summarizes the
contributions, gives a short overview of the computational steps and presents results that were
described in the thesis. We discuss directions that are promising for future research in section
8.2.

8.1 Summary

The framework of Action-Related Places introduces a new way to address the problem of
finding manipulation places. It adopts paradigms from cognitive motor control and bayesian
modeling in order to naturally address challenges that occur in mobile manipulation. As a
result, the ARPLACE framework can adapt to different task contexts and is able to handle
sensor information that is uncertain and arriving continuously.

The ARPLACE framework represents manipulation places in internal models that are called
Generalized Success Model. Generalized Success Models are learned through experience-
based learning, similar to how humans develop internal models. The approach of experience-
based learning is able to capture robot skills that are hard to discover and represent analyt-

191

CHAPTER 8 Conclusion and Future Research

ically. The Generalized Success Model is used online to compute an ARPLACE probability
distribution that represents grasp success probability for all base positions. According to the
bayesian coding hypothesis “the human brain represents sensory information probabilistically,
in the form of probability distribution”. So ARPLACE probability distributions are a natural
and cognitive way of decisions making. They are also an efficient approach to find the optimal
manipulation place as the one that maximizes grasp success probability. We chose to use a
point distribution model as the basis for the Generalized Success Model because it is com-
pact and can be queried fast. This allows to update ARPLACE probability distributions when
new sensor information arrives and enables least commitment planning. In the following we
summarize this thesis by chronologically presenting the computational steps of the ARPLACE

framework.

The first step is to develop an internal model of successful manipulation places. Therefore,
a target object is placed at various positions on a table. In simulation the robot tries to grasp
the target object from various manipulation places, and stores whether the manipulation ac-
tion succeeded or failed. Support vector machines generalize over the training data. One SVM
model is learned for every distinct pose of the target object, and a classification boundary is
extracted. A classification boundary represents manipulation places that lead to successful ma-
nipulation for a certain, discrete object pose. The classification boundaries are used as input
for learning a point distribution model that interpolates between object poses. The resulting
point distribution model is called Generalized Success Model and is a compact, yet precise
model of successful manipulation places. The Generalized Success Model represents manip-
ulation places that are not only kinematically promising, but places that have led to successful
manipulation in actual manipulation tasks. The approach of experience-based learning assures
that the Generalized Success Model is tailored towards the robot’s skills.

Objects are mainly grasped either by approaching them from the side or from the top. That
is why we learn separate Generalized Success Models for these two types of grasps. We evalu-
ated the resulting Generalized Success Models and found that they generalize well in that they
capture 96% of the deformation energy for side grasps with two deformation modes. When
considering grasps from the top, then the first deformation mode already captures 94% of the
deformation energy and two deformation modes capture 99% of the deformation energy. The
process of gathering training data is time consuming with approximately 50 seconds for every
simulation experiment. However, it can be done offline, has to be done only once per robot,
and the Gazebo simulator allows to script the training process. Moreover, using geometric
knowledge and the capability map enabled us to exclude 84% of the initially planned exper-
iments. Biasing exploration with human activity data further reduced the time for gathering

192

SECTION 8.1 Summary

training data. Learning Generalized Success Models was described in chapter 3.

Generalized Success Models are used online in order to compute ARPLACE probability
distributions. An ARPLACE discretizes space into grid cells where each cell represents the
predicted probability of successfully grasping the target object when the robot performs the
grasping action from a base position within this grid cell. State estimation uncertainties of the
robot into the target object’s pose or into its own base position are explicitly taken into account
by performing Monte Carlo simulation and probabilistic conditioning. A thorough evaluation
was performed in the Gazebo simulator. The result was that manipulation places that were
proposed by the ARPLACE framework outperformed manipulation places that were proposed
by the benchmark strategy in a statistically significant way. The superiority of ARPLACE to the
benchmark strategy increased when state estimation uncertainty got higher. ARPLACEs are a
valuable source of information for high level planning systems because they can help to decide
if additional exploration is required, if the task should be aborted because it is difficult, or what
to do when a manipulation action fails unexpectedly. A performance analysis showed that the
computation of a simple ARPLACE takes 40-50 milliseconds on a laptop computer. This is
fast enough for performing least-commitment planning. Computing ARPLACE probability
distributions was described in chapter 4.

Chapter 5 extended the concept of Action-Related Places and presented how to compute
more advanced ARPLACEs. It was shown how easy it is to add additional features. Many of
the presented extensions are based on the operation of computing multiple ARPLACE proba-
bility distributions and merging them. The computation of multiple ARPLACEs requires ad-
ditional computation time but scales very well when it is distributed to multiple CPUs. The
merging operation itself can be performed very fast because merging ARPLACEs is done by
simply multiplying probability values of corresponding grid cells. It was shown how comput-
ing ARPLACEs for every table edge can lead to multi-modal ARPLACE distributions, how
ARPLACEs are determined when the robot is not certain about the target object’s type, or
how an ARPLACE that was computed for grasping with the right arm can be transformed
into an ARPLACE for grasping with the left arm. Obstacles have to be taken into account
as well. In order to achieve this, a obstacle probability distribution is computed and merged
with the original ARPLACE probability distribution. Another useful feature of ARPLACEs
is that manipulation places for grasping multiple objects at once can be computed easily by
computing separate ARPLACEs for each object and merging them. An evaluation showed that
applying transformational planning for manipulating multiple objects at once reduces the av-
erage execution time from 48 seconds to 32 seconds. The chapter closed by describing how
Action-Related Places are modified when a manipulation action failed.

193

CHAPTER 8 Conclusion and Future Research

ARPLACEs are usually based on grasp success probability. However, grasp success may not
be the robot’s only concern. In the presence of humans, a robot should prefer to stay within
the humans’ field of view. If a task is urgent, performing the task as quickly as possible has
priority, and if the battery is low saving energy becomes a vital goal. A utility framework was
presented in chapter 6 that generalized the framework of Action-Related Places in order to
take multiple, potentially conflicting task goals into account. Utility-based ARPLACEs can be
applied to a broader range of tasks and goals. The utilities we considered in this thesis were
travel time and utility of successful grasping. A detailed evaluation analyzed the differences
between probability-based and utility-based ARPLACEs. Manipulation places that were pro-
posed by utility-based ARPLACEs had an average grasp success probability of 89% and an
average travel time of 41.7 seconds. Manipulation places that were proposed by probability-
based ARPLACEs had an average grasp success probability of 95% and an average travel time
of 46.0 seconds. Overall, the utility-based ARPLACEs traded 6% of grasp success probability
in order to save 9% of travel time.

A case study in chapter 7 presented a complex scenario where the robot had to perform the
task “clean the kitchen table”. The primary goal of the case study was to provide the reader
with an intuition for how ARPLACEs behave and what manipulation places will be proposed
in complex situations. First, the process of finding optimal manipulation places was described
thoroughly. It was especially emphasized how new sensor data can change ARPLACE distri-
butions. Better state estimations, for example, may lead to manipulation places with higher
grasp success probability, discovering additional objects may allow to grasp multiple objects
at once, and detecting obstacles can block manipulation places that seemed to be promising
before. The case study also discussed how the problem of grasping multiple objects at once
can be addressed within the utility-based framework.

8.2 Open Challenges and Future Research

The ARPLACE framework is applicable to a wide range of tasks and goals and has shown
to propose promising base positions even in complex scenarios. Some problems, however,
remain.

Until now we restrict the robot to face the table perpendicularly when approaching it. Al-
though we believe that overall this is the most useful orientation, being able to compute ma-
nipulation places for any kind of robot orientation would certainly enable the robot to grasp
objects that cannot be grasped otherwise. An example is depicted in Figure 8.1. This gener-
alization of the ARPLACE framework comes with two drawbacks. First, the number of ex-

194

SECTION 8.2 Open Challenges and Future Research

periments for learning Generalized Success Models increases because training data has to be
gathered for multiple robot orientations. The second drawback is that it is unsure whether the
point distribution model can handle additional parameters. Although we have not tried this
yet, we doubt that the point distribution model would generalize well and believe that new
representations of the internal model and new learning techniques have to be found.

FIGURE 8.1 Left: Robot approaches the table perpendicularly. The target object is oriented
in a way the makes it impossible for the robot to grasp it. Right: The robot changes its
orientation so that grasping the object becomes possible.

Computational efficiency of utility-based ARPLACEs is also an issue. Although the compu-
tation of ARPLACE probability distributions is fast and can be computed within milliseconds,
the computation of complex ARPLACEs that include many obstacles is slower, although well
below 500 milliseconds. The first possibility is to switch from the current Matlab implemen-
tation to a C++ implementation. The second possibility is to avoid to compute ARPLACE

distributions for all grid cells, but to tailor them towards grid cells from where the target ob-
ject is theoretically within reach. The use of the capability map is currently limited to the
offline part of the ARPLACE framework. Using the capability map to determine the grid cells
from where the target object is theoretically within reach and aborting computations after the
ARPLACE is computed for all such grid cells is reasonable and avoids unnecessary compu-
tation. Because ARPLACE computations scale very well the third possibility is to distribute
computations among multiple CPU’s. All three possibilities can be used in conjunction.

The ARPLACE framework has been evaluated on the real B21r robot. Unlike in simulation it
was not possible to achieve a statistically significant improvement of successful manipulation.
However, this does not mean that the ARPLACE framework is not working properly. The
challenge is that the ARPLACE system can only be evaluated in fully functional robot systems.
The B21r robot is not yet robust enough to be able to exploit the benefits of the ARPLACE

framework. Especially the localization system’s estimation about the angular orientation of the
robot is critical, and Player’s AMCL algorithm is not yet able to provide satisfying estimations.

195

CHAPTER 8 Conclusion and Future Research

It is desirable to build a mobile manipulation platform that is robust enough to enable proper
evaluation of the ARPLACE framework.

196

Appendix A

Robot Platform

In this section, we describe the hardware and software components of our robot system. We
use a B21r mobile robot from Real World Interfaces (RWI) that is visualized in Figure A.1.

(a) (b)

FIGURE A.1 (a) Real B21r robot. (b) Schematic of sensors and actuators of the robot and its
environment.

It is a cylindrical robot with a radius of 0.25m (0.35m in directions, where the arms over-
come the base) and a height of 1.4m. The robot features a 4-wheel synchronous drive for
locomotion that enables it to move forward and backward, and to turn around its center axis
to the left and to the right. The maximum translational speed is 0.9m

s
and the maximum ro-

tational speed is 167
o

s
. In order to avoid severe injuries the translational speed is limited by

197

APPENDIX A Robot Platform

hand to 0.1m
s

and the rotational speed is limited to 6
o

s
. The arms are mounted with an offset of

12.1cm to the robot’s base center as can be seen in Figure A.2.

Base Center

Mounting Point
Left Arm

Mounting Point
Right Arm

14.0cm

12.1cm
7.0cm

Radius = 25cm

FIGURE A.2 B21r robot seen from top. The blue line visualizes the robot’s radius of 25cm.
The red rectangle depicts that the arms are mounted 12.1cm to the left and right of the
robot’s base center.

A.1 Arm Kinematics

The robot is equipped with two 6-DOF Powercube lightweight arms from Amtec Robotics
that is now part of Schunk. Schematic drawings of how the links are connected are depicted in
Figure A.3. All joints are rotational joints. Please note that the manipulator itself consists of
the first six joints, which are labeled with the indices ‘0’ to ‘5’ in Figure A.3. The joint with
subindex ‘6’ corresponds to the gripper which is a single translational joint. The corresponding
Denavit-Hartenberg parameters are depicted in Figure A.4.

Despite their human-like length, which is 0.84m when including the gripper, the arms are
more limited than human arms mainly because the dextrous workspace is smaller. Zacharias
et al. (2008) present an analysis of the workspace structure of the Powercube arms. The arms
are equipped with parallel grippers that have rubber foam attached to their inside for increasing
the contact area and friction between the grippers and the target object. The payload of each
arm is approximately 2kg.

A.2 Perception

The vision system of the robot consists of two high dynamic range cameras (Basler Scout
1390fc, resolution: 1390x1038) forming a stereo setup. The setup is mounted on a PTU-46
pan-tilt unit from Directed Perception installed on the top of the robot.

198

SECTION A.2 Perception

Right arm Left arm

x0

y0

z0
d1=0.227m

x1

y1

z1

d2=0.261m

x2

y2

z2
x3

y3

z3

d4=0.310m

x4

y4

z4
x5

y5

z5

d6=0.192m

x6

y6

z6

x0

y0

z0
d1=-0.227m x1

y1

z1

d2=-0.261m

x2

y2

z2

x3
y3

z3

d4=-0.310m

x4

y4

z4

x5
y5

z5

d6=-0.192m

x6

y6

z6

FIGURE A.3 Drawing of the right and left 6-DOF Powercube arm. The joints are numbered
from ‘0’ to ‘5’, and the x, y, and z-axis of every joints’ coordinate frame is shown. The
z-axis defines the rotational axis of a joint. The values for di indicate the length of a link
from joint i to joint i+ 1.

Localization is done using a Sick LMS 200 laser range scanner with a field of view of
180◦ to the front. It is mounted in the center of the robot at a height of 0.35m. The laser data is
integrated with the odometry from the wheels to perform particle-based Adaptive Monte-Carlo
Localization (AMCL).

In order to perform everyday manipulation tasks, the B21r robot uses global and local ref-
erence frames. The locations where the robot operates are described in global coordinates,
making it necessary to localize the robot within the kitchen. Once the robot has correctly nav-
igated to the goal base position, local perception with our vision system is used to acquire a
more exact scene description. For example, if the robot has to pick up a cup from a table, it
will obtain the global coordinates of the cup, navigate there, and then use its vision system in
order to obtain a more precise estimation of the cup’s pose relative to the robot’s base.

199

APPENDIX A Robot Platform

Right arm

θ d a α θmin θmax

0T1 0◦ 0.227 0 90◦ −270◦ 270◦

1T2 −90◦ 0.261 0 90◦ −270◦ 270◦

2T3 180◦ 0.000 0 90◦ −135◦ 135◦

3T4 180◦ 0.310 0 90◦ −270◦ 270◦

4T5 180◦ 0.000 0 90◦ −120◦ 120◦

5T6 0◦ 0.192 0 0◦ −270◦ 270◦

Left arm

θ d a α θmin θmax

0T1 180◦ -0.227 0 90◦ −270◦ 270◦

1T2 −90◦ -0.261 0 90◦ −270◦ 270◦

2T3 180◦ 0.000 0 90◦ −135◦ 135◦

3T4 180◦ -0.310 0 90◦ −270◦ 270◦

4T5 180◦ 0.000 0 90◦ −120◦ 120◦

5T6 0◦ -0.192 0 180◦ −270◦ 270◦

FIGURE A.4 Denavit-Hartenberg parameters for defining the kinematic chain of the Power-
cube manipulators. The values for θ specify the angle for the home position of the arm.
θmin and θmax specify joint limits with respect to the home position.

A.3 Computational Framework

An overview of the robot’s computational framework is depicted in Figure A.5. The focus is
on processes, not on models they operate on. The framework uses a variety of subsystems that
communicate over two middleware frameworks: Player from the Player/Stage/Gazebo project
as described by Gerkey et al. (2003), and YARP as described by Metta et al. (2006).

Player provides a variety of hardware drivers and is mainly used for low-level communi-
cation with the robot such as receiving laser sensor data, controlling the manipulators, com-
municating with the navigation system, and moving the pan/tilt unit of cameras. Player also
comes with some standard robot algorithms. We currently use the AMCL algorithm for local-
ization, pmap for map building, and the Wavefront Planner for global path planning. We added
our own interfaces and drivers where necessary. For instance, we implemented an interface to
the kinematics and dynamics library Orocos-KDL as described by Bruyninckx et al. (2003), a
navigation controller, and a driver that makes the motion planning library MSL available for
collision-free path planning.

In Figure A.5 all processes that are based on Player modules or external libraries are indi-
cated by a white background. YARP on the other hand is used for communication between
higher level systems. YARP and Player coexist peacefully, and we built middleware bridges
that allow to send messages to both middleware frameworks.

For debugging and efficient data collection purposes, we also use the Gazebo simulator.
Gazebo is a high-quality 3D multi-robot simulator for indoor and outdoor environments that
uses the Open Dynamics Engine library for a proper simulation of rigid body physics. The
simulator is especially useful for gathering large training data sets required for learning action
models.

The belief state plays an important role in our robot system. In most systems that use plan-

200

SECTION A.3 Computational Framework

Reactive Plan Language

High-level control and planning
Monitoring
Error recovery
(Section 6)

Arm + Hand

PowerCube
Arm and
Gripper

R
e
a
c
h
in

g
 a

n
d

 G
ra

s
p

in
g

RFID Tags

Attached to
objects

Camera + PTU

Mounted on
pan-tilt unit

Base Localiz.

Adaptive
Monte Carlo
Localization

Vision

Object
detection and
tracking
(Section 4)

Belief State

Representation
of system state
and task-relevant
information

Base Navig.

Wavefront
planner

BestGraspPos

Determines
best base pose
to grasp from
(Section 3)

N
a
v
ig

a
ti

o
n

Base

B21

Hardware

RRTs

Novel
tasks

DMPs

Known
tasks
(Sec-
tion 5)

Inverse Kinem.

KDL

Vector Fields

On-line
adaptation

Research Focus

Player Module

Legend:

Task classifie
navigation
request

camera image
PTU state

joint angles
gripper state

object ID odometry velocities

grasp position
object
poses

current
location

S
ta

te
 E

s
ti

m
a
ti

o
n

manipulation
request

FIGURE A.5 Overview of the robot’s computational framework. Low-level control loops are
not depicted for clarity.

based control, the belief state is limited to abstract concepts. This simplification makes plan-
ning tractable. However, it often abstracts away from aspects that are relevant in order to
understand the behavior of the robot. For a flexible adaptive planning system, it is necessary
to know what caused a failure on a lower level. This information is mandatory for the robot
to analyse failures and for changing future plans in order to forestall failures. Our belief state
therefore receives all information from state estimation modules, and the planner chooses
when and at what level of abstraction information from the belief state is required.

201

Appendix B

Modeling through Experience-Based
Learning

In this section we discuss the advantages of finding promising manipulation places through
experience-based learning instead of modelling them analytically. Section B.1 will argue that
learned models are better suited to capture behavior of complex systems than analytical mod-
elling, especially when multiple subsystems interact. We present examples where robots have
learned a model with greater accuracy than could be programmed by hand. Section B.2 ex-
plains how learning enables a robot to adapt to hardware upgrades and to changing environ-
ments. Section B.3 discusses that learning is necessary when robots have to deal with uncer-
tainty.

B.1 Building Models of Tasks

According to Silvert (2001) “one of the main roles of a professional modeler is to apply quan-
titative reasoning to observations about the world, in the hope of seeing aspects that may have
escaped the notice of others”. Traditionally, it has been the robot designers who have reasoned
about their observations of the robot’s design and behavior, and constructed models based on
that. Because robots and the domains they act in are becoming more and more complex, it
will become very difficult to explicitly model all interactions of the robot with the world. The
alternative is to have the robot perform quantitative reasoning about, and learn from its obser-
vations of the world. This enables the robot to acquire aspects of models that the designer did
not take into account.

Examples where robots have learned a model with greater accuracy than could be pro-
grammed by hand are kinematic and dynamic models (Peters, 2007), models of motor primi-
tives (Ijspeert et al., 2002), color models (Stone et al., 2006) and model fitting applications in

203

APPENDIX B Modeling through Experience-Based Learning

computer vision (Williams et al., 2005; Wimmer et al., 2008). Because all these models are
fundamental to manipulation, Kemp et al. (2007) claim that “it seems almost inevitable that
learning will play an important role in robot manipulation”.

Another issue in modeling is the complexity of current robots. Integrated robot systems
consist of dozens of sensors and actuators, and a multitude of perception and motor skills to
enable the execution of complex tasks. It is perhaps unavoidable that robots are becoming
as complex as the natural systems whose tasks they are trying to perform. Currently these
systems are designed as a collection of subsystems, where each subsystem has a local model.
According to Ghallab (2008) “a modular design of a complex artifact develops only local
models that are combined on the basis of some composition principle of these models; it
seldom provides global behavior models”. Beetz and Belker (2000) summarize the difficulty of
analytically specifying models for navigation actions: “Navigation behavior is the result of the
subtle interplay of many complex factors. These factors include the robot’s dynamics, sensing
capabilities, surroundings, parameterizations of the control program, etc. It is impossible to
provide the robot with a deep model for diagnosing navigation behavior.”

Rather than computing global behavior by composing local models, robots could observe

their actual global behavior, and derive models from these observations. In doing so, the need
to compose local models is avoided, and the focus can be shifted on that which matters: mod-
elling the actual global behavior in order to predict and improve future behavior.

For instance, consider the mobile manipulation example from the introduction. It is desir-
able to have a global model that quickly predicts from which manipulation place a grasping
action will succeed. Although excellent tools for modeling the arm kinematics exist, they usu-
ally model one subsystem and do not suffice to describe the behavior of the global system.
Global behavior depends on many other subsystems and factors such as arm dynamics, joint
friction, controllers, motion primitive representation, navigation routines, specific skill param-
eterizations, high-level planner interventions, robot localization, object tracking, etc. All these
issues are not important when capturing robot workspace structure as described by Zacharias
et al. (2007), but do become critical when physically acting in the real world.

In general, the best strategy may be to use analytic models when they are available and use
learning when these models do not suffice to model the overall system accurately enough.

B.2 Adaptation to Changes in Complex Environments

Infants are born quite helpless. Although the constant care required in early years is costly to
our parents, this neotenous approach of the human species has a clear advantage: the less a

204

SECTION B.2 Adaptation to Changes in Complex Environments

human is pre-programmed for a certain environment before birth, the more it is possible to
adapt to the environment that is encountered after birth. The amount of perception, action and
communication skills humans acquire throughout their life is truly striking in comparison to
other animals.

The same is true for robots. Only robots that learn are able to adapt to novel environments.
Programmers cannot be expected to provide robots with all possible perception and action
skills that they may need in every possible environment. Or as Kemp et al. (2007) state:
“Learning can also help address problems of knowledge acquisition. Directly programming
robots by writing code can be tedious, error prone, and inaccessible to non-experts. Through
learning, robots may be able to reduce this burden and continue to adapt once they’ve left the
factory.”

Another excellent example of adaptation to the unforeseen through learning is the ‘resilient
machines’ approach by Bongard et al. (2006), in which robots learn and update accurate mod-
els of their own structure. By doing so continually, robots are able to model severe damages to
their structure and adapt their behavior accordingly. Explicitly modeling each type of wear and
tear the robot might have during its life-span, and the effects this might have on its behavior is
simply infeasible.

A more positive type of change robots encounter frequently is an upgrade. Controllers used
for reaching, for example, are continually improved. Instead of performing an additional anal-
ysis and remodeling phase after each upgrade, we simply gather new training data and learn
a new Generalized Success Model in order to adapt to the robot’s new skills. The learning
approach allows the robot to track the changes to the system with little effort on the designer’s
side.

In the context of manipulation, a robot cannot be expected to have a model of each ob-
ject and tool it could possibly manipulate. Katz and Brock (2007) describe how interactive
perception can uncover information about the environment that would otherwise be hidden.
Interactive perception enables the robot to extract kinematic and dynamic properties of novel
objects by physically interacting with them and analyzing the visual sensor stream. Moreover,
the robot is able to determine the appropriate use of the explored tool.

Another type of learning that humans use to add to their skill repertoire is imitation. Im-
itation learning speeds up the acquisition of new skills tremendously, because new skills do
not need to be acquired through trial-and-error from scratch (Schaal et al., 2004). Instead of
enabling robots to solve all possible tasks the goal is to give the robot the general ability to
imitate the observed solution to a task. Examples that use this approach with great success are
described by Ijspeert et al. (2002) and Calinon et al. (2007).

205

APPENDIX B Modeling through Experience-Based Learning

Adapting to complex, possibly changing environments requires the robot to learn contin-
ually during its deployment. The challenge for on-line learning algorithms is to determine
which features of the world are invariant, which features change over time, and which features
are relevant to a task. Whereas imitation learning helps to learn satisfactory solutions quickly,
online learning during a robot’s operational life requires the robot to process massive amounts
of data, to be selective, and to discover the structure of the world from this data.

B.3 Dealing with Uncertainty

Kemp et al. (2007) found that explicitly designing models for robots is still the dominant ap-
proach in many robotic domains. And in situations where the world’s state is known, it can
perform very well. One of the earliest and economically most relevant impacts of robots has
been on assembly line production. Here, the environment is extremely controlled, enabling
sensors to determine the world’s relevant state with high accuracy. In factories, robots are like
dictators, relentlessly banishing any source of uncertainty or hidden state from their surround-
ings. Unfortunately, outside the factory floor robots have to deal with uncertainty in sensor
signals, in the environment, in their motor commands, and in the predicted behavior of others.
Moreover, partial observability complicates successful acting.

Learning enables robots to leave the factory floor. For instance by acquiring statistics from
natural environments. These statistics are used to derive unobservable properties, or explicitly
model sources of uncertainty and choosing the appropriate behavior based on this information.
Partially Observable Markov Decision Processes (POMDPs) take this approach, and have been
used successfully by Simmons and Koenig (1995) for robust navigation on real robots. Koenig
and Simmons (1996b) improved the system by adjusting the probabilities of the initial Markov
model by passively observing the robot’s interactions with its environment. Schmidt-Rohr
et al. (2008) present a current approach that deploys POMDPs in service robot applications
including multi-modal human-robot interaction.

Two recent examples of learning probabilistic representations of the success of reaching and
grasping are given by Detry et al. (2009) and Montesano and Lopes (2009). In their papers, the
authors deem explicit models as being too imprecise to model grasp affordance, and thus use a
trial-and-error learning approach to acquire this knowledge. Montesano and Lopes (2009) ar-
gue that “a key point of this type of knowledge is that it is based on the robot experience. This
is important since it guarantees that the robot morphology is implicitly embedded in the learn-
ing process and, therefore, the resulting models depend on it. Examples of this dependency
are abundant in the affordance literature in ecological psychology.”

206

Bibliography

Rachid Alami, Jean Paul Laumond, and Thierry Siméon. Two manipulation planning algo-
rithms. In Proceedings of the workshop on Algorithmic foundations of robotics table of

contents, pages 109–125, San Francisco, USA, 1995. A. K. Peters. ISBN 1-56881-045-8.

Min Zhao Ansari and N. Hou. Mobile manipulator path planning by a genetic algorithm. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), volume 1, pages 681–688, July 1992. ISBN 0-7803-0737-2.

Hajime Asama, Masatoshi Sato, Luca Bogoni, Hayato Kaetsu, Akihiro Matsumoto, and Isao
Endo. Development of an omnidirectional mobile robot with 3 dof decoupling drive mech-
anism. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), pages 1925–1930, 1995.

Jan Bandouch and Michael Beetz. Tracking humans interacting with the environment using
efficient hierarchical sampling and layered observation models. In IEEE Int. Workshop on

Human-Computer Interaction (HCI). In conjunction with ICCV2009, 2009.

Barraquand and Jean-Claude Latombe. A monte-carlo algorithm for path planning with many
degrees of freedom. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), volume 3, pages 1712–1717, Cincinatti, USA, 1990. ISBN 0-8186-
9061-5.

Bernard Bayle, Jean-Yves Fourquet, and Marc Renaud. A coordination strategy for mobile
manipulation. In Intelligent Autonomous Systems (IAS-6), pages 981–988. IOS Press, 2000.

M. Beetz and T. Belker. XFRMLearn - a system for learning structured reactive navigation
plans. In Proceedings of the 8th International Symposium on Intelligent Robotic Systems,
Reading, UK, 2000.

M. Beetz and D. McDermott. Declarative goals in reactive plans. In J. Hendler, editor, First

International Conference on AI Planning Systems, pages 3–12, Morgan Kaufmann, 1992.

207

Bibliography

Michael Beetz. Structured Reactive Controllers. Journal of Autonomous Agents and Multi-

Agent Systems. Special Issue: Best Papers of the International Conference on Autonomous

Agents ’99, 4:25–55, March/June 2001.

Michael Beetz and Henrik Grosskreutz. Probabilistic hybrid action models for predicting con-
current percept-driven robot behavior. In Proceedings of the Sixth International Conference

on AI Planning Systems. AAAI Press, 2000.

Michael Beetz, Freek Stulp, Piotr Esden-Tempski, Andreas Fedrizzi, Ulrich Klank, Ingo
Kresse, Alexis Maldonado, and Federico Ruiz. Generality and legibility in mobile ma-
nipulation. Autonomous Robots Journal (Special Issue on Mobile Manipulation), 28(1):
21–44, 2010.

Dmitry Berenson, Howie Choset, and James Kuffner. An optimization approach to planning
for mobile manipulation. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA) 2008, pages 1187–1192, May 2008.

Dmitry Berenson, Rosen Diankov, Koichi Nishiwaki, Satoshi Kagami, and James Kuffner.
Grasp planning in complex scenes. In IEEE-RAS International Conference on Humanoid

Robots, 2007.

Dmitry Berenson and Siddhartha Srinivasa. Grasp synthesis in cluttered environments for
dexterous hands. In Robotics Science and Systems (RSS) Workshop on Robot Manipulation:

Intelligence in Human Environments, June 2008.

Dmitry Berenson and Siddhartha Srinivasa. Probabilistically complete planning with end-
effector pose constraints. In IEEE International Conference on Robotics and Automation

(ICRA), May 2010.

Dmitry Berenson, Siddhartha Srinivasa, David Ferguson, Alvaro Collet Romea, and James
Kuffner. Manipulation planning with workspace goal regions. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2009a.

Dmitry Berenson, Siddhartha Srinivasa, and James Kuffner. Addressing pose uncertainty in
manipulation planning using task space regions. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS ’09), October 2009b.

D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour. An integrated approach to inverse kine-
matics and path planning for redundant manipulators. In Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 1874–1879, 2006.

208

Bibliography

Francois Blais. Review of 20 years of range sensor development. Journal of Electronic

Imaging, 13(1):231–240, 2004.

Robert Bohlin and Lydia E. Kavraki. Path planning using lazy prm. In IEEE International

Conference Robototics and Automation, pages 521–528, 2000.

J. Bongard, V. Zykov, and H. Lipson. Resilient machines through continuous self-modeling.
Science, 314:1118–1121, 2006.

J. Borenstein and Y. Koren. The vector field histogram-fast obstacle avoidance for mobile
robots. IEEE Transactions on Robotics and Automation, 7(3):278–288, 1991.

O. Brock and R. Grupen. NSF/NASA workshop on autonomous mobile manipulation (amm).
Technical report, University of Massachusetts Amherst, August 2005.

Oliver Brock and Oussama Khatib. Elastic strips: A framework for motion generation in hu-
man environments. International Journal of Robotics Research, 21(12):1031–1052, 2002.

Rodney A. Brooks and Tomas Lozano-Perez. A subdivision algorithm in configuration space
for findpath with rotation. In IEEE Systems, Man and Cybernetics, pages 224–233, april
1985.

Herman Bruyninckx, Peter Soetens, and Bob Koninckx. The real-time motion control core of
the Orocos project. In IEEE International Conference on Robotics and Automation (ICRA),
pages 2766–2771, 2003.

Sebastian Buck and Martin Riedmiller. Learning situation dependent success rates of actions
in a RoboCup scenario. In Pacific Rim International Conference on Artificial Intelligence,
page 809, 2000.

S. Calinon, F. Guenter, and A. Billard. On learning, representing and generalizing a task in
a humanoid robot. IEEE Transactions on Systems, Man and Cybernetics, Special issue on

robot learning by observation, demonstration and imitation, 37(2):286–298, 2007.

Stephane Cambon, Fabien Gravot, and Rachid Alami. asymov: Towards more realistic robot
plans. In International Conference on Automated Planning and Scheduling, (ICAPS 2004),
2004a.

Stephane Cambon, Fabien Gravot, and Rachid Alami. A robot task planner that merges sym-
bolic and geometric reasoning. In Proceedings of the 16th European Conference on Artifi-

cial Intelligence (ECAI), pages 895–899, 2004b.

209

Bibliography

Stéphane Cambon, Fabien Gravot, and Rachid Alami. Overview of asymov: Integrating mo-
tion, manipulation and task planning. In ICAPS Doctoral Consortium, 2003.

Jonathan M. Cameron, Ronald C. Arkin, Douglas C. MacKenzie, Wayne J. Book, and Keith R.
Ward. Reactive control for mobile manipulation. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), volume 3, pages 228–235, 1993.

John Canny. Constructing roadmaps of semi-algebraic sets. Artificial Intelligence Journal,
37:203–222, 1988a.

John F. Canny. The Complexity of Robot Motion Planning. MIT Press, 1988b.

John F. Canny and John H. Reif. New lower bound techniques for robot motion planning
problems. In 28th Annual IEEE Symposium on Foundations of Computer Science, pages
49–60, Los Angeles, USA, 1987.

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, , and S. Thrun.
Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Boston,
2005. ISBN 978-0262033275.

Brad J. Clement, Edmund H. Durfee, and Anthony C. Barrett. Abstract reasoning for planning
and coordination. Journal of Artificial Intelligence Research, 28:453–515, 2007.

Tim F. Cootes, A. Hill, and Chris J. Taylor. Medical image interpretation using active shape
models: Recent advances. In 14th International Conference on Information Processing in

Medical Imaging, pages 371–372, 1995a.

Tim F. Cootes and Chris J. Taylor. Statistical models of appearance for computer vision.
Technical report, University of Manchester, Wolfson Image Analysis, Imaging Science and
Biomedical Engineering, Manchester M13 9PT, United Kingdom, 2004.

Tim F. Cootes, Chris J. Taylor, D. Cooper, and J. Graham. Active shape models - their training
and application. Computer Vision and Image Understanding, 61(1):38–59, January 1995b.

John J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley, 1986.
ISBN 978-0201103267.

J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based on
matrices. Transactions of the ASME. Journal of Applied Mechanic, 22:215–221, 1955.

210

Bibliography

R. Detry, E. Baseski, M. Popovic, Y. Touati, N Krueger, O. Kroemer, J. Peters, and J Piater.
Learning object-specific grasp affordance densities. In Proceedings of the International

Conference on Development and Learning (ICDL), 2009.

Rosen Diankov and James Kuffner. Openrave: A planning architecture for autonomous
robotics. Technical Report CMU-RI-TR-08-34, Robotics Institute, Pittsburgh, PA, July
2008.

Rosen Diankov, Nathan Ratliff, Dave Ferguson, Siddhartha Srinivasa, and James Kuffner. Bis-
pace planning: Concurrent multi-space exploration. In Proc. Int. Conf. on Robotics: Science

and Systems, 2008.

M. Bernardine Dias and Anthony Stentz. A free market architecture for distributed control of
a multirobot system. In 6th International Conference on Intelligent Autonomous Systems

(IAS-6), pages 115–122, July 2000.

R.S. Fearing and J. M. Hollerbach. Basic solid mechanics for tactile sensing. International

Journal of Robotics Research, 4(3):40–54, 1985.

Roy Featherstone and David E. Orin. Robot dynamics: Equations and algorithms. In Pro-

ceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages
826–834, San Francisco, CA, 2000. IEEE.

Andreas Fedrizzi, Lorenz Moesenlechner, Freek Stulp, and Michael Beetz. Transformational
planning for mobile manipulation based on action-related places. In Proceedings of the

International Conference on Advanced Robotics (ICAR)., 2009.

J. Randall Flanagan, Philipp Vetter, Roland S. Johansson, and Daniel M. Wolpert. Prediction
precedes control in motor learning. Current Biology, 13:146–150, January 2003.

Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian Thrun. Monte carlo localization:
Efficient position estimation for mobile robots. In Proceedings of the National Conference

on Artificial Intelligence (AAAI), pages 343–349, 1999.

M. Fox and D. Long. PDDL2.1: An extension of PDDL for expressing temporal planning
domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

Marc Friedman and Daniel S. Weld. Least-commitment action selection. In Proceedings 3rd

International Conference on A.I. Planning Systems. AAAI Press, 1996.

211

Bibliography

Cipriano Galindo, Juan-Antonio Fernández-Madrigal, Javier González, and Alessandro Saf-
fiotti. Robot task planning using semantic maps. Robot. Auton. Syst., 56(11):955–966,
2008. ISSN 0921-8890.

Christoph Geib, K. Mourao, R. Petrick, M. Pugeault, M. Steedman, N. Krüger, and Florentin
Wörgötter. Object action complexes as an interface for planning and robot control. In Pro-

ceedings of the 2006 IEEE RAS International Conference on Humanoid Robots, Genova,
2006.

Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The Player/Stage Project: Tools
for multi-robot and distributed sensor systems. In Proceedings of the 11th International

Conference on Advanced Robotics (ICAR), pages 317–323, 2003.

Brian P. Gerkey and Maja J. Matarić. Multi-robot task allocation: Analyzing the complex-
ity and optimality of key architectures. In Proc. of the IEEE Intl. Conf. on Robotics and

Automation (ICRA), pages 3862–3868, Taipei, Taiwan, 2003.

Malik Ghallab. Modeling through machine learning in robotics. In 9th African Conference on

Research in Computer Science (CARI), pages 25–26, Rabat,Morocco, October 2008.

James J. Gibson. The Theory of Affordances. John Wiley & Sons, 1977. ISBN 0-470-99014-7.

Michael Gienger, Klaus Löffler, and Friedrich Pfeiffer. Towards the the design of a biped jog-
ging robot. In Proceedings of the IEEE International Conference on Robotics and Automat

ion (ICRA), pages 4140–4145, 2001.

Michael Gienger, Marc Toussaint, Nikolay Jetchev, Achim Bendig, and Christian Goerick.
Optimization of fluent approach and grasp motions. In Proceedings of the IEEE Interna-

tional Conference on Humanoid Robots (Humanoids), pages 111–117, 2008.

C. Goldfeder, M. Ciocarlie, H. Dang, and P.K. Allen. The Columbia Grasp Database. In
International Conference on Robotics and Automation (ICRA), 2009.

Fabien Gravot, Stephane Cambon, and Rachid Alami. asymov: A planner that deals with intri-
cate symbolic and geometric problems. In Proceedings of the 11th International Symposium

on Robotics Research (ISRR), pages 100–110, 2003.

Thomas L. Griffiths, Charles Kemp, and Josh B. Tenenbaum. The Cambridge handbook of

computational cognitive modeling, chapter Bayesian models of cognition. Cambridge Uni-
versity Press, 2008.

212

Bibliography

Rakesh Gupta and Mykel J. Kochenderfer. Common sense data acquisition for indoor mobile
robots. In Nineteenth National Conference on Artificial Intelligence (AAAI-04, pages 605–
610, 2004.

Peter Haddawy and Steve Hanks. Utility models for goal-directed decision-theoretic planners.
Computational Intelligence, 14, 1993.

S. Hart, S. Ou, J. Sweeney, and R. Grupen. A framework for learning declarative structure. In
RSS-06 Workshop: Manipulation for Human Environments, 2006.

Gerhard Hirzinger, N. Sporer, A. Albu-Schäffer, M. Hähnle, R. Krenn, A. Pascucci, and
M. Schedl. Dlr’s torque-controlled light weight robot iii - are we reaching the techno-
logical limits now? In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), pages 1710–1716, 2002.

J.M. Hollerbach, M.T. Mason, and H. Christensen. A roadmap for us robotics - From internet
to robotics. Technical report, Computing Community Consortium (CCC), 2009.

Randy C. Hoover, Anthony A. Maciejewski, and Rodney G. Roberts. Pose detection of
3-d objects using s2-correlated images and discrete spherical harmonic transforms. In
IEEE International Conference on Robotics and Automation (ICRA), 2008, pages 993–998,
Pasadena,USA, 2008.

John E. Hopcroft, Deborah Joseph, and Sue Whitesides. Movement problems for 2-
dimensional linkages. SIAM Journal of Computing, 13(3):610–629, 1984.

Ronald A. Howard and J.E. Matheson. Influence diagrams. In Readings on the Principles and

Applications of Decision Analysis, volume 2, pages 712–762. Strategic Decisions Group,
Menlo Park, California, 1984.

David Hsu, Jean claude Latombe, and Stephen Sorkin. Placing a robot manipulator amid
obstacles for optimized execution. In Proceedings IEEE International Symposium on As-

sembly and Task Planning (ISATP’99, pages 280–285, 1999.

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical
systems in humanoid robots. In International Conference on Robotics and Automation

(ICRA2002), 2002.

Michael I. Jordan and Daniel M. Wolpert. Computational Motor Control, chapter 10, pages
371–422. MIT Press, Cambridge, 1999.

213

Bibliography

Dov Katz and Oliver Brock. Extracting planar kinematic models using interactive perception.
In RSS-07 Workshop: Robot Manipulation: Sensing and Adapting to the Real World, Atlanta
Georgia, 2007.

Dov Katz and Oliver Brock. Manipulating articulated objects with interactive perception. In
IEEE International Conference on Robotics and Automation (ICRA), Pasadena,USA, may
2008.

Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions

on Robotics and Automation, 12(4):566–580, 1996.

C. Kemp, A. Edsinger, and E. Torres-Jara. Challenges for robot manipulation in human envi-
ronments. IEEE Robotics and Automation Magazine, 14(1):20–29, 2007.

Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile robotsi. Interna-

tional Journal of Robotic Research, 5(1):60ff, 1986.

Ulrich Klank, Dejan Pangercic, Radu Bogdan Rusu, and Michael Beetz. Real-time cad model
matching for mobile manipulation and grasping. In 9th IEEE-RAS International Conference

on Humanoid Robots, Paris, France, December 7-10 2009a.

Ulrich Klank, Muhammad Zeeshan Zia, and Michael Beetz. 3D Model Selection from an
Internet Database for Robotic Vision. In International Conference on Robotics and Au-

tomation (ICRA), 2009b.

David Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural
coding and computation. TRENDS in Neurosciences, 27(12), 2004.

Sven Koenig and Reid Simmons. Modeling risk and soft deadlines for robot navigation. In
Proceedings of the AAAI Spring Symposium on Planning with Incomplete Information for

Robot Problems (AAAI Technical Report SS-96-04), Stanford, CA, USA, 1996a.

Sven Koenig and Reid G. Simmons. Unsupervised learning of probabilistic models for robot
navigation. In in Proceedings of the IEEE International Conference on Robotics and Au-

tomation, pages 2301–2308, 1996b.

Benjamin Kuipers, Patrick Beeson, Joseph Modayil, and Jefferson Provost. Bootstrap learning
of foundational representations. Connection Science, 18:145–158, 2006.

S. Larkin. Time and Energy in Decision Making. PhD thesis, Oxford University, 1981.

214

Bibliography

Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA,
1991.

Jean-Paul Laumond, editor. Robot Motion Planning and Control. Lectures Notes in Control
and Information Sciences 229. Springer Verlag, 1998. ISBN 3-540-76219-1.

S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

Steven LaValle and James Kuffner. Rapidly-exploring random trees: Progress and prospects.
Algorithmic and Computational Robotics: New Directions, pages 293–308, 2001.

Steven M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical
Report 98-11, Iowa State University, 1998.

John J. Leonard and Hugh F. Durrant-Whyte. Simultaneous map building and localization
for an autonomous mobile robot. In Proceedings of the IEEE International Conference on

Intelligent Robots and Systems (IROS), pages 1442–1447, 1991.

Stephen R. Lindemann and Steven M. LaValle. Incrementally reducing dispersion by increas-
ing voronoi bias in rrts. In Proceedings IEEE International Conference on Robotics and

Automation (ICRA), 2004.

Stephen. R. Lindemann and Steven M. LaValle. A multiresolution approach for motion
planning under differential constraints. In Proceedings IEEE International Conference on

Robotics and Automation (ICRA), pages 139–144, 2006.

Tomas Lozano-Perez. Spatial planning: A configuration space approach, 1980.

Alexis Maldonado, Ulrich Klank, and Michael Beetz. Robotic grasping of unmodeled objects
using time-of-flight range data and finger torque information. In 2010 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, October 18-22
2010. Accepted for publication.

Dinesh Manocha and John F. Canny. Real time inverse kinematics for general 6r manipulators.
In Proceedings of the IEEE International Conference Robotics and Automation (ICRA),
pages 383–389, 1992.

Hirose Masato and Takenaka Tooru. Development of humanoid robot ASIMO. Technical
Report 1, Honda Research and Development, 2001.

215

Bibliography

Matthew T. Mason and J. Kenneth Salisbury. Robot Hands and the Mechanics of Manipula-

tion. MIT Press, Cambridge, MA, 1985.

D. McDermott. A Reactive Plan Language. Research Report YALEU/DCS/RR-864, Yale
University, 1991.

D. McDermott. An algorithm for probabilistic, totally-ordered temporal projection. In
O. Stock, editor, Spatial and Temporal Reasoning. Kluwer Academic Publishers, Dordrecht,
1997.

David McFarland and Emmet Spier. Basic cycles, utility and opportunism in self-sufficient
robots. Robotics and Autonomous Systems, 20, 1997.

Tad McGeer. Passive dynamic walking. The International Journal of Robotics Research, 9
(2):62–82, 1990.

G. Metta, P. Fitzpatrick, and L. Natale. YARP: Yet Another Robot Platform. International

Journal of Advanced Robotics Systems, special issue on Software Development and Inte-

gration in Robotics, 3(1), 2006.

A. Miller and P. Allen. Graspit!: A versatile simulator for grasp analysis. In Proceedings

ASME International Mechanical Engineering Congress and Exposition, 2000.

Andrew T. Miller and Peter K. Allen. Examples of 3d grasp quality computations. In Pro-

ceedings IEEE International Conference on Robotics and Automation (ICRA), pages 1240–
1246, 1999.

Luis Montesano and Manuel Lopes. Learning grasping affordances from local visual descrip-
tors. In Proceedings of the International Conference on Development and Learning (ICDL),
2009.

Hans Moravec and A. E. Elfes. High resolution maps from wide angle sonar. In Proceedings

of the 1985 IEEE International Conference on Robotics and Automation, pages 116 – 121,
March 1985.

Lorenz Mösenlechner and Michael Beetz. Using physics- and sensor-based simulation for
high-fidelity temporal projection of realistic robot behavior. In 19th International Confer-

ence on Automated Planning and Scheduling (ICAPS’09)., 2009.

216

Bibliography

P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile robot location
and environment modeling. In 5th International Symposium on Robotics Research, Tokyo,
Japan, 1989.

Armin Müller. Transformational Planning for Autonomous Household Robots using Libraries

of Robust and Flexible Plans. PhD thesis, Technische Universität München, 2008.

Nils J. Nilsson. A mobile automaton: An application of artificial intelligence techniques.
In In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
Washington D.C., USA, May 1969.

Simon Y. Nof. Handbook of Industrial Robotics. Wiley, New York, USA, 2nd edition, 1999.

Andreas Nüchter and Joachim Hertzberg. Towards semantic maps for mobile robots. Jour-

nal of Robotics and Autonomous Systems (JRAS), Special Issue on Semantic Knowledge in

Robotics, 56(11):915–926, 2008. ISSN 0921-8890.

Kei Okada, Mitsuharu Kojima, Yuichi Sagawa, Toshiyuki Ichino, Kenji Sato, and Masayuki
Inaba. Vision based behavior verification system of humanoid robot for daily environment
tasks. In Proceedings of the 6th IEEE-RAS International Conference on Humanoid Robots

(Humanoids), pages 7–12, 2006.

David E. Orin and William W. Schrader. Efficient computation of the jacobian for robot
manipulators. International Journal of Robotic Research, 3(4):66–75, 1984.

P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and generalization of motor
skills by learning from demonstration. In Proceedings of the International Conference on

Robotics and Automation (icra2009), 2009.

Richard P. Paul and Hong Zhang. Robot motion trajectory specification and generation. In
2nd International Symposium on Robotics Research, Kyoto, Japan, 1984.

Jan Peters. Machine Learning of Motor Skills for Robotics. PhD thesis, Department of Com-
puter Science, University of Southern California, 2007.

Donald L. Pieper. The Kinematics of Manipulators Under Computer Control. PhD thesis,
Stanford University, 1968.

François G. Pin and Jean-Christophe Culioli. Optimal positioning of combined mobile
platform-manipulator systems for material handling tasks. Journal of Intelligent and

Robotic Systems, 6(2):165–182, December 2005.

217

Bibliography

John H. Reif. Complexity of the mover’s problem and generalizations. In 20th Annual IEEE

Symposium on Foundations of Computer Science, pages 421–427, San Juan, Puerto Rico,
1979.

John H. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In 26th

Annual IEEE Symposium on Foundations of Computer Science, pages 144–154, Portland,
USA, 1985.

Pierre Roduit, Alcherio Martinoli, and Jacques Jacot. A quantitative method for compar-
ing trajectories of mobile robots using point distribution models. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2441–
2448, 2007.

David A. Rosenbaum, Rajal G. Cohen, Ruud G. J. Meulenbroek, and Jonathan Vaughan. Plans
for grasping objects. In Mark L. Latash and Francis Lestienne, editors, Motor Control and

Learning, pages 9–25. Springer US, 2006.

Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Andreas Holzbach, and Michael
Beetz. Model-based and Learned Semantic Object Labeling in 3D Point Cloud Maps of
Kitchen Environments. In Proceedings of the IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), St. Louis, MO, USA, October 11-15 2009.

A. Saxena, J. Driemeyer, and A.Y. Ng. Robotic grasping of novel objects using vision. The

International Journal of Robotics Research, 27(2):157, 2008.

Stefan Schaal, Auke-Jan Ijspeert, and Aude Billard. The neuroscience of social interaction,
chapter Computational approaches to motor learning by imitation, pages 199–218. Oxford
University Press, 2004.

S.R. Schmidt-Rohr, M. Losch, and R. Dillmann. Human and robot behavior modeling for
probabilistic cognition of an autonomous service robot. In The 17th IEEE International

Symposium on Robot and Human Interactive Communication, 2008 (RO-MAN 2008), pages
635–640, Munich, Germany, 2008.

Matthew D. Schmill, Tim Oates, and Paul R. Cohen. Learning planning operators in real-
world, partially observable environments. In Proceedings of the 5th International Confer-

ence on Artificial Intelligence Planning Systems (ICAPS), pages 246–253, 2000.

Jacob T. Schwartz, Micha Sharir, and John E. Hopcroft. Planning, geometry, and complexity

of robot motion. Ablex, 1987. ISBN 0893913618.

218

Bibliography

Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors. Advances in

Kernel Methods: Support Vector Learning. The MIT Press, 1999.

Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Ma-

chines, Regularization, Optimization, and Beyond. The MIT Press, December 2001. ISBN
0262194759.

Lorenzo Sciavicco and Bruno Siciliano. Modeling and Control of Robot Manipulators.
Springer, 2000. ISBN 978-1852332211.

Homayoun Seraji. An on-line approach to coordinated mobility and manipulation. In Proceed-

ings of the IEEE International Conference on Robotics and Automation (ICRA), volume 1,
pages 28–35, 1993.

Homayoun Seraji. Reachability analysis for base placement in mobile manipulators. Journal

of Robotic Systems, 12(1):29–43, 1995.

Reza Shadmehr and Ferdinando Mussa-Ivaldi. Adaptive representation of dynamics during
learning of a motor task. Journal of Neuroscience, 14(5):3208–3224, 1994.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, June 2004. ISBN 0521813972.

Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics. Springer,
Berlin, Heidelberg, 2008.

William Silvert. Modeling as a discipline. International Journal General Systems, 30(3),
2001.

Reid Simmons and Sven Koenig. Probabilistic robot navigation in partially observable envi-
ronments. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 1080–1087, 1995.

Jivko Sinapov and Alex Stoytchev. The boosting effect of exploratory behaviors. In In Pro-

ceedings of the 24th Conference on Artificial Intelligence (AAAI), Atlanta, USA, July 2010.

Emrah Akin Sisbot. Towards Human-Aware Robot Motion. PhD thesis, Université Paul
Sabatier, Toulouse, 2008.

Emrah Akin Sisbot, Luis F. Marin-Urias, Rachid Alami, and Thierry Simeon. A human aware
mobile robot motion planner. IEEE Transactions on Robotics, 23:874–883, 2007.

219

Bibliography

J. Q. Smith. Decision Analysis. Kluwer Academic Publishers, 1988. ISBN 0412275201.

Russell Smith. Open dynamics engine, 2004.

S. Sonnenburg, G. Raetsch, C. Schaefer, and B. Schoelkopf. Large scale multiple kernel
learning. Journal of Machine Learning Research, 7:1531–1565, 2006.

Michael Stilman and James Kuffner. Navigation among movable obstacles: Real-time reason-
ing in complex environments. In Proceedings of the 2004 IEEE International Conference

on Humanoid Robotics (Humanoids), volume 1, pages 322–341, December 2004.

Michael Stilman, Koichi Nishiwaki, Satoshi Kagami, and James Kuffner. Planning and exe-
cuting navigation among movable obstacles. In IEEE/RSJ Int. Conf. On Intelligent Robots

and Systems (IROS), pages 820–826, October 2006.

Peter Stone, Mohan Sridharan, Daniel Stronger, Gregory Kuhlmann, Nate Kohl, Peggy Fi-
delman, and Nicholas K. Jong. From pixels to multi-robot decision-making: A study in
uncertainty. Robotics and Autonomous Systems, 54(11):933–43, November 2006. Special
issue on Planning Under Uncertainty in Robotics.

Alex Stoytchev. Some basic principles of developmental robotics. IEEE Transactions on

Autonomous Mental Development, 1(2):122–130, 2009.

Freek Stulp and Michael Beetz. Refining the execution of abstract actions with learned action
models. Journal of Artificial Intelligence Research (JAIR), 32, June 2008.

Freek Stulp, Andreas Fedrizzi, and Michael Beetz. Action-related place-based mobile manip-
ulation. In Proceedings of the International Conference on Intelligent Robots and Systems

(IROS), 2009a.

Freek Stulp, Andreas Fedrizzi, and Michael Beetz. Learning and performing place-based
mobile manipulation. In Proceedings of the 8th International Conference on Development

and Learning (ICDL)., 2009b.

Freek Stulp, Andreas Fedrizzi, Franziska Zacharias, Moritz Tenorth, Jan Bandouch, and
Michael Beetz. Combining analysis, imitation, and experience-based learning to acquire
a concept of reachability. In 9th IEEE-RAS International Conference on Humanoid Robots,
2009c.

Gerald Jay Sussman. A computational model of skill acquisition. PhD thesis, Massachusetts
Institute of Technology, 1973.

220

Bibliography

Y. Takahashi, T. Takagaki, J. Kishi, and Y. Ishii. Back and forward moving scheme of front
wheel raising for inverse pendulum control wheel chair robot. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), pages 3189–3194, 2001.

Jindong Tan, Ning Xi, and Yuechao Wang. Integrated task planning and control for mobile
manipulators. The International Journal of Robotics Research, 22(5):337–354, 2003.

Moritz Tenorth, Jan Bandouch, and Michael Beetz. The TUM Kitchen Data Set of Every-
day Manipulation Activities for Motion Tracking and Action Recognition. In IEEE Int.

Workshop on Tracking Humans for the Evaluation of their Motion in Image Sequences

(THEMIS). In conjunction with ICCV2009, 2009.

Moritz Tenorth and Michael Beetz. KnowRob — Knowledge Processing for Autonomous Per-
sonal Robots. In IEEE/RSJ International Conference on Intelligent RObots and Systems.,
2009.

Lung-Wen Tsai. Robot Analysis, The Mechanics of Serial and Parallel Manipulators. Wiley,
New York, USA, 1999.

Nikolaus Vahrenkamp, Dmitry Berenson, Tamim Asfour, James Kuffner, and Rudiger Dill-
mann. Humanoid motion planning for dual-arm manipulation and re-grasping tasks. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October
2009.

Nikolaus Vahrenkamp, Steven Wieland, Pedram Azad, David Gonzalez, Tamim Asfour, and
Rüdiger Dillmann. Visual servoing for humanoid grasping and manipulation tasks. In Pro-

ceedings of the 8th IEEE-RAS International Conference on Humanoid Robots (Humanoids),
pages 406–412, Dec. 2008.

J Michael Vandeweghe, David Ferguson, and Siddhartha Srinivasa. Randomized path plan-
ning for redundant manipulators without inverse kinematics. In IEEE-RAS International

Conference on Humanoid Robots, November 2007.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer MIT Press, 1995. ISBN
0387987800.

R. Vijakumar, K.J. Waldron, and M.J. Tsai. Geometric optimization of manipulator structures
for working volume and dexterity. International Journal of Robotic Research, 5(2):91–103,
1986.

221

Bibliography

John von Neumann and Oskar Morgenstern. The Theory of Games and Economic Behavior.
Princeton University Press, 1944. ISBN 9780691130613.

Miomir Vukobratovic and Branislav Borovac. Zero-moment-point - thirty five years of its life.
International Journal of Humanoid Robotics, 1(1):157–173, 2004.

Masayoshi Wada and Shunji Mori. Holonomic and omnidirectional vehicle with conventional
tires. In Proceedings of the IEEE Conference on Robotics and Automation (ICRA), pages
3671–3676, Minneapolis, USA, 1996.

K.J. Waldron and A. Kumar. The dextrous workspace. In ASME Mech. Conf., Los Angeles,
USA, 1980.

Michael P. Wellman, Matthew Ford, and Kenneth Larson. Path planning under time-dependent
uncertainty. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelli-

gence, pages 532–539. Morgan Kaufmann, 1995.

Oliver Williams, Andrew Blake, and Roberto Cipolla. Sparse bayesian learning for efficient
visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):
1292–1304, 2005. ISSN 0162-8828.

Matthias Wimmer, Freek Stulp, Sylvia Pietzsch, and Bernd Radig. Learning local objective
functions for robust face model fitting. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 30(8):1357–1370, 2008. ISSN 0162-8828.

Daniel M. Wolpert and Mitsuo Kawato. Multiple paired forward and inverse models for motor
control. Neural Networks, 11(7-8):1317–1329, 1998.

Florentin Wörgötter, Alejandro Agostini, Norbert Krüger, N. Shylo, and Bernd Porr. Cognitive
agents - a procedural perspective relying on the predictability of object-action-complexes
(oacs). Robotics and Autonomous Systems, 57(4):420–432, 2009.

Y. Yamamoto and X. Yun. Unified analysis on mobility and manipulability of mobile manip-
ulators. In Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), pages 1200–1206, Detroit,USA, May 1999.

Anna Yershova, Léonard Jaillet, Thierry Siméon, and Steven M. LaValle. Dynamic-domain
rrts: Efficient exploration by controlling the sampling domain. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), pages 3867–3872, 2005.

222

Bibliography

Anna Yershova and Steven M. LaValle. Improving motion planning algorithms by effi-
cient nearest-neighbor searching. IEEE Transactions on Robotics, 23(1):151–157, February
2007.

Håkan L. S. Younes. Extending pddl to model stochastic decision processes. In Proceedings of

the International Conference on Automated Planning and Scheduling Workshop on PDDL,
pages 95–103, 2003.

F. Zacharias, Ch. Borst, and G. Hirzinger. Capturing robot workspace structure: representing
robot capabilities. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 3229–3236, 2007.

F. Zacharias, Ch. Borst, and G. Hirzinger. Positioning mobile manipulators to perform con-
strained linear trajectories. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 2578–2584, 2008.

Franziska Zacharias, Wolfgang Sepp, Christoph Borst, and Gerd Hirzinger. Using a model of
the reachable workspace to position mobile manipulators for 3-d trajectories. In Interna-

tional Conference on Humanoid Robots (Humanoids), 2009.

D. J. Zhu and Jean-Claude Latombe. New heuristic algorithms for efficient hierarchical path
planning. IEEE Transactions on Robotics and Automation, 7(1):9–20, 1991.

Robert Zlot, Anthony Stentz, M. Bernardine Dias, and Scott Thayer. Multi-robot exploration
controlled by a market economy. In IEEE International Conference on Robotics and Au-

tomation (ICRA), 2002.

223

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	List of Symbols
	List of Abbreviations
	Introduction
	Problem Statement
	Cognitive Motor Control
	Bayesian Modeling and Bayesian Brain
	ARPlaces as Cognitive Approach to find Manipulation Places

	Scientific Contributions
	Representation of Places for Successful Manipulation
	Learning a Model of Places for Successful Manipulation
	Online-Reasoning with Action-Related Places
	Evaluations and Publications

	Outline of the Thesis

	Preliminaries
	Manipulation Scenario
	System Overview
	Related Work
	Kinematics and Dynamics
	Locomotion, Localization, and Mapping
	Planning in AI
	Perception
	Motion Planning
	Manipulation and Grasp Planning
	Coupling of Navigation and Manipulation

	Learning Generalized Success Models
	Introduction
	Problem Statement
	Related Work

	Gathering Training Data
	Experiment Setup
	Labeling Training Data
	Gathering Training Data

	Computing Classification Boundaries
	Relative Feature Space
	Computing Classification Boundaries
	Evaluation of learned Classification Boundaries

	Generalization over Classification Boundaries
	Aligning Classification Boundaries
	Point Distribution Model
	Relation to Task-Relevant Parameters
	Performance Analysis of Learning Generalized Success Models

	Human Activity Data for Biased Exploration
	Learning GSMs for Different Objects
	Grasping Different Objects
	A Generalized Success Model for Grasping from the Top

	Action-Related Places
	Related Work
	Computing Action-Related Places
	From Robot Coordinate Systems to the Relative Feature Space
	Querying the Generalized Success Model

	Evaluation
	Impact of Object's Distance to Table Edge
	Impact of Object's Distance along Table Edge
	Impact of Object Orientation
	Impact of Uncertainty into Object's Pose
	Impact of Uncertainty into Robot's Pose

	ARPlace Information for High-Level Planning
	Raising Manipulation Chances
	Analysing Unexpected Failure

	Results from the Simulated Robot

	Refining Action-Related Places
	Related Work
	ARPlaces for Grasping from the Top
	Multi Modal ARPlaces
	ARPlaces for Grasping with the Left Arm
	Taking Obstacles into Account
	Obstacle Probability Distribution
	Including State Estimation Uncertainties
	Performance Analysis

	ARPlaces for Multi-Arm Manipulation
	Merging ARPlaces for Multi-Arm Manipulation
	Evaluation
	High Level Planning System

	Dealing with Uncertainty into the Object's Type
	Integration of Unexpected Experience

	Utility Framework for Action-Related Places
	Related Work
	Utility Framework
	Unifying Heterogenous Utilities
	Utility Pertaining to Execution Success
	Utility Pertaining to Execution Time

	Evaluation
	Default Scenario
	Impact of Importance of Success
	Impact of Importance of Time
	Impact of Initial Robot Position
	Impact of Object Pose
	Average Behavior

	Case Study
	The Scenario
	Finding Target Objects
	Computing Manipulation Places
	Grasp Success Probability
	Considering Obstacles
	Computing Grasp Utility

	Updating ARPlaces
	Handling Multiple Objects
	Merging ARPlaces based on Utility
	Overall Utility of Plans

	Handling Sudden Changes
	Performing the Task

	Conclusion and Future Research
	Summary
	Open Challenges and Future Research

	Robot Platform
	Arm Kinematics
	Perception
	Computational Framework

	Modeling through Experience-Based Learning
	Building Models of Tasks
	Adaptation to Changes in Complex Environments
	Dealing with Uncertainty

	Bibliography

