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Zusammenfassung

In dieser Arbeit diskutieren wir verschiedene Aspekte von Zerfällen, die auf den Quarkniveau-

Übergängen b → sνν̄ und b → sµ+µ− basieren, sowie Übergangs-Formfaktoren für ra-

diative und seltene semileptonische B-Meson-Zerfälle.

Der Quarkniveau-Übergang b→ sνν̄ bietet die Möglichkeit, transparent Z Pinguin-

und andere elektroschwache Pinguineffekte in Szenarien für Neue Physik (NP) in Ab-

wesenheit von Dipoloperatorbeiträgen und Higgspinguinbeiträgen zu untersuchen. Wir

beschreiben eine Analyse des Zerfalls B → K∗νν̄ mit verbesserten Formfaktoren sowie

der Zerfälle B → Kνν̄ und B → Xsνν̄ im Rahmen des Standardmodells (SM) und

in einer Reihe von NP-Szenarien wie dem allgemeinen Minimalen Supersymmetrischen

Standardmodell (MSSM), Szenarien mit veränderten Z/Z ′ Pinguinen und in einer Er-

weiterung des SM durch ein skalares Singulett. Die Ergebnisse für das SM und die

NP-Szenarien können anschaulich in einer (ε, η)-Ebene visualisiert werden.

Der seltene Zerfall B → K∗(→ Kπ)µ+µ− gilt als einer der entscheidenden Kanäle für

die B-Physik, da er eine Vielzahl von Messgrößen bietet. Wir untersuchen systematisch

die oft korrelierten Effekte in diesen Observablen im Rahmen des SM und verschiedener

NP-Modelle, insbesondere des Littlest Higgs-Modells mit T-Parität und verschiedenen

MSSM Szenarien und identifizieren diejenigen Observablen mit kleinerer bis mittlerer

Abhängigkeit von hadronischen Größen und großem Einfluss der NP.

Darüber hinaus untersuchen wir die Übergangsformfaktoren fr radiative und sel-

tene semileptonische B-Meson-Zerfälle in leichte Pseudoskalare oder Vektormesonen,

indem wir theoretische und phänomenologische Zwangsbedingungen von Gitter QCD,

Lichtkegelsummenregeln und dispersiven Grenzen kombinieren. Besonderes Augenmerk

legen wir auf die Parametrisierung der Formfaktoren, die auf der sogenannten Reihenen-

twicklung beruhen und analysieren in diesem Zusammenhang die systematischen Un-

sicherheiten auf quantitativer Ebene. In dieser Analyse sowie in der Analyse der b→ s-

Übergänge nutzen wir konsequent eine zweckdienliche Definition der Formfaktoren auf

Grundlage der Helizität.
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Abstract

In this thesis we study several aspects of decays based on the quark level transitions

b → sνν̄ and b → sµ+µ− as well as transition form factors for radiative and rare semi-

leptonic B meson decays.

The quark level transition b→ sνν̄ offers a transparent study of Z penguin and other

electroweak penguin effects in New Physics (NP) scenarios in the absence of dipole opera-

tor contributions and Higgs penguin contributions. We present an analysis of B → K∗νν̄

with improved form factors and of the decays B → Kνν̄ and B → Xsνν̄ in the Standard

Model (SM) and in a number of NP scenarios like the general Minimal Supersymmetric

Standard Model (MSSM), general scenarios with modified Z/Z ′ penguins and in a singlet

scalar extension of the SM. The results for the SM and NP scenarios can be transparently

visualized in a (ε, η) plane.

The rare decay B → K∗(→ Kπ)µ+µ− is regarded as one of the crucial channels for

B physics as it gives rise to a multitude of observables. We investigate systematically

the often correlated effects in these observables in the context of the SM and various

NP models, in particular the Littlest Higgs model with T-parity and various MSSM

scenarios and identify those observables with small to moderate dependence on hadronic

quantities and large impact of NP.

Furthermore, we study transition form factors for radiative and rare semi-leptonic

B-meson decays into light pseudoscalar or vector mesons, combining theoretical and

phenomenological constraints from Lattice QCD, light-cone sum rules, and dispersive

bounds. We pay particular attention to form factor parameterizations which are based

on the so-called series expansion, and study the related systematic uncertainties on a

quantitative level. In this analysis as well as in the analysis of the b→ s transitions, we

use consistently a convenient form factor definition on grounds of helicity.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) at CERN, one of mankind’s most ambitious scien-

tific enterprises, started in 2009 to take first data. The main goal of the experiments

performed at the LHC is to discover new particles and forces. Specifically, most of the

current interest is focused on the Higgs mechanism. This mechanism and its prediction,

the Higgs particle, plays a crucial and dual role in modern particle physics:

On the one hand, the detection of the Higgs particle would be the capstone of the

experimental validation of the so-called Standard Model of Particle Physics (SM). This

model, established in the early 70’s of the last century, describes an extremely broad

range of physical phenomena, even though it is extremely compact in its mathematical

formulation. In this framework, the Higgs mechanism triggers the electroweak symmetry

breaking and generates also the masses of quarks and charged leptons.

On the other hand, the Higgs particle can be seen as the Achilles’ heel of the SM.

In fact, each of the couplings of the Higgs boson postulated in the SM – to itself or to

matter – gives rise to severe problems. These problems were pointed out soon after the

formulation of the SM and were termed the vacuum energy problem [1], the electroweak

hierarchy problem [2], the vacuum instability problem [3] and the flavor problem [4].

The two problems probably most discussed in particle physics are the electroweak

hierarchy problem and the flavor problem. The electroweak hierarchy problem deals

with the vast energy scale difference between the electroweak breaking scale and and

the Planck scale. This difference goes hand in hand with a vast correction to the Higgs

mass due to quantum fluctuations. The related flavor problem describes the clash of the

expectation of a sign of NP to cure the electroweak hierarchy problem at an energy scale

of 1 TeV and the lack of any experimental observation of such modification in flavor

violating transitions up to an effective energy scale of 4-5 TeV.
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Most of the extensions of the SM discussed nowadays, commonly termed as New

Physics (NP), address at least one of these two problems.

The most reasonable solution to the flavor problem is the so-called Minimal Flavor

Violation (MFV) hypothesis. Under this assumption the NP interactions leading to flavor

violation in the respective SM extension are linked to the known structure of Yukawa

couplings of the SM. As a result, the flavor changing contributions of the respective NP

scenario are suppressed and in agreement with the experimental information on flavor

observables.

One of the best motivated approaches to the electroweak hierarchy problem is the

introduction of a new symmetry of space-time, supersymmetry, which maps the known

set of particles to an as yet undiscovered set of mirror particles. The huge quantum

corrections are cancelled, as the respective quantum fluctuations of each of the new

particles contributes oppositely to the corresponding quantum fluctuations associated

with the original particle. A full formulation of this idea was given by the now well-

established Minimal Supersymmetric Standard Model (MSSM), which contains also a

heuristic parametrization of the soft breaking of supersymmetry.

All extensions of the SM have in common that they can be probed in principle in

two ways: directly, through the production of new particles, or in quantum fluctua-

tions involving new particles which modify decays of SM particles. Both approaches

are realized at the upcoming LHC experiments. Specifically, at the LHCb experiment,

exclusive B meson decays will play a major role for precision tests of the flavor sector in

the SM and its possible NP extensions. Special attention is attracted by the rare decay

B → K∗(→ Kπ)µ+µ−. Since all decay products are charged, this decay gives access to

a broad set of observables and since also the charge-conjugated decay is experimentally

accessible the observables are partly sensitive to CP violation.

While the hadronic part is identical to B → K∗(→ Kπ)µ+µ−, the decay B →
K∗(→ Kπ)νν̄ is very different in many other aspects. Although the neutrinos cannot

be detected experimentally and consequently only two observables can be measured,

the neutral and massless final states open a unique possibility to transparently study Z

penguin effects. The analysis of these effects in the context of other decays probing the

quark level decay b→ sνν̄ completes the available theoretical information on this decay

and the Super-B facilities make the measurement realistic.

In order to extract information on the underlying short-distance transitions between

different quark flavors of the above mentioned decay, hadronic matrix elements will be

required as theoretical input and the precision to which they can be predicted will be

essential for the success of the flavor program at LHCb.
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1. Introduction

This thesis is organized as follows. In chapter 2, we recall some properties of form

factors and provide convenient definitions for B meson form factors. Furthermore, we

give a brief introduction on methods based on the dispersive relation.

In chapter 3, we define the observables that can in principle be measured in B →
K∗(→ Kπ)νν̄, B → Kνν̄ as well as B → Xsνν̄ and present a numerical analysis

of these decays, first within and then beyond the SM, both model-independently and

within concrete extensions of the SM.

In chapter 4, we review the effective Hamiltonian governing the decay B → K∗(→
Kπ)µ+µ−, discuss the kinematics of the decay and define the basic observables in the

process. The definition satisfies the requirements of theoretical cleanliness and high

sensitivity to NP effects. We present the result of a phenomenological analysis of those

observables in the SM, in a model-independent way and in several selected NP scenarios.

In chapter 5, we introduce the idea of the so-called series expansion (SE) of the de-

pendence of the form factors on the momentum exchange. Then we review the derivation

of dispersive bounds from current-correlation functions and summarize the results for the

profile functions obtained from the operator product expansion. We apply our formalism

to B → K and B → ρ form factors, by fitting the (truncated) SE to theoretical “data”

from Quantum Chromodynamics (QCD) on the Lattice and/or Light Cone Sum Rules

(LCSR).

We present our conclusions in chapter 6 and discuss some technical details in the

appendix.
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Chapter 2

Transition Form Factors

In this chapter, we will focus on the theoretical description and prediction of hadronic

matrix elements entering B → V γ, B → L `+`− and B → Lνν̄ decays, where L = P, V

is a light pseudoscalar or vector meson.

In dealing with these hadronic matrix elements, one faces two levels of parametriza-

tion.

• The first level of parametrization is the definition of the form factors. The form

factors are scalar functions arising as coefficients in the parametrization of the

Lorentz vector-like hadronic matrix elements in terms of the relevant momenta

and polarization vectors. In this thesis we use a form factor definition based on a

projection of the hadronic matrix element on a complete orthogonal set of polar-

ization states of a virtual vector boson (representing either the γ or the dileptons

`+`− or νν̄) radiated in the transition B → L.

• The second level of parametrization deals with the dependence of the form factors

on the momentum transfer qµ over the kinematically allowed range. This is im-

portant in order to compare results among different form factor calculations (e.g.

LCSR, Lattice QCD or dispersive bounds) and to use these results in the prediction

of decay observables. Two important, often conflicting criteria for a parametriza-

tion are the quality of the fit to results of calculations at different q2 and a minimal

number of parameters to give predictive results.

In the following, we discuss the definition of the form factors used in this thesis and their

parametrization in q2, including the analytical behavior of the form factors in certain

physical limits, and give a brief overview of methods based on the dispersive relation.
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Definition of Form Factors

2.1 Definition of Form Factors

The hadronic matrix elements for a transition between a pseudoscalar B meson and a

generic pseudoscalar meson are usually written in terms of three form factors, f0(q2),

f+(q2) and fT (q2), which depend on the momentum transfer q2 = (p− k)2:

〈P (k)|q̄γµb|B(p)〉 =

(
pµ + kµ − qµ

m2
B −m2

P

q2

)
f+(q2) +

m2
B −m2

P

q2
qµ f0(q2) ,

〈P (k)|q̄σµνqνb|B(p)〉 =
i

mB +mP

(
q2(p+ k)µ − (m2

B −m2
P ) qµ

)
fT (q2) . (2.1)

Note that, at zero momentum transfer, the additional relation f+(0) = f0(0) holds.

Similarly, the matrix elements for a transition between a B meson and a generic

vector meson can be expressed in terms of another set of form factors, V (q2), A0−3(q2),

T1−3(q2) conventionally defined as:

〈V (k, ε)|q̄γµb|B̄(p)〉 = iεµνρσ ε
∗ν(k) pρkσ

2V (q2)

mB +mV

,

〈V (k, ε)|q̄γµγ5b|B̄(p)〉 = −ε∗µ(k) (mB +mV )A1(q2) + (p+ k)µ (ε∗(k) · q) A2(q2)

mB +mV

+qµ (ε∗(k) · q) 2mV

q2

(
A3(q2)− A0(q2)

)
, (2.2)

where A0(0) = A3(0). For transitions involving a tensor current, the matrix elements

are characterized by the tensor form factors:

〈V (k, ε)|q̄σµνqνb|B̄(p)〉 = iεµνρσ ε
∗ν pρkσ 2T1(q2) ,

〈V (k, ε)|q̄σµνqνγ5b|B̄(p)〉 = T2(q2)
(
ε∗µ(k) (m2

B −m2
V )− (ε∗(k) · q) (p+ k)µ

)
+T3(q2)(ε∗(k) · q)

(
qµ −

q2

m2
B −m2

V

(2p− q)µ
)
, (2.3)

where T1(0) = T2(0). The equations of motion for the quarks imply an additional

constraint,

A3(q2) =
mB +mV

2mV

A1(q2)− mB −mV

2mV

A2(q2) , (2.4)

and therefore the B → V transitions are characterized by seven independent form factors.

The above constitute the standard definitions of the form factors widely used in the

literature. However, for the purpose of this thesis, it is convenient to use certain linear

16



2. Transition Form Factors

combinations of these, dubbed helicity amplitudes in ref. [5]. They have the following

advantages over the traditional form factors:

• They have definite spin-parity quantum numbers, which is useful when considering

the contribution of excited states or in the context of Light Cone Sum Rules and

Lattice QCD.

• They have simple relations to the universal form factors, appearing in the heavy-

quark and/or large-energy limit.

• They lead to particularly simple expressions for the observables in the B → K∗ νν̄

and B → K∗ `+`− decays, as is shown in chapters 3 and 4, respectively.

• They diagonalize the unitarity relations, which are used in chapter 5 to derive the

dispersive bounds on certain form factor parameterizations.

These helicity form factors are defined as the coefficients of a projection of the matrix

element on a set of polarization vectors of a (virtual) vector boson carrying the four

momentum qµ. Since the set of polarization vectors is complete and orthogonal, the

form factors are conveniently defined through the Lorentz contraction of the relevant

matrix element and the respective polarization vector. In order to put the contributions

to the various current correlation functions entering the dispersive bounds on an equal

footing, we also choose a particular normalization convention and define new B → P

vector form factors via

AV,σ(q2) =

√
q2

λ
ε∗µσ (q) 〈P (k)|q̄ γµ b|B̄(p)〉 . (2.5)

Here,

λ =
(
(mB −mP )2 − q2

) (
(mB +mP )2 − q2

)
(2.6)

is a standard kinematic function, which often recurs in this thesis, although with different

masses. It should always be clear from the context which masses are meant. Furthermore,

the polarization vector ε∗µσ (q) – transverse (σ = ±), longitudinal (σ = 0) or time-like

(σ = t) – is defined in appendix (A.1). These definitions imply that

AV,0(q2) = f+(q2) , AV,t(q2) =
m2
B −m2

P√
λ

f0(q2) , (2.7)

while the transverse projections vanish. Similarly, for the B → P tensor form factor, we

17



Definition of Form Factors

define

AT,σ(q2) = (−i)
√

1

λ
ε∗µσ (q) 〈P (k)|q̄ σµνqν b|B̄(p)〉 . (2.8)

Here, the only non-zero form factor is1

AT,0(q2) =

√
q2

mB +mP

fT (q2) . (2.9)

A similar analysis for the B → V vector and axial-vector form factors yields

BV,σ(q2) =

√
q2

λ

∑
ε(k)

ε∗µσ (q) 〈V (k, ε(k))|q̄ γµ(1− γ5) b|B̄(p)〉 (2.10)

with

BV,0(q2) =
(mB +mV )2 (m2

B −m2
V − q2)A1(q2)− λA2(q2)

2mV

√
λ (mB +mV )

,

BV,t(q2) = A0(q2) ,

BV,1(q2) = −BV,− − BV,+√
2

=

√
2 q2

mB +mV

V (q2) ,

BV,2(q2) = −BV,− + BV,+√
2

=

√
2 q2 (mB +mV )√

λ
A1(q2) . (2.11)

Finally, the B → V matrix elements with tensor currents are defined as

BT,σ(q2) =

√
1

λ

∑
ε(k)

ε∗µσ (q) 〈V (k, ε(k))|q̄ σµαqα(1 + γ5) b|B̄(p)〉 (2.12)

giving rise to the form factors:

BT,0(q2) =

√
q2 (m2

B + 3m2
V − q2)

2mV

√
λ

T2(q2)−
√
q2 λ

2mV (m2
B −m2

V )
T3(q2) ,

BT,1(q2) = −BV,− − BV,+√
2

=
√

2T1(q2) ,

1The newly defined tensor form factor AT,0(q2) vanishes as
√
q2 for q2 → 0, which might look

somewhat artificial at first glance. However, the tensor current does not contribute to physical processes
at q2 = 0 anyway.
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2. Transition Form Factors

BT,2(q2) = −BV,− + BV,+√
2

=

√
2 (m2

B −m2
V )√

λ
T2(q2) . (2.13)

Note that, in the following, we drop the explicit dependence of the form factors on q2 in

our notation.

2.2 Symmetry Limits

In the limit of infinite b quark mass, for highly energetic light mesons or at the edges

of the kinematically allowed q2 range, new symmetries arise which imply a redundancy

among the hadronic matrix elements, and thus relations among the form factors. In this

section, we summarize these useful properties of the helicity-based form factors, following

from the definitions in eqs. (2.5, 2.8, 2.10, 2.12).

2.2.1 Kinematic Endpoints

From the equation of motion for vanishing momentum transfer, q2 → 0, it follows that

AV,0(0) = AV,t(0) = f0(0) = f+(0) , (2.14)

and

BV,0(0) = BV,t(0) = A0(0) = A3(0) ,

BT,1(0) = BT,2(0) =
√

2T1(0) =
√

2T2(0) , (2.15)

while the other form factors AT,0, BV,1, BV,2, and BT,0 behave as
√
q2 for q2 → 0.

Similarly, at the kinematic endpoint q2 = (mB −mL)2, we obtain the relations

lim
q2→(mB−mL)2

BV,2(q2)

BV,0(q2)
= lim

q2→(mB−mL)2

BT,2(q2)

BT,0(q2)
=
√

2 . (2.16)

2.2.2 Heavy Quark Limit

In the infinite-mass limit mb →∞, the number of independent form factors reduces from

7 to a single form factor ξ, usually called the Isgur-Wise function [6]. In this case the
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vector form factors obey the following relations :

ξ(q2) =


√
mV

mB

BV,i for i = t, 0√
2mBmV

q2
BV,i for i = 1, 2

(2.17)

Furthermore in this limit the form factors obey spin-symmetry relations [7] connecting

vector and tensor form factors:

2mB

√
q2AT,0 = AV,t

(
q2 −m2

B

)
+AV,0

(
m2
B + q2

)
(2.18)

2mB

√
q2BT,0 = BV,t

(
m2
B − q2

)
+ BV,0

(
m2
B + q2

)
(2.19)

2mB

√
q2BT,1 = BV,1

(
m2
B + q2

)
+ BV,2

(
m2
B − q2

)
(2.20)

2mB

√
q2BT,2 = BV,1

(
m2
B − q2

)
+ BV,2

(
m2
B + q2

)
. (2.21)

We note that the symmetric form of these relations is a further advantage of our choice

of form factors.

2.2.3 Soft Collinear Limit

In the combined limit of infinite b quark mass and large recoil energy of the final state

meson, the number of independent form factors reduces from 7 to 2 [8,9]. This reduction

follows from the factorization of soft and collinear QCD dynamics [10–12]. In the case

of B → V decays, the two form factors correspond to the polarization of the daughter

vector meson (transversal or longitudinal) and are usually denoted by ξ⊥ and ξ‖:

ξ‖(q
2) =

mV

E
BV,i for i = t, 0 (2.22)

ξ⊥(q2) =

√
mB

mB − 2E
BV,i for i = 1, 2 (2.23)

Here, E is the energy of the K∗, which is related to q2 by

E =
m2
B +m2

K∗ − q2

2mB

. (2.24)
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2. Transition Form Factors

Furthermore, the tensor and vector form factors are related through

AV,0 ' AV,t '
mB√
q2
AT,0 (2.25)

and

BV,0 ' BV,t '
mB√
q2
BT,0 , BV,1 ' BV,2 '

√
q2

mB

BT,1 '
√
q2

mB

BT,2 . (2.26)

2.3 Methods based on the Dispersive Relation

Besides the symmetry limits described above, other important sources of information

on form factors are methods based on the dispersive relation2, like dispersive bounds,

QCD sum rules3 and LCSR. The crucial observation underlying these methods is the

possibility to evaluate the correlator of two flavor-changing currents,

Π(q2) = i

∫
d4x eiq·x〈X | Tj1(x)j†2(0) |0〉, (2.27)

by a short distance or a light cone expansion and alternatively by unitarity considera-

tions. Note that |X〉 is a generic hadronic state. In this section, for the sake of simplicity,

we restrict ourselves to scalar currents. We extend the discussion to vector and tensor

currents in chapter 5.

2.3.1 Unitary Representation

Unitarity allows to express the imaginary part of the correlator Π(q2) as the positive

definite sum over all hadronic states |n〉 with allowed quantum numbers:

Im Π(q2) =
1

2

∑
n

〈X | j1 |n〉〈n | j2 |0〉 dτn(2π)4δ(4)(q − pn) , (2.28)

where pn is the total momentum of the respective final state n and dτn contains the

appropriate phase space weighting. From a conceptual perspective, it is useful to split

off the contribution of a generic ground state |Y 〉 and to summarize the remaining terms,

2See ref. [13] for an excellent review on the subject of QCD sum rules and LCSR
3With QCD sum rules we refer to the original method developed by Shifman, Vainshtein and Za-

kharov in [14]
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Methods based on the Dispersive Relation

including excited vector mesons and continuum states, as a continuous function ρ(q2):

Im Π(q2) =
1

2
〈X | j1 |Y 〉〈Y | j†2 |0〉 dτY (2π)4δ(4)(q − pY )

+ρ(q2)θ(q2 − s0) . (2.29)

The step function indicates that the continuous part contributes only above s0, the

so-called continuum threshold, which separates the ground-state from the continuum

contribution.

Furthermore, Cauchy’s theorem allows to express the full function Π(q2) in terms of

its imaginary part:

Π(q2) =
1

π

∞∫
0

ds
Im Π(s)

s− q2 − iε . (2.30)

Depending on the choice of |Y 〉 and |X 〉 as well as the currents we end up with the

basic equations (on the unitary side) of the three mentioned methods. In the following,

we give three simple examples:

• QCD sum rule for the B decay constant

Using |Y 〉= |B 〉 and |X 〉 = |0 〉 combined with the currents j1 = j2 = b̄iγ5d and

the definition of the B decay constant,

fBm
2
B = mb〈B|b̄iγ5d|0〉 , (2.31)

we arrive after a trivial phase space integration at

Π(q2) =
f 2
Bm

4
B

m2
b (m2

B − q2)
+

∞∫
s0

ds
ρ(s)

π(s− q2)
. (2.32)

• Dispersive bounds for the B → π form factor f0(q
2)

The choice of |Y 〉 = |Bπ 〉 , |X〉 = |0 〉 and j1 = j2 = ūb yields

Π(q2) >

∞∫
0

ds
m4
B |m2

B − s|
16π2sm2

b(s− q2)
|f0(s)|2 . (2.33)

Here p and k are the momenta of the B and the π, respectively, and q2 = (p− k)2

is the momentum transfer. Furthermore, we neglect the pion mass and drop the
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2. Transition Form Factors

terms related to the continuous part, thus leading to the inequality in eq. (2.33).

• Light Cone Sum Rule for the B → π form factor f0(q
2)

Alternatively, choosing |Y 〉 = |B 〉 and |X 〉 = |π〉 as well as j1 = ūiγ5b j2 = d̄iγ5b

leads to the starting point of the Light Cone Sum Rule for f0(q2):

Π(q2, p2) =
fBm

4
B

m2
b (p2 −m2

B)
f0(q2) . (2.34)

Here p and q are the momenta of the B and the π, respectively.

2.3.2 Short Distance and Light Cone Expansion

If the four-momentum squared transferred to the quarks is large, the integral in eq. (2.27)

is dominated by small spatial distances and time intervals. In this case, the product of

two currents can be expanded in a series of local operators Ok,

Π(q2) =
∞∑
k=1

Ck(q
2) 〈Ok〉 . (2.35)

The short- and long-distance contributions are incorporated in the Wilson coefficients

Ck(q
2) and the matrix elements of the operators 〈Ok〉, the so-called condensates, re-

spectively. While the Wilson coefficients can be accessed perturbatively with techniques

like position-space evaluation [15] or fixed gauge techniques [16], the condensates are

non-perturbative and have to be evaluated with lattice QCD.

Alternatively, the correlation function can be calculated by expanding the quark cur-

rents near the light-cone x2 = 0. This expansion is different from the local operator

product expansion used before and incorporates summation of an infinite series of local

operators. The correlator falls into a convolution of genuinely non-perturbative and uni-

versal light-cone hadron distribution amplitudes φ(n) and process-dependent amplitudes

T
(n)
H , which, similarly to Wilson coefficients, can be calculated in perturbation theory:

Π(q2) =
∑
n

T
(n)
H ⊗ φ(n). (2.36)

The sum runs over contributions with increasing twist n of the operators, which controls

the relative size of contributions and is the analog of the dimension in the short distance

expansion. The twist of an operator is given by the difference of its dimension and
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Methods based on the Dispersive Relation

spin. The “⊗” stands for an integration over the longitudinal momenta of the partons

described by φ(n).

2.3.3 Borel Transformation and Subtractions

In the framework of Light Cone Sum Rules and QCD sum rules, eqs. (2.35) and (2.32)

are not used as they stand, but a Borel transformation is performed:

Π(M2) = lim
−q2,n→∞
−q2/n=M2

(−q2)(n+1)

n!

(
d

dq2

)n
Π(q2) . (2.37)

Here, the dependence on q2 is replaced by the dependence on the Borel-parameter M2.

This transformation enhances the ground-state B meson contribution to the dispersion-

representation of Π(q2), while it damps the little known spectral function ρ(q2) of excited

and continuum states.

In the case of dispersive bounds, the so-called subtractions are more appropriate

because they fit naturally in the structure of the Cauchy representation of Π(q2). As

Π(q2) is an analytic function, it satisfies the subtracted dispersion relation,

χ(n) =
1

n!

dnΠ(q2)

dq2n

∣∣∣∣
q2=0

=
1

π

∞∫
0

dt
Im Π(t)

(t− q2)n+1

∣∣∣∣
q2=0

, (2.38)

where the number of subtractions n is chosen to render the resulting function χ(n) finite.

2.3.4 Resulting Information on the Form Factors

At the end of this section, we equate for each method the respective unitary representa-

tion and the results of the expansions (2.35) and (2.36).

• QCD sum rule for the B decay constant

Equating eq. (2.32) with an operator product expansion of the relevant correlator

and subsequent application of the Borel transformation eq. (2.37), yields:

∞∑
k=1

Ck(M
2) 〈Ok〉 =

f 2
Bm

4
B

m2
b

exp

(
−m

2
B

M2

)
+

1

π

∞∫
s0

dsρ(s) exp
(
− s

M2

)
. (2.39)

Solving this equation to f 2
B, truncating the expansion at a given order and using a

lattice result for the condensates gives an estimate for the decay constant.
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2. Transition Form Factors

• Dispersive bounds for the B → π form factor f0(q
2)

Equating eq. (2.33) with an operator product expansion of the relevant correlator

and subsequent application of the Borel transformation eq. (2.37), yields:

∞∑
k=1

(
1

n!

dnCk(q
2)

dq2n

∣∣∣∣
q2=0

)
〈Ok〉 >

∞∫
0

ds
m4
B |m2

B − s|
16π2sm2

b(s− q2)n
|f0(s)|2 . (2.40)

Again, the left-hand side can be estimated using lattice results for the condensates

and gives thus an upper bound on the form factors. The form factor parametriza-

tion in terms of a special series expansion, discussed in detail in chapter 5, allows

to transform the bound in eq. (2.40) directly to the bound on the expansion coef-

ficients.

• Light Cone Sum Rule for the B → π form factor f0(q
2) The result for the

LCSR for the B → π form factor is due to the additional momentum more difficult

than the result of the dispersive bound, but works in principle very similar: The

light cone expansion (2.37) gives combined with the eq. (2.35) (and after a Borel

transformation) an estimate of the form factor. A detailed derivation can be found

in ref. [13].

2.4 Lattice QCD versus Light Cone Sum Rules

Both methods start from first principles, but introduce additional approximations, which

leads to systematic errors. These systematic errors are in the case of Lattice QCD for

example discretization errors, chiral errors and quenching errors. In the case of LCSR

the modeling of the continuum introduces systematic errors reflected in the choice of the

continuum threshold and the Borel parameter.

The two methods are complementary with respect to the momentum transfer q2

between the initial and final state mesons: In Lattice QCD, results are more easily

obtainable at high values of q2, as discretization effects can only be controlled for small

momenta of the final state in units of the Lattice spacing. This is in contrast to the

LCSR method, which involves an expansion in inverse powers of the energy of the light

daughter meson that is valid for low values of q2.
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2.5 Parametrization of Form Factors

In the preceding sections, the analytic structure of the form factors in q2 was not dis-

cussed. In this regard, it is useful to write down a similar dispersion relation for the

form factors themselves, as it was done for the current correlator. Consider for example

the form factor for the transition of B → π:

f+
Bπ(q2) =

fB∗gB∗Bπ
m2
B∗ − q2

+
1

π

∞∫
(mB+mπ)2

ds
Imf+

Bπ(q2)

s− q2
. (2.41)

Here f ∗B ∼ 〈0| ūγµ |B∗〉 is the decay constant of the lowest resonance B∗ and gB∗Bπ ∼
〈B∗ | Bπ〉 its coupling to B and π. Different form factor parametrizations, which can be

used to interpolate between the results for small and large momentum transfer, have been

suggested in the literature; a good review can be found in [17]. A common assumption is

that the integral has the shape of an effective pole leading to the following representation

[18]:

f+
Bπ(q2) =

r1

1− q2/m2
B∗

+
r2

1− q2/m2
Bfit

(2.42)

The parameters r1, r2 and mBfit have to be determined by one of the above discussed

methods (e.g. LCSR), while the mass of the low-lying resonance mB∗ is usually extracted

from experimental data [19] and/or theoretical estimates from heavy-quark/chiral sym-

metry [20]. A summary of the relevant resonance masses, which are used in the course

of this work, is provided in table 2.1. Both the variations with different pole shapes and

generalizations to N poles are discussed in the literature [18,21,22]. Another interesting

parametrization is motivated by the relation between fBπ(q2) and the elastic phase of

the πB → πB strong scattering amplitude [23,24].

However, in chapter 5 we will concentrate on a parametrization advocated in refs. [5,

21,25–27]. It has two main advantages: first, the parameters are organized as coefficients

in a systematic expansion and, second, it is possible to impose bounds on these coeffi-

cients. These so-called dispersive bounds allow to obtain a third theoretical constraint

in addition to Lattice QCD at high q2 and Light Cone Sum Rules at low q2.
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2. Transition Form Factors

Table 2.1: Summary of the masses of low-lying Bd and Bs resonances, using PDG values [28] and/or
theoretical estimates from heavy-quark/chiral symmetry [20]. Notice that the mass values for (0+, 1+)
predicted in [20] have not been confirmed experimentally, yet. Instead the PDG quotes “effective”
resonances B∗

J(5698) and B∗
sJ(5853) with undetermined spin/parity.

Transition JP Mass (GeV) JP Mass (GeV) Ref.

b→ d 0− 5.28 1− 5.33 [28]
0+ 5.63 1+ 5.68 [20]
1+ 5.72 2+ 5.75 [28]

b→ s 0− 5.37 1− 5.42 [28]
0+ 5.72 1+ 5.77 [20]
1+ 5.83 2+ 5.84 [28]
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Chapter 3

B → Kνν̄, B → K∗νν̄ and

B → Xsνν̄

3.1 Introduction

In this chapter we define the observables that can in principle be measured in B → K∗(→
Kπ)νν̄, B → Kνν̄ and B → Xsνν̄ and discuss their interplay originating from their

common underlying quark level transition b→ sνν̄. We review the present experimental

status and present a numerical analysis of these decays, first within the SM and then

beyond, both model-independently and within concrete extensions of the SM.

3.2 Effective Hamiltonian

The effective Hamiltonian for b→ sνν̄ transitions is described by

Heff = −4GF√
2
VtbV

∗
ts (Cν

LOνL + Cν
ROνR) + h.c. , (3.1)

with the operators

OνL =
e2

16π2
(s̄γµPLb)(ν̄γ

µ(1− γ5)ν) , OνR =
e2

16π2
(s̄γµPRb)(ν̄γ

µ(1− γ5)ν) . (3.2)

Here, VtbV
∗
ts is the relevant combination of CKM matrix elements and e is the elementary

charge.

In the SM, the Wilson coefficient Cν
R of the right-handed operator is negligible, while

its left-handed counterpart Cν
L is dominated by Z-penguin and box diagrams involving
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Ν
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Figure 3.1: Kinematics of the decay B → K∗(→ Kπ)νν̄

top quark exchanges. The SM calculation for Cν
L at the next-to-leading order in QCD

can be found in ref. [29, 30]. Combined with the latest top mass measurement from the

Tevatron [31], we obtain the SM prediction

(Cν
L)SM = −6.38± 0.06 , (3.3)

where the error is dominated by the top mass uncertainty. Since Cν
L is scale independent,

the renormalization scale dependence enters Cν
L through the running top quark mass,

which is however largely cancelled through next-to-leading order QCD corrections.

3.3 Observables

3.3.1 B → K∗νν̄

While in the decay B → K∗νν̄ the neutrinos escape the detector unmeasured, it is

possible to extract information on the polarization of the K∗ by including the subsequent

decay of K∗ → Kπ in the analysis.

The starting point of an experimental analysis is the double differential decay distri-

bution in the invariant mass of the neutrino-antineutrino pair q2 and the angle θ between

the K∗ flight direction in the B rest frame and the K flight direction in the Kπ rest

frame (see fig. 3.1).

The differential decay distribution can be efficiently and systematically expressed in
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3. B → K(∗)νν and B → Xsνν

terms of B → K∗ transversity amplitudes A⊥,‖,0, which are given in terms of form factors

BV,i(q2) and Wilson coefficients as

A0(q2) = NBV,0(q2)(Cν
R − Cν

L) ,

A⊥(q2) = NBV,1(q2)(Cν
R + Cν

L) ,

A‖(q
2) = NBV,2(q2)(Cν

R − Cν
L) .

Here N is a common pre-factor containing the Fermi constant GF , the fine-structure

constant α, the B meson mass mB, CKM matrix elements and phase space factors (for

the definition of λ see, eq. (2.6) ),

N =
GFVtbV

∗
tsαλ

3/4

16
√

3π5/2m
3/2
B

. (3.4)

The subscript symbols, m =⊥, ‖, 0, indicate the polarization of the K∗, respectively, and

become clearer in the light of the connection of the matrix element and the transversity

amplitudes:

Am = ε∗µK∗(m)Mµν(B → K∗V ∗) ε∗νV ∗(m) . (3.5)

By replacing the transversity amplitudes by the helicity amplitudes,

H±1 =
A‖ ± A⊥√

2
, H0 = A0 , (3.6)

it is possible to formulate the decay distribution in the following compact form:

d2Γ(B → K∗νν̄)

dq2dcosθ
=

2π∫
0

∣∣∣∣∣ ∑
m=−1,0,1

HmY
1
m(φ, θ)

∣∣∣∣∣
2

dφ . (3.7)

Here the spherical harmonics1 Y 1
0,±(φ, θ) describe the decayK∗ → Kπ and the integration

over the angle φ reflects the fact that no information on the dineutrino pair is available.

A necessary, but for the decay in question legitimate, assumption for the above

factorization is the narrow-width approximation, which is implemented by the following

1The spherical harmonics enter via the D rotation matrices introduced in most quantum mechanics
textbooks. For a review on the spin formalism in the context of particle physics see, ref. [32].
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replacement of the squared propagator of the intermediate K∗:

1

(k2 −m2
K∗)

2 + (mK∗ΓK∗)2

ΓK∗�mK∗−−−−−−→ π

mK∗ΓK∗
δ(k2 −m2

K∗). (3.8)

In this way, the form factors are independent of the K∗Kπ coupling gK∗Kπ [33, 34],

because it cancels between the vertex factor and the width

ΓK∗ =
g2
K∗Kπ

48π
mK∗β

3, (3.9)

where

β =
1

m2
K∗

[
m4
K∗ +m4

K +m4
π − 2(m2

K∗m
2
K +m2

Km
2
π +m2

K∗m
2
π)
]1/2

. (3.10)

Using the explicit expressions for the functions Y 1
0,±(φ, θ) in the Kπ restframe,

Y 1
±(φ, θ) = ∓

√
3

8π
e±iφ sin θ ,

Y 1
0 (φ, θ) =

√
3

4π
cos θ ,

and integrating over φ, the double differential spectrum can be written as:

d2Γ(B → K∗νν̄)

dq2dcosθ
=

3

4

dΓT
dq2

sin2 θ +
3

2

dΓL
dq2

cos2 θ . (3.11)

Here, dΓL/T/dq
2 are the invariant mass spectra with a longitudinally/transversely polar-

ized K∗. They are given in terms of transversity amplitudes as

dΓL
dq2

= 3|A0|2 ,
dΓT
dq2

= 3
(
|A⊥|2 + |A‖|2

)
, (3.12)

where the factor of 3 stems from the sum over neutrino flavors2. Instead of these two

observables, we use combinations of these as observables in our analysis: The total

differential spectrum,

dΓ

dq2
=

∫ 1

−1

dcosθ
d2Γ

dq2dcosθ
=
dΓL
dq2

+
dΓT
dq2

= 3
(
|A⊥|2 + |A‖|2 + |A0|2

)
, (3.13)

2Here we assume that the Wilson coefficients do not depend on the neutrino flavor, which is an
excellent approximation in all the models we consider in sec. 3.6.

32



3. B → K(∗)νν and B → Xsνν

and one of the K∗ longitudinal and transverse polarization fractions FL,T , defined as

FL,T =
dΓL,T/dq

2

dΓ/dq2
, FL = 1− FT . (3.14)

This choice has two main advantages: First, the normalization of FL,T on the total

dineutrino spectrum dΓ/dq2 strongly reduces the hadronic uncertainties associated with

the form factors as well as the parametric uncertainties associated with CKM elements.

Second, in absence of right-handed currents (Cν
R = 0), the dependence on the remaining

Wilson coefficient Cν
L cancels out in FL. In this case both observables become particularly

simple:

dΓ

dq2
= 3N2Cν

L

(
B2
V,0 + B2

V,1 + B2
V,2

)
, (3.15)

FL(q2) =
B2
V,0

B2
V,0 + B2

V,1 + B2
V,2

. (3.16)

Thus, in the case of vanishing right-handed currents, FL is entirely determined by a ratio

of form factors. The compact results illustrate explicitly our appropriate choice of form

factors, since they naturally fit the problem and thus reduce the size of expressions. This

becomes even more evident for the decay into charged leptons, B → K∗`+`−, discussed

in the next chapter.

Finally, note that the values of FL at the kinematic endpoints are fixed to

FL(0) = 1 and FL((mB −m∗K)2) = 1/3 . (3.17)

The first identity can be understood on the grounds of helicity conservation, allowing

the B meson to decays only into a longitudinal K∗. The other kinematical endpoint at

q2 = (mB −m∗K)2 corresponds to the case of zero spatial momentum of the K∗ in the B

restframe. The absence of a preferential direction at this point explains the value of 1/3

as the ratio of the single longitudinal polarization state to the total number of 3 states3.

The corresponding q2-integrated observables are defined as

〈FL,T 〉 =
ΓL,T

Γ
, where Γ(L,T ) =

∫ (mB−mK∗ )2

0

dq2dΓ(L,T )

dq2
. (3.18)

3Alternatively, the values of FL at the kinematic endpoints can be illustrated with eq. (3.16). At
the lower endpoint all form factors but BV,0 vanish and at the upper endpoint all form factors become
equal, resulting in the values given in the text.
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3.3.2 B → Kνν̄

The dineutrino invariant mass distribution for the exclusive decay B → Kνν̄ can be

written as4 [36]
dΓ(B → Kνν̄)

dq2
= 3|N |2A2

V,0(q2) |Cν
L + Cν

R|2 . (3.19)

We use the B → K form factor AV,0(q2) given in ref. [37]. As argued by the authors

of [37], we assume that the maximum uncertainty is at q2 = 0 and, to be conservative,

we adopt this uncertainty for the full q2 range. Note that the normalization factor N in

eq. (3.19) can be obtained from the expression given in eq. (3.4) by replacing mK∗ by

mK .

3.3.3 B → Xsνν

The inclusive decay B → Xsνν̄ offers the theoretically most direct constraint on the

Wilson coefficients Cν
L and Cν

R as its theoretical treatment is easier than for the exclusive

decays. This is due to the absence of non-perturbative hadronic binding effects in the

final state. The dineutrino invariant mass distribution can be written as

dΓ(B → Xsνν̄)

dq2
= 6N2κ(0)(|Cν

L|2 + |Cν
R|2)

×
[

3q2

λ(m2
b ,m

2
s, q

2)

(
m2
b +m2

s − q2 − 4msmb
Re (Cν

LC
ν∗
R )

|Cν
L|2 + |Cν

R|2
)

+ 1

]
, (3.20)

where ms and mb are the strange and the beauty quark masses, respectively, κ(0) = 0.83

represents the QCD correction to the b→ sνν̄ matrix element [38–40] and the factor N is

related to the above defined normalization constant (3.4) by the obvious replacement of

the B meson mass by the b quark mass and K∗ meson mass by the s quark mass. For the

numerical evaluation we also include non-perturbative 1/m2
b corrections to the matrix

element of the operators given in [38,41] with the HQET parameters taken from [42].

In previous analyses of B → Xsνν̄, similarly to the practice in the calculation of

BR(B → Xsγ) [43], the common approach to reduce the theoretical uncertainties was

to normalize eq. (3.20) to the inclusive semileptonic decay rate Γ(B → Xceν̄e). This

normalization avoids the overall dependence on mb in the normalization N . However, in

this approach the mb dependence does not cancel fully, leaving an additional uncertainty

4The charged decay B+ → K+νν̄ mode receives an additional background from the process B+ →
K+νν̄ with a resonant τ . The branching ratio amounts to roughly one fourth of the branching ratio of
B+ → K+νν̄. Further details can be found in [35]
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Observable SM prediction Experiment

BR(B → K∗νν̄) (6.8+1.0
−1.1)× 10−6 < 80× 10−6 [47]

BR(B+ → K+νν̄) (4.5± 0.7)× 10−6 < 14× 10−6 [48]

BR(B → Xsνν̄) (2.7± 0.2)× 10−5 < 64× 10−5 [49]

〈FL(B → K∗νν̄)〉 0.54± 0.01 –

Table 3.1: SM predictions and experimental bounds (all at the 90% C.L.) for the four b→ sνν̄
observables.

introduced through the dependence of the semileptonic phase space factor on the charm

quark mass.

As an alternative to this approach we abandon this normalization in favor of a direct

use of eq. (3.20) in combination with the b quark mass in the 1S scheme. This approach

reduces the uncertainty of mb to about 1% [42, 44–46] and allows to reduce the esti-

mated uncertainty of the integrated branching ratio to less than 10%. This constitutes

a considerable improvement relative to the conventional approach.

3.4 Experimental Bounds and Standard Model Pre-

dictions

It should be stressed that neither the inclusive nor the exclusive decay modes have been

observed in experiment so far. However, experimental upper bounds on the branching

ratios have been set by the BaBar, Belle and ALEPH collaborations. We summarize

them together with our predictions for their SM values in table 3.1. In fig. 3.2 we show

our SM predictions for the differential branching ratios of all three decays and for FL(q2).

Note that we omit the O(1/m2
b) corrections to the inclusive dineutrino mass spectrum

in fig. 3.2, since they are well known to become singular at the kinematical endpoint. In

contrast, we keep it for the integrated branching ratio, as the integration yields a finite

result.

Of particular interest is the size of the uncertainties reflected by the intervals in

table 3.1 and the bands in fig. 3.2. While the inclusive and the exclusive decays both

suffer from errors coming from CKM elements, as listed in table 3.2, and an uncertainty in

the SM Wilson coefficient as given in eq. (3.3), the origin of the remaining uncertainties is

rather diverse. For the inclusive decay, the uncertainty is dominated by the theory error
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Figure 3.2: Dependence of the four b→ sνν̄ observables on the normalized neutrino invariant
masses squared q2 within the SM. The error bands reflect the theoretical uncertainties. In the
lower plots, the black dashed lines and dotted red lines are the results based on the form factor
sets B and C, respectively. (See the text for more details.)

of m1S
b . These errors together with the additional, less dominant errors of λ1,2 are given

in table 3.2. To be conservative, we assume an additional uncertainty of the inclusive

branching ratio of 5% to account for neglected higher order corrections. We account an

additional error of 10% for the neglected 1/m2
b correction in the differential observable

of the inclusive decay. These errors of the form factors of the decay B → Kνν̄ were

already discussed in section 3.3.2. The form factor errors in B → K∗νν̄ are relatively

small due to the correlation of the form factors.

3.5 Model-independent Analysis of New Physics Ef-

fects

In the following section, we discuss the three decays in the context of three effective

theories. This analysis is model-independent in the sense that the effective theories

studied here cover certain classes of specific NP models as special cases. First, we
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Parameter Value Ref. Parameter Value Ref.

m1S
b (4.68± 0.03) GeV [42,46] λ 0.2255(7) [50]

ms(2 GeV) 0.1 GeV [19] |Vcb| (4.13± 0.05)× 10−2 [51]

mt(mt) (162.3± 1.2) GeV [31] ρ̄ 0.154± 0.022 [51]

τB+ 1.638 ps [19] η̄ 0.342± 0.014 [51]

τB0 1.530 ps [19] λ1 (−0.27± 0.04) GeV2 [42]

λ2 (0.12± 0.01) GeV2 [19]

Table 3.2: Parameters used in the numerical analysis. λ1,2 are the HQET parameters needed
for the evaluation of the Λ2/m2

b corrections to BR(B → Xsνν̄) [38].

analyze the dependence of the observables on the Wilson coefficients themselves. In the

next step we assume that physics beyond the SM modifies only the b̄sZ coupling and

analyze the implications of this assumption. In the last framework, we assume that a

light additional scalar singlet under the SM gauge group is coupled via an effective vertex

to the b→ s current and thus enters the observables as missing energy.

3.5.1 Model-independent constraints on Wilson coefficients

The two complex Wilson coefficients Cν
L and Cν

R, giving rise to three different b → sνν̄

decays, enter the four observables only through two combinations 5. These real quantities

are [38, 52]

ε =

√
|Cν

L|2 + |Cν
R|2

|(Cν
L)SM| , and η =

−Re (Cν
LC

ν∗
R )

|Cν
L|2 + |Cν

R|2
. (3.21)

They are normalized such that η lies in the range [−1
2
, 1

2
] and the SM corresponds to

(ε, η) = (1, 0). The integrated observables discussed in section 3.3.1 and expressed in

terms of ε and η as well as combined with the numerical values of the input parameter

and form factors read as follows:

BR(B → K∗νν̄) = BR(B → K∗νν̄)SM(1 + 1.31 η)ε2 , (3.22)

BR(B → Kνν̄) = BR(B → Kνν̄)SM (1− 2 η)ε2 , (3.23)

BR(B → Xsνν̄) = BR(B → Xsνν̄)SM (1 + 0.09 η)ε2 , (3.24)

〈FL〉 = 〈FL〉SM
(1 + 2 η)

(1 + 1.31 η)
. (3.25)

5The situation is very similar to the muon decay µ+ → e+νeµ̄e, where a broader set of Wilson
coefficients enters the observables via four Michel parameters.
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Figure 3.3: Existing experimental constraints on ε and η. Dashed line: constraint from
BR(B → K∗νν̄), solid line: constraint from BR(B → Kνν̄), dotted line: constraint from
BR(B → Xsνν̄). The shaded area is ruled out experimentally at the 90% confidence level. The
blue circle represents the SM point.

These equations can be considered as the fundamental set of relations connecting the

experiment and the theory of the decays in question: On the one hand ε and η can be

calculated in any model which has the low energy operator structure of the effective

theory (3.1) by means of eq. (3.21) and can be used in eqs. (3.22-3.25). On the other

hand, a measurement of the observables translates directly into constraints on ε and η.

Since ε and η are real quantities, it is possible to visualize these experimental results in a

two dimensional plot. We show this kind of plot in fig. 3.3 for the experimental bounds

given in table 3.1 and note that the exclusive decays are presently more constraining than

the inclusive one. To evaluate the theoretical cleanliness of the various observables, we

show in fig. 3.4 the combined constraints after hypothetical measurements with infinite

precision, assuming the SM and a hypothetical NP example.

A special role is played by the observable 〈FL〉: since it depends only on η, cf. eq.

(3.25), it leads to a horizontal line in the ε-η plane. In the right-hand panel of fig. 3.5,

we show the value of 〈FL〉 as a function of η. Especially for negative η, 〈FL〉 constitutes

a very clean observable to probe the value of η.

As mentioned in section 3.3.1, FL is universal for all models where Cν
R = 0 and

consequently η = 0, in the SM and those models with minimal flavor violation (MFV)

[53–55]. Every experimentally observed deviation from this curve clearly signals the

presence of right-handed currents. In the left-hand panel of fig. 3.5, we plot FL(q2)

in the kinematically allowed range of q2 for several values of η. The blue curve is the

universal curve for η = 0.
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Figure 3.5: Left: FL(q2) for different values of η, from top to bottom: η =
0.5, 0,−0.2,−0.4,−0.45. Right: Dependence of the q2-integrated 〈FL〉 on η.

3.5.2 Modified Z penguins

In many models beyond the SM, NP effects in the Wilson coefficients Cν
L,R are dominated

by Z penguins. This can be discussed model-independently by assuming an effective

flavor violating b̄sZ coupling [56], which will not only modify the Wilson coefficients Cν
L,R,

but also the Wilson coefficients C
(′)
9,10 of the semi-leptonic operators governing b→ s`+`−

transitions. Therefore, interesting correlations between these processes and the b→ sνν̄

transitions are to be expected in this scenario. Note that a detailed discussion of the

weak hamiltonian for b→ s`+`−, including the definition of the Wilson coefficients C
(′)
9,10,

is given in chapter 4.
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The effective Lagrangian [56] describing such a framework is given by

Lb̄sZeff =
GF√

2

e

π2
m2
ZcwswV

∗
tbVts Z

µ
(
ZL b̄γµPLs+ ZR b̄γµPRs

)
, (3.26)

with sw = sin θw and cw = cos θw. In the SM, the right-handed coupling is negligible,

while ZL = C0(xt)/s
2
w. The function C0 can be found e.g. in [39]. In models with MFV,

ZL is a real function of the model parameters and ZR is strongly suppressed, while in

general NP models ZL and ZR can be arbitrary complex functions.

A modification of the type (3.26) affects other flavor changing transitions involving Z

penguins such as B → Xs`
+`−, Bs → µ+µ− and Bs-B̄s mixing. The impact of NP effects

in the b̄sZ couplings ZL,R on the Wilson coefficients contributing to those processes is

given by:

Cν
L = (Cν

L)SM − ZNP
L , Cν

R = −ZR , (3.27)

C10 = CSM
10 − ZNP

L , C ′10 = −ZR , (3.28)

C9 = CSM
9 + ZNP

L (1− 4s2
w) , C ′9 = ZR(1− 4s2

w) . (3.29)

The contributions to C
(′)
9 are strongly suppressed by the small vector coupling of the Z

to charged leptons (1− 4s2
w) ≈ 0.08.

In the following, we compile the constraints imposed by the experimental information

on the couplings ZL and ZR:

• The experimental branching ratio of the inclusive decay B → Xs`
+`− in the low-q2

region, 1 GeV2 < q2 < 6 GeV2 [57, 58],

BR(B → Xs`
+`−)exp. = (1.60± 0.51)× 10−6 , (3.30)

can be translated into a bound on the flavor-changing Z couplings,

4.3 < |ZL|2 + |ZR|2 < 28.8 , (3.31)

at the 1σ level.

• The experimental upper bound on the branching ratio of Bs → µ+µ− [59],

BR(Bs → µ+µ−)exp. < 5.8× 10−8 at 95% C.L. , (3.32)
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3. B → K(∗)νν and B → Xsνν

leads to

|ZL − ZR|2 < 261 . (3.33)

Here we assume that the scalar or pseudoscalar operator contributions to Bs →
µ+µ− are negligible.

• The mass difference in Bs-B̄s mixing has been measured to be [60]

(∆Ms)exp. = (17.77± 0.12) ps−1 . (3.34)

ZL and ZR contribute to the mixing via double Z penguin diagrams, which give

an additional term to the amplitude:

〈Bs|H|B̄s〉b̄sZ
〈Bs|H|B̄s〉SM

=
4αs2

w

πS0(xt)
(Z2

L + xZLZR + Z2
R) , (3.35)

where the function S0 and details about the evaluation of the hadronic parameter

x can be e.g. found in [61]. The amplitude is usually parametrized as

〈Bs|H|B̄s〉 =
∆Ms

2
e2i(φBs+βs) . (3.36)

However, the theory prediction is afflicted with an uncertainty of roughly 30% due

to uncertainties in hadronic parameters. While the Bs mixing phase predicted by

the SM is tiny, βs ≈ 1◦, recent Tevatron data seem to indicate the presence of a

sizable phase φBs [62–66].

In principle, large complex b̄sZ couplings ZL,R could give rise to a such a phase. How-

ever, taking into account the constraint in eq. (3.31), the double penguin contribution is

too small to generate a sizable phase.

An analogous representation through a minimal set of two independent parameters

for ZL and ZR, as it was possible for Cν
L and Cν

R, is impossible due to the fact that Bs

mixing depends on an additional independent combination of ZL and ZR. However, it

is possible to visualize the constraints from B → Xs`
+`−, Bs → µ+µ− and from Bs

mixing for the case of vanishing ZR, as shown in fig. 3.6. In the general case of nonzero

and complex ZL and ZR, the correlation is more complicated (e.g., for ZL = ZR the

constraint from Bs → µ+µ− disappears). However, we find that it is never possible to

bring the stringent constraint from B → Xs`
+`− into agreement with a large Bs mixing

phase.

In fig. 3.7, we present the correlation between the three b → sνν̄ branching ratios
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Figure 3.6: Constraints on the real and imaginary parts of ZNP
L coming from ∆Ms (blue,

assuming 30% theory uncertainty), BR(B → Xs`
+`−) (red) and BR(Bs → µ+µ−) (black)

assuming ZR = 0. The green lines correspond to values of the Bs mixing phase φBs = −11◦,
−19◦ and −27◦, respectively [62].

and BR(B → Xs`
+`−). Assuming ZR = 0 and real ZL, which holds in MFV models,

there are clear correlations, indicated as black curves, between the neutrino modes and

the charged lepton mode. In the general case of arbitrary and complex ZL,R, the entire

shaded areas are accessible. However, it is interesting to note that, in all three b→ sνν̄

decay modes, an enhancement of the branching ratio by more than a factor of two with

respect to the SM is excluded by the measurement of BR(B → Xs`
+`−) in eq. (3.30). By

construction, this statement is valid for all models in which NP contributions to b→ sνν̄

and b→ s`+`− processes enter dominantly through flavor-changing Z penguins.

For example large enhancements are possible in Z ′ models, where the B → Xs`
+`−

constrained can be circumvented by an appropriate choice of U(1)′ charges (see also

section 4.6.1).

3.5.3 Decay to invisible scalars

The last model independent framework we consider differs structurally from the previous

ones, since we do not only assume the modification of the high energy physics with respect

to the SM, but assume also an extension of the low energy particle content of the SM.
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Figure 3.7: Correlations between b → sνν̄ branching ratios and BR(B → Xs`
+`−). The

black curves correspond to ZR = 0 and real ZL; The shaded areas are accessible for arbitrary
ZL,R; The blue dots represent the SM. The solid and dashed vertical lines correspond to the
experimental central value and 1σ error, respectively, of BR(B → Xs`

+`−).

We assume the existence of a light gauge singlet scalar S with mass mS < mb/2 which is

coupled to the b→ s current via an effective coupling. Effects of these scalars superpose

with the SM contribution to the b → sνν̄ observables, since the two final states could

not be distinguished experimentally. The effective theory approach covers, for instance,

specific NP models of dark matter [67].

The effective Hamiltonian describing the flavor-changing quark-scalar interaction can

be written as

Heff = CS
L

mb

2
(s̄PLb)S

2 + CS
R

mb

2
(s̄PRb)S

2 . (3.37)

The mass of the scalar particle mS enters, in addition to the two Wilson coefficients CS
L

and CS
R, the observables as third parameter through the phase space integration.

The differential decay amplitude for the inclusive decay is in this framework given by

dΓ(B → Xs /E)

dq2
=
dΓ(B → Xsνν̄)

dq2
+
dΓ(B → XsSS)

dq2
, (3.38)

and by the corresponding sum for the exclusive decays. The differential decay widths of

the scalar modes read

d2Γ(B → K∗(→ Kπ)SS)

dq2d cos θ
=

3

2
NS(mB,m

∗
K)B2

V,t(q
2)
∣∣CS

L − CS
R

∣∣2 cos2 θ , (3.39)

dΓ(B → KSS)

dq2
= NS(mB,mK)A2

V,t(q
2)
∣∣CS

L + CS
R

∣∣2 , (3.40)
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dΓ(B → XsSS)

dq2
= NS(mb,ms)(

∣∣CS
R

∣∣2 +
∣∣CS

L

∣∣2) (3.41)

×m
4
B

λ

[
m2
b +m2

s − q2

4
−mbms

Re
(
CS
LC

S∗
R

)
|CS

R|
2

+ |CS
L |

2

]
.(3.42)

Here NS(m1,m2) is a kinematic function,

NS(m1,m2) =
1

211m1

(
1− 4m2

S

q2

)1/2(
λ(m2

1,m
2
2, q

2)

π2

)3/2

, (3.43)

and BV,t(q2) and AV,t(q2) are the time-like B → K∗ and B → K form factors, respec-

tively. We obtain BV,t(q2) by the procedure described in section (2.4), while AV,t(q2) is

taken from ref. [37].

The observable FL, as it is extracted from the angular distribution of B → K∗(→
Kπ) /E according to the formula (cf. eq. (3.11))

d2Γ

dq2dcosθ

/
dΓ

dq2
=

3

4
(1− FL) sin2 θ +

3

2
FL cos2 θ , (3.44)

is modified according to

FL(B → K∗ /E) =
dΓL(B → K∗νν̄)/dq2 + dΓ(B → K∗SS)/dq2

dΓ(B → K∗νν̄)/dq2 + dΓ(B → K∗SS)/dq2
, (3.45)

since the K∗ is always produced with longitudinal polarization in the B → K∗SS decay,

which is also the reason for the factor of cos2 θ in eq. (3.39).

The superposition of the two decay modes with different but experimentally indistin-

guishable final states leads to characteristic edges at the production threshold q2 = m2
S/4

of two scalars. In fig. 3.8, we show the differential branching ratios of all three decays as

well as FL(q2) for an exemplary scenario which is compatible with experimental upper

bounds on the integrated branching ratios given in table 3.1.

Since the transition b→ sSS is partly induced by operators beyond the set given in

eq. (3.1), the direct relations of observables to the parameters ε and η (eqs. (3.22)–(3.25))

are no longer valid. An attempt to nevertheless extract ε and η from the measurements

leads to an inconsistency, signaled by the absence of an intersection point of the four

bands. This situation is made explicit in fig. 3.9. Inversion of this argument in this

specific case is even more interesting: incompatibility of the measurements in the ε-η-

plane indicates the presence of operators beyond those in eq. (3.1).
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Figure 3.8: Dependence of the four observables on the normalized missing energy invariant
mass squared in a scenario in which SM-like b→ sνν̄ processes overlap with b→ sSS decays.
The parameters chosen are mS = 1.1 GeV, CSL = 0 and CSR = 2.8 × 10−8 GeV−2. The
grey curves show the pure b → sνν̄ (i.e. SM) contribution with theoretical uncertainties,
the red dashed curves the pure b → sSS contribution and the red solid curves the resulting
combination.

3.6 Effects in specific New Physics Models

3.6.1 Heavy Z ′

A popular extension of the SM is to include a heavy Z ′ gauge boson of an additional

U(1)′ gauge symmetry. This field is coupled to the relevant SM particles as

Lb̄sZ′ =
GF√

2

e

π2
m2
Z′cwswV

∗
tbVts Z

′µ
(
Z ′L b̄γµPLs+ Z ′R b̄γµPRs

)
. (3.46)

While these couplings can arise at tree level (as fundamental vertices) in the case of

generation non-universal U(1)′ charges of the quarks [68] , they can also be induced by

loop effects of particles charged under the U(1)′. The presence of such couplings gives
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Figure 3.9: Constraints on the ε-η-plane obtained by applying eqs. (3.22)–(3.25) in a scenario
in which SM-like b→ sνν̄ processes overlap with b→ sSS decays. The parameters are chosen
as in fig. 3.8. The coloring and dashing is as in fig. 3.4.

rise to shift of the Wilson coefficients similar to the analogues in eqs. (3.27)–(3.29):

Cν
L = (Cν

L)SM − g′νV
2
Z ′L , Cν

R = −g
′ν
V

2
Z ′R , (3.47)

C10 = CSM
10 +

g′`A
2
Z ′L , C ′10 = +

g′`A
2
Z ′R , (3.48)

C9 = CSM
9 − g′`V

2
Z ′L , C ′9 = −g

′`
V

2
Z ′R , (3.49)

where the couplings g′ν,`V,A denote the vector and axial vector couplings of the Z ′ to neu-

trinos and charged leptons, respectively. The contribution to the Bs mixing amplitude is

independent of the g′ couplings and is simply given by eq. (3.35) after the replacements

ZL,R → Z ′L,R. Therefore in a general Z ′ model, by choosing small or zero U(1)′ charges

for the charged leptons it is in principle possible to completely suppress the NP contri-

butions to b → s`+`− as well as Bs → `+`− decays. It is at the same time possible to

obtain a strong enhancement of b → sνν̄ modes and/or a sizable, potentially complex,

contribution to the Bs mixing amplitude.

3.6.2 Littlest Higgs with T-Parity (LHT)

Right-handed currents are absent or suppressed in most NP models. One example is

the Littlest Higgs model with T-parity, where Cν
R is negligible by construction and NP

effects in Cν
L are rather small [69]. A scan over the parameter space shows that (Cν

L)NP

typically amounts to 10% of the SM value if experimental constraints from other flavor

physics observables are imposed. Consequently, it will be difficult to distinguish this

model from the SM on the basis of the decays considered here.

46



3. B → K(∗)νν and B → Xsνν

3.6.3 Randall-Sundrum model with custodial protection

Recently the decays B → K∗νν̄, B → Kνν̄ and B → Xs,dνν̄ have been analyzed in a

Randall-Sundrum model with a custodial protection of the left-handed Z couplings to

down-quarks [70]. In this model the NP contributions to the decays in questions are

dominated then by tree level Z boson exchanges governed by right-handed couplings

to down-quarks. In spite of Cν
R being non-vanishing in this model, the deviations from

the SM for the three decays considered here are found to be even smaller than in the

LHT model6. Interestingly, when the custodial protection of left-handed Z couplings

is removed, NP effects in b → sνν̄ transitions can be enhanced relative to the SM by

as much as a factor of three which is not possible in the LHT model and in several

NP scenarios considered here. However, in such a scenario a strong violation of the

experimental constraint on the ZbLb̄L coupling is also predicted and a consistent analysis

should take into account also electroweak precision observables.

3.6.4 Minimal Supersymmetric Standard Model

In this section, we discuss the effects in the MSSM with a generic flavor violating soft

sector. This model gives rise to various new contributions to the b → sνν̄ transition

[40,72–75] and one might expect that large effects are possible. To be specific, effects of

virtual gluinos, neutralinos, charged Higgs bosons and charginos contribute potentially

to the observables as well as to other already experimentally accessible FCNCs, which

we will use as additional constraints.

• As neutralino and gluino contributions are generally sensitive to the same mass

insertions and gluinos are strongly interacting, neutralino contributions are always

negligible relative to the gluino contributions. Gluino contributions to both Cν
L

and Cν
R are in turn highly constrained by the b→ sγ decay and indeed have only

negligible impact [75].

• The charged Higgs contributions to Cν
L scale as 1/ tan2 β and even for low values

of tan β they play only a marginal role. The charged Higgs contributions to the

right-handed coefficient Cν
R are proportional to msmb tan2 β at leading order and

therefore negligible even for large values of tan β.

Although non-holomorphic corrections to the Higgs couplings can potentially lead

6See also [71] for the discussion of the inclusive B → Xsνν̄ in the context of slightly different
Randall-Sundrum setup.
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Figure 3.10: Dominant chargino contributions to the Wilson coefficient CνL in the mass inser-
tion approximation. Concerning its structure, we note that among the required two SU(2)L
breaking insertions in the Z penguin, one is formally provided by the helicity and flavor chang-
ing mass insertion (δRLu )32 and the other one by a Higgsino-Wino mixing (diagram a) or a
flavor conserving helicity flip for the stop (diagram b), respectively.

to important effects in the large tan β regime 7, the size of these effects is negligible

due to the experimental data on Bs → µ+µ− [61, 75].

• The chargino contributions to the right-handed coefficient Cν
R have at the leading

order the same suppression factor as the Higgs contributions and are therefore

negligible, too. However, chargino contributions to the left-handed coefficient Cν
L

are still possible. In fact, the largest of these can be generated by a Z penguin with

a (δRLu )32 mass insertion [56, 77, 78], that is not strongly constrained by existing

data [77, 79–81]. The Z penguin diagrams giving that contribution are shown in

fig. 3.10 in the mass insertion approximation8

In summary, all the discussed contributions to Cν
R in the MSSM are small or in addi-

tion very constrained by other observables. Consequently, the longitudinal polarization

fraction in the B → K∗νν̄ decay, FL(q2), is always SM like. The chargino contributions

to the left-handed coefficient Cν
L, however, can potentially lead to sizable effects.

After this qualitative discussion we analyze the possible impact of chargino contribu-

tions in Cν
L within a scan of the parameter space in a domain where such chargino effects

are pronounced. Due to the fact that these chargino contributions are not sensitive to

the value of tan β, we choose to work in the low tan β regime. In fact, this avoids possible

large Higgs effects in Bs → µ+µ− and the corresponding constraint from this decay. We

7This effect is well-known in the case of s→ dνν̄ transitions [76].
8In our numerical analysis, we work with mass eigenstates and include the complete set of SUSY

contributions as given in [74].
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Parameter Set tan β µ M2 mQ̃ mŨ At (δRLu )32

I 5 500 800 500 400 −800 0.75

II 5 120 700 400 800 −700 −0.5

Table 3.3: Two example MSSM parameter sets giving large effects in b → sνν̄ transitions.
Dimensionful quantities are expressed in GeV.

scan the relevant MSSM parameters in the following ranges

5 < tan β < 10 , mQ̃,mŨ ,M2 < 1TeV ,

−1TeV < µ < 1TeV , − 3 < At/
√
mQ̃mŨ < 3 ,

0 < |(δRLu )32| < 1 , 0 < Arg
[
(δRLu )32

]
< 2π (3.50)

and fix the remaining mass parameters to 1 TeV.

We apply constraints imposed by:

• direct searches for SUSY particles

• the lower bound on the Higgs mass

• the absence of charge and color breaking minima in the scalar potential

• the measurements of various FCNC processes like B → Xsγ, B → Xs`
+`−,

∆Ms/∆Md, εK and ∆MK .

Applying the outlined procedure, we end up with the following ranges for the branching

ratios of the decays B → K∗νν̄, B → Kνν̄ and B → Xsνν̄

5.3× 10−6 . BR(B → K∗νν̄) . 8.7× 10−6 , (3.51)

3.5× 10−6 . BR(B → Kνν̄) . 5.8× 10−6 , (3.52)

2.1× 10−5 . BR(B → Xsνν̄) . 3.6× 10−5 . (3.53)

We emphasize that, disregarding the negligible effects in Cν
R, these three branching ratios

are perfectly correlated.

The effects in the corresponding differential branching ratios for these decays are

shown in fig. 3.11 for the two example MSSM parameter sets found in table 3.3.
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Figure 3.11: Dependence of the four b→ sνν̄ observables on the normalized neutrino invariant
masses squared sb,B for two MSSM parameter points that give large effects within the considered
scenario. The upper red lines correspond to the MSSM parameter set I of table 3.3, while the
lower green ones correspond to parameter set II. The gray bands represent the SM predictions
and the corresponding theory uncertainty.

Before closing this section, we note the correlation between the branching ratios

of B → K∗νν̄ and Bs → µ+µ− shown fig. 3.12. It illustrates explicitly the common

dominant contributions of Z penguins to these two processes. Both Higgs penguin and

box contributions to Bs → µ+µ− are negligible, since in our framework tan β is small

and the heavy Higgs and the slepton masses are fixed to 1 TeV. A deviation from this

correlation would correspondingly signal either sizable box contributions to B → K∗νν̄

or Bs → µ+µ−, being possible with a very light slepton spectrum, or in the presence of

Higgs penguins in the Bs → µ+µ− decay.
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Chapter 4

B → K∗µ+µ−

4.1 Introduction

The decay B → K∗(→ Kπ)µ+µ−, based on the quark level decay b→ sµ+µ−, is regarded

as one of the crucial channels for B physics. This has mainly two reasons: First the all-

charged final state of the decay gives access to a vast number of observables sensitive to

NP. Second, combined with its charge conjugated counterpart, it is possible to construct

observables which sensitive are sensitive to CP violation.

This chapter is is organized as follows: We review the effective Hamiltonian governing

the decay B → K∗(→ Kπ)µ+µ− and discuss the resulting differential (angular) distri-

bution of the decay products. Furthermore we discuss non-factorizable QCD effects and

define the basic set of observables which have the advantage of high theoretical cleanli-

ness and likewise high sensitivity to NP effects. Then we perform a phenomenological

analysis of those observables in the SM, in a model-independent way and in several

selected NP scenarios.

4.2 Effective Hamiltonian

The decay B → K∗µ+µ− is induced by the weak effective Hamiltonian given by [82,83]

Heff = −4GF√
2

(
λtH(t)

eff + λuH(u)
eff

)
, (4.1)
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Effective Hamiltonian

with the CKM matrix element combinations λi = VibV
∗
is and

H(t)
eff = C1Oc1 + C2Oc2 +

6∑
i=3

CiOi +
∑

i=7,8,9,10,P,S

(CiOi + C ′iO′i) ,

H(u)
eff = C1(Oc1 −Ou1 ) + C2(Oc2 −Ou2 ) .

We keep the contribution of H(u)
eff , although it is doubly Cabibbo-suppressed with

respect to that of H(t)
eff , as certain observables we consider are sensitive to the induced

complex phases in the decay amplitudes. The operators Oi are given by [82]

Oq1 = 4 (s̄γµT
aPLq)(q̄γ

µT aPLb), Oq2 = 4 (s̄γµPLq)(q̄γ
µPLb), (4.2)

O3 = 4 (s̄γµPLb)
∑

q(q̄γ
µPLq), O4 = 4 (s̄γµT

aPLb)
∑

q(q̄γ
µT aPLq), (4.3)

O5 = 4 (s̄γµ1γµ2γµ3PLb)
∑

q(q̄γµ1γ
µ2γµ3PLq), (4.4)

O6 = 4 (s̄γµ1γµ2γµ3T
aPLb)

∑
q(q̄γ

µ1γµ2γµ3T aPLq), (4.5)

O7 =
e

g2
mb(s̄σµνPRb)F

µν , O′7 =
e

g2
mb(s̄σµνPLb)F

µν , (4.6)

O8 =
1

g
mb(s̄σµνT

aPRb)G
µν a, O′8 =

1

g
mb(s̄σµνT

aPLb)G
µν a, (4.7)

O9 =
e2

g2
(s̄γµPLb)(µ̄γ

µµ), O′9 =
e2

g2
(s̄γµPRb)(µ̄γ

µµ), (4.8)

O10 =
e2

g2
(s̄γµPLb)(µ̄γ

µγ5µ), O′10 =
e2

g2
(s̄γµPRb)(µ̄γ

µγ5µ), (4.9)

OS =
e2

16π2
mb(s̄PRb)(µ̄µ), O′S =

e2

16π2
mb(s̄PLb)(µ̄µ), (4.10)

OP =
e2

16π2
mb(s̄PRb)(µ̄γ5µ), O′P =

e2

16π2
mb(s̄PLb)(µ̄γ5µ), (4.11)

where g is the strong coupling constant, T a are the generators of SU(3) and PL,R =

(1 ∓ γ5)/2. mb denotes the running b quark mass in the MS scheme. The primed

operators with opposite chirality to the unprimed ones vanish or are highly suppressed

in the SM, as are OS,P . We neglect the contributions of O′i for 1 ≤ i ≤ 6.

In tab. 4.1 we give all the SM values of the Wilson coefficients to NNLL accuracy. As
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4. B → K∗µ+µ−

we shall see below, in eqs. (4.50-4.54), C7,9 always appear in a particular combination with

other Ci in matrix elements. It hence proves convenient to define effective coefficients

C
(′)eff
7,9 , and also C

(′)eff
8,10 , which are given by [84]

Ceff
7 =

4π

αs
C7 −

1

3
C3 −

4

9
C4 −

20

3
C5 −

80

9
C6 ,

Ceff
8 =

4π

αs
C8 + C3 −

1

6
C4 + 20C5 −

10

3
C6 ,

Ceff
9 =

4π

αs
C9 + Y (q2) ,

Ceff
10 =

4π

αs
C10 , C ′,eff

7,8,9,10 =
4π

αs
C ′7,8,9,10 , (4.12)

with Y (q2) = h(q2,mc)

(
4

3
C1 + C2 + 6C3 + 60C5

)
− 1

2
h(q2,mb)

(
7C3 +

4

3
C4 + 76C5 +

64

3
C6

)
− 1

2
h(q2, 0)

(
C3 +

4

3
C4 + 16C5 +

64

3
C6

)
+

4

3
C3 +

64

9
C5 +

64

27
C5 . (4.13)

The function

h(q2,mq) = −4

9

(
ln
m2
q

µ2
− 2

3
− z
)
− 4

9
(2 + z)

√
|z − 1| ×


arctan

1√
z − 1

z > 1

ln
1 +
√

1− z√
z

− iπ

2
z ≤ 1

(4.14)

with z = 4m2
q/q

2, is related to the basic fermion loop.

We shall see below that B → K∗(→ Kπ)µ+µ− does not allow to access all the above

coefficients separately: for instance, only the combinations CS − C ′S and CP − C ′P enter

the decay amplitude.

4.3 Differential Decay Distribution

In this section we discuss the angular distribution of the decay products of the decay

B → K∗(→ Kπ)(`+`−). We begin our discussion with the case of massless final state
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C1(µ) C2(µ) C3(µ) C4(µ) C5(µ) C6(µ) Ceff
7 (µ) Ceff

8 (µ) Ceff
9 (µ)− Y (q2) Ceff

10 (µ)

−0.257 1.009 −0.005 −0.078 0.000 0.001 −0.304 −0.167 4.211 −4.103

C̄1(µ) C̄2(µ) C̄3(µ) C̄4(µ) C̄5(µ) C̄6(µ) C ′7
eff(µ) C ′8

eff(µ)

−0.128 1.052 0.011 −0.032 0.009 −0.037 −0.006 −0.003

Table 4.1: SM Wilson coefficients at the scale µ = mb = 4.8 GeV, to NNLL accuracy. All other
Wilson coefficients are heavily suppressed in the SM. The “barred” C̄i are related to Ci as
defined in ref. [85]. Input: αs(mW ) = 0.120, αs(mb) = 0.214, obtained from αs(mZ) = 0.1176
[19], using three-loop evolution. We also use mt(mt) = 162.3 GeV [31], mW = 80.4 GeV and
sin2 θW = 0.23.

Μ�

Μ�

Π�

K�

ΦΘK
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Figure 4.1: The kinematics of B → K∗(→ Kπ)(`+`−).
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leptons, where we use and extend the formalism of helicity amplitudes, introduced in

last chapter. In a second step we keep the lepton mass finite and give a summary of the

associated new features relative to the case of massless leptons.

4.3.1 Massless leptons

In the limit of vanishing lepton mass, helicity and chirality of the final state leptons

coincide and operators (containing chiral projectors) relate leptons with definite helicity.

In this case, it is possible to factorize the matrix element B → K∗(→ Kπ)(`+`−)L

into three matrix elements of the subprocesses, the so-called helicity amplitudes. This

fact considerably facilitates the discussion of the kinematics [86] because the helicity

amplitudes can be evaluated separately in the relevant rest frames1.

The factorization for the process B → K∗(→ Kπ)(`+`−)L, again in the narrow-width

approximation (see section 3.3.1), reads:

ML ∝
∑

λ=0,±1

LLλH
L
λ Y

1
λ (4.15)

and analogously for MR, where the index L(R) indicates the decay in a left-handed

(right-handed) lepton and right-handed (left-handed) anti-lepton. The individual factors

have the following meaning:

• HL,R
λ describes the decay B → K∗λV

∗
λ . The helicities of the bosonic vector state are

denoted by the same symbol λ because they coincide due to angular momentum

conservation. In principle, four helicities are possible: +,−, 0 and s for scalar.

However, the matrix element for the decay V ∗s → (`+`−)L,R vanishes in the limit

of zero lepton masses.

• LL,Rλ describes the decay V ∗λ → (`+`−)L,R. In the massless case, the lepton and

the anti-lepton share the helicity, again due to angular momentum conservation.

The leptonic amplitudes are evaluated in the V ∗ rest frame, and θl is the angle

between ~pB and ~p`− . For example, LLλ corresponds to the Lorentz product of the

left handed lepton current and the polarization vector, εµλūγµPLv. In the massless

case, it is possible to square the expression (using the completeness relation) and

to take the square root afterwards. Using this technique, the explicit result for

1See [87] for an alternative discussion of the kinematics of four-body decays.
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leptonic amplitudes in the V ∗ rest frame can be written as:

LL1 = − cos2(θl/2) ,

LL0 = sin(θl) ,

LL−1 = − sin2(θl/2) ,

LR1 = sin2(θl/2) ,

LR0 = sin(θl) ,

LR−1 = cos2(θl/2) .

(4.16)

The techniques for the case of non-vanishing lepton mass are given in [32,86].

• The amplitudes Y 1
λ describe the decay K∗λ → Kπ (c.f. section 3.3.1) and have the

explicit form:

Y 1
±(φ, θK∗) = ∓

√
3

8π
e±iφ sin θK∗ ,

Y 1
0 (φ, θK∗) =

√
3

4π
cos θK∗ .

The angles φ and θK∗ are specified in the K∗ rest frame. θK∗ is the angle between

−~pB and ~pπ and φ is given by the angle of the two planes (~pB, ~pK) and (~pB, ~pπ).

The angular distribution follows immediately from the above amplitudes by taking the

square of the left- and right-handed amplitudes separately:

d4Γ

dq2 d cos θl d cos θK∗ dφ
=

9

32π
I(q2, θl, θK∗ , φ) , (4.17)

where

I(q2, θl, θK∗ , φ) =
8π

3

∣∣∣∣∣ ∑
λ=0,±1

LLλH
L
λ Y

1
λ

∣∣∣∣∣
2

+

∣∣∣∣∣ ∑
λ=0,±1

LRλH
R
λ Y

1
λ

∣∣∣∣∣
2
 . (4.18)

Before we proceed, we note that it is instructive to reexpress the last equation in

terms of a so-called spin density matrix,

ρLλλ′ = LLλH
L
λ Y

1
λ

(
LLλ′H

L
λ′Y

1
λ′

)∗
, (4.19)

which is obviously Hermitian, ρλλ′ = ρ∗λ′λ, and has 9 independent components, 3 be-

ing absolute values, 3 real parts and 3 being imaginary parts2. The differential decay

2For an interesting, alternative explanation of the number of observables see [88].
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amplitude takes the form

I(q2, θl, θK∗ , φ) =
8π

3

∑
λ,λ′=0,±1

(
ρLλλ′ + ρRλλ′

)
. (4.20)

The number of 9 independent observables is reflected by the 9 coefficients Ii in the

differential decay amplitude

I(q2, θl, θK∗ , φ) = I1 sin2 θK∗ − I2 cos2 θK∗ + (I1/3 sin2 θK∗ + I2 cos2 θK∗) cos 2θl

+ I3 sin2 θK∗ sin2 θl cos 2φ+ I4 sin 2θK∗ sin 2θl cosφ

+ I5 sin 2θK∗ sin θl cosφ

+ Is6 sin2 θK∗ cos θl + I7 sin 2θK∗ sin θl sinφ

+ I8 sin 2θK∗ sin 2θl sinφ+ I9 sin2 θK∗ sin2 θl sin 2φ. (4.21)

Expressed in terms of the transversity amplitudes,

AL,R⊥,‖ = (HL,R
+1 ∓HL,R

−1 )/
√

2, AL,R0 = HL,R
0 , (4.22)

the coefficients read

I1 =
3

4

[
|AL⊥|2 + |AL‖ |2 + (L→ R)

]
(4.23)

I2 = |AL0 |2 + (L→ R), (4.24)

I3 =
1

2

[
|AL⊥|2 − |AL‖ |2 + (L→ R)

]
, (4.25)

I4 =
1√
2

[
Re(AL0 A

L
‖
∗
) + (L→ R)

]
, (4.26)

I5 =
√

2
[
Re(AL0 A

L
⊥
∗
)− (L→ R)

]
(4.27)

Is6 = 2
[
Re(AL‖A

L
⊥
∗
)− (L→ R)

]
, (4.28)

I7 =
√

2
[
Im(AL0 A

L
‖
∗
)− (L→ R)

]
, (4.29)

I8 =
1√
2

[
Im(AL0 A

L
⊥
∗
) + (L→ R)

]
, (4.30)

I9 = Im(AL‖
∗
AL⊥) + (L→ R). (4.31)
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4.3.2 Massive leptons

In comparison to the massless case, the matrix element for non-vanishing lepton mass

has three main new features: occurance of a timelike mode At, mixing terms of AL and

AR and non-factorization of the leptonic matrix elements in the (schematic) form L∗L.

This means that the factorization can still be done at the level of the amplitude, i.e. the

squared matrix element:

|M|2 = |Y 1
0 Ht|2 +

∑
λ=0,±1
X=L,R
Y=L,R

HX
λ′ (H

Y
λ )∗Y 1

λ (Y 1
λ′)
∗LY Xλλ′ (4.32)

where

LLL,RR =
1

4

 (βl cos θl ± 1)2 2βl(βl cos θl ∓ 1) sin θl β2
l sin2 θl

2βl(βl cos θl ∓ 1) sin θl 2 (1− β2
l cos 2θl) 2βl(βl cos θl ∓ 1) sin θl

β2
l sin2 θl 2βl(βl cos θl ∓ 1) sin θl (βl cos θl ∓ 1)2

 ,

(4.33)

and

LRL = LLR =
m2
`

q2
× diag(1, 2, 1) . (4.34)

For example, LLRλ,λ′ corresponds to the expression (εµλūγµPLv)(ενλ′ūγνPRv)∗. These expres-

sions are no helicity amplitudes, since the projectors PR and PL are chirality projectors

and the produced leptons are no helicity eigenstates. While this fact is not of importance

for the final result, since the sum goes over the final state spins, it prevents factorization

of the leptonic part of the squared amplitude.

The resulting coefficient functions for B̄0 → K̄∗0(→ K−π+)µ+µ− read:

Is1 =
(2 + β2

µ)

4

[
|AL⊥|2 + |AL‖ |2 + (L→ R)

]
+

4m2
µ

q2
Re
(
AL⊥A

R
⊥
∗

+ AL‖A
R
‖
∗)
, (4.35)

Ic1 = |AL0 |2 + |AR0 |2 +
4m2

µ

q2

[
|At|2 + 2Re(AL0 A

R
0

∗
)
]

+ β2
µ|AS|2, (4.36)

Is2 =
β2
µ

4

[
|AL⊥|2 + |AL‖ |2 + (L→ R)

]
, (4.37)

Ic2 = −β2
µ

[
|AL0 |2 + (L→ R)

]
, (4.38)

I3 =
1

2
β2
µ

[
|AL⊥|2 − |AL‖ |2 + (L→ R)

]
, (4.39)
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4. B → K∗µ+µ−

I4 =
1√
2
β2
µ

[
Re(AL0 A

L
‖
∗
) + (L→ R)

]
, (4.40)

I5 =
√

2βµ

[
Re(AL0 A

L
⊥
∗
)− (L→ R)− mµ√

q2
Re(AL‖A

∗
S + AR‖ A

∗
S)

]
, (4.41)

Is6 = 2βµ
[
Re(AL‖A

L
⊥
∗
)− (L→ R)

]
, (4.42)

Ic6 = 4βµ
mµ√
q2

Re
[
AL0A

∗
S + (L→ R)

]
, (4.43)

I7 =
√

2βµ

[
Im(AL0 A

L
‖
∗
)− (L→ R) +

mµ√
q2

Im(AL⊥A
∗
S + AR⊥A

∗
S)

]
, (4.44)

I8 =
1√
2
β2
µ

[
Im(AL0 A

L
⊥
∗
) + (L→ R)

]
, (4.45)

I9 = β2
µ

[
Im(AL‖

∗
AL⊥) + (L→ R)

]
. (4.46)

4.3.3 The CP-conjugated mode

The differential decay distribution for the CP-conjugated modeB0 → K∗0(→ K+π−)µ+µ−

is
d4Γ̄

dq2 d cos θl d cos θK∗ dφ
=

9

32π
Ī(q2, θl, θK∗ , φ) . (4.47)

The function Ī(q2, θl, θK∗ , φ) is obtained from (4.21) by the replacements [33]

I
(a)
1,2,3,4,7 −→ Ī

(a)
1,2,3,4,7 , I

(a)
5,6,8,9 −→ −Ī(a)

5,6,8,9 , (4.48)

where Ī
(a)
i equals I

(a)
i with all weak phases conjugated. The minus sign in (4.48) is a

result of our convention that, while θK∗ is the angle between the K̄∗0 and the K− flight

direction or between the K∗0 and the K+, respectively, the angle θl is measured between

the K̄∗0 (K∗0) and the lepton µ− in both modes. Thus, a CP transformation interchanging

lepton and antilepton leads to the transformations θl → θl − π and φ → −φ, as can be

seen from eqs. (4.16) and (4.17). This convention agrees with refs. [33,89,90], but differs

from the convention used in some experimental publications [91], where θl is defined as

the angle between K∗0 and µ+ in the B0 decay, but between K̄∗0 and µ− in the B̄0 decay.

Finally we remark that the differential decay distribution in q2 is given by the

quadratic sum of the transversity amplitudes:

dΓ(B → K∗µ+µ−)

dq2
= |A0L|2 + |A0R|2 + |A⊥L|2 + |A⊥R|2 + |A‖L|2 + |A‖R|2 . (4.49)
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4.4 Transversity amplitudes

Here we give the explicit form of the eight transversity amplitudes up to corrections of

O(αs), whose discussion we postpone until the section 5:

A0L/R = N

(
1

2
BV,0((Ceff′

9 − Ceff
9 )∓ (Ceff′

10 − Ceff
10 )) + BT,0(Ceff′

7 − Ceff
7 )

mb√
q2

)
,(4.50)

A⊥L/R = N

(
1

2
BV,1((Ceff′

9 + Ceff
9 )∓ (Ceff′

10 + Ceff
10 )) + BT,1(Ceff′

7 + Ceff
7 )

mb√
q2

)
,(4.51)

A‖L/R = N

(
1

2
BV,2((Ceff′

9 − Ceff
9 )∓ (Ceff′

10 − Ceff
10 )) + BT,2(Ceff′

7 − Ceff
7 )

mb√
q2

)
,(4.52)

At = NBV,t
(

(Ceff
10 − Ceff′

10 ) + (CP − C ′P )
q2

4mµ

)
, (4.53)

AS =
N

2
BV,t(C ′S − CS)

√
q2 (4.54)

where

N =
GFVtbV

∗
tsα
√
βµλ

3/4

16
√

3π5/2m
3/2
B

, (4.55)

with λ = m4
B +m4

K∗ + q4 − 2(m2
Bm

2
K∗ +m2

K∗q
2 +m2

Bq
2) and βµ =

√
1− 4m2

µ/q
2.

With the explicit form of the transversity amplitudes and under the assumption of

the SM (i.e. vanishing primed Wilson coefficients), the differential decay distribution in

q2 is given by:

dΓ(B → K∗µ+µ−)

dq2
= N2

[
1

2

(
B2
V,0 + B2

V,1 + B2
V,2

)
(|Ceff

10 |2 + |Ceff
9 |2)

+2 (BV,0BT,0 + BV,1BT,1 + BV,2BT,2)
mb√
q2

Re(Ceff
7 Ceff

9 )

+2
(
B2
T,0 + B2

T,1 + B2
T,2

) m2
b

q2
|Ceff

7 |2
]
. (4.56)

The distribution has, as in the case of B → K∗νν̄, a very symmetric dependence on

the helicity form factors, although it is more complicated due to the dependence on the
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4. B → K∗µ+µ−

tensor form factors3.

4.5 Additional Corrections to Transversity Ampli-

tudes

In addition to terms proportional to the form factors, the B → K∗µ+µ− amplitude

contains also certain “non-factorizable” effects that do not correspond to form factors.

Effects from spectator interactions induce two classes of corrections, O(αs) corrections

and corrections from weak annihilation (WA). These efffects have been calculated within

the QCD factorization (QCDF) framework in refs. [85] and [92] in terms of the soft form

factors ξ⊥ and ξ‖ discussed in sec. 2.2.3.

Before discussing the “non-factorizable” QCDF it is instructive to discuss the (schemat-

ical) factorization formula for the B → K∗ decay form factors:

F (q2) = Dξ(E) + φB ⊗ TH ⊗ φK∗ +O(1/mb) , (4.58)

where D = 1+O(αs) includes hard corrections to the weak vertex and E is the energy of

the K∗ meson. However, the above formula is not exact, but will receive corrections (both

soft and hard) which are suppressed by powers of mb. These corrections are unknown to

date.

The non-factorizable corrections to B → K∗µ+µ− can be included in a factorization

formula very similar to that for form factors: apart from overall factors and the Lorentz

structure, the relevant terms in the decay amplitude can be written as [92]

T (i)
a = ξaC

(i)
a + φB ⊗ T (i)

a ⊗ φa,K∗ +O(1/mb), (4.59)

with a =⊥, ‖ and i = u, t. Note that the C
(i)
a in the above formula are not Wilson

coefficients.

According to ref. [85] there are two types of O(αs) corrections, factorizable and non-

factorizable. A part of the factorizable O(αs) has to be disregarded in our approach,

since they amount to the difference between the soft form factors ξ‖ and ξ⊥ and the full

3 We mention for completeness that in our notation the decay width of B → K∗γ is given by

Γ(B → K∗γ) = 3
(

4π
α

)(
4π
αs

)2

N2|C7|2m2
bB2

T,1(0) , (4.57)

where N and BT,1 should be evaluated at q2 = 0.
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set of form factors and are thus already included in our approach. Furthermore, the

other part vanishes using the b quark mass in the MS scheme. For the non-factorizable

O(αs) corrections non of these arguments applies and they have to be fully considered.

The second class of corrections, the weak annihilation induced corrections, is given by

T
(0)
‖,−(u, ω) in the notation of ref. [85]. We include these corrections that are induced by the

penguin operators O3 and O4 although they are numerically small due to the smallness

of the corresponding Wilson coefficients (see tab. 4.1). Further WA corrections discussed

in ref. [92] are even smaller and can be neglected or do not arise in the case of the decay

of a neutral B meson, which is considered in the following.

On introducing the chirality-flipped operators, the T (t,u)
⊥,‖ introduced above are pro-

moted to T ±(t,u)
⊥,‖ corresponding to the notations of ref. [93]. In terms of these quantities,

we can define the additional corrections to the transversity amplitudes4:

∆AQCDF
⊥L,R =

√
2N

mb√
q2

(T +(t),WA+nf
⊥ + λ̂uT +(u)

⊥ ) ,

∆AQCDF
‖L,R = −

√
2N

mb√
q2

(T −(t),WA+nf
⊥ + λ̂uT −(u)

⊥ ) ,

∆AQCDF
0L,R =

N(m2
B − q2)

2mK∗m2
B

mb(T −(t),WA+nf
‖ + λ̂uT −(u)

‖ ) . (4.60)

The superscript, WA+nf, on T ±(t)
⊥ indicates that only contributions from WA and non-

factorizable O(αs) corrections are to be included. In accordance with ref. [89], we define

λ̂u = λu/λt. The total transversity amplitudes are given by the expressions in eqs.

(4.50–4.53) plus the above terms ∆AQCDF. Note, that there are no corrections to At or

AS.

4.6 Observables

As discussed in the previous section, the decay distribution is fully described by the

coefficients Ii. As these coefficients suffer large hadronic uncertainties they are not

suited directly as observables. The observables defined in this section do not show this

disadvantage and allow furthermore to separate CP conserving and CP violating effects.

Independently of the final choice of observables, all observables are functions of q2. A

useful and important way to quantify statements about their behavior in a single number

4It should be noted that the functions F (7,9)
1,2,u entering the non-factorizable corrections are defined

with a different overall sign in refs. [92] and [94].
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4. B → K∗µ+µ−

mµ = 0 mµ 6= 0
SM 18 22

SM + O(′)
S 20 24

Table 4.2: Number of independent observables in B → K∗(→ Kπ)µ+µ−, depending on
whether lepton mass effects and/or scalar operators are taken into account.

is to give the position of the zero crossings in q2 of certain observables or to consider the

integrated observable over the kinematically allowed q2 range.

4.6.1 Differential Observables

The 12 angular coefficient functions I
(a)
i of the angular distribution of B̄0 → K̄∗0(→

K−π+)µ+µ− constitute, together with the corresponding coefficients Ī
(a)
i of the CP con-

jugate mode, a complete set of accessible observables. The obvious advantage of these

coefficients – their simple connection to the angular distribution – is unfortunately com-

pensated by the inability to separate CP-conserving and CP-violating NP effects and

their large theoretical errors. To cure these shortcomings, we find it more convenient to

consider the twelve CP averaged angular coefficients,

S
(a)
i =

(
I

(a)
i + Ī

(a)
i

)/d(Γ + Γ̄)

dq2
, (4.61)

as well as the twelve CP asymmetries5

A
(a)
i =

(
I

(a)
i − Ī(a)

i

)/d(Γ + Γ̄)

dq2
. (4.62)

The normalization to the CP-averaged dilepton mass distribution reduces or even cancels

both experimental and theoretical uncertainties. The CP asymmetries are particularly

relevant in the context of CP-violating phases in NP models. This is a consequence of

their smallness in the SM [89], which is in turn due to the fact that the only CP-violating

phase affecting the decay enters via λu in eq. (4.1) and is doubly Cabibbo-suppressed.

It should be stressed that out of these 24 observables, two vanish in the SM, namely

Sc6 and Ac6, which are generated only by scalar operators, and four are related to others

in the limit of massless leptons through Ss1 = 3Ss2, Sc1 = −Sc2 and As1 = 3As2, Ac1 = −Ac2.

Table 4.2 summarizes the number of independent observables in these limits.

In addition, even for non-zero lepton mass, only three of the four Ss,c1,2 are independent,

5 Note that our definition of the CP asymmetries differs from ref. [89] by a factor of 3
2 .
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which is due to the normalization (4.61), leading to the the relation

3

4
(2Ss1 + Sc1)− 1

4
(2Ss2 + Sc2) = 1. (4.63)

Consequently, the complete set of 24 independent observables would be given by the

twelve A
(a)
i , eleven S

(a)
i and the CP-averaged dilepton mass distribution d(Γ + Γ̄)/dq2.

However, in contrast to the other observables, the latter is not normalized to a quantity

containing the form factors and thus it is not as clean.

In principle there are two ways to extract the observables S
(a)
i and A

(a)
i from exper-

imental data. First, a fit of the angular distributions eqs. (4.17) and (4.47) to data,

and the subsequent combination of the found I
(a)
i and Ī

(a)
i in the observables. Second, a

integration of the d4(Γ± Γ̄) over certain parts of the angles θl, θK∗ and φ, as for example:

S5 = −4

3

[∫ 3π/2

π/2

−
∫ π/2

0

−
∫ 2π

3π/2

]
dφ

[∫ 1

0

−
∫ 0

−1

]
d cos θK

d3(Γ− Γ̄)

dq2 d cos θKdφ

/
d(Γ + Γ̄)

dq2
.

(4.64)

Both ways where shown to be viable for several similar observables in ref. [88, 89].

Since S
(a)
i and A

(a)
i constitute a complete set of possible observables for the decay

B → K∗(→ Kπ)µ+µ−, all established observables can be expressed in terms of these

quantities. For example, the CP asymmetry in the dilepton mass distribution is given

by (see eq. (4.63))

ACP =
d(Γ− Γ̄)

dq2

/
d(Γ + Γ̄)

dq2
=

3

4
(2As1 + Ac1)− 1

4
(2As2 + Ac2). (4.65)

We prefer to define the normalized forward-backward asymmetry as a ratio of CP-

averaged quantities,

AFB =

[∫ 1

0

−
∫ 0

−1

]
d cos θl

d2(Γ− Γ̄)

dq2 d cos θl

/
d(Γ + Γ̄)

dq2
=

3

8
(2Ss6 + Sc6). (4.66)

The CP average is numerically irrelevant in the SM, but makes the connection to ex-

periment more transparent. In addition, this definition is complementary to the forward-

backward CP asymmetry [56],

ACP
FB =

[∫ 1

0

−
∫ 0

−1

]
d cos θl

d2(Γ + Γ̄)

dq2 d cos θl

/
d(Γ + Γ̄)

dq2
=

3

8
(2As6 + Ac6). (4.67)

Additional well-established observables are the K∗ longitudinal and transverse po-
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larization fractions FL and FT , already discussed in the context of the neutral decay

B → K∗νν̄ in chapter 3. They read in terms of S
(a)
i and A

(a)
i

FL = −Sc2, FT = 4Ss2. (4.68)

The well-known relation FT = 1− FL is then a consequence of the fact that in the limit

of vanishing lepton mass, no scalar polarizations are allowed and thus the K∗ has to be

either longitudinally or transversally polarized.

In refs. [88, 90], the transverse asymmetries A
(i)
T have been introduced, which have a

less direct relation to the experimentally observable angular coefficients. They can be

expressed in terms of our observables as

A
(2)
T =

S3

2Ss2
,

A
(3)
T =

(
4S2

4 + S2
7

−2Sc2 (2Ss2 + S3)

)1/2

,

A
(4)
T =

(
S2

5 + 4S2
8

4S2
4 + S2

7

)1/2

. (4.69)

4.6.2 Integrated Observables

For experimental reasons it is sometimes useful to define integrated observables:

〈
S

(a)
i

〉
=

∫ 6 GeV2

1 GeV2

dq2
(
I

(a)
i + Ī

(a)
i

)/∫ 6 GeV2

1 GeV2

dq2d(Γ + Γ̄)

dq2
, (4.70)

〈
A

(a)
i

〉
=

∫ 6 GeV2

1 GeV2

dq2
(
I

(a)
i − Ī(a)

i

)/∫ 6 GeV2

1 GeV2

dq2d(Γ + Γ̄)

dq2
. (4.71)

There are two reasons for choosing the upper bound q2 ≤ 6 GeV2: First, at higher q2 the

charmonium resonances with B → K∗ψ(′)(→ `+`−) dominate the distribution. Second,

QCD factorization (see chapter (4.5)) does not work for large q2. The lower bound,

1 GeV2 ≤ q2, avoids (unknown) resonance contributions from ρ or other mesons.

4.6.3 Zero crossings

The zero crossings of the differential observables are largely insensitive to uncertainties

in the hadronic form factors, making them powerful observables [95]. In the SM, to
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leading order only S4, S5 and S6s have zero crossings, which are implicitly given by the

following simple relations:

• S4:

C2
10q

2 +

(
2C7mb

BT,0
B0

+ Ceff
9

√
q2

)(
2C7mb

BT,2
B2

+ Ceff
9

√
q2

)
= 0 (4.72)

• S5:

C7mb

(BT,0
B0

+
BT,1
B1

)
+ Ceff

9

√
q2 = 0 (4.73)

• S6s:

C7mb

(BT,1
B1

+
BT,2
B2

)
+ Ceff

9

√
q2 = 0 (4.74)

Using the SCET relations, eq. (2.26) yields immediately the following predictions:

q2
0(S4) = −2C7mbmB(2C7mb + C9mB)

mB (C2
10 + C2

9) + 2C7C9mb

, (4.75)

q2
0(S5) = − C7mbm

2
B

C7mb + C9mB

, (4.76)

q2
0(S6s) = −2C7mbmB

C9

. (4.77)

We note that the zero crossings of our observables are related to those of the alternative

set proposed in [88,90]:
m2
Bq

2
0(S6)

2m2
B − q2

0(S6)
= q2

0(A3
T ) , (4.78)

q2
0(S4) = q2

0(A3
T ) , (4.79)

q2
0(S5) = q2

0(A4
T ) . (4.80)

The zero of the forward-backward asymmetry has been the focus of many experimental

and theoretical studies (see for example refs. [91, 96]) as it is established as being an

observable free from hadronic effects and capable of distinguishing between NP scenarios.

4.7 Standard Model

In this section we will discuss features of the CP-averaged angular coefficients and the

CP asymmetries in the context of the SM. We put special focus on the impact of QCDF
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corrections and the uncertainties and furthermore compare our results to existing studies

in the literature. Our predictions for the CP-averaged angular coefficients S
(a)
i in the

SM are shown in fig. 4.2.6 We note the following features:

• Ss1 and Sc1 have been omitted since the relations Ss1 = 3Ss2 and Sc1 = −Sc2 are

fulfilled up to lepton-mass effects, which amount to at most 1%.

• Ss,c1,2 are numerically large as expected.

• S3 is numerically small in the SM since it is approximately proportional to the

chirality-flipped Wilson coefficient C ′7, which is suppressed by a factor ms/mb.

• S4, S5, Ss6 are similar in magnitude, but are particularly interesting as they each

have a zero in q2. The predictions of the zero crossings and q2 distributions are

seen to have small uncertainties, as the normalization results in a cancellation of

hadronic effects. In tab. 4.4, we show our predictions for the positions of the zeros

of S4, S5 and Ss6, denoted by q2
0(S

(a)
i ) from now on.

• S7, S8 and S9 are small as well and have a larger error band as they arise from the

imaginary part of the transversity amplitudes.

The impact of the radiative QCDF corrections varies extremely. While, in the observables

S2,3,4,5,6, the are mere corrections to the leading-order result, they are the dominant

contribution in S7,8,9 and Ai. This is due to the fact that the first class of observables is

largely independent of weak or strong phases, the latter are built of imaginary parts and

thus sensitive to the strong phases induced by O(αs) corrections in QCDF. The impact

of lepton mass effects is similarly diverse. For the most observables they are corrections

in the 1 % range, others, like I6c, are only present if the lepton mass is kept finite.

We proceed by listing all sources of uncertainties and our respective treatment and

assumptions:

• The uncertainty due to the form factors is estimated by varying the Borel parameter

and continuum threshold as discussed in sec. 2.3.

• The renormalization scale uncertainty is found by varying µ between 4.0 and

5.6 GeV, where µ is the scale at which the Wilson coefficients, αs and the MS

masses are evaluated.

6The discontinuity in some of the error bands just below 6 GeV2 is an unphysical artifact resulting
from small charm quark masses ∼ 1.2 GeV allowed in the estimation of the error. This feature was
already observed in ref. [85].
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B parameters

fB [97] λB(µh) [98] µh

200(25) MeV 0.51(12) GeV 2.2 GeV

K∗ parameters

f
‖
K∗ f⊥K∗(2GeV) a

⊥,‖
1 (2GeV) a

⊥,‖
2 (2GeV)

220(5) MeV 163(8) MeV 0.03(3) 0.08(6)

quark masses

mb(mb) [99] mc(mc) [99] mt(mt) [31]

4.20(4) GeV 1.30(2) GeV 162.3(1.1) GeV

Table 4.3: Numerical values of hadronic input parameters. a⊥,‖i are parameters of the twist-2
K∗ distribution amplitudes and are taken from ref. [100], from where we also take all higher-
twist parameters not included in the table.

• The effect of parametric uncertainties are estimated by varying the hadronic pa-

rameters as indicated in tab. 4.3.

• The ratio mc/mb is varied between 0.25 and 0.33.

• The CKM angle γ, which is particularly important for the doubly Cabibbo-suppressed

contribution to the CP asymmetries, is considered in the interval between 60◦ and

80◦.

For completeness, in the last row of fig. 4.2 we also show the CP averaged dilepton

mass distribution d(Γ + Γ̄)/dq2 and the observables A
(3)
T and A

(4)
T defined in ref. [88], see

sec. 4.6.3. Our results for all these observables compare well to those in the literature.

However, we stress that the peak in A
(4)
T indicates a severe shortcoming of its definition.

It originates in the zero crossing of the denominator of A
(4)
T (c.f. eq. (4.69)) and results

in a strong amplification of the theoretical uncertainty both in the position of the peak

and its height.

Our observables Si and Ai, in contrast, are not affected by accidental and delicate

cancellations in the denominator, as the normalization of dΓ/dq2 has by definition no

zeros in the range of q2 considered. In particular, no complications arise if the observables

S4 and S5 are considered instead of A
(3)
T and A

(4)
T .

As explained in sec. 4.6.1, the CP asymmetries are close to zero in the SM, which

is evident from fig. 4.3, where we show all the A
(a)
i (again except for As,c1 ) and the CP

asymmetry in the decay distribution, ACP. Our results are in good agreement with
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Figure 4.2: CP-averaged angular coefficients S(a)
i , CP-averaged dilepton mass distribution

d(Γ + Γ̄)/dq2 and transverse asymmetries A(3,4)
T in the SM as a function of q2. The dashed

lines are the leading-order (LO) contributions, obtained in näıve factoriation. The thick solid
lines are the full next-to-leading order (NLO) predictions from QCD factorization (QCDF), as
described in sec. 4.5. The blue band defines the total error for the NLO result as described in
the text.
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Figure 4.3: CP asymmetries A(a)
i and ACP in the SM as a function of q2. The meaning of the

curves and bands is as in fig. 4.2.
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ref. [89], but do not coincide exactly. This is mainly due to the use of the full form

factors in this analysis instead of the soft form factors and partly due to minor deviation

in numerical input parameters. In view of the relative smallness of the differences and

the absolute smallness of the CP asymmetries in the SM, these discrepancies become

irrelevant once large NP contributions dominate these observables.

In tab. 4.5, we list our predictions for the q2-integrated CP-averaged angular coeffi-

cients and CP asymmetries as defined in eqs. (4.70) and (4.71). 〈Sc2〉, 〈Ss6〉 and 〈ACP〉 can

be directly compared to existing experimental results from BaBar and Belle [101,102].

4.8 Model-independent Analysis

The Wilson coefficients in the effective theory (4.1) parametrize most generally NP effects

under the assumption of a SM like low energy particle content. Before entering a model

specific discussion of the observables, it is instructive to investigate which statements

can be made already on the ground of the Wilson coefficients.

In the context of this discussion the Wilson coefficients can be grouped into three

classes:

• Dipole coefficients: C7, C ′7, C8 and C ′8. The role of the gluon dipole operators is

subleading in the decay considered.

• Semileptonic coefficients: C9, C ′9, C10 and C ′10.

• Scalar coefficients: CS − C ′S and CP − C ′P .

In tab. 4.6 we compile the observables beeing most affected by a significant change of

a given coefficient. In tab. 4.7 we show, on the other hand, which Wilson coefficients

should be altered to produce a large effect in specific observables.

We observe:

• C7, C ′7, C9, C ′9, C10 and C ′10 can induce large effects in many observables, or at

least in those that do not require the presence of strong phases. To be precise, the

Ai are mainly induced by imaginary parts of the Wilson coefficients, while the Si

are induced by their real parts.

Obs. S4 S5 Ss6

q2
0 [GeV2] 1.94+0.12

−0.10 2.24+0.06
−0.08 3.90+0.11

−0.12

Table 4.4: Predictions for the zero positions q2
0(S(a)

i ) of S4, S5 and Ss6 in the SM.
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Obs. 10−2 × . . . Obs. 10−2 × . . .
〈Ss1〉 16.0+0.6

−0.6 〈S5〉 −14.2+0.8
−1.2

〈Sc1〉 79.3+0.8
−0.8 〈Ss6〉 3.5+0.8

−1.1

〈Ss2〉 5.3+0.2
−0.2 〈S7〉 4.8+1.7

−1.7

〈Sc2〉 −76.6+0.7
−0.7 〈S8〉 −1.5+0.6

−0.6

〈S3〉 −0.3+0.4
−0.3 〈S9〉 0.1+0.1

−0.1

〈S4〉 10.1+1.0
−1.2

Obs. 10−3 × . . . Obs. 10−3 × . . .
〈As1〉 −0.2+0.2

−0.1 〈A5〉 −5.7+0.6
−0.5

〈Ac1〉 6.3+0.7
−0.8 〈As6〉 −4.5+0.5

−0.4

〈As2〉 −0.1+0.1
−0.0 〈A7〉 3.4+0.4

−0.5

〈Ac2〉 −6.1+0.7
−0.6 〈A8〉 −2.6+0.4

−0.3

〈A3〉 −0.1+0.1
−0.1 〈A9〉 0.1+0.1

−0.1

〈A4〉 1.5+0.2
−0.2 〈ACP〉 5.9+0.6

−0.6

Table 4.5: Predictions for the integrated CP-averaged angular coefficients 〈S(a)
i 〉 (in units of

10−2) and the integrated CP asymmetries 〈A(a)
i 〉 (in units of 10−3) in the SM. Note the different

normalization of the 〈A(a)
i 〉 with respect to ref. [89], see footnote 5.

!0.4 !0.2 0.0 0.2 0.4 0.6
1.0

1.5

2.0

2.5

3.0

3.5

!C10!C’10"NP#C10SM!MW "

q 02
!S 4"!G

eV
2 "

BRmin

BRmax

SM

!0.4 !0.2 0.0 0.2 0.4 0.6

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

C9
NP!C9SM"MW #

q 02
"S 6s #"Ge

V
2 #

BRmin

BRmax

SM

Figure 4.4: Left: correlation between q2
0(S4), the position of the zero of S4, and the NP

contribution to C10 − C ′10. Right: correlation between q2
0(Ss6) and the NP contribution to

C9. We use the branching ratio for B → Xsγ to constrain the NP contributions to C7. The
green (red) band corresponds to a value of BR(B → Xsγ) at the upper (lower) end of the
experimental 2σ range, the blue band to SM values for C7.

• Only the primed coefficients C ′7, C ′9 and C ′10 can significantly affect the observables

S3 and A9. As can be seen from eq. (4.69), S3 corresponds to the transverse asym-

metry A
(2)
T and the impact of NP physics contributions to C ′7 on this observable

has been studied for example in refs. [88, 90,93].

• The scalar operators affect mainly Sc6 and the branching ratio for Bs → µ+µ−.

This implies interesting correlations between these two observables as discussed

below.

As mentioned before (tab. 4.7) the zero-crossing of S4, q2
0(S4), is largely sensitive

to C7, C ′7, C10 and C ′10. These Wilson coefficients of course enter other observables,
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4. B → K∗µ+µ−

Wilson coefficients largest effect in

C7, C ′7 Ss1, Sc1, Ss2, Sc2, S3, S4, S5, Ss6,

A7, A8, A9,

BR(B → Xsγ), BR(B → Xsµ
+µ−)

C9, C ′9, C10, C ′10 Ss1, Sc1, Ss2, Sc2, S3, S4, S5, Ss6,

A7, A8, A9,

BR(B → Xsµ
+µ−)

CS − C ′S Sc6,

BR(Bs → µ+µ−)

CP − C ′P Sc1 + Sc2,

BR(Bs → µ+µ−)

Table 4.6: The Wilson coefficients relevant in B → K∗µ+µ− and the observables they have
the largest impact on.

in particular the experimentally constrained decays B → Xsγ and B → Xsµ
+µ−. We

consider in the following the implication of these constraints, first under the assumption

of a real C7 and then for complex C7. We neglect in both cases the effects in C ′7.

For real C7, the current experimental value of the branching ratio of B → Xsγ

provides a constraint on C7, while it leaves C10 and C ′10 unconstrained. In fig. 4.4, we

show the dependence of the zero of S4 on the potential NP modifications to C10 − C ′10,

which is the only combination of Wilson coefficients entering the observable. Its strong

dependence on C10−C ′10 translates a future measurement of the zero crossing directly in

very interesting information about these Wilson coefficients. A similar reasoning holds

for Ss6, where the role of C10 and C ′10 is played by C9. We find again a strong dependence

on C9, and for real values of C7 this would be a clean way to determine information

about a possible NP contribution to C9 as seen in fig. 4.4.

For complex C7, the bound from B → Xsγ is weakened, allowing large effects in

the zero-crossings. In fact, large values of Im(C7) require large positive contributions to

Re(C7) that interfere destructively with CSM
7 to fulfill the constraint of B → Xsγ. In

such kind of setup B → Xsµ
+µ− is largely enhanced, thus effectively setting a new upper

bound on Re(C7). In the left-hand plot in fig. 4.5, we show these combined constraints in

the complex C7 plane. In the right-hand plot in fig. 4.5, we show the dependence of q2
0(Ss6)

on Re(C7) in the thus constrained allowed range. Exactly the large positive contributions

to Re(C7), which are allowed in the presence of phases in CNP
7 , then unambiguously shift

75



Model-independent Analysis

Observable mostly affected by

Ss1, Sc1, Ss2, Sc2 C7, C ′7, C9, C ′9, C10, C ′10

S3 C ′7, C ′9, C ′10

S4 C7, C ′7, C10, C ′10

S5 C7, C ′7, C9, C ′10

Ss6 C7, C9

A7 C7, C ′7, C10, C ′10

A8 C7, C ′7, C9, C ′9, C ′10

A9 C ′7, C ′9, C ′10

Sc6 CS − C ′S
Table 4.7: The most interesting angular observables in B → K∗µ+µ− and the Wilson coeffi-
cients they are most sensitive to.

the zeros of S4, S5 and Ss6 towards lower values. We observe that the allowed range for

q2
0(Ss6) is greatly enhanced in the case of complex C7.

In contrast to S4 and Ss6, S5 depends on Wilson Coefficients – C7, C ′7, C9 and C ′10

– which do not enter B → Xsγ and B → Xsµ
+µ− directly. Thus a measurement of

q2
0(S5) does not provide immediate access to a specific form factor combination, but

could provide a consistency check with C10 − C ′10 and C9 determined from S4 and S6,

provided C7, C ′7 are real. In addition, this might allow to disentangle the effects of CNP
10

and C ′NP
10 in fig. 4.4.

Previous studies of scalar operators in the context of B → K∗(→ Kπ)µ+µ− neglected

lepton mass effect and came to the conclusion that these operators have an irrelevant

impact. Keeping the lepton mass finite, however, induces an extra observable sensitive

to scalar currents. This observable can serve as a precision null-test of the SM and allows

in principle to distinguish between different NP models.

As seen in the case of S4 and S6 it is very useful to combine information on the Wilson

coefficients from other decays. The most stringent constraint on C
(′)
S,P comes from the

measurement of Bs → µ+µ−, which is strongly helicity suppressed in the SM, with a

predicted branching ratio of [103]

BR(Bs → µ+µ−) = (3.2± 0.3)× 10−9. (4.81)

The most recent published experimental upper bound still lies, at the 95% confidence
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Figure 4.5: Left: Experimental constraints on the NP contribution to C7. The blue circles
show the constraint from the central and ±2σ values of BR(B → Xsγ), assuming C ′NP

7 = 0.
The black circle corresponds to the 2σ bound from BR(B → Xs`

+`−), assuming C(′)NP
10 = 0.

The solid thick and the dotted lines have been obtained assuming SM and SM±25% values
for C9, respectively. Right: Correlation of the zero in Ss6 with the NP contribution to Re(C7).
The blue, red and green bands indicate SM, SM+25% and SM−25% values for C9 with the
associated theoretical uncertainty. The vertical dashed lines correspond to the upper and lower
bounds on Re(C7) in the absence of an imaginary part of C7. (The corresponding points in the
left-hand plot are highlighted by red dots.) For an arbitrary imaginary part, the upper bound
on Re(C7) is removed, and q2

0(Ss6) can be at or below 1 GeV2.

level, one order of magnitude above the SM [59]:

BR(Bs → µ+µ−) < 5.8× 10−8 . (4.82)

However, in many models, e.g. the MSSM at large tan β, this branching ratio can be

greatly enhanced.

In a generic NP model, the branching ratio is given by

BR(Bs → µ+µ−) ∝
[
|S|2

(
1− 4m2

µ

m2
Bs

)
+ |P |2

]
, (4.83)

where

S =
m2
Bs

2
(CS − C ′S), P =

m2
Bs

2
(CP − C ′P ) +mµ(C10 − C ′10). (4.84)

Considering the experimental bound in eq. (4.82), these formulae translate in the ap-
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proximate bounds

|CS − C ′S| . 0.12 GeV−1, −0.09 GeV−1 . CP − C ′P . 0.15 GeV−1, (4.85)

barring large NP contributions to the Wilson coefficients C
(′)
10 .

As seen from the formulae for the angular coefficients, eqs. (4.35)–(4.46), the only

terms in which C
(′)
S and C

(′)
P are not suppressed by the lepton mass enter in the angular

coefficient Ic1. However, due to the small size of the Wilson coefficients themselves, see

eq. (4.85), these terms turn out to be numerically irrelevant in general once the bound

from Bs → µ+µ− is taken into account.

The pseudoscalar operators do not contribute to any other angular coefficient, impling

that they are indeed irrelevant in the phenomenological study of B → K∗(→ Kπ)µ+µ−.

For the scalar operators, however, the situation is different, because of the new angular

coefficient Ic6, eq. (4.42), which is directly proportional to the real part of (CS −C ′S) and

thus vanishes in the SM. So, although numerically small, this angular coefficient is an

appealing observable because any measurement of a non-zero value would constitute an

unambiguous signal of scalar currents.

This is in contrast to the process Bs → µ+µ−, where a large enhancement of the

branching ratio compared to the SM could be caused by both scalar and pseudoscalar

currents. In addition, the measurement of a non-zero Sc6 (the CP-averaged counterpart

of Ic6) would allow to determine the sign of Re(CS − C ′S). In fact, by a combined study

of Bs → µ+µ− and the observable Sc6, one would be able to constrain the relative sizes of

the scalar and pseudoscalar Wilson coefficients, which can serve to distinguish different

models of NP.

To summarize, while pseudoscalar operators are numerically irrelevant in the decay

B → K∗(→ Kπ)µ+µ−, a study of the angular distribution allows to probe the scalar

sector of a theory beyond the SM, in a way that is theoretically clean and complementary

to Bs → µ+µ−.

4.9 Specific New Physics Scenarios

The discussion presented in the previous section concentrated on the SM prediction of

several observables, experimental deviations would signal the presence of physics beyond

the SM. In this section we take a somewhat different point of view and analyze the

impact of specific NP scenarios. For this analysis we choose benchmark parameter points

to discuss, maximal and minimal, and discuss on the basis of these point correlations
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with other flavor observables.

4.9.1 Minimal Flavor Violation

While the absence of CP-violating phases beyond the SM is one of the underlying assump-

tions in the MFV framework [54,55], the NP contributions to the Wilson coefficients of

the primed operators can be neglected because they are suppressed by ms/mb. Therefore

no visible departures from the SM model predictions are expected in CP asymmetries

and S3. In fact, we only find effects in Ss,c1,2, S4, S5 and Ss6.

Model-independent studies within the MFV framework show that large NP contribu-

tions to the Wilson coefficients C7, C8, C9 and C10 are still allowed [104] by all available

constraints. In particular, scenarios in which the sign of these Wilson coefficients is

flipped with respect to the SM cannot yet be excluded.

4.9.2 Minimal Flavor Violating MSSM

In the Minimal Flavor Violating MSSM (MFV MSSM), NP contributions to C9 and C10

are known to be typically very small [105,106]. This feature, which is also generally true

for many NP model, puts due to the data on BR(B → Xsγ) and BR(B → Xsµ
+µ−) a

strong constraint on NP effects in C7 and in particular on a sign flip in C7 [107]. The

consequence of this situation is that the possible effects in S4, S5 and Ss6 are not expected

to be very large. In fig. 4.6, we show the largest possible effects in these observables,

which arise in the following scenarios:

• Scenario MFVI (green curves) corresponds to the maximum allowed negative (i.e.

constructive) NP contribution to C7 (i.e. CNP
7 ) and shifts the zeros of S4, S5 and

Ss6 to larger values of q2.

• Scenario MFVII (red curves), corresponds to the largest positive allowed value of

CNP
7 and hence shifts the zeros to smaller values.

The separation in q2 between these two curves corresponds to the range shown in fig. 4.4

for (CNP
10 − C ′NP

10 ) = 0 and CNP
9 = 0, respectively, where the superscript NP denotes

the NP contribution to the Wilson coefficient. The most relevant input parameters

corresponding to the two scenarios are collected in tab. 4.8.

As pointed out in [108, 109], the shift in the zero crossing of the forward-backward

asymmetry in B → Xsµ
+µ− is highly correlated with a change of the branching ratio of

B → Xsγ in the MFV MSSM. We show in fig. 4.7 that a similar correlation exists also
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Scenario tan β mA mg̃ mQ̃ mŨ At̃ µ

MFVI 28 380 530 800 540 −850 860

MFVII 29 530 1000 880 660 880 750

Table 4.8: Most relevant parameters of the two MFV MSSM scenarios discussed in the text.
tanβ is the ratio of the two Higgs VEVs, mA the mass of the pseudoscalar Higgs, mg̃ is the
gluino mass, mQ̃ is a universal soft mass for the left handed squark doublets, mŨ a universal
soft mass for the right handed up squarks, At̃ is the stop trilinear coupling and µ the Higgsino
mass parameter. Our conventions for the trilinear coupling are such that the left-right mixing
entry in the stop mass matrix is (m2)LR = −mt(At̃ + µ∗ cotβ). All massive parameters are
given in GeV.

for the zero crossings of S4, S5 and Ss6 and BR(B → Xsγ). Any experimental deviation

from this correlation would be an indication for either the presence of NP contributions

to Wilson coefficients other than C7 or of new CP-violating phases that lead to complex

values of C7.

4.9.3 Flavor Blind MSSM

Let us now consider the FBMSSM, which is discussed in refs. [110–113]. In this rather

restricted version of the MSSM, the CKM matrix is assumed to be the only source of

flavor violation, but additional CP violating phases are introduced in the soft sector.

The major source of deviations with respect to the SM in this setup are complex NP

contributions to the Wilson coefficient C7. We discuss two scenarios in which the effects

are maximal and a third one, which is relevant in the context of the observable SφKS ,

the time dependent CP asymmetry in B → φKS:

• Scenario FBMSSMI is characterized by large negative Im(C7).

• Scenario FBMSSMII corresponds to a large positive Im(C7).

• Scenario FBMSSMIII gives SφKS ' 0.4 close to the experimental central value.

The corresponding input parameters are collected in tab. 4.9.

In the analysis of the CP-averaged angular coefficients in the context of the FBMSSM,

we find only pronounced non-SM effects in Ss,c1,2, S4, S5, Ss6 and also in Sc6. We note that

while |Ss1,2| is enhanced, |Sc1,2| is suppressed with respect to the SM results. The impact in

S4, S5 and Ss6 is more distinct, since their zero crossings are significantly shifted towards

values of q2 lower than the SM prediction or they do not even have zero crossings in the

allowed kinematic range. We show these effects in fig. 4.8 and note, that these are much
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represent scenario MFVI and the red squares scenario MFVII.

larger than those possible in the MFV MSSM (see fig. 4.6). The reason for this was

already discussed in Sec. 4.8 in a more general context: large values of Im(C7) lead to

large shifts in the zero crossings. On the other hand, the effects in Sc6 are smaller than the

maximal effects found in the model-independent discussion of scalar currents in sec. 4.8.

This is due to the fact that the large imaginary part in C7 implies a large phase for the

relevant Wilson coefficient CS, even though in the FBMSSM the BR(Bs → µ+µ−) can

be close to its experimental upper bound.

It turns out that the most significant departures of CP asymmetries from the SM

predictions can be obtained in As1,2, A5, As6 and especially A7 and A8. The latter are

shown in the left and center plot of fig. 4.9. As in the case of the CP-averaged angular

coefficients the effects have the origin mainly in the large imaginary part of C7. We note

also that in this setup, there is a correlation of positive values for A7 and negative ones

for A8 and vice versa. This observation is even more transparent in terms of integrated

asymmetries 〈A7〉 and 〈A8〉. The right plot of fig. 4.9 shows an almost perfect correlation
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Scenario tan β mA mg̃ mQ̃ mŨ At̃ µ Arg(µAt̃)

FBMSSMI 40 400 700 380 700 900 150 −45◦

FBMSSMII 40 400 700 380 700 900 150 50◦

FBMSSMIII 40 400 700 650 700 900 150 60◦

Table 4.9: Most relevant parameters of the three FBMSSM scenarios discussed in the text.
All massive parameters are given in GeV.

between these observables. Any departure from this correlation would indicate additional

imaginary parts in either C ′7 or C
(′)
9 and C

(′)
10 .

In the upper plots of fig. 4.10, we show the correlation between the zeros of S4, S5

and Ss6 with the b → sγ branching ratio. While the direct proportionality between the

zero crossings and BR(B → Xsγ) is lost in the FBMSSM, one still finds an upper bound

on the zero crossings for a given value of BR(B → Xsγ). Both effects are due to the

imaginary part of C7, that leads to strictly positive enhancement of BR(B → Xsγ).

Having discussed correlation effects among the CP asymmetries and CP averaged

coefficients separately, we give here an example of the interplay of these two classes of

observables. We show in the lower plots of fig. 4.10 the zero crossings q2
0(S4), q2

0(S5) and

q2
0(Ss6) against the integrated asymmetry 〈A7〉. One observes that large effects in 〈A7〉

are correlated with large shifts in the zeros towards lower values.

In order to identify signs in the CP asymmetries which are favored in this model one

must include additional observables in the analysis. To this end we also investigate the

direct CP asymmetry in the b→ sγ decay ACP(b→ sγ), the electric dipole moments of

the electron and the neutron de and dn and the mixing induced CP asymmetry SφKS .

We recall that in [113] strong correlations between these observables have been found.

In particular, the desire to explain the anomaly observed in SφKS through the presence

of flavor conserving but CP-violating phases implied a positive ACP(b → sγ), up to an

order of magnitude larger than its SM tiny value and de, dn at least as large as 10−28 e cm.

The left plot of fig. 4.11 shows the correlation between 〈A7〉 and SφKS . We find that

a value of SφKS ' 0.44, as indicated by the present data [114], implies a negative value

for 〈A7〉 in the range [−0.2,−0.05] and then also a positive value for 〈A8〉 in the range

[0.03, 0.11]. In addition to the two scenarios discussed above, we have chosen also a third

scenario, FBMSSMIII, indicated as orange triangle in the plots of figs. 4.9, 4.10 and 4.11,

that gives SφKS close to the experimental value. This scenario is shown in figs. 4.9 and

4.8 as the orange bands and we find that while one still can get almost maximal effects in

〈A7〉 and 〈A8〉 the effects in S4, S5 and Ss6 are much less pronounced. In the center plot

82



4. B → K∗µ+µ−

1 2 3 4 5 6
!0.10

!0.05

0.00

0.05

0.10

0.15

0.20

0.25

q2 !GeV2"

S4

1 2 3 4 5 6
!0.4

!0.3

!0.2

!0.1

0.0

0.1

0.2

q2 !GeV2"

S5

1 2 3 4 5 6

!0.3

!0.2

!0.1

0.0

0.1

0.2

q2 !GeV2"

S6
s

SM

FBMSSMIII

FBMSSMI

FBMSSMII

FBMSSM

FBMSSM

FBMSSM

SM

II

I

III

FBMSSM

FBMSSM

FBMSSM

SM

III

II

I

Figure 4.8: The observables S4, S5 and Ss6 in the SM (blue band) and the three FBMSSM
scenarios FBMSSMI,II,III.
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Figure 4.9: Left and center plot: CP asymmetries A7 and A8 in the SM (blue band) and three
FBMSSM scenarios as described in the text. Right plot: correlation between the integrated
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square: FBMSSMII , orange triangle: FBMSSMIII.

of fig. 4.11, we report the correlation between 〈A7〉 and ACP(b→ sγ). One observes that

negative values for 〈A7〉 imply positive values for ACP(b → sγ) that can reach values

up to (5 − 6)%. Finally, the right plot of fig. 4.11 shows the correlation between 〈A7〉
and the EDM of the electron, de in the FBMSSM. We find that large values for 〈A7〉
necessarily require large values for the electron EDM close to the current upper bound

of 1.6× 10−27 e cm [115].

4.9.4 Littlest Higgs with T-Parity

A scan over the free model parameters of the LHT shows that the new physics effects

in all observables considered here are mostly small. The largest effects relative to the

SM are found in A7 and A8 as in the SM their absolute values are at most 6 × 10−3

and 5 × 10−3, resepectively. We consider again sets of parameters LHTI,II (with input

parameters as given in tab. 4.10) where effects become maximal:
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Figure 4.10: Correlation between the zeros of S4, S5 and Ss6 with the b→ sγ branching ratio
(upper plots) and with the integrated asymmetry 〈A7〉 (lower plots) in the FBMSSM. The
blue circles correspond to the SM predictions. The orange triangles correspond to a FBMSSM
scenario that gives SφKS close to the central experimental value ' 0.44.

• Scenario LHTI corresponds to a LHT parameter point that gives the largest neg-

ative NP contribution to Im(C9) and Im(C10).

• Scenario LHTII curves (red) give the largest positive contribution.

In the left and center plot of fig. 4.12, we show the corresponding asymmetries A7 and

A8 as functions of q2 for the two sets of parameters, LHTI/II. Enhancement of both

asymmetries by a factor of three is possible for low values of q2 with visible but smaller

effects for larger values of q2.

It is interesting to compare the results in the LHT just discussed with the effects

in the FBMSSM. While the LHT effects in A7 and A8 the most pronounced, they are

still one order of magnitude smaller than the corresponding effects are in the FBMSSM.

This is due to the role of C7 in the two models. While it is possible to generate large

NP contributions to the imaginary part of C7 in the FBMSSM, this is not possible in

LHT model [116]. The effects in the LHT therefore dominantly stem from Im(C9) and

Im(C10). This in turn leads to a completely different pattern in the correlation between

the integrated asymmetries 〈A7〉 and 〈A8〉 than that found in the FBMSSM (see the
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Scenario f xL m1
H m2

H m3
H θd23 θd13 θd12 δd23 δd13 δd12

LHTI 1000 0.5 565 1000 770 1.60 2.50 1.35 5.70 4.20 5.80

LHTII 1000 0.5 1000 375 425 1.50 1.00 4.75 4.25 0.60 2.85

Table 4.10: Parameters of the LHT scenarios LHTI,II: θdij and δdij are the parameters of the
CKM-like unitary mixing matrix for the mirror d quarks, mi

H are the masses of the mirror
quarks, f is the high energy scale and xL the mixing parameter of the SM top and the T-even
top partner (see [116] for details)

right-hand plots in figs. 4.9 and 4.12).

4.9.5 General MSSM

A well-known feature of the MSSM without any further restricting assumptions is that

it comes with a plethora of parameters. This makes a general discussion very difficult.

We therefore restrict our discussion to four benchmark scenarios:

• GMSSMI,II: large contributions C ′7

Plots: fig. 4.13, 4.14, 4.15

Generation: Such a situation can easily be achieved in the General MSSM if

flavor violating terms are only introduced in the left-right sector of the down squark

mass. In particular, a (δd)
LR
32 mass insertion will mostly create contributions to C ′7

by means of down squark – gluino loops, while at the same time leaving the other

relevant Wilson coefficients SM like.

85



Specific New Physics Scenarios

1 2 3 4 5 6

!0.005

0.000

0.005

0.010

0.015

q2 !GeV2"

A7

LHTII

SM

LHTI

1 2 3 4 5 6

!0.010

!0.008

!0.006

!0.004

!0.002

0.000

0.002

q2 !GeV2"

A8

LHTII

SM

LHTI

!!

""

##

!0.006!0.004!0.002 0.000 0.002

!0.005

0.000

0.005

0.010

!A8"

!A7"
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Discussion: fig. 4.13 shows possible effects in S4, S5 and Ss6 that arise in this

framework due to the real part of C ′7. In tab. 4.11, we collect the corresponding

input parameters. Large imaginary parts of C ′7 lead to sizeable effects in the

asymmetries A7 and A8 as can be seen in fig. 4.14.

• GMSSMIV : large NP contributions to C7 and C ′7

Plot: Fig. 4.16

Generation: This scenario arises from flavor violating down squark masses.

Discussion: In contrast to the scenario with NP effects dominantly in C ′7 discussed

above, one observes e.g. sizeable effects in the zeros of S5 and Ss6 while the zero

in S4 is much less affected. Large non-standard effects in the observables S3 and

A9 as shown in fig. 4.15. In fact, as already mentioned in sec. 4.8 , effects in S3

and A9 are characteristic for scenarios with large NP contributions to the primed

Wilson coefficients. The large effects in S3 are driven by the real part of C ′7 and

directly correspond to the large effects in the transverse asymmetry A
(2)
T that have

been analysed in [88,90,93].

• GMSSMIII : large NP contributions to C7, C ′7 and C10

Plot: fig. 4.16

Generation: One possibility to generate large effects in the Wilson coefficient C10

in a supersymmetric framework is through flavor violating entries in the left-right

part of the up squark mass [56,105,106] through a (δu)
LR
32 mass insertion.
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Scenario tan β mA mg̃ mQ̃ mŨ mD̃ Aũ Ad̃ µ |(δd)LR32 | Arg(δd)
LR
32

GMSSMI 6 520 500 400 500 380 800 750 470 0.01 −135◦

GMSSMII 5 740 1000 460 1000 390 1500 440 200 0.03 60◦

Table 4.11: Most relevant parameters of the two general MSSM scenarios with large C ′7 as
discussed in the text. mD̃ a universal soft mass for the right handed down squarks, Aũ(d̃)

universal trilinear couplings for the up (down) squarks and (δd)LR32 the left-right mass insertion
that generates large effects in C ′7. Our conventions for the trilinear coupling are such that
the left-right mixing entry in the sbottom mass matrix is (m2)LR = −mb(Ad̃ + µ∗ tanβ). All
massive parameters are given in GeV.

Discussion: These curves show again a qualitatively different behavior in various

observables. For example large effects in S3 and A9 can be observed, that however

do not show a zero in contrast to the red curves discussed above.

GMSSM versus FBMSSM

Compared to the framework of the FBMSSM (see fig. 4.8), the shift in the zeros of S4,

S5 and Ss6 show a completely different pattern. While the zero of Ss6 remains SM like,

a positive shift in q2
0(S4) implies a negative shift in q2

0(S5) and vice versa in scenarios

GMSSMI,II. Large imaginary parts of C ′7 lead to sizable effects in the asymmetries

A7 and A8, but again the pattern of these effects is different to that in the FBMSSM

seen in fig. 4.9. As shown in fig. 4.14, a positive (negative) A7 implies also a positive

(negative)A8. In particular the correlation plot in the right panel of fig. 4.14 is completely

orthogonal to the one in the FBMSSM (see fig. 4.9) and thus a clear distinction between

these two frameworks is possible.
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with large complex contributions to C ′7 as described in the text.
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between the integrated asymmetries 〈A7〉 and 〈A8〉 in the framework of a general MSSM with
large complex C ′7. The blue circle corresponds to the central SM value, while the green diamond
represents scenario GMSSMI and the red square scenario GMSSMII.

88



4. B → K∗µ+µ−

1 2 3 4 5 6
!0.10

!0.05

0.00

0.05

0.10

0.15

q2 !GeV2"

S3

1 2 3 4 5 6

!0.10

!0.05

0.00

0.05

0.10

0.15

q2 !GeV2"

A9

GMSSMII

GMSSMI

SM

GMSSMII

SM

GMSSMI

Figure 4.15: The observables S3 and A9 in the SM (blue band) and the two GMSSM scenarios
GMSSMI,II with large complex contributions to C ′7 as described in the text.

1 2 3 4 5 6

!0.1

0.0

0.1

0.2

q2 !GeV2"

S4

1 2 3 4 5 6

!0.4

!0.2

0.0

0.2

q2 !GeV2"

S5

1 2 3 4 5 6
!0.3

!0.2

!0.1

0.0

0.1

0.2

q2 !GeV2"

S6
s

GMSSMIII

SM

GMSSMIV

SM

GMSSMIII

GMSSMIV
GMSSMIV

GMSSMIII

SM

1 2 3 4 5 6
!0.20

!0.15

!0.10

!0.05

0.00

0.05

0.10

q2 !GeV2"

A7

1 2 3 4 5 6
0.00

0.05

0.10

0.15

q2 !GeV2"

A8

GMSSMIV

SM

GMSSMIII

GMSSMIII

GMSSMIV

SM

1 2 3 4 5 6

!0.10

!0.05

0.00

0.05

q2 !GeV2"

S3

1 2 3 4 5 6

!0.05

0.00

0.05

q2 !GeV2"

A9SM

GMSSMIV

GMSSMIII

GMSSMIV

SM

GMSSMIII

Figure 4.16: Several observables in the SM (blue band) and two selected GMSSM scenarios
that show large non-standard behaviour. See text for details.
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Chapter 5

Series Expansion

5.1 Introduction

As mentioned in section 2, there are many parametrizations of form factors discussed

in the literature. The aim of this chapter is to use a particular parametrization, the

so-called Series Expansion (SE), to describe the transition form factors on the basis of

recent lattice and LCSR results, including a detailed analysis of systematic errors. The

term SE has its origin in the form of the parametrization as an expansion in z(q2), a

small, q2-dependent quantity, to be defined below. We apply this expansion to form

factors entering B → V γ, B → L `+`−, B → Lνν̄ decays, where L = P, V is a light

vector or pseudoscalar meson, respectively. In particular, we give numerical results of

fits of the parametrization to LCSR and lattice QCD data for B → K and B → ρ

transitions. As a third source of theoretical input of the fits we use dispersive bounds,

which arise from relations of the non-perturbative transition amplitudes B → L and the

perturbative pair-production amplitude of BL. For the discussion of dispersive bounds

for tensor form factors, we will include the result of a precise calculation of the tensor

current two-point correlator at next-to-leading order in the QCD coupling constant,

including the leading non-perturbative corrections from quark and gluon condensates.

5.2 Dispersive Bounds

The form factors describing the transition amplitudes B → L in the decay region

0 < q2 < t− = (mB − mL)2 are related by crossing symmetry to the pair-production

amplitude in the region q2 > t+ = (mB + mL)2. Indeed, they can be seen as the same

analytically connected functions. This fact can be exploited to obtain a bound on pa-
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rameters describing the form factors. A detailed derivation of this bound can be found in

refs. [26,27]. In order to incorporate form factors of vector and tensor currents we extend

the discussion and the notation introduced in section 2.3. In particular the generalized

correlator of two flavor-changing currents reads,

ΠX
µν(q

2) = i

∫
d4x ei q·x 〈0|T jXµ (x) j†Xν (0) |0〉 . (5.1)

Here the relevant currents jXµ are defined as1

jVµ = q̄γµb , jV−Aµ = q̄γµ(1− γ5)b ,

jTµ = q̄σµαq
αb , jT+AT

µ = q̄σµαq
α(1 + γ5)b . (5.2)

Furthermore, we introduce longitudinal and transverse helicity projectors,

P µν
L (q2) =

qµqν

q2
, P µν

T (q2) =
1

3

(
qµqν

q2
− gµν

)
, (5.3)

which allow us to rewrite the correlation functions in terms of Lorentz scalars,

ΠX
I (q2) ≡ P µν

I (q2) ΠX
µν(q

2) , (I = L, T ). (5.4)

5.2.1 Unitary representation of the correlator

Unitarity allows to express Im ΠX
I (q2) as the positive definite sum over all hadronic states

Γ with allowed quantum numbers:

Im ΠX
I (q2) =

1

2

∑
Γ

∫
dρΓ (2π)4 δ4(q − pΓ)P µν

I 〈0| jXµ |Γ〉 〈Γ| j†Xν |0〉 , (5.5)

where pΓ is the total momentum of the final state, and dρΓ contains the appropriate

phase-space weighting. For a particular choice of intermediate state, Γ = BL, we define

Im ΠX
I,BL(q2) = η

∫
dρBL P

µν
I 〈0| jXµ |BL〉 〈BL| j†Xν |0〉 , (5.6)

1In phenomenological applications, we are only interested in the currents jT+AT
µ . The connection to

correlators with genuine tensor currents jµν = q̄σµνq is given in appendix B.4.
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where η is an isospin-degeneracy factor for a given channel, and we relegate the contri-

bution from phase space to the function

dρBL =
1

4π2

∫
d3pB
2EB

d3pL
2EL

δ4(q − pB − pL) . (5.7)

Clearly, this results in the inequality

ImΠX
I,BL(t) ≤ ImΠX

I (t) . (5.8)

Crossing symmetry allows to relate the matrix elements 〈0| jX |BL〉 to 〈B| jX |L〉.
The latter can be rewritten in terms of form factors, as defined in chapter 2.

As mentioned earlier, a further remarkable feature of the helicity-based form factors

is the diagonal form of the production amplitudes:

P µν
T 〈P |jVµ |B〉〈B|j†Vν |P 〉 =

λ

3q2
|AV,0|2 ,

P µν
L 〈P |jVµ |B〉〈B|j†Vν |P 〉 =

λ

q2
|AV,t|2 ,

P µν
T 〈P |jTµ |B〉〈B|j†Tν |P 〉 =

λ

3
|AT,0|2 , (5.9)

for B decays into pseudoscalars, and

P µν
T 〈V |jV−Aµ |B〉〈B|j†,V−Aν |V 〉 =

λ

3q2

2∑
i=0

|BV,i|2 ,

P µν
L 〈V |jV−Aµ |B〉〈B|j†,V−Aν |V 〉 =

λ

q2
|BV,t|2 ,

P µν
T 〈V |jT+AT

µ b|B〉〈B|j†,T+AT
ν b|V 〉 =

λ

3

2∑
i=0

|BT,i|2 . (5.10)

for decays into vector mesons. Specifically, in this context diagonal means that the

right-hand sides of the latter equations are sums of absolute values squared and that no

products of two different form factors are present. Im ΠX
I,BL can be expressed in compact

form,

Im ΠX
I,BL = η

∫
dρBL

λ

3q2

∣∣AXI ∣∣2 =
η

48π

λ3/2

(q2)2

∣∣AXI ∣∣2 , (5.11)
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where the
∣∣AXI ∣∣2 can be read off from (5.9, 5.10),∣∣AVT ∣∣2 = |AV,0|2 ,

∣∣AVL ∣∣2 = 3 |AV,t|2 ,
∣∣ATT ∣∣2 = q2 |AT,0|2 , (5.12)

for decays into pseudoscalars, and

∣∣AV−AT

∣∣2 =
2∑
i=0

|BV,i|2 ,
∣∣AV−AL

∣∣2 = 3 |BV,t|2 ,
∣∣AT+AT

T

∣∣2 = q2

2∑
i=0

|BT,i|2 , (5.13)

for decays into vector mesons.

5.2.2 Operator Product Expansion for the Correlator

Alternatively, we can examine the correlator (5.1), using an operator product expansion

for the time-ordered product of currents in the limit q2 = 0 � t+. The standard

expansion takes the form [14,117,118]

i

∫
dx ei q·x P µν

I T
{
jXµ (x) j†Xν (0)

}
=
∞∑
k=1

CX
I,k(q)Ok , (5.14)

where CX
I,n(q) are Wilson coefficients for a given current X and projector I, and On

are local gauge-invariant operators, consisting of quark and gluon fields. Besides the

identity operator, whose Wilson coefficient contains the purely perturbative contribution

to the correlator, we will specifically consider the first few operators related to the

non-perturbative contribution from the quark condensate 〈mq q̄q〉, the gluon condensate

〈αs
π
G2〉 and the mixed condensate 〈gs q̄ (σ ·G) q〉. We will elaborate on our calculation

of the Wilson coefficients, CX
I,k(q

2), later. Specifically, we must calculate the Wilson

coefficients entering the functions χXI (n) in eq. (2.38).

5.2.3 Dispersive Bounds

Combining, the representation of Im ΠX
I,BL(q2) in terms of form factors (eq. (5.5, 5.9, 5.10)),

the representation of ΠX
I,BL(q2) through Im ΠX

I,BL(q2) (eq. (2.38)) and the inequality (5.8),

we find:

1

π

∞∫
0

dt
Im ΠX

I,BL(t)

(t− q2)n+1

∣∣∣∣
q2=0

=
1

π

∞∫
t+

dt
η λ3/2(t)

48π tn+3

∣∣AXI (t)
∣∣2 ≤ χXI (n) , (5.15)

where χXI ≡ χXI,OPE is calculated from (5.14).
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5.3 Series Expansion Parametrization

The primary motivation for the SE is to make direct use of the explicit dispersive bound

(5.15). The starting point is to extend the form factors defined in the physical range to

analytic functions throughout the complex t = q2 plane, except along the branch cut at

the threshold for production of real BP/BV pairs at q2 ≥ t+ = (mB +mL)2.

Then, using

z(t) ≡ z(t, t0) =

√
t+ − t−

√
t+ − t0√

t+ − t+
√
t+ − t0

, (5.16)

the pair-production region t ≥ t+ is mapped onto the unit circle |z(t)| = 1. Note, that

0 ≤ t0 < t− is a free parameter which can be optimized to reduce the maximum value of

|z(t)| in the physical form factors range,

t0|opt. = t+

(
1−

√
1− t−

t+

)
. (5.17)

The inequality (5.15) takes the form

1

2πi

∮
dz

z
|φXI AXI |2(z) ≤ 1 ⇔ 1

π

∫ ∞
t+

dt

t− t0

√
t+ − t0
t− t+

|φXI AXI |2(t) ≤ 1 , (5.18)

where the function |φXI (t)|2 can be obtained by comparing (5.18) and (5.15), and using

λ(t) = (t+ − t)(t− − t),

|φXI (t)|2 =
η

48π χXI (n)

(t− t+)2

(t+ − t0)1/2

(t− t−)3/2

tn+2

t− t0
t

. (5.19)

The isospin-degeneracy factor η takes the values 3/2 and 2 for B → ρ and B → K

respectively. We may now generically write the helicity-based form factors AXI (t) as

AXI (t) =
(
√
−z(t, 0))m(

√
z(t, t−))l

B(t)φXI (t)

∞∑
k=0

αk z
k (5.20)

with real coefficients αk, and a Blaschke factor B(t) =
∏

i z(t,m2
Ri

), representing poles

due to sub-threshold resonances of masses mRi , and satisfying |B(t)| = 1 in the pair-

production region. The additional factors (
√
−z(t, 0))m and (

√
z(t, t−))l have been

added to take into account the unconventional normalization of our form factor func-

tions through factors of
√
q2 and

√
λ (e.g. m = 1 for AT,0, and l = −1 for AV,t, cf.

95



Series Expansion Parametrization

above).2 The function φXI (t) has to be constructed in such a way that its absolute value

satisfies eq. (5.19), while (5.20) retains the analytical properties of the form factors. This

can easily be achieved by replacing potential poles and cuts in
√
|φXI (t)|2, by making

replacements of the form
1

t−X →
−z(t,X)

t−X , (5.21)

which is allowed as |z(t,X)| = 1 in the pair-production region. This results in (see

also [119])

φXI (t) =

√
η

48πχXI (n)

(t− t+)

(t+ − t0)1/4

(
z(t, 0)

−t

)(3+n)/2(
z(t, t0)

t0 − t

)−1/2(
z(t, t−)

t− − t

)−3/4

.

(5.22)

Inserting the parametrization (5.20) into (5.18), and using |z(t, t0)| = |z(t,m2
R)| =

|z(t, 0)| = 1, the integration dz/z = dϕ along the unit circle is trivial, yielding the

desired bound on the coefficients αk,

∞∑
k=0

α2
k < 1 . (5.23)

For decays into vector mesons, using an analogous parametrization as (5.20) for each

individual form factor contribution in (5.13), one obtains a bound on the sum of the

corresponding coefficients.

For those channels where lattice data are not available, it is essential to employ a

form factor parametrization that takes into account the characteristic features of the

form factor shape as determined from the analyticity and unitarity consideration above.

For every form factor considered, we will therefore define a parametrization based on the

general SE given in eq. (5.20),

AV,0(t) =
1

B(t)φVT (t)

K−1∑
k=0

α
(V,0)
k zk ,

AV,t(t) =
1

B(t)
√
z(t, t−)φVL (t)

K−1∑
k=0

α
(V,t)
k zk ,

2These factors could also be considered as part of the Blaschke factor. Note that under a change of
normalization convention for the form factors, both the so-constructed Blaschke factor as well as the
function φ(t) have to be modified, while the coefficients αk of the SE remain the same.
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AT,0(t) =

√
−z(t, 0)

B(t)φTT (t)

K−1∑
k=0

α
(T,0)
k zk , (5.24)

and

BV,0(t) =
1

B(t)
√
z(t, t−)φV−AT (t)

K−1∑
k=0

β
(V,0)
k zk ,

BV,1(t) =

√
−z(t, 0)

B(t)φV−AT (t)

K−1∑
k=0

β
(V,1)
k zk ,

BV,2(t) =

√
−z(t, 0)

B(t)
√
z(t, t−)φV−AT (t)

K−1∑
k=0

β
(V,2)
k zk ,

BV,t(t) =
1

B(t)φV−AL (t)

K−1∑
k=0

β
(V,t)
k zk ,

BT,0(t) =

√
−z(t, 0)

B(t)
√
z(t, t−)φT+AT

T (t)

K−1∑
k=0

β
(T,0)
k zk ,

BT,1(t) =
1

B(t)φT+AT
T (t)

K−1∑
k=0

β
(T,1)
k zk ,

BT,2(t) =
1

B(t)
√
z(t, t−)φT+AT

T (t)

K−1∑
k=0

β
(T,2)
k zk . (5.25)

Here we have used our form factors convention defined in eqs. (2.5, 2.8, 2.10, 2.12)

and explicitly quoted the pre-factors necessary to obtain the correct analytical behavior

of our form factors. In our fits below, we will find that in general the SE can be truncated

after the first two terms, i.e. the parameter K can be set to 2.

For simplicity, we will not explicitly implement the theoretical relations (2.14, 2.15),

that some of the form factors fulfill at q2 = 0, into the fit, because they are automatically

satisfied by the rather precise input from LCSR at this point. However, the helicity-based

form factor definition further implies a relation between the form factors BV,0 and BV,2,

and similarly between BT,0 and BT,2 (see (2.16) in the appendix), which we will implement

as an additional constraint on the corresponding coefficients in the SE.
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For the SE parametrization, the unitarity constraints take the form (see. 5.23)

K−1∑
k=0

(αk)
2 ≤ 1 for AV,0 and AT,0, 3

K−1∑
k=0

(αk)
2 ≤ 1 for AV,t, (5.26)

and

3
K−1∑
k=0

(β
(V,t)
k )2 ≤ 1 for BV,t,

K−1∑
k=0

{
(β

(V,0)
k )2 + (β

(V,1)
k )2 + (β

(V,2)
k )2

}
≤ 1 for BV,0, BV,1, and BV,2,

K−1∑
k=0

{
(β

(T,0)
k )2 + (β

(T,1)
k )2 + (β

(T,2)
k )2

}
≤ 1 for BT,0, BT,1, and BT,2. (5.27)

5.4 Simplified Series Expansion

Another form of the SE method can also be considered. Instead of the Blaschke factor

B(t), one can use a simple pole P (q2) to account for low-lying resonances. This idea was

proposed in ref. [24], yielding

f(t) =
1

P (t)

∑
k

α̃k z
k(t, t0) . (5.28)

It was found that the dispersive bounds can still be imposed on the coefficients α̃k of the

Simplified Series Expansion (SSE). We will discuss this and other issues concerning the

validity of the simplifications in the following section.

From the above parametrizations, the SSE is obtained by the replacements

φXI (t)→ 1 , B(t)→ P (t) ,
√
−z(t, 0)→

√
q2/mB ,

√
z(t, t−)→

√
λ/m2

B , (5.29)

with new coefficients α̃k and β̃k.

For the SSE parametrization, imposing the unitarity bound is more complicated, as

shown in ref. [24]. We repeat the derivation of this bound in order to define notation

used later. One first compares the SE and SSE parametrizations:

K−1∑
k=0

αk z
k = Λ(z)

K−1∑
k=0

α̃k z
k (5.30)
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5. Series Expansion

One can simply obtain Λ(z) by combining the prefactors from the SE expansion with

the prefactors from the SSE expansion, and expressing the result as a function of z(t, t0).

Since z is a small parameter, we can expand Λ(z) in powers of z:

Λ(z) =
∑
k

ζk z
k. (5.31)

We can therefore obtain a relation between the coefficients αk and α̃k,

αi =

min[K−1,i]∑
k=0

ζi−k α̃k , 0 ≤ i ≤ K − 1 , (5.32)

which results in bounds of the type

K−1∑
j,k=0

Cjk α̃j α̃k ≤ 1 , (5.33)

where

Cjk =

K−1−max[j,k]∑
i=0

ζi ζi+|j−k| (5.34)

is a positive definite matrix.

5.5 Fitting prescription

We perform a fit to the LCSR data, as well as, where possible, a combined fit to the

LCSR and lattice data, by minimizing a χ2 function defined by

χ2(~θ) =
(
Fi − F (ti, ~θ )

) [
V −1

]
ij

(
Fj − F (tj, ~θ )

)
, (5.35)

where ~θ contains the parameters of a given form factor parametrization, Fi are the form

factor values from LCSR/lattice at given points ti, and Vij are elements of the covariance

matrix as defined below.

As explained above, we are going to investigate parametrizations based on two vari-

ants of the SE, where the parameters will be subject to additional constraints derived

from dispersive bounds on the form factors.

• In the conventional SE, we use eq. (5.20), and truncate the series after the first
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two terms, such that

~θ = {α0, α1} ,
∑

α2
i

!
< 1 .

• The simplified series expansion (SSE) uses (5.28), with

~θ = {α̃0, α̃1} ,
1∑

i,j=0

Cij α̃iα̃j
!
< 1 ,

where the matrix Cij is defined in (5.34).

In constructing the covariance matrix, when we do a combined fit to LCSR and lattice

data, we assume the matrix to be block diagonal with independent blocks for LCSR and

lattice, equivalent to χ2 = χ2
LCSR + χ2

Lat, where

χ2
LCSR(~θ) =

(
Fi − F (ti, ~θ )

) [
V −1

LCSR

]
ij

(
Fj − F (tj, ~θ )

)
, (5.36)

and

χ2
Lat(

~θ) =
(
Fi − F (ti, ~θ )

) [
V −1

Lat

]
ij

(
Fj − F (tj, ~θ )

)
. (5.37)

We consider the statistical and systematic contributions to the lattice errors sepa-

rately. For results that are not (yet) available in the literature, we received the data by

private communication with the authors. In obtaining the covariance matrix, we make

the following conservative assumptions:

• Statistical errors of lattice data are 50% correlated [120,121].

• Systematic errors of lattice data are 100% correlated [120,121].

• Errors of LCSR data at different values ti are estimated to be 75% correlated.

This prescription leads to a covariance matrix V ij = cov[ti, tj], containing

V ij
LCSR =

1

4
κiκjδij +

3

4
κiκj and (5.38)

V ij
Lat =

1

2
σiσjδij +

1

2
σiσj + εiεj (5.39)

where σi are the statistical errors, εi are the systematic errors for the lattice data, and

κi are the errors for the LCSR predictions.
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Minimizing χ2(~θ) then yields the best fit parameters ~θ∗ as well as the covariance

matrix of the fit, Uij = cov[θi, θj],

(
U−1

)
ij

=
1

2

∂2χ2(~θ)

∂θi ∂θj

∣∣∣∣∣
~θ=~θ∗

, (5.40)

from which we calculate the error associated to the fitted form factor function:

∆F (t, ~θ∗) =
∂F (t, ~θ)

∂θi

∣∣∣∣∣
~θ=~θ∗

Uij
∂F (t, ~θ)

∂θj

∣∣∣∣∣
~θ=~θ∗

. (5.41)

5.6 Results

Having established the fitting procedure, we consider form factors for the decays B → ρ

and B → K. We concentrate on radiative and rare semi-leptonic decays, as previously

the dispersive bounds had not been calculated for the tensor current, so could not be

applied to these decays. In the following subsection, we present the results of fitting the

specific form factors to both, the SE and SSE parametrizations, using LCSR and lattice

data where appropriate.

B → K form factors: In figs. 5.1–5.4, we show the fit for the various B → K form

factors, which enter, for instance, the radiative B → K`+`− and B → Kνν̄ decays.

We compare the result of the SE and SSE parametrizations using LCSR data, and

investigate the changes when the lattice data is included. The numerical results for the

best-fit parameters of the SE and SSE fit are found in corresponding tables 5.1–5.2.

The covariance matrices for these fits can also be found in ref. [122]. Generally, both

parametrizations are seen to fit the data well, and importantly, we find agreement with

the lattice predictions for AV,0 and AV,t, even when they are not included in the fit. We

therefore consider our extrapolation of LCSR data for the tensor form factor AT,0 to the

high-q2 region, where lattice data does not exist, as sufficiently reliable. The quality of

the fits is astonishingly good, considering the χ2 values for only two free parameters in

the expansion. The differences between the SE and SSE are only marginal, which can be

traced back to the usage of the optimized value for the auxiliary parameter t0 in (5.17).

The dispersive bounds turn out to be far from being separated, and therefore they have

only little impact on the form factor fit. This observation is in line with other studies of

heavy-to-light form factors in the literature, see e.g. [21,25,123].

Another comment applies to the scalar form factors AV,t: As shown in table 2.1,
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the combined heavy-quark/chiral-symmetry limit considered in [20] predicts a scalar

Bs resonance below the BK-production threshold (such a state is also favored by a

lattice computation in [124]). On the other hand, the PDG only finds resonances at

masses near/above the production threshold. We have therefore chosen to compare two

variants of the fit, with/without a scalar resonance.3 As can be seen, the fit with a

scalar resonance from [20] describes the combined lattice/LCSR data significantly better

than the fit without a low-lying resonance (where in the latter case again the dispersive

bounds constrain the form factor to lie systematically below the lattice data). However,

within the present uncertainties of lattice and LCSR data, this could only be taken as a

very indirect argument in favor of a scalar resonance in the anticipated mass region.

Table 5.1: B → K: Fit of SE parametrization to LCSR or LCSR/lattice results, for AV,0 (X = 1),
AV,t (X = 3) and AT,0 (X = 1).

AX mR α0 α1 Fit to χ2
fit X

∑
i

α2
i

AV,0 5.41 −2.4× 10−2 6.2× 10−2 LCSR and lattice 5.07× 10−3 4.43× 10−3

AV,t - −6.8× 10−2 0.20 LCSR and lattice 0.200 0.129
AV,t 5.72 −4.8× 10−2 0.11 LCSR and lattice 1.54× 10−4 4.34× 10−2

AV,0 5.41 −2.8× 10−2 6.0× 10−2 LCSR 3.94× 10−3 4.40× 10−3

AV,t - −6.7× 10−2 0.18 LCSR 1.44× 10−3 0.111
AV,t 5.72 −2.5× 10−2 7.2× 10−2 LCSR 0.329 5.77× 10−3

AT,0 5.41 −4.5× 10−2 8.9× 10−2 LCSR 0.234 2.99× 10−2

B → ρ form factors: Our form factor fits for B → ρ transitions, relevant for the

radiative B → ργ and B → ρ`+`− decays, are summarized in figs. 5.5–5.11 and tables 5.3

and 5.4, where we again compare the fit to SE and SSE parametrizations. As in the case

of B → K form factors, we generally observe similarly good results for SE and SSE fits,

with the dispersive bounds again playing only a minor role in restricting the coefficients

of the SE/SSE. The covariance matrices for the fits can again be found in appendix ??.

lattice results are restricted to the (axial–)vector form factors, and we again study

how the fits change when the lattice data is included: In case of the form factor BV,0, the

uncertainties on the lattice data are rather large, and the fit is in any case dominated

by the LCSR points at low values of q2. Still, we find that the best-fit curve also

3Notice that BZ [37] use an effective resonance mass above production threshold to parameterize the
scalar form factors.
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Table 5.2: B → K: Fit of SSE parametrization to LCSR or LCSR/lattice results, for AV,0 (X = 1),
AV,t (X = 3) and AT,0 (X = 1).

AX mR α̃0 α̃1 Fit to χ2
fit X

∑
i,j

Ci,jα̃iα̃j

AV,0 5.41 0.48 −1.0 LCSR and lattice 5.15× 10−3 4.04× 10−3

AV,t - 0.54 −1.7 LCSR and lattice 0.904 0.142
AV,t 5.72 0.30 0.20 LCSR and lattice 7.17× 10−5 5.32× 10−2

AV,0 5.41 0.48 −1.1 LCSR 8.15× 10−3 3.06× 10−3

AV,t - 0.52 −1.4 LCSR 2.27× 10−3 9.55× 10−2

AV,t 5.72 0.50 −1.4 LCSR 0.940 6.51× 10−3

AT,0 5.41 0.28 0.35 LCSR 0.128 3.15× 10−2
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Figure 5.1: B → K: Fit of SE (left) and SSE (right) parametrizations to LCSR (top) and to LCSR
and lattice (bottom) for AV,0. The LCSR and lattice data are shown by black points with error bars in
the appropriate q2 range.
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Figure 5.2: B → K: Fit of SE (left) and SSE (right) parameterizations to LCSR (top) and to LCSR
and lattice (bottom) for AV,t. The LCSR and lattice data are shown by black points with error bars in
the appropriate q2 range.
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Figure 5.3: B → K: The same as fig. 5.2 but without using the scalar Bs resonance in the fit ansatz.
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Figure 5.4: B → K: Fit of SE (left) and SSE (right) parameterizations to LCSR for AT,0. The LCSR
data is shown by black points with error bars.
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well describes the central values of the lattice estimates. The situation is somewhat

different for BV,1, where the central values of the lattice points do not quite agree with the

extrapolation of the LCSR prediction. The fit is consistent within lattice uncertainties,

but a rather large value of χ2, dominated by the deviations from the lattice points, is

generated. On the other hand, for BV,1 the lattice data are competitive with the LCSR

input, and we can again observe that the extrapolation of the LCSR predictions describes

the lattice points very well, while inclusion of the lattice data in this case leads to a very

precise form factor description.

In the remaining cases, we again provide the extrapolations for the pseudoscalar and

tensor form factors from LCSR input, where lattice data are not available. Here, it is

to be mentioned that the uncertainties for the form factor BT,0 are quite large, because

we had to determine the LCSR input values from the difference of two form factors in

(2.12). Of course, it would be desirable to directly calculate the form factor BT,0 in the

LCSR approach which should lead to significantly smaller uncertainties for the input

data and the extrapolation to large values of q2. A similar comment applies to the form

factor BV,0.

Table 5.3: B → ρ: Fit of SE parametrization to LCSR or LCSR/lattice results for BV,0−2 (X = 1),
BV,t (X = 3) and BT,0−2 (X = 1).

BX mR β0 β1 Fit to χ2
fit X

∑
i

β2
i

BV,0 5.72 −8.0× 10−3 2.5× 10−2

BV,1 5.33 −3.5× 10−2 0.11 LCSR and lattice 32.1 1.98× 10−2

BV,2 5.72 −2.5× 10−2 7.8× 10−2

BV,0 5.72 −7.5× 10−3 1.4× 10−2

BV,1 5.33 −3.7× 10−2 8.9× 10−2 LCSR 9.56× 10−2 1.28× 10−2

BV,2 5.72 −2.3× 10−2 5.2× 10−2

BV,t 5.28 −3.2× 10−2 8.9× 10−2 LCSR 3.81× 10−3 2.66× 10−2

BT,0 5.72 −1.4× 10−2 −8.3× 10−3

BT,1 5.33 −1.0× 10−2 3.4× 10−2 LCSR 4.18× 10−2 1.86× 10−3

BT,2 5.72 −6.3× 10−3 1.7× 10−2
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5. Series Expansion

Table 5.4: B → ρ: Fit of SSE parametrization to LCSR or LCSR/lattice results for BV,0−2 (X = 1),
BV,t (X = 3) and BT,0−2 (X = 1).

BX mR β̃0 β̃1 Fit to χ2
fit X

∑
i,j

Ci,jβ̃iβ̃j

BV,0 5.72 0.26 0.14
BV,1 5.33 0.51 −1.7 LCSR and lattice 33.0 1.85× 10−2

BV,2 5.72 0.40 −0.15

BV,0 5.72 0.26 0.50
BV,1 5.33 0.54 −1.4 LCSR 4.34× 10−2 1.10× 10−2

BV,2 5.72 0.37 0.24

BV,t 5.28 0.43 −1.3 LCSR 8.49× 10−3 2.16× 10−2

BT,0 5.72 0.35 0.94
BT,1 5.33 0.52 −1.5 LCSR 3.57× 10−2 1.79× 10−3

BT,2 5.72 0.34 0.31
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Figure 5.5: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR (top) and to LCSR
and lattice (bottom) for BV,0. The LCSR and lattice data are shown by black points with error bars in
the appropriate q2 range.
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Figure 5.6: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR (top) and to LCSR
and lattice (bottom) for BV,1. The LCSR and lattice data are shown by black points with error bars in
the appropriate q2 range.
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Figure 5.7: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR (top) and to LCSR
and lattice (bottom) for BV,2. The LCSR and lattice data are shown by black points with error bars in
the appropriate q2 range.
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Figure 5.8: B → ρ: Fit of SE (left) and SSE (right) parameterisations to LCSR for BV,t. The LCSR
data is shown by black points with error bars.
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Figure 5.9: B → ρ: Fit of SE (left) and SSE (right) parametrizations to LCSR for BT,0. The LCSR
data is shown by black points with error bars.
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Figure 5.10: B → ρ: Fit of SE (left) and SSE (right) parametrizations to LCSR for BT,1. The LCSR
data is shown by black points with error bars.
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Figure 5.11: B → ρ: Fit of SE (left) and SSE (right) parametrizations to LCSR for BT,2. The LCSR
data is shown by black points with error bars.
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Chapter 6

Summary and Outlook

Based on helicity form factors, we defined in this thesis a new set of form factors. These

definition has many advantages over the traditional, some are definite spin-parity quan-

tum numbers, simple relations to the universal form factors, particular simple expres-

sions for the observables in the B → (P, V ) (`+`−, `+ν, νν̄) decays, new symmetric and

universal dispersive bounds.

Using these form factor definition combined with recent LCSR results we have per-

formed a new analysis of the decays B → K∗νν̄, B → Kνν̄ and B → Xsνν̄ in the SM,

model-independently and in a number of new physics scenarios. The the set of observ-

ables for the three decays includes in addition to the three branching ratios the fraction

of longitudinal polarized K∗ meson produced in the decay B → K∗νν̄. The results of

our analysis the observables can be summarized as follow:

• Our new SM prediction of BR(B → K∗νν̄) = (6.8+1.0
−1.1)×10−6 improved form factors

is significantly lower than the ones present in the literature. The improved estimate

of the inclusive BR(B → Xsνν̄) = (2.7 ± 0.2) × 10−5 in the SM is considerably

more accurate than the ones present in the literature.

• The two, in general complex, Wilson coefficients, Cν
L and Cν

R, of the most general

effective theory of new physics with the low-energy SM particle content are found to

enter the observables only in two real combinations, (ε, η). This means that every

model of NP corresponds to a point on the (ε, η) plane or in turn a measurement

of one (integrated) observable leads to an excluded/allowed area on this plane.

Measuring all four observables would lead to four overlapping areas, with the actual

(ε, η) point in the intersection area.

• The presence of a hypothetical, scalar singlet under the SM gauge group, which
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couples to the b→ s transitions, would be signaled transparently in the (ε, η) plane

through the absence of an intersection point. Furthermore, this scenario would lead

to characteristic edges in the q2 distributions.

• Modified Z penguins can lead to sizable deviations from the SM prediction for the

four observables and give rise to an interesting interplay of b→ s`+`− and b→ sνν̄

based transitions, especially with BR(B → Xs`
+`−).

• NP effects in the considered observables in the LHT models where by construction

right-handed currents are absent are found to be small. The same holds for a RS

model with custodial protection of left-handed Z-couplings.

• Sizable NP effects in the MSSM with a generic flavor violating soft sector con-

tributions are still allowed by of the full set of constraints. The dominant origin

of effects in Cν
L is identified to be the chargino contribution. The analysis of the

here presented correlation of BR(B → K∗νν̄) and BR(Bs → µ+µ−) provides a

promising way to probe a particular MSSM scenario.

In chapter 3, we have presented an extensive analysis of the angular observables in

the decay B → K∗(→ Kπ)µ+µ−. The set of CP-conserving and CP-violating quantities

A
(a)
i and S

(a)
i here defined constitute the first systematical definition of a complete set

of observables. Furthermore, the observables are very clean due to maximal cancellation

of the parametric and hadronic uncertainties. The main results of our analysis are:

• The SM prediction of some S
(a)
i turns out to be relatively large and all of the A

(a)
i

are close to zero in the SM.

• The here outlined approach is found to be a theoretically clean test of the scalar

sector of a theory beyond the SM and, furthermore, it is complementary to Bs →
µ+µ−.

• As the A
(a)
i probe CP violation they are, as expected, in MFV models as small as

in the SM. However, the S
(a)
i , in particular S4, S5 and Sc6 can show deviations from

the SM.

• In the FBMSSM several S
(a)
i and A

(a)
i differ significantly, even by orders of magni-

tude, from the SM results. Furthermore, correlations among the observables and

also with other flavor observables, e.g. the correlations between A7 (and A8) and

ACP (b→ sγ) and SφKS , show characteristic patterns.
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6. Summary and Outlook

• An entirely different pattern has been found in the LHT model, where only the CP

asymmetries A7 and A8 differ significantly from the SM predictions.

• The enormous number of parameters in the general MSSM makes the identifica-

tion of definite patterns very difficult. However, almost all observables considered

receive potentially large correction with respect to the SM results and the pattern

of deviations can differ from those found in the FBMSSM and LHT models.

In chapter 4, we studied transition form factors for radiative and rare semi-leptonic

B-meson decays into light pseudoscalar or vector mesons, combining theoretical and

phenomenological constraints from Lattice QCD, LCSR and dispersive bounds. The

results of our analysis are summarized by the following statements:

• We demonstrated that the helicity form factors, parametrized in terms of a series

expansion in the variable z(q2), allow to fit conveniently the radiative and semi-

leptonic decays of B mesons into light pseudoscalar or vector mesons. Already an

expansion in only two terms, interpolates excellently both, the current estimates

from LCSR and (where available) Lattice QCD results.

• The dispersive bounds expressed in terms of helicity form factors take a particular

simple form, which is universal for vector and tensor form factors. Furthermore,

we stress that for decays into vector mesons the dispersive bounds constrain the

sum of (squared) coefficients. This allows to fit all form factors for a given current

simultaneously, which improves the strength of the constraints compared to those

for the individual form factors in that sum.

• In order to determine the correct normalization of the series expansion we calcu-

late the current correlators using an operator product expansion, including next-

to-leading order perturbative corrections and the leading non-perturbative contri-

butions from quark, gluon and mixed condensates. In particular, we provide the

next-to-leading order results for the tensor-current correlation functions, which

are relevant for the form factors appearing in radiative and rare semi-leptonic B

decays.

• We have performed numerical fits to LCSR (Lattice) predictions at low (medium)

momentum transfer for all the form factors appearing in B → K and B → ρ transi-

tions. In those cases, where Lattice estimates of the form factors is lacking, the SE

is used to extrapolate the LCSR predictions to the high-q2 region. Comparing fits
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with/without using the available Lattice data for B → K and B → ρ transitions,

we judge these extrapolations to be rather reliable.

A further improvement of our approach would be the calculation of LCSRs directly in

the helicity basis.

Clearly, it will be very exciting to monitor the upcoming LHC, Belle upgrade and

eventually Super-B factory in this decade to see whether the angular observables in the

decay B → K∗(→ Kπ)µ+µ− and B → K∗(→ Kπ)νν̄− discussed in this thesis can give

a hint for any of the extensions of the SM.
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Appendix A

Kinematics and Polarization Vectors

In the following, we consider the rest frame of the decaying B-meson, with the 3-

momentum of the final-state meson pointing in the z-direction. The polarisation vectors

for a (virtual) vector state, with 4-momentum qµ = (q0, 0, 0,−|~q |), are defined as

εµ±(q) = ∓ 1√
2

(0, 1,∓i, 0) , εµ0(q) =
1√
q2

(|~q |, 0, 0,−q0) ,

εµt (q) =
1√
q2
qµ . (A.1)

For the decay of a B-meson at rest into a light meson with mass mL and momentum ~k,

we have in particular

q0 = mB − E =
m2
B −m2

L + q2

2mB

, |~q | = |~k | =
√
λ

2mB

, (A.2)

with λ defined in (2.6). We also define the linear combinations

εµ1(q) =
εµ−(q)− εµ+(q)√

2
= (0, 1, 0, 0) , εµ2(q) =

εµ−(q) + εµ+(q)√
2

= (0, 0, i, 0) . (A.3)

In the same way, the polarisation vectors for an on-shell K∗ meson with momentum

kµ = (E, 0, 0, |~k |) are given as

εµ±(k) = ∓ 1√
2

(0, 1,±i, 0) , εµ0(k) =
1

mK∗
(|~k |, 0, 0, E) . (A.4)
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Appendix B

Calculation of Wilson Coefficients

B.1 Perturbative Contribution

Figure 1: perturbative contribution

Figure 2: quark condensate

Figure 3: gluon condensate

Figure 4: Mixed quark gluon condensate

Figure B.1: One- and two-loop diagrams contributing to the correlation function. The crossed circle
indicates the insertion of the corresponding scalar, vector or tensor currents. The counter-term diagrams
related to the fermion self-energies are not shown.

In this section, we will briefly sketch the evaluation of the one- and two-loop dia-

grams (see Fig. B.1) contributing to the perturbative part of the correlation functions.

We will specify the necessary number n of subtractions for the scalar, vector and tensor

correlators, and determine the corresponding values of χXI (n) from the Taylor expansion

of the Wilson coefficients at q2 = 0. This leads to a major simplification in the calcu-

lation, which allows to eliminate external momenta in propagator denominators and to

use tensor reduction and recursion relations to express the two-loop integrals in terms of

two fundamental master integrals. Furthermore, we will follow the procedure explained

in [15] and absorb the IR-sensitive contributions to the Feynman integrals (in the limit
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Perturbative Contribution

m → 0) into the corresponding condensate terms, such that our results have a finite

limit when m→ 0.

We will find in useful to present the result in terms of the dimensionless variable

v ≡ M −m
M +m

, (B.1)

where M and m are the masses of the heavy and light quark in the loop. We further

define the functions

f1(v) ≡ 1− v2

v
atanh[v] ,

f2(v) ≡ 1

v
ln

[
1− v
1 + v

]
− 2

1− v ln

[
1 + v

2

]
− 2

1 + v
ln

[
1− v

2

]
,

f3(v) ≡ 1

v
Li2

[
4v

(1 + v)2

]
− 1

v
Li2

[
− 4v

(1− v)2

]
− 4 (1 + v2)

v2
atanh2[v] , (B.2)

which are manifestly symmetric under exchange of light and heavy quarks (v → −v),

and take finite values in the limits v → {−1, 0, 1}.
We will quote our results for scalar, vector and tensor currents. The expressions

for currents with opposite parity can be simply obtained by changing v → 1/v. Our

expressions for scalar and vector currents coincide with [15]; the results for the tensor

currents are new.

Scalar Correlator: For the correlator of two scalar currents, we obtain

χS(n = 2)
∣∣∣
LO

=
(3 + v2)(3v2 − 1)

64π2(M +m)2 v4

v→1→ 1

8π2M2
, (B.3)

χS(n = 2)
∣∣∣
NLO

=
αsCF

4π

1

64π2(M +m)2 v4

{
6
(
3f1 (1− v2)2 + (3 + v2)(3v2 − 1)

)(
f2 (1− v2)− 4 ln

[
m+M

µ

])
−f 2

1

(
11v4 − 50v2 + 23

)
+ f1

(
47v4 − 126v2 + 103

)
+4 f3 v

2 (5v2 − 1) + 2
(
29v4 + 65v2 − 40

)}

v→1→ 1

8π2M2

αsCF
4π

{
− 24 ln

[
M

µ

]
+

2π2

3
+

27

2

}
. (B.4)
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B. Calculation of Wilson Coefficients

Vector Correlator: For the different projections of the correlator of two vector cur-

rents, we obtain

χVL (n = 1)
∣∣∣
LO

=
(3 + v2)(3v2 − 1)

64π2 v2

v→1→ 1

8π2
, (B.5)

χVL (n = 1)
∣∣∣
NLO

=
αsCF

4π

1

64π2 v2

{
f 2

1

(
25v4 + 14v2 − 23

)
+ 2f1

(
19v4 − 6v2 + 23

)
+4f3 v

2 (5v2 − 1)− 23 + 14v2 + 13v4

}
,

v→1→ αsCF
4π

1

8π2

(
1

2
+

2π2

3

)
, (B.6)

and

χVT (n = 2)
∣∣∣
LO

=
−21v6 + 53v4 + 13v2 + 3

512π2 (M +m)2 v4

v→1→ 3

32π2M2
, (B.7)

χVT (n = 2)
∣∣∣
NLO

=
αsCF

4π

1

1536π2 (M +m)2 v4

{
−f 2

1

(
803v6 − 863v4 − 155v2 − 73

)
− 2f1

(
677v6 − 741v4 + 279v2 + 73

)
−4f3 v

2
(
19v4 − 86v2 − 5

)
+ 73 + 323v2 + 755v4 − 551v6

}
,

v→1→ αsCF
4π

3

32π2M2

(
25

6
+

2π2

3

)
. (B.8)

Tensor Correlator: The relevant projection of the tensor current gives rise to

χTT (n = 3)
∣∣
LO

=
−9f1 (v2 − 1)

2
(3v2 + 1) + 4 (−9v6 + 21v4 + v2 + 3)

256π2 (m+M)2 v4

v→1→ 1

4π2M2
(B.9)

χTT (n = 3)
∣∣
NLO

=
αsCF

4π

1

384π2(M +m)2v4

{
12
(
3(v2 − 1)2(3v2 + 1)f1 − 3− v2 − 21v4 + 9v6

)
×
(
f2 (1− v2)− 4 ln

[
m+M

µ

])
−f 2

1

(
766v6 − 598v4 − 142v2 − 218

)
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Condensate Contribution to the Correlation Functions

−f1

(
1091v6 − 1137v4 + 297v2 + 325

)
−8f3 v

2
(
7v4 − 26v2 − 5

)
+ 107 + 69v2 + 469v4 − 325v6

}
v→1→ αsCF

4π

1

4π2M2

(
10

3
+

2π2

3
+ 8 ln

[
M

µ

])
. (B.10)

B.2 Condensate Contribution to the Correlation Func-

tions

In this section we provide the expressions for the contributions of the gluon condensate,

the quark condensate and the mixed quark-gluon condensate to the various current

correlators. The contributions to the coefficient of the scalar and vector correlators to

all orders in the quark mass and lowest order in the coupling constant can already be

found in [15], and we reproduce the results given in that paper. We extend this analysis

by determining the coefficient functions for the tensor correlators. For the quark and

the quark-gluon condensate, we employ techniques analogous to that given in [15] and

closely follow their notation. In case of the gluon condensate, we use the plane-wave

technique.

Quark Condensate and Quark–Gluon Condensate: The starting point for cal-

culating the coefficient functions to all orders in the quark masses is a closed expression

for the non-local quark condensate. The position-space expressions for the projection of

the non-local quark condensates on the local quark condensate 〈: q̄q :〉(0) and the local

mixed quark-gluon condensate 〈:gsq̄σFq :〉(0) read

〈: q̄α(0)qβ(x) :〉q̄q =
1

4m
〈: q̄q :〉(0) Γ

(
D

2

)
(i 6∂ +m)βα

∞∑
n=0

(−m2x2/4)n

n! Γ(n+D/2)
,

〈: q̄α(0)qβ(x) :〉q̄F q = − 1

8m3
〈:gsq̄σFq :〉(0) Γ

(
D

2

)

×
∞∑
n=0

[
(n− 1)i6∂ + nm

]
βα

(−m2x2/4)n

n! Γ(n+D/2)
. (B.11)
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B. Calculation of Wilson Coefficients

Here α and β indicate the spinor indices. The corresponding projection of the non-local

mixed quark-gluon condensate reads

〈:gsq̄α(0)Fµν(0) qβ(x) :〉q̄F q =
1

4(D − 1)(D − 2)m2
〈:gsq̄σFq :〉(0) Γ

(
D

2

)

×
[(

(γµ∂ν − γν∂µ) +mσµν

)
(i6∂ +m)

]
βα

∞∑
n=0

(−m2x2/4)n

n! Γ(n+D/2)
. (B.12)

The relevant diagrams for the contribution of the non-local quark condensate and the

non-local mixed quark-gluon condensate are given in Figs. B.2 and ??, respectively.

Figure 1: perturbative contribution

Figure 2: quark condensate

Figure 3: gluon condensate

Figure 4: Mixed quark gluon condensate

Figure B.2: Diagrams involving the non-local quark condensate, indicated by the two solid dots. The
crossed circle symbolises the insertion of the currents.

Figure 1: perturbative contribution

Figure 2: quark condensate

Figure 3: gluon condensate

Figure 4: Mixed quark gluon condensate

Figure B.3: Diagrams involving the non-local mixed quark-gluon condensate, indicated by the three
solid dots.

The evaluation of the diagrams is simplified by the use of the equations of motion,

( 6p−m) 〈:gsq̄α(0)Fµν(0)qβ(x) :〉q̄F q = 0 , (B.13)

(p2 −m2) 〈: q̄(0)q̃(p) :〉q̄F q = −〈:gsq̄σFq :〉(0)

2 〈: q̄q :〉(0)
〈: q̄(0)q̃(p) :〉q̄q , (B.14)

( 6p−m) 〈: q̄(0)q̃(p) :〉q̄q = 0 . (B.15)

Gluon Condensate: For the gluon condensate, it is more convenient to use the so-

called fixed-point gauge technique, which is described in detail in [16]. In the framework
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Results

of the fixed-point gauge, it is possible to derive an expression for

= − i
4
gtaGa

κλ(0)
1

(p2 −m2)

{
σκλ(/p+m) + (/p+m)σκλ

}
, (B.16)

which is the basic building block for three lowest-order diagrams shown in Fig. B.4.

Figure 1: perturbative contribution

Figure 2: quark condensate

Figure 3: gluon condensate

Figure 4: Mixed quark gluon condensate

Figure B.4: Diagrams involving the gluon condensate.

B.3 Results

Quark Condensate: The quark-condensate contribution to the coefficient for the

scalar correlation function is given by

χS(n = 2)
∣∣∣
q̄q

=
〈q̄q〉 (v + 1)3

8(m+M)5v5

v→1→ 〈q̄q〉
M5

. (B.17)

The same expression (up to an overall normalization factor) is obtained in case of the

longitudinal projection of the vector correlator, χVL (n = 1)|q̄q = (M+m)2v2 χS(n = 2)|q̄q.
The transverse projection of the vector correlator leads to

χVT (n = 2)
∣∣∣
q̄q

= − 〈q̄q〉 (v + 1)3

64(m+M)5v5

(
7v2 + 1

) v→1→ −〈q̄q〉
M5

. (B.18)

Finally, from the relevant tensor correlator we obtain

χTT (n = 3)
∣∣∣
q̄q

= − 〈q̄q〉 (v + 1)3

32(m+M)5v5

(
3v2 + 1

) v→1→ −〈q̄q〉
M5

. (B.19)
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B. Calculation of Wilson Coefficients

Gluon Condensate: The expressions for the gluon-condensate contributions to the

various χXI coefficients read as follows: For the scalar correlator we obtain

χS(n = 2)
∣∣∣
G2

=

〈
α
π
G2
〉

96 (m+M)6 v6

{
15f1 (1− v2)2 − 15− 4v2 + 27v4

−6v2(1− v2)

(
f2 (1− v2)− 4 ln

[
m+M

µ

])}
v→1→

〈
α
π
G2
〉

12M6
. (B.20)

Again, the same expression is obtained for the longitudinal projection of the vector

correlator, χVL (n = 1)|GG = (M + m)2v2 χS(n = 2)|GG . For the transverse projection of

the vector correlator, one has

χVT (n = 2)
∣∣∣
G2

=

〈
α
π
G2
〉

384 (m+M)6 v6

{
45 + 115v2 + 3v4 − 195v6 − 5f1 (1− v2)2

(
25v2 + 9

)
+v2(1− v2)

(
35v2 + 41

)(
f2 (1− v2)− 4 ln

[
m+M

µ

])}
v→1→ −

〈
α
π
G2
〉

12M6
, (B.21)

and for the tensor correlator, we get

χTT (n = 3)
∣∣∣
G2

=

〈
α
π
G2
〉

384 (m+M)6 v6

{
105 + 91v2 − 17v4 − 195v6 − 5f1 (1− v2)2

(
27v2 + 17

)
+2(1− v2)

(
15v4 + 24v2 + 5

)(
f2 (1− v2)− 4 ln

[
m+M

µ

])}
v→1→ −

〈
α
π
G2
〉

24M6
. (B.22)

Mixed Condensate: For the mixed-condensate contributions, we finally obtain

χS(n = 2)
∣∣
q̄Gq

= − 〈q̄Gq〉(1 + v)

4(m+M)7v5
(2 + v)

v→1→ −3〈q̄Gq〉
2M7

, (B.23)
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Decomposition of the tensor-current correlator

and

χVL (n = 1)
∣∣
q̄Gq

= − 〈q̄Gq〉(1 + v)

4(m+M)5v3
(2 + v)

v→1→ −3〈q̄Gq〉
2M5

, (B.24)

where χVL (n = 1)|q̄Gq is again proportional to χS(n = 2)|q̄Gq, as well as

χVT (n = 2)
∣∣
q̄Gq

=
〈q̄Gq〉(1 + v)

96(m+M)7v5

(
35v3 + 59v2 + 41v + 9

) v→1→ 3〈q̄Gq〉
M7

, (B.25)

and

χTT (n = 3)
∣∣
q̄Gq

=
〈q̄Gq〉(1 + v)

48(m+M)7v6

(
15v4 + 28v3 + 24v2 + 12v + 5

)
v→1→ 7〈q̄Gq〉

2M7
. (B.26)

B.4 Decomposition of the tensor-current correlator

Using the projectors

P µν
L =

qµqν

q2
, P µν

T =
(qµqν − gµνq2)

(D − 1)q2
, (B.27)

we decompose the correlator of general tensor currents,

Πµναβ = i

∫
d4x eiqx 〈0|T [q̄1(x)σµνq2(x) q̄2(0)σαβq1(0)]|0〉 , (B.28)

into the two Lorentz-invariant functions ΠTT and ΠLT as follows,

Πµναβ = [gµαgνβ − gµβgνα]
3ΠTT (q2)

2

+
gµβqνqα + gναqµqβ − gµαqνqβ − gνβqµqα

q2

(
3ΠTT (q2)

2
+ ΠLT (q2)

)
,(B.29)

where

P µα
L P νβ

T Πµναβ = P µα
T P νβ

L Πµναβ = ΠLT (q2) ,

P µα
T P νβ

T Πµναβ = ΠTT (q2) ,

P µα
L P νβ

L Πµναβ = 0 . (B.30)
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B. Calculation of Wilson Coefficients

In this notation, the correlator of the currents

jTµ = q̄σµαq
αq (B.31)

leads to q2 ΠLT (q2).
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Appendix C

Input Data for the Series Expansion

Table C.1: Overview of LCSR points used, transformed to the helicity amplitude basis.

Decay form factors LCSR/q2 (GeV2) Ref.

B → K q2 3 6 9 12 Table 3, [37]
AV,0 0.40± 0.05 0.48± 0.06 0.59± 0.07 -
AV,t 0.40± 0.05 0.51± 0.06 0.65± 0.08 -
AT,0 0.13± 0.01 0.22± 0.02 0.34± 0.03 -

B → ρ q2 3 6 9 12 Table 8, [18]
BV,0 0.37± 0.12 0.46± 0.13 0.60± 0.14 -
BV,1 0.16± 0.01 0.27± 0.02 0.41± 0.04 -
BV,2 0.16± 0.02 0.29± 0.03 0.46± 0.04 -
BV,t 0.37± 0.04 0.46± 0.04 0.58± 0.06 -
BT,0 0.17± 0.35 0.3± 0.26 0.47± 0.23 0.71± 0.22
BT,1 0.45± 0.04 0.55± 0.05 0.69± 0.06 0.9± 0.08
BT,2 0.46± 0.04 0.58± 0.05 0.76± 0.07 1.0± 0.1
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Table C.2: Overview of Lattice points used, transformed to the helicity amplitude basis. Note that
specific values for B → ρ are as in Table 2 of Ref. [23].

Decay q2 (GeV2) form factors Ref.

B → K AV,0 AV,t AT,0 QCDSF [120]
14.5 0.94± 0.19 1.1± 0.2 -
15.6 1.1± 0.2 1.3± 0.3 -
16.7 1.2± 0.2 1.5± 0.3 -
17.9 1.4± 0.3 1.8± 0.3 -
19. 1.6± 0.3 2.3± 0.4 -
20.1 1.9± 0.4 3.± 0.6 -
21.3 2.3± 0.4 4.4± 0.8 -
22.4 2.9± 0.6 8.7± 1.7 -

B → ρ BV,0 BV,1 BT,2 UKQCD [121]
12.7 0.64± 0.78 0.34± 0.27 0.9± 0.18
13. 0.71± 0.72 0.39± 0.25 0.96± 0.18
13.5 0.8± 0.66 0.48± 0.22 1.1± 0.2
14. 0.9± 0.62 0.58± 0.19 1.2± 0.2
14.5 1.0± 0.6 0.68± 0.16 1.3± 0.2
15. 1.1± 0.6 0.78± 0.15 1.4± 0.2
15.5 1.3± 0.7 0.89± 0.15 1.6± 0.2
16. 1.4± 0.8 1.0± 0.2 1.8± 0.2
16.5 1.6± 0.9 1.2± 0.3 2.1± 0.2
17.1 1.8± 1.2 1.4± 0.4 2.4± 0.2
17.6 2.1± 1.5 1.7± 0.6 2.7± 0.3
18.2 2.5± 2. 2.1± 0.9 3.3± 0.3
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C. Input Data for the Series Expansion

Table C.3: Summary of OPE results for the coefficients χXI (n). The following parameter values
have been used [14, 125–127]: µ = mb = 4.2 GeV, md = 4.8 MeV, ms = 104 MeV, αs = 0.2185,〈
d̄d
〉

= (278 MeV)3, 〈s̄s〉 = 0.8
〈
d̄d
〉
,
〈
αs

π G2
〉

= 0.038 GeV4, 〈q̄Gq〉 = (1.4 GeV)2 〈q̄q〉.

q Correlator Subtractions LO NLO 〈q̄q〉
〈
α
π
G2
〉
〈q̄Gq〉 Σ

100×m2
bχ

S 2 1.265 0.589 0.029 0.001 −0.003 1.88

100×m2
bχ

P 2 1.268 0.590 0.029 0.001 −0.003 1.88

100× χVL 1 1.262 0.211 0.029 0.001 −0.003 1.50

d 100× χAL 1 1.271 0.205 0.029 0.001 −0.003 1.50

100×m2
bχ

V
T 2 0.951 0.236 −0.029 −0.001 0.007 1.16

100×m2
bχ

A
T 2 0.948 0.237 −0.029 −0.001 0.007 1.16

100×m2
bχ

T
T 3 2.539 0.579 −0.029 −0.000 0.008 3.10

100×m2
bχ

AT
T 3 2.527 0.586 −0.029 −0.001 0.008 3.09

100×m2
bχ

S 2 1.233 0.571 0.024 0.001 −0.003 1.83

100×m2
bχ

P 2 1.296 0.608 0.022 0.001 −0.003 1.93

100× χVL 1 1.172 0.229 0.023 0.000 −0.003 1.42

s 100× χAL 1 1.361 0.187 0.023 0.002 −0.003 1.57

100×m2
bχ

V
T 2 0.980 0.237 −0.022 0.000 0.005 1.20

100×m2
bχ

A
T 2 0.916 0.238 −0.024 −0.002 0.006 1.13

100×m2
bχ

T
T 3 2.652 0.569 −0.023 0.001 0.006 3.21

100×m2
bχ

AT
T 3 2.404 0.603 −0.024 −0.002 0.007 2.99
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