
Why and How to Control Cloning

in Software Artifacts

Elmar Juergens

Institut für Informatik

der Technischen Universität München

Why and How to Control Cloning

in Software Artifacts

Elmar Juergens

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Bernd Brügge, Ph.D.

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy

2. Univ.-Prof. Dr. Rainer Koschke

Universität Bremen

Die Dissertation wurde am 07.10.2010 bei der Technischen Universität München eingere-

icht und durch die Fakultät für Informatik am 19.02.2011 angenommen.

Abstract

The majority of the total life cycle costs of long-lived software arises after its first release, during
software maintenance. Cloning, the duplication of parts of software artifacts, hinders maintenance:
it increases size, and thus effort for activities such as inspections and impact analysis. Changes
need to be performed to all clones, instead of to a single location only, thus increasing effort. If
individual clones are forgotten during a modification, the resulting inconsistencies can threaten
program correctness. Cloning is thus a quality defect.

The software engineering community has recognized the negative consequences of cloning over
a decade ago. Nevertheless, it abounds in practice—across artifacts, organizations and domains.
Cloning thrives, since its control is not part of software engineering practice. We are convinced
that this has two principal reasons: first, the significance of cloning is not well understood. We
do not know the extent of cloning across different artifact types and the quantitative impact it has
on program correctness and maintenance efforts. Consequently, we do not know the importance of
clone control. Second, no comprehensive method exists that guides practitioners through tailoring
and organizational change management required to establish successful clone control. Lacking both
a quantitative understanding of its harmfulness and comprehensive methods for its control, cloning
is likely to be neglected in practice.

This thesis contributes to both areas. First, we present empirical results on the significance of
cloning. Analysis of differences between code clones in productive software revealed over 100
faults. More specifically, every second modification to code that was done in unawareness of its
clones caused a fault, demonstrating the impact of code cloning on program correctness. Further-
more, analysis of industrial requirements specifications and graph-based models revealed substantial
amounts of cloning in these artifacts, as well. The size increase caused by cloning affects inspection
efforts—for one specification, by an estimated 14 person days; for a second one by over 50%. To
avoid such impact on program correctness and maintenance efforts, cloning must be controlled.

Second, we present a comprehensive method for clone control. It comprises detector tailoring to im-
prove accuracy of detected clones, and assessment to quantify their impact. It guides organizational
change management to successfully integrate clone control into established maintenance processes,
and root cause analysis to prevent the creation of new clones. To operationalize the method, we
present a clone detection workbench for code, requirements specifications and models that supports
all these steps. We demonstrate the effectiveness of the method—including its tools—through an
industrial case study, where it successfully reduced cloning in the participating system.

Finally, we identify the limitations of clone detection and control. Through a controlled experiment,
we show that clone detection approaches are unsuited to detect behaviorally similar code that has
been developed independently and is thus not the result of copy & paste. Its detection remains an
important topic for future work.

3

Acknowledgements

I have spent the last four years as a researcher at the Lehrstuhl for Software & Systems Engineering
at Technische Universität München from Prof. Dr. Dr. h. c. Manfred Broy. I want to express my
gratitude to Manfred Broy for the freedom and responsibility I was granted and for his guidance and
advice. I have, and still do, enjoy working in the challenging and competitive research environment
he creates. I want to thank Prof. Dr. rer. nat. Rainer Koschke for accepting to co-supervise this
thesis. I am grateful for inspiring discussions on software cloning, but also for the hospitality and
interest—both by him and his group—that I experienced during my visit in Bremen. My view of the
social aspects of research, which formed in the large, thematically heterogenous group of Manfred
Broy, was enriched by the glimpse into the smaller, more focussed group of Rainer Koschke.

I am very grateful to my colleagues. Their support, both on the scientific and on the personal level,
was vital for the success of this thesis. And not least, for my personal development during the last
four years. I am grateful to Silke Müller for schedule magic. To Florian Deissenboeck for being
an example worth following and for both his encouragement and outright criticism. To Benjamin
Hummel for his merit and creativity in producing ideas, and for his productivity and effectiveness in
their realization. To Martin Feilkas for his ability to overview and simplify complicated situations
and for reliability and trust come what may. To Stefan Wagner for his guidance and example in
scientific writing and empirical research. To Daniel Ratiu for the sensitivity, carefulness and depth
he shows during scientific discussions (and outside of them). To Lars Heinemann for being the best
colleague I ever shared an office with and for his tolerance exhibited doing so. To Markus Her-
rmannsdörfer for his encouragement and pragmatic, uncomplicated way that makes collaboration
productive and fun. To Markus Pizka for raising my interest in research and for encouraging me to
start my PhD thesis. Working with all of you was, and still is, a privilege.

Research, understanding and idea generation benefit from collaboration. I am grateful for joint
paper projects to Sebastian Benz, Michael Conradt, Florian Deissenboeck, Christoph Domann,
Martin Feilkas, Jean-François Girard, Nils Göde, Lars Heinemann, Benjamin Hummel, Klaus
Lochmann, Benedikt May y Parareda, Michael Pfaehler, Markus Pizka, Daniel Ratiu, Bernhard
Schaetz, Jonathan Streit, Stefan Teuchert and Stefan Wagner. In addition, this thesis benefited from
the feedback of many. I am thankful for proof-reading drafts to Florian Deissenboeck, Martin
Feilkas, Nils Göde, Lars Heinemann, Benjamin Hummel, Klaus Lochmann, Birgit Penzenstadler,
Daniel Ratiu and Stefan Wagner. And to Rebecca Tiarks for help with the Bellon Benchmark.

The empirical parts of this work could not have been realized without the continuous support of our
industrial partners. I want to thank everybody I worked with at ABB, MAN, LV1871 and Munich
Re Group. I particularly thank Munich Re Group—especially Rainer Janßen and Rudolf Vaas—for
the long-term collaboration with our group that substantially supported this dissertation.

Most of all, I want to thank my family for their unconditional support (both material and immaterial)
not only during my dissertation, but during all of my education. I am deeply grateful to my parents,
my brother and, above all, my wife Sofie.

5

»A man’s gotta do what a man’s gotta do«

Fred MacMurray in The Rains of Ranchipur

»A man’s gotta do what a man’s gotta do«

Gary Cooper in High Noon

»A man’s gotta do what a man’s gotta do«

George Jetson in The Jetsons

»A man’s gotta do what a man’s gotta do«

John Cleese in Monty Python’s Guide to Life

Contents

1 Introduction 13

1.1 Problem Statement . 14
1.2 Contribution . 16
1.3 Contents . 17

2 Fundamentals 19

2.1 Notions of Redundancy . 19
2.2 Software Cloning . 22
2.3 Notions of Program Similarity . 26
2.4 Terms and Definitions . 28
2.5 Clone Metrics . 29
2.6 Data-flow Models . 35
2.7 Case Study Partners . 36
2.8 Summary . 36

3 State of the Art 37

3.1 Impact on Program Correctness . 37
3.2 Extent of Cloning . 40
3.3 Clone Detection Approaches . 41
3.4 Clone Assessment and Management . 47
3.5 Limitations of Clone Detection . 51

4 Impact on Program Correctness 53

4.1 Research Questions . 53
4.2 Study Design . 54
4.3 Study Objects . 55
4.4 Implementation and Execution . 56
4.5 Results . 57
4.6 Discussion . 59
4.7 Threats to Validity . 59
4.8 Summary . 61

5 Cloning Beyond Code 63

5.1 Research Questions . 63
5.2 Study Design . 64
5.3 Study Objects . 65
5.4 Implementation and Execution . 67

9

Contents

5.5 Results . 68
5.6 Discussion . 76
5.7 Threats to Validity . 77
5.8 Summary . 79

6 Clone Cost Model 81

6.1 Maintenance Process . 81
6.2 Approach . 83
6.3 Detailed Cost Model . 84
6.4 Simplified Cost Model . 88
6.5 Discussion . 88
6.6 Instantiation . 89
6.7 Summary . 92

7 Algorithms and Tool Support 95

7.1 Architecture . 95
7.2 Preprocessing . 98
7.3 Detection Algorithms . 101
7.4 Postprocessing . 115
7.5 Result Presentation . 120
7.6 Comparison with other Clone Detectors . 127
7.7 Maturity and Adoption . 135
7.8 Summary . 135

8 Method for Clone Assessment and Control 137

8.1 Overview . 137
8.2 Clone Detection Tailoring . 138
8.3 Assessment of Impact . 143
8.4 Root Cause Analysis . 147
8.5 Introduction of Clone Control . 152
8.6 Continuous Clone Control . 155
8.7 Validation of Assumptions . 157
8.8 Evaluation . 165
8.9 Summary . 173

9 Limitations of Clone Detection 175

9.1 Research Questions . 175
9.2 Study Objects . 176
9.3 Study Design . 177
9.4 Implementation and Execution . 178
9.5 Results . 181
9.6 Discussion . 184
9.7 Threats to Validity . 185
9.8 Summary . 186

10 Conclusion 187

10

Contents

10.1 Significance of Cloning . 187
10.2 Clone Control . 190

11 Future Work 193

11.1 Management of Simions . 193
11.2 Clone Cost Model Data Corpus . 194
11.3 Language Engineering . 195
11.4 Cloning in Natural Language Documents . 196
11.5 Code Clone Consolidation . 198

Bibliography 201

11

1 Introduction

Software maintenance accounts for the majority of the total life cycle costs of successful software
systems [21, 80, 184]. Half of the maintenance effort is not spent on bug fixing or adaptations to
changes of the technical environment, but on evolving and new functionality. Maintenance thus pre-
serves and increases the value that software provides to its users. Reducing the number of changes
that get performed during maintenance threatens to reduce this value. Instead, to lower the total
life cycle costs of software systems, the individual changes need to be made simpler. An important
goal of software engineering is thus to facilitate the construction of systems that are easy—and thus
more economic—to maintain.

Software comprises a variety of artifacts, including requirements specifications, models and source
code. During maintenance, all of them are affected by change. In practice, these artifacts often
contain substantial amounts of duplicated content. Such duplication is referred to as cloning.

Figure 1.1: Cloning in use case documents

Cloning hampers maintenance of software artifacts in several ways. First, it increases their size and
thus effort for all size-related activities such as inspections—inspectors simply have to work through
more content. Second, changes that are performed to an artifact often also need to be performed
to its clones, causing effort for their location and consistent modification. If, e. g., different use
case documents contain duplicated interaction steps for system login, they all have to be adapted if
authentication is changed from password to keycard entry. Moreover, if not all clones of an artifact
are modified consistently, inconsistencies can occur that can result in faults in deployed software.
If, e. g., a developer fixes a fault in a piece of code but is unaware of its clones, the fault fails to

13

1 Introduction

be removed from the system. Each of these effects of cloning contributes to increased software
lifecycle costs. Cloning is, hence, a quality defect.

Figure 1.2: Cloning threatens program correctness

The negative impact of cloning becomes tangible through examples from real-world software. We
studied inspection effort increase due to cloning in 28 industrial requirements specifications. For
the largest specification, the estimated inspection effort increase is 110 person hours, or almost 14
person days. For a second specification, it even doubles due to cloning1.

The effort increase due to the necessity to perform multiple modifications is illustrated in Figure 1.1,
which depicts cloning in 150 use cases from an industrial business information system. Each black
rectangle represents a use case, its height corresponding to the length of the use case in lines. Each
colored stripe depicts a specification clone; stripes with the same color indicate clones with similar
text. If a change is made to a colored region, it may need to be performed multiple times—increasing
modification effort accordingly.

Finally, Figure 1.2 illustrates the consequences of inconsistent modifications to cloned code for
program correctness2: a missing null check has only been fixed in one clone, the other still contains
the defect and can crash the system at runtime.

1.1 Problem Statement

Different groups in the software engineering community have independently recognized that cloning
can negatively impact engineering efforts. Redundancy in requirements specifications, including
cloning, is considered as an obstacle for modifiability [100] and listed as a major problem in auto-
motive requirements engineering [230]. Cloning in source code is deemed as an indicator for bad
design [17, 70, 175]. In response, the investigation of cloning has grown into an active area in the
software engineering research community [140,201], yielding, e. g., numerous detection approaches
and a better understanding of the origin and evolution of cloning in source code.

1The study is presented in detail Chapter 5.
2The code example is taken from the open source project Sysiphus.

14

1.1 Problem Statement

Nevertheless, cloning abounds in practice. Researchers report that between 8% and 29%, in some
cases even more than 60% of the source code in industrial and open source systems has been dupli-
cated at least once [6,62,157]. Cloning in source code has been reported for different programming
languages and application domains [140, 201]. Despite these facts, hardly any systematic measures
to control cloning are taken in practice. Given its known extent and negative impact on real-world
software, we consider this apparent lack of applied measures for clone control as precarious.

Based on our experiences from four years of close collaboration on software cloning with our indus-
trial partners, we see two principal reasons for this: first, the significance of cloning is insufficiently
understood; second, we lack a comprehensive method that guides practitioners in establishing con-
tinuous clone control. We detail both reasons below.

Significance of Cloning The extent of cloning in software artifacts is insufficiently understood.
While numerous studies have revealed cloning in source code, hardly anything is known about
cloning in other artifacts, such as requirements specifications and models.

Even more importantly, the quantitative impact of cloning on program correctness and maintenance
effort is unclear. While existing research has demonstrated its impact qualitatively, we cannot quan-
tify it in terms of faults or effort increase. Consequently, we do not know how harmful cloning—and
how important clone control—really is in practice.

Clone Control To be effective, clone control needs to be applied continuously, both to prevent
the creation of new clones and to create awareness of existing clones during code modification.
Continuous application requires accurate results. However, existing tools produce large amounts
of false positives. Since inspection of false positives is a waste of effort, and repeated inspection
even more so, they inhibit continuous clone control. We lack commonly accepted criteria for clone
relevance and techniques to achieve accurate results. Furthermore, to have long term success, clone
control must be part of the maintenance process. Its integration requires changes to established
habits. Unfortunately, existing approaches for clone management are limited to technical topics and
ignore organizational issues.

To operationalize clone control, comprehensive tool support is required that supports all of its steps.
Existing tools, however, typically focus on individual aspects, such as clone detection or change
propagation, or are limited to source code and thus cannot be applied to specifications or models.
Furthermore, most detection approaches are not both incremental and scalable. They thus can-
not provide real-time results for large evolving software artifacts. Dedicated tool support is thus
required for clone control.

Problem We need a better understanding of the quantitative impact of cloning on software

engineering and a comprehensive method and tool support for clone control.

15

1 Introduction

1.2 Contribution

This dissertation contributes to both areas, as detailed below.

Significance of Cloning We present empirical studies and an analytical cost model to demon-
strate the significance of cloning and, consequently, the importance of clone control.

First, we present a large scale case study investigating the impact of cloning on program correctness.
Through the analysis of inconsistently maintained clones, 107 faults were discovered in industrial
and open source software, including 17 critical ones that could result in system crashes or data loss;
not a single system was without faults in inconsistently modified cloned code. Every second change
to cloned code that was unaware of cloning was faulty. This demonstrates that unawareness of
cloning significantly impacts program correctness and thus demonstrates the importance to control
code cloning in practice. The case study was carried out with Munich Re and LV1871.

Second, we present two large industrial case studies that investigate cloning in requirements speci-
fications and Matlab/Simulink models. They demonstrate that the extent and impact of cloning are
not limited to source code. For these artifacts, manual inspections are commonly used for quality
assurance. The cloning induced size increase translates to higher inspection efforts—for one of the
analyzed specifications by an estimated 14 person days; for a second one it more than doubles. To
avoid these consequences, cloning needs to be controlled for requirements specifications and graph-
based models, too. This work is the first to investigate cloning in requirements specifications and
graph-based models. The case studies were carried out, among others, with Munich Re, Siemens,
and MAN Nutzfahrzeuge Group.

Third, we present an analytical cost model that quantifies the impact of code cloning on maintenance
activities and field faults. It complements the above empirical studies by making our observations
and assumptions about the impact of code cloning on software maintenance explicit. The cost model
provides a foundation for assessment and trade-off decisions. Furthermore, its explicitness offers
an objective basis for scientific discourse about the consequences of cloning.

Clone Control We present a comprehensive method for clone control and tool support to oper-
ationalize it in practice.

We introduce a method for clone assessment and control that provides detailed steps for the assess-
ment of cloning in software artifacts and for the control of cloning during software engineering. It
comprises detector tailoring to achieve accurate detection results; assessment to evaluate the sig-
nificance of cloning for a software system; change management to successfully adapt established
processes and habits; and root cause analysis to prevent creation of excessive amounts of new clones.
The method has been evaluated in a case study with Munich Re in which continuous clone control
was performed over the course of one year and succeeded to reduce code cloning.

To operationalize the method, we introduce industrial-strength tool support for clone assessment
and control. It includes novel clone detection algorithms for requirements specifications, graph-
based models and source code. The proposed index-based detection algorithm is the first approach
that is at the same time incremental, distributed and scalable to very large code bases. Since the tool

16

1.3 Contents

support has matured beyond the stage of a research prototype, several companies have included it
into their development or quality assessment processes, including ABB, Bayerisches Landeskrimi-
nalamt, BMW, Capgemini sd&m, itestra GmbH, Kabel Deutschland, Munich Re and Wincor Nix-
dorf. It is available as open source for use by both industry and the research community.

Finally, this thesis presents a controlled experiment that shows that existing clone detectors—and
their underlying approaches—are limited to copy & paste. They are unsuited to detect behaviorally
similar code of independent origin. The experiment was performed on over 100 behaviorally similar
programs that were produced independently by 400 students through implementation of a single
specification. Quality control thus cannot rely on clone control to manage such redundancies. Our
empirical results indicate, however, that they do occur in practice. Their detection thus remains an
important topic for future work.

As stated above, software comprises various artifact types. All of them can be affected by cloning.
We are convinced that it should be controlled for all artifacts that are target to maintenance. How-
ever, the set of all artifacts described in the literature is large—beyond what can be covered in depth
in a dissertation. In this work, we thus focus on three artifact types that are central to software
engineering: requirements specifications, models and source code. Among them, source code is ar-
guably the most important: maintenance simply cannot avoid it. Even projects that have—sensibly
or not—abandoned maintenance of requirements specifications and models, still have to modify
source code. Consequently, it is the artifact type that receives most attention in this thesis.

1.3 Contents

The remainder of this thesis is structured as follows:

Chapter 2 discusses different notions of redundancy, defines the terms used in this thesis and intro-
duces the fundamentals of software cloning. Chapter 3 discusses related work and outlines open
issues, providing justification for the claims made in the problem statement.

The following chapters present the contributions of the thesis in the same order as they are listed
in Section 1.2. Chapter 4 presents the study on the impact of unawareness of cloning on program
correctness. Chapter 5 presents the study on the extent and impact of cloning in requirements
specifications and Matlab/Simulink models. Chapter 6 presents the analytical clone cost model.
Chapter 7 outlines the architecture and functionality of the proposed clone detection workbench.
Chapter 8 introduces the method for clone assessment and control and its evaluation. Chapter 9
reports on the controlled experiment on the capabilities of clone detection in behaviorally similar
code of independent origin.

Finally, Chapter 10 summarizes the thesis and Chapter 11 provides directions for future research.

Previously Published Material

Parts of the contributions presented in this thesis have been published in [53–55,57,97,110–117].

17

2 Fundamentals

This chapter introduces the fundamentals of this thesis. The first part discusses different notions
of the term redundancy that are used in computer science. It then introduces software cloning and
other notions of program similarity in the context of these notions of redundancy. The later parts of
the chapter introduce terms, metrics and artifact types that are central to the thesis and the industrial
partners that participated in the case studies.

2.1 Notions of Redundancy

Redundancy is the fundamental property of software artifacts underlying software cloning research.
This section outlines and compares different notions of redundancy used in computer science. It
provides the foundation to discuss software cloning, the form of redundancy studied in this thesis.

2.1.1 Duplication of Problem Domain Information

In several areas of computer science, redundancy is defined as duplication of problem domain
knowledge in the representation. We use the term “problem domain knowledge” with a broad
meaning: it not only refers to the concepts, processes and entities from the business domain of a
software artifact. Instead, we employ it to include all concepts implemented by a program or rep-
resented in an artifact. These can, e. g., include data structures and algorithms and comprise both
structural and behavioral aspects.

Normal Forms in Relational Databases Intuitively, a database contains redundancy, if a
single fact from the problem domain is stored multiple times in the database. If compared to a
database without redundancy, this has several disadvantages:

Size increase: Representation of information requires space. Storing a single fact multiple times
thus increases the size of a database and thus costs for storage or algorithms whose runtime depends
on database size.

Update anomaly: If information changes, e. g., through evolution of the problem domain, all loca-
tions in which it is stored in the database need to be changed accordingly. A single change in the
problem domain thus requires multiple modifications in the database. The fact that a single change
requires multiple modifications is referred to as update anomaly and increases modification effort.
Furthermore, if not all locations are updated, inconsistencies can creep into the database.

Relational database design advocates normal forms to reduce redundancy in databases [129]. Nor-
mal forms are properties of database schemas that, when violated, indicate multiple storage of

19

2 Fundamentals

information from the problem domain in the database. Normal forms are defined as properties on
the schemas [129]—not of the data entries stored in the database. Database schema design thus
propagates a top-down approach to discover and avoid redundancy in databases: through analysis
of the properties of the schema, not through analysis of similarity in the data.

Logical Redundancy in Programs In his PhD thesis, Daniel Ratiu defines logical redundancy
for programs [190]. Intuitively, according to his definitions, a program contains redundancy if facts
from the problem domain are implemented multiple times in the program. Just as for databases, if
compared to a program without redundancy, this has several disadvantages:

Size increase: Implementation of a fact from the problem domain requires space in the program
and thus increases program size. For software maintenance, this can increase efforts for size-related
activities such as inspections.

Update anomaly: Similarly to the update anomaly in databases, if a fact in the problem domain
changes, all of its implementations need to be adapted accordingly, creating effort for their location
and consistent modification. Again, if modification is not performed consistently to all instances,
inconsistencies can be introduced into the program.

Just as for databases, redundancy is defined independent of the actual representation of the data.
Redundant program fragments thus can, but do not need to look syntactically similar.

Whereas schemas provide models of the problem domain for database systems, in contrast, there
is no comparable model of the problem domain of programs. Ratiu suggests to use ontologies as
models of the problem domain [190]. Since they are typically not available, they have to be created
to detect redundancy.

2.1.2 Representation Size Excess

In information theory [166], minimal description length research [89] and data compression [205],
redundancy is defined as size excess. Intuitively, data contains redundancy, if a shorter representa-
tion for it can be found from which it can be reproduced without loss of information.

The notion of redundancy as size excess translates to compression potential. Any property of an
artifact, which can be exploited for compression, thus increases its size excess. Since, according to
Grünwald [89], any regularity can in principle be exploited to compress an artifact, all regularity
increases size excess.

Compression potential not only depends on the artifact but also on the employed compression
scheme. The most powerful compression scheme is the Kolmogorov complexity of an artifact,
defined as the size of the smallest program that produces the artifact. Unfortunately, it is undecid-
able [89, 156]. Hence, to employ compression potential as a metric for redundancy in practice, less
powerful, but efficiently computable compression schemes are employed, as, e. g., general purpose
compressors like, gzip or GenCompress.

Regularity in data representation can have different sources. Duplicated fragments of problem do-
main knowledge exhibit the same structure and thus represent regularity. Regularity, however, does
not need to stem from problem domain knowledge duplication. Inefficient encoding of the alphabet

20

2.1 Notions of Redundancy

of a language into a binary representation introduces regularity that can be exploited for compres-
sion, as is, e. g., done by Huffman coding [95].

Similarly, language grammars are a source of regularity, since they enforce syntax rules to which
all artifacts written in a language adhere. Again, this regularity can be exploited for compression,
as is, e. g., done by syntax-based coding [35].

Redundancy in terms of representation size excess thus corresponds to compression potential of an
artifact. Regularity in the data representation provides compression potential, independent of its
source: from the point of view of compression, it is of no importance if the regularity stems from
problem domain knowledge duplication or inefficient coding. This notion of redundancy thus does
not differentiate between different sources of regularity.

2.1.3 Discussion

There are fundamental differences between the two notions of redundancy. Whereas normal forms
and logical program redundancy are defined in terms of duplication of information from the problem
domain in the representation, size excess is defined on the representation alone. This is explicit in
the statement from Grünwald [89]: »We only have the data«—no interpretation in terms of the
problem domain is performed. This has two implications:

Broader applicability: Since no interpretation in terms of the problem domain is required, it can
be applied to arbitrary data. This is obvious for data compression that is entirely agnostic of the
information encoded in the files it processes. However, it can also be applied to data we know how
to interpret, but for which no suitable machine readable problem domain models are available, as,
e. g., programs for which we do not have complete ontologies.

Reduced conclusiveness w.r.t. domain knowledge duplication. Since different sources of regular-
ity can create representation size excess, it is no conclusive indicator for problem domain knowledge
duplication. This needs to be taken into account by approaches that search for redundancy on the
representation alone to discover problem domain knowledge duplication.

The relationship between the two notions of redundancy is sketched in the diagram in Figure 2.1.
The left set represents redundancy in the sense of duplicated domain knowledge. The right set re-
dundancy in terms of representation size excess. Their intersection represents duplicated domain
knowledge that is sufficiently representationally similar to be compressible by the employed com-
pression scheme.

The diagram assumes an imperfect compression scheme. For a perfect compressor, problem domain
knowledge duplication would be entirely contained in representation size excess, since a perfect
compressor would know how to exploit it for compression, even if it is syntactically different.
However, no such compressor exists and—since Kolmogorov complexity is undecidable—never
will.

21

2 Fundamentals

��������	��
��

�����	���

	�����
����

���������
�����

�����
�������������
���

�������������������

������

���������
����
���

�����
���������

	��
���
�����	��

	�����
����

Figure 2.1: Relationship of different notions of redundancy

2.1.4 Superfluousness

Apart from problem domain duplication and representation size excess, a third notion of redundancy
is used in some areas of computer science: superfluousness.

Several examples for this type of redundancy exist in the literature. In compiler construction, state-
ments are considered as redundant, if they are unreachable [134]. If the unreachable statements are
removed, the code still exhibits the same observable behavior1. Second, if a usage perspective is
adopted, statements are redundant, if they are not required by the users of the software, e. g., be-
cause the feature they implement has become obsolete. Based on the actual need of the users, the
software still exhibits the same behavior if the features, that will never be used again, are removed.
A third example can be found in logic: a knowledge base of propositional formulas is redundant, if
it contains parts that can be inferred from the rest of it [158]. The removal of these parts does not
change the models of the knowledge base, e. g., the variable assignments that evaluate to true.

Superfluousness is fundamentally different from the other notions of redundancy. Whereas duplica-
tion of problem domain information and representation size excess indicate that the representation
can be compacted without loss of information, superfluousness indicates which information can be
lost since it is not required for a certain purpose. This notion of redundancy is outside the scope of
this thesis.

2.2 Software Cloning

This section introduces software cloning and compares it with the notions of redundancy introduced
above. A more in-depth discussion of research in software cloning and in clone detection is provided
in Chapter 3.

2.2.1 Cloning as Problem Domain Knowledge Duplication

Programs encode problem domain information. Duplicating a program fragment can thus create
duplication of encoded problem domain knowledge. Since program fragment duplication preserves
syntactic structure, the duplicates are also similar in their representation.

1Disregarding effects due to a potentially smaller memory footprint.

22

2.2 Software Cloning

Clones are similar regions in artifacts. They are not limited to source code, but can occur in other
artifact types such as models or texts, as well. In the literature, different definitions of similarity are
employed [140, 201], mostly based on syntactic characteristics. Their notion of redundancy is thus,
strictly speaking, agnostic of the problem domain. In contrast, in this thesis, we require clones to
implement one or more common problem domain concepts, thus turning clones into an instance of
logical program redundancy as defined by Ratiu [190]. Cloning thus exhibits the negative impact of
logical program redundancy (cf., Section 2.1.1).

The common concept implementations gives rise to change coupling: when the concept changes,
all of its implementations—the clones—need to be changed. In addition, we require clones to
be syntactically similar. While syntactic similarity is not required for change coupling, existing
clone detection approaches rely on syntactic similarity to detect clones. In terms of Figure 2.1,
this requirement limits clones to the intersection of the two sets. Hence, we employ the term clone

to denote syntactically similar artifact regions that contain redundant encodings of one or more
problem domain concepts. While syntactic similarity can be determined automatically, redundant
concept implementation cannot.

For the sake of clarity, we differentiate between clone candidates, clones and relevant clones. Clone
candidates are results of a clone detector run: syntactically similar artifact regions. Clones have been
inspected manually and are known to implement common program domain concepts. However, not
all clones are relevant for all tasks: while for change propagation, all clones are relevant, for program
compaction, e. g., only those are relevant that can be removed. In case only a subset of the clones in
a system is relevant for a certain task, we refer to them as relevant clones.

A clone group is a set of clones. Clones in a single group are referred to as siblings; a clone’s
artifact region is similar to the artifact regions of all its siblings. We employ these terms for clone
candidates, clones and relevant clones.

2.2.2 Causes for Cloning

Clones are typically created by copy & paste. Many different causes can trigger the decision to copy,
paste (and possibly modify) an artifact fragment. Several authors have analyzed causes for cloning
in code [123, 131, 140, 201]. We differentiate here between causes inherent to software engineering
and causes originating in the maintenance environment and the maintainers.

Inherent Causes Creating software is a difficult, intellectually challenging task. Inherent causes
for cloning are those that originate in the inherent complexity of software engineering [25]—even
ideal processes and tools cannot eliminate them completely.

One inherent reason is that creating reusable abstractions is hard. It requires a detailed understand-
ing of the commonalities and differences among their instances. When implementing a new feature
that is similar to an existing one, their commonalities and differences are not always clear. Cloning
can be used to quickly generate implementations that expose them. Afterwards, remaining com-
monalities can be consolidated into a shared abstraction. A second reason is that understanding the
impact of a change is hard for large software. An exploratory prototypical implementation of the
change is one way to gain understanding of its impact. For it, an entire subsystem can be cloned and

23

2 Fundamentals

modified for experimental purposes. After the impact has been determined, a substantiated decision
can be taken on whether to integrate or merge the changes into the original code. After exploration
is finished, clones can be removed.

In both cases, cloning is used as a means to speed up implementation to quickly gain additional
information. Once the information is obtained, clones can be consolidated.

Maintenance Environment The maintenance environment comprises the processes, languages
and tools employed to maintain the software system. Maintainers can decide to clone code to work
around a problem in the maintenance environment.

Processes can cause cloning. First, to reuse code, an organization needs a reuse process that gov-
erns its evolution and quality assurance. Missing or unsuitable reuse processes hinder maintainers in
sharing code. In response, they reuse code through duplication. Second, short-sighted project man-
agement practices can trigger cloning. Examples include productivity measurement of LOC/day,
or constant time pressure that encourages short term solutions in ignorance of their long-term con-
sequences. In response, maintainers duplicate code to reduce pressure from project management.
Third, to make code reusable in a new context, it sometimes needs to be adapted. Poor quality
assurance techniques can make the consequences of the necessary changes difficult to validate. In
response, maintainers duplicate the code and make the necessary change to the duplicate to avoid
the risk of breaking the original code.

Limitations in languages or tools can cause cloning. First, the creation of a reusable abstraction
often requires the introduction of parameters. Language limitations can prohibit the necessary pa-
rameterization. In response, maintainers duplicate the parts that cannot be parameterized suitably.
Second, reusable functionality is often encapsulated in functions or methods. On hot code paths
of performance critical applications, method calls can impose a performance penalty. If the com-
piler cannot perform suitable inlining to allow for reuse without this penalty, maintainers inline the
methods manually through duplication of their bodies.

Finally, besides inherent and maintenance environment causes, maintainers can decide to clone
code for intrinsic reasons. For example, the long-term consequences of cloning can be unclear, or
maintainers might lack the skills required to create reusable abstractions.

All non-inherent causes for cloning share two characteristics: even while cloning might be a suc-
cessful short-term technique to circumvent its cause, its negative impact on software maintenance
still hold; in addition, as long as their cause is not rectified, the clones cannot be consolidated. These
causes can thus lead to gradual accumulation of clones in systems.

2.2.3 Clone Detection as Search for Representational Similarity

The goal of clone detection is to find clones—duplicated problem domain knowledge in the pro-
gram. Unfortunately, clone detection has no access to models of the problem domain. To circumvent
this, clone detection searches for similarity in the program representation. This has two implications
for detection result quality:

24

2.2 Software Cloning

Recall: duplicated problem domain knowledge that is not sufficiently representationally similar
does not get detected. This limits the recall of detected w.r.t. total duplicated problem domain
knowledge.

The magnitude of this effect is difficult to quantify in practice, since the amount of all duplicated
domain knowledge in a set of artifacts is typically unknown. Computing the recall of a clone
detector in terms of how much of this it can detect, is thus unfeasible in practice.

Precision: Since similarity in the program representation can, but does not need to be created by
problem domain knowledge duplication, not all detected clone candidates contain duplicated prob-
lem domain knowledge. All program fragments that are sufficiently syntactically similar to be de-
tected as clones, but do not implement common problem domain knowledge, are false positives that
reduce precision. This typically occurs if clone detection removes all links to the problem domain,
e. g., through normalization, which removes identifers that reference domain concepts. Artifact re-
gions that exhibits little syntactic variation are then likely to be identified as clone candidates, even
though they share no relationship on the level of the problem domain concepts they implement.

Code Clone and Clone Candidate Classification Code clones and clone candidates for
source code can be classified into different types. Clone types impose syntactic constraints on the
differences between siblings [19, 140]: type 1 is limited to differences in layout and comments,
type 2 further allows literal changes and identifier renames and type 3 in addition allows statement
changes, additions or deletions. The clone types form a hierarchy: type-3 clones contain type-2
clones, which contain type-1 clones. Type-2 clones (including type-1 clones) are also referred to as
ungapped clones.

For clones in other artifact types than source code, no clone type classifications have been estab-
lished so far. However, similar syntactic criteria could be used to create classifications for clones in
data flow models [86] and requirements specifications.

2.2.4 Clone Management, Assessment and Control

Software clone management comprises all activities of “looking after and making decisions about
consequences of copying and pasting” [141], including the prevention of clone creation and the
consistent maintenance and removal of existing clones.

Software clone assessment, as employed by this thesis, is an activity that detects clones in software
artifacts and quantifies its impact on engineering activities.

Software clone control, as employed by this thesis, is part of the process of quality control [48].
Quality control compares the actual quality of a system against its quality requirements and takes
necessary actions to correct the difference. The quality requirement for clone control is twofold:
first, to keep the amount of clones in a system low; second, to alleviate the negative consequences
of existing clones in a system. Consequently, clone control analyzes the results of clone assessment
and takes necessary actions to reduce the amount of clones and to simplify the maintenance of
remaining clones. Clone control is thus a continuous process that is performed as part of quality
control that employs activities from clone management.

25

2 Fundamentals

2.3 Notions of Program Similarity

Programs encode problem domain knowledge in different ways. Data structures encode properties
of concepts; identifiers define and reference domain entities and algorithms implement behavior and
processes from a problem domain. Duplication of problem domain information in the code can lead
to different types of program similarity.

Many different notions of program similarity exist [228]. In this section, we differentiate between
representational and behavioral similarity of code. Both representational and behavioral similarity
can represent problem domain knowledge duplication.

2.3.1 Program-Representation-based Similarity

Numerous clone detection approaches have been suggested [140,201]. All of them statically search
a suitable program representation for similar parts. Amongst other things, they differ in the program
representation they work on and the search algorithms they employ2. Consequently, each approach
has a different notion of similarity between the code fragments it can detect as clones.

The employed notions comprise textual, metrics and feature-based similarity [228]. From a theoret-
ical perspective, they can be generalized into the notion of normalized information distance [155].
Since normalized information distance is based on the uncomputable Kolmogorov complexity, it
cannot be employed directly. Instead, existing approaches use simpler notions that are efficiently
computable. We classify them by the type of behavior-invariant variation they can compensate
when recognizing equivalent code fragments and by the differences they tolerate between similar
code fragments.

Text-based approaches detect clones that are equal on the character level. Token-based approaches
can perform token-based filtering and normalization. They are thus robust against reformatting, doc-
umentation changes or renaming of variables, classes or methods. Abstract syntax tree (AST)-based
approaches can perform grammar-level normalization and are thus furthermore robust against dif-
ferences in optional keywords or parentheses. Program dependence graph (PDG)-based approaches
are somewhat independent of statement order and are thus robust against reordering of commutative
statements. In a nutshell, existing approaches exhibit varying degrees of robustness against changes
to duplicated code that do not change its behavior.

Some approaches also tolerate differences between code fragments that change behavior. Most ap-
proaches employ some normalization that removes or replaces special tokens and can make code
that exhibits different behavior look equivalent to the detection algorithm. Moreover, several ap-
proaches compute characteristic vectors for code fragments and use a distance threshold between
vectors to identify clones. Depending on the approach, characteristic vectors are computed from
metrics, e. g., function-level size and complexity, [139, 170] or AST fragments [16, 106]. Further-
more, ConQAT [115] detects clones that differ up to an absolute or relative edit distance.

In a nutshell, notions of representational similarity as employed by state of the art clone detection
approaches differ in the types of behavior-invariant changes they can compensate and the amount of

2Please refer to Section 3.3 for a comprehensive overview of existing clone detection approaches.

26

2.3 Notions of Program Similarity

int x, y, z;

z = x∗y ; i n t x ’ = x ;
z = 0 ;
w h i l e (x ’ > 0) {

z += y ;
x ’ −= 1 ;

}
w h i l e (x ’ < 0) {

z −= y ;
x ’ += 1 ;

}

Figure 2.2: Code that is behaviorally equal but not representationally similar.

further deviation they allow between code fragments. The amount of deviation that can be tolerated
in practice is, however, severely limited by the amount of false positives it produces.

2.3.2 Behavioral Similarity

Besides their representational aspects, programs can be compared based on their behavior. Be-
havioral program similarity is not employed by existing clone detectors3. However, we introduce
behavioral notions of program similarity since we employ them later to reason about the limitations
of clone detection (cf., Chapter 9).

Several notions of behavioral or semantic similarity have been suggested [228]. In this work, we
focus on similarity in terms of I/O behavior. We choose this notion for several reasons. It is more
robust against transformations than, e. g., execution curve similarity [228] or strong program schema
equivalence [98, 203]. Furthermore, it is habitually employed in the specification of interactive
systems [26] and best captures our intuition.

For a piece of code (i. e., a sequence of statements) we call all variables written by this code its
output variables and all variables which are read and do have an impact on the outputs its input

variables. Each of the variables has a type which is uniquely determined from the context of the
code. We can then interpret this code as a function from valuations of input variables to valuations
of output variables, which is trivially state-less (and thus side-effect free), as we captured all global
variables in the input and output variables.

We call two pieces of code behaviorally equal, iff they have the same sets of input and output
variables (modulo renaming) and are equal with respect to their function interpretation. So, for each
input valuation they have to produce the same outputs. An example of code that is behaviorally
equal but not representationally similar is shown in Figure 2.24.

3While there are some approaches that refer to themselves as semantic clone detection, e. g., PDG based approaches,
we argue that they use a representational notion of similarity, since the PDG is a program representation.

4Variable x’ on the right side is introduced to avoid modification of the input variable x.

27

2 Fundamentals

For practical purposes, often not only strictly equal pieces of code are relevant, but also similar
ones. We call such similar code a simion. Simions are behaviorally similar code fragments where
behavioral similarity is defined w.r.t. input/output behavior. The specific definition of similarity is
task-specific. One definition would be to allow different outputs for a bounded number of inputs.
This would capture code with isolated differences (e.g., errors), for example in boundary cases.
Another one could tolerate systematic differences, such as different return values for errors, or the
infamous “off by one” errors. A further definition of similarity is compatibility in the sense that one
simion may replace another in a specific context.

The detection of simions that are not representationally similar is beyond the scope of this thesis.

Simion versus Clone Most definitions of software clones denote a common origin of the
cloned code fragments [227], as is also the case in biology: Haldane coined the term “clone”
from the Greek word for twig, branch [90]. We want to be able to investigate code similarities
independent of their mode of creation, however. Using a term that in most of its definitions im-
plies duplication from a single ancestor as a mode of creation is thus counter-intuitive. We thus
deliberately introduce the term “simion” to avoid confusion.

For the sake of clarity, we relate the term to those definitions of “clone” that are most closely
related: accidental clones denote code fragments that have not been created by copy & paste [1].
Their similarity results typically from constraints or interaction-protocols imposed by the same
libraries or APIs they use. However, while they are similar w.r.t. those constraints or protocols,
they do not need to be similar on the behavioral level5. Semantic clones denote code fragments
whose program dependence graph fragments are isomorphic [73]. Since the program dependence
graphs are abstractions of the program semantics, and thus do not capture them precisely, they can,
but do not need to have similar behavior. Type-4 clones as defined by [200] as “two or more code
fragments that perform the same computation but are implemented by different syntactic variants”
are comparable to simions. However, we prefer a term that does not include the word “clone” as
this implies that one similar instance is derived from another which is not the case if they have been
developed independently.

2.4 Terms and Definitions

This section introduces further terms that are central to this thesis.

Software Artifacts A software artifact is a file that is created and maintained during the life cy-
cle of a software system. It is part of the system or captures knowledge about it. Examples include
requirements specifications, models and source code. From the point of view of analysis, an artifact
is regarded as a collection of atomic units. For natural language texts, these units can be words or
sentences. For source code, tokens or statements. For data-flow models such as Matlab/Simulink,
atomic units are basic model blocks such as addition or multiplication blocks. The type of data

5In other words, even though the code of two UI dialogs looks similar in parts since the same widget toolkit is used, the
dialogs can look and behave very different.

28

2.5 Clone Metrics

structure according to which the atomic units are arranged varies between artifact types. Require-
ments specifications and source code, are considered as sequences of units. Data-flow models as
graphs of units.

We use the term requirements specification according to IEEE Std 830-1998 [100] to denote a spec-

ification for a particular software product, program, or set of programs that performs certain func-

tions in a specific environment. A single specification can comprise multiple individual documents.
We use the term use case to refer to a requirements specification written in use case form. Use cases
describe the interaction between the system and a stakeholder under various conditions [37]. We
assume use cases to be in text form.

We use the term data-flow model to refer to models as used in the embedded domain, such as
Matlab/Simulink or ASCET models. A single data-flow model can comprise multiple physical
model files.

Size Metrics Lines of code (LOC) denote the sum of the lines of code of all source files, includ-
ing comments and blank lines. Source statements (SS) are the number of all source code statements,
not taking commented or blank lines and code formatting into account. For models, size metrics
typically refer to blocks or elements, instead of lines or statements. The number of blocks denote the
size of a Matlab/Simulink models in terms of atomic elements. The redundancy free source state-

ments (RFSS) are the number of source statements, if cloned source statements are only counted
once. RFSS thus estimates the size of a system from which all clones are perfectly removed.

Failure and Fault We use the term failure to denote an incorrect output of a software visible to
the user. A fault is the cause in the source code of a potential failure.

Method We employ the term method according to Balzert6 to denote “a systematic, justified
procedure to accomplish specified goals”.

2.5 Clone Metrics

The case studies and methods presented in the following chapters employ several clone-related
metrics. They are defined and illustrated in the following. The metrics are employed in this or in
similar form by several clone detection approaches [140, 201].

2.5.1 Example

To make the metrics more tangible, we use a running example. Figure 2.3 shows the structure of
the example artifacts and their contained clones.

6Translated from German by the author.

29

2 Fundamentals

�� �� ��

� � �

�� ��

�� ��

��

��

Figure 2.3: Running example

The example contains three artifact files A-C and three candidate clone groups a-c. Candidate
clone group a has three candidate clones, covering all artifacts. Group b has two candidate clones,
covering artifacts A and B. Group c has four candidate clones, with c1 and c2 located in artifacts A

and B respectively, and c3 and c4 located in artifact C. Groups b and c overlap. Dimensions of the
artifacts and the candidate clone groups are depicted in Table 2.1.

Table 2.1: Dimensions

A B C a b c

Length 60 100 40 5 40 10

We interpret the example for source code, requirements specifications and models below. Length is
measured in lines for source code and requirements and in model elements for models. The primary
difference in the case of models is that their clones are not consecutive file regions, but subgraphs
of the model graph. A visualization of the models and their candidate clones would thus look less
linear than Figure 2.3.

Source Code Artifacts A to C are textual source code files in Java. Artifacts A and B implement
business logic for a business information system. A implements salary computation for employ-
ees, B implements salary computation for freelancers. C contains utility methods that compute
salaries.

The candidate clones of candidate clone group a contain import statements that are located at the
start of the Java files. Clone group b contains the basic salary computation functionality. Clone
group c contains a tax computation routine which is used both for salary computation of employees
and freelancers and in the utility methods of file C.

30

2.5 Clone Metrics

Java import statements map between local type names used in a file and fully qualified type names
employed by the compiler. Modern IDEs automate management of import statements. They are thus
not modified manually during typical software maintenance tasks. Redundancy in import statements
thus does not affect maintenance effort.

Requirements Specifications Artifacts A to C are use case documents. Document A de-
scribes use case “Create employee account”, document B use case “Create freelancer account”.
Document C describes use case “create customer” and contains primary and alternative scenarios.

The clones of clone group a contain document headers that are common to all use case documents.
Clone group b contains preconditions, steps and postconditions of generic account creation. Clones
of clone group c contain post conditions that hold both after account creation and for both the
primary and alternative scenario of customer creation.

Data-Flow Models Artifacts A to C are Matlab/Simulink files that are part of a single model.
Each file represents a separate subsystem. Whereas the clones of clone groups b and c encode
similar PID controllers, the clone candidates of candidate clone group a only comprise connectors
blocks, they are thus not relevant for maintenance.

Relevance From a maintenance perspective, candidate clone group a is not relevant. In the
source code case, it contains import statements that are automatically maintained by modern IDEs—
no manual import statement maintenance takes place that could benefit from knowledge of clone
relationships. In the requirements specification case, it contains a document header that does not
get maintained manually in each document. Changes to the header are automatically replicated for
all documents by the text processor used to edit the requirements specifications. In the model case,
the connectors establish the syntactic subsystem interface. Consistency of changes to it is enforced
by the compiler. Similarly, no manual maintenance takes place that could make use of knowledge
about clone relations. The candidate clones in group a are thus not relevant clones for the task of
software maintenance. The remaining clone groups, however, are relevant.

2.5.2 Metric Template

Each metric is introduced following a fixed template. Its definition defines the metric and specifies
its scale and range. Its determination describes whether the value for the metric can be determined
fully automatically by a tool or whether human judgement is required. Its example paragraph com-
putes the metric for the example artifacts and clone groups.

The role of the metrics for clone assessment, and thus the interpretation of their values for software
engineering activities is described in detail in Chapter 8. This section thus only briefly summarizes
the purpose of each metric.

31

2 Fundamentals

2.5.3 Clone Counts

Definition 1 Clone group count is the number of clone groups detected for a system. Clone count

is the total number of clones contained in them.

Clone counts are used during clone assessment to reveal how many parts of the system are affected
by cloning. Both counts have a ratio scale and range between [0, ∞[.

Determination Both counts are trivially determined automatically.

Example For the example, the clone group count is 3, the clone count is 9. If clone group a is
removed, clone group count is reduced to 2 and clone count to 6.

2.5.4 Overhead

Definition 2 Overhead is the size increase of a system due to cloning.

Overhead is used in the evaluation of the cloning-induced effort increase in size-related activities.
It is measured in relative and absolute terms:

overhead_rel =
size

redundancy free size
− 1

If the size is > 0, the redundancy free size can never be 0. Overhead is thus always defined for all
artifacts of size > 0. The subtraction of 1 from the ratio size

redundancy free size
makes the overhead_rel

quantify only the size excess.

overhead_abs = size − redundancy free size

Both have a ratio scale and range between [0,∞[.

Determination Overhead is computed on the clone groups detected for a system. The accuracy
of the overhead metric thus depends on the accuracy of the clones on which it is computed.

32

2.5 Clone Metrics

Example To compute overhead for source code, we employ statements as basic units. The re-
dundancy free source statements (RFSS) for artifact A are computed as the sum of:

15 statements that are not covered by any clone—they account for 15 RFSS for file A.

The 5 statements that are covered by clone a1 occur 3 times altogether. They thus only account
for 5 · 1

3 = 12
3 RFSS for file A.

The 30 statements that are covered by clone b1 but not by clone c1 occur 2 times. They thus
only account for 30 · 1

2 = 15 RFSS for file A.

The 10 statements that are covered by both clones b1 and c1 occur 4 times. They thus account
for 10 · 1

4 = 21
2 RFSS for file A.

In all, file A thus has 15 + 12
3 + 15 + 21

2 = 341
6 RFSS. Since file A has 60 statements altogether,

overhead = 60
34 1

6

− 1 = 75.6%.

RFSS for artifacts A-C is 130, corresponding overhead is overhead = 200
130 − 1 = 53.8%. If clone

groups a is excluded since it is not relevant to maintenance, RFSS increases to 140 and overhead
decreases to 42.9%.

To compute overhead for other artifacts, we choose different artifact elements as basic units. For
requirements specifications, we employ sentences as basic units; for models, model elements. Over-
head for them is computed analogously.

2.5.5 Clone Coverage

Definition 3 Clone coverage is the probability that an arbitrarily chosen element in a system is

covered by at least one clone.

Clone coverage is used during clone assessment to estimate the probability that a change to one
statement needs to be made to additional statements due to cloning. It is defined as follows, where
cloned size is the number of units covered by at least one clone, and size is the number of all units:

coverage =
cloned size

size

Clone coverage has a ratio scale and ranges between [0,1].

Determination Just as overhead, coverage is computed on the clone groups detected for a sys-
tem. The accuracy of the coverage metric thus depends on the accuracy of the underlying clones.

33

2 Fundamentals

Example Just as for overhead, we employ source statements as basic units to compute coverage
for source code. The cloned size for artefact A is computed as follows:

Clone a1 accounts for 5 cloned statements.

Clone b1 accounts for 40 cloned statements.

Clone c1 spans 10 statements. However, all of them are also spanned by clone b1. Clone c1

does thus not account for additional cloned statements.

The cloned size for artifact A is thus 5 + 40 = 45. Since A has a size of 60, its coverage is
45
60 = 0.75%. If clone group a is ignored since it is not relevant for maintenance, coverage for A is
reduced to 40

60 = 66.7%.

The coverage for all three artifacts is 115
200 = 57.5%, if clone group a is included, else 100

200 = 50%.

For artifact types other than source code, basic units are chosen differently, but coverage is computed
analogously.

2.5.6 Precision

Definition 4 Precision is the fraction of clone groups that are relevant to software maintenance,

or a specific task, for which clone information is employed. It can be computed on clones or clone

groups.

Based on the sets of candidate clone groups and relevant clone groups, it is defined as follows:

precision_CG =
|{relevant clone groups} ∩ {candidate clone groups}|

|{candidate clone groups}|

Precision based on clones, precision_C, is computed analogously. Both precision metrics have ratio
scales and range between [0, 1].

Determination Precision is determined through developer assessments of samples of the de-
tected clones. For each clone group, developers assess whether it is relevant for software mainte-
nance, that is, whether changes to the clones are expected to be coupled. To achieve reliable and
repeatable manual clone assessments, explicit relevance criteria are required.

Since in practice the set of detected clones is often too large to be feasibly assessed entirely, preci-
sion is typically determined on a representative sample of the candidate clone groups.

Example In the example, clone group a is not relevant for software maintenance. The remaining
clone groups are relevant. Consequently, precisionCC = 2

3 , precisionC = 6
9 = 2

3 .

34

2.6 Data-flow Models

1

Out
Set

1.8

P

2.5

Max

z

1

I-Delay

0.7

I

<

Compare

1

In

1

Out

2

P

z

1

I-Delay

.2

I

z

1

D-Delay
.5

D

1

In

Figure 2.4: Examples: Discrete saturated PI-controller and PID-controller

2.6 Data-flow Models

Model-based development methods [188]—development of software not on the classical code level
but with more abstract models specific to the domain—are gaining importance in the domain of
embedded systems. These models are used to automatically generate production code7. In the
automotive domain, already up to 80% of the production code deployed on embedded control units
can be generated from models specified using domain-specific formalisms like Matlab/Simulink
[118].

These models are taken from control engineering. Block diagrams—similar to data-flow diagrams—
consisting of blocks and lines are used in this domain as structured description of these systems.
Thus, blocks correspond to functions (e. g., integrators, filters) transforming input signals to output
signals, lines to signals exchanged between blocks. The description techniques specifically address-
ing data-flow systems are targeting the modeling of complex stereotypical repetitive computations,
with computation schemes largely independent of the computed data and thus containing little or
no aspects of control flow. Typical applications of those models are, e. g., signal processing algo-
rithms.

Recently, tools for this domain—with Matlab/Simulink [169] or ASCET-SD as examples—are used
for the generation of embedded software from models of systems under development. To that end,
these block diagrams are interpreted as descriptions of time- (and value-)discrete control algorithms.
By using tools like TargetLink [58], these descriptions are translated into the computational part of
a task description; by adding scheduling information, these descriptions are then combined – often
using a real-time operating system—to implement an embedded application.

Figure 2.4 shows two examples of simple data-flow systems using the Simulink notation. Both
models are feedback controllers used to keep a process variable near a specified value. Both models
transform a time- and value-discrete input signal In into an output signal Out, using different types
of basic function blocks: gains (indicated by triangles, e. g., P and I), adders (indicated by circles,
with + and − signs stating the addition or subtraction of the corresponding signal value), one-unit
delays (indicated by boxes with 1

z
, e. g., I-Delay), constants (indicated by boxes with numerical

values, e. g., Max), comparisons (indicated by boxes with relations, e. g., Compare), and switches

(indicated by boxes with forks, e. g., Set).

7The term “model-based” is often also used in the context of incomplete specifications that do mainly serve documen-
tation purposes. Here however, we focus on models that are employed for full code generation.

35

2 Fundamentals

Systems are constructed by using instances of these types of basic blocks. When instantiating basic
blocks, depending on the block type, different attributes are defined, e. g., constants get assigned a
value, or comparisons are assigned a relation. For some blocks, even the possible input signals are
declared. For example, for an adder, the number of added signals is defined, as well as the corre-
sponding signs. By connecting them via signal lines, (basic) blocks can be combined to form more
complex blocks, allowing the hierarchic decomposition of large systems into smaller subsystems.

2.7 Case Study Partners

This section gives a short overview of the companies or organizations that participated in one or
more of the case studies.

Munich Re Group The Munich Re Group is one of the largest re-insurance companies in the
world and employs more than 47,000 people in over 50 locations. For their insurance business, they
develop a variety of individual supporting software systems.

Lebensversicherung von 1871 a.G. The Lebensversicherung von 1871 a.G. (LV 1871) is
a Munich-based life-insurance company. The LV 1871 develops and maintains several custom
software systems for mainframes and PCs.

Siemens AG is the largest engineering company in Europe. The specification used here was
obtained from the business unit dealing with industrial automation.

MOST Cooperation is a partnership of car manufacturers and component suppliers that defined
an automotive multimedia protocol. Key partners include Audi, BMW and Daimler.

MAN Nutzfahrzeuge Group is a Germany-based international supplier of commercial vehicles
and transport systems, mainly trucks and buses. It has over 34,000 employees world-wide of which
150 work on electronics and software development. Hence, the focus is on embedded systems in
the automotive domain.

2.8 Summary

This chapter introduced clones as a form of logical redundancy and compared it with other notions
of redundancy used in computer science. Based thereon, it defined the central terms and metrics
employed in this thesis. Besides, the chapter introduced the companies that took part in industrial
case studies that are presented in later chapters.

36

3 State of the Art

This chapter summarizes existing work in the research area of software cloning in support of the
claims made in the thesis statement (cf., Section 1.1). More specifically, it summarizes work on the
impact of cloning on software engineering and on approaches for its assessment and control1.

The structure of this chapter reflects the organization of this thesis: Section 3.1 outlines work on
the impact of cloning on program correctness. Section 3.2 outlines work on the extent of cloning
in different software artifact types. Section 3.3 outlines existing clone detection approaches and
argues why novel ones had to be developed. Section 3.4 outlines work on clone assessment and
management. Finally, Section 3.5 outlines work on the limitations of clone detection.

Each section summarizes existing work, outlines open issues and points to the chapters in this thesis
that contribute to their resolution.

3.1 Impact on Program Correctness

It is widely accepted that cloning can, in principle, impede maintenance through its induced increase
in artifact size and necessity of multiple, consistent updates required for a single change in problem
domain information. However, there is no consensus in the research community on how harmful
cloning is in practice. A survey on the harmfulness of cloning by Hordijk et al. [93] concludes that “a
direct link between duplication and changeability has not been proven yet, but not rejected either”.
Consequently, a number of researchers have performed empirical studies to better understand the
extent of the impact on maintenance efforts and, especially, on program correctness.

Clone Related Bugs Li et al. [157] present an approach to detect bugs based on inconsistent re-
naming of identifiers between clones. Jiang, Su and Chiu [159] analyze different contexts of clones,
such as missing if statements. Both papers report the successful discovery of bugs in released soft-
ware. In [4], [237], [216] and [7], individual cases of bugs or inconsistent bug fixes discovered by
analysis of clone evolution are reported for open source software. These studies thus confirm cases
where inconsistencies between clones indicated bugs, supporting the claim for negative impact of
clones for program correctness.

1A comprehensive overview of software cloning research in general is beyond the scope of this thesis. Please refer to
Koschke [140] and Roy and Cordy [201] for detailed surveys.

37

3 State of the Art

Clone Evolution Indication for the harmfulness of cloning for maintainability or correctness
is given by several researchers. Lague et al. [149], report inconsistent evolution of a substantial
amount of clones in an industrial telecommunication system. Monden et al. [178] report a higher
revision number for files with clones than for files without in a 20 year old legacy system, possi-
bly indicating lower maintainability. In [132, 133], Kim et al. report that many changes to code
clones occur in a coupled fashion, indicating additional maintenance effort due to multiple change
locations. Thummalapenta, Aversano Cerulo and Di Penta [4, 216] report that high proportions of
bug fixes occur for clones that show late propagations, i. e., inconsistent changes that are later made
consistent, indicating that cloning delayed the removal of bugs from the system, or that the incon-
sistencies introduced bugs that were later repaired. Lozano and Wermelinger [163, 193] report that
maintenance effort may increase when a method has clones.

In contrast, doubt that consequences of cloning are unambiguously harmful is raised by several
recent research results. Krinke [147] reports that only half the clones in several open source systems
evolved consistently and that only a small fraction of inconsistent clones becomes consistent again
through later changes, potentially indicating a larger degree of independence of clones than hitherto
believed. Geiger et al. [76] report that a relation between change couplings and code clones could,
contrary to expectations, not be statistically verified. Lozano and Wermelinger [163] report that
no systematic relationship between code cloning and changeability could be established. In [148],
Krinke reports that in a set of open source systems, cloned code is more stable than non-cloned code
and concludes that it thus cannot be assumed to require more maintenance costs in general.

Bettenburg et al. [20] analyzed the impact of inconsistent changes to clones on program correctness.
Instead of analyzing individual changes, they analyzed only released software versions. Of the
analyzed bugs in the two systems, only 1.3% and 2.3% were found to be due to inconsistent changes
to code clones, indicating a small impact of cloning on program correctness. Rahman et al. [189]
analyze relation between code cloning and bugs and report that, in the analyzed systems, cloned
code contains less bugs than non-cloned code.

Due to the diversity of the results produced by the studies on clone evolution, it is hard to draw
conclusions w.r.t. the harmfulness of cloning. This is emphasized by the results from Göde [83],
who analyzes evolution of type-1 clones in 9 open source systems to validate findings from previous
studies on clone evolution. He reports that the ratio of consistent and inconsistent changes to cloned
code varies substantially between the analyzed systems, making conclusions difficult.

Cloning Patterns Through cloning patterns, Kapser and Godfrey [123] contrast motivation and
impact of cloning as a design decision with alternative solutions. They report that cloning can be a
justifiable or even beneficial development action in special situations, i. e., where severe language
limitations or code ownership issues prohibit generic solutions. Notably however, while they argue
that lack of, or problems associated with alternative solutions can make up for them, they emphasize
that for all cloning patterns the negative impact of cloning still holds.

Summary The effect of cloning on maintainability and correctness is thus not clear. Further-
more, the above listed publications suffer from one or more shortcomings that limit the transferabil-
ity of the reported findings.

38

3.1 Impact on Program Correctness

Many studies employ clone detectors in their default configuration without adapting them to
the analyzed systems or tasks [4,7,76,147,148,163,189]. As a consequence, no differentiation
is made, e. g., between clone candidates in hand-maintained or generated code, although clone
candidates in generated code are irrelevant for maintenance. The employed notion of “clone”
is thus purely syntactic and task-related precision unclear. For example, for one of the analyzed
systems, Krinke reports that more than half of the detected clones were in code generated by
a parser generator [148]. However, they were not excluded from the study, thus diluting its
conclusiveness w.r.t. to the impact of cloning.

Instead of manual inspection of the actual inconsistent clones to evaluate impact for mainte-
nance and correctness, indirect measures are used [4, 76, 83, 147–149, 163, 178]. For example,
change coupling, the ratio between consistent and inconsistent evolution of clones or code
stability are analyzed, instead of actual maintenance efforts or faults. Indirect measures are
inherently inaccurate and can easily lead to misleading results: unintentional differences and
faults, e. g., while unknown to developers, exhibit the same evolution pattern as intentionally
independent evolution and are thus prone to misclassification. Furthermore, inconsistencies
that are faults that have not yet been discovered, or have been fixed in different ways, can
incorrectly be classified as intentional independent evolution.

Apart from their inaccuracy, the interpretation of the indirect measures is disputable. This is
apparent for the measure of code stability as an indicator for maintainability. One the one
hand, higher stability of cloned versus non-cloned code, could be interpreted as an indicator
for lower maintenance costs of cloned code, as, e. g., done by [148]; fewer changes could mean
less costs. On the other hand, it can be interpreted as an indicator for lower maintainability—
developers might shirk changing cloned code due to the increased effort—indicating higher
overall maintenance costs! Support for the latter interpretation is, e. g., given by Glass [81],
who reports more changes for more maintainable applications than for unmaintainable code,
simply because development exploits the fact that changes are easier to make.

The analyzed systems are too small (20 kLOC) to be representative [132,133] or omit analysis
of industrial software [4, 7, 76, 83, 132, 133, 147, 148, 163, 189].

The analyses specifically focus on faults introduced during creation [157,159] or evolution [7]
of clones, inhibiting quantification of inconsistencies in general. Or, in the case of [20], only
look at bugs in released software, thus ignoring efforts for testing, debugging and fixing of
clone-related bugs introduced and fixed during development.

Additional empirical research outside these limitations is required to better understand the impact
of cloning [140, 201]. In particular, the impact of cloning on program correctness is insufficiently
understood.

Problem It is still not well understood, how strongly unawareness of cloning during maintenance

affects program correctness. However, as this is the central motivation driving the development of
clone management tools, we consider this precarious.

Contribution Chapter 4 presents a large scale case study that studies the impact of unawareness
of cloning on program correctness. It employs developer rating of the actual inconsistent clones
instead of indirect measures, the study objects are both open source and industrial systems, and

39

3 State of the Art

inconsistencies have been analyzed independently of their mode of creation. It does, hence, not
suffer from the above mentioned shortcomings.

3.2 Extent of Cloning

Cloning has been studied intensely for source code. Little work, however, has been done on cloning
in other artifact types. This section outlines existing work on the extent of cloning in different
artifact types.

Source Code The majority of the research in the area of software cloning focuses on source
code. Both for the evaluation of detection approaches and for the analysis of the impact of cloning,
a substantial number of results for different code bases have been published [1, 3, 4, 7, 33, 60, 83,
84, 110, 115, 133, 140, 147, 148, 157, 159, 161, 162, 164, 178, 189, 193, 195, 198, 199, 201, 216]. They
comprise source code from systems of different size and age, from different domains, development
teams and written in different programming languages. While the amount of detected cloning varies,
these studies convincingly show that cloning can occur in source code independent of domain,
programming language or developing organization. The studies that have been performed in the
course of this thesis support this observation.

Requirements Specifications The negative effects of cloning in programs, in principle, also
apply to cloning in software requirements specifications (SRS). As SRS are read and changed of-
ten (e. g., during requirements elicitation, software design, and test case specification), redundancy
is considered an obstacle to requirements modifiability [100] and listed, for instance, as a major
problem in automotive requirements engineering [230].

In general, structuring of requirements and manual inspection—based, e. g., on the criteria of
[100]—are used for quality assessment concerning redundancy. As it requires human action, it
does introduce subjectiveness and causes high expenses. In addition, approaches exist to me-
chanically analyze other quality attributes of natural language requirements specifications, espe-
cially ambiguity-related issues like weak phrases, lack of imperative, or readability metrics as in,
e. g., [28, 66, 101, 233]. However, redundancy has not been in the focus of analysis tools.

Algorithms for commonalities detection in documents have been developed in several other areas.
Clustering algorithms for document retrieval, such as [231], search for documents on topics similar
to those of a reference document. Plagiarism detection algorithms, like [44, 165], also address
the detection of commonalities between documents. However, while these approaches search for
commonalities between a specific document and a set of reference documents, clone detection also
needs to consider clones within a single document. Furthermore, we are not aware of studies that
apply them to requirements specifications to discover requirements cloning.

40

3.3 Clone Detection Approaches

Models Up to now, little work has been done on clone detection in model-based development.
Consequently, we have little information on how likely real-world models contain clones, and thus,
how important clone detection and management is for model-based development.

In [160], Liu et al. propose a suffix-tree based algorithm for clone detection in UML sequence
diagrams. They evaluated their approach on sequence diagrams from two industrial projects from a
single company, discovering 15% of duplication in the set of 35 sequence diagrams in the first and
8% of duplication in the 15 sequence diagrams of the second project.

In [186] and [180], Pham et al. and Nguyen et al. present clone detection approaches for Mat-
lab/Simulink models. Their evaluation is limited to freely available models from MATLAB Central
though, that mainly serve educational purposes. It thus does not allow conclusions about the amount
of cloning in industrial Matlab/Simulink models.

Summary Although requirements have a pivotal role in software engineering, and even though
redundancy has long been recognized as an obstacle for requirements modification [100], to the
best of our knowledge, no analysis of cloning in requirements specifications has been published
(except for the work published as part of this thesis). We thus do not know whether cloning occurs
in requirements and needs to be controlled.

Although model-based development is gaining importance in industry [188], except for the analysis
of cloning in sequence diagrams, no studies on cloning in models have been published (except for
the work published as part of this thesis). We thus do not know how relevant clone detection and
management is for model-based development.

Problem Substantial research has analyzed cloning in source code. However, very little research has
been carried out on cloning in other software artifacts. It is thus unclear whether cloning primarily
occurs in source code, or also needs to be controlled for other software artifacts such as requirements
specifications and models.

Contribution To advance our knowledge of the extent and impact of cloning in other artifacts,
Chapter 5 presents a large scale industrial case study on cloning in requirements specifications
that analyzes extent and impact of cloning in 28 specifications from 11 companies. It indicates
that cloning does abound in some specifications and gives indications for its negative impact. The
chapter furthermore presents an industrial case study on cloning in Matlab/Simulink models that
demonstrates that cloning does occur in industrial models—clone detection and management are,
hence, also beneficial for requirements specifications and in model-based development.

3.3 Clone Detection Approaches

Both empirical research on the significance of cloning and methods for clone assessment and control
require clone detectors. In its first part, this section gives a general overview of existing code clone
detection approaches. Then, it presents approaches for real-time clone detection of type-2 and eager
detection of type-3 clones in source code and clone detection in graph-based models in detail and
identifies their shortcomings. This section thus motivates and justifies the development of novel
detection approaches that are presented in Chapter 7.

41

3 State of the Art

3.3.1 Code Clone Detection

The clone detection community has proposed very many different approaches, the vast majority of
them for source code. They differ in the program representation they operate on and in the search
algorithm they employ to find clones. We structure them here according to their underlying program
representation. This section focuses on code clone detection. Approaches for other artifacts are
presented in Section 3.3.4.

Text-based clone detection operates on a text-representation of the source code and is thus lan-
guage independent. Thus, text-based detection tools typically cannot differentiate between seman-
tics changing and semantics invariant changes. Approaches include [41, 61, 62, 108, 167, 202].

Token-based clone detection operates on a token stream produced from the source code by a scan-
ner. It is thus language dependent, since a scanner encodes language-specific information. However,
compared to parsers or compilers, scanners are comparatively easy to produce and robust against
compile errors. Token-based clone detection allows token-type specific normalization, such as re-
moval of comments or renaming of literals and identifiers. It is thus robust against certain semantics
invariant changes to source code. Approaches include [6, 14, 85, 85, 88, 113, 121, 157, 210, 220].

AST-based clone detection operates on the (abstract) syntax tree produced from the source code by
a parser. It thus requires more language-specific infrastructure than token-based detection, but can
be made robust against further classes of program variation, such as different concrete syntaxes for
the same abstract syntax element. Approaches include [16,29,36,65,67,106,142,182,213,226].

Metrics-based approaches cut the program into fragments (e. g., methods) and compute a metric
vector—containing e. g., lines of code, nesting depth, number of paths, and number of calls to other
functions—for each. Fragments with similar vectors are then considered clones. Since the metrics
abstract from syntactic features of the source code, these approaches are also robust against certain
types of differences between clones. Approaches include [138, 139, 170].

PDG-based approaches operate on the program dependence graph (PDG) and search it for isomor-
phic subgraphs. On the one hand, they are robust against further types of program variation that
cannot be easily detected by other approaches, such as statement reordering. On the other hand,
they make the highest demands w.r.t. available programming language infrastructure to create a
PDG. Approaches include [73, 137, 146].

Assembler-based approaches employ techniques from the above approaches but operate on the
assembler or intermediate language code produced by the compiler, instead of on source code.
On the one hand, they are robust against program variation removed during compilation, such as
interchangeable loop constructs. On the other hand, they have to deal with redundancy created by
the compiler through replacement of a single higher-level language statement, like a loop, through
a series of lower level language statements. Approaches include [45, 204] for assembler and [213]
for .NET intermediate language code.

Each program representation the detection approaches operate on represents a different trade-off
between several factors: language-independence, robustness against program variation and perfor-
mance being among the most important. Increasing sophistication of program representation (text,

42

3.3 Clone Detection Approaches

token, AST, PDG) increases robustness against program variation, since more information for nor-
malization and similarity computation is available. However, at the same time it decreases language
independence and performance.

Hybrid approaches have, consequently, been proposed that attempt to combine the advantages of
individual approaches. Wrangler [154] employs a hybrid token/AST-based approach that exploits
the performance of token-based clone detection and employs the AST to make sure that the detected
clones represent syntactically well-formed program entities that are amendable to certain refactoring
techniques. KClone [105] first operates on the token level to exploit the performance of token-based
clone detection and then operates on a graph-based representation to increase recall.

3.3.2 Real-Time Clone Detection

Clone management tools rely on accurate cloning information to indicate cloning relationships in
the IDE while developers maintain code. To remain useful, cloning information must be adapted
continuously as the software system under development evolves. For this, detection algorithms need
to be able to very rapidly adapt results to changing code, even for very large code bases. We classify
existing approaches based on their scalability and their ability to rapidly update detection results to
changes to the code.

Eager Algorithms As outlined in Section 3.3.1, a multitude of clone detection approaches have
been proposed. Independent of whether they operate on text [41, 62, 202], tokens [6, 113, 121],
ASTs [16, 106, 142] or program dependence graphs [137, 146], and independent of whether they
employ textual differencing [41, 202], suffix-trees [6, 113, 121], subtree hashing [16, 106], anti-
unification [30], frequent itemset mining [157], slicing [137], isomorphic subgraph search [146]
or a combination of different phases [105], they operate in an eager fashion: the entire system is
processed in a single step by a single machine.

The scalability of these approaches is limited by the amount of resources available on a single ma-
chine. The upper size limit on the amount of code that can be processed varies between approaches,
but is insufficient for very large code bases. Furthermore, if the analyzed source code changes,
eager approaches require the entire detection to be rerun to achieve up-to-date results. Hence, these
approaches are neither incremental nor sufficiently scalable.

Incremental or Real-time Detection Göde and Koschke [85,85] proposed the first incremen-
tal clone detection approach. They employ a generalized suffix-tree that can be updated efficiently
when the source code changes. The amount of effort required for the update only depends on the
size of the change, not the size of the code base. Unfortunately, generalized suffix-trees require
substantially more memory than read-only suffix-trees, since they require additional links that are
traversed during the update operations. Since generalized suffix-trees are not easily distributed
across different machines, the memory requirements represent the bottleneck w.r.t. scalability. Con-
sequently, the improvement in incremental detection comes at the cost of reduced scalability and
distribution.

43

3 State of the Art

Yamashina et al. [126] propose a tool called SHINOBI that provides real-time cloning information to
developers inside the IDE. Instead of performing clone detection on demand (and incurring waiting
times for developers), SHINOBI maintains a suffix-array on a server from which cloning informa-
tion for a file opened by a developer can be retrieved efficiently. Unfortunately, the authors do not
approach suffix-array maintenance in their work. Real-time cloning information hence appears to
be limited to an immutable snapshot of the software. We thus have no indication that their approach
works incrementally.

Nguyen et al. [182] present an AST-based incremental clone detection approach. They compute
characteristic vectors for all subtrees of the parse tree of a code file. Clones are then detected by
searching for similar vectors. If the analyzed software changes, vectors for modified files are simply
recomputed. As the algorithm is not distributed, its scalability is limited by the amount of memory
available on a single machine. Furthermore, AST-based clone detection requires parsers. Unfortu-
nately, parsers for legacy languages such as PL/I or COBOL are often hard to obtain [150]. How-
ever, according to our experience (cf., Chapter 4), such systems often contain substantial amounts
of cloning. Clone management is hence especially relevant for them.

Scalable Detection Livieri et al. [162] propose a general distribution model that distributes
clone detection across many machines to improve scalability. Their distribution model partitions
source code into pieces small enough (e. g., 15 MB) to be analyzed on a single machine. Clone
detection is then performed on all pairs of pieces. Different pairs can be analyzed on different
machines. Finally, results for individual pairs are composed into a single result for the entire code
base. Since the number of pairs of pieces increases quadratically with system size, the analysis
time for large systems is substantial. The increase in scalability thus comes at the cost of response
time.

Summary We require clone detection approaches that are both incremental and scalable to effi-
ciently support clone control of large code bases.

Problem eager clone detection is not incremental. The limited memory available on a single ma-
chine furthermore restricts its scalability. Novel incremental detection approaches come at the cost
of scalability, and vice versa. In a nutshell, no existing approach is both incremental and scalable to
very large code bases.

Contribution Chapter 7 introduces index-based clone detection as a novel detection approach for
type-1&2 clones that is both incremental and scalable to very large code bases. It extends practical
applicability of clone detection to areas that were previously unfeasible since the systems were too
large or since response times were unacceptably long. It is available for use by others as open source
software.

3.3.3 Detection of Type-3 Clones

The case study that investigates impact of unawareness of cloning on program correctness (cf., Sec-
tion 3.1) requires an approach to detect type-3 (cf., Sec 2.2.3) clones in source code. We classify

44

3.3 Clone Detection Approaches

existing approaches for type-3 clone detection in source code according to the program representa-
tion they operate on and outline their shortcomings.

Text In NICAD, normalized code fragments are compared textually in a pairwise fashion [202]. A
similarity threshold governs whether text fragments are considered as clones.

Token Ueda et al. [220] propose post-processing of the results of token-based detection of exact
clones that composes type-3 clones from neighboring ungapped clones. In [157], Li et al. present
the tool CP-Miner, which searches for similar basic blocks using frequent subsequence mining and
then combines basic block clones into larger clones.

Abstract Syntax Tree Baxter et al. [16] hash subtrees into buckets and perform pairwise com-
parison of subtrees in the same bucket. Jiang et al. [106] propose the generation of characteristic
vectors for subtrees. Instead of pairwise comparison, they employ locality sensitive hashing for vec-
tor clustering, allowing for better scalability than [16]. In [65], tree patterns that provide structural
abstraction of subtrees are generated to identify cloned code.

Program Dependence Graph Krinke [146] proposes a search algorithm for similar subgraph iden-
tification. Komondoor and Horwitz [137] propose slicing to identify isomorphic PDG subgraphs.
Gabel, Jiang and Su [73] use a modified slicing approach to reduce the graph isomorphism problem
to tree similarity.

Summary We require a type-3 clone detection algorithm to study the impact of unawareness of
cloning on program correctness.

Problem The existing approaches provided valuable inspiration for the algorithm presented in this
thesis. However, none of them was applicable to study the impact of unawareness of cloning on
program correctness, for one or more of the following reasons:

Tree [16,65,106] and graph [73,137,146] based approaches require the availability of suitable
context free grammars for AST or PDG construction. While feasible for modern languages
such as Java, this poses a severe problem for legacy languages such as COBOL or PL/I, where
suitable grammars are not available. Parsing such languages still represents a significant chal-
lenge [62, 150].

Due to the information loss incurred by the reduction of variable size code fragments to
constant-size numbers or vectors, the edit distance between inconsistent clones cannot be con-
trolled precisely in feature vector [106] and hashing based [16] approaches.

Idiosyncrasies of some approaches threaten recall. In [220], inconsistent clones cannot be
detected if their constituent exact clones are not long enough. In [73], inconsistencies might
not be detected if they add data or control dependencies, as noted by the authors.

Scalability to industrial-size software of some approaches has been shown to be infeasible
[137, 146] or is at least still unclear [65, 202].

For most approaches, implementations are not publicly available.

45

3 State of the Art

Contribution Chapter 7 presents a novel algorithm to detect type-3 clones in source code. In
contrast to the above approaches, it supports both modern and legacy languages including COBOL
and PL/I, allows for precise control of similarity in terms of edit distance on program statements, is
sufficiently scalable to analyze industrial-size projects in reasonable time and is available for use by
others as open source software.

3.3.4 Detection of Clones in Models

To analyze the extent of cloning in Matlab/Simulink models, and to assess and control existing
clones in them during maintenance, we need a suitable clone detection algorithm. In this section,
we discuss related work in clone detection on models and outline shortcomings.

Model-based Clone Detection Up to now, little work has been done on clone detection in
model-based development. In [160], Liu et. al. propose a suffix-tree based algorithm for clone
detection in UML sequence diagrams. They exploit the fact that parallelism-free sequence diagrams
can be linearized in a canonical fashion, since a unique topological order for them exists. This way,
they effectively reduce the problem of finding common subgraphs to the simpler problem of finding
common substrings. However, since a unique, similarity preserving topological order cannot be
established for Matlab/Simulink models, their approach is not applicable to our case.

A problem which could be considered as the dual of the clone detection problem is described by
Kelter et. al. in [128] where they try to identify the differences between UML models (usually
applied to different versions of a single model). In their approach they rely on calculating pairs of
matching elements (i. e., classes, operations, etc.) based on heuristics including the similarity of
names, and exploiting the fact that UML is represented as a rooted tree in the XMI used as storage
format, making it inappropriate for our context.

In [186], Pham et al. present a clone detection approach for Matlab/Simulink. It builds on the
approach presented in this thesis and was, thus, not available to us when we developed it.

Graph-based Clone Detection Graph-based approaches for code clone detection could, in
principle, also be applied to Matlab/Simulink. In [137], Komondoor and Horwitz propose a com-
bination of forward and backward program slicing to identify isomorphic subgraphs in a program
dependence graph. Their approach is difficult to adapt to Matlab/Simulink models, since their ap-
plication of slicing to identify similar subgraphs is very specific to program dependence graphs.
In [146], Krinke also proposes an approach that searches for similar subgraphs in program depen-
dence graphs. Since the search algorithm does not rely on any program dependence graph specific
properties, it is in principle also applicable to model-based clone detection. However, Krinke em-
ploys a rather relaxed notion of similarity that is not sensitive to topological differences between
subgraphs. Since topology plays a crucial role in data-flow languages, we consider this approach to
be sub-optimal for Matlab/Simulink models.

46

3.4 Clone Assessment and Management

Graph Theory Probably the most closely related problem in graph theory is the well known
NP-complete Maximum Common Subgraph problem. An overview of algorithms is presented by
Bunke et al. [31]. Most practical applications of this problem seem to be studied in chemoinformat-
ics [191], where it is used to find similarities between molecules. However, while typical molecules
considered there have up to about 100 atoms, many Matlab/Simulink models consist of thousands
of blocks and thus make the application of exact algorithms as applied in chemoinformatics infea-
sible.

Summary We require a clone detection algorithm for Matlab/Simulink models to investigate the
extent of cloning in industrial Matlab/Simulink models.

Problem While the existing approaches for clone detection in graphs and models provided valuable
inspiration, none is suitable to study the extent of cloning in industrial Matlab/Simulink models.

Contribution Chapter 7 presents a novel clone detection approach for data-flow models that is
suitable for Matlab/Simulink and scales to industrial-size models.

3.4 Clone Assessment and Management

This section outlines work related to clone management; to be comprehensive, we interpret this to
comprise all work that employs clone detection results to support software maintenance.

3.4.1 Clone Assessment

Clone detection tools produce clone candidates. Just because the syntactic criteria for type-x clone
candidates are satisfied, they do not necessarily represent duplication of problem domain knowl-
edge. Hence, they are not necessarily relevant for software maintenance. If precision is interpreted
as task relevance, existing clone detection approaches, hence, produce substantial amounts of false
positives. Clone assessment needs to achieve high precision to get conclusive cloning informa-
tion.

The existence of false positives in produced clone candidates has been reported by several re-
searchers. Kapser and Godfrey report between 27% and 65% of false positives in case studies
investigating cloning in open source software [122]. Burd and Bailey [32] compared three clone
detection and two plagiarism detection tools using a single small system as study object. Through
subjective assessments, 38.5% of the detected clones were rejected as false positives. A more com-
prehensive study was conducted by Bellon et al. [19]. Six clone detectors were compared using eight
different subject systems. A sample of the detected clones was judged manually by Bellon. It was
found that—depending on the detection technique—a large amount of false positives are among the
detected clones. Tiarks et al. [217] categorized type-3 clones detected by different state-of-the-art
clone detectors according to their differences. Before categorization, they manually excluded false
positives. They found that up to 75% of the clones were false positives.

Walenstein et al. [229] reveal caveats involved in manual clone assessment. Lack of objective
clone relevance criteria results in low inter-rater reliability. Similar results are reported by Kapser

47

3 State of the Art

et al. [124]. Their work emphasizes the need for measurement of inter-rater reliability to make sure
objective clone relevance criteria are used.

Some work has been done on tailoring clone detectors to improve their accuracy: Kapser and God-
frey propose to filter clones based on the code regions they occur in. They report that such filters
can successfully remove false positives in regions of stereotype code without substantially affecting
recall [122]. In addition, all clone detection tools expose parameters whose valuations influence re-
sult accuracy. For some individual tools and systems, their effect on the quantity of detected clones
has been reported [121]. However, we are not aware of systematic methods on how result accuracy
can be improved.

Summary Unfortunately, there is no common, agreed-upon understanding of the criteria that
determine the relevance of clones for software maintenance. This is reflected in the multitude of
different definitions of software clones in the literature [140, 201]. This lack of relevance criteria
introduces subjectivity into clone judgement [124,229], making objective conclusions difficult. The
negative consequences become obvious in the study done by Walenstein et al. [229]: three judges
independently performed manual assessments of clone relevance; since no objective relevance cri-
teria were given, judges applied subjective criteria, rating only 5 out of 317 candidates consistently.
Obviously, such low agreement is unsuited as a basis for improvement of clone detection result
accuracy.

Problem Clone detection tools produce substantial amounts of false positives, threatening the cor-
rectness of research conclusions and the adoption of clone detection by industry. However, we lack
explicit criteria that are fundamental to make unbiased assessments of detection result accuracy;
consequently, we lack methods for its improvement.

Contribution Chapter 8 introduces clone coupling as an explicit criterion for the relevance of code
clones for software maintenance. It outlines a method for clone detection tailoring that employs
clone coupling to improve result accuracy. The results of two industrial case studies indicate that
developers can estimate clone coupling consistently and correctly and show the importance of tai-
loring for result accuracy.

3.4.2 Clone Management

In [141], Koschke provides a comprehensive overview of the current work on clone management.
He follows Lague et al. [149] and Giesecke [78] in dividing clone management activities into three
areas: preventive management aims to avoid creation of new clones; compensative management
aims to alleviate impact of existing clones and corrective management aims to remove clones.

Clone Prevention The earlier problems in source code are identified, the easier they are to fix.
This also holds for code clones. In [149], Lague et al. proposes to prevent the creation of new clones
by analyzing code that gets committed to the central source code repository. In case a change adds
a clone, it needs to pass a special approval process to be allowed to be added to the system.

Several processes [5, 51, 177] employ manual reviews of changes before the software can go into
production. The LEvD process [51] we employ for the development of ConQAT, e. g., requires

48

3.4 Clone Assessment and Management

all code changes to be reviewed before a release. Manual review is supported by analysis tools,
including clone detection. Clones thus draw attention during reviews and are, in most cases, marked
as review findings that need to be consolidated by the original author. While this scheme does not
prevent clones from being introduced into the source code repository, it does prevent them from
being introduced into the released code base.

Existing clone prevention focuses on the clones, not on their root causes. However, while causes for
cloning remain, maintainers are likely to continue to create clones. To be effective, clone prevention
hence needs to analyze—and rectify—the causes for cloning.

Clone Compensation Clone indication tools point out areas of cloned code to the developer
during maintenance of code in an IDE. Their goal is to increase developer awareness of cloning
and thus make unintentionally inconsistent changes less likely. Examples include [46, 59, 60, 92,
94, 102, 103, 218]. Real-time clone detection approaches have been proposed to quickly deliver
update-to-date clone information for evolving software to clone indication tools [126, 235].

Linked editing tools replicate modifications made to one clone to its siblings [218]. They thus
promise to reduce the modification overhead caused by cloning and the likelihood to make uninten-
tionally inconsistent modifications. A similar idea is implemented by CReN [102] that consistently
renames identifiers in cloned code.

Both clone indication and linked editing tools operate on the source code level. In a large system,
clone comprehension, and thus clone compensation, can be supported through tools that offer inter-
active visualizations at different levels of abstraction. Examples include [219], [238] and [125].

Besides supporting comprehension of clones in a single system version, clone tracking tools aim to
support comprehension of the evolution of clones in a system. Several tools to analyze the evolution
of cloning have been proposed, including [60, 83, 85, 85, 132, 133, 181, 216]. In [91], Harder and
Göde discuss that clone tracking and management face obstacles and raise costs in practice.

Clone Removal Several authors have investigated corrective clone management. Fanta and Ra-
jlich [68] report on an industrial case study in which certain clone types were removed manually
from a C++ system. They identify the lack of dedicated tool support for clone removal as an ob-
stacle for clone consolidation. Such tool support is proposed by other authors: Komondoor [136]
investigates automated clone consolidation through procedure extraction. Baxter et al. [16] proposes
to generate C++ macro bodies as abstractions for clone groups and macro invocations to replace the
clones. In [8], Balazinska et al. present an approach that consolidates clones through application
of the strategy design pattern [74]; in their later paper [9], the same authors present a approach to
support system refactoring to remove clones. In a more recent paper, the idea to suggest refactor-
ings based on the results from clone detection is elaborated by Li and Thompson in [154] for the
programming language Erlang.

Several authors have identified language limitations as one reason for cloning [140,201]. To counter
this, some authors have investigated further means to remove cloning. Murphy-Hill et al. study
clone removal using traits [179]. Basit et al. study clone removal in C++ using a static meta pro-
gramming language [15].

49

3 State of the Art

Organizational Change Management Existing research in clone management primarily deals
with technical challenges. But, to achieve adoption, and thus impact on software engineering prac-
tice, further obstacles have to be overcome. In his keynote speech published in [40], Jim Cordy
outlines barriers in adoption of program comprehension techniques, including clone detection, by
his industrial partners. Cordy does not mention technical challenges or immaturity of existing ap-
proaches, but instead business risks, management structures and social and cultural issues as cen-
tral barriers to adoption. His reports confirm that adoption of clone detection or management ap-
proaches by industry faces challenges beyond the capabilities of the employed tools. Work of other
researchers confirms challenges in research adoption beyond technical issues [38, 69, 209].

Introducing clone management to reduce the negative impact of cloning on maintenance efforts
and program correctness, is not a problem that can be solved simply by installing suitable tools.
Instead, it requires changes of the work habits of developers. To be successful, introduction of
clone management must thus overcome obstacles that arise when established processes and habits
are to be changed.

Challenges faced when changing professional habits are not specific to the introduction of clone
management. Instead, they are faced by all changes to development processes, including the intro-
duction of development or quality analysis tools. Furthermore, they are not limited to changes to the
development process, but instead permeate all organizational changes. This has been realized long
ago—management literature contains a substantial body of knowledge on how to successfully co-
erce established habits into new paths [43, 130,143–145, 152,153], some dating back to 1940ies.

Summary The research community produced substantial work on clone management, targeting
prevention, compensation and removal of cloning. Much of this work focuses on a single manage-
ment aspect, for example clone indication or tracking. However, the challenges faced by successful
clone management are not limited to developing appropriate tools. Instead, they require both an
understanding of the causes for cloning and changes to existing processes and developer behavior.
Changing established behavior is hard. Work in organizational change management has shown that
it encounters obstacles that need to be addressed for changes to succeed in the long term. This
is confirmed by reports on reluctance to adopt clone management [40] and other quality analysis
approaches [38] in industry.

Problem Successful introduction of clone management requires changes to established processes
and habits. Existing work on clone management, however, focuses primarily on tools for individual
management tasks. This does not facilitate organizational change management. Without it, though,
clone management approaches are unlikely to achieve long-term success in practice.

Contribution Chapter 8 presents a method to introduce clone control into a software maintenance
project. It adapts results from organizational change management to the domain of software cloning.
Furthermore, it documents causes of cloning and their solutions for effective clone prevention. The
chapter presents a long term industrial case study that shows that the method can be employed to
successfully introduce clone control, and reduce the amount of cloning, in practice.

50

3.5 Limitations of Clone Detection

3.5 Limitations of Clone Detection

Several studies investigate which clones certain detection approaches can find. However, to un-
derstand limitations of clone management in practice, we must understand which duplication they
cannot find. This section outlines research on detection of program similarity beyond cloning cre-
ated by copy & paste.

Simion Detection Several authors dealt with the problem of finding behaviorally similar code,
although often only for a specific kind of similarity.

An early paper on the subject by Marcus and Maletic [167] deals with the detection of so called high-

level concept clones. Their approach is based on reducing code chunks (usually methods or files) to
token sets, and performing latent semantic indexing (LSI) and clustering on these sets to find parts
of code that use the same vocabulary. The paper reports on finding multiple list implementations
in a case study, but does not quantify the number of clones found or the precision of the approach.
Limitations are identified especially in the case of missing or misleading comments, as these are
included in the clone search.

The work of Kawrykow and Robillard [127] aims at finding methods in a Java program which
reimplement functions available in libraries (APIs) used by the program. Therefore, methods are
reduced to the set of classes, methods, and fields used, which are extracted from the byte-code, and
then matched pairwise to find similar methods. Additional heuristics are employed to reduce the
false positive rate. Application to ten open source projects identified 405 “imitations” of API meth-
ods with an average precision of 31% (worst precision 4%). Since the entire set of all “imitations”
of the methods is unclear, the recall is unknown.

Nguyen et al. [183] apply a graph mining algorithm to a normalized control/data-flow graph to find
“usage patterns” of objects. The focus of their work is not the detection of cloning, but rather of
similar but inconsistent patterns, which hint at bugs. The precision of this process is about 20%2.
Again, w.r.t. simion detection, recall is unclear.

The paper [107] by Jiang et al. introduces an approach that can be summarized by dynamic equiva-

lence checking. The basic idea is, that if two functions are different, they will return different results
on the same random input with high probability. Their tool, called EQMINER, detects functionally
equivalent functions in C code dynamically by executing them on random inputs. Using this tool,
they find 32,996 clusters of similar code in a subset of about 2.8 million lines of the Linux ker-
nel. Using their clone detector Deckard they report that about 58% of the behaviorally similar code
discovered is syntactically different. Since no systematic inspection of the clusters is reported, no
precision numbers are available. Again, due to several practical limitations of the approach (e. g.,
randomization of return values to external API calls), the recall w.r.t. simion detection is unclear.

In [1], Al-Ekram et al. search for cloning between different open-source systems using a token-
based clone detector. They report that, to their surprise, they found little behaviorally similar code
across different systems, although the systems offered related functionality. The clones they did
find were typically in areas where the use of common APIs imposed a certain programming style,

2When including “code that could be improved for readability and understandability” as flaws, the paper reports near
40% precision.

51

3 State of the Art

thereby limiting program variation. However, since the absolute amount of behaviorally similar
code between the different systems is unknown, it is unclear whether the small amount of detected
behaviorally similar clones is due to their absence in the analyzed systems, or due to limitations of
clone detection.

In [12, 13], Basit and Jarzabek propose approaches to detect higher-level similarity patterns in soft-
ware. Their approach employs conventional clone detection and groups detected clones according
to different relation types, such as call relationships between the clones. While their approach helps
to comprehend detected clones through inferring structure, it does not detect more redundancy than
conventional clone detection, since it builds on it. It does thus not improve our understanding of the
limitations of clone detection w.r.t. simion detection.

Algorithm Recognition The goal of algorithm recognition [2, 176, 232] is to automatically
recognize different forms of a known algorithm in source code. Just as clone detection, it has to
cope with program variation. The most fundamental difference w.r.t. similar code detection is that
for algorithm recognition as proposed by [176, 232], the algorithms to be recognized need to be
known in advance.

Summary Existing work on comparison of clone detection approaches [19, 196, 197, 200] has
shed light on the capabilities of clone detection to detect clones created through copy & paste
& modify. However, we know little about the limitations of clone detection w.r.t. discovery of
behaviorally similar code that is not a result of copy & paste but has been created independently.

Problem We do not know how structurally different independently developed code with similar be-
havior actually is. As a result, it is unclear to which extent real world programs contain redundancy
that cannot be attributed to copy & paste, although intuition tells us that large projects are expected
to contain multiple implementations of the same functionality. As a consequence, we do not know
if we can discover simions that result from independent implementation of redundant requirements
on the code level.

Contribution Chapter 9 presents the results of a controlled experiment that analyzes the amount
of program variation in over 100 implementations of a single specifications that were produced
independently by student teams. It shows that existing clone detection approaches—not only ex-
isting detectors—are poorly suited to detect simions that have not been created by copy & paste,
emphasizing the need to avoid creation of simions in the first place.

52

4 Impact on Program Correctness

Much of the research in clone detection and management is based on the assumption that unaware-
ness of cloning during maintenance threatens program correctness. This assumption, however,
has not been validated empirically. We do not know how well aware of cloning developers are,
and conversely, how strongly a lack of awareness impacts correctness. The impact of cloning on
program correctness is, hence, insufficiently understood. The importance of cloning—and clone
management—remains thus unclear.

This chapter analyzes the impact of unawareness of cloning on program correctness through a large
industrial case study. It thus contributes to the better understanding of the impact of cloning and the
importance to perform clone detection and clone management in practice. Parts of the content of
this chapter have been published in [115].

4.1 Research Questions

We summarize the study using the goal definition template as proposed in [234]:

Analyze cloning in source code

for the purpose of characterization and understanding

with respect to its impact on program correctness

from the viewpoint of software developer and maintainer

in the context of industrial and open source projects

Therefore, a set of industrial and open source projects are used as study objects. In detail, we
investigate the following 4 research questions:

RQ 1 Are clones changed independently?

The first question investigates whether type-3 clones appear in real-world systems. Besides whether
we can find them, it explores if they constitute a significant part of the total clones of a system. It
does not make sense to analyze inconsistent changes to clones if they are a rare phenomenon.

RQ 2 Are type-3 clones created unintentionally?

Having established that there are type-3 clones in real systems, we analyze whether they have been
created intentionally or not. It can be sensible to change a clone so that it becomes a type-3 clone,
if it has to conform to different requirements than its siblings. On the other hand, unintentional
differences can indicate problems that were not fixed in all siblings.

53

4 Impact on Program Correctness

Figure 4.1: Clone group sets

RQ 3 Can type-3 clones be indicators for faults?

After establishing these prerequisites, we can determine whether the type-3 clones are indicators for
faults in real systems.

RQ 4 Do unintentional differences between type-3 clones indicate faults?

This question determines the importance of clone management in practice. Are unintentionally
created type-3 clones likely to indicate faults? If so, the reduction of unintentionally inconsistent
modifications can reduce the likelihood of errors. If not, clone management is less useful in prac-
tice.

4.2 Study Design

We analyze the sets of clone groups as shown in Fig. 4.1: the outermost set contains all clone
groups C in a system; IC denotes the set of type-3 clone groups; UIC denotes the set of type-
3 clone groups whose differences are unintentional; the differences between the siblings are not
wanted. The subset F of UIC comprises those type-3 clone groups with unintentional differences
that indicate a fault in the program. We focus on clone groups, instead of on individual clones, since
differences between clones are revealed only by comparison, and thus in the context of a clone
group, and not apparent in the individual clones when regarded in isolation. Furthermore, we do not
distinguish between created and evolved type-3 clones—for the question of faultiness, it does not
matter when the differences have been introduced.

The independent variables in the study are development team, programming language, functional
domain, age and size. The dependent variables are explained below.

RQ 1 investigates the existence of type-3 clones in real-world systems. To answer it, we analyze
the size of set IC with respect to the size of set C. We apply our type-3 clone detection approach (cf.,
Section 7.3.4) to all study objects, perform manual assessment of the detected clones to eliminate
false positives and calculate the type-3 clone ratio |IC|/|C|.

54

4.3 Study Objects

RQ 2 investigates whether type-3 clones are created unintentionally. To answer it, we compare
the size of the sets UIC and IC. The sets are populated by showing each identified type-3 clone
to developers of the system and asking them to rate the differences as intentional or unintentional.
This gives us the unintentionally inconsistent clone ratio |UIC|/|IC|.

RQ 3 investigates whether type-3 clones indicate faults. To answer it, we compute the size of set
F in relation to the size of IC. The set F is, again, populated by asking developers of the respective
system. Their expert opinion classifies the clones into faulty and non-faulty. We only analyze type-3
clones with unintentional differences. Our faulty inconsistent clone ratio |F|/|IC| is thus a lower
bound, as potential faults in intentionally different type-3 clones are not considered.

Based on this ratio, we create a hypothesis to answer RQ 3. We need to make sure that the fault
density in the inconsistencies is higher than in randomly picked lines of code. This leads to the
hypothesis H:

The fault density in the inconsistencies is higher than the average fault density.

As we do not know the actual fault densities of the analyzed systems, we need to resort to average
values. The span of available numbers is large because of the high variation in software systems.
Endres and Rombach [64] give 0.1–50 faults per kLOC as a typical range. For the fault density in
the inconsistencies, we use the number of faults divided by the logical lines of code of the incon-
sistencies. We refrain from testing the hypothesis statistically because of the low number of data
points as well as the large range of typical defect densities.

RQ 4 investigates whether unintentionally different type-3 clones indicate faults. To answer it,
we compute the size of set F in relation to the size of set UIC. Again, the faulty unintentionally

inconsistent clone ratio |F|/|UIC| is a lower bound, as potential faults in intentionally different
clones are not considered.

4.3 Study Objects

Since we required the willingness of developers to participate in clone inspections and clone detec-
tion tailoring, we had to rely on our contacts with industry in our choice of study objects. However,
we chose systems with different characteristics to increase generalizability of the results.

We chose 2 companies and 1 open source project as sources of software systems. We chose systems
written in different languages, by different teams in different companies and with different function-
alities. The objects included 3 systems written in C#, a Java system as well as a long-lived COBOL
system. All of them are in production. For non-disclosure reasons, we gave the commercial systems
names from A to D. An overview is shown in Table 4.1.

Although systems A, B and C are all owned by Munich Re, they were each developed by different
organizations. They provide substantially different functionality, ranging from damage prediction,
over pharmaceutical risk management to credit and company structure administration. The systems

55

4 Impact on Program Correctness

Table 4.1: Summary of the analyzed systems

System Organization Language Age Size
(years) (kLOC)

A Munich Re C# 6 317
B Munich Re C# 4 454
C Munich Re C# 2 495
D LV 1871 COBOL 17 197
Sysiphus TUM Java 8 281

support between 10 and 150 expert users each. System D is a mainframe-based contract manage-
ment system written in COBOL employed by about 150 users. The open source system Sysiphus1

is developed at the Technische Universität München (but the author of this thesis has not been
involved in its development). It constitutes a collaboration environment for distributed software
development projects. We included an open source system because, as the clone detection tool is
also freely available, the results can be externally replicated2. This is not possible with the detailed
confidential results of the commercial systems.

4.4 Implementation and Execution

RQ 1 For all systems, our clone detector ConQAT was executed by a researcher to identify type-
3 clone candidates. On an 1.7 GHz notebook, the detection took between one and two minutes
for each system. The detection was configured to not cross method boundaries, since experiments
showed that type-3 clones that cross method boundaries in many cases did not capture semantically
meaningful concepts. This is also noted for type-2 clones in [142] and is even more pronounced
for type-3 clones. In COBOL, sections in the procedural division are the counterpart of Java or C#
methods—clone detection for COBOL was limited to these.

For the C# and Java systems, the algorithm was parameterized to use 10 statements as minimal
clone length, a maximum edit distance of 5, a maximal gap ratio (i. e., the ratio of edit distance and
clone length) of 0.2 and the constraint that the first 2 statements of two clones must be equal. Due
to the verbosity of COBOL [62], minimal clone length and maximal edit distance were doubled to
20 and 10, respectively. Generated code that is not subject to manual editing was excluded from
clone detection, since incomplete manual updates obviously cannot occur. Normalization of identi-
fiers and constants was tailored as appropriate for the analyzed language, to allow for renaming of
identifiers while avoiding too high false positive rates. These settings were determined to represent
the best combination of precision and recall during cursory experiments on the analyzed systems,
for which random samples of the detected clones were assessed manually.

The detected clone candidates were then manually rated by the author to remove false positives—
code fragments that, although identified as clone candidates by the detection algorithm, have no se-
mantic relationship. Type-3 and ungapped (type-1 and type-2) clone group candidates were treated

1http://sysiphus.in.tum.de/
2http://wwwbroy.in.tum.de/~ccsm/icse09/

56

4.5 Results

differently: all type-3 clone group candidates were rated, producing the set of type-3 clone groups
IC. Since the ungapped clone groups were not required for further steps of the case study, instead
of rating all of them, a random sample of 25% was rated, and false positive rates then extrapolated
to determine the number of ungapped clones.

RQs 2, 3 and 4 The type-3 clone groups were presented to the developers of the respective
systems using ConQAT’s clone inspection viewer. The developers rated whether the clone groups
were created intentionally or unintentionally. If a clone group was created unintentionally, the
developers also classified it as faulty or non-faulty. For the Java and C# systems, all type-3 clone
groups were rated by the developers. For the COBOL system, rating was limited to a random sample
of 68 out of the 151 type-3 clone groups, since the age of the system and the fact that the original
developers were not available for rating increased rating effort. Thus, for the COBOL case, the
results for RQ 2 and RQ 3 were computed based on this sample. In cases where intentionality or
faultiness could not be determined, e. g., because none of the original developers could be accessed
for rating, the inconsistencies were treated as intentional and non-faulty.

4.5 Results

RQ 1 The quantitative results of our study are summarized in Table 4.2. Except for the COBOL
system D, the precision values are smaller for type-3 clone groups than for ungapped clone groups.
This is not unexpected, since type-3 clone groups allow for more deviation. The high precision
results of system D result from the rather conservative clone detection parameters chosen due to
the verbosity of COBOL. For system A, stereotype database access code of semantically unre-
lated objects gave rise to lower precision values. About half of the clones (52%) are strict type-3
clones—their clones differ beyond identifiers names literal or constant values. Therefore, RQ 1
can be answered positively: clones are changed independently, resulting in type-3 clones in their
systems.

Table 4.2: Summary of the study results

Project A B C D Sysiphus Sum Mean

Precision ungapped clone groups 0.88 1.00 0.96 1.00 0.98 — 0.96
Precision type-3 clone groups 0.61 0.86 0.80 1.00 0.87 — 0.83
Clone groups |C| 286 160 326 352 303 1427 —
Type-3 clone groups |IC| 159 89 179 151 146 724 —
Unintent. diff. type-3 groups |UIC| 51 29 66 15 42 203 —
Faulty clone groups |F | 19 18 42 5 23 107 —
RQ 1 |IC|/|C| 0.56 0.56 0.55 0.43 0.48 — 0.52
RQ 2 |UIC|/|IC| 0.32 0.33 0.37 0.10 0.29 — 0.28
RQ 3 |F |/|IC| 0.12 0.20 0.23 0.03 0.16 — 0.15
RQ 4 |F |/|UIC| 0.37 0.62 0.64 0.33 0.55 — 0.50
Inconsistent logical lines 442 197 797 1476 459 3371 —
Fault density in kLOC−1 43 91.4 52.7 3.4 50.1 — 48.1

57

4 Impact on Program Correctness

Figure 4.2: Different UI behavior: right side does not use operations (Sysiphus)

RQ 2 From these type-3 clones, over a quarter (28%) has been introduced unintentionally. Hence,
RQ 2 can also be answered positively: Type-3 clones are created unintentionally in many cases.
Only system D exhibits a lower value, with only 10% of unintentionally created type-3 clones.
With about three quarters of intentional changes, this shows that cloning and changing code seems
to be a frequent pattern during development and maintenance.

RQ 3 At least 3-23% of the differences represented a fault. Again, the by far lowest number
comes from the COBOL system. Ignoring it, the total ratio of faulty type-3 clone groups goes up to
18%. This constitutes a significant share that needs consideration. To judge hypothesis H, we also
calculated the fault densities. They lie in the range of 3.4–91.4 faults per kLOC. Again, system D is
an outlier. Compared to reported fault densities in the range of 0.1 to 50 faults and considering that
all systems are not only delivered but even have been productive for several years, we consider our
results to support hypothesis H. On average, the inconsistencies contain more faults than average
code. Hence, RQ 3 can also be answered positively: type-3 clones can be indicators for faults in
real systems.

Although not central to our research questions, the detection of faults almost automatically raises the
question of their severity. As the fault effect costs are unknown for the analyzed systems, we cannot
provide a full-fledged severity classification. However, we provide a partial answer by categorizing
the found faults:

Critical: faults that lead to potential system crash or data loss. One example for a fault in
this category is shown in Figure 1.2 in Chapter 1. Here, one clone of the affected clone group
performs a null-check to prevent a null-pointer dereference, whereas the other does not. Other
examples we encountered are index-out-of-bounds exceptions, incorrect transaction handling
and missing rollbacks.

User-visible: faults that lead to unexpected behavior visible to the end user. Fig. 4.2 shows an
example: in one clone, the performed operation is not encapsulated in an operation object and,
hence, is handled differently by the undo mechanism. Further examples we found are incor-
rect end user messages, inconsistent default values as well as different editing and validation
behavior in similar user forms and dialogs.

58

4.6 Discussion

Non-user-visible: faults that lead to unexpected behavior not visible to the end user. Examples
we identified include unnecessary object creation, minor memory leaks, performance issues
like missing break statements in loops and redundant re-computations of cached values; dif-
ferences in exception handling, different exception and debug messages or different log levels
for similar cases.

Of the 107 faults found, 17 were categorized as critical, 44 as user-visible and 46 as non-user-visible
faults. Since all analyzed systems are in production, the relatively smaller number of critical faults
coincides with our expectations.

RQ 4 While the numbers are similar for the C# and Java projects, rates of unintentional incon-
sistencies and thus faults are comparatively low for project D, which is a legacy system written in
COBOL. To a certain degree, we attribute this to our conservative assessment strategy of treating
inconsistencies whose intentionality and faultiness could not be unambiguously determined as in-
tentional and non-faulty. Furthermore, interviewing the current maintainers of the systems revealed
that cloning is such a common pattern in COBOL systems, that searching for duplicates of a piece
of code is an integral part of their maintenance process. Compared to the developers of the other
projects, the COBOL developers where thus more aware of clones in the system.

The row |F |/|UIC| in Table 4.2 accounts for this difference in “clone awareness”. It reveals that,
while the rates of unintentional changes are lower for project D, the ratio of unintentional changes
leading to a fault is in the same range for all projects. From our results, it seems that about every
second to third unintentional change to a clone leads to a fault.

4.6 Discussion

Even considering the threats to validity discussed below, the results of the study show convincingly
that clones can lead to faults. The inconsistencies between clones are often not justified by different
requirements but can be explained by developer mistakes.

While the ratio of unintentionally inconsistent changes varied strongly between systems, we consis-
tently found across all study objects that unintentionally inconsistent changes are likely to indicate
faults. On average, in roughly every second case. We consider this as strong indication that clone
management is useful in practice, since it can reduce the likelihood of unintentionally inconsistent
changes.

4.7 Threats to Validity

We discuss how we mitigated threats to internal and external validity of our studies.

59

4 Impact on Program Correctness

4.7.1 Internal Validity

We did not analyze the evolution histories of the systems to determine whether the inconsistencies
have been introduced by incomplete changes to the system and not by random similarities of un-
related code. This has two reasons: (1) We want to analyze all type-3 clones, also the ones that
have been introduced directly by copy and modification in a single commit. Those might not be
visible in the repository. (2) The industrial systems do not have complete development histories.
We confronted this threat by manually analyzing each potential type-3 clone.

The comparison with average fault probability is not perfect to determine whether the inconsisten-
cies are more fault-prone than a random piece of code. A comparison with the actual fault densities
of the systems or actual checks for faults in random code lines would better suit this purpose. How-
ever, the actual fault densities are not available to us because of incomplete defect databases. To
check for faults in random code lines is practically not possible. We would need the developers’
time and willingness for inspecting random code. As the potential benefit for them is low, the
motivation would be low and hence the results would be unreliable.

As we ask the developers for their expert opinion on whether an inconsistency is intentional or
unintentional and faulty or non-faulty, a threat is that the developers do not judge this correctly.
One case is that the developer assesses something that is faulty incorrectly as non-faulty. This
case only reduces the chances to positively answer the research questions. The second case is that
the developers rate something as faulty which is no fault. We mitigated this threat by only rating
an inconsistency as faulty if the developer was entirely sure. Otherwise it was postponed and the
developer consulted colleagues who knew the corresponding part of the code better. Inconclusive
candidates were ranked as intentional and non-faulty. Again, only the probability to answer the
research question positively was reduced.

The configuration of the clone detection tool has a strong influence on the detection results. We
calibrated the parameters based on a pre-study and our experience with clone detection in general.
The configuration also varies over the different programming languages encountered, due to their
differences in features and language constructs. However, this should not strongly affect the detec-
tion of type-3 clones because we spent great care to configure the tool in a way that the resulting
clones are sensible.

We also pre-processed the type-3 clones that we presented to the developers to eliminate false
positives. This could mean that we excluded clones that were faulty. However, this again only
reduced the chances that we could answer our research question positively.

Our definition of clones and clone groups does not prevent different groups from overlapping with
each other; a group with two long clones can, e. g., overlap with a group with four shorter clones,
as, e. g., groups b and c in the example in Section 2.5.1. Substantial overlap between clone groups
could potentially distort the results. This did, however, not occur in the study, since there was no
substantial overlap between clone groups in IC. For system A, e. g., 89% of the cloned statements
did not occur in any other clone. Furthermore, overlap was taken into account when counting
faults—even if a faulty statement occurred in several overlapping clone groups, it was only counted
as a single fault.

60

4.8 Summary

4.7.2 External Validity

The projects were obviously not sampled randomly from all possible software systems but we relied
on our connections with the developers of the systems. Hence, the set of systems is not entirely
representative. The majority of the systems is written in C# and analyzing 5 systems in total is not a
high number. However, all 5 systems have been developed by different development organizations
and the C#-systems are technically different (2 web, 1 rich client) and provide substantially different
functionalities. We further mitigated this threat by also analyzing a legacy COBOL system as well
as an open source Java system.

4.8 Summary

This chapter presented the results of a large case study on the impact of cloning on program cor-
rectness. In the five analyzed systems, 107 faults were discovered through the analysis of uninten-
tionally inconsistent changes to cloned code. Of them, 17 were classified as critical by the system
developers; 44 could cause undesired program behavior that was visible to the user.

We observed two effects concerning the maintenance of clones. First, the awareness of cloning var-
ied substantially across the systems. Some developer teams were more aware of the existing clones
than others, resulting in different likelihoods of unintentionally inconsistent changes to cloned code.
Second, the impact of unawareness of cloning was consistent. On average, every second uninten-
tional inconsistency indicated a fault in the software. In a nutshell, while the amount of unawareness
of cloning varied between systems, it had a consistently negative impact.

The study results emphasize the negative impact of a lack of awareness of cloning during mainte-
nance. Consequently, they emphasize the importance of clone control. Since every second unin-
tentionally inconsistent change created a fault (or failed to remove a fault from the system), clone
control can provide substantial value, if it manages to decrease the likelihood of such changes—by
decreasing the extent and increasing the awareness of cloning.

61

5 Cloning Beyond Code

The previous chapter has shown that unawareness of clones in source code negatively affects pro-
gramm correctness. Cloning has, however, not been investigated in other artifact types. It is thus
unclear, whether clones occurs and should be controlled in other artifacts, too.

We conjecture that cloning can occur in all—including non-code—artifacts created and maintained
during software engineering, and that engineers need to be aware of clones when using them.

This chapter presents a large case study on clones in requirements specifications and data-flow
models. It investigates the extent of clones in these artifacts and its impact on engineering activities.
It demonstrates that cloning can occur in non-code artifacts and gives indication for its negative
impact. Parts of the content of this chapter have been published in [54, 57, 111].

5.1 Research Questions

We summarize the study using the goal definition template as proposed in [234]:

Analyze cloning in requirements specifications and models

for the purpose of characterization and understanding

with respect to its extent and impact on engineering activities

from the viewpoint of requirements engineer and quality assessor

in the context of industrial projects

Therefore, a set of specifications and models from industrial projects are used as study objects. We
further detail the objectives of the study using four research questions. The first four questions target
requirements specifications, the fifth targets data-flow models.

RQ 5 How accurately can clone detection discover cloning in requirements specifications?

We need an automatic detection approach for a large-scale study of cloning in requirements spec-
ifications. This question investigates whether existing clone detectors are appropriate, or if new
approaches need to be developed. It provides the basis for the study of the extent and impact of
requirements cloning.

RQ 6 How much cloning do real-world requirements specifications contain?

The amount of cloning in requirements specifications determines the relevance of this study. If they
contain little or no cloning, it is unlikely to have a strong impact on maintenance.

63

5 Cloning Beyond Code

RQ 7 What kind of information is cloned in requirements specifications?

The kind of information that is cloned influences the impact of cloning on maintenance. Is cloning
limited to, or especially frequent for, a specific kind of information contained in requirements spec-
ifications?

RQ 8 Which impact does cloning in requirements specifications have?

Cloning in code is known to have a negative impact on maintenance. Can it also be observed
for cloning in specifications? This question determines the relevance of cloning in requirements
specifications for software maintenance.

RQ 9 How much cloning do real-world Matlab/Simulink Models contain?

As for code and requirements specifications, the amount of cloning is an indicator of the importance
of clone detection and clone management for real-world Matlab/Simulink models.

5.2 Study Design

A requirements specification is interpreted as a single sequence of words. In case it comprises
multiple documents, individual word lists are concatenated to form a single list for the require-
ments specification. Normalization is a function that transforms words to remove subtle syntactic
differences between words with similar denotation. A normalized specification is a sequence of
normalized words. A specification clone candidate is a (consecutive) substring of the normalized
specification with a certain minimal length, appearing at least twice.

For specification clone candidates to be considered as clones, they must convey semantically similar
information and this information must refer to the system described. Examples of clones are dupli-
cated use case preconditions or system interaction steps. Examples of false positives are duplicated
document headers or footers or substrings that contain the last words of one and the first words of
the subsequent sentence without conveying meaning.

RQs 5 to 8 The study uses content analysis of specification documents to answer the research
questions. For further explorative analyses, the content of source code is also analyzed. Content
analysis is performed using ConQAT as clone detection tool as well as manually.

First, we assign requirements specifications to pairs of researchers for analysis. Assignment is
randomized to reduce any potential bias that is introduced by the researchers. Clone detection is
performed on all documents of a specification.

Next, the researcher pairs perform clone detection tailoring for each specification. For this, they
manually inspect detected clones for false positives. Filters are added to the detection configuration
so that these false positives no longer occur. The detection is re-run and the detected clones are

64

5.3 Study Objects

analyzed. This is repeated until no false positives are found in a random sample of the detected
clone groups. To answer RQ 5, precision before and after tailoring, categories of false positives and
times required for tailoring are recorded.

The results of the tailored clone detection comprise a report with all clones and clone metrics that are
used to answer RQ 6: clone coverage, number of clone groups and clones, and overhead. Overhead
is measured in relative and absolute terms. Standard values for reading and inspection speeds from
the literature are used to quantify the additional effort that this overhead causes. Overhead and
cloning-induced efforts are used to answer RQ 8.

For each specification, we qualitatively analyze a random sample of clone groups for the kind of in-
formation they contain. We start with an initial categorization from an earlier study [57] and extend
it, when necessary, during categorization (formally speaking, we thus employ a mixed theory-based
and grounded theory approach [39]). If a clone contains information that can be assigned to more
than one category, it is assigned to all suitable categories. The resulting categorization of cloned
information in requirements specifications is used to answer RQ 7. To ensure a certain level of
objectiveness, inter-rater agreement is measured for the resulting categorization.

In many software projects, SRS are no read-only artifacts but undergo constant revisions to adapt to
ever changing requirements. Such modifications are hampered by cloning as changes to duplicated
text often need to be carried out in multiple locations. Moreover, if the changes are unintentionally
not performed to all affected clones, inconsistencies can be introduced in SRS that later on create
additional efforts for clarification. In the worst case, they make it to the implementation of the
software system, causing inconsistent behavior of the final product. Studies show that this occurs in
practice for inconsistent modifications to code clones [115]. We thus expect that it can also happen
in SRS. Hence, besides the categories, further noteworthy issues of the clones noticed during manual
inspection are documented, such as inconsistencies in the duplicated specification fragments. This
information is used for additional answers to RQ 8.

Moreover, on selected specifications, content analysis of the source code of the implementation
is performed: we investigate the code corresponding to specification clones to classify whether
the specification cloning resulted in code cloning, duplicated functionality without cloning, or was
resolved through the creation of a shared abstraction. These effects are only given qualitatively.
Further quantitative analysis is beyond the scope of this thesis.

In the final step, all collected data is analyzed and interpreted to answer the research questions. An
overview of the steps of the study is given in Fig. 5.1.

RQ 9 We used the clone detection approach presented in Sec. 7.3.5 to detect clones in Mat-
lab/Simulink models. To capture the extent of cloning in models, we recorded clone counts and
coverage.

5.3 Study Objects

RQs 5 to 8 We use 28 requirements specifications as study objects from the domains of admin-
istration, automotive, convenience, finance, telecommunication, and transportation. The specified

65

5 Cloning Beyond Code

Inspect detected clones

Run clone detection tool

False positives?

Categorize clones

Independent re-categorization Analysis of further e"ects

Data analysis & interpretation

Random assignment of spec.

Yes

No

Add #lter

Figure 5.1: Study design overview

systems include software development tools, business information systems, platforms, and embed-
ded systems. The specifications are written in English or German; their scope ranges from a part
to the entire set of requirements of the software systems they describe. For non-disclosure reasons,
the systems are named A to Z to AC. An overview is given in Table 5.1. The specifications were
obtained from different organizations, including1 Munich Re Group, Siemens AG and the MOST
Cooperation.

The specifications mainly contain natural language text. If present, other content, such as images
or diagrams, was ignored during clone detection. Specifications N, U and Z are Microsoft Excel
documents. Since they are not organized as printable pages, no page counts are given for them. The
remaining specifications are either in Adobe PDF or Microsoft Word format. In some cases, these
specifications are generated from requirements management tools. To the best of our knowledge,
the duplication encountered in the specifications is not introduced during generation.

Obviously, the specifications were not sampled randomly, since we had to rely on our relationships
with our partners to obtain them. However, we selected specifications from different companies for
different types of systems in different domains to increase generalizability of the results.

RQ 9 We employed a model provided by MAN Nutzfahrzeuge Group. It implements the major
part of the power train management system. To allow for adaption to different variants of trucks
and buses, it is heavily parameterized. The model consists of more than 20,000 TargetLink blocks
that are distributed over 71 Simulink files. Such files are typical development/modelling units for
Simulink/TargetLink.

1Due to non-disclosure reasons, we cannot list all 11 companies from which specifications were obtained.

66

5.4 Implementation and Execution

Table 5.1: Study objects

Spec Pages Words Spec Pages Words

A 517 41,482 O 184 18,750

B 1,013 130,968 P 45 6,977

C 133 18,447 Q 33 5,040

D 241 37,969 R 109 15,462

E 185 37,056 S 144 24,343

F 42 7,662 T 40 7,799

G 85 10,076 U n/a 43,216

H 160 19,632 V 448 95,399

I 53 6,895 W 211 31,670

J 28 4,411 X 158 19,679

K 39 5,912 Y 235 49,425

L 535 84,959 Z n/a 13,807

M 233 46,763 AB 3,100 274,489

N n/a 103,067 AC 696 81,410

Σ 8,667 1,242,765

5.4 Implementation and Execution

This section details how the study design was implemented and executed on the study objects.

RQs 5 and 6 Clone detection and metric computation is performed using the tool ConQAT as
described in Sec. 3.3. Detection used a minimal clone length of 20 words. This threshold was found
to provide a good balance between precision and recall during precursory experiments that applied
clone detection tailoring.

Precision is determined by measuring the percentage of the relevant clones in the inspected sample.
Clone detection tailoring is performed by creating regular expressions that match the false posi-
tives. Specification fragments that match these expressions are then excluded from the analysis. A
maximum number of 20 randomly chosen clone groups is inspected in each tailoring step, to keep
manual effort within feasible bounds, if more than 20 clone groups are found for a specification;
else, false positives are removed manually and no further tailoring is performed.

RQ 7 If more than 20 clone groups are found for a specification, the manual classification is
performed on a random sample of 20 clone groups; else, all clone groups for a specification are
inspected. During inspection, the categorization was extended by 8 categories, 1 was changed, none
were removed. To improve the quality of the categorization results, categorization is performed
together by a team of 2 researchers for each specification. Inter-rater agreement is determined by
calculating Cohen’s Kappa for 5 randomly sampled specifications from which 5 clone groups each
are independently re-categorized by 2 researchers.

67

5 Cloning Beyond Code

RQ 8 Overhead metrics are computed as described in Section 2.5.4. The additional effort for
reading is calculated using the data from [87], which gives an average reading speed of 220 words
per minute. For the impact on inspections performed on the requirements specifications, we refer to
Gilb and Graham [79] that suggest 1 hour per 600 words as inspection speed. This additional effort
is both calculated for each specification and as the mean over all.

To analyze the impact of specification cloning on source code, we use a convenience sample of the
study objects. We cannot employ a random sample, since for many study objects, the source code is
unavailable or traceability between SRS and source code is too poor. Of the systems with sufficient
traceability, we investigate the 5 clone groups with the longest and the 5 with the shortest clones as
well as the 5 clone groups with the least and the 5 with the most instances. The requirements’ IDs
in these clone groups are traced to the code and compared to clone detection results on the code
level. ConQAT is used for code clone detection.

RQ 9 The detection approach outlined in Section 7.3.5 was adjusted to Simulink models. For the
normalization labels we used the type; for some of the blocks that implement several similar func-
tions added the value of the attribute that distinguishes them (e. g., for the Trigonometry block this
is an attribute deciding between sine, cosine, and tangent). Numeric values, such as the multiplica-
tive constant for gain, were removed. This way, detection can discover partial models which could
be extracted as library blocks where such constants could be made parameters of the new library
block.

From the clones found, we discarded all those consisting of less than 5 blocks, as this is the smallest
amount we still consider to be relevant at least in some cases. Furthermore, we implemented a
weighting scheme that assigns a weight to each block type, with a default of 1. Infrastructure blocks
(e. g., terminators and multiplexers) were assigned a weight of 0, while blocks having a functional
meaning (e. g., integration or delay blocks) were weighted with 3. The weight of a clone is the sum
of the weights of its blocks. Clones with a weight less than 8 also were discarded, which ensures
that at least small clones are considered only, if their functional portion is large enough.

5.5 Results

This section presents results ordered by research question.

5.5.1 RQ 5: Detection Tailoring and Accuracy

RQ 5 investigates whether redundancy in real-world requirements specifications can be detected
with existing approaches.

Precision values and times required for clone detection tailoring are depicted in Table 5.2. Tailoring
times do not include setup times and duration of the first detection run. If no clones are detected
for a specification (i. e., Q and T), no precision value is given. While for some specifications no
tailoring is necessary at all, e. g., E, F, G or, S, the worst precision value without tailoring is as low
as 2% for specification O. In this case, hundreds of clones containing only the page footer cause

68

5.5 Results

Table 5.2: Study results: tailoring

S Prec. Tail. Prec. S Prec. Tail. Prec.

bef. min after bef. min after

A 27% 30 100% O 2% 8 100%

B 58% 15 100% P 48% 20 100%

C 45% 25 100% Q n/a 1 n/a

D 99% 5 99% R 40% 4 100%

E 100% 2 100% S 100% 2 100%

F 100% 4 100% T n/a 1 n/a

G 100% 2 100% U 85% 5 85%

H 97% 10 97% V 59% 6 100%

I 71% 8 100% W 100% 6 100%

J 100% 2 100% X 96% 13 100%

K 96% 2 96% Y 97% 7 100%

L 52% 26 100% Z 100% 1 100%

M 44% 23 100% AB 30% 33 100%

N 100% 4 100% AC 48% 14 100%

the large amount of false positives. For 8 specifications (A, C, M, O, P, R, AB, and AC), precision
values below 50% are measured before tailoring. The false positives contain information from the
following categories:

Document meta data comprises information about the creation process of the document. This
includes author information and document edit histories or meeting histories typically contained at
the start or end of a document.

Indexes do not add new information and are typically generated automatically by text processors.
Encountered examples comprise tables of content or subject indexes.

Page decorations are typically automatically inserted by text processors. Encountered examples
include page headers and footers containing lengthy copyright information.

Open issues document gaps in the specification. Encountered examples comprise “TODO” state-
ments or tables with unresolved questions.

Specification template information contains section names and descriptions common to all indi-
vidual documents that are part of a specification.

Some of the false positives, such as document headers or footers could possibly be avoided by
accessing requirements information in a more direct form than done by text extraction from re-
quirements specification documents.

Precision was increased substantially by clone detection tailoring. Precision values for the specifi-
cations are above 85%, average precision is 99%. The time required for tailoring varies between 1
and 33 minutes across specifications. Low tailoring times occurred when either no false positives
were encountered, or they could very easily be removed, e. g., through exclusion of page footers by
adding a single simple regular expression. On average, 10 minutes were required for tailoring.

69

5 Cloning Beyond Code

5.5.2 RQ 6: Amount of SRS Cloning

RQ 6 investigates the extent of cloning in real-world requirements specifications. The results are
shown in columns 2–4 of Table 5.3. Clone coverage varies widely: from specifications Q and T, in
which not a single clone of the required length is found, to specification H containing about two-
thirds of duplicated content. 6 out of the 28 analyzed specifications (namely A, F, G, H, L, Y) have
a clone coverage above 20%. The average specification clone coverage is 13.6%. Specifications
A, D, F, G, H, K, L, V and Y even have more than one clone per page. No correlation between
specification size and cloning is found. (Pearson’s coefficient for clone coverage and number of
words is -0.06—confirming a lack of correlation.)

Table 5.3: Study results: cloning

Spec Clone Clone clones overhead overhead

cov. groups relative words

A 35.0% 259 914 32.6% 10,191

B 8.9% 265 639 5.3% 6,639

C 18.5% 37 88 11.5% 1,907

D 8.1% 105 479 6.9% 2,463

E 0.9% 6 12 0.4% 161

F 51.1% 50 162 60.6% 2,890

G 22.1% 60 262 20.4% 1,704

H 71.6% 71 360 129.6% 11,083

I 5.5% 7 15 3.0% 201

J 1.0% 1 2 0.5% 22

K 18.1% 19 55 13.4% 699

L 20.5% 303 794 14.1% 10,475

M 1.2% 11 23 0.6% 287

N 8.2% 159 373 5.0% 4,915

O 1.9% 8 16 1.0% 182

P 5.8% 5 10 3.0% 204

Q 0.0% 0 0 0.0% 0

R 0.7% 2 4 0.4% 56

S 1.6% 11 27 0.9% 228

T 0.0% 0 0 0.0% 0

U 15.5% 85 237 10.8% 4,206

V 11.2% 201 485 7.0% 6,204

W 2.0% 14 31 1.1% 355

X 12.4% 21 45 6.8% 1,253

Y 21.9% 181 553 18.2% 7,593

Z 19.6% 50 117 14.2% 1,718

AB 12.1% 635 1818 8.7% 21,993

AC 5.4% 65 148 3.2% 2,549

Avg 13.6% 13.5%

Σ 2,631 7,669 100,178

Fig. 5.2 depicts the distribution of clone lengths in words (a) and of clone group cardinalities (b),

70

5.5 Results

i. e., the number of times a specification fragment has been cloned2. Short clones are more frequent
than long clones. Still, 90 clone groups have a length greater than 100 words. The longest detected
group comprises two clones of 1049 words each, describing similar input dialogs for different types
of data.

Clone pairs are more frequent than clone groups of cardinality 3 or higher. However, aggregated
across all specifications, 49 groups with cardinality above 10 were detected. The largest group
encountered contains 42 clones that contain domain knowledge about roles involved in contracts.

5.5.3 RQ 7: Cloned Information

RQ 7 investigates which kind of information is cloned in real-world requirements specifications.
The categories of cloned information encountered in the study objects are:

Detailed Use Case Steps: Description of one or more steps in a use case on how a user interacts
with the system, such as the steps required to create a new customer account in a system.

Reference: Fragment in a requirements specification that refers to another document or another
part of the same document. Examples are references in a use case to other use cases or to the
corresponding business process.

UI: Information that refers to the (graphical) user interface. The specification of which buttons are
visible on which screen is an example for this category.

Domain Knowledge: Information about the application domain of the software. An example are
details about what is part of an insurance contract for a software that manages insurance contracts.

Interface Description: Data and message definitions that describe the interface of a component,
function, or system. An example is the definition of messages on a system bus that a component
reads and writes.

Pre-Condition: A condition that has to hold before something else can happen. A common example
are pre-conditions for the execution of a specific use case.

Side-Condition: Condition that describes the status that has to hold during the execution of some-
thing. An example is that a user has to remain logged in during the execution of a certain function-
ality.

Configuration: Explicit settings for configuring the described component or system. An example
are timing parameters for configuring a transmission protocol.

Feature: Description of a piece of functionality of the system on a high level of abstraction.

Technical Domain Knowledge: Information about the used technology for the solution and the
technical environment of the system, e. g., used bus systems in an embedded system.

2The rightmost value in each diagram aggregates data that is outside its range. For conciseness, the distributions are
given for the union of detected clones across specifications and not for each one individually. The general observations
are, however, consistent across specifications.

71

5 Cloning Beyond Code

 0

 50

 100

 150

 200

 250

 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

c
lo

n
e
 g

ro
u
p
s

Clone length in words

a)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 3 4 5 6 7 8 9 10

N
u
m

b
e
r

o
f

c
lo

n
e
 g

ro
u
p
s

Clone group cardinality

b)

Figure 5.2: Distribution of clone lengths and clone group cardinalities

72

5.5 Results

Post-Condition: Condition that describes what has to hold after something has been finished. Anal-
ogous to the pre-conditions, post-conditions are usually part of use cases to describe the system state
after the use case execution.

Rationale: Justification of a requirement. An example is the explicit demand by a certain user
group.

We document the distribution of clone groups to the categories for the sample of categorized clone
groups. 404 clone groups are assigned 498 times (multiple assignments are possible). The quantita-
tive results of the categorization are depicted in Fig. 5.3. The highest number of assignments are to
category “Detailed Use Case Steps” with 100 assignments. “Reference” (64) and “UI” (63) follow.
The least number of assignments are to category “Rationale” (8).

Feature

Configuration

Side-Condition

Pre-Condition

Interface Description

Domain Knowledge

UI

Reference

Detailed Steps

0 20 40 60 8 100

Rationale

Post-Condition

Technical Domain Knowledge

Figure 5.3: Quantitative results for the categorization of cloned information

The random sample for inter-rater agreement calculation consists of the specifications L, R, U, Z,
and AB. From each specification, 5 random clones are inspected and categorized. As one specifi-
cation only has 2 clone groups, in total 22 clone groups are inspected. We measure the inter-rater
agreement using Cohen’s Kappa with a result of 0.67; this is commonly considered as substantial
agreement. Hence, the categorization is good enough to ensure that independent raters categorize
the cloned information similarly, implying a certain degree of completeness and suitability.

5.5.4 RQ 8 Impact of SRS Cloning

RQ 8 investigates the impact of SRS cloning with respect to (1) specification reading, (2) specifica-
tion modification and (3) specification implementation.

Specification Reading Cloning in specifications obviously increases specification size and, hence,
affects all activities that involve reading the specification documents. As Table 5.4 shows, the
average overhead of the analyzed SRS is 3,578 words which, at typical reading speed of 220 words
per minute [87], translates to additional ≈16 minutes spent on reading for each document.

73

5 Cloning Beyond Code

While this does not appear to be a lot, one needs to consider that quality assurance techniques like
inspections assume a significantly lower processing rate. For example, [79] considers 600 words
per hour as the maximum rate for effective inspections. Hence, the average additional time spent
on inspections of the analyzed SRS is expected to be about 6 hours. In a typical inspection meeting
with 3 participants, this amounts to 2.25 person days. For specification AB with an overhead of
21,993 words, effort increase is expected to be greater than 13 person days if three inspectors are
applied.

Table 5.4: Study results: impact

S overhead read. insp. S overhead read. insp.

[words] [m]3 [h]4 [words] [m]3 [h]4

A 10,191 46.3 17.0 O 182 0.8 0.3

B 6,639 30.2 11.1 P 204 0.9 0.3

C 1,907 8.7 3.2 Q 0 0.0 0.0

D 2,463 11.2 4.1 R 56 0.3 0.1

E 161 0.7 0.3 S 228 1.0 0.4

F 2,890 13.1 4.8 T 0 0.0 0.0

G 1,704 7.7 2.8 U 4,206 19.1 7.0

H 11,083 50.4 18.5 V 6,204 28.2 10.3

I 201 0.9 0.3 W 355 1.6 0.6

J 22 0.1 0.0 X 1,253 5.7 2.1

K 699 3.2 1.2 Y 7,593 34.5 12.7

L 10,475 47.6 17.5 Z 1,718 7.8 2.9

M 287 1.3 0.5 AB 21,993 100.0 36.7

N 4,915 22.3 8.2 AC 2,549 11.6 4.2

Avg 3,578 16.3 6.0

Specification Modification To explore the extent of inconsistencies in our specifications, we an-
alyze the comments that were documented during the inspection of the sampled clones for each
specification set. They refer to duplicated specification fragments that are longer than the clones de-
tected by the tool. The full length of the duplication is not found by the tool due to small differences
between the clones that often result from inconsistent modification.

An example for such a potential inconsistency can be found in the publicly available MOST spec-
ification (M). The function classes “Sequence Property” and “Sequence Method” have the same
parameter lists. They are detected as clones. The following description is also copied, but one ends
with the sentence “Please note that in case of elements, parameter Flags is not available”. In the
other case, this sentence is missing. Whether these differences are defects in the requirements or
not could only be determined by consulting the requirements engineers of the system. This further
step remains for future work.

Specification Implementation With respect to the entirety of the software development process, it
is important to understand which impact SRS cloning has on development activities that use SRS as

3Additional reading effort in clock minutes.
4Additional inspection effort in clock hours.

74

5.5 Results

Table 5.5: Number of files/modelling units the clone groups were affecting

Number of models Number of clone groups
1 43
2 81
3 12
4 3

Table 5.6: Number of clone groups for clone group cardinality

Cardinality of clone group Number of clone groups
2 108
3 20
4 10
5 1

an input, e. g., system implementation and test. For the inspected 20 specification clone groups and
their corresponding source code, we found 3 different effects:

1. The redundancy in the requirements is not reflected in the code. It contains shared abstractions
that avoid duplication.

2. The code that implements a cloned piece of an SRS is cloned, too. In this case, future changes
to the cloned code cause additional efforts as modifications must be reflected in all clones.
Furthermore, changes to cloned code are error-prone as inconsistencies may be introduced
accidentally (cf., Chapter 4).

3. Code of the same functionality has been implemented multiple times. The redundancy of the
requirements thus does exist in the code as well but has not been created by copy & paste. This
case exhibits similar problems as case 2 but creates additional efforts for the repeated imple-
mentation. Moreover, this type of redundancy is harder to detect as existing clone detection
approaches cannot reliably find code that is functionally similar but not the result of copy &
paste, as shown in Chapter 9.

5.5.5 RQ 9: Amount of Model Cloning

We found 166 clone pairs in the models which resulted in 139 clone groups after clustering and
resolving inclusion structures. Of the 4762 blocks used for the clone detection, 1780 were included
in at least one clone (coverage of about 37%). We consider this a substantial amount of cloning that
indicates the necessity to control cloning during maintenance of Matlab/Simulink models.

As shown in Table 5.5, only about 25% of the clones were within one modeling unit (i. e., a single
Simulink file), which was to be expected as such clones are more likely to be found in a manual
review process as opposed to clones between modeling units, which would require both units to be
reviewed by the same person within a small time frame. Tables 5.7 and 5.5 give an overview of the
clone groups found.

75

5 Cloning Beyond Code

Table 5.7: Number of clone groups for clone size

Clone size Number of clones
5 – 10 76

11 – 15 35
16 – 20 17

> 20 11

Table 5.7 shows how many clones have been found for some size ranges. The largest clone had a
size of 101 and a weight of 70. Smaller clones are more frequent than larger clones, as can also be
observed for clones in source code or requirements specifications.

5.6 Discussion

RQs 5 to 8: Cloning in Requirements Specifications The results from the case study show
that cloning in the sense of copy & paste is common in real-world requirements specifications. Here
we interpret these results and discuss their implications.

According to the results of RQ 6, the amount of cloning encountered is significant, although it differs
between specifications. The large amount of detected cloning is further emphasized, since our
approach only locates identical parts of the text. Other forms of redundancy, such as specification
fragments that have been copied but slightly reworded in later editing steps, or that are entirely
reworded yet convey the same meaning, are not included in these numbers.

The results for RQ 7 illustrate that cloning is not confined to a specific kind of information. On the
contrary, we found that duplication can, amongst others, be found in the description of use cases,
the application domain and the user interface but also in parts of documents that merely reference
other documents. Our case study only yields the absolute number of clones assigned to a category.
As we did not investigate which amount of a SRS can be assigned to the category, we cannot deduce
if cloning is more likely to occur in one category than another. Hence, we currently assume that
clones are likely to occur in all parts of SRS.

The relatively broad spectrum of findings illustrates that cloning in SRS can be successfully avoided.
SRS E, for example, is large and yet exhibits almost no cloning.

The most obvious effect of duplication is the increased size (cf., RQ 8), which could often be avoided
by cross-references or different organization of the specifications. Size increase affects all (manual)
processing steps performed on the specifications, such as restructuring or translating them to other
languages, and especially reading. Reading is emphasized here, as the ratio of persons reading to
those writing a specification is usually large, even larger than in source code. The activities that
involve reading include specification reviews, system implementation, system testing and contract
negotiations. They are typically performed by different persons that are all affected by the overhead.
While the additional effort for reading has been assumed to be linear in the presentation of the
results, one could even argue that the effort is larger, as human readers are not efficient with word-
wise comparisons, which are required to check presumably duplicated parts to find potential subtle
differences between them that could otherwise lead to errors in the final system.

76

5.7 Threats to Validity

Furthermore, inconsistent changes of the requirements clones can introduce errors in the specifica-
tion and thus often in the final system. Based on the inconsistencies we encountered, we strongly
suspect that there is a real threat that inconsistent maintenance of duplicated SRS introduces er-
rors in practice. However, since we did not validate that the inconsistencies are in fact errors, our
results are not conclusive—future research on this topic is required. Nevertheless, the inconsisten-
cies probably cause overhead during further system development due to clarification requests from
developers spotting them.

Our observations show, moreover, that specification cloning can lead to cloned or, even worse,
reimplemented parts of code. Often these duplications cannot even be spotted by the developers,
as they only work on a part of the system, whose sub-specification might not even contain clones
when viewed in isolation.

Redundancy is hard to identify in SRS as common quality assurance techniques like inspections
often analyze the different parts of a specification individually and are, hence, prone to miss du-
plication. The results for RQ 5 show that existing clone detection approaches can be applied to
identify cloned information in SRS in practice. However, it also shows that a certain amount of
clone detection tailoring is required to increase detection precision. As the effort required for the
tailoring steps is below one person hour for each specification document in the case study, we do not
consider this to be an obstacle for the application of clone detection during SRS quality assessment
in practice.

RQ 9: Cloning in Models Manual inspection of the detected clones showed that many of
them are relevant for practical purposes. Besides the “normal” clones, which at least should be
documented to make sure that bugs are always fixed in both places, we also found two models which
were nearly entirely identical. Additionally, some of the clones are candidates for the project’s
library, as they included functionality that is likely to be useful elsewhere. Another source of clones
is the limitation of TargetLink that scaling (i. e., the mapping to concrete data types) cannot be
parameterized, which leaves duplication as the only way for obtaining different scalings.

The main problem we encountered is the large number of false positives as more than half of the
clones found are obviously clones according to our definition but would not be considered relevant
by a developer (e. g., large Mux/Demux constructs). While weighting the clones was a major step
in improving this ratio (without weighting there were about five times as many clones, but mostly
consisting of irrelevant constructs) this still is a major area of potential improvement for the usability
of our approach.

5.7 Threats to Validity

In this section, we discuss threats to the validity of the study results and how we mitigated them.

77

5 Cloning Beyond Code

5.7.1 Internal Validity

RQs 5 & 6 The results can be influenced by individual preferences or mistakes of the researchers
that performed clone detection tailoring. We mitigated this risk by performing clone tailoring in
pairs to reduce the probability of errors and improve objectivity.

Precision was determined on random samples instead of on all detected clone groups. While this
can potentially introduce inaccuracy, sampling is commonly used to determine precision and it has
been demonstrated that even small samples can yield precise estimates [19, 116].

While a lot of effort was invested into understanding detection precision, we know less about detec-
tion recall. First, if regular expressions used during tailoring are too aggressive, detection recall can
be reduced. We used pair-tailoring and comparison of results before and after tailoring to reduce
this risk. Furthermore, we have not investigated false negatives, i. e., the amount of duplication
contained in a specification and not identified by the automated detector. The reasons for this are
the difficulty of clearly defining the characteristics of such clones (having a semantic relation but
little syntactic commonality); and the effort required to find them manually. The reported extent
of cloning is thus only a lower bound for redundancy. While the investigation of detection recall
remains important future work, our limited knowledge about it does not affect the validity of the
detected clones and the conclusions drawn from them.

RQ 7 The categorization of the cloned information is subjective to some degree. We again mit-
igated this risk by pairing the researchers as well as by analyzing the inter-rater agreement. All
researchers were in the same room during categorization. This way, newly added categories were
immediately available to all researchers.

RQ 8 The calculation of additional effort due to overhead can be inaccurate if the used data from
the literature does not fit to the efforts needed at a specific company. As the used values have been
confirmed in many studies, however, the results should be trustworthy.

We know little about how reading speeds differ for cloned versus non-cloned text. On the one
hand, one could expect that cloned text can be read more swiftly, since similar text has been read
before. On the other hand, we often noticed that reading cloned text can be a lot more time con-
suming than reading non-cloned text, since the discovery and comprehension of subtle differences
is tedious. Lacking precise data, we treated cloned and non-cloned text uniformly with respect to
reading efforts. Further research could help to better quantify reading efforts for cloned specification
fragments.

RQ 9 The detection results contain false positives. Both reported clone counts and coverage are
thus not perfectly accurate. However, manual inspections revealed a substantial amount of clones
relevant for maintenance. While the clone counts and coverage metrics might be inaccurate, the
conclusion that clone management is relevant for maintenance of the models holds and is shared by
the developers.

78

5.8 Summary

5.7.2 External Validity

RQs 5 to 8 The practice of requirements engineering differs strongly between different domains,
companies, and even projects. Hence, it is unclear whether the results of this study can be gen-
eralized to all existing instances of requirements specifications. However, we investigated 28 sets
of requirements specifications from 11 organizations with over 1.2 million words and almost 9,000
pages. The specifications come from several different companies, from different domains—ranging
from embedded systems to business information systems—and with various age and depth. There-
fore, we are confident that the results are applicable to a wide variety of systems and domains.

RQ 9 While the analyzed model is large, it is from a single company only. The generalizability
of the results is thus unclear—future work is required to develop a better understanding of cloning
across models of different size, age and developing organization. However, we are optimistic that
the results are at least transferable to other models in the automotive domain, since they are consis-
tent with cloning we saw in models at other companies in the automotive domain. Unfortunately,
due to non-disclosure reasons, we are not able to publish them here.

5.8 Summary

This chapter presented a case study on the extent and impact of cloning in requirements specifica-
tions and Matlab/Simulink models.

We have analyzed cloning in 28 industrial requirements specifications from 11 different compa-
nies. The extent of cloning varies substantially; while some specifications contain none or very
few clones, others contain very many. We have seen indication for negative impact of requirements
cloning on engineering efforts. Due to size increase, cloning significantly raises the effort for ac-
tivities that involve reading of SRS, e. g., inspections. In the worst encountered case, the effort for
an inspection involving three persons increases by over 13 person days. In addition, just as for
source code, modification of duplicated information is costly and error prone; we saw indication
that unintentionally inconsistent modifications can also happen to specification clones.

Besides requirements specifications, we have analyzed cloning in a large industrial Matlab/Simulink
model. Again, substantial amounts of cloning were discovered. While the results contained false
positives, developers agreed that many of the detected clones are relevant for maintenance. As for
code, awareness of cloning is thus required to avoid unintentionally inconsistent modifications.

Furthermore, the studies indicate that cloning in requirements specifications can cause redundancy
in source code, both in terms of code clones and independent implementation of behaviorally similar
functionality. Since models are often used as specifications, we assume that this effect can also occur
for cloning in them.

We conclude that the results from the studies support our conjecture: cloning does occur in non-code
artifacts as well. Since it can also negatively impact software engineering activities, we conclude
that clone control needs to reach beyond code to requirements specifications and models.

79

6 Clone Cost Model

A thorough understanding of the costs caused by cloning is a necessary foundation to evaluate
alternative clone management strategies. Do expected maintenance cost reductions justify the effort
required for clone removal? How large are the potential savings that clone management tools can
provide? We need a clone cost model to answer these questions.

This chapter presents an analytical cost model that quantifies the impact of cloning in source code
on maintenance efforts and field faults. Furthermore, it presents the results from a case study that
instantiates the cost model for 11 industrial software systems and estimates maintenance effort
increase and potential benefits achievable through clone management tool support. Parts of the
content of this chapter have been published in [110].

6.1 Maintenance Process

This section introduces the software maintenance process on which the cost model is based. It qual-

itatively describes the impact of cloning for each process activity and discusses potential benefits of
clone management tools. The process is loosely based on the IEEE 1219 standard [99] that describes
the activities carried on single change requests (CRs) in a waterfall fashion. The successive exe-
cution of activities that, in practice, are typically carried out in an interleaved and iterated manner,
serves the clarity of the model but does not limit its application to waterfall-style processes.

Analysis (A) studies the feasibility and scope of the change request to devise a preliminary plan
for design, implementation and quality assurance. Most of it takes place on the problem domain.
Analysis is not impacted by code cloning, since code does not play a central part in it. Possible
effects of cloning in requirements specifications, which could in principle affect analysis, are beyond
the scope of this model.

Location (L) determines a set of change start points. It thus performs a mapping from problem
domain concepts affected by the CR to the solution domain. Location does not contain impact
analysis, that is, consequences of modifications of the change start points are not analyzed. Location
involves inspection of source code to determine change start points. We assume that the location
effort is proportional to the amount of code that gets inspected.

Cloning increases the size of the code that needs to be inspected during location and thus affects lo-
cation effort. We are not aware of tool support to alleviate the impact of code cloning on location.

81

6 Clone Cost Model

Design (D) uses the results of analysis and location as well as the software system and its doc-
umentation to design the modification of the system. We assume that design is not impacted by
cloning. This is a conservative assumption, since for a heavily cloned system, design could attempt
to avoid modifications of heavily cloned areas.

Impact Analysis (IA) uses the change start points from location to determine where changes in
the code need to be made to implement the design. The change start points are typically not the
only places where modifications need to be performed—changes to them often require adaptations
in use sites. We assume that the effort required for impact analysis is proportional to the number of
source locations that need to be determined.

If the concept that needs to be changed is implemented redundantly in multiple locations, all of
them need to be changed. Cloning thus affects impact analysis, since the number of change points
is increased by cloned code. Tool support (clone indication) simplifies impact analysis of changes
to cloned code. Ideal tool support could reduce cloning effect on impact analysis to zero.

Implementation (Impl) realizes the designed change in the source code. We differentiate be-
tween two classes of changes to source code. Additions add new source code to the system without
changing existing code. Modifications alter existing source code and are performed to the source
locations determined by impact analysis. We assume that effort required for implementation is
proportional to the amount of code that gets added or modified.

We assume that adding new code is unaffected by cloning in existing code. Implementation is still
affected by cloning, since modifications to cloned code need to be performed multiple times. Linked
editing tools could, ideally, reduce effects of cloning on implementation to zero.

Quality Assurance (QA) comprises all testing and inspection activities carried out to validate
that the modification satisfies the change request. We assume a smart quality assurance strategy—
only code affected by the change is processed. We do not limit the maintenance process to a specific
quality assurance technique. However, we assume that quality assurance steps are systematically ap-
plied, e. g., all changes are inspected or testing is performed until a certain test coverage is achieved
on the affected system parts. Consequently, we assume that quality assurance effort is proportional
to the amount of code on which quality assurance is performed.

We differentiate two effects of cloning on quality assurance: cloning increases the change size and
thus the amount of modified code that needs to be quality assured. Second, just as modified code,
added code can contain cloning. This also increases the amount of code that needs to be quality
assured and hence the required effort. We are not aware of tool support that can substantially
alleviate the impact of cloning on quality assurance.

Other (O) comprises further activities, such as, e. g., delivery and deployment, user support or
change control board meetings. Since code does not play a central part in these activities, they are
not affected by cloning.

82

6.2 Approach

6.2 Approach

This section outlines the underlying cost modeling approach.

Relative Cost Model Many factors influence maintenance productivity [22, 23, 211]: the type
of system and domain, development process, available tools and experience of developers, to name
just a few. Since these factors vary substantially between projects, they need to be reflected by
cost estimation approaches to achieve accurate absolute results. The more factors a cost model
comprises, the more effort is required for its creation, its factor lookup tables, and for its instantiation
in practice. If an absolute value is required, such effort is unavoidable.

The assessment of the impact of cloning differs from the general cost estimation problem in two
important aspects. First, we compare efforts for two systems—the actual one and the hypothetical
one without cloning—for which most factors are identical, since our maintenance environment does
not change. Second, relative effort increase w.r.t. the cloning-free system is sufficient to evaluate the
impact of cloning. Since we do not need an absolute result value in terms of costs, and since most
factors influencing maintenance productivity remain constant in both settings, they do not need to
be contained in our cost model. In a nutshell, we deliberately chose a relative cost model to keep its
number of parameters and involved instantiation effort at bay.

Clone Removability The cost model is not limited to clones that can be removed by the means
of the available abstraction mechanisms, since negative impact of clones is independent of their
removability. In addition, even if no clone can be removed, the model can be used to assess possible
improvements achievable through application of clone management tools.

Cost Model Structure The model assumes each activity of the maintenance process to be com-
pleted. It is thus not suitable to model partial change request implementations that are aborted at
some point.

The total maintenance effort E is the sum of the efforts of individual change requests:

E =
∑

cr∈CR

e(cr)

The scope of the cost model is determined by the population of the set CR: to compute the main-
tenance effort for a time span t, it is populated with all change requests that are realized in that
period. Alternatively, if the total lifetime maintenance costs are to be computed, CR is populated
with all change requests ever performed on the system. The model can thus scale to different project
scopes.

The effort of a single change request cr ∈ CR is expressed by e(cr). It is the sum of the efforts of
the individual activities performed during the realization of the cr. The activity efforts are denoted
as eX, where X identifies the activity. Each activity from Section 6.1 contributes to the effort of a
change request. For brevity, we omit (cr) in the following:

83

6 Clone Cost Model

e = eA + eL + eD + eIA + eImpl + eQA + eO

To model the impact of cloning on maintenance efforts, we split e into two components: inherent

effort ei and cloning induced effort overhead ec. Inherent effort ei is independent of cloning. It
captures the effort required to perform an activity on a hypothetical version of the software that
does not contain cloning. Cloning induced effort overhead ec, in contrast, captures the effort penalty
caused by cloning. Total effort is expressed as the sum of the two:

e = ei + ec

The increase in efforts due to cloning, ∆e, is captured by ei+ec

ei
− 1, or simply ec

ei
. The cost model

thus expresses cloning induced overhead relative to the inherent effort required to realize a change
request. The increase in total maintenance efforts due to cloning, ∆E, is proportional to the average
effort increase per change request and thus captured by the same expression.

6.3 Detailed Cost Model

This section introduces a detailed version of the clone cost model. Its first section introduces cost
models for the individual process activities. The following sections employ them to construct mod-
els for maintenance effort and remaining fault count increase and the possible benefits of clone
management tool support. We initially assume that no clone management tools are employed.

6.3.1 Activity Costs

The activities Analysis, Design, and Other are not impacted by cloning. Their cloning induced effort
overhead, ec, is thus zero. Their total efforts hence equal their inherent efforts.

Location effort depends on code size. Cloning increases code size. We assume that, on average,
increase of the amount of code that needs to be inspected during location is proportional to the
cloning induced size increase of the entire code base. Size increase is captured by overhead:

ecL = eiL · overhead

Impact analysis effort depends on the number of change points that need to be determined.
Cloning increases the number of change points. We assume that ecIA is proportional to the cloning-
induced increase in the number of source locations. This increase is captured by overhead:

ecIA = eiIA · overhead

84

6.3 Detailed Cost Model

Implementation effort comprises both addition and modification effort: eImpl = eImplMod
+

eImplAdd
. We assume that effort required for additions is unaffected by cloning in existing source

code. We assume that the effort required for modification is proportional to the amount of code that
gets modified, i. e., the number of source locations determined by impact analysis. Its cloning
induced overhead is, consequently, affected by the same increase as impact analysis: ecImpl =

eiImplMod
· overhead. The modification ratio mod captures the modification-related part of the in-

herent implementation effort: eImplMod
= eImpl · mod. Consequently, ecImpl is:

ecImpl = eiImpl · mod · overhead

Quality Assurance effort depends on the amount of code on which quality assurance gets per-
formed. Both modifications and additions need to be quality assured. Since the measure overhead

captures size increase of both additions and modifications, we do not need to differentiate between
them, if we assume that cloning is, on average, similar in modified and added code. The increase in
quality assurance effort is hence captured by the overhead measure:

ecQA = eiQA · overhead

6.3.2 Maintenance Effort Increase

Based on the models for the individual activities, we model cloning induced maintenance effort ec

for a single change request like this:

ec = overhead · (eiL + eiIA + eiImpl · mod + eiQA)

The relative cloning induced overhead is computed as follows:

∆e =
overhead · (eiL + eiIA + eiImpl · mod + eiQA)

eiA + eiL + eiD + eiIA + eiImpl + eiQA + eiO

This model computes the relative effort increase in maintenance costs caused by cloning. It does
not take impact of cloning on program correctness into account. This is done in the next section.

85

6 Clone Cost Model

6.3.3 Fault Increase

Quality assurance is not perfect. Even if performed thoroughly, faults may remain unnoticed and
cause failures in production. Some of these faults can, in principle, be introduced by inconsistent
updates to cloned code. Cloning can thus affect the number of faults in released software. This can
have economic consequences that are not captured by the above model. This section introduces a
model that does.

Quality assurance can be decomposed into two sub-activities: fault detection and fault removal. We
assume that, independent of the quality assurance technique, the effort required to detect a single
fault in a system depends primarily on its fault density. We furthermore assume, that average fault
removal effort for a system is independent of the system’s size and fault density. These assumptions
allow us to reason about the number of remaining faults in similar systems of different size but equal
fault densities. If a QA procedure is applied with the same amount of available effort per unit of
size, we expect a similar reduction in defect density, since the similar defect densities imply equal
costs for fault location per unit. For these systems, the same number of faults can thus be detected
and fixed per unit. For two systems A and B, with B having twice the size and available QA effort,
we expect a similar reduction of fault density. However, since B is twice as big, the same fault
density means twice the absolute number of remaining faults.

A system that contains cloning and its hypothetical version without cloning are such a pair of sim-
ilar systems. We assume that fault density is similar between cloned code and non-cloned code—
cloning duplicates both correct and faulty statements. Besides system size, cloning thus also in-
creases the absolute number of faults contained in a system. If the amount of effort available for
quality assurance is increased by overhead w.r.t. the system without cloning, the same reduction in
fault density can be achieved. However, the absolute number of faults is still larger by overhead.

This reasoning assumes that developers are entirely ignorant of cloning. That is, if a fault is fixed in
one clone, it is not immediately fixed in any of its siblings. Instead, faults in siblings are expected to
be detected independently. Empirical data confirms that inconsistent bug fixes do frequently occur
in practice [115]. However, it also confirms that clones are often maintained consistently. Both
assuming entirely consistent or entirely inconsistent evolution is thus not realistic.

In practice, a certain amount of the defects that are detected in cloned code are hence fixed in
some of the sibling clones. This reduces the cloning induced overhead in remaining fault counts.
However, unless all faults in clones are fixed in all siblings, resulting fault counts remain higher
than in systems without cloning.

The miss ratio captures the amount of clones that are unintentionally modified inconsistently. It
hence captures the share of cloned faults that are not removed once a fault is detected in their sibling.
The increase in fault counts due to cloning can hence be quantified as follows:

∆F = overhead ∗ miss ratio

To compute miss ratio, a time window for which changes to clones are investigated is required. To
quantify increase in remaining faults, we choose a time window that starts with the initiation of
the first change request, and ends with the realization of the last change request in CR. This way,
miss ratio reflects that increased effort available for quality assurance allows for individual detection

86

6.3 Detailed Cost Model

of faults contained in sibling clones, if their fix was missed in previous detections. The sequence
of inconsistent modification and late propagation that occurs in such a case is, since all of them
occurred inside the time window, observed as a single consistent modification. Hence, miss ratio

only captures those faults that slip through quality assurance. It is thus different from UICR and
FUICR.

6.3.4 Tool Support

Clone management tools can alleviate the impact of cloning on maintenance efforts. We adapt the
detailed model to quantify the impact of clone management tools. We evaluate the upper bound of
what two different types of clone management tools can achieve.

Clone Indication makes cloning relationships in source code available to developers, for exam-
ple through clone bars in the IDE that mark cloned code regions. Examples for clone indication
tools include ConQAT and CloneTracker [60]. Optimal clone indication thus lowers the effort re-
quired for clone discovery to zero. It thus simplifies impact analysis, since no additional effort
is required to locate affected clones. Assuming perfect clone indicators, ecIA is reduced to zero,
yielding this cost model:

∆e =
overhead · (eiL + eiImpl · mod + eiQA)

eiA + eiL + eiD + eiIA + eiImpl + eiQA + eiO

Linked Editing replicates edit operations performed on one clone to its siblings. Prototype
linked editing tools include Codelink [218] and CReN [102]. Optimal linked editing tools thus
lowers the overhead required for consistent modifications of cloned code to zero. Since linked
editors typically also provide clone indication, they also simplify impact analysis. Their application
yields the following model:

∆e =
overhead · (eiL + eiQA)

eiA + eiL + eiD + eiIA + eiImpl + eiQA + eiO

We do not think that clone management tools can substantially reduce the overhead cloning causes
for quality assurance. If the amount of changed code is larger due to cloning, more code needs to be
processed by quality assurance activities. We do not assume that inspections or test executions can
be simplified substantially by the knowledge that some similarities reside in the code—faults might
still lurk in the differences.

However, we are convinced that clone indication tools can substantially reduce the impact that
cloning imposes on the number of faults that slip through quality assurance. If a single fault is
found in cloned code, clone indicators can point to all the faults in the sibling clones, assisting in
their prompt removal. We assume that perfect clone indication tools reduce the cloning induced
overhead in faults after quality assurance to zero.

87

6 Clone Cost Model

6.4 Simplified Cost Model

This section introduces a simplified cost model. While less generally applicable than the detailed
model, it is easier to apply.

Due to its number of factors, the detailed model requires substantial effort to instantiate in practice—
each of its nine factors needs to be determined. Except for overhead, all of them quantify main-
tenance effort distribution across individual activities. Since in practice the activities are typically
interleaved, without clear transitions between them, it is difficult to get exact estimates on, e. g.,
how much effort is spent on location and how much on impact analysis.

The individual factors of the detailed model are required to make trade-off decisions. We need to
distinguish between, e. g., impact analysis and location to evaluate the impact that clone indication
tool support can provide, since impact analysis benefits from clone indication, whereas location
does not. Before evaluating trade-offs between clone management alternatives however, a simpler
decision needs to be taken: whether to do anything about cloning at all. Only then is it reasonable to
invest the effort to determine accurate parameter values. If the cost model is not employed to assess
clone management tool support, many of the distinctions between different factors are obsolete. We
can thus aggregate them to reduce the number of factors and hence the effort involved in model
instantiation.

Written slightly different, the detailed model is:

∆e = overhead ∗
eiL + eiIA + eiImpl ∗ mod + eiQA

e

The fraction is the ratio of effort required for code comprehension (eiL+eiIA), modification of existing
code (eiImpl ∗ mod) and quality assurance (eiQA) w.r.t. the entire effort required for a change request.
We introduce the new parameter cloning-affected effort (CAE) for it:

CAE =
eiL + eiIA + eiImpl ∗ mod + eiQA

e

If CAE is determined as a whole (without its constituent parameters), this simplified model provides
a simple way to evaluate the impact of cloning on maintenance efforts:

∆e = overhead ∗ CAE

6.5 Discussion

The cost model is based on a series of assumptions. It can sensibly be applied only for projects that
satisfy them. We list and discuss them here to simplify their evaluation.

We assume that the significant part of the cost models for the maintenance process activities are
linear functions on the size of the code that gets processed. For example, we assume that location

88

6.6 Instantiation

effort is primarily determined by and proportional to the amount of code that gets inspected during
location. In some situations, activity cost models might be more complicated. For example, if an
activity has a high fixed setup cost, the cost model should include a fixed factor; diseconomy of
scale could increase effort w.r.t. size in a super linear fashion. In such cases, the respective part
of the cost model needs to be adapted appropriately. COCOMO II [23], e. g., uses a polynomial
function to adapt size to diseconomy of scale.

We assume that changes to clones are coupled to a substantial degree. The cost model thus needs
to be instantiated on tailored clone detection results. In case clones are uncoupled, e. g., because
they are false positives or because parts of the system are no longer maintained, the model is not
applicable.

We assume that each modification to a clone in one clone group requires the same amount of effort.
We ignore that subsequent implementations of a single change to multiple clone instances could get
cheaper, since the developer gets used to that clone group. We are not aware of empirical data for
these costs. Future work is, thus, required to better understand changes in modification effort across
sibling clones. Since in practice, however, most clone groups have size 2, the inaccuracy introduced
by this simplification should be moderate.

6.6 Instantiation

This section describes how to instantiate the cost model and presents a large industrial case study.

6.6.1 Parameter Determination

This section describes how the parameter values can be determined to instantiate the cost model.

Overhead Computation Overhead is computed on the clones detected for a system. It cap-
tures cloning induced size increase independent of whether the clones can be removed with means
of the programming language (cf., 2.5.4). This is intended—the negative impact of cloning on
maintenance activities is independent of whether the clones can be removed.

The accuracy of the overhead value is determined by the accuracy of the clones on which it is
computed. Unfortunately, many existing clone detection tools produce high false positive rates;
Kapser and Godfrey [122] report between 27% and 65%, Tiarks et al. [217] up to 75% of false
positives detected by state-of-the-art tools. False positives exhibit some level of syntactic similarity,
but no common concept implementation and hence no coupling of their changes. They thus do not
impede software maintenance and must be excluded from overhead computation.

To achieve accurate clone detection results, and thus an accurate overhead value, clone detection
needs to be tailored. Tailoring removes code that is not maintained manually, such as generated or
unused code, since it does not impede maintenance. Exclusion of generated code is important, since
generators typically produce similar-looking files for which large amounts of clones are detected.
Furthermore, tailoring adjusts detection so that false positives due to overly aggressive normaliza-
tion are avoided. This is necessary so that, e. g., regions of Java getters, that differ in their identifiers

89

6 Clone Cost Model

and have no conceptual relationship, are not erroneously considered as clones by a detector that ig-
nores identifier names. According to our experience [115], after tailoring, clones exhibited change
coupling, indicating their semantic relationship through redundant implementation of a common
concept. Clone detection tailoring is covered in detail in Section 8.2.

Determining Activity Efforts The distribution of the maintenance efforts depends on many
factors, including the maintenance process employed, the maintenance environment, the personnel
and the tools available [211]. To receive accurate results, the parameters for the relative efforts of
the individual activities thus need to be determined for each software system individually.

Coarse effort distributions can be taken from project calculation, by matching engineer wages
against maintenance process activities. This way, the relative analysis effort, e. g., is estimated
as the share of the wages of the analysts w.r.t. all wages. As we cannot expect engineer roles to
match the activities of our maintenance process exactly, we need to refine the distribution. This can
be done by observing development efforts for change requests to determine, e. g., how much effort
analysts spend on analysis, location and design, respectively. To be feasible, such observations need
to be carried out on representative samples of the engineers and of the change requests. Stratified
sampling can be employed to improve representativeness of results—sampled CRs can be selected
according to the change type distribution, so that representative amounts of perfective and other
CRs are analyzed.

The parameter CAE for the simplified model is still simpler to determine. Effort e is the overall
person time spent on a set of change requests. It can often be obtained from billing systems. Fur-
thermore, we need to determine person hours spent on quality assurance, working with code and
spent exclusively developing new code. This can, again, be done by observing developers working
on CRs.

The modification ratio can, in principle, also be determined by observing developers and differ-
entiating between additions and modifications. If available, it can alternatively be estimated from
change request type statistics.

Literature Values for Activity Efforts offer a simple way to instantiate the model. Unfortu-
nately, the research community still lacks a thorough understanding of how the activity costs are
distributed across maintenance activities [211]. Consequently, results based on literature values are
less accurate. They can however serve for a coarse approximation based on which a decision can be
taken, whether effort for more accurate determination of the parameters is justified.

Several researchers have measured effort distribution across maintenance activities. In [194], Rom-
bach et al. report measurement results for three large systems, carried out over the course of three
years and covering around 10,000 hours of maintenance effort. Basili et al. [10] analyzed 25 re-
leases each of 10 different projects, covering over 20,000 hours of effort. Both studies work on data
that was recorded during maintenance. Yeh and Jeng [236] performed a questionnaire-based survey
in Taiwan. Their data is based on 97 valid responses received for 1000 questionnaires distributed
across Taiwan’s software engineering landscape. The values of the three studies are depicted in
Table 6.1.

90

6.6 Instantiation

Table 6.1: Effort distribution

Activity [194] [10] [236] Estimate

Analysis 26% 5%
Location 13% 8%

Design 30% 16% 19% 16%
Impact Analysis 5%
Implementation 22% 29% 26% 26%

Quality Assurance 22% 24% 17% 22%
Other 26% 18% 12% 18%

Since each study used a slightly different maintenance process, each being different from the one
used in this thesis, we cannot directly determine average values for activity distribution. For ex-
ample, in [194], design subsumes analysis and location. In [10], analysis subsumes location. The
estimated average efforts are depicted in the fourth row of Table 6.1. Since the definitions of imple-

mentation, quality assurance and other are similar between the studies and our process, we used the
median as estimated value. For the remaining activities, the effort distributions from the literature
are of little help, since the activities do not exist in their processes or are defined differently. We
thus distributed the remaining 34% of effort according to our best knowledge, based on our own de-
velopment experience and that of our industrial partners—the distribution can thus be inaccurate.

To determine the ratio between modification and addition effort during implementation, we inspect
the distribution of change request types. We assume that adaptive, corrective and preventive change
requests mainly involve modifications, whereas perfective changes mainly involve additions. Con-
sequently, we estimate the ratio between addition and modification by the ratio of perfective w.r.t. all
other change types. Table 6.2 shows effort distribution across change types from the above studies.
The fourth row depicts the median of all three—37% of maintenance efforts are spent on perfec-
tive CRs, the remaining 63% are distributed across the other CR types. Based on these values, we
estimate the modification ratio to be 0.63.

Table 6.2: Change type distribution

Effort [194] [10] [236] Median

Adaptive 7% 5% 8% 7%
Corrective 27% 14% 23% 23%

Other 29% 20% 44% 29%
Perfective 37% 61% 25% 37%

6.6.2 Case Studies

This section presents the application of the clone cost model to several large industrial software sys-
tems to quantify the impact of cloning, and the possible benefit of clone management tool support,
in practice.

91

6 Clone Cost Model

Goal The case study has two goals. First, evaluation of the clone cost model. Second, quantifica-
tion of the impact of cloning on software maintenance costs across different software systems, and
the possible benefit of the application of clone management tools.

Study Objects We chose 11 industrial software systems as study objects. Since we require the
willingness of developers to contribute in clone detection tailoring, we had to rely on our contacts
with industry. However, we chose systems from different domains (finance, content management,
convenience, power supply, insurance) from 7 different companies written in 5 different program-
ming languages to capture a representative set of systems. For non-disclosure reasons, we termed
the systems A-K. Table 6.3 gives an overview ordered by system size.

Study Design and Procedure Clone detection tailoring was performed to achieve accurate
results. System developers participated in tailoring to identify false positives. Clone detection and
overhead computation was performed using ConQAT for all study objects and limited to type-1 and
type-2 clones. Minimal clone length was set to 10 statements for all systems. We consider this a
conservative minimal clone length.

Since the effort parameters are not available to us for the analyzed systems, we employed values
from the literature. We assume that 50% (8% location, 5% impact analysis, 26% · 0,63 implemen-
tation and 22% quality assurance; rounded from 51,38% to 50% since the available data does not
contain the implied accuracy) of the overall maintenance effort are affected by cloning. To estimate
the impact of clone indication tool support, we assume that 10% of that effort are used for impact
analysis (5% out of 50% in total). In case clone indication tools are employed, the impact of cloning
on maintenance effort can thus be reduced by 10%.

Results and Discussion The results are depicted in Table 6.3. The columns show lines of code
(kLOC), source statements (kSS), redundancy-free source statements (kRFSS), size overhead and
cloning induced increase in maintenance effort without (∆E) and with clone indication tool support
(∆ETool). Such tool support also reduces the increase in the number of faults due to cloning. As
mentioned in Section 6.3.3, this is not reflected in the model.

The effort increase varies substantially between systems. The estimated overhead ranges from 75%,
for system A, to 5.2% for system F. We could not find a significant correlation between overhead and
system size. On average, estimated maintenance effort increase is 20% for the analyzed systems.
The median is 15.9%. For a single quality characteristic, we consider this a substantial impact on
maintenance effort. For systems A, B, E, G, I, J and K estimated effort increase is above 10%;
for these systems, it appears warranted to determine project specific effort parameters to achieve
accurate results and perform clone management to reduce effort increase.

6.7 Summary

This chapter presented an analytical cost model to quantify the economic effect of cloning on main-
tenance efforts. The model computes maintenance effort increase relative to a system without

92

6.7 Summary

Table 6.3: Case study results

System Language kLOC kSS kRFSS overhead ∆E ∆ETool

A XSLT 31 15 6 150.0% 75.0% 67.5%
B ABAP 51 21 15 40.0% 20.0% 18.0%
C C# 154 41 35 17.1% 8.6% 7.7%
D C# 326 108 95 13.7% 6.8% 6.2%
E C# 360 73 59 23.7% 11.9% 10.7%
F C# 423 96 87 10.3% 5.2% 4.7%
G ABAP 461 208 155 34.2% 17.1% 15.4%
H C# 657 242 210 15.2% 7.6% 6.9%
I COBOL 1,005 400 224 78.6% 39.3% 35.4%
J Java 1,347 368 265 38.9% 19.4% 17.5%

K Java 2,179 733 556 31.8% 15.9% 14.3%

cloning. It can be used as a basis to evaluate clone management alternatives. We have instanti-
ated the cost model on 11 industrial systems. Although result accuracy could be improved by using
project specific instead of literature values for effort parameters, the results indicate that cloning in-
duced impact varies significantly between systems and is substantial for some. Based on the results,
some projects can achieve considerable savings by performing active clone control.

Both the cost model, and the empirical studies in Chapters 4 and 5, further our understanding of
the significance of cloning. However, the nature of their contributions is different. The empirical
studies observe real-world software engineering. While they yield objective results, their research
questions and scope are limited to what we can feasibly study. The cost model is not affected
by these limitations and can thus cover the entire maintenance process. On the other hand, the cost
model is more speculative than the empirical studies in that it reflects our assumptions on the impact
of cloning on engineering activities. The cost model thus serves two purposes. First, it complements
the empirical studies to complete our understanding of the impact of cloning. Second, it makes our
assumptions explicit and thus provides an objective basis for substantiated scientific discourse on
the impact of cloning.

93

7 Algorithms and Tool Support

Both clone detection research and clone assessment and control in practice are infeasible without the
appropriate tools—clones are nearly impossible to detect and manage manually in large artifacts.
This chapter outlines the algorithms and introduces the tools that have been created during this
thesis to support clone assessment and control.

The source code of the clone detection workbench has been published as open source as part of
ConQAT. Its clone detection specific parts, which have been developed during this thesis, comprise
approximately 67 kLOC.

The clone detection process can be broken down into individual consecutive phases. Each phase
operates on the output of its previous phase and produces the input for its successor. The phases can
thus be arranged as a pipeline. Figure 7.1 displays a general clone detection pipeline that comprises
four phases: preprocessing, detection, postprocessing and result presentation:

����
�������	
� ��
��
	�

���
�
�������	
��
	
�

���
�
������

�����

�����

�
	�

�	�
����
�������

Figure 7.1: Clone detection pipeline

Preprocessing reads the source artifacts from disk, removes irrelevant parts and produces an inter-
mediate representation. Detection searches for similar regions in the intermediate representation,
the clones, and maps them back to regions in the original artifacts. Postprocessing filters detected
clones and computes cloning metrics. Finally, result presentation renders cloning information into
a format that fits the task for which clone detection is employed. An example is a trend chart in a
quality dashboard used for clone control.

This clone detection pipeline, or similar pipeline models, are frequently used to outline the clone
detection process or the architecture of clone detection tools from a high level point of view [57,
111, 113, 115, 200]. It also serves as an outline of this chapter: section 7.1 introduces the archi-
tecture of the clone detection workbench that reflects the pipeline of the clone detection process.
The subsequent sections detail preprocessing (7.2), detection (7.3), postprocessing (7.4) and result
presentation (7.5). Section 7.6 compares the workbench with existing detectors and section 7.7 dis-
cusses its maturity and adoption. Finally, section 7.8 summarizes the chapter. Parts of the content
of this chapter have been published in [54, 97, 111, 113, 115].

7.1 Architecture

This section introduces the pipes & filters architecture of the clone detection workbench.

95

7 Algorithms and Tool Support

7.1.1 Variability

Clone detectors are applied to a large variety of tasks in both research and practice [140, 201], in-
cluding quality assessment [111, 159, 178], software maintenance and reengineering [32, 54, 102,
126, 149], identification of crosscutting concerns [27], plagiarism detection and analysis of copy-
right infringement [77, 121].

Each of these tasks imposes different requirements on the clone detection process and its results [229].
For example, the clones relevant for redundancy reduction, i. e., clones that can be removed, differ
significantly from the clones relevant for plagiarism detection. Similarly, a clone detection process
used at development time, e. g., integrated in an IDE, has different performance requirements than a
detection executed during a nightly build. Moreover, even for a specific task, clone detection tools
need a fair amount of tailoring to adapt them to the peculiarities of the analyzed projects. Sim-
ple examples are the exclusion of generated code or the filtering of detection results to retain only
clones that cross project boundaries. More sophisticated, one may want to add a pre-processing
phase that sorts methods in source code to eliminate differences caused by method order or to add a
recommender system that analyzes detection results to support developers in removing clones.

While a pipeline is a useful abstraction to convey the general picture, there is no unique clone
detection pipeline that fits all purposes. Instead, both in research and practice, a family of related,
yet different clone detection pipelines are employed across tools, tasks and domains.

Clone detection tools form a family of products that are related and yet differ in important details.
A suitable architecture for a clone detection workbench thus needs to support this product family
nature. On the one hand, it needs to provide sufficient flexibility, configurability and extensibility to
cater for the multitude of clone detection tasks. On the other hand, it must facilitate reuse and avoid
redundancy between individual clone detection tools of the family.

7.1.2 Explicit Pipeline

The clone detection workbench developed during this thesis supports the product family nature of
clone detection tools by making the clone detection pipeline explicit. The clone detection phases
are lifted to first class entities of a declarative data flow language. This way, a clone detector is
composed from a library of units that perform specific detection tasks. Both the individual units and
combinations of units can be reused across detectors.

The clone detection workbench is implemented as part of the Continuous Quality Assessment
Toolkit (ConQAT) [48, 50, 52, 55, 56, 113]. ConQAT offers a visual data flow language that fa-
cilitates the construction of program analyses that can be described using the pipes & filters archi-
tectural style [208]. This visual language is used to compose clone detection tools from individual
processing steps. Furthermore, ConQAT offers an interactive editor to create, modify, execute, doc-
ument and debug analysis configurations. Using this analysis infrastructure, ConQAT implements
several software quality analyses. The clone detection tool support present in ConQAT has been
developed as part of this thesis1.

1In an earlier version, the clone detection tool support was an independent project called CloneDetective [113] before it
became part of ConQAT. For simplicity, we refer to it as »ConQAT« for the remainder of this thesis.

96

7.1 Architecture

Figure 7.2 shows an exemplary clone detection configuration. It depicts a screenshot from ConQAT,
which has been manually edited to indicate correspondence of the individual processing steps to the

clone detection pipeline phases. Each blue rectangle with a gear wheel symbol » « is a processor.
It represents an atomic piece of analysis functionality. Each green rectangle with a boxed double

gear wheel symbol » « represents a block. A block is a piece of analysis functionality made up of
further processors or blocks. It is the composite piece of functionality that allows reuse of recurring
analysis parts.

This clone detection configuration searches for clones in Java source code that span different projects
to identify candidates for reuse. In detail, the configuration works as shown in Figure 7.2:

Figure 7.2: Clone detection configuration

During preprocessing, the source-code-scope reads source files from disk into memory. The regex-

region-marker marks Java include statements in the files for exclusion, since they are not relevant
for this use case. The statement-normalization block creates a normalization strategy.

In the detection phase, the clone-detector processor uses the normalization strategy to transform
the input files into a sequence of statement units and performs detection of contiguous clones. The
non-overlapping-constraint is evaluated on each detected clone group. Clone groups that contain
clones that overlap with each other are excluded.

During postprocessing, the black-list-filter removes all clone groups that have been blacklisted by
developers. The rfss-annotator computes the redundancy-free-source-statements measure for each
source file. The cross-project-clone-group-filter removes clone groups that do not span at least two
projects.

97

7 Algorithms and Tool Support

In the output phase, the clone-report-writer-processor writes the detection results into an XML re-
port that can be opened for interactive clone inspection. The coverage-output and html-presentation

create a treemap that gives an overview of the distribution of cross-project clones across the ana-
lyzed projects.

In this configuration, the statement-normalization and the coverage-output are reused configuration
blocks. The remaining units have been individually configured for this analysis.

While the phases of the clone detection pipeline from Figure 7.1 are still recognizable in the Con-
QAT configuration in Figure 7.2, the configuration contains task-specific units (e. g., the cross-

project-clone-groups-filter) that are not required in other contexts. Consequently, for other tasks,
specific pipelines can be configured that reuse shared functionality available in the form of proces-
sors or blocks.

7.2 Preprocessing

Preprocessing transforms the source artifacts into an intermediate representation on which clone
detection is performed. The intermediate representation serves two purposes: first, it abstracts
from the language of the artifact that gets analyzed, allowing detection to operate independent of
idiosyncracies of, e. g., C++ or ABAP source code or texts written in English or German; second,
different elements in the original artifacts can be normalized to the same intermediate language
fragment, thus intentionally masking subtle differences.

This section first introduces artifact-independent preprocessing steps and then outlines artifact-
specific strategies for source code, requirements specifications and models.

7.2.1 Steps

ConQAT performs preprocessing in four steps: collection, removal, normalization and unit creation.
All of them can be configured to make them suitable for different tasks.

Collection gathers source artifacts from disk and loads them into memory. It can be configured
to determine which artifacts are collected and which are ignored. Inclusion and exclusion patterns
can be specified on artifact paths and content to exclude, e. g., generated code based on file name
patterns, location in the directory structure or typical content.

Removal strips parts from the artifacts that are uninteresting from a clone detection perspective,
e. g., comments or generated code.

Normalization splits the (non-ignored parts of the) source artifacts into atomic elements and trans-
forms them into a canonical representation to mask subtle differences that are uninteresting from a
clone detection perspective.

Unit creation groups atomic elements created by normalization into units on which clone detection
is performed. Depending on the artifact type, it can group several atomic elements into a single unit
(e. g., tokens into statements) or produce a unit for each atomic element (e. g., for Matlab/Simulink
graphs).

98

7.2 Preprocessing

The result of the preprocessing phase is an intermediate representation of the source artifacts. The
underlying data structure depends on the artifact type: preprocessing produces a sequence of units
for source code and requirements specifications and a graph for models.

7.2.2 Code

Preprocessing for source code operates on the token level. Programming-language specific scanners
are employed to split source code into tokens. Both removal and normalization can be configured
to specify which token classes to remove and which normalizing transformations to perform. If no
scanner for a programming language is available, preprocessing can alternatively work on the word
or line level. However, normalization capabilities are then reduced to regular-expression-based
replacements2.

Tokens are removed if they are not relevant for the execution semantics (such as, e. g., comments)
or optional (e. g., keywords such as this in Java). This way, differences in the source code that are
limited to these token types do not prevent clones from being found.

Normalization is performed on identifiers and literals. Literals are simply transformed into a single
constant for each literal type (i. e., boolean literals are mapped to another constant than integer liter-
als). For identifier transformation, a heuristic strategy is employed that aims to provide a canonical
representation to all statements that can be transformed into each other through consistent renaming
of their constituent identifiers. For example, the statement »a = a + b;« gets transformed to »id0

= id0 + id1«. So does »x = x + y«. However, statement »a = b + c« does not get normalized
like this, since it cannot be transformed into the previous examples through consistent renaming.
(Instead, it gets normalized to »id0 = id1 + id2«.) This normalization is similar to parameterized
string matching proposed by Baker [6].

ConQAT does not employ the same normalization to all code regions. Instead, different strategies
can be applied to different code regions. This allows conservative normalization to be performed
to repetitive code—e. g., sequences of Java getters and setters—to avoid false positives; at the same
time, non-repetitive code can be normalized aggressively to improve recall. The normalization
strategies and their corresponding code regions can be specified by the user; alternatively, ConQAT
implements heuristics to provide default behavior suitable to most code bases.

Unit creation forms statements from tokens. This way, clone boundaries coincide with statement
boundaries. A clone thus cannot begin or end somewhere in the middle of a statement.

Shapers insert unique units at specified positions. Since unique units are unequal to any other unit,
they cannot be contained in any clone. Shapers thus clip clones. ConQAT implements shapers to
clip clones to basic blocks, method boundaries or according to user-specified regular expressions.

2For reasons of conciseness, this section is limited to an overview. A detailed documentation of the existing processors
and parameters for normalization is contained in ConQATDoc at www.conqat.org and the ConQAT Book [49].

99

7 Algorithms and Tool Support

7.2.3 Requirements Specifications

Preprocessing for natural language documents operates on the word level. A scanner is employed
to split text into word and punctuation tokens. Whitespace is discarded. Both removal and normal-
ization operate on the token stream.

Punctuation is removed to allow clones to be found that only differ in, e. g., their commas. Fur-
thermore, stop words are removed from the token stream. Stop words are defined in information
retrieval as words that are insignificant or too frequent to be useful in search queries. Examples are
“a”, “and”, or “how”.

Normalization performs word stemming to the remaining tokens. Stemming heuristically reduces a
word to its stem. ConQAT uses the Porter stemmer algorithm [187], which is available for various
languages. Both the list of stop words and the stemming depend on the language of the specifica-
tion.

Unit creation forms sentence units from word tokens. This way, clone boundaries coincide with
sentence boundaries. A clone thus cannot begin or end somewhere in the middle of a sentence.

7.2.4 Models

Preprocessing transforms Matlab/Simulink models into labeled graphs. It involves several steps:
reading the models, removal of subsystem boundaries, removal of unconnected lines and normal-
ization.

Normalization produces the labels of the vertices and edges in the graph. The label content depends
on which vertices are considered equal. For blocks, usually at least the block type is included,
while semantically irrelevant information, such as the name, color, or layout position, are excluded.
Additionally, some of the block attributes are taken into account, e. g., for the RelationalOperator

block the value of the Operator attribute is included, as this decides whether the block performs a
greater or less than comparison. For the lines, we store the indices of the source and destination
ports in the label, with some exceptions as, e. g., for a product block the input ports do not have to
be differentiated. Furthermore, normalization stores weight values for vertices. The weight values
are used to treat different vertex types differently when filtering small clones. Weighting can be
configured and is an important tool to tailor model clone detection.

The result of these steps is a labeled model graph G = (V,E, L) with the set of vertices (or nodes)
V corresponding to the blocks, the directed edges E ⊂ V × V corresponding to the lines, and a
labeling function L : V ∪E → N mapping nodes and edges to normalization labels from some set
N . Two vertices or two edges are considered equivalent, if they have the same label. As a Simulink
block can have multiple ports, each of which can be connected to a line, G is a multi-graph. The
ports are not modeled here but implicitly included in the normalization labels of the lines.

For the simple models shown in Figure 7.3 the labeled graph produced by preprocessing is depicted
in Figure 7.4. The nodes are labeled according to our normalization function. (The grey portions of
the graph mark the part we consider a clone.)

100

7.3 Detection Algorithms

Figure 7.3: Examples: Discrete saturated PI-controller and PID-controller

���� ���

�	�
�

�
������

������

�����
���

���

����	��

���	��

����

���	��

����

�����
���

���

���� ���

�����
���

��� ����	��

����

Figure 7.4: The model graph for our simple example model

7.3 Detection Algorithms

Detection identifies the actual clones in the artifacts. This section first introduces general steps
involved in detection and then outlines detection algorithms for sequences and graphs.

7.3.1 Steps

The detection phase produces cloning information in terms of regions in the source artifacts. It
involves two steps. First, clones are identified in the intermediate representation. Second, clones
are mapped from the intermediate representation to their original artifacts. Given a suitable inter-
mediate representation, mapping is straight-forward. The principal challenge in this phase is thus
the detection of clones in the intermediate representation.

The employed detection algorithms depend on the structure of the intermediate representation, not
on the type of the artifact. More specifically, different algorithms are employed for sequences than
for graphs. This section is thus structured according to algorithms that operate on sequences and
those that operate on graphs3.

In principle, source code can be represented both as a sequence of statements or as a graph (e. g., a
program dependence graph). Thus, both sequence- and graph-based detection algorithms can be ap-
plied to source code. PDG-based approaches [137,146], e. g., operate on a graph-based intermediate
representation for code. However, ConQAT performs clone detection on sequences, since from our

3ConQAT does not implement clone detection algorithms that operate on trees.

101

7 Algorithms and Tool Support

experience, the cost increase incurred by searching clones in graphs instead is not accounted for by a
sufficient increase in detection result quality—many of the graph-based clone detection approaches
are prohibitively expensive for practical application [137, 146]. For data-flow models, on the other
hand, we are not aware of a sequentialization that is sufficiently canonical to allow for high recall of
sequence-based clone detection in models. Thus, we perform clone detection for source code and
requirements specifications on sequences, but clone detection for models on graphs.

7.3.2 Batch Detection of Type-1 and Type-2 Clones in Sequences

ConQAT implements a suffix tree-based algorithm for the detection of type-1 and type-2 clones in
sequences. The algorithm operates on a string of units and detects substrings that occur more than
once. It can be applied both to source code and to requirements specifications. The algorithm is
similar to the clone detection algorithms proposed by Baker [6] and Kamiya et al. [121].

A suffix tree over a sequence s is a tree with edges labeled by words so that exactly all suffixes of
s are found by traversing the tree from the root node to a leaf and concatenating the words on the
encountered edges. It is constructed in linear time—and thus linear space—using the algorithm by
Ukkonen [222]. A suffix tree for the sequence abcdXabcd$ is displayed in Figure 7.5. Red edges
denote suffix links. A suffix link points from a node to a node that represents its direct suffix.

��

��

�����	

�

����

��

���

���

��

��

�

���

	

�� �
 �� ��

�����	

��

	 �����	

��

	 �����	

���

	 �����	

���

	

Figure 7.5: Suffix tree for sequence abcdXabcd$

In a suffix tree, no two edges leaving a node have the same label. If two substrings of s are identical,
it contains two suffixes that have the string as their prefix; both share the same edge in the tree. In
sequence abcdXabcd$, the string abcd occurs twice; consequently, the suffixes abcdXabc$ and
abcd$4 share the prefix abcd and thus the edge between n0 and n6 in the tree (denoted in blue). The
node n6 indicates that the suffixes differ from this point on—one continues with the label Xabcd$,
one with $.

To detect clones, the algorithm performs a depth-first search of the suffix tree. If a node in the tree
has children, the label from the root to the node occurs exactly as many times in s, as the node has

4The sentinel character $ denotes the end of the sequence s.

102

7.3 Detection Algorithms

Figure 7.6: The original file named X.j (left), its normalization (center), and the cor-

responding clone index (right).

reachable leaves in the tree. For example, since n6 has two reachable leafs (n1 and n7), the label
abcd occurs 2 times in s and is thus reported as a clone group with two clones.

The suffixes of clones—bcd, cd and d denoted in gray in the example—also occur several times in
s. We refer to them as induced clones. If they do not occur more often than their longer variants,
they are not reported. The algorithm employs the suffix links to propagate induced clone counts.
Clones are only reported, if the induced clone count for a node is smaller than its clone count. In
the example, no clones are reported for nodes n8, n10 and n12.

Scalability and Performance We evaluate scalability and performance of the suffix tree-based
algorithm together with the index-based algorithm in the next section.

7.3.3 Real-Time Detection of Type-1 and Type-2 Clones in Sequences

ConQAT implements index-based clone detection as a novel detection approach for type-1 and
type-2 clones that is both incremental, distributable and scalable to very large code bases.

Clone Index The clone index is the central data structure used for our detection algorithm. It
allows the lookup of all clones for a single file (and thus also for the entire system), and can be
updated efficiently, when files are added, removed, or modified.

The list of all clones of a system is not a suitable substitute for a clone index, as efficient update is
not possible. Adding a new file may potentially introduce new clones to any of the existing files and
thus a comparison to all files is required if no additional data structure is used.

The core idea of the clone index is similar to the inverted index used in document retrieval systems
(cf., [135], pp. 560–663). There, a mapping from each word to all its occurrences is maintained.
Similarly, the clone index maintains a mapping from sequences of normalized statements to their
occurrences. More precisely, the clone index is a list of tuples (file, statement index, sequence hash,

info), where file is the name of the file, statement index is the position in the list of normalized
statements for the file, sequence hash is a hash code for the next n normalized statements in the
file starting from the statement index (n is a constant called chunk length and is usually set to
the minimal clone length), and info contains any additional data, which is not required for the
algorithms, but might be useful when producing the list of clones, such as the start and end lines of
the statement sequence.

103

7 Algorithms and Tool Support

The clone index contains the described tuples for all files and all possible statement indices, i. e.,
for a single file the statement sequences (1, . . . , n), (2, . . . , (n + 1)), (3, . . . , (n + 2)), etc. are
stored. Our detection algorithm requires lookups of tuples both by file and by sequence hash, so
both should be supported efficiently. Other than that, no restrictions are placed on the index data
structure, so there are different implementations possible, depending on the actual use-case. These
include in-memory indices based on two hash tables or search trees for the lookups, and disk-based
indices which allow persisting the clone index over time and processing amounts of code which are
too large to fit into main memory. The latter may be based on database systems, or on one of the
many optimized (and often distributed) key-value stores [34, 47].

In Fig. 7.6, the correspondence between an input file »X.j«5 and the clone index is visualized for
a chunk length of 5. The field that requires most explanation is the sequence hash. The reason
for using sequences of statements in the index instead of individual statements is that the statement
sequences less common (two identical statement sequences are less likely than two identical state-
ments) and are already quite similar to the clones. If there are two entries in the index with the same
sequence, we already have a clone of length at least n. The reason for storing a hash in the index
instead of the entire sequence is for saving space, as this way the size of the index is independent of
the choice of n, and usually the hash is shorter than the sequence’s contents even for small values of
n. We use the MD5 hashing algorithm [192] which calculates 128 bit hash values and is typically
used in cryptographic applications, such as the calculation of message signatures. As our algorithm
only works on the hash values, several statement sequences with the same MD5 hash value would
cause false positives in the reported clones. While there are cryptographic attacks that can generate
messages with the same hash value [212], the case of different statement sequences producing the
same MD5 hash is so unlikely in our setting, that it can be neglected for practical purposes.

Clone Retrieval The clone retrieval process extracts all clones for a single file from the index.
Usually we assume that the file is contained in the index, but of course the same process can be
applied to find clones between the index and an external file as well. Tuples with the same sequence
hash already indicate clones with a length of at least n (where n is the chunk length). The goal of
clone retrieval is to report only maximal clones, i. e., clone groups that are not entirely contained in
another clone group. The overall algorithm is sketched in Fig. 7.7, which we next explain in more
detail.

The first step (up to Line 6) is to create the list c of duplicated chunks. This list stores for each
statement of the input file all tuples from the index with the same sequence hash as the sequence
found in the file. The index used to access the list c corresponds to the statement index in the input
file. The setup is depicted in Fig. 7.8. There is a clone of length 10 (6 tuples with chunk length 5)
with the file Y.j, and a clone of length 7 with both Y.j and Z.j.

In the main loop (starting from Line 7), we first check whether any new clones might start at this
position. If there is only a single tuple with this hash (which has to belong to the inspected file at the
current location) we skip this loop iteration. The same holds if all tuples at position i have already
been present at position i− 1, as in this case any clone group found at position i would be included
in a clone group starting at position i − 1. Although we use the subset operator in the algorithm
description, this is not really a subset operation, as of course the statement index of the tuples in c(i)

5We use the name X.j instead of X.java as an abbreviation in the figures.

104

7.3 Detection Algorithms

1 function reportClones (filename)
2 let f be the list of tuples corresponding to filename

sorted by statement index either read from
the index or calculated on the fly

3 let c be a list with c(0) = ∅
4 for i := 1 to length(f) do

5 retrieve tuples with same sequence hash as f(i)
6 store this set as c(i)

7 for i := 1 to length(c) do

8 if |c(i)| < 2 or c(i) ⊆ c(i− 1) then

9 continue with next loop iteration
10 let a := c(i)
11 for j := i+ 1 to length(c) do

12 let a′ := a ∩ c(j)
13 if |a′| < |a| then

14 report clones from c(i) to a (see text)
15 a := a′

16 if |a| < 2 or a ⊆ c(i− 1) then

17 break inner loop

Figure 7.7: Clone retrieval algorithm

Figure 7.8: Lookups performed for retrieval

will be increased by 1 compared to the corresponding ones in c(i − 1) and the content of the info

field will differ.

The set a introduced in Line 10 is called the active set and contains all tuples corresponding to
clones which have not yet been reported. At each iteration of the inner loop the set a is reduced to
tuples which are also present in c(j) (again the intersection operator has to account for the increased
statement index and different info field). The new value is stored in a′. Clones are only reported,
if tuples are lost in Line 12, as otherwise all current clones could be prolonged by one statement.
Clone reporting matches tuples that, after correction of the statement index, appear in both c(i) and
a; each matched pair corresponds to a single clone. Its location can be extracted from the filename
and info fields. All clones in a single reporting step belong to one clone group. Line 16 early exits
the inner loop if either no more clones are starting from position i (i. e., a is too small), or if all
tuples from a have already been in c(i− 1). (again, corrected for statement index). In this case they

105

7 Algorithms and Tool Support

have already been reported in the previous iteration of the outer loop.

This algorithm returns all clone groups with at least one clone instance in the given file and with a
minimal length of chunk length n. Shorter clones cannot be detected with the index, so n must be
chosen equal to or smaller than the minimal clone length. Of course, reported clones can be easily
filtered to only include clones with a length l > n.

One problem of this algorithm is that clone groups with multiple instances in the same file are
encountered and reported multiple times. Furthermore, when calculating the clone groups for all
files in a system, clone groups will be reported more than once as well. Both cases can be avoided,
by checking whether the first element of a′ (with respect to a fixed order) is equal to f(j) and only
report in this case.

Index Maintenance By index maintenance we refer to all steps required to keep the index up
to date in the presence of code changes. For index maintenance, only two operations are needed,
namely addition and removal of single files. Modifications of files can be reduced to a remove

operation followed by an addition6 and index creation is just addition of all existing files starting
from an empty index. In the index-based model, both operations are simple. To add a new file, it has
to be read and preprocessed to produce its sequence of normalized statements. From this sequence,
all possible contiguous sequences of length n (where n is the chunk length) are generated, which
are then hashed and inserted as tuples into the index. Similarly, the removal of a file consists of the
removal of all tuples that contain the respective file. Depending on the implementation of the index,
the addition and removal of tuples might cause additional processing steps (such as rebalancing
search trees, or recovering freed disk space), but these are not considered here.

Implementation Considerations Details on index implementation and an analysis of the
complexity of the algorithm can be found in [97]. We omit it here, as its overall performance
strongly depends on the structure of the analyzed system. Its practical suitability thus needs to be
determined using measurements on real-world software, which are reported below.

Scalability and Performance: Batch Clone Detection To evaluate performance and scal-
ability of both the suffix tree-based and the index-based algorithm, we executed both on the same
hardware, with the same settings, analyzed the same system and compared the results. Both algo-
rithms are configured to operate on statements as units. For the index-based algorithm, we used an
in-memory clone index implementation.

We used the 11 MLOC of C code the Linux Kernel in version 2.6.33.2 as study object. Both algo-
rithms detect the same 60.353 clones in 25.663 groups for it. To evaluate scalability, we performed
several detections, each analyzing increasing amounts of code. We analyzed between 500 KLOC
and 10 MLOC and incremented by 500 KLOC for each run. The measurements were carried out
on a Windows machine with 2.53 GHz, Java 1.6 and a heap size of 1 GB. The results are depicted
in Figure 7.9. It shows the number of statements (instead of the lines of code) on the x-axis, since
they more accurately determine runtime. 500 KLOC, e. g., correspond to 141K statements.

6This simplification makes sense only if a single file is small compared to the entire code base, which holds for most
systems. If a system only consists of a few huge files, more refined update operations would be required.

106

7.3 Detection Algorithms

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000

E
x
e
c
u
ti
o
n
 T

im
e
 i
n
 S

e
c
o
n
d
s

Size in 1000 Statements

Statement Creation
Index-Based Detection

Suffix-Tree-Based Detection

Figure 7.9: Performance of type-2 clone detection

The time required to create the statement units (including disk I/O, scanning and normalization)
is depicted in red. It dominates the runtime for both algorithms. The runtimes of the suffix tree-
based and index-based detection algorithms (including statement unit creation) are depicted in blue
and green, respectively. For both algorithms, runtimes increase linear with system size. The suffix
tree-based algorithm is faster. It should thus be used if batch detection gets performed on a single
machine and sufficient memory is available. Otherwise, the index-based algorithm is preferable.

Scalability and Performance: Real-Time Clone Detection We investigated the suitabil-
ity for real-time clone detection on large code that is modified continuously on the same hard-
ware as above. We used a persistent clone index implementation based on Berkeley DB7, a high-
performance embedded database.

We measured the time required to (1) build the index, (2) update the index in response to changes
to the system, and (3) query the index. For this, we analyzed version 3.3 of the Eclipse SDK
(42.693.793 LOC in 209.312 files). We timed index-creation to measure (1). To measure (2), we
removed 1,000 randomly selected files and re-added them afterwards. For (3), we queried the index
for all clone groups of 1,000 randomly selected files.

Table 7.1 depicts the results. Index creation, including writing the clone index to the database, took
7 hours and 4 minutes. The clone index occupied 5.6 GB on disk. Index update, including writing
to the database, took 0.85 seconds per file on average. Finally, queries for all clone groups for a file
took 0.91 seconds on average. Median query time was 0.21 seconds. Only 14 of the 1000 files had
a query time of over 10 seconds. On average, the files had a size of 3 kLOC and queries for them
returned 350 clones.

7http://www.oracle.com/technology/products/berkeley-db/index.html

107

7 Algorithms and Tool Support

The results indicate that our approach is capable of supporting real time clone management: the
index can be created during a single nightly build. (Afterwards, the index can be updated to changes
and does not need to be recreated.) The average time for a query is, in our opinion, fast enough to
support interactive display of clone information when a source file is opened in the IDE. Finally, the
performance of index updates allows for continuous index maintenance, e. g., triggered by commits
to the source code repository or save operations in the IDE.

Table 7.1: Clone management performance

Index creation (complete) 7 hr 4 min
Index query (per file) 0.21 sec median

0.91 sec average
Index update (per file) 0.85 sec average

Scalability and Performance: Distributed Clone Detection We evaluated the distribu-
tion on multiple machines using Google’s computing infrastructure. The employed index is im-
plemented on top of Bigtable [34], a key-value store supporting distributed access. Details on the
implementation on Google’s infrastructure can be found in [97].

We analyzed third party open source software, including, e. g., WebKit, Subversion, and Boost.
(73.2 MLOC of Java, C, and C++ code in 201,283 files in total.) We executed both index creation
and coverage calculation as separate jobs, both on different numbers of machines8. In addition, to
evaluate scalability to ultra-large code bases, we measured index construction on 1000 machines on
about 120 million C/C++ files indexed by Google Code Search9, comprising 2.9 GLOC10.

Using 100 machines, index creation and coverage computation for the 73.2 MLOC of code took
about 36 minutes. For 10 machines, the processing time is still only slightly above 3 hours. The
creation of the clone index for the 2.9 GLOC of C/C++ sources in the Google Code Search index
required less than 7 hours on 1000 machines.

We observed a saturation of the execution time for both tasks. Towards the end of the job, most
machines are waiting for a few machines which had a slightly larger computing task caused by large
files or files with many clones. The algorithm thus scales well up to a certain number of machines.
Additional measurements (cf., [97]) revealed that using more than about 30 machines for retrieval

does not make sense for a code base of the given size. However, the large job processing 2.9 GLOC
demonstrates the (absence of) limits for index construction.

8The machines have Intel Xeon processors from which only a single core was used, and the task allocated about 3 GB
RAM on each.

9http://www.google.com/codesearch
10More precisely 2,915,947,163 lines of code.

108

7.3 Detection Algorithms

7.3.4 Type-3 Clones in Sequences

ConQAT implements a novel algorithm to detect type-3 clones in sequences. The task of the de-
tection algorithm is to find common substrings in the unit sequence, where common substrings are
not required to be exactly identical, but may have an edit distance bounded by some threshold. This
problem is related to the approximate string matching problem [109,221], which is also investigated
extensively in bioinformatics [215]. The main difference is that we are not interested in finding an
approximation of only a single given word in the string, but rather are looking for all substrings
approximately occurring more than once in the entire sequence.

The algorithm constructs a suffix tree of the unit sequence and then performs an edit-distance-based
approximate search for each suffix in the tree. It employs the same suffix tree as the algorithm that
searches for type-1 and type-2 clones from Section 7.3.2, but employs a different search.

Detection Algorithm A sketch of our detection algorithm is shown in Figures 7.10 and 7.11.
Clones are identified by the procedure search that recursively traverses the suffix tree. Its first two
parameters are the sequence s we are working on and the position start where the search was started,
which is required when reporting a clone. The parameter j (which is the same as start in the first
call of search) marks the current end of the substring under inspection. To prolong this substring,
the substring starting at j is compared to the next word w in the suffix tree, which is the edge leading
to the current node v (for the root node we just use the empty string). For this comparison, an edit
distance of at most e operations (fifth parameter) is allowed. For the first call of search, e is the
edit distance maximally allowed for a clone. If the remaining edit operations are not enough to
match the entire edge word w (else case), we report the clone as far as we found it. Otherwise, the
traversal of the tree continues recursively, increasing the length (j−start) of the current substring
and reducing the number e of edit operations available by the amount of operations already spent.

proc detect (s, e)
Input: String s = (s0, . . . , sn), max edit distance e

1 Construct suffix tree T from s
2 for each i ∈ {1, . . . , n} do

3 search (s, i, i, root(T), e)

Figure 7.10: Outline of approximate clone detection algorithm

A suffix tree for the sequence abcdXabcY d$ is displayed in Figure 7.12, that contains the type-3
clones abcd and abcY d. For an edit distance of 1, the algorithm matches the type-3 clones abcd
and abcY d, depicted in blue. From node n6, the labels dX$abcY d$ and Y d$ are compared. If Y
is removed (indicated in orange), both labels start with d. The label abc from n0 to n6 can thus be
prolonged by d for n1 and Y d for n7. The induced clones to n8 and n10 are again excluded. The
induced clone d, at node n13 is not reachable through a suffix link. However, it still does not get
reported, since the search only starts at positions in the word that are not covered by other clones.
Hence, no search starts for d, since it is covered by the above clone group. Due to its local search
strategy, the algorithm does not guarantee to find globally optimal edit sequences.

To make this algorithm work and its results usable, some details have to be fleshed out. To compute
the longest edit distance match, we use the dynamic programming algorithm found in algorithm

109

7 Algorithms and Tool Support

proc search (s, start, j, v, e)
Input: String s = (s0, . . . , sn),

start index of current search, current search index j,
node v of suffix tree over s, max edit distance e

1 Let (w1, . . . , wm) be the word along the edge leading to v
2 Calculate the maximal length l ≤ m, so that

there is a k ≥ j where the edit distance e′ between
(w1, . . . , wl) and (sj , . . . , sk) is at most e

3 if l = m then

4 for each child node u of v do

5 search (s, start, k +m, u, e− e′)
6 else if k − start ≥ minimal clone length then

7 report substring from start to k of s as clone

Figure 7.11: Search routine of the approximate clone detection algorithm

��

��

�����	

��

���

��

��

�
�

�

�
�

�	

�
�

	

�
�

�
 �� �� ��

	�����	

��

�	
 	�����	

��

�	
 	�����	

�

�	
 �����	

�
�

Figure 7.12: Suffix tree for sequence abcdXabcYd$

textbooks. While easy to implement, it requires quadratic time and space11. To make this step
efficient, we look at most at the first 1000 statements of the word w. As long as the word on
the suffix tree edge is shorter, this is not a problem. In case there is a clone of more than 1000
statements, we find it in chunks of 1000. We consider this to be tolerable for practical purposes. As
each suffix we are running the search on will of course be part of the tree, we also have to make sure
that no self matches are reported.

When running the algorithm as is, the results are often not as expected because it tries to match as
many statements as possible. However, allowing for edit operations right at the beginning or at the
end of a clone is not helpful, as then every exact clone can be prolonged into a type-3 clone. We
thus enforce the first few statements (how many can be parameterized) to match exactly. This also
speeds up the search, as we can choose the correct child node at the root of the suffix tree in one step
without looking at all children. The last statements are also not allowed to differ, which is checked
for and corrected just before reporting a clone.

With these optimizations, the algorithm can miss a clone either due to the thresholds (either too short

11It can be implemented using only linear space, but preserving the full calculation matrix allows some simplifications.

110

7.3 Detection Algorithms

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 0 1 2 3 4 5 6

T
im

e
 in

 s
e

co
n

d
s

System size in MLOC

Figure 7.13: Runtime of type-3 clone detection

or too many inconsistencies), or if it is covered by other clones. The later case is important, as each
substring of a clone is of course again a clone and we usually do not want these to be reported.

Scalability and Performance To assess the performance of the entire clone detection pipeline,
we executed ConQAT to detect type-3 clones on the source code of Eclipse12, limiting detection to a
certain amount of code. Our results on an Intel Core 2 Duo 2.4 GHz running Java in a single thread
with 3.5 GB of RAM are shown in Figure 7.13. We use a minimal clone length of 10 statements,
maximal edit distance of 5 and a gap-ratio of 0.213. It is capable to handle the 5.6 MLOC of Eclipse
in about 3 hours. This is fast enough to be executed during a nightly build.

7.3.5 Clones in Data-Flow Graphs

ConQAT implements a novel algorithm to detect clones in graphs. In this section, we formalize
clone detection in graph-based models and describe an algorithm for solving it. Our approach
comprises two steps. First, it extracts clone pairs (i. e., parts of the model that are equivalent);
second, it clusters pairs to also find substructures occurring more than twice.

Problem Definition Detection operates on a normalized model graph G = (V,E, L). We define
a clone pair as a pair of subgraphs (V1, E1), (V2, E2) with V1, V2 ⊂ V and E1, E2 ⊂ E, so that the
following conditions hold:

1. There are bijections ιV : V1 → V2 and ιE : E1 → E2, so that for each v ∈ V1 it holds L(v) =
L(ιV (v)) and for each e = (x, y) ∈ E1 it is both L(e) = L(ιE(e)) and (ιV (x), ιV (y)) =
ιE(e).

2. V1 ∩ V2 = ∅

3. The graph (V1, E1) is connected.

12Core of Eclipse Europa release 3.3. The code size is smaller than mentioned in Section 7.3.3, since we only analyzed
the core code and excluded other projects from the Eclipse ecosystem, that were part of the analysis in Section 7.3.3.

13The gap ratio is the ratio of the edit distance w.r.t. the length of the clone.

111

7 Algorithms and Tool Support

For V1, V2 ⊂ V , we say that they are in a cloning relationship, iff there are E1, E2 ⊂ E so that
(V1, E1), (V2, E2) is a clone pair.

The first condition of the definition states that those subgraphs must be isomorphic regarding to the
labels L; the second one rules out overlapping clones; the last one ensures we are not finding only
unconnected blocks distributed arbitrarily through the model. Note that we do not require them to
be complete subgraphs (i. e., contain all induced edges).

The size of the clone pair denotes the number of nodes in V1. The goal is to find all maximal clone
pairs, i. e., all such pairs which are not contained in any other pair of greater size.

While this problem seems to be similar to the well-known NP-hard Maximum Common Subgraph

(MCS) problem (also called Largest Common Subgraph in [75]), it is slightly different in that we
only deal with one graph (while MCS looks for subgraphs in two different graphs) and we do not
only want to find the largest subgraph, but all maximal ones.

Detecting Clone Pairs Since the problem of finding the largest clone pair is NP-complete, we
cannot expect to find an efficient (polynomial time) algorithm that enumerates all maximal clone
pairs—at least not for models of realistic size. Instead, ConQAT employs a heuristic approach.

Figure 7.14 gives an outline of the algorithm. It iterates over all possible pairings of nodes and
proceeds in a breadth-first-search (BFS) from there (lines 4-12). It manages the sets C of current
node pairs in the clone, S of nodes seen in the current BFS, and D of node pairs we are done with.

Line 9, which is optional, skips the currently built clone pair, if we find a pair of nodes we have
already seen before. This was introduced as we found that clones reported this way are often
similar to others already found (although with different “extensions”) and thus rather tend to clutter
the output.

The main difference between our heuristic and an exhaustive search (such as the backtracking ap-
proach given in [172]) is in line 7: we only inspect one possible mapping of the nodes’ neigh-
borhoods to each other. To find all clone pairs, we would have to inspect all possible mappings
and perform backtracking. Even only two different mappings quickly lead to an exponential time
algorithm in this case, which will not be capable of handling thousands of nodes.

Thus, for each pair of nodes (u, v), we only consider one mapping P of their adjacent blocks. All
block pairs (x, y) of P must fulfill the following two conditions:

L(x) = L(y) (7.1)

(u, x), (v, y) ∈ E and L((u, x)) = L((v, y))
or

(x, u), (y, v) ∈ E and L((x, u)) = L((y, v))
(7.2)

As we are only looking at a single assignment out of many, it is important to choose the “right” one.
This is accomplished by the similarity function described in the following section.

112

7.3 Detection Algorithms

Input: Model graph G = (V,E, L)

1 D := ∅
2 for each (u, v) ∈ V ×V with u 6= v ∧ L(u) = L(v) do

3 if {u, v} 6∈ D then

4 Queue Q := {(u, v)}, C := {(u, v)}, S := {u, v}
5 while Q 6= ∅ do

6 dequeue pair (w, z) from Q
7 from the neighborhood of (w, z) build a list of

node pairs P for which the conditions (7.1,7.2) hold
8 for each (x, y) ∈ P do

9 if (x, y) ∈ D then continue with loop at line 2
10 if x 6= y ∧ {x, y} ∩ S = ∅ then

11 C := C ∪ {(x, y)}, S := S ∪ {x, y}
12 enqueue (x, y) in Q
13 report node pairs in C as clone pair
14 D := D ∪ C

Figure 7.14: Heuristic for detecting clone pairs

The Similarity Function The idea of the similarity function σ : V × V → [0, 1] is to have a
measure for the structural similarity of two nodes which not only captures the normalization labels,
but also their neighborhood. We use the similarity in two places. First, we visit the node pairs in the
main loop in the order of decreasing similarity, as a high σ value is more likely to yield a “good”
clone. Second, in line 7, we try to build pairs with a high similarity value. This is a weighted
bipartite matching with σ as weight, which can be solved in polynomial time [185].

For two nodes u, v, we define a function si(u, v) that intuitively captures the structural similarity of
all nodes that are reachable in exactly i steps, by

s0(u, v) =

{

1 if L(u) = L(v)
0 otherwise

and

si+1(u, v) =

{

Mi(u,v)
max{|N(u)|,|N(v)|} if L(u) = L(v)

0 otherwise

where N(u) denotes the set of nodes adjacent to u (its neighborhood); Mi(u, v) denotes the weight
of a maximal weighted matching between N(u) and N(v) using the weights provided by si and
respecting conditions (7.1) and (7.2).

We can show that, for every i and pair (u, v) it holds by induction, that 0 ≤ si(u, v) ≤ 1 and thus
defining

σ(u, v) :=
∞
∑

i=0

1

2i
si(u, v)

is valid as the expression converges to a value between 0 and 1. The weighting with 1
2i

makes
nodes near to the pair (u, v) more relevant for the similarity. For practical applications, only the
first few terms of the sum have to be considered and the similarity for all pairs can be calculated
using dynamic programming.

113

7 Algorithms and Tool Support

Figure 7.15: A partially hidden clone of cardinality 3

Clustering Clones So far, we only find clone pairs. Subgraphs that are repeated n times will
thus result in n(n− 1)/2 clone pairs. Clustering aggregates those pairs into a single group.

While it seems straightforward to generalize the definition of a clone pair to n pairs of nodes and
edges to get the definition of a clone group, we felt this definition to be too restrictive. Consider,
e. g., clone pairs (V1, E1), (V2, E2) and (V3, E3), (V2, E4). Although there is a bijection between
the nodes of V1 and V3 they are not necessarily clones of each other, as they might not contain the
required edges. However, we consider this relationship to be still relevant to be reported, as when
looking for parts of the model to be included in a library the blocks corresponding to V2 might be a
good candidate, as it could potentially replace two other parts.

So instead of clustering clones by exact identity (including edges) which would miss many interest-
ing cases differing only in one or two edges, we perform clustering only on the sets of nodes. This
is an overapproximation that can result in clusters containing clones that are only weakly related.
However, as we consider manual inspection of clones to be important for deciding how to deal with
them, those cases (which are rare in practice) can be dealt with there.

Thus, for a model graph G = (V,E, L), we define a clone group of cardinality n as a set {V1, . . . Vn},
so that for every 1 ≤ i < j ≤ n it is Vi ⊂ V and there is a sequence k1, . . . , km with k1 = i,
km = j, and Vkl and Vkl+1

are in a clone relationship for all 1 ≤ l < m (i. e., there is a clone path

between any two clones). The size of the clone group is the size of the set V1, i. e., the number of
duplicated nodes.

This boils down to a graph whose vertices are the node sets of the clone pairs and the edges are
induced by the cloning relationship between them. The clone groups are then the connected com-
ponents, which can be found using standard graph traversal algorithms; alternatively a union-find
structure (see, e. g., [42]) allows the connected components to be built on-line, i. e., while clone
pairs are being reported, without building an explicit graph representation.

There are still two issues to be considered. First, while we defined clone pairs to be non-overlapping,
clone groups can potentially contain overlapping block sets. This does not have to be a problem,
since examples for this are rather artificial. Second, some clone groups are not found, since larger
clone pairs hide some of the smaller ones. An example of this can be found in Figure 7.15, where
equal parts of the model (and their overlaps) are indicated by geometric figures. We want to find the
clone groups with cardinality 3 shown as circles. As the clone pair detection finds maximal clones
however, when starting from nodes in circles 1 and 2, the clone pairs consisting of the pentagons
will be found. Similarly, the circle pair 1 and 3 is hidden by the rectangle. So our pair detection
reports the rectangle pair, the pentagon pair, and the circles 2 and 3.

114

7.4 Postprocessing

We handle this in a final step by checking the inclusion relationship between the reported clone
pairs. In the example, this reveals that the nodes from circle 2 are entirely contained in one of
the pentagons and thus there has to be a clone of this circle in the other pentagon, too. Using this
information (which analogously holds for the rectangle), we can find the third circle to get a clone
group of cardinality 3. If there was an additional clone overlapping circles 2 and 3, we had no single
clone pair of the circle clone group and thus this approach does not work for this case. However,
we consider this case to be unlikely enough to ignore it.

Scalability The time and space requirements for clone pair detection depend quadratically on
the overall number of blocks in the model(s). While for the running time this might be acceptable
(though not optimal) as we can execute the program in batch mode, the amount of required memory
can be too much to even handle several thousand blocks.

To solve this, we split the model graph into its connected components. We independently detect
clone pairs within each such component and between each pair of connected components, which
still allows us to find all clone pairs we would find without this technique. This does not improve
running time, as still each pair of blocks is looked at (although we might gain something by filtering
out components smaller than the minimal clone size). The amount of memory needed, however,
now only depends quadratically on the size of the largest connected component. If the model is
composed of unconnected sub models, or if we can split the model into smaller parts by some
other heuristic (e. g., separating subsystems on the topmost level), memory is, hence, no longer the
limiting factor.

We measured performance for the industrial Matlab/Simulink model we analyzed during the case
study presented in 5, which comprises 20,454 blocks: the entire detection process—including pre-
and postprocessing—took 50s on a Intel Pentium 4 3.0 GHz workstation. The algorithm thus scales
well to real-world models.

7.4 Postprocessing

Postprocessing comprises the process steps that are performed to the detected clones before the
results are presented to the user. In ConQAT, postprocessing comprises merging, filtering, metric
computation and tracking.

7.4.1 Steps

Filtering removes clones that are irrelevant for the task at hand. It can be performed based on
clone properties such as length, cardinality or content, or based on external information, such as
developer-created blacklists.

Metric computation computes, e. g., clone coverage or overhead. It is performed after filtering.

115

7 Algorithms and Tool Support

Clone tracking compares clones detected on the current version of a system against those detected
on a previous one. It identifies newly added, modified and removed clones. If tracking is per-
formed regularly, beginning at the start of a project, it determines when each individual clone was
introduced.

The following sections describe the postprocessing steps in more detail. Postprocessing steps are,
in principle, independent of the artifact type. Each step—filtering, metric computation and clone
tracking—can thus be performed for clones discovered in source code, requirements specifications
or models. However, for conciseness, this section presents postprocessing for clones in source code.
Since the same intermediate representation is used for both code and requirements specifications,
all of the presented postprocessing features can also be applied to requirements clones. Most of
them, in addition, are either available for clones in models as well, or could be implemented in a
similar fashion.

7.4.2 Filtering

Filtering removes clone groups from the detection result. ConQAT performs filtering in two places:
local filters are evaluated right after a new clone group has been detected; global filters are evaluated
after detection has finished. While global filters are less memory efficient—the later a clone group is
filtered, the longer it occupies memory—they can take information from other clone groups into ac-
count. They thus enable more expressive filtering strategies. ConQAT implements clone constraints
based on various clone properties.

The NonOverlappingConstraint checks whether the code regions of sibling clones overlap. The
SameFileConstraint checks if all sibling are located in a single file. The CardinalityConstraint

checks whether the cardinality of a clone group is above a given threshold.

The ContentConstraint is satisfied for a clone group, if the content of at least one of its clones
matches a given regular expression. Content filtering is, e. g., useful to search for clones that contain
special comments such as TODO or FIXME; they often indicate duplication of open issues.

Constraints for type-3 clones allow filtering based on their absolute number of gaps or their gap
ratio. If, e. g., all clones without gaps are filtered, detection is limited to type-3 clones. This is
useful to discover type-3 clones that may indicate faults and convince developers of the necessity of
clone management. Clones can be filtered both for satisfied or violated constraints.

Blacklisting Even if clone detection is tailored well, false positives may slip through. For con-
tinuous clone management, a mechanism is required to remove such false positives. To be useful,
it must be robust against code modifications—a false positive remains a false positive independent
of whether its file is renamed or its location in the file changes (e. g., because code above it is
modified). It thus still needs to be suppressed by the filtering mechanism.

ConQAT implements blacklisting based on location independent clone fingerprints. If a file is re-
named, or the location of a clone in the file changes, the value of the fingerprint remains unchanged.
For type-1 and type-2 clones, all clones in a clone group have the same fingerprint. A blacklist

116

7.4 Postprocessing

stores fingerprints of clones that are to be filtered. Fingerprints are added by developers that con-
sider a clone irrelevant for their task. During postprocessing, ConQAT removes all clone groups
whose fingerprint appears in the blacklist. 14

Fingerprints are computed on the normalized content of a clone. The textual representation of the
normalized units is concatenated into a single characteristic string. For type-1 and type-2 clones,
all clones in a clone group have the same characteristic string; no clone outside the clone group
has the same characteristic string—else it would be part of the first clone group. The characteristic
string is independent of the filename or location in the file. Since it can be large for long clones,
ConQAT uses its MD5 [192] hash as clone fingerprint to save space. Because of the very low col-
lision probability of MD5, we do not expect to unintentionally filter clone groups due to fingerprint
collisions.

Blacklisting works for type-1 and type-2 clones in source code and requirements specifications. It
is currently not implemented for type-3 clones. However, their clone group fingerprints could be
computed on the similar parts of the clones to cope with different gaps of type-3 clones.

Cross-Project Clone Filtering Cross project clone detection searches for clone groups whose
clones span at least two different projects. The definition of project, in this case, depends on the
context:

Cross project clone detection can be used in software product lines to discover reusable code frag-
ments that are candidates for consolidation [173]; or to discover clones between applications that
build on top of a common framework to spot omissions. Projects in this context are thus individual
products of a product family or applications that use the same framework.

To discover copyright infringement or license violations, it is employed to discover cloning between
the code base maintained by a company and a collection of open source projects or software from
other owners [77, 121]. Projects in this context are the company’s code and the third party code.

ConQAT implements a CrossProjectCloneGroupsFilter that removes all clone groups that do not
span at least a specified number of different projects. Projects are specified as path or package
prefixes. Project membership expressed via the location in the file system or the package (or name
space) structure.

Figure 7.16 depicts a treemap that shows cloning across three different industrial projects15. Areas
A, B and C mark project boundaries. Only cross-project clone groups are included. The project in
the lower left corner does not contain a single cross-project clone, whereas the other two projects
do. In both projects, most of it is, however, clustered in a single directory. It contains GUI code that
is similar between both.

14All blacklisted clone groups are optionally written to a separate report to allow for checks whether the blacklisting
feature has been misused to artificially reduce cloning.

15Section 7.5.1 explains how to interpret treemaps.

117

7 Algorithms and Tool Support

Figure 7.16: Cross-project clone detection results

7.4.3 Metric Computation

ConQAT computes the cloning metrics introduced in Chapter 4, namely clone counts, clone cover-
age and overhead. Computation of counts and coverage is straight forward. Hence, only computa-
tion of overhead is described here in detail.

Overhead is computed as the ratio of SS
RFSS

− 1. If, for example, a statement in a source file
is covered by a single clone that has two siblings, it occurs three times in the system. Perfect
removal would eliminate two of the three occurrences. It thus only contributes a single RFSS.
RFSS computation is complicated by the fact that clone groups can overlap.

RFSS computation only counts a unit in a source artifact 1
times cloned

number of times. In the above
example, each occurrence of the statement is thus only counted as 1

3 RFSS. We employ a union-find
data structure to represent cloning relationships at the unit level. All units that are in a cloning
relationship are in the same component in the union-find structure, all other units are in separate
ones. For RFSS computation, the units are traversed. Each unit accounts for 1

component size
RFSS.

7.4.4 Tracking

Clone tracking establishes a mapping between clone groups and clones of different (typically con-
secutive) versions of a software. Based on this mapping, clone churn—added, modified and re-
moved clones—is computed. Tracking goes beyond fingerprint-based blacklisting, since it can also
associate clones whose content has changed across versions. Since different content implies differ-
ent fingerprints, such clones are beyond the capabilities of blacklisting.

118

7.4 Postprocessing

ConQAT implements lightweight clone tracking to support clone control with clone churn informa-
tion. The clone tracking procedure is based on the work by Göde [83]. It comprises three steps that
are outlined in the following:

Update Old Cloning Information Since the last clone detection was performed, the system
may have changed. The cloning information from the last detection is thus outdated—clone po-
sitions might be inaccurate, some clones might have been removed while others might have been
added. ConQAT updates old cloning information based on the edit operations that have been per-
formed since the last detection, to determine where the clones are expected in the current system
version.

ConQAT employs a relational database system to persist clone tracking information. Cloning infor-
mation from the last detection is loaded from it. Then, for each file that contains at least one clone,
the diff between the previous version (stored in the database) and the current version is computed.
It is then used to update the positions of all clones in the file. For example, if a clone started in line
30, but 10 lines above it have been replaced by 5 new lines, its new start position is set to 25. If the
code region that contained a clone has been removed, the clone is marked as deleted. If the content
of a clone has changed between system versions, the corresponding edit operations are stored for
each clone.

Detect New Clones While the above step identifies old and removed clones, it cannot discover
newly added clones in the system. For this purpose, in the second step, a complete clone detection
is run on the current system version. It identifies all its clones.

Compute Churn In the third step, updated clones are matched against newly detected ones to
compute clone churn. We differentiate between these cases:

Positions of updated clone and new clone match: this clone has been tracked successfully
between system versions.

New clone has no matching updated clone: tracking has identified a clone that was added in
the new system version.

Updated clone has no matching new clone: it is no longer detected in the new system version.
The clone or its siblings have either been removed, or inconsistent modification prevents its
detection. These two cases need to be differentiated, since inconsistent modifications need to
be pointed out to developers fur further inspections. Tracking distinguishes them based on the
edit operations stored in the clones.

Churn computation determines the list of added and removed clones and of clones that have been
modified consistently or inconsistently.

119

7 Algorithms and Tool Support

7.5 Result Presentation

Different use cases require different ways of interacting with clone detection results. This section
outlines how results are presented in a quality dashboard for clone control and in an IDE for inter-
active clone inspection and change propagation.

Similar to postprocessing, this section focuses on presentation of code clones; all presentations can
be applied to requirements clones as well, since both share the same intermediate representation.
Furthermore, in many cases, ConQAT either contains similar presentation functionality for model
clones, or it could be implemented in a similar fashion.

7.5.1 Project Dashboard

Project dashboards support continuous software quality control. Their goal is to provision stake-
holders—including project management and developers—with relevant and accurate information on
the quality characteristics of the software they are developing [48]. For this, quality dashboards per-
form automated quality analyses and collect, filter, aggregate and visualize result data. Through its
visual data flow language, ConQAT supports the construction of such dashboards. Clone detection
is one of the key supported quality analyses.

Different stakeholder roles requires different presentations of clone detection results. To support
them, ConQAT presents clone detection result information on different levels of aggregation.

Clone Lists provide cloning information on the file level, as depicted in the screenshot in Fig-
ure 7.17. They reveal the longest clones and the clone groups with the most instances. While no
replacement for clone inspection on the code level, clone lists allow developers to get a first idea
about the detected clones without requiring them to open their IDEs.

Figure 7.17: Clone list in the dashboard

Treemaps [223] visualize the distribution of cloning across artifacts. They thus reveal to stake-
holders which areas of their project are affected how much.

Treemaps visualize source code size, structure and cloning in a single image. We introduce their
interpretation by constructing a treemap step by step. A treemap starts with an empty rectangle.

120

7.5 Result Presentation

Its area represents all project artifacts. In the first step, this rectangle is divided into sub-rectangles.
Each sub-rectangle represents a component of the project. The size of the sub-rectangle corresponds
to the aggregate size of the artifacts belonging to the component. The resulting visualization is
depicted in Figure 7.18 on the left. The visualized project contains 24 components. For the largest
ones, name and size (in LOC) are depicted. Since component GUI Forms (91 kLOC) is larger than
component Business Logic, its rectangle occupies a proportionally larger area.

In the second step, each component rectangle is further divided into sub-rectangles for the individual
artifacts contained in the component. Again, rectangle area and artifact size correspond. The result
is depicted in Figure 7.18 on the right.

Figure 7.18: Treemap construction: artifact arrangement

Although position and size of the top-level rectangles did not change, they are hard to recognize due
to the many individual rectangles now populating the treemap. The hierarchy between rectangles
is, thus, obscured. To better convey their hierarchy, the rectangles are shaded in the third step, as
depicted on the left of Figure 7.19.

Figure 7.19: Treemap construction: artifact coloring

121

7 Algorithms and Tool Support

In the last step, color is employed to reveal the amount of cloning an artifact contains and indicate
generated code. More specifically, individual artifacts are colored on a gradient between white and
red for a clone coverage between 0 and 1. Furthermore, code that is generated and not maintained
by hand is colored dark gray. Figure 7.19 shows the result on the right. The artifacts in component
GUI Forms contain substantial amounts of cloning, whereas the artifacts in the component on the
bottom-left hardly contain any. The artifacts of the component Data Access are generated and thus
depicted in gray, except for the two files in its left upper corner.

ConQAT displays tooltips with details, including size and cloning metrics, for each file. The
treemaps thus reveal more information in the tool than in the screenshots.

Trend Charts visualize the evolution of cloning metrics over time. They allow stakeholders to
determine whether cloning increased or decreased during a development period. Figure 7.20 depicts
a trend chart depicting the development of clone coverage over time.

Figure 7.20: Clone coverage chart

Between April and May, clone coverage decreased since clones were removed. In May, new clones
were introduced. After developers noticed this, the introduced clones were consolidated.

Clone Churn reveals clone evolution on the level of individual clones, which is required to
diagnose the root cause of trend changes. Clone churn thus complements trend charts with more
details. The screen shots in Figure 7.21 depict how clone churn information is displayed in the
quality dashboard. On the left, the different churn lists are shown. For inspection of clones that
have become inconsistent during evolution, the dashboard contains a view that displays their syntax-
highlighted content and highlights differences. One such clone is shown in the screenshot on the
right of Figure 7.21.

7.5.2 Interactive Clone Inspection

This section outlines ConQAT’s interactive clone inspection features that allow developers to in-
vestigate clones inside their IDEs and to use cloning information for change propagation when

122

7.5 Result Presentation

Figure 7.21: Clone churn in the quality dashboard

modifying software that contains clones.

ConQAT implements a Clone Detection Perspective that provides a collection of views for clone
inspection. The indented use case is one-shot investigation of cloning in a software system.

A screenshot of the Clone Detection Perspective is depicted in Figure 7.22. Detailed documentation
of the Clone Detection Perspective, including a user manual, is contained in the ConQAT Book [49]
and outside the scope of this document. However, due to their importance for the case studies
performed during this thesis, two views are explained in detail below.

The Clone Inspection View is the most important tool for inspecting individual clones on
the code level. It implements syntax highlighting for all languages on which clone detection is
supported. Furthermore, it highlights statement-level differences between type-3 clones. According
to our experience, this view substantially increases productivity of clone inspection. We consider
this crucial for case studies that involve developer inspection of cloned code.

The Clone Visualizer uses a SeeSoft visualization to display cloning information on a higher
level of aggregation than the clone inspection view [63,214]. It thus allows inspection of the cloning
relationships of one or two orders of magnitude more code on a single screen.

Each bar in the view represents a file. The length of the bar corresponds to the length of its file.
Each colored stripe represents a clone; all clones of a clone group have the same color. The length
of the stripe corresponds to the length of the clone. This visualization reveals files with substantial
mutual cloning through similar stripe patterns.

ConQAT provides two SeeSoft views. The clone family visualizer displays the currently selected
file, all of its clones, and all other files that are in a cloning relationship with it. However, for the
other files, only their clones with the selected file are displayed. The clone family visualizer thus
supports a quick investigation of the amount of cloning a file shares with other files, as depicted in
Figure 7.23.

123

7 Algorithms and Tool Support

Figure 7.22: Clone detection perspective

Figure 7.23: Clone family visualizer

The clone visualizer displays all source files and their clones. If the files are displayed in the order
they occur on disk (or in the namespace), high-level similarities are typically too far separated to be
recognized by the user. To cluster similar files, ConQAT orders them based on their amount of mu-
tual cloning. Files that share many clones are, hence, displayed close to each other, allowing users
to spot file-level cloning due to their similarly colored stripe patterns, as depicted in Figure 7.24.

Ordering files based on their amount of mutually cloned code can be reduced to the traveling sales-
person problem: files correspond to cities, lines of mutually cloned code correspond to travel cost,
and finding an ordering that maximizes the sum of mutually cloned lines between neighboring files
corresponds to finding a maximally expensive travel route. Consequently, it is NP-complete [75].
ConQAT thus employs a heuristic algorithm to perform the sorting.

Clone Filtering Apart from postprocessing, clones can be filtered during inspection, so that
developers do not have to wait until detection has been re-executed. Clones can be filtered based

124

7.5 Result Presentation

Figure 7.24: Clone visualizer with files ordered by mutual cloning

on a set of files or clone groups (both inclusively and exclusively), based on their length, number
of instances, gap positions or blacklists. Clone filters are managed on a stack that can be displayed
and edited in a view.

Clone Indication The goal of clone indication is to provision developers with cloning informa-
tion while they are maintaining software that contains cloning to reduce the rate of unintentionally
inconsistent modifications. It is integrated into the IDE in which developers work to reduce the effort
required to access cloning information. We have implemented clone indication for both Eclipse16

and Microsoft Visual Studio.NET 17 [72].

After clone detection has been performed, ConQAT displays so called clone region markers in the
editors associated with the corresponding artifacts, as depicted in Figure 7.25.

Figure 7.25: Clone region marker indicates code cloning in editors.

Clone region markers indicate clones in the source code. A single bar indicates that exactly one

16www.eclipse.org
17www.microsoft.com/VisualStudio2010

125

7 Algorithms and Tool Support

clone instance can be found on this line; two bars indicate that two or more clone instances can
be found. The bars are also color coded orange or red: orange bars indicate that all clones of the
clone group are in this file; red bars indicate that at least one clone instance is in a different file. A
right click on the clone region markers opens a context menu as shown in Figure 7.25. It allows
developers to navigate to the siblings of the clone or open them in a clone inspection view.

Figure 7.26: Clone indication in VS.NET.

Figure 7.26 depicts a screenshot of clone indication in Visual Studio.NET.

Tailoring Support For each iteration of the tailoring procedure, clone detection tailoring (cf.,
Section 8.2) requires computation of precision, and comparison of clone reports before and after
tailoring. ConQAT provides tool support to make this feasible.

The order of the list of clone groups can be randomized. The first n clone groups then correspond to
a random sample of size n. Each clone group can be rated as Accepted and Rejected. Both the list
order and the rating are persisted when the clone report is stored. ConQAT can compute precision
on the (sample) of rated clone groups.

To compare clone reports before and after tailoring, they can be subtracted from each other, reveal-
ing which clones have been removed or added through a tailoring step. Two different subtraction
modes can be applied:

Fingerprint-based subtraction compares clone reports using their location-independent clone fin-
gerprints. It can be applied when tailoring is expected to leave the positions and normalized content
of detected clones intact, e. g., when the filters employed during post-processing are modified.

Clone-region-based subtraction compares clone reports based on the code regions covered by clones.
It can be applied when tailoring does not leave positions or normalized content intact, e. g., when
the normalization is changed or shapers are introduced that clip clones. The clone report produced

126

7.6 Comparison with other Clone Detectors

by differencing contains clones that represent introduced or removed cloning relationships between
code regions.

Clone Tracking For deeper investigation of clone evolution, ConQAT supports interactive in-
vestigation of clone tracking results through a view that visualizes clone evolution, as depicted in
Figure 7.27. Source code of clones can be opened for different software versions and clones of arbi-
trary versions can be compared with each other to facilitate comprehension of clone evolution. The
visualization of clone evolution is loosely based on the visualization proposed by Göde in [83].

Figure 7.27: Interactive inspection of clone tracking

7.6 Comparison with other Clone Detectors

As stated in Section 3.3, a plethora of clone detection tools exists. The presentation of a novel tool,
as done in this chapter, thus raises two questions. First, why was it developed? And, second, how
does it compare to existing tools? This section answers both.

We created a novel tool, because no existing one was sufficiently extensible for our purposes. Both
for our empirical studies, and to support clone control, we needed to adapt, extend or change char-
acteristics of the clone detection process: tailoring affects both pre- and postprocessing; the novel
algorithms affect the detection phase; and metric computation and tracking affect postprocessing.
Since existing tools were either closed source, monolithic, not designed for extensibility or simply
not available18, we designed our own tool. Since it is available as open source, others that might be
in a similar situation may build on top of it, as is, e. g., done by [96, 180, 186].

The second question, how the clone detection workbench compares to other tools, is more difficult
to answer, since the comparison of clone detectors is non-trivial. In the next sections, we briefly
summarize challenges and existing approaches to clone detector comparison and then describe our

18http://wwwbroy.in.tum.de/~ccsm/icse09/

127

7 Algorithms and Tool Support

detector based on an existing qualitative framework. Furthermore, we show that it can achieve high
precision and that its recall is not smaller than that of comparable detectors.

7.6.1 Comparison of Clone Detectors

The comparison of clone detectors is challenging for many reasons [200]: the detection techniques
are very diverse; we lack standardized definitions of similarity and relevance; target languages—
and the systems written in them—differ strongly; and detectors are often very sensitive to their
configuration or tuning of their parameters. To cope with these challenges, two different approaches
have been proposed: a qualitative [200] and a quantitative [19] one.

Qualitative Approach In [200], Roy, Cordy and Koschke compare existing clone detectors
qualitatively. Their comparison comprises two main elements. First, a system of categories, facets
and attributes facilitates a structured description of the individual detectors. Second, mutation-
based scenarios provide the foundation for a description of capabilities and shortcomings of existing
approaches.

The qualitative comparison does not order the tools in terms of precision and recall. However, it
does support users in their choice between different clone detectors: the systematic description and
scenario-based evaluation provide detailed information on which such a choice can be founded, as
the authors demonstrate exemplarily in [200]. We describe ConQAT using the description system
and the scenario-based evaluation technique from [200] in Sections 7.6.2 and 7.6.3.

Quantitative Approach In [19], Bellon et al. propose a quantitative approach to compare clone
detectors. They quantitatively compare the results of several clone detectors for a number of target
systems. The clone detectors were configured and tuned by their original authors. A subset of the
clone candidates was rated by an independent human oracle. Both the target systems, the detected
clones and the rating results are available.

In principle, the Bellon benchmark offers an appealing basis, since it yields a direct comparison of
the clone detectors in terms of precision and recall. To add a new tool to the benchmark, however,
its detected clone candidates need to be rated. To be fair, the rating oracle must behave similar to
the original oracle. Stefan Bellon, who rated the clones in the original experiment, was not involved
in the development of any of the participating clone detectors. He thus represented an independent
party. In contrast, if we rate the results of our own clone detector, we could be biased. Furthermore,
from our experience, classification of clones in code that others have written, without knowledge
about, e. g., the employed generators, is hard. We thus expect it to contain a certain amount of
subjectivity. For example, the benchmark contains clones in generated code that Bellon rated as
relevant. We consider them as false positives, however, since the code does not get maintained
directly. Even if we were not biased, it is thus unclear, how well our rating behavior would compare
with Bellon’s.

Alternatively, we could reproduce the benchmark with a collection of up-to-date tools and target
systems. The reproduction in its original style requires participation of the original authors and is
thus beyond the scope of this thesis. However, if we execute their detectors ourselves, the results

128

7.6 Comparison with other Clone Detectors

are likely to be biased. We simply have a lot more experience with our own tool than with their
detectors. A second quantitative approach, which employs a mutation-based benchmark [197], is
not feasible either: neither the benchmark, nor results for many existing clone detectors are publicly
available. We are thus unable to perform a reliable quantitative comparison of ConQAT and other
clone detectors on the basis of existing benchmarks.

Instead, we chose a different approach. We computed a lower bound for the recall of ConQAT on
the Bellon benchmark data. For this, we analyze whether ConQAT can be configured to detect the
reference clones detected by other tools. This way, we do not need an oracle for the clone candidates
detected by ConQAT. We detail computation of recall in Section 7.6.4.

In addition, we computed precision for the systems that we analyzed during the case studies in
Chapter 4. Their developers took part in clone detection tailoring and in clone rating. For the 5
study objects, we determined precision for type-2 and type-3 clones separately. For type-2 clones,
precision ranged between 0.88 and 1.00, with an average of 0.96. For type-3 clones, between 0.61
and 1.0, with an average of 0.83. Lower precision of type-3 clones is due to the larger deviation
tolerated between them. Average precision of over 95% for type-2 clones is, from our experience,
high enough for continuous application of clone detection in industrial environments.

We measure precision and recall independent of each other. Strictly speaking, these experiments
thus do not show that ConQAT can achieve high precision and recall at the same time, since im-
provement of one could come at the cost of the other. Please refer to Section 8.7 for a case study
that demonstrates that clone detection tailoring can improve precision and maintain recall.

7.6.2 Systematic Description

In this section, we describe our clone detection workbench using the categories and facets from [200].
For simplicity, we refer to the clone detection workbench simply as “ConQAT”. We describe each
category from [200] in a separate paragraph. Facet names for each category are depicted in italics.
To simplify comparison with the other tools listed in [200], we give the abbreviations from [200]
for the individual attributes in a facet in parentheses.

Usage describes tool usage constraints. Platform: ConQAT is platform independent (P.a). We
have executed it on Windows, Linux, Mac OS, Solaris and HP-UX. External Dependencies: The
clone detection workbench is part of ConQAT (D.d). All components used by ConQAT are also
platform independent, except the Microsoft Visual Studio integration, which depends on Microsoft
Visual Studio. Availability: ConQAT is available as open source (A.a). Its license allows its use for
both research (A.d) and commercial purposes (A.c).

Interaction describes interaction between the user and the tool. User Interface: ConQAT pro-
vides both a command line interface and a graphical interface (U.c). The graphical interface can
be used both for configuration and execution, and for interactive inspection of the results. Output:

ConQAT provides both textual coordinates of cloning information and different visualizations (O.c).
IDE Support: ConQAT comprises plugins for Eclipse (I.a) and Microsoft Visual Studio (I.b).

129

7 Algorithms and Tool Support

Language describes the languages that can be analyzed. Language Paradigm: ConQAT is not
limited to a specific language paradigm (LP.c). We have applied it, e. g., to object-oriented (LP.b),
procedural (LP.a), functional (LP.e) and modeling languages (LP.f). Language Support: ConQAT
supports the programming languages ABAP, Ada, COBOL (LS.f), C (LS.b), C++ (LS.c), C# (LS.d),
Java (LS.e), PL/I, PL/SQL, Python (LS.g), T-SQL and Visual Basic (LS.i). Furthermore, it sup-
ports the modeling language Matlab/Simulink and 15 natural languages, including German and
English.

Clone Information describes the clone information the tool can emit. Clone Relation: ConQAT
directly yields clone groups for type-1 and type-2 clones in sequences (R.b). Postprocessing can
merge clone groups based on different criteria, e. g., overlapping gaps in type-3 clones (R.d). For
model clone detection, pairs are combined during the clustering phase. Clone Granularity: ConQAT
can produce clones of free granularity (G.a) or fixed granularity, if shapers are used. Shapers can
trim clones to classes (G.e), functions/methods (G.b), basic blocks (G.c, G.d) or match arbitrary
keywords or other language characteristics (G.g). Clone Type: ConQAT can detect type-1 (CT.a),
type-2 (CT.b) and type-3 (CT.c) clones for code. Furthermore, it can detect model clones (CT.e).

Technical Aspects describe properties of the detection algorithms. Comparison Algorithm:

ConQAT offers different detection algorithms, including a suffix tree based one for type-2 clones
(CA.a), a suffix tree based one for type-3 clones that computes edit distance (CA.n) and an index-
based one for type-2 clones (CA.q). Furthermore, a subgraph-matching one for models (CA.k).
Comparison Granularity: ConQAT supports different comparison granularities, namely lines (CU.a),
tokens (CU.d), statements (CU.e) and model elements (CU.k). Worst Case Computational Complex-

ity: The complexity depends on the employed algorithms. Please refer to Section 7.3 for details.

Adjustment describes the level of configurability of the tool. Pre-/Postprocessing: The open
architecture of ConQAT allows configuration—including replacement—of all detection phases).
Heuristic/Thresholds: ConQAT offers configurable thresholds for clone length (H.a) and gap size
(H.c). Filers can be used to prune results (H.d). Normalization can be adapted to change the
employed notion of similarity when comparing clones (H.b).

Processing describes how the tool analyzes, represents and transforms the target program for
analysis. Basic Transformation/Normalization: Normalization is very configurable. It can, e. g.,
perform the following: optional removal of whitespace and comments (T.b, T.c); optional normal-
ization of identifiers, types and literal values (T.e, T.f, T.g); and language specific transformations
(T.h). Code Representation: Code can be represented as filtered strings in which comments may be
removed (CR.d) or normalized tokens or token sequences (CR.f). Program Analysis: For text-based
clone detection, ConQAT only requires regular expressions to filter input, e. g., remove comments
(PA.b). For token or statement-based detection, ConQAT employs scanners (PA.d). ConQAT im-
plements scanners for all languages listed under the “Language Support” facet above. For shaping,
ConQAT employs shallow parsing (PA.c).

130

7.6 Comparison with other Clone Detectors

Evaluation describes how the tool has been evaluated. Empirical Validation: ConQAT has been
employed in a number of empirical studies as reported in this thesis (E.b). Availability of Empirical

Results: Many of the projects we analyzed with ConQAT are closed source. The detected clones
thus cannot be published. Instead, we published aggregated results (AR.b). The results of the open
source study object from Chapter 4 are available. The study can be reproduced (AR.a). Subject

Systems: Most systems we analyzed are closed source (S.g).

7.6.3 Scenario-Based Evaluation

In this section, we evaluate ConQAT on the cloning scenarios from [200]. To make this section self
contained, we first repeat the scenarios from [200]. Then we describe the capabilities and limitations
of ConQAT for each scenario.

Scenarios Each scenario describes hypothetical program editing steps that, according to the
authors, are representative for typical changes to copy & pasted code. Each edit sequence creates
a clone from an original. All clones produced by the edit steps from scenario 1 are type-1 clones;
scenario 2 yields 3 type-2 clones and 1 type-3 clone (S2(d)). Scenarios 3 and 4 yield type-3 clones,
of which some are simions. Figure 7.28 shows the original in the middle and the clones, ordered by
scenario, around it.

In the following sections, we first restate the scenario descriptions from [200] and then describe the
capabilities and limitations of ConQAT for them. Afterwards, we discuss crosscutting aspects.

Scenario 1 from [200]: “A programmer copies a function that calculates the sum and product of
a loop variable and calls another function, foo() with these values as parameters three times, making
changes in whitespace in the first fragment (S1(a)), changes in commenting in the second (S1(b)),
and changes in formatting in the third (S1(c)).”

Using the suffix tree or index-based detection algorithms for type-1 and type-2 clones, ConQAT
can produce a single clone group that contains the original, S1(a), S1(b) and S1(c) as clones. For
this, configure normalization to remove whitespace and comments, but not to normalize identifiers
or literal values.

Scenario 2 from [200]: “ The programmer makes four more copies of the function, using a
systematic renaming of identifiers and literals in the first fragment (S2(a)), renaming the identifiers
(but not necessarily systematically) in the second fragment (S2(b)), renaming data types and literal
values (but not necessarily consistent) in the third fragment (S2(c)) and replacing some parameters
with expressions in the fourth fragment (S2(d)).”

Using the same detection algorithms, ConQAT can produce a single clone group that contains the
original, S2(a), S2(b) and S2(c) (and, in addition, S1(a-c)). For this, configure normalization to
normalize identifiers (which takes care of S2(a) and S2(b)), type keywords and literal values (which
takes care of S2(c)).

The last clone in this scenario, S2(d), is not of type-2, but of type-3. We discuss it in scenario 3.

131

7 Algorithms and Tool Support

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

 {sum=sum + i;

 prod = prod * i;

 foo(sum, prod); }}

S1

S3

S4

S2

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

 for (int i=1; i<=n; i++)

 {sum=sum + i;

 prod = prod * i;

 foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1’

float prod =1.0; //C

for (int i=1; i<=n; i++)

 {sum=sum + i; ’

 prod = prod * i;

 foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++) {

 sum=sum + i;

 prod = prod * i;

 foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

 {prod = prod * i;

 sum=sum + i;

 foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

int i=0;

 while (i<=n)

 { sum=sum + i;

 prod = prod * i;

 foo(sum, prod);

 i++ ; }}

S1(a)
S1(b) S1(c) S2(a)

S2(b)

S2(c)

S2(d)

S3(a)

S3(b)

S3(c)

S3(d)

S3(e)
S4(a) S4(b) S4(c)

S4(d)

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

 {sum=sum + i;

 prod = prod * i;

 foo(prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

 { if (i%2) sum+= i;

 prod = prod * i;

 foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

 {sum=sum + i;

 //line deleted

 foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

 {sum=sum + i;

 prod = prod * i;

 if (n % 2)==0 {

 foo(sum, prod);} }}

void sumProd(int n){

float s=0.0; //C1

float p =1.0;

for (int j=1; j<=n; j++)

 {s=s + j;

 p = p * j;

 foo(p, s); }}

void sumProd(int n){

float s=0.0; //C1

float p =1.0;

for (int j=1; j<=n; j++)

 {s=s + j;

 p = p * j;

 foo(s, p); }}

void sumProd(int n) {

int sum=0; //C1

int prod =1;

for (int i=1; i<=n; i++)

 {sum=sum + i;

 prod = prod * i;

 foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

 {sum=sum + (i*i);

 prod = prod*(i*i);

 foo(sum, prod); }}

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

 {sum=sum + i;

 prod = prod * i;

 foo(sum, prod, n); }}

Original Copy

void sumProd(int n) {

float sum=0.0; //C1

float prod =1.0;

for (int i=1; i<=n; i++)

 {sum=sum + i;

 foo(sum, prod)

 prod=prod * i; }}

void sumProd(int n) {

float prod =1.0;

float sum=0.0; //C1

for (int i=1; i<=n; i++)

 {sum=sum + i;

 prod = prod * i;

 foo(sum, prod); }}

C
o
p

y
 &

 P
aste

C
o
p

y
 &

 P
aste

Copy & Paste

Copy & Paste

Figure 7.28: Scenarios from [200]

Scenario 3 from [200]: “ The programmer makes five more copies of the function and this time
makes small insertions within a line in the first fragment (S3(a)), small deletions within a line in
the second fragment (S3(b)), inserts some new lines in the third fragment (S3(c)), deletes some
lines from the fourth fragment (S3(d)), and makes changes to some whole lines in the fifth fragment
(S2(e)).”

The differences in these clones go beyond what ConQAT can eliminate through normalization.
Hence, the algorithms for type-2 clone detection cannot detect them as a complete clones of the
original.

However, the type-3 clone detection algorithm of ConQAT can be configured to detect them. For
example, if configured to run on statements and to operate with an edit distance of 1, it can detect
S3(a), S3(b), S3(c), S3(d) and S3(e) as clones of the original (and, with sufficient normalization, as
clones of S1 and S2(a-c)). Since all of the resulting clone groups contain the original as common
clone, ConQAT’s post processing can optionally be configured to merge them into a single group.

132

7.6 Comparison with other Clone Detectors

If executed with an edit distance of 2, ConQAT also detects S2(d) as a clone of the original. How-
ever, clones from scenario 4 also only have a statement-level edit distance of 2 from the original.
ConQAT thus cannot be configured in a way that does detect S2(d) as a clone of the original, but
does not detect any clones from S4 as clones from the original.

Scenario 4 from [200]: “ The programmer makes four more copies of the function and this
time reorders the data independent declarations in the first fragment (S4(a)), reorders data indepen-
dent statements in the second (S4(b)), reorders data dependent statements in the third (S4(c)), and
replaces a control statement with a different one in the fourth (S4(d)).”

Clones S4(a), S4(b), S4(c) and S4(e) have a statement-level edit distance of 2 from the original,
clone S4(d) a distance of 3. ConQAT can detect them, if configured with a sufficiently large edit
distance. As above, it cannot be made to detect clones in S4 but not S2(d) or vice versa.

Discussion Several configuration options influence ConQAT’s results for all scenarios. A very
small minimal clone length, say 2 statements, can produce groups that cover all 17 code fragments
in the scenario. Too small minimal clone lengths can thus result in poor task-specific accuracy.

In addition, several tailoring effects are not obvious in the scenarios. First, ConQAT can produce
clones that cross method boundaries. Shaping can be employed to avoid this. However, shaping can
reduce recall, if the resulting clone fragments are shorter than the minimal clone length threshold.
Second, increasing the edit distance for type-3 clone detection, can also increase the number of false
positives, since a high edit distance tolerates substantial difference on the code level. To a certain
degree, this can be compensated with relative edit distance thresholds that take clone length into
account (which is also supported by ConQAT).

7.6.4 Recall

In this section, we show that the recall of ConQAT is not lower than the recall of existing text-based
or token-based clone detectors. To do this, we compute a lower bound for the recall of ConQAT
based on the Bellon benchmark data.

Study Design The Bellon benchmark database contains reference clone pairs that Bellon rated
as relevant for 8 systems (4 written in C, 4 written in Java, compare Table 7.2). One text-based
detector (Duploc [62]) and two token-based detectors (CCFinder [121] and Dup [6]) participated
in the benchmark. We compare ConQAT against the results of these detectors to investigate how
ConQAT compares to clone detectors that employ a similar detection approach.

We selected all clone pairs produced by Duploc, CCFinder and Dup that are rated as relevant by
Bellon from the Benchmark. They represent the set of reference clone pairs. Then we executed
ConQAT on the 8 systems to produce the candidate clone groups and compared them against the
reference clone pairs. We computed the percentage of the reference clone pairs that are contained
in the candidate clone groups as a lower bound for the recall of ConQAT. It is a lower bound, since
potentially relevant candidate clone groups that are detected by ConQAT but not by the other tools,
are ignored.

133

7 Algorithms and Tool Support

Table 7.2: Recall (lower bound) w.r.t. benchmark

Program Language Size (SLOC) Recall

weltab C 11K 0.98
cook C 80K 0.91
snns C 115K 0.94
postgresql C 235K 0.78
netbeans-javadoc Java 19K 0.94
eclipse-ant Java 35K 0.92
eclipse-jdtcore Java 148K 0.92
j2sdk1.4.0-javax-swing Java 204K 0.86

Implementation and Execution We determined the reference clone pairs by extracting their
positions from the benchmark database. We executed ConQAT with a tolerant configuration (min-
imal clone length of 5 statements, strong normalization) for type-2 clone detection on the study
objects to produce the candidate clone groups.

Matching of reference pairs and candidate groups is performed as follows. A reference clone pair
is considered as matched, if a candidate clone group contains two clones that exactly match its
positions. Since we noticed slight position offsets for some of the clones in the benchmark, we
tolerate deviations in clone start and end lines up to 2 lines. If, for example, a reference clone starts
in line 10 and ends in line 21, it is matched by clone candidates that start in lines 8-12 and end in
lines 19-23. (However, for a reference clone pair to be matched, both matching candidate clones
need to belong to the same group).

For reference clone pairs that are not matched this way, we compute a match metric based on their
lines. For each pair of lines between which a clone relationship exists, we check whether the same
relationship also exists in the candidate clones. We illustrate this for a reference clone pair with
the first clone in file A, lines 10-15, and the second clone in file B, lines 20-27. For it, we check
for pairs (A:10, B:20), (A:11, B:21), (A:12, B:22), (A:13, B:23), (A:14, B:24) and (A,15, B:25).
In our example, the first 4 pairs are also covered by a pair of candidate clones, yielding a clone
match metric value of 0.67. We aggregate the clone match metrics according to the numbers of
line pairs. This way, the match metric captures the change propagation use case encountered during
clone management. If a developer fixes a bug in cloned code, and the sibling clones can be detected
by one of Dup, Duploc and CCFinder, the metric determines the percentage with which ConQAT
could also detect the clones.

Results The results are depicted in Table 7.2. For postgresql and j2sdk1.4.0-javax-swing, the
recall value is below 90%. Manual inspection of the missed reference clones in these projects
revealed that many of them are in generated code. 19 For the other projects, the measured recall was
above 90%.

19Generated code is often highly redundant. For the postgresql and j2sdk1.4.0-javax-swing, the matching process did
not work well for clones in generated code, since candidate clones near the reference clones were longer or shorter or
had slightly offset positions, so that the line pairs did not match.

134

7.7 Maturity and Adoption

Discussion For 6 out of 8 projects, we measured a recall of over 90%. In addition, we compared
ConQAT not to a single tool, but to a union of three comparable tools. In the original benchmark,
many clones were only found by one or two tools. The results—together with the fact that the mea-
sure is a lower bound, and that it compares against the joint results of three tools—thus demonstrate
that ConQAT can be configured to have a recall similar to that of the text-based and token-based
tools that participated in the Bellon benchmark.

7.6.5 Summary

In this section, we described our clone detection workbench according to the framework for quali-
tative clone detector comparison by Roy, Cordy and Koschke [200]. This has two purposes. First,
it makes its capabilities and limitations explicit. Second, it support its comparison with the tools
in [200] and thus supports users in their choice among different clone detectors. Furthermore, we
have demonstrated that ConQAT can be configured to achieve similar recall values as the text-based
and token-based clone detectors that participated in the Bellon benchmark. A quantitative compar-
ison of code clone detection with other detectors—as well as a thorough investigation of precision
and recall for requirements specifications and models—remains a topic for future work.

7.7 Maturity and Adoption

The clone detection tool support described in this chapter is available as open source at http://www.
conqat.org/. For source code clone detection, it currently supports the programming languages
ABAP, Ada, COBOL, C++, C#, Java, PL/I, PL/SQL, Python, T-SQL and Visual Basic. For detection
in natural language texts, stemming is supported for 15 languages, including German and English.
At the time of writing, it has been downloaded over 18,000 times.

Since the tool support has matured beyond the stage of a research prototype, several companies have
included it into their development or quality assessment processes, including ABB, Bayerisches
Landeskriminalamt, BMW, Capgemini sd&m, itestra GmbH, Kabel Deutschland, Munich Re and
Wincor Nixdorf.

7.8 Summary

This chapter presented the tool support proposed by this thesis that enables clone detection for
different artifact types, including source code, requirements specifications and models. Results are
presented in a customizable quality dashboard to support clone control with overview and trend
information. Tooling for interactive clone inspection, in addition, supports in-depth inspection of
clones. Plugins for two state of the art IDEs support developers to consistently perform changes to
cloned code. Since it has matured beyond the stage of a research prototype, several companies have
included it into their development or quality assessment processes.

Through its pipes & filters architecture, the clone detection workbench provides a family of clone
detection tools that can be customized to suit different tasks. This flexibility and extensibility, and

135

7 Algorithms and Tool Support

its availability as open source, has supported research not only by us, but also by others [24,96,104,
180, 186].

As part of the clone detection workbench, this chapter introduced novel detection algorithms for
type-2 and type-3 clones that can be applied to detect clones in source code and in requirements
specifications. It moreover introduced the first scalable detection algorithm for clones in dataflow
models such as Matlab/Simulink.

The clone detection workbench, including the novel algorithms, provided the foundation for the
experiments and case studies presented in this thesis. The type-3 clone detection approach enabled
the analysis of the impact of unawareness of cloning on program correctness (Chapter 4). The
model clone detection algorithm made the study of the extent of cloning in Matlab/Simulink models
(Chapter 5) possible. Finally, the entire workbench provides the basis for the method of clone
assessment and control presented in the next chapter.

136

8 Method for Clone Assessment and Control

This chapter introduces a method for clone assessment and control. Its goals are twofold: first, to
inform stakeholders about the extent and impact of cloning in their software to allow for a substanti-
ated decision on how cloning needs to be control; second, to alleviate the negative impact of cloning
during software maintenance.

The first part of the chapter introduces the method, the second part its validation and evaluation. We
demonstrate the applicability and effectiveness of the method through a longitudinal case study at
Munich Re Group, where the application of clone assessment and control successfully reduced the
amount of cloning in a large business information system. Parts of the content of this chapter have
been published in [116].

8.1 Overview

This section outlines the goal and the steps of the clone assessment and control method that are
presented in detail in the following sections. While, in principle, the method can be applied to
cloning in other artifacts as well, this chapter focuses on cloning in source code.

The clone assessment and control method involves the roles quality engineer and developer. The
quality engineer operates the clone detection tools and guides through clone assessment. The de-
veloper provides necessary system knowledge for the evaluation of clone relevance and evolution.
Both roles can, in principle, be performed by the same person. Since they require different exper-
tise, however, they are typically performed by different persons in practice. The method has two
goals:

Goal 1 Inform stakeholders about the extent, impact and causes of cloning in their software.

Goal 2 Alleviate the negative impact of cloning during software maintenance.

The method comprises five steps. Steps one to three pursue goal 1, steps four and five goal 2:

Step 1: Clone Detection Tailoring The quality engineer performs clone detection tailoring
to achieve accurate clone detection results. During tailoring, the quality engineer incorporates de-
veloper feedback on the relevance of the detected clone candidates into the detection process to
eliminate false positives. The result of this step are accurate clone detection results.

137

8 Method for Clone Assessment and Control

Step 2: Assessment of Impact The quality engineer computes a set of metrics that quantify
the extent of cloning and allow for interpretation of the impact of cloning on maintenance activities.
The result of this step is thus the quantification of the impact of cloning on maintenance activities
and program correctness.

Step 3: Root Cause Analysis The quality engineer analyzes detected clones and interviews
developers to identify the major causes for cloning. The result of this step is a list of causes of
cloning.

After clone assessment, the system stakeholders interpret the cloning metrics and causes to decide
how to control cloning to reduce the negative impact of cloning on software development.

Step 4: Introduction of Clone Control Both the quality engineers and the developers intro-
duce clone control into their processes. The result of this step are thus modified development and
maintenance processes and habits.

Introduction of clone control into a software development project means change—not only to pro-
cesses and tools, but also to established habits. For clone control to be successfully applied, thus
not only technical challenges have to be overcome. Instead, success hinges on whether habits are
adapted accordingly. The steps to introduce clone control build on existing work on organizational
change management [43,130,143–145,152,153,225] to incorporate best practices on how to coerce
established habits into new paths.

Step 5: Continuous Clone Control The developers inspect the evolution of cloning on a
regular basis to confirm that the control measures have taken the desired effect and, if necessary,
schedule consolidation measures.

8.2 Clone Detection Tailoring

This section first introduces clone coupling as an explicit criterion to evaluate relevance of clones
for software maintenance. Based thereon, it introduces clone detection tailoring as a procedure to
achieve accurate clone detection results. Its goal is to remove false positives—clone candidates that
are irrelevant to software maintenance due to a very low coupling—from the detection results, while
keeping relevant clones, to improve accuracy.

8.2.1 Clone Coupling

The fundamental characteristic of relevant clones causing problems for software maintenance is
their change coupling, i. e., the fact that changes to one clone may also need to be performed to its
siblings. This change coupling is the root cause for increased modification effort and for the risk of
introducing bugs due to inconsistent changes to cloned code, requirements specifications or models
during software maintenance.

138

8.2 Clone Detection Tailoring

The coupling between clone candidates has a direct impact on software maintenance efforts. If clone
candidates are coupled, each change to one also needs to be performed to its siblings. Each time
one clone candidate is changed, effort is required for location, consistent modification and testing
of the other clone candidate(s). In case the others are not modified, an inconsistency is introduced
into the system. If the change was a bug fix, the unchanged clones still contains the bug. If, on the
other hand, clone candidates are not coupled, a change to one never affects its siblings, requiring no
additional effort for location, modification and testing.

This impact of cloning on modification effort is largely independent of other characteristics of clone
candidates such as, e. g., their removability. Consequently, due to its implications for maintenance
efforts, we propose to employ clone coupling as a criterion to evaluate the relevance of clone can-
didates for software maintenance.

8.2.2 Determining Clone Coupling

To use clone coupling as a relevance criterion, we need a procedure to determine it on real-world
software systems. To be useful in practice, this procedure needs to be broadly applicable. We
propose to employ developer assessments of clone candidate groups to estimate coupling, since
they are not restricted to a specific system type, programming language, or analysis infrastructure.
More specifically, assessors have to answer the following question:

Relevance Question 1 If you modify a clone candidate during maintenance, do you want to be

informed about its siblings to be able to modify them accordingly?

This way, developers estimate whether they get a positive return on their effort to inspect the sib-
lings when performing a modification to a clone candidate. The question partitions assessed clone
candidate groups into two classes—relevant clone groups whose expected coupling is high enough
to impede software maintenance, and groups whose expected coupling is so low that they are irrel-

evant to software maintenance.

8.2.3 Tailoring Procedure

The steps of the tailoring procedure are depicted in Figure 8.1. First, the quality engineer executes
the clone detector with a tolerant initial configuration that aims to maximize recall. Second, devel-
opers assess coupling of the detected clone group candidates to identify false positives. Coupling
is assessed on a sample of the candidate clone groups—assessment of all clones is typically too
expensive1. All candidate clone groups classified as uncoupled are treated as false positives. If no
false positives are found, clone detection tailoring is complete.

If false positives are found, the clone detector configuration needs to be adapted to reduce the
amount of false positives in the detection results. Which strategy is used for this typically depends
on the detected false positives. The clone detector is then executed with the adapted configuration.

1As shown by the case study presented in Section 8.7, sampling does not negatively affect tailoring results.

139

8 Method for Clone Assessment and Control

Run clone detector

False posit.?

Assess clone candidates

Re-run clone detector

Yes

> Accuracy?

No
Done

Yes

No

Re-configure clone detector

Compare before and after

Figure 8.1: Steps of the tailoring method

To determine the effect of the re-configuration on result quality, the quality engineer compares re-
sults before and after re-configuration. More specifically, the quality engineer inspects whether the
clone groups considered relevant are still contained in, and whether the irrelevant candidate clone
groups are removed from the new detection results. If the improvement of result accuracy is not
satisfying, re-configuration and result evaluation is repeated. In case tailoring does not succeed to
achieve both perfect precision and recall on the sampled candidate clones, one may be forced to
make trade-offs on either precision or recall. From our experience, however, precision can substan-
tially be increased without damaging recall (cf., Section 8.7). Furthermore, the case study presented
in Section 8.7 confirms this.

In some cases, the majority of the candidate clone groups in the assessed sample are false positives,
e. g., if the analyzed system contains a large amount of generated code. Even if they can successfully
be removed in a single tailoring step, a further tailoring round may be required, since the original
sample contained too few relevant clones to conclusively estimate precision. In this case, tailoring
continues with another assessment (and possibly re-configuration,. . .) step.

8.2.4 Taxonomy of False Positives

We give a short taxonomy of false positives based on the experiences gathered during clone detec-
tion tailoring in several industrial projects. It provides the basis of false positives characterization,
which is the prerequisite of clone detector reconfiguration.

No conceptual relationship. The clone candidates are not implementations of a common concept—
no concept change can give rise to update anomalies. Hence, no coupled changes can occur that
could result in inconsistencies.

140

8.2 Clone Detection Tailoring

Inconsistent manual modification impossible. Although a common concept can exist in this case,
consistency of coupled changes is enforced by some means. For example, clone candidates in
generated code are, upon change, regenerated consistently; a compiler enforces consistency between
an interface and a NullObject implementation. Hence, no inconsistencies can be introduced through
manual maintenance.

Artifacts that contain clone candidates are irrelevant. If code, specifications or models are no
longer used, potential inconsistencies cannot do harm—at least, as long as the artifact in question
remains out of use.

While the likelihood of their appearance probably differs, these classes of false positives are not
limited to a specific artifact type: overly tolerant detection can find clone candidates in code, mod-
els and requirements specifications that lack similar concepts; generators are not limited to source
code or models, but are also employed to generate requirements specification documents from re-
quirements management tools, possibly replicating information.

Importantly, the categories of the above taxonomy are orthogonal to the categorization of clone types
for code or models that classify them based on the syntactic nature of their differences [86, 140]:
type-1 clone candidates are no more likely to be relevant than type-3 clone candidates, if the file
that contains them is no longer used. The crucial information, namely that the file is no longer used,
is independent of the syntactic features of the clone candidate. Consequently, we cannot expect the
problem of imperfect precision to be solved through the development of better detection algorithms
that improve detection for certain syntactic classes. Instead, we need to identify other features to
characterize false positives to exclude them.

8.2.5 Characterizing False Positives

Successful tailoring requires the identification of features that are characteristic for (a certain set
of) false positives. Once they are known, the clone detector can be configured to handle artifact
fragments that exhibits these features specially. Any attributes of source code, requirements specifi-
cations or models can, in principle, be candidates for such features. Examples include: the location
in the namespace or directory structure; filename or file extension patterns; implemented interfaces
or super types; occurrence of specific patterns in the source code, e. g., This code was generated

by a tool. Characteristic ways of structuring, e. g., sequences of constant declarations; identifiers of
methods or types; location or role in the architecture.

There is no single, canonic way to determine characteristic features. However, we found that the
reasons why developers consider candidate clones irrelevant often yield clues. We give examples
for code clones in the following:

Code is unused—it will not be maintained. How can such dead code be recognized? Does it
carry, e. g., Obsolete annotations as commonly encountered for .NET systems, or do affected types
reside in a special namespace? If not, can developers produce a list of files, directories, types or
namespaces that contain unused code?

Code is not maintained by hand since it is generated and regenerated upon change. Is generated
code in a special folder or does it use a special file name or extension? Does it contain a signature
string of the generator? If not, can it be made to do so?

141

8 Method for Clone Assessment and Control

Code has no conceptual relationship—maintenance is independent. This is typically encoun-
tered if the clone detector performs overly aggressive normalization, effectively removing all traces
of the implemented concepts. Code then appears similar to the detector, despite the lack of a con-
ceptual relationship that causes change coupling. Typical examples are regions of Java getters and
setters or C# properties. Which language or system specific patterns can be used to recognized such
code regions?

Compiler prevents inconsistent modifications. Examples are interfaces and NullObject2 pattern
implementations of the interfaces. Both interface and NullObject contain the same methods, down
to identifiers and types. However, a developer is notified by the compiler that a change to the
interface must be performed to the NullObject as well. The fact that the NullObject implements the
interface can be a suitable characteristic.

Similar characteristics can often be found for irrelevant clone candidates contained in requirements
specifications or models. As detailed in the tailoring case study for cloning in requirements spec-
ifications presented in Chapter 5, false positives could be recognized by patterns matching their
content or their surrounding text.

8.2.6 Clone Detector Configuration

Clone detector reconfiguration determines the success of clone detection tailoring—accuracy is only
increased, if reconfigurations are well conceived. Although automation is desirable, reconfiguration
is currently a manual process.

Clone detector configuration incorporates characteristics of false positives into the detection process
to remove them from the results. We outline configuration strategies applicable to our clone detector
ConQAT (cf., Chapter 7). Again, we give the examples for source code. Similar strategies can be
applied, however, to clone detector configuration for requirements or models.

Minimum clone length prevents the detection of clone candidates that are too short to be mean-
ingful. It has a strong impact on the results. While one-token clone candidates are not very useful,
too large values can significantly threaten recall. Still, excluding very short clone candidates is an
effective strategy to increase precision without damaging recall.

Code exclusion removes source code from the detection, and thus prevents detection of clone can-
didates for certain code areas. ConQAT supports file exclusion based on name or content patterns.
It also supports exclusion of code regions, which is crucial in environments where some regions
of files are generated, whereas the remainder is hand maintained. This is, e. g., found in .NET de-
velopment, where the GUI builder generated code is contained in a specific method in otherwise
manually-maintained files.

Context sensitive normalization allows to apply different notions of similarity to different code
regions. This way, equal identifiers and literal values can, e. g., be required for clone candidates in
stereotype or repetitive code such as variable declaration sequences, getters and setters, or select/-
case cascades, while at the same time differences in literals and identifiers are tolerated for clone

2NullObjects are empty interface implementations that reduce the number of required null checks in client code.

142

8.3 Assessment of Impact

candidates in other code. Different heuristics and patterns for context sensitive normalization are
available.

Clone Shaping allows to trim clone candidates to syntactic structures such as methods or basic
blocks. Clone candidates that are shorter than the minimal clone length after shaping are removed
from the results. This can, e. g., be used to remove short clone candidates that contain the end of
one and the beginning of another method without conveying meaning.

Post-detection clone filtering removes clone candidates from the detection results. ConQAT sup-
ports content-based filtering, removal of overlapping clone groups, gap-ratio based filtering for
gapped clones and black listing for filtering based on location-independent fingerprints that are ro-
bust during system evolution. Blacklisting can be used to exclude individual clone candidates—it
can thus be applied even if no suitable characteristics of false positives are known.

Re-configuration of any clone detection phase—preprocessing, detection, or post-processing—can
improve accuracy.

8.2.7 Assessment Tool Support

Besides a configurable clone detector, further tooling is required to perform clone detection tailor-
ing:

Clone assessment: dedicated tool support is crucial to achieve acceptable clone assessment pro-
ductivity. Based on our experience from large industrial case studies [57, 111, 115, 116], it must
support the generation of a random sample and store the assessment results for each clone group
and offer a clone inspection viewer that displays two sibling clones side-by-side, providing syntax
highlighting and coloring of differences between clones.

Comparison of clone reports: Tool support is required to inspect the differences between two clone
reports. This is necessary to investigate the impact of re-configuration on precision and recall.

Support for clone assessment and comparison of clone reports, is available in ConQAT.

8.3 Assessment of Impact

This section follows a ‘goal, question, metric’ (GQM) approach [11] to introduce the metrics em-
ployed to quantify the impact of cloning.

8.3.1 Goal

The goal of clone assessment is to quantify the impact of cloning in terms that reveal their effect
on software engineering activities. More specifically, the goal is to quantify the impact of cloning
on maintenance effort and program correctness. We hence need metrics that capture significant
properties influenced by cloning.

143

8 Method for Clone Assessment and Control

We summarize the goal of clone assessment using the goal definition template as proposed in [234].
Since we do not perform a single assessment, as GQM is mainly targeted for, but rather provide the
foundation for a class of assessments, we do not apply GQM directly but instead employ it to guide
the presentation.

Analyze cloning in software artifacts, including but not limited to

source code, requirements specifications and models

for the purpose of characterization and quantification

with respect to its impact on maintenance effort

and program correctness

from the viewpoint of software engineer, independent of role, e. g.,

manager, developer, quality assurance engineer

in the context of projects that develop or maintain software

8.3.2 Questions

The measurement goal can be broken down into several questions that help to quantify the different
impacts of cloning. The questions are, on purpose, independent of the artifact type in which cloning
occurs.

Q 1 How large is size-increase due to cloning?

Duplication increases the size of an artifact. Duplicated code increases the LOC that need to be
tested and maintained, requirements duplication increases the number of sentences that need to
be read; similarly, model cloning increases the number of model elements that need to be quality
assured and maintained.

Q 2 How large is expected modification-size-increase due to cloning?

If a clone is modified, the modification typically needs to be performed to its siblings as well. This
increases the number of statements, sentences or model elements that need to be modified—the
modification-size—to implement a change.

Q 3 If a single element contains a fault, with which probability is this fault cloned?

If an artifact element contains a fault, its clones are likely to contain it as well. If, e. g., a code clone
lacks a null check, it is missing in its siblings as well. If a requirement clone contains a wrong
precondition, it is likely to be wrong in its siblings as well. And, accordingly, if an adder block in a
Matlab/Simulink model receives the wrong parameter as input, it is likely to be wrong in its siblings
as well.

Q 4 How many clone groups and clones does an artifact contain?

144

8.3 Assessment of Impact

The number of clones and clone groups determines effort required for clone inspection and clone
consolidation.

Q 5 How likely is a coupled change unintentionally not performed to all affected clones?

If a problem domain concept (whose information is duplicated among the clones of a clone group)
changes, the clones need to be adapted accordingly. How likely are developers to be unaware of all
clones, and thus to not perform the change consistently to all affected clones?

Q 6 How likely does an unintentionally inconsistent change indicate a fault?

This question reflects how often a change to cloned artifacts, that unintentionally does not get per-
formed consistently to all affected clones, introduces a new fault or fails to remove an existing fault.
It thus captures how unawareness of cloning affects correctness.

8.3.3 Metrics

Overhead quantifies the size increase due to cloning cf., Section 2.5.4. Relative overhead quanti-
fies the size increase caused by cloning and can thus be used to answer question Q1. Assuming that
cloned artifact fragments are as likely to be modified as non-cloned fragments, it can also be used
to answer question Q2, as the relative modification size increase then corresponds to the relative
overhead.

Clone Coverage is the probability that an arbitrarily chosen unit in an artifact is covered by
at least one clone cf., Section 2.5.5. Assuming that statements, sentences or model elements that
contain faults are equally likely to be cloned as those that do not, it can be used to answer question
Q3.

Clone coverage can also be employed to answer related questions: during a requirements specifi-
cation inspection, how likely will the sentence you just read occur again in another section of the
document at least once? How likely will you have to perform the modification you just did to a
single statement, sentence or model element at least once more?

Counts denote the numbers of clone groups and clones in an artifact. Clone group count and
clone count answer question Q4.

Unintentionally Inconsistent Clone Ratio (UICR) captures the likelihood that the differ-
ences between type-3 clones in a clone group are unintentional, cf., Section 4.2. It thus captures the
lack of awareness of cloning during maintenance and answers question Q5.

145

8 Method for Clone Assessment and Control

Faulty Unintentionally Inconsistent Clone Ratio (FUICR) captures the likelihood that the
differences between unintentionally inconsistent type-3 clones in a clone group indicate at least one
fault, cf., 4.2. It thus captures the impact of the lack of awareness of cloning on correctness and
answers Q6.

All metrics are computed on tailored clone detection results. Overhead, clone coverage and clone

counts can be computed fully automatically, as is, e. g., done by ConQAT (cf., Chapter 7). The
metrics UICR and FUICR are determined by developer assessments of type-3 clone groups. If the
number of type-3 clone groups is too large, rating can be limited to a sample. The metrics are
computed as described in Section 4.2.

8.3.4 Discussion

Contribution While the metrics UICR and FUICR are novel, the other metrics have been pro-
posed before and are, as in the case of clone coverage or clone counts, computed by existing clone
detection tools. The novelty of the proposed clone assessment method thus resides not so much
in the novelty of its metrics. Instead, its contribution is twofold: first, the metrics capture both
impact on maintenance effort increase (overhead and coverage) and program correctness (FUICR).
Second, and more importantly, they are computed not on clone candidates, but on tailored clone

detection results, and thus on clones that exhibit clone coupling. The metrics thus allow for more
reliable interpretation w.r.t. the impact of cloning on maintenance activities, than metrics computed
on untailored clone detection results for which precision is unknown.

Efforts Both clone detection tailoring and metric computation are not cost-free. Since free in-
dustrial strength clone detectors are available—such as the one proposed by this thesis—the main
cost driver is the involved developer time. Since the actual detection times are fast for software of
typical size (cf., 7), waiting times do not account for much; most of the effort is required for devel-
oper assessments of clones that are performed to tailor detection results and rate clones to determine
UICR and FUICR.

However, according to our experiences from, e. g., the case study in Chapter 4, the faults discovered
during inspection of type-3 clones can amortize these efforts. In one system, for example, we
discovered a type-3 clone group in which one clone contained a comment with an issue tracker
ticket number indicating a fixed bug. Its siblings, however, still contained the bug. The issue tracker
entry documented a lengthy and costly process: the bug had been discovered in the field, had been
triaged by a group of experts, discussed by a control board and classified as sufficiently critical to
be fixed in the next release. Then it had been fixed by a developer and verified by a tester. The cost
for this process, according to the developers involved in the study, exceeded the effort gone into
clone assessment. In other words, the effort was accounted for by the single fault we found, since
it could be fixed and tested without requiring the costly triage and quality control board process.
The additional faults that were found during that analysis increased the return of investment on the
effort invested into clone assessment. While there is obviously no guarantee that the found faults
amortize or best the costs, we have repeatedly received the feedback from the involved stakeholders
that clone assessment was well worth the effort.

146

8.4 Root Cause Analysis

Properties of Clones and Cloned Code As mentioned in Section 8.2.1, the impact of
cloning is determined by clone coupling, which is independent of whether clones can be removed
using the abstraction mechanism available for the artifact type. Removability of the clones is thus
not reflected in the metrics.

The interpretation of overhead as an estimator for modification-size-increase assumes that cloned
artifact fragments are as likely to be affected by change as non-cloned ones. For source code, this
assumption has been studied by several researchers. The results from Jens Krinke seem to contradict
it: in [148], he reports that cloned code is more stable than non-cloned code. However, in a later
study, Nils Göde uses a more sophisticated clone tracking scheme and reports that stability of cloned
versus non-cloned code varies between the analyzed systems [83] and is thus hard to generalize.
Lacking generalizable results whether cloned code is more or less stable than non-cloned code,
and lacking any empirical data for other artifacts such as requirements specifications and models,
we assume that it does not differ in stability. Future work is required to better understand the
relationship between cloning and stability. In case it varies substantially, it could be included as an
additional metric into a future, extended clone assessment method.

The interpretation of clone coverage as the likelihood that faults are cloned assumes that faulty arti-
fact units are as likely to be cloned as non-faulty ones. Again, we have little empirical data that sheds
light on fault densities: we are not aware of any studies for requirements specifications or models
and only of a single study that compares fault densities for cloned and non-cloned code [189].
In addition, since the authors do not employ clone tailoring, according to the terminology of this
thesis, their study analyzes clone candidates, not clones—the applicability of their results is thus un-
clear. Consequently, further research is required to better understand the fault densities for cloned
and non-cloned artifact fragments. Lacking empirical data, we assume fault densities to be similar
for cloned and non-cloned code. Alternatively, a future, extended version of the clone assessment
method could incorporate a metric that reflects the differences between the two.

8.4 Root Cause Analysis

Besides assurance of consistent evolution of existing clones, an important function of successful
clone control is the prevention of new ones. Various causes urge maintainers to create clones;
please refer to Section 2.2.2 for an overview. In many cases, cloning is performed to work around
problems in the maintenance environment. As long as these causes for cloning remain, maintainers
are likely to continue to create clones in response. Hence, for clone prevention to be effective, the
causes for cloning need to be determined and rectified.

Existing work on clone prevention focuses on monitoring of changes to the source code [149].
Changes that introduce new clones are identified and need to pass a special approval process to be
allowed to be added to the system. While such an approach can help to spot clones early, it is limited
to analysis of the symptoms—the clones—and ignores their cause. Such approaches thus need to
be complemented with a root cause analysis that determines the forces driving clone creation. This
section presents a list of root causes.

The causes for cloning are diverse; suitable solutions thus differ substantially. Their heterogeneity
rules out a single, canonical recipe for root cause analysis. Instead, we list the causes and coun-

147

8 Method for Clone Assessment and Control

termeasures in the form of patterns. Many of the examples described below stem from four years
experience of analysis of cloning in industrial software—often with partners outside those men-
tioned in Section 2.73. Where fitting, we also give examples from the literature. This list is not
complete. Its extension remains an important topic for future work.

The list focuses on causes for cloning in the maintenance environment. Inherent causes, such as
difficulty of abstraction creation (cf., , Section 2.2.2) are not considered for two reasons: first,
being inherent, they cannot be rectified through changes to the maintenance environment; second,
the resulting clones can be consolidated at a later point, e. g., when more information about the
instances of a certain abstraction is available. We list the patterns in alphabetic order.

Pattern Template Each cause is described following a fixed template. Its cause describes the
underlying problem. Its solution describes possible measures that can be used to solve the problem.
Its examples document occurrences in the literature or experiences we gathered in practice. Finally,
its limitations document constraints that restrict applicability of the solutions.

8.4.1 Broken Generator

Cause Code that was originally generated is now maintained manually.

Solution Separate hand-written and generated code. If the generated code needs to be augmented
manually, use, e. g., the Generation Gap pattern [224] to place it in different files. Do not commit
generated code to the version control system. Instead, re-generated it automatically every time its
input artifacts change. This reduces the probability that small fixes are directly introduced into the
generated code that effectively break the possibility to regenerate it.

Examples In some business information systems we analyzed, one-shot generators had been em-
ployed. They had generated code entities with “holes” that were later filled in manually. This
resulted in large amounts of cloning.

Another project we analyzed initially employed a UML tool that generated classes from diagrams.
The UML tool generated stereotype code for, e. g., association handling and object lifecycle that is
duplicated between classes. This did not represent a problem as long as the tool was used, since
it maintained the duplication. However, at some point, the UML tool was abandoned. All code,
including the generated duplication, gets now maintained by hand.

A third project we analyzed inherited a component from another team. That team employed a code
generator. However, the generator is now lost. Furthermore, it is unknown, whether the generated
code has later been modified by hand. Consequently, it now gets maintained manually.

Limitations If hand-written and generated code have been mixed long ago, their separation can be
tedious. However, such complexity is accidental. We see no inherent reason that prevents complete
separation of generated and hand-written code.

3For nondisclosure reasons, we cannot give more details on the company, domain or analyzed software.

148

8.4 Root Cause Analysis

8.4.2 Insufficient Abstraction Skills

Cause The maintainers lack some of the skills required to create reusable abstractions.

Solution Educate the maintainers in the required skills.

Examples Even if language limitations rule out one way of creating a shared abstraction, often
other, sometimes less obvious, ways exist. Many design patterns offer such ways. For example, if
two fragments of code differ in one method they call, Java does not allow to introduce a parameter
for this method, since it does not support function types. However, the design patterns Template

Methods and Visitor [74], e. g., support such cases through the use of inheritance and polymorphism.
To consolidate cloning, refactoring can reduce the required effort and likelihood of errors.

At one of our industrial partners, a cross-cutting concern was cloned between the underlying frame-
work and all components that were developed on top of it. The application of the Template Method

pattern allowed consolidation of a substantial part of the clones: the common code was moved into
the framework base classes, the variability delegated to abstract hook methods that were imple-
mented by the derived classes in the components.

Limitations The available abstractions, patterns and refactorings differ between programming lan-
guages.

8.4.3 Language Limitations

Cause The available abstraction mechanism does not allow to introduce the necessary parameters
to create a reusable abstraction.

Solution The direct solution is to augment the abstraction mechanism to support the required pa-
rameterization. If this is unfeasible, use specific tools that complement the language.

Examples The quality analysis toolkit ConQAT, on top of which the tool support proposed by this
thesis is constructed, implements its own domain specific language to specify program analyses.
Its initial version did not have a reuse mechanism for recurring specification fragments. The initial
analyses, thus, contained clones. In response, a later version introduced an abstraction mechanism
that allows for structured reuse.

General purpose programming languages like Java do not allow for encapsulation of cross-cutting
concerns. Concerns such as logging, tracing or precondition checking, hence, are duplicated. One of
our industrial partners introduced aspect oriented programming techniques to factor out the cloned
tracing code.

Limitations Many commonly used abstraction mechanisms, e. g., those in general purpose pro-
gramming languages, cannot be extended by their users. Aspect oriented programming or genera-
tors, however, can sometimes be employed.

149

8 Method for Clone Assessment and Control

8.4.4 No Consolidation of Exploratory Cloning

Cause Inherent causes for cloning, such as difficulty of creating abstractions or prototypical real-
ization of changes to understand their impact, disappear with time (cf., Section 2.2.2). Cloning can
then be consolidated. This does not always happen in practice.

Solution Establish clone control, as presented below, to track such clones. Schedule resources for
their removal as soon as they can be consolidated, while their removal is still cheap.

Examples In several of the industrial projects we analyzed, we found code implementing features
with similar business functionality. Parts of them had been implemented via cloning. Repository
analysis revealed that cloning had also been used for prototypical implementation in other areas of
the application. However, in these areas, it was later consolidated, as the commonalities and differ-
ences between the features became clear. Developers reported that many of the remaining clones
had originally been meant to be consolidated. However, due to time pressure and interruptions, the
consolidation was postponed and then forgotten.

Limitations The longer clones remain in a system, the more efforts can arise for their consolidation.
Clones should thus be removed early, to avoid additional efforts for familiarization and quality
assurance.

8.4.5 Unreliable Test Process

Cause The test process—especially regression testing—is unreliable. In response, maintainers do
not trust it to discover faults introduced during maintenance. Instead of changing code to make it
reusable, copies are created, to avoid risk of breaking existing code.

Solution Improve the test process.

Examples Jim Cordy [40] reports on the reluctance of maintainers in the financial sector to consol-
idate cloning, to avoid the risk of breaking running systems. Increased reliability of the maintainers
in the test processes could reduce their reluctance.

One company we worked with was in a similar situation. Their test process was entirely manual—
not a single test case was automated. In consequence, determining that a change only had the
intended impact was infeasible: apart from the costs of manual test execution, it was not always
clear, which test cases were potentially affected by a change. The resulting reluctance to modify
existing code lead to a steady increase in cloning.

Limitations As any process change, improving a test process requires planning, organizational
change management and resources.

8.4.6 Unsuited Reuse Process

Cause The organization does not have a suitable reuse process that governs the creation and main-
tenance of shared code4. Unsuited reuse processes can occur in different forms, e. g.:

4We use the term shared code in a way that does not subsume cloned code.

150

8.4 Root Cause Analysis

Reuse process is missing.

Restrictive code ownership impedes modifications necessary to reuse existing code.

Solution Change process to facilitate creation and maintenance of shared code.

Examples At one company, a cause of cross project cloning was the absence of a reuse pro-
cess [120]. The company simply had no code entities that were shared between projects, and conse-
quently no process for its maintenance. Lacking, e. g., a common library into which to place shared
code, the developers copied it between projects. As a solution, the company plans to introduce a
commons library and a maintenance process for it.

Restrictive code ownership is frequently mentioned as a reason for cloning in the literature [201].
Collective code ownership, as, e. g., advocated by agile development methods [18, 71] presents a
suitable alternative.

Limitations Both establishing and changing a reuse process require planning and organizational
change management. Switching from restrictive to collective code ownership might require adapta-
tions of other processes, such as quality assurance, if it was ownership-based.

8.4.7 Wrong Description Mechanism

Cause The description technique employed to implement a piece of software is inappropriate. As
a consequence, high level operations are interspersed with repetitive sequences of low level com-
mands.

Solution Use a more appropriate description technique. For example, use a domain specific lan-
guage in which the high-level operations are encoded and a generator that adds low-level commands
and transforms it into executable artifacts. Or use an internal DSL to, e. g., separate test data con-
struction from test logic.

Examples One of the business information systems we analyzed started off with a manually written
(and maintained) persistency layer. Storage of objects in a relational database (and, correspondingly,
their retrieval) followed stereotype patterns. For each object attribute (high-level information), a
number of low-level storage and retrieval commands were implemented, resulting in large amounts
of similar code. In a later version, the company replaced this code with a generated O/R mapper.

A second example are APIs used to program graphical user interfaces. Each instantiation of a
widget (high-level operation) requires a sequence of (low-level) method and constructor calls. Since
API constraints govern their shape and order, the resulting code looks similar [1, 123]. Again,
high level operations (place this widget over there, looking as such) is interspersed with low level
information (how to construct the widget, how to allocate and dispose of its resources, . . .). Again,
code generators have been developed that allow the composition and maintenance of graphical user
interfaces on a higher level of abstraction.

Automated tests require test objects on which the functionality under test operates. Often, these
test objects are constructed programmatically. Again, high-level operations (which objects to com-
bine) are interspersed with numerous low-level constructor and setter calls. As a solution, describe

151

8 Method for Clone Assessment and Control

test object construction using internal or external DSLs that allow test object specification on an
appropriate level of abstraction.

Limitations Suitable domain specific languages or generators might not be available. The costs for
their construction and maintenance constrain their use.

8.4.8 Summary

The analysis of causes of cloning can reveal problems in the maintenance process. These prob-
lems can have severe consequences for software maintenance far beyond their impact on cloning:
working on the wrong level of abstraction creates unnecessary effort; insufficient developer skills
threaten many quality attributes of a software system; and reluctance to change existing code due
to an unreliable test process inhibits maintenance in general and not only consolidation of cloning.
Root cause analysis of cloning offers one tool to spot such problems. If employed during clone
control, it can help to identify such problems early and thus help to contain the damage they can
cause.

The rectification of a cause for cloning must make economic sense. Its expected savings, both
in terms of reduced impact of cloning and on software maintenance in general, must exceed the
expected costs. Clone prevention thus involves trade-off decisions. These trade-offs can shift over
time. A cause that initially appears to be negligible can become important, as its impact becomes
obvious. In addition, causes that are expensive to fix now can become cheaper, as technology
advances. Timely root cause analysis enables a substantiated decision on whether to act, or whether
to accept the consequences and control the resulting clones. Furthermore, if performed as a part
of continuous clone control, the decisions can be reevaluated, as additional information becomes
available.

Lasting Impact Clone assessment and root cause analysis alone, however, are unlikely to have a
lasting impact on the cloning in a system. If the negative impact of cloning is to be reduced, specific
actions must be taken.

The project stakeholders thus need to make a decision whether the impact of cloning is acceptable
for their software project, or whether any actions should be taken to alleviate the impact or reduce
the amount of cloning in a system. In real-world software projects, the question is more likely
which actions are appropriate, than whether at all actions need to be taken: in the few times we
encountered software systems with very low cloning metrics, effective clone control measures were
already in place.

The next section provides a method to introduce clone control that helps to alleviate the negative
impact of cloning on software maintenance activities.

8.5 Introduction of Clone Control

If clone control is to be applied continuously during maintenance, established development habits
need to be overcome. The goal of organizational change management is to facilitate such change

152

8.5 Introduction of Clone Control

processes. Below we summarize an organizational change management process from [225] that has
been adapted for the introduction of quality control measures. Its steps provide the basis for the
introduction of clone control.

Convince Stakeholders and establish a sense of urgency about the negative impact of cloning
for the software system to build up enough momentum. The intended result of this step is motivation
among the stakeholders to introduce clone control.

Create a Guiding Coalition that includes key persons to introduce clone control into the de-
velopment process. Identify all required roles and persons to avoid delay. The result of this step is
the task force that will initiate and perform the actions required to introduce clone control into the
development process.

Communicate Change to all stakeholders affected by clone control to achieve transparency
and reduce anxiety possibly created by a sense of being controlled or measured. The result of this
step is knowledge of the introduced clone control tools and measures.

Establish Short-term Wins to provide payoffs for investments made so far and bolster mo-
tivation. These include fixing of encountered bugs and removal of easily removable clones. The
result of this step is the improvement of the software system’s quality.

Make Change Permanent by tracking clones to reward removal of existing clones and notice
introduction of new ones. The result of this step is awareness of the evolution of cloning in the
system and the lasting application of clone control. This step of organizational change management
is performed by the fifth step of the method, continuous clone control.

In principle, the method presented in this chapter focuses on points in which computer science can
help organizational change management. It does not target points that are not primarily computer
science territory, such as, e. g., expectation management, conflict management or communication
inside an organization. It thus complements existing approaches for organizational change manage-
ment and does not replace them. The remainder of this section describes the individual steps of the
introduction of clone control in more detail.

8.5.1 Convince Stakeholders

Introduction of clone control needs resources. For them, it competes against other tasks in a project.
In order for clone control to be initiated, the required resources must be allocated. This demands
conviction among all involved stakeholders that clone control is both necessary and urgent, else it
will not happen or be delayed.

For a software system in production, cloning is not merely an issue affecting maintenance in the
distant future. Instead, it not only affects the present but already affected past maintenance. In other

153

8 Method for Clone Assessment and Control

words, the impact of cloning already affects the stakeholders. From our experience, even in systems
that are substantially impacted by the negative impact of cloning, this is not clear to stakeholders. It
is hence a key fact in establishing a sense of urgency among them.

To establish that the negative impact of cloning already has affected development and continues to
do so, results from clone assessment are employed. From our experience, it fosters understanding
if the impact of cloning is presented in two ways: on the level of individual software artifacts, to
provide tangible examples, and on the level of the whole system, to put cloning into context. On the
level of individual artifacts, examples of inconsistent evolution tangibly demonstrate that cloning
threatens program correctness. On the level of the whole system, the clone metrics quantify the
impact of cloning for the whole system.

The more stakeholders can be convinced of the urgency of clone control, the higher its chances of
success. While participation of all stakeholders is not necessarily required, at least stakeholders
whose inactivity blocks clone control need to be convinced.

8.5.2 Create a Guiding Coalition

Once a sense of urgency has been established, clone control needs to be integrated into the develop-
ment process of a project. Different roles are involved in this. Depending on the project, they can
but need not be performed by different persons:

Build engineer: Integrates clone detection into the software build environment so that it is per-
formed automatically on a regular basis.

Dashboard appointee: Creates a dashboard that presents clone detection results to developers.
Depending on the project size and team structure, the dashboard appointee creates dashboard views
for the individual components or subsystems to provide customized clone detection results to the
stakeholders.

Tool appointee: Familiarizes himself with the clone detection tool support to adapt it to the project
and tutor his colleagues.

Once the guiding coalition has been created, it performs its tasks. Besides the identification of the
involved individuals, the results of this step thus include a clone detection dashboard that is updated
on a continuous basis.

8.5.3 Communicate Change

Once clone detection has been integrated into the regular build, up-to-date clone detection results
are, in principle, available to developers. However, while a necessary requirement, both the exis-
tence of up-to-date detection results and clone management tools alone do not alleviate the negative
impact of cloning. They also need to be used by developers to take effect.

For this, developers need to be made familiar with the clone control tool support available to them
and the ways it can be used to support maintenance. This includes both the clone control dashboard
that provides aggregated information, and the IDE integration of clone indication that supports
change propagation, implementation and impact analysis, as described in Chapter 7.

154

8.6 Continuous Clone Control

Furthermore, the ways the cloning information is used by other stakeholders, including manage-
ment, needs to be communicated to create transparency [38]. Otherwise, the resulting uncertainty
about the use of the collected data can lead to defensive behavior or neglect, threatening the adoption
of clone control.

8.5.4 Establish Short-term Wins

All previous steps represent investments into clone control that offer no immediately visible benefits.
At this step, tangible returns in software quality improvement are required to both justify previous
investments and bolster developer motivation. Strategies to achieve them include:

Fix bugs introduced by inconsistencies between clones. Bug fixes offer immediate improvements
in software quality and are easy to communicate among stakeholders.

Consolidate clones that are easily removable. Such clones can, e. g., be found by using very
conservative normalization. Their removal reduces software size and thus future maintenance effort.
Starting with clones that are easy to remove bolsters motivation, since limited effort visibly impacts
cloning metrics in the dashboard.

Consolidate large clones, both in length and in cardinality. Removal of such clones visibly reduces
clone metric values and thus also bolsters motivation.

8.6 Continuous Clone Control

Apart from establishing short-term quality improvements, both the amount of cloning and the prob-
ability to introduce errors due to inconsistent modifications can be reduced through continuous
application of clone control. Continuous clone control involves both the quality engineer and the
developers.

8.6.1 Quality Engineer

As part of continuous clone control, the quality engineer performs a series of activities on a regular
basis, e. g., as part of weekly project status meetings:

Inspect Cloning Metrics in the dashboard to track the high-level evolution of cloning. This
establishes the clone metrics as important project quality characteristics and maintains attention on
them. Furthermore, the quality engineer analyzes their trends to monitor whether clone control has
an effect.

155

8 Method for Clone Assessment and Control

Track Clones to identify evolution of cloning on the level of individual clone groups. Tool
support for clone tracking cf., Section 7.4.4 identifies added and modified clone groups. The quality
engineer performs the following steps on them:

Added: if the clone candidate is a false positive, add it to the blacklist to remove it from the
detection results. Else, investigate if the clone should be removed and, if so, schedule it for
removal by, e. g., creating a work item for it in the project’s issue tracker. If the clone should
not be removed, e. g., since the language abstraction mechanisms are insufficient, the clone
remains in the detection results to be available for change propagation. Furthermore, analyze
the root cause of the clone and determine if reactions need to be taken.

Modified: if the modification was not performed consistently to all clones in the clone group,
check if this was unintentional. If so, schedule a work item to repair the inconsistency and
investigate why clone indication was not used successfully.

In addition, the quality engineer follows progress on the scheduled work items for clone removal
or inconsistency removal. To bolster developer motivation, the list of removed clones can, e. g., be
included in the quality dashboard to make progress visible to the team.

8.6.2 Developers

As part of continuous clone control, the developers perform a series of tasks as part of their devel-
opment activities.

Employ Clone Indication for change propagation. This way, the probability of unintentionally
inconsistent changes to cloned code is reduced, even if cloning is not consolidated.

Resolve Work Items that have been scheduled by the quality engineer, namely clones sched-
uled for removal and inconsistencies that need to be repaired. While this causes effort for famil-
iarization and quality assurance, it immediately reduces the amount of cloning and faults in the
system.

Consolidate Upon Change removes cloning when changes to cloned code are required during
maintenance. If code needs to be changed to implement a change request, clone consolidation in
that code does not create additional effort for familiarization and quality assurance. This strategy
allows to remove cloning gradually during system evolution, without requiring a significant up-front
investment.

Apart from the reduction of the amount of cloning and the probability of inconsistent modifications,
a long term benefit of continuous clone control is also the maintained developer awareness of the
negative impact of cloning. This awareness makes the introduction of new clones in added or
modified code less likely.

156

8.7 Validation of Assumptions

8.6.3 Discussion

The generic clone control method above can be adapted to specific project contexts.

Green Field Development The above method focused on the introduction of clone control
into maintenance projects. It thus focused on how to change established habits and how to manage
existing clones. If clone control is introduced at the very beginning of a project, it differs in two
important aspects.

First, instead of changing established habits, new habits need to be created, which is arguably sim-
pler. Still, to create new habits, developers need to be motivated. Since clone assessment results for
the project do not exist, results from other, if possible comparable projects should be employed.

Second, if a project starts with zero artifacts, it also starts with zero clones. Clone control can thus
focus on clone avoidance instead of management of existing clones. One possibility is to track
clones to discover the existence of new clones right after their creation, while their removal is still
inexpensive.

Multi-project Environments If clone control is introduced into a multi-project environment, a
staged approach that starts with a few projects before introducing clone control into all projects has
several advantages. First, less investment is required. Second, lessons learned on the pilot projects
can be applied to the remaining ones, potentially saving the repetition of errors. Third, the pilot
projects can be employed as examples to create a sense of urgency and show feasibility of clone
control to the remaining projects.

Tool Support Dedicated tool support is crucial for clone control. To control cloning on a project
level, quality dashboards aggregate and visualize the extent and evolution of cloning in a system. For
change propagation, clone inspection and removal, clone management tools that integrate into IDEs
provide support to developers. Both tool support on the project level and for clone management in
the IDE is proposed in this thesis and outlined in Chapter 7.

8.7 Validation of Assumptions

This section presents industrial case studies that validate the assumptions underlying the method for
clone assessment and control. The evaluation of the method is presented in Section 8.8.

8.7.1 Assumptions

The tailoring procedure that is part of the clone assessment method employs developer assessments
of clone coupling on a clone sample to determine result accuracy. This is based on three assump-
tions:

157

8 Method for Clone Assessment and Control

Assessment consistency. We assume that different developers evaluate the coupling of clones con-
sistently.

Assessment correctness. We assume that the evaluation of clone coupling is correct regarding how
changes will affect clones in reality.

Assessment generalizability. We assume that assessment results for a sample of the detected clones
can be generalized to all clones.

While a certain amount of error can be tolerated, the assumptions must hold on a general level for
the use of developer assessments on a sample to make sense.

8.7.2 Terms

For the sake of clarity, we define several terms we employ during the study: A change is an alteration
of a software system on the conceptual level. A modification is an alteration on the source code
level. A single change comprises multiple modifications, if its implementation affects several code
locations. Detection result accuracy refers to a combination of both precision and recall.

8.7.3 Research Questions

We use a study design with two objects and four research questions to validate the assumptions.
The study is limited to source code:

RQ 10 Do developers estimate clone coupling consistently?

The application of developer assessments to estimate clone coupling is based on the assumption that
different developers estimate clone coupling consistently. Experiments by Walenstein et al. [229]
have demonstrated that assessments require an explicit clone relevance criterion to produce consis-
tent results. This research question validates whether the estimation of coupling represents such.

RQ 11 Do developers estimate clone coupling correctly?

Consistency alone is no sufficient indicator for correctness. Prediction of change, which is part
of assessing the coupling between clones, inherently contains uncertainty. To assess how useful
developer assessments of clone coupling are for tailoring, we need to understand their correctness.

RQ 12 Can coupling be generalized from a sample?

Rating is performed on a sample of the candidate clones, since real-world software systems contain
too many clones to feasibly rate them all. The sample must be representative for the system, else
sampling makes no sense.

RQ 13 How large is the impact of tailoring on clone detection results?

158

8.7 Validation of Assumptions

Table 8.1: Study objects

Lang. Age (years) Size (kLOC) Developers (max)

A ABAP 13 442 10 (40)
B C# 8 360 4 (12)

Tailoring changes the results of clone detection. The size of the change in terms of accuracy and
amount of detected clones determines the importance of clone detection tailoring for both research
and practice.

8.7.4 Estimation Consistency (RQ10)

Study Object We use an industrial software system from the Munich Re Group as study object.
The Munich Re Group is the largest re-insurance company in the world and employs more than
47,000 people in over 50 locations. For their insurance business, they develop a variety of individual
supporting software systems. For non-disclosure reasons, we named the system A. An overview is
shown in Table 8.1. Code size refers to the hand maintained code that was analyzed. The system
implements billing, time and employee management functionality and supports about 3700 users.

Design We determine inter-rater agreement between different developers to answer RQ1. For
this, developers independently estimate coupling for a sample of candidate clone pairs from the
study object by answering assessment question 1 for each pair. Inter-rater agreement is then deter-
mined by computing Cohen’s Kappa.

Procedure and Execution Clone detection was performed with an untailored configuration on
study object A. From the results, a random sample of clone pairs was generated. If a sampled candi-
date clone group contained more than two clones, its first two clones were chosen. Each developer
assessed coupling for each clone pair individually. Assessment was guided by a researcher. The
researcher explained the assessment tool and asked the assessment question for each clone pair, but
took care not to influence assessment results. Developers could provide three answers, namely ac-

cept, reject and undecided. Individual rating meetings were limited to 90 minutes since experiences
with developer clone assessments from earlier experiments [115] indicated that after 90 minutes,
concentration and motivation decrease and threaten result accuracy.

Results and Discussion Clone coupling was estimated for 48 clone pairs by three developers.
Three clone pairs were rated as undecided by one developer, one clone pair was rated as undecided

by two developers. Furthermore, five clone pairs received at least one accept and one reject assess-
ment. The remaining 39 clone pairs all received the same ratings by all three developers. Table 8.2
shows the results of the assessment.

Agreement between pairs of developers ranges between 85.4% and 89.1%. Overall agreement is
81.3%. In rows 1–4, all clone pairs are taken into account, including clone pairs that were estimated

159

8 Method for Clone Assessment and Control

Table 8.2: Estimation consistency results

Developers Agreement

1 & 2 87.5%
1 & 3 85.4%
2 & 3 89,6%
1 & 2 & 3 81.3%

1 & 2 & 3 (w/o unrated) 88.1%

as undecided by one developer. For the last row, the four clone pairs for which at least one developer
rated undecided were removed from the result. On the remaining 44 clone pairs, 88.1% are rated
consistently between three developers, indicating substantial agreement. Cohen’s Kappa for the
three categories accepted, rejected and undecided and the three raters is 0.87 for the 48 rated clone
groups. According to Landis and Koch [151], this is considered as almost perfect agreement.

For the analyzed clone pairs, developers did have a consistent estimation of the coupling of clones.
After the assessments were complete, results were discussed with the developers. Developers could
agree on an assessment for four out of the five clone pairs that were assessed contradictorily. Only
for a single clone pair developers remained of different opinion. Based on these results, we consider
it feasible to achieve consistent estimations of clone coupling through developer assessments.

8.7.5 Estimation Correctness and Generalizability (RQ11 & RQ12)

Study Object We use a second industrial software system from the Munich Re Group as study
object. For non-disclosure reasons, we named the system B. An overview is shown in Table 8.1.
The system implements damage prediction functionality and supports about 100 expert users.

Design Clone detection tailoring partitions the results of untailored clone detection into two
sets—the set of accepted clone groups that are still detected after tailoring, and the set of rejected

clone groups that are not detected anymore. If developer assessments of clone coupling are correct
and results can be generalized from the sample (and no errors have been made during clone detec-
tion tailoring), accepted clone groups must exhibit a higher ratio of coupled changes during their
evolution than rejected clone groups.

Definition 5 Change Coupling Ratio (CCR): Probability that a change to one clone of a clone

group should also be performed to at least one of its siblings.

We state this as a hypothesis:

Hypothesis 1 CCR for accepted clone groups is higher than for rejected clone groups.

160

8.7 Validation of Assumptions

We determine CCR on the evolution history of the study object for both accepted and rejected
clone groups as described below. We then use a paired t-test to test Hypothesis 1 against the null
hypothesis that CCR for accepted clone groups is equal or smaller than for rejected clone groups.

CCR is determined by investigating the set of changes that are performed to clone groups during
system evolution. CCR is simply the expected probability that a randomly chosen change to a clone
group is coupled, which is equal to the ratio of the number of coupled changes to the number of all
changes, including uncoupled ones.

In practice, developers do not have perfect change impact knowledge. The modifications develop-
ers perform to cloned code can deviate from the intentional nature of the change: developers can
miss a clone when implementing a coupled change. The modification of the cloned code gets thus
unintentionally uncoupled5. The three ways how a change can affect cloned code are: 1) Consistent

modifications are intentionally coupled modifications to cloned code. 2) Independent modifications

are intentionally uncoupled modifications to cloned code. 3) Inconsistent modifications are unin-
tentionally uncoupled modifications to cloned code.

Information about the intentionality of a modification is, in general, not contained in the evolution
history of a system6. It is thus manually assessed by the system developers.

We determine CCR for a system by inspecting changes between pairs of consecutive system versions
as follows: first, clones are tracked between the two system versions to identify clone groups that
were modified; second, all modified clone groups are inspected manually—based on their under-
lying change, they are classified into sets of consistently, independently or inconsistently changed
clone groups; CCR can now be computed as:

CCR =
|consistent|+ |inconsistent|

|consistent|+ |inconsistent|+ |independent|

This procedure does not require accurate and complete evolution histories or genealogies of indi-
vidual clone groups. To improve accuracy, it can be performed on multiple pairs of consecutive
system versions—CCR is then determined on a larger sample of changes.

Procedure and Execution The system versions between which code modifications were an-
alyzed were chosen using a convenience sampling strategy. Weekly snapshots of the source code
were extracted from the version control system for the year 20067. Between each snapshots, code
churn was determined as the number of changed files as an estimate of development activity in that
week. Four weekly intervals were chosen for measurement. Their choice aimed at maximizing the
covered part of the system evolution, to measure different stages and to capture different levels of
development activity to reduce the probability to only cover an unrepresentative part of the system’s
evolution.

5In principle, developers could also erroneously modify clones in a coupled fashion, although the change should only
affect one clone, thus affecting an unintentionally coupled modification. However, since this case was not observed
on the study object, we ignore it here.

6Based on history analysis alone, it is undecidable whether two differently modified sibling clones represent an inde-
pendent or inconsistent modification and thus whether the underlying change is coupled or not.

7The developers have employed our clone detection tool ConQAT during development since 2008. We thus analyzed an
earlier evolution history fragment to avoid unwanted side effects on the data caused by the use of the clone detector.

161

8 Method for Clone Assessment and Control

For each measurement interval, coupling was determined for both accepted and rejected clone
groups as follows. First, modifications to cloned code were computed using a clone tracking ap-
proach similar to the one described in [83,83], cf., Section 7.4.4. Second, all modifications to clone
groups were manually classified as consistent, inconsistent or independent. Required effort to indi-
vidually rate all clone groups for all intervals and both detection configurations would be too high
to be feasible. Three measures were taken to reduce review effort:

Clone clustering: Due to the nature of clone groups, long clone groups often overlap with shorter
clone groups of higher cardinality. Say you created a clone pair A by cloning a code region that
contains two methods. If you now clone one of the methods again, you have created a second clone
group B with three clones—one containing the newly inserted method clone, two overlapping clone
pair A. We call such overlapping clone groups a cluster. If the original method gets changed, both
clone groups A and B are modified. A pre-study we performed to validate the tool setup showed
that modifications are often rated equally for all clone groups in a cluster. Although all clone groups
in a cluster were rated individually, sorting clone groups according to clone clusters substantially
improved rating productivity.

Two-phase review: In the first phase, a researcher inspected all modified clone groups and classified
those for which obviously no common concept between clones could be identified as independent.
Typical examples include getter and setter clones that are only considered similar due to overly
aggressive normalization. In the second phase, the remaining clone groups were pair-reviewed by
a researcher and a developer. The researcher operated the clone inspection tool, the developer took
the rating decisions.

Single classification: Rated clone groups were partitioned into accepted and rejected sets. This
was done by matching the rated clone groups against the results of clone tracking using a tailored

detection configuration. Matching was performed in a semi-automated fashion: clone groups with
identical positions were matched automatically, remaining clone groups were matched manually by
a researcher based on their location and content8. Five out of 91 (5.5%) of the detected clusters
could not be matched and were excluded from the study.

Clone detection was performed with ConQAT using a minimal clone length of 10 statements. Tai-
lored detection was performed using an existing tailoring from an earlier collaboration that was
created using the method from Section 8.2. It excludes clone groups with overlapping clones, em-
ploys context sensitive normalization of repetitive code regions and excludes C# using statements
and generated code.

Results and Discussion Tables 8.3 and 8.4 show the results of the manual change classifica-
tion and the resulting coupling for the set of accepted and rejected clone groups, respectively. In
total, changes to 211 clone groups (containing 1279 clones) were manually classified during the
experiment.

In intervals 1 and 2, modifications for one accepted clone group were rated as don’t know. For com-
putation of coupling, they were conservatively counted as independent. This conservative strategy
only makes it harder to answer the research question positively—it does not threaten the validity of
a positive answer.

8Tailoring can result in shorter clones that are thus not in identical locations as their untailored correspondents.

162

8.7 Validation of Assumptions

Table 8.3: Evolution of accepted clone groups

Int. Consistent Inconsistent Independent Coupling

1 15 3 3 0.857
2 11 1 10 0.545
3 31 6 13 0.740
4 1 0 0 1.000

1-4 58 10 26 0.723

Table 8.4: Evolution of rejected clone groups

Int. Consistent Inconsistent Independent Coupling

1 2 0 10 0.167
2 0 1 42 0.023
3 0 0 23 0.000
4 1 0 38 0.026

1-4 3 1 102 0.034

The paired t-test yields a p-value of 0.002162. This indicates that the greater clone coupling for
accepted than for rejected clone groups is, for a confidence interval of 95%, statistically significant.
It thus supports Hypothesis 1. Developer estimation of clone coupling thus aligns well with the
evolution of clones during the system’s evolution history.

8.7.6 Clone Tailoring Impact (RQ13)

Study Object We use system B from Munich Re (as for RQ12).

Design We compute several cloning metrics for the clone detection results before and after tai-
loring, namely: count of clones and clone groups, clone coverage and clone blow-up. We then
calculate their delta to evaluate the quantitative impact of tailoring on the detection results.

Procedure and Execution We performed tailored and untailored clone detection on two ver-
sions of the source code of the study object. Untailored clone detection simply returns all type-1 and
type-2 clones (according to the definition from [140]). All metrics were computed automatically
by ConQAT. The first version is the one from the first measurement interval. The second version
is from mid 2008 (before ConQAT was introduced for continuous clone management). Between
these versions, the developers replaced hand-written data-access code with generated code that is
never modified manually—if the data-access layer changes, it is fully re-generated—unintentionally
uncoupled changes thus cannot occur. We included this second version to investigate the effect of
generated code on untailored detection results.

163

8 Method for Clone Assessment and Control

Table 8.5: Impact of tailoring on detection results

2006 2008

Untail. Tail. ∆ Untail. Tail. ∆

Clone Groups 598 332 −44% 2,558 1,028 −60%
Clones 2,118 1,005 −53% 12,675 3,558 −72%

Coverage 29.3% 18.3% −38% 36.2% 19,4% −46%
Blow-Up 27.8% 14.2% −49% 41.2% 16,1% −61%

Results and Discussion The results are displayed in Table 8.5. In both versions, tailoring
substantially reduced the number of detected clones and thus clone coverage and blow-up. However,
substantial amounts of cloning are still detected after tailoring. Tailoring affects results even more
strongly if generated code is present—all metrics are reduced by a larger factor.

The mere observation that the introduction of filters during tailoring reduces the number of detected
clones is little surprising. However, for the analyzed system, recall was largely preserved—of the
72 clone groups to which coupled changes occurred, 68 were still detected by the tailored clone
detection, indicating a recall of the tailored compared to the untailored detection of 94.4%. Conse-
quently, changes in clone (group) count mostly denote changes in precision. More specifically, for
the analyzed system, about every second clone group in the untailored result is considered irrelevant
by developers. For the analyzed system, adoption of clone detection techniques for continuous clone
management failed until tailoring was performed—even though the systems contained substantial
amounts of relevant clones, false positive rates were considered too high for productive use.

8.7.7 Threats to Validity

Internal The choice of the measurement intervals for RQ2 can affect result validity. We chose
measurement intervals covering a year of development history, with different intervals between them
and with different churn to reduce the probability of only selecting unrepresentative intervals.

We assume that all consistent changes are intentional, on the basis that a developer does not in-
advertently invest effort into changing different clones consistently, if only a single clone needs
to be changed. While this simplification can in principle introduce inaccuracy, we expect it to
be negligible—of the 43 consistently modified clone groups manually investigated during the case
study, not a single one was unintentionally modified consistently.

Our approach to measure clone coupling is unable to detect late propagations9, because clones
are tracked between two consecutive system versions only. This does not affect the quality of
our results, however, since manual classification of uncoupled changes by developers recognizes
changes that are part of late propagations as unintentional inconsistencies, and thus as coupled
changes.

9A late propagation is an inconsistent change to cloned code that becomes consistent again at a later point, when a
developer modifies the clones missed in the first modification step accordingly.

164

8.8 Evaluation

Overeager tailoring can filter out clones that are relevant. This also leads to a substantial change in
clone metrics, but is not desirable in practice. However, in the analyzed system, 94.4% (68 out of
72) of the clone groups that evolved in a coupled fashion are still contained in the detection results
after tailoring—indicating high recall of tailored in relation to untailored detection results.

Manual classification of clone groups—as done to answer RQ2—entails the risk of misclassification
due to human errors. We took several measures to reduce this risk: pair-classification was employed
to reduce the probability of individual errors. The participating developer had been working on
the project, without break, for several years, covering all measurement intervals—he was thus well
familiar with the system. Furthermore, uncertain cases were rated as don’t know to avoid guesswork
and were handled conservatively.

In case clone groups from the untailored and the tailored detection results could not be mapped
unambiguously, they were excluded from the study. Since this affected only 5.5% (five out of 91)
of the detected clusters, we expect the potential impact of this simplification to be negligible.

External Each research question has been evaluated on a single system only. The systems have
not been chosen randomly but were selected based on an existing cooperation and the availability
and willingness of developers to contribute. Furthermore, only a single clone detector—and hence
only a single clone detection approach—was employed. Thus, from the study results, we cannot
tell how results are transferable to systems written in different languages, by other developer teams,
or to other clone detectors or detection approaches. Although the results from the studies align
well with experiences we have gathered applying clone detection tailoring in various other contexts,
further studies are required to gain a better understanding of result transferability.

The study only analyzed cloning in source code. While we see no factors that threaten to invalidate
the applicability of the results to cloning in other artifact types, and thus assume that they hold for
them too; future work is required to validate these assumptions for requirements specifications and
models.

8.8 Evaluation

This section presents an evaluation of the method for clone assessment and control. It presents a
case study that employs the proposed method on an industrial software system and analyzes the
resulting changes in the amount and evolution of code cloning. The case study has been performed
in collaboration with Munich Re Group.

Clone Assessment and Control We applied the method for clone assessment and control as
described in this chapter to a software project developed and maintained at Munich Re Group. We
shortly summarize the main steps.

Clone assessment was performed as on the, at that time, current version of the software system.
Several developers took part in clone inspections during clone detection tailoring and determination

165

8 Method for Clone Assessment and Control

of UICR10 and FUICR11. As reported in Chapter 4, multiple faults were found in the inspected
type-3 clones.

The results of clone assessment were presented and discussed in meetings in which the entire main-
tenance team participated. Besides an introduction to cloning in general, both the results of the
clone metrics for the project and the individual discovered faults were discussed. The faults, espe-
cially, helped to establish a sense of urgency among the participants. The developers fixed the faults
and consolidated a number of clones directly after presentation of the results of clone assessment.

Two types of tool support for clone control were employed. A ConQAT-based quality dashboard
was created for the project that was updated on a daily basis. The dashboard contained all clone
visualizations introduced in Chapter 7, including clone lists, treemaps and clone metric trends.
The dashboard results were available to the developers for individual use. In addition, they were
inspected by the team as part of regular project status meetings. Besides the dashboard, developers
had access to the interactive tool support for clone inspection (cf., Chapter 7). This way, individual
clones could be inspected in detail at the code level.

At the beginning of the case study, we tutored the project participants in the interpretation of the
visualizations and metrics in the project dashboard and on the use of the interactive clone inspec-
tion tools. Apart from these tutorials and the presentations of the clone assessment results at the
beginning of the case study, we did not actively participate in clone control. Importantly, we did not
touch a single line of code in the project. Any changes to the code of the project were performed by
the developers themselves.

8.8.1 Research Questions

To evaluate the usefulness of clone assessment and control, we investigate the following two re-
search questions:

RQ 14 Did clone control reduce the amount of cloning?

Clone control requires resources. To justify their expense, clone control needs to take a noticeable
effect. This question investigates whether a noticeable effect can be observed in the amount of
cloning.

RQ 15 Is the improvement likely to be caused by the clone assessment and control measures?

Improvement alone does not justify clone control. It could, in principle, be due to other causes.
This research question analyzes whether the observed reduction in cloning can be attributed to
clone control.

10Unintentionally inconsistent clones ratio cf., Section 8.3.3.
11Faulty unintentionally inconsistent clones ratio cf., Section 8.3.3.

166

8.8 Evaluation

8.8.2 Study Design

RQ 14 We analyze the amount of cloning in the study object in both relative and absolute terms.
The metric clone coverage captures the relative amount of cloning; number of cloned statements

captures its absolute amount.

Both metrics are computed on a daily basis to capture their evolution during the case study.

RQ 15 To investigate whether the reductions in cloning are likely to be caused by the applied
clone control measures, we also compute the clone metrics on the evolution history of the project
before clone control was introduced. We then compare the trends of the metrics with and without
clone control to analyze differences.

8.8.3 Study Objects

We chose an industrial software system at Munich Re Group as a study object. It is a business infor-
mation system written in C# that provides pharmaceutical risk management functionality. During
the year of the case study, the size of the system grew from 450 kLOC to 500 kLOC. It is the same
system as system B in the study objects in Section 4.3.

Software quality characteristics—including cloning—are influenced by many factors. To name just
a few, these include the company, developer expertise, team structures, the maintenance environ-
ment and available tools. To have a conclusive control group to answer research question 15, these
factors need to be controlled.

However, even inside the Munich Re Group, it is difficult to find software systems with the same
characteristics as the study object, as they are developed and maintained by different sub contractors.
They differ, thus, in their processes, team structures and employed tools.

Instead of choosing other projects with different characteristics, whose impact on cloning is hard to
determine, we chose the past evolution of the study object, before clone control was introduced, as
control object. This way, the company, domain, development process, team structure and employed
development tools remain constant for the most part.

8.8.4 Implementation and Execution

RQ 14 The construction of the quality dashboard was integrated into a continuous build process
that was executed every day. All computed clone metrics were written to a database. This way, the
clone metric trends were collected continuously during the period of the case study.

167

8 Method for Clone Assessment and Control

RQ 15 To compute the clone metrics on the past project evolution, we extracted weekly snapshots
from its version control system. Clone detection was then performed on each weekly snapshot, clone
metrics computed and written to a database for later trend analysis.

Samples of the clones of several snapshots of the system were inspected with the developers to make
sure that tailoring was still accurate.

8.8.5 Results

This section presents the results of the case study.

RQ 14 Figure 8.2 depicts the evolution of clone coverage. The upper chart shows that clone
coverage decreased during the case study from 14% in April 2008 to below 10% in May 2009. In
May 2008, there is a short increase in clone coverage. An interview with the developers revealed that
a large clone had been introduced, but was noticed at a team meeting and consolidated subsequently,
resulting in the drop of the clone coverage trend to its previous level. Apart from this period, and a
second small increase in July 2008, the clone coverage trend is steadily decreasing.

The upper chart of Figure 8.3 depicts the number of all statements of the system in blue and the
number of statements that are covered by at least one clone in red. It shows that the number of
cloned statements decreases from 15.000 in April 2008 to 11.000 in May 2009. During the study
period, the size of the system increased from around 105.000 statements to 115.000 statements.
Like the clone coverage trend, the cloned statements trend is steadily decreasing for most of the
case study period.

The decrease in both clone coverage and cloned statements shows that clone control successfully
reduced the amount of existing cloning in the system. We thus answer RQ 14 positively: clone
control did reduce the amount of cloning in the studied system.

RQ 15 This research question investigates whether the clone metrics already exhibited similar
evolution patterns before clone control was introduced.

The lower charts in Figure 8.2 depicts the evolution of clone coverage between September 2004
and January 2007. Increases in clone coverage are always caused by the creation of new clones.
Decreases in clone coverage are either caused by clone removal, or by addition of new code that
contains no (or less) cloning. For most of this period, clone coverage oscillates between 10%
and 20%. The amplitude of the changes flattens as the project advances, since the relative size
of the code changed during an iteration decreases w.r.t. the overall project size, as the overall size
grows larger. For the second part of the chart, the period after January 2006, clone coverage never
decreases beyond 14%.

In contrast, the clone coverage trend during the case study exhibits a substantially different evolu-
tion, since it decreases for the most part.

The lower chart in Figure 8.3 shows the number of all statements in blue and the number of cloned
statements in red in the same period. Increases in cloned statements are always caused by the

168

8.8 Evaluation

Figure 8.2: Clone coverage evolution with (top) and without (bottom) clone control

169

8 Method for Clone Assessment and Control

Figure 8.3: Statements and cloned statements with (top) and without (bottom) clone

control

170

8.8 Evaluation

creation of new clones, decreases by their removal. The waves in the trend indicate that some
cloning gets consolidated shortly after its introduction. However, the amount of cloned statements
after a wave is never below the amount of cloned statements before a wave, indicating that clones
remain in the system, after they have survived for a certain amount of time. If measured only at the
lowest points, the trend is steadily increasing.

In contrast, the cloned statement trend during the case study mostly decreased. It thus exhibits a
substantially different evolution, than before clone control was introduced.

Since both clone coverage and cloned statements evolved substantially different without and with
clone control, although no major changes in other project characteristics were performed at the time,
we answer RQ 15 positively: the decrease in cloning is likely to be caused by clone control.

8.8.6 Discussion

The waves in the trends are, in parts, caused by the iterative development process. The system
size trend in the lower chart in Figure 8.3 reflects the iterative development process and release
cycle of the project. At the start of a new iteration, system size tends to increase rather rapidly,
as implementation of new features results in fast production of new code. Towards the end of an
iteration, size increase slows or stagnates, as more resources are dedicated to testing or fixing of
functionality, than to production of new code. In some cases, clean up during the end of an iteration
even reduces the code size. The cloned statements trend follows this pattern. We could observe
that clones were often introduced at the beginning of an iteration. Sometimes, a part of the clones
was consolidated at a later point of the same iteration, causing a reduction in the number of cloned
statements.

However, while some clones were consolidated during the iteration in which they are created, clones
that survived beyond the end of their birth iteration were unlikely to be removed at a later point,
before clone control was introduced. These observations were confirmed through interviews with
the developers and inspections of the evolution of samples of the clones. As a consequence, the
number of cloned statements at the end of an iteration was never smaller than at its beginning; if
measured at the end of iterations, the absolute amount of cloning thus steadily increased. Only after
clone control was introduced did the cloned statements trend decrease across different iterations.
We think that this reversing of the cloned statements trend is a strong indicator for the impact of
clone control on the amount of cloning in the system.

8.8.7 Threats to Validity

Internal We interpret reductions in cloned statements to be caused by intentional removal of
clones. The number of cloned statements can also decrease on a large scale, however, if clones are
systematically modified to prevent their detection, without removing them. To control this potential
threat, we inspected a sample of the code regions in which clones were no longer detected. They
revealed intentional consolidation. We thus do not expect systematic concealment to cause the
decrease in the clone trends.

171

8 Method for Clone Assessment and Control

For some days in the charts, no data are available. For them, the interpretations are thus inaccurate.
This was caused by problems with the build infrastructure that prevented the dashboard from being
executed for these periods. However, interviews with the developers suggest that no jumps did occur
in them. In addition, the evolution for the times for which data is available is already substantially
different from the historical data. We thus do not consider the missing data points as threats to our
conclusion that clone control managed to reduce cloning.

We did not validate the hypothesis that clone control reduced the amount of cloning statistically.
While we think that a statistical validation would be desirable, we do not believe that a single study
object provides sufficient data for it. The repetition of the study on further projects and the statistical
validation thus remains important future work.

The reduction in cloning could, in principle, be caused merely since developers were made aware
of the fact that clones are harmful, or by making a dashboard with clone metrics available to them.
If so, the steps of the clone control method would not be required. We think that this assumption is
not valid for two reasons: Not only did the rate of new cloning decrease, but cloning was actively
removed from the system. Active removal does not occur subconsciously or accidentally. Second,
The dashboard was also made available to two further projects at MR (projects A and C from the
case study in Chapter 4). However, in these projects, the steps of the clone control method were
not performed: assessment results and discovered faults were not presented and discussed in a
meeting with all stakeholders. No tutorial was performed that instructed the stakeholders in the
use of the quality dashboard and the clone inspection tools. The quality dashboard results were not
integrated into the regular project status meetings. For these projects, no comparable decreases in
clone coverage and cloned statements can be observed, as for the study object. These experiences
thus give further indication, that the changes to the amount of cloning were caused by the performed
clone control measures, and cannot solely be explained by making dashboards available. However,
this case study thus only provides indication of the effectiveness of clone control on a general level.
The merit of the individual steps is not validated empirically. Further empirical validation is required
to better understand the importance of the individual steps, potential for simplicity, omissions or
improvement potential.

External The biggest threat to transferability of the results is that we only performed the case
study on a single study object. The simple reason for this is that the case study required a lot of
effort and time, and that industrial projects willing to participate in such case studies are hard to
find. Future work is required that repeats the case study on further projects to better understand the
generalizability of the results.

8.8.8 Additional Experiences

Apart from the results directly targeting the research questions, we made a number of experiences
regarding clone control. The following paragraphs reflect our experiences both from the above
study and from several further projects in which we introduced clone control, including projects at
Munich Re Group, ABB and Wincor Nixdorf.

172

8.9 Summary

Sense of Urgency We found that the sense of urgency that presentations of cloning and clone
assessment results create, depends strongly on the relation of the developers to the studied code
base. If clones in third-party code are presented, they tend to be regarded as other people’s problems.
Clones in their own code base, while attracting more attention and triggering justification attempts,
did typically not create a sense of urgency, since they often were conceived as future maintenance
problems; in other words, not present maintenance problems. The fact that cloning can already
have caused problems in the past was not apparent. In contrast, presentation of existing clone-
related bugs make apparent that cloning is a present maintenance problem. The resulting sense of
urgency is correspondingly larger.

Reactions to Discovered Clones We also found that discovery of clones in their system
often trigger similar reaction patterns by developers. While agreement that cloning can hinder
maintenance in general is typically easily achieved, the proposition that this holds for specific clones
in their own system as well typically encounters initial resistance. In the numerous discussions we
had, the initial reaction to a presented clone was to test if it could be removed. If not, or if not
easily, developers jumped to the conclusion that the clones are not problematic, since they cannot
be avoided. In such situations, it was important to point out that changes to them still needed to be
carried out to all siblings; and that clone indication tooling can make this easier, since it supports
change propagation. This emphasis on clone control tools as support to evolve existing clones,
according to our experience, helped adoption by developers.

Dashboards as a Means of Communication Dashboards can serve as motivation and as a
means of communication inside and between different groups of stakeholders. We encountered that
clone trends that reflect clone consolidation can have motivating effects on developers, encouraging
them to perform further consolidations. They thus communicate consolidation efforts and effects
inside the developer group. Furthermore, the amount and evolution of cloning is communicated
to other groups of stakeholders, including management. Although this fact can create initial reluc-
tance among developers, we frequently encountered positive reactions, once developers were more
familiar with it. Some groups employed it specifically to communicate that they require resources
to consolidate several areas of unmaintainable code, turning clone measurements into an argument
for their cause.

8.9 Summary

This chapter presented a method for clone assessment and control that comprises five steps. Its first
step, clone detection tailoring, employs developer assessments of clone coupling to achieve accurate
clone detection results. Its second step, assessment of impact, determines metrics on the detected
clones. These metrics quantify the impact of cloning on maintenance efforts and correctness. Its
third step, root cause analysis, determines the forces driving the creation of cloning, thus uncovering
potential problems in the maintenance environment. Its fourth step, introduction of clone control,
employs strategies from organizational change management to successfully introduce continuous
clone management into established maintenance processes. Its fifth step, continuous clone control,

173

8 Method for Clone Assessment and Control

performs clone control measures on a regular basis to permanently reduce the negative effects of
cloning.

The second part of the chapter presented two industrial case studies. The first study validates as-
sumptions underlying the method and demonstrates its feasibility and, through the magnitude of the
impact tailoring had on the results, its importance for clone assessment. The second study evaluates
the proposed method on an industrial software system at Munich Re. For the studied system, the
evaluation shows that the proposed method succeeded to reduce cloning and gives indication that
the reduction was in fact caused by the application of the clone assessment and control method. It
thus demonstrates the feasibility and effectiveness of the proposed method in industrial software
engineering practice.

174

9 Limitations of Clone Detection

Software contains further redundancies than those created by copy & paste. For example, as found
in Chapter 5, redundancy in requirements can lead to re-implementation of functionality. Inde-
pendently developed code of similar behavior has a comparable negative impact on maintenance
activities, as cloned code. Maintenance thus needs to be aware of it. It is unclear, however, whether
existing clone detection approaches can detect, or can be made to detect, such redundancies. Con-
sequently, we do not know whether clone management approaches can be used to control such
redundancy once it has been introduced into a system.

This chapter argues that behaviorally similar code of independent origin is unlikely to be syntacti-
cally similar. It reports on a controlled experiment that justifies this claim. Existing clone detection
approaches are thus ill-suited to detect such redundancy—it is hence beyond the scope of clone
management tools. Parts of the content of this chapter have been published in [112].

9.1 Research Questions

We summarize the study using the goal definition template as proposed in [234]:

Analyze behaviorally similar program fragments

for the purpose of characterization and understanding

with respect to its representational similarity and detectability

from the viewpoint of researcher

in the context of independent implementations of a single specification

In detail, we answer the following 3 research questions.

RQ 16 How successfully can existing clone detection tools detect simions1 that do not result from

copy & paste?

Multiple clone detectors exist that search for similar program representation to detect similar code.
The first question we need to answer is how well these tools are able to detect simions that have not

been created by copy & paste. If existing detectors perform well, no novel detection tools need to
be developed.

RQ 17 Is program-representation-similarity-based clone detection in principle suited to detect

simions that do not result from copy & paste?

1Behaviorally similar code fragments, cf., 2.3.2

175

9 Limitations of Clone Detection

Having established that simions are often too syntactically different to be detected by existing clone
detectors, we need to understand whether the limitations reside in the tools or in the principles. If
the problems reside in the tools but the approaches themselves are suitable, no fundamentally new
approaches need to be developed.

RQ 18 Do simions that do not result from copy & paste occur in practice?

The third question we address is whether simions occur in real world systems. From a software
engineering perspective, the answer to this question strongly influences the relevance of suitable
detection approaches.

9.2 Study Objects

RQs 16 and 17 We created a specification for a simple email address validator function that was
implemented by computer science students. The function takes a string containing concatenated
email addresses as input. It extracts individual addresses, validates them and returns collections
of valid and invalid email addresses. About 400 undergraduate computer science students were
asked to implement the specification in Java. They were allowed to work in teams of two or three.
Each team only handed in a single solution. Implementation was done under supervision by tutors
to avoid copy & paste between different teams. Participation was voluntary and anonymous to
reduce pressure to copy for participants that did not succeed on their own. Behavioral similarity was
controlled by a test suite. Students had access to this test suite while implementing the specification.
To simplify evaluation, students had to enter the implementation into a single file.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f

o
b
je

c
ts

Number of statements

Figure 9.1: Size distribution of the study objects

We received 156 implementations of the specification. Of those, 109 compiled and passed our test
suite. They were taken as study objects. Since all objects pass our test suite, they are known to
exhibit equal output behavior for the test inputs. Output behavior for inputs not included in the test
suite can vary. Figure 9.1 displays the size distribution of the study objects (import statements are
not counted). The shortest implementation comprises 8, the longest 55 statements. In Figure 9.2 the
study objects are also categorized by nesting depth, i. e., the maximal depth of curly braces in the
Java code, and McCabe’s cyclomatic complexity [171]. The area of each bubble is proportional to

176

9.3 Study Design

1

2

3

4

5

6

7

0 10 20 30 40

Cyclomatic Complexity

N
e
s
ti
n

g
 D

e
p

th

Figure 9.2: Study objects plotted by nesting depth and cyclomatic complexity

the number of study objects. These metrics, which both measure certain aspects of the control flow
of a program, already separate the study objects strongly, with the two largest clusters having size
19 and 12. When looking for implementations which are structurally the same, it can be expected
that these give similar values for both metrics and thus the search could be limited to neighboring
clusters (denoted by the bubbles in the diagram).

RQ 18 To better understand the existence of simions in real-world software, we analyzed the
source code of the well-known reference manager JabRef2. We did not only search for simions
inside JabRef, but also between JabRef and the code of the open source Apache Commons Library3.
Both software is written in Java.

9.3 Study Design

RQ 16 To answer RQ 16, we need to determine the recall of existing clone detectors when applied
to the study objects. We denote two objects that share a clone relationship as a clone pair. Since we
know all study objects to be behaviorally similar, we expect an ideal detector to identify each pair
of study objects as clones. For our study, the recall is thus the ratio of detected clone pairs w.r.t. the
number of all pairs. We compute the full clone recall and the partial clone recall. For the full clone
recall, two objects must be complete clones of each other to form a clone pair. For the partial clone
recall, it is sufficient if two objects share any clone (that does not need to cover them entirely) to
form a clone pair. We included the partial clone recall, since even partial matches of simions could
be useful in practice.

We chose ConQAT (cf., Chapter 7) and Deckard [106] as state-of-the-art token-based and AST-
based clone detectors. To separate clones between study objects from clones inside study objects,
all clone groups that did not cover at least two different study objects were filtered from the results.
The parameters used when running the detectors influence the detection results. Especially the
minimal length parameter strongly impacts precision and recall. To ensure that we do not hereby
miss relevant clones, we chose a very small minimal length threshold of 5 statements for ConQAT.
To put this into perspective: when using ConQAT in practice [55, 115], we use thresholds between

2http://jabref.sourceforge.net/
3http://commons.apache.org/

177

9 Limitations of Clone Detection

10 and 15 statements for minimal clone length. Obviously such a small threshold can result in high
false positive rates and thus low precision of the results. However, this only affects the interpretation
of the results w.r.t. the research question in a single direction. If we fail to detect a significant
number of clones even in presence of false positives, we cannot expect to detect more clones with
more conservative parameter settings.

RQ 17 The study for RQ 17 comprises two parts. First, we collect differences between study
objects. We categorize them based on their compensability. To the best of our knowledge, there is no
established formal boundary on the capabilities of program-representation-similarity-based (PRSB)
detection approaches (cf., Section 2.3.1). Consequently, instead of using a formal boundary, we
base the categorization on the capabilities of existing approaches. For that, we consider approaches
not only from clone detection, but also from the related research area of algorithm recognition.

Second, having established and categorized these factors, we can look beyond the limitations of
existing tools and can determine how well an ideal PRSB clone detection tool can detect simions.
To that end, the differences between pairs of study objects are rated based on their category. This
is performed by manual inspection. The ratio of pairs that only contain differences that can be
compensated w.r.t. all pairs is computed. It is an upper bound for the recall PRSB approaches can
in principle achieve on the study objects.

To keep inspection effort manageable, manual inspection was carried out on a random sample of
study objects. The sample was generated in such a way, that each study object occurred at least once
and contained 55 pairs. The study objects of each pair were compared manually and the differences
between them recorded. As a starting point for the difference categorization, we used the categories
of program variation proposed by Metzger and Wen [176] and Wills [232]. If the differences in a
category can be compensated by any existing clone detection approach or by existing work from
algorithm recognition, we classified it as within reach of PRSB approaches. Else, we classified the
category as out of reach of PRSB approaches.

RQ 18 To identify simions in a real-world system, we performed pair-reviews of source code of
JabRef. We did not only analyze if reviewed parts themselves contain simions but also took into
account code that is behavioral similar to third party open source library code, namely the Apache
Commons Library. Such findings identify missed reuse opportunities.

9.4 Implementation and Execution

9.4.1 RQ 16: Searching Simions with Existing Tools

We executed ConQAT in three different configurations to detect clones of type 1, types 1&2 and
types 1-3 (cf., Section 2.2.3). For type-3 clone detection, an edit distance of 33% of the length of
the clone was accepted4. Partial clone recall was computed as the ratio of the number of pairs of
study objects that share any clone, w.r.t. the number of all pairs. The full clone recall was computed

4As for minimal clone length, this value is more tolerant than what we typically employ in industrial settings.

178

9.4 Implementation and Execution

as the ratio of the number of pairs of study objects that share clones that cover at least 90% of
their statements w.r.t. to the number of all pairs. The number of all pairs is the number of edges
in the complete undirected graph of size 109, namely 5778. Deckard was executed with minimal
clone length of 23 tokens (corresponding to 5 statements for an average token number of 4.5 per
statement for the study objects), a stride of 0 and a similarity of 1 for detection of type-1 & type-2
clones and 0.95 for detection of type-3 clones. Again, these values are a lot less restrictive than the
values suggested in [159]. Since the version of Deckard used for the study cannot process Java 1.5,
it could not be executed on all 109 study objects. Instead, it was executed on 50 study objects that
could be made Java 1.4 compatible by removal of type parameters5. For the 50 study objects, the
number of all pairs is 1225.

9.4.2 RQ 17: Limits of Representation-based Detection

Categories of Program Variation The following list shows the categorization of differences
encountered during manual inspection of pairs of study objects that were considered principally
within reach of PRSB approaches. Examples with line number references of the form A-xx and
B-yy refer to study objects A and B in Fig. 9.3.

Syntactic variation occurs if different concrete syntax constructs are used to express equivalent
abstract syntax, such as the different statements used to create an empty string array in lines A-4 and
B-4, or different variable names that refer to the same concept, such as valid and validAddresses in
lines A-8 and B-8. In addition, it occurs if the same algorithm is realized in different code fragments
by a different selection of control or binding constructs to achieve the same purpose. Examples are
the implementation of the empty string checks as one (line B-3) or two if statements (lines A-3
and A-5) or the optional else branch in line B-6. Means to compensate syntactic variation include
conversion into intermediate representation and control flow normalization [176].

Organization variation occurs if the same algorithm is realized using different partitionings or
hierarchies of statements or variables that are used in the computation. In line B-14 for example,
a matcher is created and used directly, whereas both the matcher and the match result are stored in
local variables in lines A-17-19. Means to (partial) compensation include variable- or procedure-
inlining and loop- and conditional distribution [176].

Generalization comprises differences in the level of generalization of source code. The types
List<String> in line A-8 and ArrayList<String> in line B-8 are examples of this category. Means
of compensation include replacements of declarations with the most abstract types, or, in a less
accurate fashion, normalization of identifiers.

Delocalization occurs since the order of statements that are independent of each other can vary
arbitrarily between code fragments. In a clone of study object A for example, the list initialization
in line A-8 could be moved behind line A-14 without changing the behavior. Delocalization can,
i. e., be compensated by search for subgraph isomorphism as done by PDG-based approaches [140,
201].

Unnecessary code comprises statements that do not affect the (relevant) IO-behavior of a code
fragment. The debug statement in line A-14 for example can be removed without changing the

5The remaining 59 study objects used additional post Java 1.4 features and were excluded from the study.

179

9 Limitations of Clone Detection

1 p u b l i c S t r i n g [] v a l i d a t e E m a i l A d d r e s s e s (
S t r i n g a d d r e s s e s , char s e p a r a t o r ,
Set < S t r i n g > i n v a l i d A d d r e s s e s) {

3 i f (a d d r e s s e s == n u l l)
4 re turn new S t r i n g [0] ;
5 i f (a d d r e s s e s . e q u a l s (" "))
6 re turn new S t r i n g [0] ;

8 L i s t < S t r i n g > v a l i d = new A r r a y L i s t <
S t r i n g > () ;

10 S t r i n g sep = S t r i n g . va lueOf (s e p a r a t o r
) ;

11 i f (s e p a r a t o r == ’ \ \ ’)
12 sep = " \ \ \ \ " ;
13 S t r i n g [] r e s u l t 1 = a d d r e s s e s . s p l i t (

sep) ;
14 System . o u t . p r i n t l n (A r r ay s . t o S t r i n g (

r e s u l t 1)) ;

16 f o r (S t r i n g a d r : r e s u l t 1) {
17 Matcher m = e m a i l P a t t e r n . ma tche r (

a d r) ;
18 boolean e r g e b n i s = m. matches () ;
19 i f (e r g e b n i s)
20 v a l i d . add (a d r) ;
21 e l s e

22 i n v a l i d A d d r e s s e s . add (a d r) ;
23 }

25 re turn v a l i d . t o A r r a y (new S t r i n g [0]) ;
26 }

1p u b l i c S t r i n g [] v a l i d a t e E m a i l A d d r e s s e s (
S t r i n g a d d r e s s e s , char s e p a r a t o r ,
Set < S t r i n g > i n v a l i d A d d r e s s e s) {

3i f (a d d r e s s e s == n u l l | | a d d r e s s e s .
e q u a l s (" ")) {

4re turn new S t r i n g [] { } ; }

6e l s e {
7a d d r e s s e s . r e p l a c e (" " , " ") ;
8A r r a y L i s t < S t r i n g > v a l i d A d d r e s s e s =

new A r r a y L i s t < S t r i n g > () ;

10S t r i n g T o k e n i z e r t o k e n i z e r = new

S t r i n g T o k e n i z e r (a d d r e s s e s ,
S t r i n g . va lueOf (s e p a r a t o r)) ;

12whi le (t o k e n i z e r . hasMoreTokens ()) {
13S t r i n g i = t o k e n i z e r . nex tToken () ;
14i f (t h i s . e m a i l P a t t e r n . ma tche r (i) .

ma tches ()) {
15v a l i d A d d r e s s e s . add (i) ;
16} e l s e {
17i n v a l i d A d d r e s s e s . add (i) ;
18}
19}

21re turn v a l i d A d d r e s s e s . t o A r r a y (new

S t r i n g [] { }) ;
22}
23}

Figure 9.3: Study objects A and B

output behavior tested for by the test cases6. Means of compensation include backward slicing from
output variables to identify unnecessary statements.

The following category contains types of program variation in the study objects that cannot be
compensated by existing clone detection or algorithm recognition approaches.

Different data structure or algorithm: Code fragments use different data structures or algorithms
to solve the same problem. One example for the use of different data structures encountered in the
study objects is the concatenation of valid email addresses into a string that is subsequently split,
instead of the use of a list. The use of different algorithms is illustrated by the various techniques
we found to split the input string into individual addresses: in line A-13, a library method on the
Java class String is called that uses regular expressions to split a string into parts. In line B-10, a
StringTokenizer is used for splitting that does not use regular expressions.

6Depending on the use case, debug messages can or cannot be considered as part of the output of a function.

180

9.5 Results

To illustrate the amount of variation that can be found even in a small program, Figures 9.4,9.5,9.6,
9.7 and 9.8 depict different ways to implement the splitting. All examples were found in the study
objects. Figures 9.4 and 9.5 contain code that makes use of library functionality to split the string.
The remaining figures depict custom, yet substantially different splitting algorithms.

9.4.3 RQ 18: Simions in Real World Software

The identification of simions is a hard problem as it requires full comprehension of the source code.
As we did not know the source code of JabRef before, we limited our review to about 6,000 LOC that
contain utility functions that are mainly independent of JabRef’s domain. Examples are functions
that deal with string tokenization or with file system access. In contrast to the JabRef code, we were
familiar with the Apache Commons Library. Nevertheless, to identify simions between JabRef and
the Apache Commons, we specifically searched the Apache Commons for functionality encountered
during inspection of the JabRef code.

9.5 Results

RQ 16 RQ 16 analyzes the capability of ConQAT and Deckard to detect clones in the 109 inde-
pendent implementations of the same functionality. The results are depicted in table 9.1.

Table 9.1: Results from clone detection

Detector Detected Partial Full

Clone Types Clone Recall Clone Recall

ConQAT 1 0.4% 0.0%
ConQAT 1&2 2.3% 0.0%
ConQAT 1-3 3.2% 0.1%
Deckard 1&2 5.1% 0.1%
Deckard 1-3 9.7% 0.8%

As can be expected, the recall values for clones of type 1-3 are higher than for type-1 or type-1&2
clones. Furthermore, the AST-based approach yields slightly higher values. This is not surprising
since it performs additional normalization. However, even though we used very tolerant parameter
values for clone detection, which probably result in a false positive rate that is too high for applica-
tion in practice, both partial and full clone recall values are very low. The best value for full clone
recall is below 1%, the best value for partial clone recall below 10%.

In other words: for two arbitrary study objects, the probability that any clones are detected between
them is below 10%. The probability that they are detected to be full clones of each other is even
below 1%. Given the very tolerant parameter values used for detection, we cannot expect these tools
to be well suited for the detection of simions (not created by copy & paste) in real world software.

181

9 Limitations of Clone Detection

S t r i n g [] a d r e s s e s 2 = a d d r e s s e s . s p l i t (P a t t e r n . q u o t e (S t r i n g . va lueOf (s e p a r a t o r))) ;

Figure 9.4: Splitting with java.lang.String.split()

A r r a y L i s t < S t r i n g > v a l i d E m a i l s = new A r r a y L i s t < S t r i n g > () ;
S t r i n g T o k e n i z e r s t = new S t r i n g T o k e n i z e r (a d d r e s s e s , C h a r a c t e r . t o S t r i n g (s e p a r a t o r

)) ;
whi le (s t . hasMoreTokens ()) {

S t r i n g tmp = s t . nex tToken () ;
v a l i d E m a i l s . add (tmp) ;

}

Figure 9.5: Splitting with java.util.StringTokenizer

L i s t < S t r i n g > r e s u l t = new A r r a y L i s t < S t r i n g > () ;
i n t z = 0 ;
f o r (i n t i =0 ; i < a d d r e s s e s . l e n g t h () ; i ++) {

i f (i == a d d r e s s e s . l e n g t h () −1) {
r e s u l t . add (a d d r e s s e s . s u b s t r i n g (z , i +1)) ;

}
i f (a d d r e s s e s . c ha rA t (i) == s e p a r a t o r) {

r e s u l t . add (a d d r e s s e s . s u b s t r i n g (z , i)) ;
z= i +1;

}
}

Figure 9.6: Splitting with custom algorithm 1

L i s t < S t r i n g > curAddrs = new A r r a y L i s t < S t r i n g > () ;
S t r i n g b u f f e r = " " ;
f o r (i n t i =0 ; i < a d d r e s s e s . l e n g t h () ; i ++) {

i f (a d d r e s s e s . c h a rA t (i) != s e p a r a t o r) {
b u f f e r += a d d r e s s e s . c h a r A t (i) ;

} e l s e {
curAddrs . add (b u f f e r) ;
b u f f e r = " " ;

}
}
curAddrs . add (b u f f e r) ;

Figure 9.7: Splitting with custom algorithm 2

L i s t < S t r i n g > e m a i l L i s t e = new A r r a y L i s t < S t r i n g > () ;
i n t t r e n n e r a l t = 0 ;
whi le (a d d r e s s e s . indexOf (s e p a r a t o r , t r e n n e r a l t) != −1) {

i n t t r e n n e r n e u = a d d r e s s e s . indexOf (s e p a r a t o r , t r e n n e r a l t) ;
e m a i l L i s t e . add (a d d r e s s e s . s u b s t r i n g (t r e n n e r a l t , t r e n n e r n e u)) ;
t r e n n e r a l t = t r e n n e r n e u + 1 ;

}

Figure 9.8: Splitting with custom algorithm 3

182

9.5 Results

RQ 17 Of the 55 pairs of study objects inspected manually, only 4 did not contain program
variation of category different algorithm or data structure. In other words, only about 7% of the
manually inspected pairs contain only program variation that can (in principle) be compensated.
Since this ratio is an upper bound on the recall PRSB approaches can in principle achieve, we
consider PRSB approaches poorly suited for detection of simions that do not result from copy &
paste.

RQ 18 The manual reviews uncovered multiple simions within JabRef’s utility functions. An
example is the function nCase() in the Util class that converts the first character of a string to upper
case. The same functionality is also provided by class CaseChanger that allows to apply different
strategies for changing the case of letters to strings.

Even more interesting, we found many utility functions that are already provided by well-known
libraries like the Apache Commons. For example, the above method is also provided by method
capitalize() in the Apache Commons class StringUtils. Especially the class Util exhibits a high
number of simions. It has 2,700 LOC and 86 utility methods of which 52 are not related to JabRef’s
domain but deal with strings, files or other data structures that are common in most programs. Of
these 52 methods 32 exhibit, at least partly, a behavioral similarity to other methods within JabRef or
to functionality provided by the Apache Commons library. Eleven methods are, in fact, behaviorally
equivalent to code provided by Apache. Examples are methods that wrap strings at line boundaries
or a method to obtain the extension of a filename.

Many of these methods in JabRef exhibit suboptimal implementations or even defects. For example,
some of the string-related functions use a platform-specific line separator instead of the platform-
independent one provided by Java. In another case, the escaping of a string to be used safely
within HTML is done by escaping each character instead of using the more elegant functionality
provided by Apache’s StringEscapeUtils class. A drastic example is the JabRef class ErrorCon-

sole.TeeStream that provides multiplexing functionality for streams and could be mostly replaced
by Apache’s class TeeOutputStream. The implementation provided by JabRef has a defect as it fails
to close one of the multiplexed streams. Another example is class BrowserLauncher that executes
a file system process without making sure that the standard-out and standard-error streams of the
process are drained. In practice, this leads to a deadlock if the amount of characters written to these
streams exceeds the capacity of the operating system buffers. Again, the problem could have been
avoided by using Apache’s class DefaultExecutor.

While the manual review of JabRef is not representative, it indicates that real-world programs,
indeed, exhibit simions—both among its own code and if compared to general purpose libraries.
While some of the simions are also representationally similar, the majority could not be identified
with clone detection tools. This applies in particular for the simions that JabRef shares with the
Apache Commons, probably because the code has been developed by different organizations. A
central insight of our manual inspection was, that simions often represent missed reuse opportunities
that do not only increase development efforts but also introduce defects.

183

9 Limitations of Clone Detection

9.6 Discussion

In the previous sections we explored the limits of current clone detection tools and also of their un-
derlying approaches. In our experiment clone detection tools achieve a recall of less than 1% when
analyzing behaviorally similar but independently developed code (RQ 16). While it could have
been expected that existing clone detection approaches have rather limited capabilities for finding
simions, the dramatically low recall is nevertheless surprising. Moreover, the result of RQ 17 show
that only a certain class of simions, those that are representationally similar modulo normalization,
can be found with current clone detection approaches. Hence, we are inclined to disagree with [201]
that states that “[. . .] attempts can be made to detect semantic clones [simions] by applying exten-
sive and intelligent normalizations to the code.”.

Furthermore, RQ 16 demonstrated that independent programmers do not tend to create represen-
tationally similar code when facing the same implementation problem. Thus, we would expect to
find simions “in the wild”—both inside existing systems and between systems and libraries—which
are not representationally similar and thus not detectable by current tools. RQ 18 provides first
indications for this fact. These results are also backed up by the study in [107], which mined a
huge number of simions from the Linux kernel sources from which at least half of them where not
representationally similar. Results that point in the same direction are also presented by Kawrykow
and Robillard that report on significant amounts of reimplemented API methods they found in Java
systems [127]. Finally, further support is given by our observations that redundancy in require-
ments can lead to independent implementations of semantically, yet not syntactically, similar code
(cf., Chapter 5).

The simions inspected for RQ 18 also confirmed our expectations that reuse of existing (library)
functions often not only reduces implementation efforts but also the number of bugs. To provide
some further indication, we used Google Code Search7 to identify other Java programs that do
not reuse Apache’s DefaultExecutor and exhibit the same deadlock problem as JabRef that we
discovered in RQ 18. Strikingly, of the first 10 hits for the search lang:java process.waitfor, 6
implementations contain the same problem as JabRef although only 2 of them appear to be the
result of copy & paste.

The lack of reliable simion detectors makes automated simion management unfeasible. Since detec-
tion through manual inspections is very costly, inspections are not feasible for large scale, continu-
ous simions detection. Clone management approaches (cf., Section 3.4.2) that promise to alleviate
the negative impact of cloning during maintenance, however, require data describing similar pro-
gram fragments. They are hence not applicable to simion management: they simply have no data to
operate on.

Since the automated management of existing simions during maintenance is hence unfeasible, de-
velopment must instead focus on their avoidance. First, this implies that developers must be made
and kept aware of available libraries to avoid re-implementation of functionality already available in
the field. Second, redundancy in requirements and models must be detected and consolidated before
they are implemented, to avoid re-implementation of functionality that is already available.

7http://www.google.com/codesearch

184

9.7 Threats to Validity

Since avoidance does not help with simions that already exist in software, the detection of simions
is a relevant problem which is not yet solved by existing tools. A working simion detector could
not only help in reducing code size by eliminating redundant code, but also find bugs by including
libraries of working code or bug patterns in the detection. We thus consider the construction of
algorithms and tools for simion detection a worthwhile and still open problem.

9.7 Threats to Validity

This section discusses how we mitigated threats to internal and external validity.

Internal Validity For RQ 16, we did not measure the impact of the parameters used for detection
on precision. This has two reasons. (1) precision measured on the study objects, which are known
to be behaviorally similar, is unlikely to be transferable to real world software, where we cannot
expected the same degree of similarity. Precision measures would thus have to be repeated on fur-
ther systems, still with questionable transferability beyond the systems under study. (2) Measuring
precision through manual assessments is already difficult in general [229]. During the course of the
study, we found it to be infeasible for very small clones (e. g., of size below 4 statements) due to low
inter-rater reliability. Instead, we chose very tolerant parameter values that, while likely to result in
low precision, are unlikely to reduce recall. However, this strategy has a single sided effect on the
results of the study in that it merely increases the probability to detect clones. It thus does not affect
the validity of the results that existing tools are poorly suited to detect simions.

For RQ 17, we classified categories of program variation according to whether they are in principle
within reach of PRSB approaches. Misclassification can impact the results. We handled this threat
by choosing a conservative classification strategy. Categories that can only partly be handled (e. g.,
due to the use of heuristics that cannot guarantee completeness or high computation complexity
that could be prohibitively expensive in practice) were rated as within reach of PRSB approaches.
In addition, differences between the study objects that stemmed from differences in their behavior
that were not detected by our test suite were ignored. This conservative strategy thus increases
the probability to consider PRSB approaches as suited for the simion detection problem. It does,
however, not impact the validity of the result that PRSB approaches are poorly suited for the simion
detection problem.

Several factors can lead to less program variation among the study objects than could typically
be encountered in real world software: (1) all students had access to the same test suite, (2) the
signature of the validator function, including its types, was specified, (3) teams could ask tutors
for help. However, all these factors only increase our chances of finding clones and thus do not
invalidate the results.

External Validity We chose two state-of-the-art clone detectors for the study. Some detector we
did not try might perform better. However, given the diversity and amount of program variation
we discovered among the study objects, we do not expect any existing clone detector to perform
substantially better, as would be required to invalidate our conclusions. The results for RQ 17

185

9 Limitations of Clone Detection

illustrate that this is also valid for PDG-based detectors8. We do not claim transferability of the
actual numbers (e. g., for recall) we measured on the study objects beyond the study. However,
since the study objects were relatively simple compared to real world software, we do not expect
real-world software to exhibit less program variation. On the contrary, we would expect program
variation to be even larger for real world software, due to differences in conventions and practices
between different teams and domains. Regarding the existence of simions in real- world programs
that are not the result of copy & paste (RQ 18), our approach can only provide an indication. It is,
thus, too early to reason about the defect proneness of the missed reuse opportunities represented
by simions.

9.8 Summary

This chapter analyzed program variation in behaviorally similar code of independent origin. With
a controlled experiment we underpin the common intuition of the existence of behaviorally similar
code that can not be found automatically by existing clone detection approaches. Clone detection
tools are hence not well suited to detect behaviorally similar code of independent origin.

The case study in Chapter 5 indicated that redundancy in requirements specifications can cause
re-implementation of similar functionality. The results of manual inspections of open source code
furthermore indicate that simions do exist in practice. However, the experiment in this chapter
reveals that clone detection is unlikely to discover such similarities on the code level. This lack of
detectors makes existing clone management approaches unapplicable to simions. Their detection
remains an important topic for future work.

8Also, we are not aware of an available PDG-based detector for Java.

186

10 Conclusion

This chapter summarizes the contributions of this work. Its structure reflects the thesis statement
from Section 1.1: the first section summarizes our results on the significance of cloning, the second
section our contributions for clone assessment and control.

10.1 Significance of Cloning

While the negative impact of cloning on program correctness has been stated qualitatively many
times, its quantitative impact—and thus its significance—in practice remained unclear. Further-
more, while cloning in source code had been studied intensely, little was known about its extent and
consequences in other software artifacts.

The following sections summarize our empirical results on the impact of cloning on program cor-
rectness and the extent of cloning in requirements specifications and Matlab/Simulink models.
Then, we summarize the cost model that quantifies impact of cloning on maintenance efforts.

10.1.1 Impact on Program Correctness

We investigated four research questions to quantify the impact of code cloning on program correct-
ness:

RQ 1: Are clones changed independently?

Yes. About half the clone groups in the analyzed systems were type-3 clone groups and thus had
differences beyond variable names and literal values. Changes to cloned code that are not performed
equally to all clones hence frequently occur in practice.

RQ 2: Are type-3 clones created unintentionally?

Yes. A substantial part of the differences between the analyzed clones was unintentional. Many of
the developers were thus not aware of all the existing clones when modifying code. However, the
ratio of intentional w.r.t. unintentional differences varied strongly between the analyzed systems,
indicating differences in the amount of cloning awareness.

RQ 3: Can type-3 clones be indicators for faults?

Yes. Analysis of type-3 clones uncovered 107 faults in productive software. The ratio of type-3
clones that indicated faults, however, varied between the analyzed systems. Software with more
unintentionally inconsistent changes also contained more type-3 clones that indicated faults.

RQ 4: Do unintentional differences between type-3 clones indicate faults?

187

10 Conclusion

Yes. About every second unintentional difference between type-3 clones indicated a fault. Lack of
awareness of cloning during maintenance thus significantly impacts program correctness.

Summary The study results show that a lack of awareness of cloning is a threat to program
correctness. While the analyzed systems varied in their share of unintentional differences—and thus
the amount of cloning awareness among their developers—the negative impact of unintentionally
inconsistent changes was uniform: about every second unintentionally inconsistent change had a
direct impact on program correctness. These results thus give strong indication that awareness of
cloning is crucial during software maintenance.

In addition, the study showed that awareness of cloning varies between projects—it thus cannot
be taken for granted in industrial software engineering. Clone control is required to achieve and
maintain awareness of cloning to alleviate the negative impact of existing clones.

10.1.2 Extent of Cloning

Besides source code, further software artifacts are created and maintained during the lifecycle of
a software system: requirements specifications play a pivotal role in communication between cus-
tomers, requirement engineers, developers and testers; Matlab/Simulink models are replacing code
as primary implementation artifact in embedded software systems. However, cloning has not pre-
viously been studied in these artifacts. We investigated five research questions to shed light on the
extent and impact of cloning in requirements specifications and Matlab/Simulink models.

RQ 5: How accurately can clone detection discover cloning in requirements specifications?

Our clone detector ConQAT achieved high precision values for the 28 analyzed industrial require-
ments specifications: 85% in the worst case, 99% on average. Tailoring is, however, required to
achieve such high precision. These results show that clone detection is suitable to detect cloning in
requirements specifications.

RQ 6: How much cloning do real-world requirements specifications contain?

The amount of cloning varied substantially across the analyzed specifications. While some con-
tained no cloning at all, others exhibited a size increase over 100% due to cloning. The highest
clone coverage values ranged at 51.1% and 71.6%.

RQ 7: What kind of information is cloned in requirements specifications?

We discovered a broad range of different information categories present in cloned specification
fragments—cloning is not limited to a specific kind of information. Consequently, clone control
cannot be limited to specific categories of requirement information.

RQ 8: Which impact does cloning in requirements specifications have?

Inspections are an important quality assurance technique for requirements specifications. The
cloning induced size blow-up increases effort required for inspections—in the worst case by an
estimated 13 person days for one of the analyzed specifications. Cloning thus increases quality
assurance effort for requirements specifications.

188

10.1 Significance of Cloning

In addition, we saw evidence that requirement cloning can result in redundancy in the implemen-
tation. Besides corresponding source code clones, we found cases in which cloned specification
fragments had been implemented independent of each other. Besides increased implementation
effort, this causes behaviorally similar code that is not the result of source code copy & paste.

RQ 9: How much cloning do real-world Matlab/Simulink Models contain?

The analyzed industrial Matlab/Simulink models contained a substantial amount of cloning. While
the detection approach produced false positives, the developers agreed that awareness of many of
the detected clones is relevant for software maintenance. Cloning thus occurs in Matlab/Simulink
models and needs to be controlled during maintenance, as well.

Summary Cloning is not limited to source code, and neither is its negative impact. Cloning
abounds in requirements specifications and Matlab/Simulink models—it hence needs to be con-
trolled in them, too, to reduce the negative impact of cloning on engineering efforts.

Clone control measures are likely to differ for requirements specifications and Matlab/Simulink
models, however. Limitations of the existing abstraction mechanisms are a root cause for cloning
in Matlab/Simulink models. Since corresponding clones cannot easily be removed without changes
to the Matlab/Simulink environment, clone control needs to focus on their consistent evolution.
In contrast, for requirements specifications, no abstraction mechanism limitations hinder the clone
consolidation: many of the analyzed specifications did not contain any cloning at all. Consequently,
clone control for them can put more emphasis on the avoidance and removal of cloning.

10.1.3 Clone Cost Model

Besides the empirical studies, we have presented an analytical cost model that quantifies the eco-
nomic effect of cloning on maintenance efforts and field faults. It can be used as a basis for as-
sessment and trade-off decisions. The model produces a result relative to a system without cloning
and thus requires substantially less parameters—and instantiation effort—than general purpose cost
models that produce absolute results.

Instantiation of the cost model on 11 industrial systems indicates that cloning induced impact varies
significantly between systems and is substantial for some. Based on the results, some projects can
achieve considerable savings by performing active clone control.

Summary The cost model complements the empirical studies in two ways. First, it completes
our understanding of the impact of cloning: instead of focusing on isolated aspects or activities, it
quantifies its impact on all maintenance activities and thus on maintenance efforts and faults as a
whole. Second, it makes our observations, speculation and assumptions explicit. This explicitness
offers an objective basis for scientific discourse about the consequences of cloning.

189

10 Conclusion

10.2 Clone Control

Our empirical results have shown that cloning negatively affects maintenance efforts, and that un-
awareness of cloning impacts program correctness. Clone control is required to avoid creation of
new, and to reduce the negative impact of existing clones. We have presented tool support and a
method for clone control that are summarized in the following sections. Finally, the last section
summarizes our investigation of the limitations of clone detection and control.

10.2.1 Algorithms and Tool Support

The proposed clone detection workbench ConQAT provides support and flexibility for all phases
of clone detection: from preprocessing, detection and post processing, to result presentation and
interactive inspection in state of the art IDEs. ConQAT implements several novel detection algo-
rithms: the first algorithm to detect clones in dataflow models; an index-based approach for type-2
clone detection that is both incremental and scalable; and a novel detection algorithm for type-3
clones in source code. It supports 12 programming and 15 natural languages. This comprehensive
functionality—reflected in its size of about 67 kLOC—was required to perform the case studies and
to support the method for clone assessment and control.

The diversity of the tasks for which clone detection is employed in both research and practice, and
the necessity to tailor clone detection to its context to achieve accurate results, require variation and
adaptation. ConQAT’s product line architecture caters for flexible configuration, while at the same
time achieving a high level of reuse between individual detectors across the clone detector family.

Summary The tool support proposed by this thesis has matured beyond the state of a research
prototype. Several companies have included ConQAT for clone detection or management into their
development or quality assessment processes, including ABB, BMW, Capgemini sd&m, itestra
GmbH, Kabel Deutschland, Munich Re and Wincor Nixdorf. Furthermore, ConQAT’s open archi-
tecture and its availability as open source have facilitated research by others [24,96,104,180,186].

10.2.2 Method for Clone Assessment and Control

To ease adoption of clone detection and management techniques in practice, this thesis has presented
a method for clone assessment and control. Its goals are to assess the extent and impact of cloning
in software artifacts and to reduce the negative impact of existing clones.

We introduced clone coupling as an explicit relevance criterion. Developer assessments of clone
coupling are employed for clone detection tailoring to achieve accurate cloning information for a
software system. The application of developer assessments to determine clone coupling is based on
assumptions that have been validated through four research questions:

RQ 10: Do developers estimate clone coupling consistently?

Yes, coupling between the analyzed clones was rated very consistently among three different devel-
opers. It is thus realistic to assume a common understanding of clone coupling among developers.

190

10.2 Clone Control

RQ 11: Do developers estimate clone coupling correctly?

Yes. Analysis of the system evolution showed a significantly stronger coupling between clones
that were assessed as coupled, than among those that were assessed as independent. Developer
estimations of coupling thus coincide with actual system evolution.

RQ 12: Can coupling be generalized from a sample?

Yes. Although tailoring was based on a sample of the detected clones, all accepted clones exhibited
a significantly larger coupling during system evolution than the rejected clone candidates. Coupling
can thus be generalized.

RQ 13: How large is the impact of tailoring on clone detection results?

The impact must be expected to vary between systems, since, e. g., the application of code genera-
tors, which contribute to substantial amounts of false positives, varies. However, for the analyzed
system, the impact was large: more than two thirds of the clone candidates detected by untailored de-
tection were considered irrelevant for maintenance by the developers. Still, over 1000 clone groups
remained in the tailored detection results. Although the system contained a lot of relevant clones,
untailored detection results were unsuited for continuous clone control. These results emphasize the
importance of clone detection tailoring and cast doubt on the validity of some results of empirical
analysis of properties of clones that did not employ any form of tailoring (cf., Chapter 3).

Evaluation The method has been applied to a business information system developed and main-
tained at the Munich Re Group. Clone assessment and control was performed over a period of one
year. The successful application of the method validates its applicability in real-world contexts. To
evaluate its impact, we investigated two research questions:

RQ 14: Did clone control reduce the amount of cloning?

Yes: both clone coverage and the number of cloned statements decreased during the study period:
coverage decreased from 14% to below 10%, the number of cloned statements decreased from
15.000 to below 11.000, while the overall system size increased in that period.

RQ 15: Is the improvement likely to be caused by the clone assessment and control measures?

Yes. Before the study period, both clone metrics exhibited substantially different evolution patterns.
The reduction in cloning is, hence, likely to be caused by the application of the method.

Summary The method provides detailed steps to transport insights gained through the case stud-
ies and experiments performed during this thesis into industrial software engineering practice. Its
underlying assumptions have been validated and it has been evaluated on a software system at
Munich Re Group. This evaluation has demonstrated its applicability to real-world projects and
succeeded to reduce the amount of cloning in the participating software system.

191

10 Conclusion

10.2.3 Limitations of Clone Detection

Cloning is not the only form of redundancy in source code. Independent implementation of the same
functionality, e. g., caused through cloned requirements specifications, can also lead to behaviorally
similar code. We analyzed three research questions to better understand the suitability of clone
detection to discover behaviorally similar code of independent origin.

RQ 16: How successfully can existing clone detection tools detect simions1 that do not result from

copy & paste?

The analyzed clone detectors were unsuccessful in detecting simions that have been developed
independently. The amount of program variation in behaviorally similar code of independent origin
is too large for the compensation capabilities of existing clone detectors.

RQ 17: Is program-representation-similarity-based clone detection in principle suited to detect

simions that do not result from copy & paste?

No. Simions are likely to contain program variation that cannot be compensated by existing clone
detection or algorithm recognition approaches. Program-representation-similarity-based detection
is thus poorly suited to detect simions of independent origin.

RQ 18: Do simions that do not result from copy & paste occur in practice?

Yes. Both manual inspections of open source code and analysis of implementation of cloned re-
quirements specifications revealed simions in real-world software.

Summary Clone detection is limited to copy & paste—independently developed program frag-
ments with similar behavior are out of reach of existing clone detection approaches. During clone
control, clone detection can be applied to find regions in artifacts that have been created through
copy & paste & modify. It cannot, however, be expected to detect behavioral similarities that have
been implemented independently. Clone management tools, thus, cannot be expected to work on
simions. Instead of facilitating their consistent evolution during maintenance, clone control thus
needs to focus on the avoidance of simions.

1Behaviorally similar code fragments, cf., 2.3.2

192

11 Future Work

This chapter outlines directions of future work. The topics have been inspired by the empirical
results and experiences made during the case studies of this thesis.

Section 11.1 presents open issues in the prevention and detection of simions. Section 11.2 discusses
future work in clone cost modeling. Section 11.3 proposes clone detection as a tool to guide lan-
guage engineering. Section 11.4 outlines open issues in clone detection and impact of cloning for
natural language documents. Finally, Section 11.5 lists open questions on clone consolidation.

11.1 Management of Simions

Software can contain redundancy beyond copy & paste. One form, independent reimplementation,
presents similar problems to software maintenance, as cloning. Even worse, reimplementation is
typically more expensive—and possibly more error-prone—than copying existing code. Our em-
pirical studies have confirmed the existence of reimplemented functionality in real-world software:
for open source via manual code inspections (cf., Section 9.5) and for industrial software as a result
of duplicated requirements (cf., Section 5.5.4).

Prevention of Reimplementation Successful prevention of reimplementation needs to hap-
pen in early stages of software development: as soon as it is manifested in the code, effort for
implementation, and possibly quality assurance, has already been spent. Consequently, prevention
needs to identify similar functionality earlier, e. g., on the requirements level. The fact that preven-
tion should focus on early stages is also supported by Chapter 9, that demonstrated that existing
clone detection approaches are unsuited to reliably detect such redundancy.

Identification of similar functionality should be performed both at the start of development of a new
system, when design and implementation are derived from a set of requirements, and during main-
tenance, when new requirements are added or existing functionality gets changed. Similarity can
exist both between new requirements or between new requirements and implemented features.

We are not aware of a systematic approach to identify similar functionality on the requirements
level to avoid reimplementation. Given the simions we observed during our empirical studies, we
consider such an approach as an important topic for future work.

193

11 Future Work

public static String fillString(int length, char c) {
char[] characters = new char[length];
Arrays.fill(characters, c);
return new String(characters);

}

private static String padding(int repeat, char padChar) throws ... {
if (repeat < 0) {

throw new IndexOutOfBoundsException("..." + repeat);
}
final char[] buf = new char[repeat];
for (int i = 0; i < buf.length; i++) {

buf[i] = padChar;
}
return new String(buf);

}

Figure 11.1: Simions between CCSM Commons and Apache Commons

Simion Detection A prevention approach, as outlined above, cannot be applied to simions that
are already contained in existing software. Thus, to complement the prevention approach, we need a
detector that is capable to detect (at least certain classes of) simions. Since existing clone detection
approaches are poorly suited for this (cf., Chapter 9), new approaches need to be developed.

One promising approach for simion detection is dynamic clone detection that executes chunks of
code and compares their I/O behavior. As proof of concept, we have implemented a prototypical
dynamic clone detector for Java using techniques similar to random testing [112]. An example of
detected semantically similar functions from CCSM Commons1 and Apache Commons is depicted in
Figure 11.1. While initial results are encouraging, the prototype still has many limitations, making
its practical application infeasible. Future work is required to develop scalable and accurate simion
detectors.

11.2 Clone Cost Model Data Corpus

A promising direction of future work is the creation of a corpus of reference data that collects
activity effort parameters for different contexts and cloning data for different systems. Such a
corpus can simplify instantiation of the cost model by making effort parameters available and serve
as a benchmark for relative comparison of the impact of cloning in one system against comparable
systems developed by other organizations.

Furthermore, there is a definitive need for future work on the clone cost model itself. The assump-
tions the cost model is based on must be validated for different engineering contexts. For cases
in which an assumption does not hold, the model needs to be adapted or extended accordingly.
Furthermore, the model needs to be instantiated using project specific effort parameters. Last but
most important, the correctness of the results must be validated, e. g., through comparing efforts on
projects before and after clone consolidation, with the predicted efforts.

1http://conqat.cs.tum.edu/index.php/CCSM_Commons

194

11.3 Language Engineering

11.3 Language Engineering

One root cause for cloning that is frequently mentioned in the clone detection literature, are lan-
guage limitations that prevent the creation of reusable abstractions. As a way around this limitation,
developers copy & paste & modify the code. For example, many cross-program clones in COBOL
are caused by COBOL’s difficulty to reuse code between programs. Similarly, programs written in
early versions of Java often contain cloned wrappers around collection classes to make them type
safe, since the language then did not allow parameterization of types.

In these situations, cloning is the symptom, the abstraction mechanism limitation the cause. The
presence of cloning can thus indicate language limitations. One potentially beneficial use of clone
detection is thus the discovery of abstraction mechanism shortcomings to inform language design
and evolution—not only of general purpose programming languages, but of all abstraction mecha-
nisms and languages employed during software engineering.

Evolution history of both general purpose and domain specific languages documents introduction
of language features that allow to reduce the amount of cloning in their programs. Java 1.5, for
example, introduced generics that, e. g., allow parameterization of types in collection classes. As a
consequence, no redundant wrappers around collection classes are required any longer to make them
type safe. It also introduced an iteration loop, allowing to replace implementations of the Iterator
idiom—which previously took several statements that were duplicated every time it was used—
through a single statement. Further evidence that the intent to remove duplication drove language
design can be found in the evolution of the collections library of the language Scala. Its documen-
tation states that the “principal design objective of the new collections framework was to avoid any

duplication, defining every operation in one place only” [168]. A further example can be found in
the evolution of attribute grammar formalisms, domain specific languages to declaratively specify
syntax and semantics of programming languages: in [174], Mernik et al. extend existing attribute
grammar formalisms with inheritance, to allow for more reuse—and thus less duplication—in lan-
guage specifications.

These examples from language evolution history document that the removal of redundancy is indeed
a driver of language design. However, in many cases, the language features were introduced at a
late point, when the amount of redundancy in practice had taken an extent large enough to really
bother users. Systematic application of clone detection to guide language design could allow to
mend weaknesses in earlier stages, before a large amount of cloning is created as a work-around,
which is then difficult to consolidate.

Apart from general purpose and domain specific languages, clone detection can also guide the
design of more informal abstraction mechanisms employed during software engineering. The tem-
plates for use cases and test scripts are also abstraction mechanisms that specify the fixed and the
variable parts of their document instances. As the case study in Chapter 5 showed, missing reuse
mechanisms in these artifact types also create cloning as a response. We suggest the following
extension of the use case templates based on the cloning we observed in use cases:

Condition Sets: Collections of both pre- and postconditions were frequently cloned between use
cases that operate in similar system states. The explicit creation of sets of such conditions,
that are then reused, offers two advantages: first, the different system states are more easily

195

11 Future Work

recognized from a few precondition sets than from a comparison of the preconditions listed in
hundreds of individual use cases; second, when a system state changes, the change only needs
to be performed to the corresponding precondition set, not to all use cases that operate in this
state. This reduces both maintenance effort and the danger of inconsistencies.

Glossaries: Many of the clones encountered in the use cases repeated definitions of roles, entities
or terms. Their single definition in a glossary can remove this redundancy. Glossaries are used
in many projects. However, their integration with the use cases, e. g., through navigable links
between terms in a use case and their definition in a glossary, does not appear to be habitual in
practice.

Walks: Many of the use cases and test scripts we analyzed contain duplicated sequences of steps.
In many cases, they corresponds to some higher level concept, such as “open customer entry”,
which requires several individual system interaction steps, e. g., “Open search form”, “Enter
name”, “Perform search” and “Select customer entry from search results”. These recurring
sequences of steps could be made reusable as a “walk” (to stay in the metaphor) that can be
referenced by use cases.

Designing abstractions is hard. We often do not get it perfectly right on the first attempt. Clone
detection can provide a tool to discover weaknesses and react to them early, before they create too
much redundancy in practice.

11.4 Cloning in Natural Language Documents

The study in Chapter 5 has shown that cloning abounds in many real-world requirements specifica-
tions, and has given indication for its negative impact on engineering efforts. This section outlines
promising directions for future work in clone detection in requirements specifications and other
natural language software artifacts.

Clone Classification For code clones, a classification into different clone types has been estab-
lished (cf., Section 2.2.3). Recently, an analogous classification of clone types for model clones has
been proposed [86]. Such classifications are useful to characterize detection algorithms and thus
facilitate their comparison and their selection for specific tasks.

Analog to code clones, we can define a classification of clone types for clones in natural language
documents:

type-1 clones are copies that only differ in whitespace. They are thus allowed to show different
positions of line breaks or paragraph boundaries.

type-2 clones are copies that, apart from whitespace, can contain replacements of words inside a
word category. For example, an adjective in one clone can be replaced by an other adjective in
its sibling, or a noun through another noun.

type-3 clones are copies that, apart from whitespace and category-preserving word replacements,
can exhibit further differences, such as removed or added words, or replacements of a word
from one category through a word from another one.

196

11.4 Cloning in Natural Language Documents

type-4 clones are text fragments that, although different in their wording, convey similar meaning.

Just as the classification of code clones, this classification can be expected to evolve, as experience
with cloning in natural language documents increases. For example, in [141], Koschke introduces
further clone categories to better reflect typical clone evolution patterns. Similarly, a better un-
derstanding of the evolution of requirements specification could lead to a refinement to the above
categorization.

Detection of Type-2 Clones The classification of clone types raises the question of how they
can be detected. Type-1 clones are easy to detect, since no normalization beyond whitespace re-
moval needs to be performed. Detection can then simply be performed on the word sequence, as
suggested in Chapters 5 and 7. Type-3 clone detection can be applied to this word sequence as well,
e. g., employing the algorithm proposed in Chapter 7 for detection of type-3 clones in sequences.

For type-2 clone detection, however, a normalization component is required that transforms ele-
ments that may be substitute one another into a canonic representation. Since the above definition
only allows word replacements inside a word category, such as nouns, verbs or adjectives, we need
a component that identifies word categories for natural language text.

Natural language processing [119] developed a technique called part-of-speech analysis that deter-
mines the word categories for natural language text. Part-of-speech analysis is a mature research
area, for which freely available tools, such as TreeTagger [206, 207] exist, that are also used for
other analysis tasks, such as ambiguity detection [82].

To evaluate the suitability of part-of-speech analysis for normalization, we have prototypically im-
plemented it into ConQAT and evaluated it on one of the specifications from the case study on
cloning in requirements specifications from Chapter 5. Initial results are promising: we detected
type-2 clones that differ in the action that gets performed in a use case, e. g., create versus modify of
a program entity, or in the tense in which the verbs are written; several clone groups only differed
in the name of the target entity on which use case steps were performed, although the steps were
identical.

In the instances we saw, normalization increased robustness against modifications. For example,
the term “user” had been replaced by the term “actor” in some, but not all of the use cases. Such
systematic changes cause many differences in the word sequences and thus make them difficult to
detect using edit-distance-based algorithms; normalization, however, compensates such modifica-
tions, thus making their detection feasible.

Many open issues remain: how does part-of-speech normalization affect precision? Which normal-
ization of word categories gives a good compromise between precision and recall? Should some
word categories be ignored entirely, e. g., articles or prepositions? Can automated synonym detec-
tion approaches serve to provide a more fine grained normalization than part-of-speech analysis?
Natural language software artifacts often adhere to a template; does the resulting regular structure
enable improvements or optimizations? Future work is required to shed light on these issues.

197

11 Future Work

Evolution of Requirements Clones Requirements specifications—like all software artifacts—
evolve as the system they describe changes. Unawareness of cloning during document maintenance
threatens consistency: just as for source code, unintentionally inconsistent changes can introduce
errors into the documents.

Little is known about how requirements specifications evolve, and how evolution is affected by
cloning. How large is the impact of cloning on requirements consistency and correctness in practice?
Which classes of modifications are often encountered in real-world requirements evolution and
should thus be compensated by clone detectors? Empirical studies could help to better understand
these issues.

Cloning in Test Scripts In many domains, a substantial part of the end-to-end testing is still
performed manually: test engineers interact with the system under test, trigger inputs and validate
system reactions. The test activities they perform are typically specified as natural language test
case scripts that adhere to a standardized structure that is defined by a test case template. As the
system under test evolves, so do its test cases.

To get a first understanding whether test cases contain cloning, we performed a clone detection
on 167 test cases for manual end-to-end tests of an industrial business information system. For a
minimal clone length of 20 words, detection discovered about 1000 clones and computed a clone
coverage of 54%.

Manual inspection of the test case clones revealed frequent duplication of sequences of interaction
steps between the tester and the system. Some of the steps, specifying both the test input and the
expected system reaction and state, occurred over 50 times in the test cases. The employed test
management tool, however, did not facilitate structured reuse of test case steps, thus encouraging
cloning. However, if the corresponding system entities change, test cases probably need to be
adapted accordingly. These results thus suggest that cloning in test scripts creates similar problems
for maintenance, as it does in source code, requirements specifications and data-flow models.

Empirical research is required to better understand the extent and impact of cloning in test scripts
in practice. Does it increase test case maintenance effort? Does unawareness during maintenance
cause inconsistent or erroneous test scripts? Can clone detection support automation of end-to-end
tests by identifying recurring test steps that can be reused across automated test cases?

11.5 Code Clone Consolidation

While a lot of work has been done on the detection of clones and on studies of their evolution, less
is known about their consolidation.

It has been noted that limitations of abstraction mechanisms can impede simple consolidation of
clones through the creation of a shared abstraction. However, it is unclear, how much cloning in
practice is really caused by this. Many of the clones we inspected in manual assessments during our
case studies cannot be explained by language limitations, especially for modern languages like Java
or C#. In addition, clone control succeeded to substantially reduce the amount of cloning the case
study presented in Chapter 8. Indeed, our own observations suggest that a large part of the clones

198

11.5 Code Clone Consolidation

in practice can be consolidated. Further empirical research is required to better understand limita-
tions of clone consolidation in practice. When consolidating clones, developers face questions that
currently cannot be answered satisfactorily: which clones should be consolidated first? For which
clones is the required consolidation effort not justified by expected maintenance simplifications?
How can we decide this objectively? Can consolidation in combination with the implementation of
other change requests reduce the incurred quality assurance effort? We need a better understanding
of these issues to facilitate clone consolidation in practice.

199

Bibliography

[1] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey. Cloning by accident: an empirical study
of source code cloning across software systems. In Proc. of ESEM ’05, 2005.

[2] C. Alias and D. Barthou. Algorithm recognition based on demand-driven data-flow analysis.
In Proc. of WCRE ’03, 2003.

[3] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta. Analyzing cloning evolution in the linux
kernel. Information and Software Technology, 2002.

[4] L. Aversano, L. Cerulo, and M. Di Penta. How clones are maintained: An empirical study.
In Proc. of CSMR ’07, 2007.

[5] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou. Using findbugs on produc-
tion software. In Proc. of OOPSLA ’07, 2007.

[6] B. S. Baker. On finding duplication and near-duplication in large software systems. In Proc.

of WCRE ’95, 1995.

[7] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells in software evolution. In Proc. of ICSM

’07, 2007.

[8] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Partial redesign of
Java software systems based on clone analysis. In Proc. of WCRE ’99, 1999.

[9] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Advanced clone-
analysis to support object-oriented system refactoring. In Proc. of WCRE ’00, 2000.

[10] V. Basili, L. Briand, S. Condon, Y.-M. Kim, W. L. Melo, and J. D. Valett. Understanding and
predicting the process of software maintenance release. In Proc. of ICSE ’96, 1996.

[11] V. Basili, G. Caldiera, and H. Rombach. The goal question metric approach. Encyclopedia

of software engineering, 1994.

[12] H. Basit and S. Jarzabek. Detecting higher-level similarity patterns in programs. ACM Softw.

Eng. Notes, 2005.

[13] H. Basit and S. Jarzabek. A data mining approach for detecting higher-level clones in soft-
ware. IEEE Trans. on Softw. Eng., 2009.

[14] H. Basit, S. Puglisi, W. Smyth, A. Turpin, and S. Jarzabek. Efficient token based clone
detection with flexible tokenization. In Proc. of ESEM/FSE ’07, 2007.

[15] H. Basit, D. Rajapakse, and S. Jarzabek. Beyond templates: a study of clones in the STL and
some general implications. In Proc. of ICSE ’05, 2005.

201

Bibliography

[16] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract
syntax trees. In Proc. of ICSM ’98, 1998.

[17] K. Beck. Test-driven development: By example. Addison-Wesley, 2003.

[18] K. Beck and C. Andres. Extreme programming explained: embrace change. Addison-Wesley
Professional, 2004.

[19] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of
clone detection tools. IEEE Trans. on Softw. Eng., 2007.

[20] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. Hassan. An Empirical Study
on Inconsistent Changes to Code Clones at Release Level. In Proc. of WCRE ’09, 2009.

[21] B. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[22] B. Boehm, C. Abts, and S. Chulani. Software development cost estimation approaches – a
survey. Ann. Softw. Eng., 2000.

[23] B. W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, R. Madachy, and B. Steece. Software

Cost Estimation with Cocomo II. Prentice Hall PTR, 2000.

[24] J. S. Bradbury and K. Jalbert. Defining a catalog of programming anti-patterns for concurrent
java. In Proc. of SPAQu ’09, pages 6–11, Oct. 2009.

[25] F. Brooks Jr. The mythical man-month. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1995.

[26] M. Broy and K. Stølen. Specification and development of interactive systems: focus on

streams, interfaces, and refinement. Springer Verlag, 2001.

[27] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. On the use of clone detection
for identifying cross cutting concern code. IEEE Trans. on Softw. Eng., 2005.

[28] A. Bucchiarone, S. Gnesi, G. Lami, G. Trentanni, and A. Fantechi. QuARS Express - A Tool
Demonstration. In Proc. of ASE ’08, 2008.

[29] P. Bulychev and M. Minea. Duplicate code detection using anti-unification. Proc. of SYR-

CoSE ’08, 2008.

[30] P. Bulychev and M. Minea. An evaluation of duplicate code detection using anti-unification.
In Proc. of IWSC ’09, 2009.

[31] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento. A comparison of algorithms
for maximum common subgraph on randomly connected graphs. In Proc. of SSPR and SPR

’02. Springer, 2002.

[32] E. Burd and J. Bailey. Evaluating clone detection tools for use during preventative mainte-
nance. In Proc. of SCAM ’02, Washington, DC, USA, 2002.

[33] G. Casazza, G. Antoniol, U. Villano, E. Merlo, and M. Penta. Identifying clones in the linux
kernel. In Proc. of SCAM ’01, 2001.

202

Bibliography

[34] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM

Trans. Comput. Syst., 2008.

[35] X. CHANGSONG, P. Eck, and R. Matzner. Syntax-oriented coding(SoC): A new algorithm
for the compression of messages constrained by syntax rules. IEEE international symposium

on information theory, 1998.

[36] M. Chilowicz, É. Duris, and G. Roussel. Syntax tree fingerprinting for source code similarity
detection. In Proc. of ICPC ’09, 2009.

[37] A. Cockburn. Writing Effective Use Cases. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[38] I. Coman, A. Sillitti, and G. Succi. A case-study on using an Automated In-process Software
Engineering Measurement and Analysis system in an industrial environment. In Proc. of

ICSE ’09, 2009.

[39] M. J. Corbin and L. A. Strauss. Basics of qualitative research: Techniques and procedures

for developing grounded theory. Sage Publ., 3. edition, 2008.

[40] J. Cordy. Comprehending reality-practical barriers to industrial adoption of software main-
tenance automation. In Proc. of IWPC ’03, 2003.

[41] J. R. Cordy, T. R. Dean, and N. Synytskyy. Practical language-independent detection of
near-miss clones. In Proc. of CASCON ’04. IBM Press, 2004.

[42] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The
MIT Press and McGraw-Hill Book Company, 2nd edition, 2001.

[43] J. Covington and M. Chase. Eight steps to sustainable change. Industrial Management, 2010.

[44] F. Culwin and T. Lancaster. A review of electronic services for plagiarism detection in student
submissions. In Proc. of Teaching of Computing ’00, 2000.

[45] I. Davis and M. Godfrey. Clone detection by exploiting assembler. In Proc. of IWSC ’10,
2010.

[46] M. de Wit, A. Zaidman, and A. van Deursen. Managing code clones using dynamic change
tracking and resolution. In Proc. of ICSM ’09, 2009.

[47] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-
subramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value
store. In Proc. of SOSP ’07, 2007.

[48] F. Deissenboeck. Continuous Quality Control of Long-Lived Software Systems. PhD thesis,
Technische Universität München, 2009.

[49] F. Deissenboeck, M. Feilkas, L. Heinemann, B. Hummel, and E. Juergens. Conqat book,
2009. http://conqat.in.tum.de/index.php/ConQAT_Book.

[50] F. Deissenboeck, L. Heinemann, B. Hummel, and E. Juergens. Flexible architecture confor-
mance assessment with conqat. In Proc. of ICSE ’10, 2010.

203

Bibliography

[51] F. Deissenboeck, U. Hermann, E. Juergens, and T. Seifert. LEvD: A lean evolution and
development process, 2007. http://conqat.cs.tum.edu/download/levd-process.pdf.

[52] F. Deissenboeck, B. Hummel, and E. Juergens. Conqat - ein toolkit zur kontinuierlichen
qualitätsbewertung. In Proc. of SE ’08, 2008.

[53] F. Deissenboeck, B. Hummel, E. Juergens, M. Pfaehler, and B. Schaetz. Model clone detec-
tion in practice. In Proc. of IWSC ’10, 2010.

[54] F. Deissenboeck, B. Hummel, E. Juergens, B. Schaetz, S. Wagner, J.-F. Girard, and
S. Teuchert. Clone detection in automotive model-based development. In Proc. of ICSE

’08, 2008.

[55] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M. y Parareda, and M. Pizka. Tool
support for continuous quality control. IEEE Softw., 2008.

[56] F. Deissenboeck, M. Pizka, and T. Seifert. Tool support for continuous quality assessment.
In Proc. of STEP ’05, 2005.

[57] C. Domann, E. Juergens, and J. Streit. The curse of copy&paste – Cloning in requirements
specifications. In Proc. of ESEM ’09, 2009.

[58] dSpace GmbH. TargetLink Production Code Generation. www.dspace.de.

[59] E. Duala-Ekoko and M. Robillard. Clonetracker: tool support for code clone management.
In Proc. of ICSE ’08, 2008.

[60] E. Duala-Ekoko and M. P. Robillard. Tracking code clones in evolving software. In Proc. of

ICSE ’07, 2007.

[61] S. Ducasse, O. Nierstrasz, and M. Rieger. On the effectiveness of clone detection by string
matching. J. Software maintenance Res. Pract., 2006.

[62] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting
duplicated code. In Proc. of ICSM ’99, 1999.

[63] S. Eick, J. Steffen, and E. Sumner Jr. Seesoft-a tool for visualizing line oriented software
statistics. IEEE Trans. on Softw. Eng., 1992.

[64] A. Endres and D. Rombach. A Handbook of Software and Systems Engineering. Pearson,
2003.

[65] W. S. Evans, C. W. Fraser, and F. Ma. Clone detection via structural abstraction. In Proc. of

WCRE ’07, 2007.

[66] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. An Automatic Quality Evaluation for Natural
Language Requirements. In Proc. of REFSQ ’01, 2001.

[67] R. Falke, P. Frenzel, and R. Koschke. Empirical evaluation of clone detection using syntax
suffix trees. Empirical Software Engineering, 2008.

[68] R. Fanta and V. Rajlich. Removing clones from the code. J. Software maintenance Res.

Pract., 1999.

204

Bibliography

[69] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. Mueller, J. Mylopoulos,
S. Perelgut, M. Stanley, and K. Wong. The software bookshelf. IBM Systems J., 1997.

[70] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley Profes-
sional, 1999.

[71] M. Fowler and J. Highsmith. The agile manifesto. Software Development, 2001.

[72] J. Franklin. Integration of of clonedetective into eclipse. Master’s thesis, Technische Univer-
sität München, 2009.

[73] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. In Proc. ICSE ’08,
2008.

[74] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable

object-oriented software. Addison-Wesley Reading, MA, 1995.

[75] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of

NP -completeness. W.H. Freeman and Company, 1979.

[76] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation of code clones and change couplings.
In Proc. of FASE ’06. Springer, 2006.

[77] D. German, M. Di Penta, Y. Guéhéneuc, and G. Antoniol. Code siblings: Technical and legal
implications of copying code between applications. In Proc. of MSR ’09, 2009.

[78] S. Giesecke. Clone-based Reengineering für Java auf der Eclipse-Plattform. Master’s thesis,
Universität Oldenburg, 2003.

[79] T. Gilb and D. Graham. Software Inspection. Addison-Wesley, 1993.

[80] R. Glass. Maintenance: Less is not more. IEEE Softw., 1998.

[81] R. Glass. Facts and fallacies of software engineering. Addison-Wesley Professional, 2003.

[82] B. Gleich, O. Creighton, and L. Kof. Ambiguity detection: Towards a tool explaining ambi-
guity sources. In Proc. of REFSQ ’10, 2010.

[83] N. Göde. Evolution of Type-1 Clones. In Proc. of SCAM ’09, 2009.

[84] N. Göde. Clone removal: Fact or fiction? In Proc. of IWSC ’10, 2010.

[85] N. Göde and R. Koschke. Incremental clone detection. In Proc. of CSMR ’09, 2009.

[86] N. Gold, J. Krinke, M. Harman, and D. Binkley. Issues in Clone Classification for Dataflow
Languages. Proc. of IWSC ’10, 2010.

[87] J. D. Gould, L. Alfaro, R. Finn, B. Haupt, and A. Minuto. Why reading was slower from
CRT displays than from paper. SIGCHI Bull., 17, 1987.

[88] S. Grant and J. Cordy. Vector Space Analysis of Software Clones. In Proc. of ICPC ’09,
2009.

[89] P. Grünwald. The minimum description length principle. The MIT Press, 2007.

205

Bibliography

[90] J. Haldane. Biological possibilities for the human species in the next ten thousand years.
Man and his future, 1963.

[91] J. Harder and N. Göde. Quo vadis, clone management? In Proc. of IWSC ’10, 2010.

[92] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous modification support based on
code clone analysis. In Proc. of APSEC ’07, 2007.

[93] W. T. B. Hordijk, M. L. Ponisio, and R. J. Wieringa. Harmfulness of code duplication - a
structured review of the evidence. In Proc. of EASE ’09. British Computer Society, 2009.

[94] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for the proactive manage-
ment of copy-and-paste programming. Proc. of ICPC ’09, 2009.

[95] D. Huffman. A method for the construction of minimum-redundancy codes. Resonance,
2006.

[96] M. Huhn and D. Scharff. Some observations on scade model clones. In Proc. of MBEES ’10,
2010.

[97] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-Based Code Clone Detec-
tion: Incremental, Distributed, Scalable. In Proc. of ICSM ’10, 2010.

[98] I. I. Ianov. On the equivalence and transformation of program schemes. Commun. ACM,
1958.

[99] IEEE. Standard 1219: Software maintenance, 1998.

[100] IEEE. Standard 830-1998: Recommended practice for software requirements specifications,
1998.

[101] L. K. Ishrar Hussain, Olga Ormandjieva. Automatic quality assessment of SRS text by means
of a decision-tree-based text classifier. In Proc. of QSIC ’07, 2007.

[102] P. Jablonski and D. Hou. CReN: a tool for tracking copy-and-paste code clones and renaming
identifiers consistently in the IDE. In Proc. of Eclipse ’07, 2007.

[103] F. Jacob, D. Hou, and P. Jablonski. Actively comparing clones inside the code editor. In
Proc. of IWSC ’10, 2010.

[104] K. Jalbert and J. S. Bradbury. Using clone detection to identify bugs in concurrent software.
In Proc. of ICSM ’10, 2010.

[105] Y. Jia, D. Binkley, M. Harman, J. Krinke, and M. Matsushita. KClone: a proposed approach
to fast precise code clone detection. In Proc. of IWSC ’09, 2009.

[106] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable and accurate tree-based
detection of code clones. In Proc. of ICSE ’07, 2007.

[107] L. Jiang and Z. Su. Automatic mining of functionally equivalent code fragments via random
testing. In Proc. of ISSTA ’09, 2009.

[108] J. H. Johnson. Identifying redundancy in source code using fingerprints. In Proc. of CASCON

’93, 1993.

206

Bibliography

[109] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in static texts.
In Proc. of MFCS ’91. Springer, 1991.

[110] E. Juergens and F. Deissenboeck. How much is a clone? In Proc. of SQM ’10, 2010.

[111] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel, B. Schaetz, S. Wagner, C. Domann,
and J. Streit. Can clone detection support quality assessments of requirements specifications?
In Proc. of ICSE ’10, 2010.

[112] E. Juergens, F. Deissenboeck, and B. Hummel. Clone detection beyond copy & paste. In
Proc. of IWSC ’09, 2009.

[113] E. Juergens, F. Deissenboeck, and B. Hummel. Clonedetective: A workbench for clone
detection research. In Proc. of ICSE ’09, 2009.

[114] E. Juergens, F. Deissenboeck, and B. Hummel. Code similarities beyond copy & paste. In
Proc. of CSMR ’09, 2010.

[115] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones matter? In Proc.

of ICSE ’09, 2009.

[116] E. Juergens and N. Göde. Achieving accurate clone detection results. In Proc. of IWSC ’10,
2010.

[117] E. Juergens, B. Hummel, F. Deissenboeck, and M. Feilkas. Static bug detection through
analysis of inconsistent clones. In Proc. of SE ’08. GI, 2008.

[118] M. Jungmann, R. Otterbach, and M. Beine. Development of Safety-Critical Software Using
Automatic Code Generation. In Proc. of SAE World Congress ’04, 2004.

[119] D. Jurafsky, J. Martin, A. Kehler, K. Vander Linden, and N. Ward. Speech and language

processing. Prentice Hall New York, 2000.

[120] I. Kalaydijeva. Studie zur wiederverwendung bei der softlab gmbh. Master’s thesis, Tech-
nische Universität München, 2007.

[121] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code clone
detection system for large scale source code. IEEE Trans. on Softw. Eng., 2002.

[122] C. Kapser and M. W. Godfrey. Aiding comprehension of cloning through categorization. In
Proc. of IWPSE ’04, 2004.

[123] C. Kapser and M. W. Godfrey. “Cloning considered harmful” considered harmful. In Proc.

of WCRE ’06, 2006.

[124] C. J. Kapser, P. Anderson, M. Godfrey, R. Koschke, M. Rieger, F. van Rysselberghe, and
P. Weis̈gerber. Subjectivity in clone judgment: Can we ever agree? In Duplication, Redun-

dancy, and Similarity in Software, Dagstuhl Seminar Proceedings, 2007.

[125] C. J. Kapser and M. W. Godfrey. Improved tool support for the investigation of duplication
in software. In Proc. of ICSM ’05, 2005.

207

Bibliography

[126] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, and H. Iida.
SHINOBI: A Tool for Automatic Code Clone Detection in the IDE. In Proc. of WCRE ’09,
2009.

[127] D. Kawrykow and M. Robillard. Improving API usage through detection of redundant code.
In Proc. of ASE ’09, 2009.

[128] U. Kelter, J. Wehren, and J. Niere. A generic difference algorithm for UML models. In Proc.

of SE ’05, 2005.

[129] A. Kemper and A. Eickler. Datenbanksysteme: Eine Einführung. Oldenbourg Wis-
senschaftsverlag, 2006.

[130] T. Kiely. Managing change: why reengineering projects fail. Harvard Business Review,
1995.

[131] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of copy and paste
programming practices in OOPL. In Proc. of ISESE ’04, 2004.

[132] M. Kim and D. Notkin. Using a clone genealogy extractor for understanding and supporting
evolution of code clones. In Proc. of MSR ’05, 2005.

[133] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone genealo-
gies. In Proc. of ESEC/FSE ’05, 2005.

[134] J. Knoop, O. Rüthing, and B. Steffen. Partial dead code elimination. In Proc. of PLDI ’94,
1994.

[135] D. E. Knuth. The Art of Computer Programming, volume 3: Sorting and Searching. Addison-
Wesley, 2nd edition, 1997.

[136] R. Komondoor. Automated duplicated-code detection and procedure extraction. PhD thesis,
The University of Wisconsin, Madison, 2003.

[137] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. In Proc.

of SAS ’01. Springer, 2001.

[138] K. Kontogiannis. Evaluation experiments on the detection of programming patternsusing
software metrics. In Proc. of WCRE ’97, 1997.

[139] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M. Bernstein. Pattern matching for
clone and concept detection. Automated Software Engineering, 1996.

[140] R. Koschke. Survey of research on software clones. In Duplication, Redundancy, and Simi-

larity in Software. Dagstuhl Seminar Proceedings, 2007.

[141] R. Koschke. Frontiers of software clone management. In Frontiers of Software Maintenance,
2008.

[142] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix trees. In
Proc. of WCRE ’06, 2006.

[143] J. Kotter. Leading change. Harvard Business School Pr, 1996.

[144] J. Kotter and L. Change. Why transformation efforts fail. Harvard Business Review, 1995.

208

Bibliography

[145] J. Kotter and D. Cohen. The heart of change: Real-life stories of how people change their

organizations. Harvard Business Press, 2002.

[146] J. Krinke. Identifying similar code with program dependence graphs. In Proc. of WCRE ’01,
2001.

[147] J. Krinke. A study of consistent and inconsistent changes to code clones. In Proc. of WCRE

’07, 2007.

[148] J. Krinke. Is cloned code more stable than non-cloned code? Proc. of SCAM ’08, 2008.

[149] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl. Assessing the benefits of
incorporating function clone detection in a development process. In Proc. of ICSM ’97, 1997.

[150] R. Lämmel and C. Verhoef. Semi-automatic grammar recovery. Softw. Pract. Exp., 2001.

[151] J. Landis and G. Koch. The measurement of observer agreement for categorical data. Bio-

metrics, 1977.

[152] T. Larkin and S. Larkin. Communicating change: How to win employee support for new

business directions. McGraw-Hill Professional, 1994.

[153] K. Lewin. Frontiers in group dynamics: Concept, method and reality in social science; social
equilibria and social change. Human relations, 1947.

[154] H. Li and S. Thompson. Clone detection and removal for Erlang/OTP within a refactoring
environment. In Proc. of PEPM ’09, 2009.

[155] M. Li, X. Chen, X. Li, B. Ma, and P. Vitányi. The similarity metric. IEEE Transactions on

Information Theory, 2004.

[156] M. Li and P. Vitányi. An introduction to Kolmogorov complexity and its applications.
Springer-Verlag New York Inc, 2008.

[157] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding copy-paste and related bugs in
large-scale software code. IEEE Trans. on Softw. Eng., 2006.

[158] P. Liberatore. Redundancy in logic I: CNF propositional formulae. Artificial Intelligence,
2005.

[159] E. C. Lingxiao Jiang, Zhendong Su. Context-based detection of clone-related bugs. In Proc.

of ESEC/FSE ’07, 2007.

[160] H. Liu, Z. Ma, L. Zhang, and W. Shao. Detecting duplications in sequence diagrams based
on suffix trees. In Proc. of APSEC ’06, 2006.

[161] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Analysis of the linux kernel evolution using
code clone coverage. In Proc. of MSR ’07, 2007.

[162] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Very-large scale code clone analysis and
visualization of open source programs using distributed CCFinder: D-CCFinder. In Proc. of

ICSE ’07, 2007.

[163] A. Lozano and M. Wermelinger. Assessing the effect of clones on changeability. In Proc. of

ICSM ’08, 2008.

209

Bibliography

[164] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating the harmfulness of cloning: A
change based experiment. In Proc. of MSR ’07, Washington, DC, USA, 2007.

[165] C. Lyon, R. Barrett, and J. Malcolm. A theoretical basis to the automated detection of copying
between texts, and its practical implementation in the ferret plagiarism and collusion detector.
In Proc. of PPPPC ’04, 2004.

[166] D. MacKay. Information theory, inference, and learning algorithms. Cambridge Univ Pr,
2003.

[167] A. Marcus and J. I. Maletic. Identification of high-level concept clones in source code. In
Proc. of ASE ’01, 2001.

[168] E. Martin Odersky. Scala 2.8 collections, October 2009. http://www.scala-lang.org/sites/
default/files/sids/odersky/Fri,%202009-10-02,%2014:16/collections.pdf.

[169] The MathWorks Inc. SIMULINK Model-Based and System-Based Design - Using Simulink,
2002.

[170] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function
clones in a software system using metrics. In Proc. of ICSM ’96, 1996.

[171] T. McCabe. A complexity measure. IEEE Trans. on Softw. Eng., 1976.

[172] J. J. McGregor. Backtrack search algorithms and the maximal common subgraph problem.
Software – Practice and Experience, 1982.

[173] T. Mende, F. Beckwermert, R. Koschke, and G. Meier. Supporting the grow-and-prune model
in software product lines evolution using clone detection. In Proc. of CSMR ’08, Washington,
DC, USA, 2008.

[174] M. Mernik, M. Lenic, E. Avdicauševic, and V. Zumer. Multiple attribute grammar inheri-
tance. Informatica, 2000.

[175] G. Meszaros. xUnit test patterns: Refactoring test code. Prentice Hall PTR Upper Saddle
River, NJ, USA, 2006.

[176] R. Metzger and Z. Wen. Automatic algorithm recognition and replacement. MIT Press, 2000.

[177] B. Meyer. Design and Code Reviews in the Age of the Internet. In Proc. of SEAFOOD ’08.
Springer, 2008.

[178] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software quality analysis by
code clones in industrial legacy software. In Proc. of METRICS ’02, 2002.

[179] E. Murphy-Hill, P. Quitslund, and A. Black. Removing duplication from java. io: a case
study using traits. In Proc. of OOPSLA ’05, 2005.

[180] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Accurate and efficient struc-
tural characteristic feature extraction for clone detection. Proc. of FASE ’09, 2009.

[181] T. Nguyen, H. Nguyen, N. Pham, J. Al-Kofahi, and T. Nguyen. Cleman: Comprehensive
clone group evolution management. In Proc. of ASE ’08, 2008.

210

Bibliography

[182] T. T. Nguyen, H. A. Nguyen, J. M. Al-Kofahi, N. H. Pham, and T. N. Nguyen. Scalable and
incremental clone detection for evolving software. Proc. of ICSM ’09, 2009.

[183] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen. Graph-based
mining of multiple object usage patterns. In Proc. of FSE ’09, 2009.

[184] J. Nosek and P. Palvia. Software maintenance management: changes in the last decade. J.

Software maintenance Res. Pract., 1990.

[185] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: Algorithms and complex-

ity. Prentice-Hall, 1982.

[186] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and T. Nguyen. Complete and accurate clone
detection in graph-based models. In Proc. of ICSE ’09, 2009.

[187] M. F. Porter. An algorithm for suffix stripping. Readings in information retrieval, 1997.

[188] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner. Software Engineering for Automotive
Systems: A Roadmap. In L. Briand and A. Wolf, editors, Proc. of FoSE ’07, 2007.

[189] F. Rahman, C. Bird, and P. Devanbu. Clones: What is that Smell? In Proc. of MSR ’10, 2010.

[190] D. Ratiu. Intentional meaning of programs. PhD thesis, Technische Universität München,
2009.

[191] J. W. Raymond and P. Willett. Maximum common subgraph isomorphism algorithms for the
matching of chemical structures. J. Comput-Aided Mol. Des., 2002.

[192] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informational), 1992.

[193] A. L. Rodriguez and M. Wermelinger. Tracking clones imprint. In Proc. of IWSC ’10, 2010.

[194] H. D. Rombach, B. T. Ulery, and J. D. Valett. Toward full life cycle control: Adding mainte-
nance measurement to the SEL. J. Syst. Softw., 1992.

[195] C. Roy and J. Cordy. An empirical study of function clones in open source software. In Proc.

of WCRE ’08, 2008.

[196] C. Roy and J. Cordy. Scenario-based comparison of clone detection techniques. In Proc. of

ICPC ’08, 2008.

[197] C. Roy and J. Cordy. A mutation/injection-based automatic framework for evaluating clone
detection tools. In Proc. of MUTATION ’09, 2009.

[198] C. Roy and J. Cordy. Near-miss function clones in open source software: an empirical study.
J. Software maintenance Res. Pract., 2009.

[199] C. Roy and J. Cordy. Are Scripting Languages Really Different? Proc. of IWSC ’10, 2010.

[200] C. Roy, J. Cordy, and R. Koschke. Comparison and evaluation of code clone detection tech-
niques and tools: A qualitative approach. Science of Computer Programming, 2009.

[201] C. K. Roy and J. R. Cordy. A survey on software clone detection research. Technical Report
541, Queen’s University at Kingston, 2007.

211

Bibliography

[202] C. K. Roy and J. R. Cordy. NICAD: Accurate detection of near-miss intentional clones using
flexible pretty-printing and code normalization. In Proc. of ICPC ’08, 2008.

[203] J. D. Rutledge. On ianov’s program schemata. J. of the ACM, 1964.

[204] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. Detecting code clones in binary
executables. In Proc. of ISSTA ’09, pages 117–128. ACM, 2009.

[205] K. Sayood. Introduction to data compression. Morgan Kaufmann, 2000.

[206] H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Proc. of New Meth-

ods in Language Processing ’94, 1994.

[207] H. Schmid. Improvements in part-of-speech tagging with an application to German. Natural

language processing using very large corpora, 1999.

[208] M. Shaw and D. Garlan. Software architecture. Prentice Hall, 1996.

[209] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An examination of software engineering
work practices. In Proc. of CASCON ’97. IBM Press, 1997.

[210] R. Smith and S. Horwitz. Detecting and measuring similarity in code clones. In Proc. of

IWSC ’09, 2009.

[211] H. Sneed. A cost model for software maintenance & evolution. In Proc. of ICSM ’04. IEEE
CS Press, 2004.

[212] M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A. Osvik, and
B. de Weger. Short chosen-prefix collisions for MD5 and the creation of a rogue CA cer-
tificate. In Proc. of CRYPTO ’09, 2009.

[213] R. Tairas and J. Gray. Phoenix-based clone detection using suffix trees. In Proc. of Southeast

regional conference ’06, 2006.

[214] R. Tairas, J. Gray, and I. Baxter. Visualization of clone detection results. In Proc. of ETX

’06, 2006.

[215] H. Täubig. Fast Structure Searching for Computational Proteomics. PhD thesis, TU
München, 2007.

[216] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta. An empirical study on the
maintenance of source code clones. Empirical Software Engineering, 2009.

[217] R. Tiarks, R. Koschke, and R. Falke. An assessment of type-3 clones as detected by state-of-
the-art tools. In Proc. of SCAM ’09, 2009.

[218] M. Toomim, A. Begel, and S. L. Graham. Managing duplicated code with linked editing. In
Proc. of VLHCC ’04, 2004.

[219] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance support environment
based on code clone analysis. In Proc. of METRICS ’02, 2002.

[220] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On detection of gapped code clones using
gap locations. In Proc. of APSEC ’02, 2002.

212

Bibliography

[221] E. Ukkonen. Approximate string matching over suffix trees. In Proc. of CPM ’93. Springer,
1993.

[222] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 1995.

[223] J. Van Wijk and H. van de Wetering. Cushion treemaps: Visualization of hierarchical infor-
mation. In Proc. of INFOVIS ’99, 1999.

[224] J. Vlissides. Generation Gap. C++ Report, 1996.

[225] S. Wagner, F. Deissenboeck, B. Hummel, E. Juergens, B. M. y Parareda, and B. S. (Eds.).
Selected topics in software quality. Technical Report TUM-I0824, Technische Universität
München, Germany, July 2008.

[226] V. Wahler, D. Seipel, J. Wolff, and G. Fischer. Clone detection in source code by frequent
itemset techniques. In Fourth IEEE International Workshop on Source Code Analysis and

Manipulation, 2004, 2004.

[227] A. Walenstein. Code clones: Reconsidering terminology. In Duplication, Redundancy, and

Similarity in Software, Dagstuhl Seminar Proceedings, 2007.

[228] A. Walenstein, M. El-Ramly, J. R. Cordy, W. S. Evans, K. Mahdavi, M. Pizka, G. Rama-
lingam, and J. W. von Gudenberg. Similarity in programs. In R. Koschke, E. Merlo, and
A. Walenstein, editors, Duplication, Redundancy, and Similarity in Software, number 06301
in Dagstuhl Seminar Proceedings. IBFI, 2007.

[229] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia. Problems creating task-relevant
clone detection reference data. In Proc. of WCRE ’03, 2003.

[230] M. Weber and J. Weisbrod. Requirements engineering in automotive development – experi-
ences and challenges. In Proc. of RE ’02, 2002.

[231] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user queries of a search engine. In Proc. of

WWW ’01, 2001.

[232] L. Wills. Flexible control for program recognition. In Proc. of WCRE ’93, 1993.

[233] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt. Automated analysis of requirement speci-
fications. In Proc. of ICSE ’97, 1997.

[234] C. Wohlin, P. Runeson, and M. Höst. Experimentation in software engineering: An introduc-

tion. Kluwer Academic, Boston, Mass., 2000.

[235] T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, S. Kawaguchi, and H. Iida.
SHINOBI: A real-time code clone detection tool for software maintenance. Technical Report
NAIST-IS-TR2007011, Nara Institute of Science and Technology, 2008.

[236] D. Yeh and J.-H. Jeng. An empirical study of the influence of departmentalization and orga-
nizational position on software maintenance. J. Softw. Maint. Evol. Res. Pr., 2002.

[237] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting source code changes by mining
change history. IEEE Trans. on Softw. Eng., 2004.

213

Bibliography

[238] Y. Zhang, H. Basit, S. Jarzabek, D. Anh, and M. Low. Query-based filtering and graphical
view generation for clone analysis. In Proc. of ICSM ’08, 2008.

214

