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Abstract

These days, fluoroscopic imaging is the modality used most widely to guide physicians
during minimally invasive abdominal interventions. They involve transarterial chemoem-
bolization for hepatocellular carcinoma, the placement of transjugular intrahepatic por-
tosystemic shunts or needle aspiration of solitary lung nodules, to name a few. These
kinds of interventions share the task of navigating a surgical tool to a specific anatomical
site. Difficulties for the physicians arise from the fact that fluoroscopy, a two-dimensional
modality, is used to support an actually three-dimensional navigation task. Thus, en-
hanced navigation procedures incorporating three-dimensional data are desired for fluo-
roscopic interventions. Not only should they improve the navigation but also offer the
potential to reduce treatment time and radiation exposure for the patient as well as the
physician. Due to the complexity of such a system and despite previous efforts, an inte-
grated solution does not yet exist.

Localization of medical tools and the estimation of their motion are core components
of such a navigation system and this work focuses on related methods to improve the
detection and tracking during fluoroscopic interventions.

To this end, different image enhancement algorithms required for the tool localization
are reviewed and analyzed in a unified framework. Based on the analysis a fast and
robust localization scheme is developed. Furthermore, a novel method for tracking the
tools in a non-rigid environment is introduced. The tracking algorithm is based on discrete
optimization and thus it is derivative free and can deal with complex models. It is fast
and robust and hence complying with application specific constraints. Moreover, the
presented tracking method is generic and can be extended to closed curves, which makes
it applicable to other problems such as segmentation.

Based on the results, a novel respiratory motion estimation procedure is developed. It
is the basis for the creation of a navigation system and is essential in order to establish
the relation between the location of medical tools and three-dimensional data used for
the actual navigation.

Keywords:
Biomedical Image Processing, Image-Guided Interventions, Optical Tracking,
Computer-Aided Navigation






Zusammenfassung

Durchleuchtung ist heutzutage die Modalitat der Wahl, um Arzte bei der Navigati-
on wahrend minimal-invasiven Eingriffen zu unterstiitzen. Abdominelle, minimal-invasive
Eingriffe sind vielfiltig und umfassen transarterielle Chemo-Embolisation (TACE) bei
Hepatocellular carcinoma (HCC), die Platzierung von transjuguléren intrahepatischen
portosystemischen Shunts (TIPS) oder auch die Punktion einzelner Knoten der Lun-
ge, um nur einige zu nennen. Eine Gemeinsamkeit dieser Art von Interventionen ist es,
dass der behandelnde Arzt wahrend des Eingriffs ein interventionelles Werkzeug zu einer
bestimmten anatomischen Stelle, dem sogenannten Situs, navigieren muss. Schwierigkei-
ten bei der Navigation entstehen dadurch, dass zur Unterstiitzung bei dieser tatsachlich
dreidimensionalen Navigationsleistung Durchleuchtung, also eine zweidimensionale Mo-
dalitdt verwendet wird. Demzufolge ist die Entwicklung einer verbesserten Navigations-
unterstiitzung erstrebenswert, die im besten Fall etwaige vorhandene, dreidimensionale
Daten nutzt. Diese Verbesserungen sollen nicht nur die Navigation vereinfachen, sondern
moglichst auch Interventionszeiten verkiirzen und damit die Belastung durch Rontgen-
strahlung und dies sowohl fiir den behandelnden Arzt als auch den Patienten. Aufgrund
der Komplexitat solch eines Systems gibt es trotz verschiedenster Bemiihungen bis heute
noch keine in den klinischen Alltag integrierte Losung.

Die Lokalisierung medizinischer Instrumente und die Bestimmung ihrer Bewegung sind
zentrale Komponenten eines solchen Navigationssystems. Diese Arbeit beschéftigt sich
mit Moglichkeiten zur Verbesserung von Methoden zur Detektion und dem sogenannten
Tracking medizinischer Instrumente in Durchleuchtungssequenzen.

Zu diesem Zweck werden verschiedene Algorithmen zur Hervorhebung und Detektion
von medizinischen Werkzeugen untersucht und in einem einheitlichen Framework analy-
siert. Basierend auf der Analyse, wird ein robustes Verfahren zur Detektion erarbeitet.
Desweiteren wird in dieser Arbeit ein neuartiges Verfahren zum Tracking nicht-linearer
Bewegungen von interventionellen Geraten beschrieben. Das Tracking-Verfahren ist nicht
gradientenbasiert und erlaubt deshalb die Verwendung komplexer Modelle. Desweiteren
ist das Verfahren effizient und entspricht somit strengen den Anforderungen der interven-
tionellen Radiologie.

Basierend auf den Ergebnissen, wird ein neues Verfahren zur Bestimmung der Atem-
bewegung entwickelt. Es bildet die Basis fiir zukiinftige Navigationssysteme und ist not-
wendig, um eine Beziehung zwischen zweidimensionalen Positionen von Werkzeugen und
den dreidimensionalen Datensétzen fiir die eigentliche Navigation herzustellen.

Schlagworter:
Biomedizinische Bildverarbeitung, Bildgestiitzte Interventionen, Optisches Tracking,
Computerunterstiitzte Navigation
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Thesis Outline

Minimally invasive procedures, in particular endovascular interventions have become
clinical routine. The common task of these procedures is to navigate a medical tool like
a needle or a guide-wire to an intervention situs. During this navigation task, physicians
have access to instant visual feedback in form of an X-ray image stream. Besides the
image data the interventionalists are solely relying on their knowledge of anatomical
structures as well as haptic feedback. The actual three-dimensional pose of the tools
needs to be currently reconstructed mentally. In case of endovascular interventions the
mental reconstruction has to be regularly verified by injecting contrast agent into the
X-ray transparent vasculature.

A possible way to aid physicians in this task is an improved three-dimensional
navigation system. Two core components such a system requires are the localization and
motion estimation of medical tools. Localization refers to the problem of detecting a
medical tool in the images without prior information regarding its location. During the
motion estimation or tracking task on the other hand side the system is initialized with
the previous position of the medical tool. This prior knowledge simplifies the tracking
problem such that automatic methods that require no user interaction can be designed
though this is not yet possible for the tool detection. A complete navigation system
requires more components which are described in detail in Section 1.4.

Difficulties with these techniques arise from the fact that as a consequence of the low
energy X-rays, the images usually exhibit a low signal to noise ratio (SNR).
Furthermore, since needles and guide-wires are thin one-dimensional structures, they are
oftentimes hard to distinguish from the cluttered anatomical background. For tracking
guide-wires and catheters another problem that arises is the highly non-linear motion
the tools undergo. This is caused by patient breathing, different motions at organ
interfaces, interactions of the physician, and perspective projection of transparent
structures. Together, these issues make the motion estimation problem in X-ray
fluoroscopy extremely difficult.

To be accepted by physicians, ease of use is an important requirement for a navigation
system. In the optimal case it would not be interfering or changing existing work-flows
and it would not rely on user input from the physicians. So far, no such system exists
which is robust enough for every day clinical use. Especially the detection still requires
user interactions. Another requirement is the real-time capability of a navigation
system. Fast processing is required to keep the time intervals between observations
small and because other modules belonging to a navigation system require computation
time as well. In summary, a navigation system should be capable of robustly handling
low-quality image data, requiring minimal user interaction and operating near real-time.

This thesis presents novel concepts to support physicians in their navigation task during
fluoroscopic interventions. The work evaluates and revisits methods required to build a
three-dimensional navigation system. The focus of this work lies on the detection and
tracking components. In particular a novel scheme for deformable tracking of curvilinear
tools such as guide-wires and needles in fluoroscopic X-ray sequences is derived and
evaluated.



In the following, we give a brief outline and summary of the thesis and its chapters.

Chapter 1: Fluoroscopic Interventions and Navigation Procedures The first
chapter provides an overview of fluoroscopy guided interventions. Problems physicians
are facing and which can potentially be overcome or minimized by computer aided
systems are discussed in detail. Furthermore, different imaging modalities used during
such procedures are introduced. These image modalities are of significant importance.
First, their understanding gives insights to many problems involved in the design and
development of a navigation system. Second, imaging modalities are not always
imposing problems but sometimes enable new ways of visualizations which are nowadays
not used to their full potential. In the end, a navigation system for fluoroscopic
interventions is presented. The required components of such a system are discussed and
an example of the working system is given.

Chapter 2: Previous Work After introducing the problem and a potential solution,
Chapter 2 gives an overview of the related work. It is divided in three sections where at
first image enhancement methods for tubular or curvilinear structures are discussed.
These methods are required because of the degraded image quality caused by low energy
X-rays. A summary of existing tool detection methods follows this section. The section
presents methods from various fields, not necessarily interventional imaging. A lot of
research has focused on the detection of curvilinear structures which can be streets from
aerial images and vessels or medical tools from clinical image data. The last section
presents the related work on tracking methods. The approaches to solve the tracking
problem can be categorized in two main branches. One branch is tackling the problem
with methods driven by image features and a second branch uses approaches which are
based on learned data.

Chapter 3: Tool Detection Chapter 3 on tool detection presents a novel
semi-automatic strategy for medical tool delineation. The presented method is based on
structural information contained in the second-order derivatives of image intensities and
shortest-paths in a graph induced by the structural information. At first the
mathematical properties of tools and their imaging process are presented in Section 3.1.
This follows a detailed discussion and comparison of enhancement techniques of tubular
structures and their mathematical formulations. Section 3.3 presents the actual method
for tool delineation. An overview of fully automatic methods is given in Section 3.4. It
presents two methods that can be used for the automatic generation of point sets
representing line-like structures and discusses the limitations of these methods. The last
Section 3.5 summarizes issues related to semi- and fully automatic methods and presents
early ideas of what is required for the successful implementation of fully automatic
detection schemes which are clinically applicable.

Chapter 4: Tool Tracking The main focus of the thesis is a novel scheme for the
tracking of medical tools. The method is presented in Chapter 4 which is divided in
several sub-sections. The first one, Section 4.1 presents how to model medical tools and



their shapes mathematically. It also presents how tool motions are modeled and
provides a scheme for their efficient evaluation. In Section 4.2 the objective function
that defines the optimization process of the motion estimation is presented. Objective
functions typically contain two components — a so called external energy which drives
the optimization process and a second one, called internal energy which imposes soft
constraints on the solutions. Choices for modeling internal energies are various and
discussed separately. After the energy function is defined, Section 4.3 presents how to
model the problem in a discrete framework in which the result is computed as a
maximum a posteriori (MAP) estimate of a Markov random field (MRF) formulation.
Experiments are part of the last section of this chapter. Section 4.4 contains
experiments on various synthetic as well as clinical sequences. Different experiments are
used to evaluate different aspects of the proposed solution and serve to support the
design of the final system.

Chapter 6: Conclusion The presented methods are not solving all issues occurring
during the detection and tracking of medical tools. The last chapter summarizes the
work and discusses unsolved problems and parts that require further improvements in
Section 6.1. The final part of the thesis, Section 6.2 provides novel ideas which can lead
to further improvements during the detection and tracking. In particular it will discuss
the feasibility of the integration of learning based methods into a MRF framework and
provide an example of such a method.






CHAPTER
ONE

INTERVENTIONAL RADIOLOGY AND NAVIGATION
PROCEDURES

1.1 Introduction

Interventional radiology is a medical branch in which diseases are treated minimally
invasive using image guidance. To this end, physicians introduce small catheters,
catheter-based devices or needles percutaneously without the need for surgery or general
anesthesia. Application fields for minimally invasive procedures and in particular
endovascular interventions are various and range from diagnostic (e.g, needle biopsies)
over treatment (e.g., percutaneous transluminal angioplasty) to palliative (e.g.,
transarterial chemoembolization) purposes.

The common task in these procedures is to navigate a medical tool like a needle or a
guide-wire to an intervention situs. This guidance task is mainly supported through
different imaging modalities which provide visual feedback for the interventionalist.
Along with the visual information physicians rely on their three-dimensional knowledge
of anatomical structures as well as haptic feedback while tools are steered towards the
desired area of interest.

Many cases which required surgical treatment in earlier days can today be treated
non-surgically. The minimally invasive treatment results in reduced risk for the patient.
It causes less physical trauma and leads to reduced infection rates, improved recovery
time and shortened hospital stays.

1.2 Clinical Routine

Image-guided and in particular endovascular interventions have become clinical routine.
Various procedures exist and they serve diagnostic, therapeutic and palliative purposes.
Some common treatments are the transjugular intrahepatic portosystemic shunt (TIPS)
placement, endovascular stent placement in case of abdominal aortic aneurysms (AAAs),
needle biopsies and transarterial chemoembolization (TACE) to deal with hepatocellular
carcinoma (HCC). The common difficulty during these procedures is the placement of a
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medical tool in the human vascular system. In interventional radiology this task is
image guided and the physicians can be supported by various imaging modalities.
Diagnosis and planning of interventions is generally supported by images of the patient.
Since these images are acquired before the intervention, they are referred to as
pre-interventionally acquired images. This kind of images is usually characterized by
high quality and consequently high X-ray dose exposure. The dimensionality of images
varies between 2D (e.g., chest X-ray) and 3D (e.g., magnetic resonance tomography
(MRT) or computed tomography (CT)).

During interventions, physicians have access to so called intra-interventional images and
again 2D and 3D images are used. Because it is important to reduce the radiation
exposure during procedures, lower doses are common which results in degraded image
quality (i.e. a low SNR). In interventional radiology fluoroscopic image sequences are
most common. Their purpose is to monitor patient anatomy and the assessment of
medical tool positions during the exam.

Not all image data used during interventions is of low quality. Two exceptions are
digital subtraction angiographys (DSAs) and 3D rotational angiographys (3D-RAs).
DSAs are commonly used and they mostly serve as roadmaps because fluoroscopic
images show vasculature only when contrast agent (typically iodine based) is injected
into the vessel system. Three dimensional image data such as 3D-RA on the other hand
is more seldom used. The acquisition requires relatively high X-ray doses and also much
contrast dye application to visualize the patient’s vessel anatomy. 3D angiograms can be
used to diagnose diseases (e.g., stenosis), for the verification of interventions (e.g., after
balloon angioplasties) and also as roadmaps. Both modalities, DSA and 3D-RA, do not
capture patient motion nor temporal changes of instrument locations which means they
are not directly! usable for navigation purposes.

The imaging modalities mentioned above are the most common during endovascular
interventions. Especially for needle interventions other modalities exist as well, in
particular ultrasound is used oftentimes to guide the physician. Image properties and
their corresponding acquisition processes, which are of most interest in this work, will be
described in more detail in the next section.

1.2.1 Imaging Modalities
Fluoroscopy

One of the most common imaging techniques used in interventional radiology is
fluoroscopy. The method provides physicians with a real-time X-ray “movie” of the
patient’s internal structures. Typical acquisition rates for fluoroscopy are 3.5, 7.5, 15
and 30 (continuous fluoroscopy) frames per second. Fluoroscopic imaging is used to
monitor instruments like catheters, organ movement, and vessel structures if combined
with contrast injection.

Even though, compared to classic radiography, physicians use low dose rates during
fluoroscopies, the overall absorbed dose can become relatively high due to the large

ndirectly, because they are oftentimes used as roadmaps.



amount of images being acquired and the length of the procedure. The introduction of
flat-panel detectors instead of formerly common image intensifiers lessens the problem
but the procedure still requires careful balancing between risk and potential gain.

Images acquired during fluoroscopy oftentimes suffer from a low SNR. This appears as
graining on the image and is caused by the low dose used for the image acquisition. The
high noise level in fluoroscopy is one of the major limiting factors hampering object
detection and it is directly affecting image processing in interventional radiology.

(a) Standard chest X-ray showing a catheter (b) Angriogram of liver vessels.
and no vasculature.

(c) Digital Subtraction Angiography. (d) Fluoroscopy showing a magnification of
a catheter and guide-wire.

Figure 1.1: Most common 2D image modalities in interventional radiology.



Angiography

Angiography is used for the visualization of hollow organs such as vessels, the heart or
the gastrointestinal tract. This imaging technique was developed in 1927 by the Nobel
Laureate Antonio Egas Moniz. Till then no technique existed to visualize the inside of
hollow organs since in general they are radio transparent.

To overcome this problem, radio opaque contrast is used. For the visualization of vessels
the typically iodine based contrast dye is injected into the vessel system or administered
through ingestion (e.g., barium). Shortly after the application of the contrast agent
images (see Figure 1.1(b)) of the patient are acquired (computed tomography
angiography (CTA), intra-interventional X-ray angiography). Alternatively, special
acquisition sequences can be used to visualize hollow sequences (magnetic resonance
angiography (MRA), ultrasound angiography).

Computed Tomography Angiography CT is an imaging technique where a
three-dimensional image is generated from a series of two-dimensional X-ray sections. A
CT system comprises several core components; the scanning unit consists of the gantry
with a tube (X-ray source) and (multi-row) detector system. Other components are the
patient table, the image processor and the command console.

During sequential CT acquisition, cross-sectional images are produced by scanning a
transverse slice (or more; on modern systems up to 320) of the body from different
angles while the X-ray source and the detector are rotating 360° around the patient.
Important parameters of a CT system are the number of images that can be acquired
during one rotation (number of detector rows), the rotation speed and the maximum
spatial resolution at which images can be acquired. The number of detector rows affects
the scanning times and the image resolution. A high rotation speed has several
advantages as improved image quality, patient comfort, and reduced amount of required
contrast agent during CTAs. The spatial resolution is directly affecting the size of
objects that can be visualized and thus improving CT based diagnostic.

State-of-the-art scanners offer up to 64-slice detectors and achieve rotation times as low
as 0.33 seconds. With these machines it is possible to acquire CT volumes with a spatial
resolution of down to 0.24 mm3. CT scanners can visualize the typical range of
Hounsfield units (HU), i.e. from —1000 HU (air, white) to > 400 HU (bone, black).
CTA is a method to visualize blood vessels by contrast injection during CT scanning.
The iodinated contrast material is typically injected in a peripheral vein and is rapidly
distributed throughout the arterial and venous system. A region in the aorta is
constantly scanned until a certain level of attenuation (=~ 150 HU) is reached, which
triggers the actual image acquisition (bolus tracking). Additional scans can be done
after a certain delay time. Contrast injection rates and injection duration as well as
delay times used for bolus tracking and successive image acquisition, follow certain
acquisition protocols that are fine-tuned not only to anatomy, patient, and disease but
also to new hardware [21].

Magnetic Resonance Angiography Magnetic resonance imaging (MRI) is a
primarily non-invasive imaging technique based manipulation and successive
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measurements of magnetic fields in the body. Because the method is not relying on
ionizing radiation the imaging technique is not harmful for the patient in terms of X-ray
exposure. Opposed to CT, MRI offers better contrast between different types of soft
tissue which makes it useful for various clinical problems and in particular vascular and
cardio-vascular imaging.

During the imaging process a strong magnetic field is used to align protons in the body.
Once the protons are aligned, radio frequency (RF) fields (i.e., electromagnetic fields)
are used to systematically change this alignment. When the fields are deactivated, the
protons fall back into their original spin-state and the energy difference between the two
states causes the release of photons with a specific frequency and energy. These photons
are then measured by the magnetic resonance (MR) detector and the physical
relationship between the field-strength and photon’s frequency allows to use the process
for imaging. Different tissues can be distinguished since protons return to their
equilibrium state at different rates, which can be measured too. In order to determine
the spatial location of the signals, magnetic field gradients are applied for slice selection,
row selection (phase encoding), and column selection (frequency encoding).

There are several MRA techniques, some of them involving a contrast injection as CTA.
Here, however, the contrast has to be paramagnetic extracellular, e.g. gaudolinium.
There are also fully non-invasive techniques for angiographic MR imaging by using the
flow property of blood (Time-of-Flight MRA, Phase-Contrast MRA). See Figure 1.2 for
an example of contrasted CTA and MRA slices.

Figure 1.2: Computed Tomography Angiography (left) and Magnetic Resonance Angiog-
raphy (right).

Cone-Beam Computed Tomography Angiography Cone-Beam CT which is also
referred to as helical (or spiral) cone-beam CT is a technique in which an X-ray source
rotates around the patient while acquiring a set of radiographies. Mathematical
methods such as the filtered back projection (FBP) or algebraic reconstruction
technique (ART) [37] can be used to reconstruct a three-dimensional representation of



the patient. The image acquisition can e.g. be performed with a modern C-arm system
in which the gantry is attached to a robot controlled arm which allows positioning with
six degrees of freedom. Alternatively, smaller and mobile C-arm systems exist which
allow to bring this technique into any intervention room or the operation theater.

The advantages of cone-beam CT include a reduced scan-time, dose reduction as well as
improved image quality and reduced cost compared to conventional CT. From an
interventionalist’s point of view another improvement is that it is possible to perform the
image acquisition in the intervention room without being required to move the patient.
Cone-Beam CTAs (sometimes also called 3D-RA or 3D X-ray angiography (3DXA)) are
acquired by performing the image generation after the application of iodine based
contrast agent. As it is common for other angiographic exams, the contrast agent is
either injected or ingested.

1.3 Problem Statement

This section presents which problems physicians and patients are facing during
endovascular interventions. Transarterial chemoembolizations (TACEs) serves as an
exemplary procedure performed by interventionalists on a daily basis.

Hepatocellular carcinomas (HCCs) are a common disease (cancer) of the liver. TACE is
usually performed on unresectable tumors. It is done as a safe palliative treatment or
while patients are waiting for a liver transplant. During the procedure a mixture of an
antineoplastic drug, an embolic agent and radio opaque contrast agent is inserted into
the vessels feeding the liver tumor.

While the physician is performing the intervention, he inserts a guide-wire into the
femoral artery in the groin. From there, the guide-wire is advanced through the aorta
via the truncus coeliacus into the arteria hepatica communis and from there into the
vessels feeding the actual tumor where the embolic mixture is released. Steering the

Figure 1.3: Angiographic intervention setup. The monitor shows a live X-ray video stream
(left) next to a DSA (right) which serves as a roadmap during the intervention. The object
on the left-hand side of the image is a flat-panel detector from a modern C-arm system.
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guide-wire involves passing through several vessel branches and the main difficulty is the
fact that blood vessels are radio transparent. The immediate question arising is how
interventionalists deal with this difficult situation.

TACE is performed under angiographic image guidance. It is common that at first,
when the patient is entering the intervention room, a cone-beam CTA is generated to
assess the exact location at which the embolic mixture should be released. Next, a DSA
(see Figure 1.3, right image on the monitor) is generated which serves as a roadmap
during the navigation task. The actual procedure is performed under constant
angiographic surveillance (see Figure 1.3, left image on the monitor). Whenever the
physician assumes to be close to a branching point contrast dye is release to visualize
the vessel structures in the vicinity of the catheter tip and in order to determine the
next steps. The catheter itself is advanced along the guide-wire. When the intervention
situs is reached the chemicals are released and the guide-wire and catheter are
extracted. A standard system setup can be seen in Figure 1.3.

The current procedure involves several problems. First, it requires much experience of
the interventionalist to perform the procedure in a relatively short time — and time is
crucial due to the constant expose to ionizing radiation. Second, the physician needs to
mentally transfer the observed flow information as perceived when injecting contrast
agent to the roadmap to be able to correctly assess the current guide-wire and catheter
tip location. There exist also problems related to the 2D imaging modalities used to
support the navigation task. When a vessel branch is aligned with the projection
direction spacial information is lost, because all 3D locations along that branch project
onto the same 2D image location. There is no way of assessing the tool depth and in
such a scenario, the physician must change the whole imaging setup and acquire a new
DSA since it is only valid for a specific C-arm configuration.

The intention of this work is to provide solutions and new insights required to create a
novel navigation system aiding physicians during endovascular procedures. Such a
system should aim at improving the overall navigation. It should prevent the need for
successive image acquisitions, the need for system reconfigurations (e.g., C-arm
angulation) and thus reduce the intervention time and the involved exposure to ionizing
radiation.

1.4 A Navigation System for Fluoroscopic
Interventions

In order to support physicians during endovascular procedures, various researchers have
come up with a variety of proposals. These can generally be classified into two different
approaches — those using a roadmap while trying to overlay it onto a fluoroscopic image
sequence [73, 52, 53, 38, 25, 1] and those trying to utilize a 3D-RA to directly annotate
the tool locations in 3D [77, 8, 27]. Both approaches rely on establishing a spatial
relationship between the fluoroscopic sequence and either a roadmap or a 3D-RA. One
of the main problems aggravating the development of navigation systems is the dynamic
nature of this relationship.
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The methods aiming at blending the fluoroscopic sequence with a roadmap require the
C-arm projection geometry to be known. The imaging parameters consists of intrinsic
parameters as source to image distance (SID), pixel size and field of view (FOV) as well
as extrinsic parameters, i.e. the C-arm orientation. Given the projection parameters, it
is now possible to create the roadmap image by either creating a projection of a 3D-RA
or by generating a DSA. Assuming furthermore a static scenario where the patient does
not move (breathing, heart-beat) these roadmaps can directly be mixed with the
fluoroscopic sequence because all data is generated under the same projection. Former
research has focused primarily on precision analysis [73, 52] as well as the effects of
image distortion [55, 68].

The second method is based on annotating guide-wire or catheter positions directly in
3D. Here, one needs to establish a spatial relationship between the two-dimensional
fluoroscopic sequence and a three-dimensional data set such a CTA or a 3D-RA. Two
ways to achieve this have been pursued so far — one approach based on biplane C-arm
systems [2] and a second method which tries to compute the 3D locations from only a
single view [77, 8, 27].

A common problem during the realization of such navigation systems is the dynamic
nature of the observed scenes where patient breathing and heart-beat are two exemplary
causes. The motion is problematic because it is not reflected in the static,
pre-operatively acquired image data (e.g. DSA, 3D-RA) that is used by the
interventionalists during the procedures. Dealing with the motion requires so called
tracking techniques for both approaches, those using roadmaps and those annotating

Robust 2D -3D

Backprojection Registration

Motion

. 3D Vessel Model
Compensation

Registration
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Figure 1.4: Components of interventional navigation.
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tool positions in three-dimensional image data.

In the remainder of this section we will focus on the approach offering three-dimensional
tool annotations and provide a detailed overview of the required components for such a
system. In general, endovascular scenarios cannot be assume to be static — tools are
moving and bending and patients are breathing, exhibit cardiac activity and are
oftentimes moving. Therefore, it is desired that a navigation system is capable of
dealing with such situations. It should be designed such that dynamic and non-linear
processes can be modeled and captured. Ignoring the image acquisition, such a flexible
navigation system requires 4 main components.

1. Deformable 2D-3D Registration Module: This module is required to
establish a spatial relationship between the two-dimensional roadmap (e.g. DSA)
and the three-dimensional image data (e.g. 3D-RA). Literature dealing with this
problem (e.g. [26, 29]) is still limited because the task is severely ill-posed. Given
only a single view, it is not possible to assess displacements in the projection
direction, i.e. in z-direction of the camera coordinate system. Theoretically, this
leads to an infinite number of possible solutions for such a registration and thus
such a system requires (soft) constrained optimizations processes. Length
preservation and deformation smoothness are two common ways of constraining
such a process. This module is depicted on the right in Figure 1.4 and labeled as
“2D-3D Registration”.

2. Deformable 2D-2D Registration Module: The deformable registration
between a key-frame from the two-dimensional fluoroscopic sequence and the
two-dimensional DSA allows to relate pixel positions in the key-frame to positions
in the DSA. This is an important step because so far, only the relation between
the DSA and the 3D-RA has been established but not the relation between the
fluoroscopic sequence and the 3D-RA. To our best knowledge, this particular
problem has not yet been addressed by any researcher but it is likely that existing
2D-2D registration methods such as [24] could be used to perform this task. It is
not even clear, whether a deformable registration is required at this step when the
DSA is acquired under the same projection as the fluoroscopic image sequence.
Given that the apparent motion observed in fluoroscopic videos is cyclic, there
exists a key-frame in the image sequence which was acquired in a similar cardiac
phase as the DSA and therefore offers maximal similarity. Furthermore, DSAs are
generated from two X-ray images — one with and another one without contrast
agent. The contrast free X-ray image is of the same modality as the fluoroscopic
key-frame which is another indicator that such a registration should be feasible.
The module is depicted at the bottom of Figure 1.4 and labeled as “ Registration
DSA-Fluoro”.

3. Motion Compensation Module: The motion compensation is the component
encapsulating the main contribution of this work. Compensation of apparent
motion is required because the fluoroscopic video sequence is not static. Patient
breathing and heart-beat as well as tool interactions performed by the physicians
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are just two examples causing this behavior. The term apparent motion is used
because only projections of the actual three-dimensional motion are observed. As
a consequence, the observed motion is non-linear and requires deformable tracking
techniques in order to properly recover tool motions. Exemplary difficulties arising
during the development of tracking solutions are a low SNR and thus degraded
image quality, the presence of other anatomical structures such as bone interfaces
resulting in cluttered background information and the fact that medical tools are
oftentimes only visible as tiny structures in the X-ray images which complicates
their image-based enhancement and detection. Having this module in place, it is
now possible to track medical tools in time which allows to relate any tool position
to a specific key-frame in the fluoroscopic sequence. If this key-frame is identical
to the one chosen in the Deformable 2D-2D Registration Module, each tool position
in the fluoroscopic image sequence can now be related to the DSA. The missing
step is to back-project the tool positions from the DSA to the 3D-RA which is
covered by the fourth module. The motion compensation module is depicted on
the left of Figure 1.4 and labeled as “Motion Compensation”.

4. Backprojection Module: The back-projection module is required to close the
final gap, i.e. to be able to relate tool positions in the fluoroscopic sequence to the
3D-RA. The problem with the back-projection is similar to the one mentioned for
the Deformable 2D-3D Registration Module. For each point in the image, there
exist infinitely many corresponding potential points in 3D. This first problem can
be overcome by segmenting the vessel tree V in the 3D-RA. When back-projecting
any point of the DSA being located on the tool and in a vessel, the back-projection
ray must intersect with a branch from the vessel tree V. The practical issue of this
solution is that the given scenario is idealized. It does not account for errors
occurring in the parameter estimation of other modules and it does not cover the
issue where a back-projected ray intersects V in multiple branches. Both issues
have been addressed by Bender et al. [9, 8, 28]. The back projection module is
depicted on the top-left of Figure 1.4 and labeled as “ Robust Backprojection”.

1.4.1 Motion Compensation Module Details

This section provides a detailed overview of the motion compensation module and its
required sub-modules. The main task of the motion compensation module can be
formulated as follows. Given initial tool locations in some key-frame pikey, determine the

tool positions p! in the current image Z; observed at time instant ¢. Formulated
differently, we seek to find a transformation 7; (linear or non-linear) such that

Py ="Ti o Py, (1.1)

where Py, , P = {p%, . ,pi‘/[} are the sets of tool positions at time instant t., and ¢.
The transformation 7; is mapping points from time instant ¢, to t. Typically, 7; is
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determined through energy minimization as

T, = arg mTin E (TO Ptkey,It) . (1.2)

Through application of the inverse transformation 7,7, it is possible to relate each tool
position p! from time instant ¢ to its corresponding position pikey in the key-frame.

In order to be able to solve Equation (1.2), one needs access to the tool positions Pric,
from the key-frame as well as the currently observed image Z;. The image access is not a
problem since modern C-arm machines allow direct access to the live image data
including all their acquisition parameters. A bigger problem are the tool positions —
they are not readily available. It will be shown that an overall of three sub-modules are
required in order to build a complete motion estimation.

Tool Detection: The first module deals with the initial tool detection. Optimally, the
tool detection should be fully automatic without any user interactions. This work makes
a first step in this direction and presents a semi-automatic initialization method in
Section 3.3. The approach aims at minimizing user interactions and relies only on the
selection of the two end-points of the medical tool. Starting from the two end-points,
the system traces a path through the corresponding image in order to inter-connect the
start- and end-point. This process results in a set of pixels Py, = {pikey, e ,pi\iy}
representing the medical tool in the key-frame. The methods required during the
detection as well as their mathematical models and the steps required for building a
fully automatic approach are discussed in Chapter 3.

Tracking: The second module provides a way of solving the minimization problem of
Equation (1.2). A common approach to this problem is to formulate the energy function
E such that it takes its minimum, when the tool locations P; at the current time instant
correspond best to the image data Z;. The quality of the fit can be measured in different
ways. A common approach is to generate some sort of likelihood data from Z; by
applying a function that turns pixel intensities into likelihood values being highest for
pixels belonging most likely to the medical tool and small otherwise. Alternatively, it is
possible to learn mappings from image intensities to cost function responses. In any
case, the optimization process requires regularization techniques to guide the
optimization process to tool configurations being physically meaningful. The underlying
module and details of different optimization and regularization procedures are described
in Chapter 4.

End Point Detection: Practice has shown that following these strategies is not
enough to lead to satisfactory results. In fact, any commercial realization will require a
third module dealing with the detection of the full tool, or at least tool tip. This
problem originates from the fact that during the intervention the appearance and in
particular the length of the medical tool changes dramatically and that none of the
existing approaches attacking the tracking problem can detect those changes. Shirley
A.M. Baert proposes a method [6, 4] in which the guide-wire or catheter positions are

15



iteratively refined. The tool length is increased in tangential direction until the endpoint
is advanced beyond the endpoint of the guide-wire or catheter.
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Together, the three modules described above build the motion compensation module.
Applying a two-step procedure of tracking and tool extension after the system is
initialized results in the desired transformation 7; which allows the system to detect and
transform tool positions computed at time instant ¢ to the key-frame and from there to
the pre-interventionally computed DSA. In applications, where an overlay of the DSA
with the current fluoroscopic view is required, the computed transformation could be
used to transform the DSA image. This allows a blending in which the apparent motion
would be compensated.
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CHAPTER
TWO

PREVIOUS WORK

Chapter two covers previous research performed in different areas which are relevant to
this thesis. In Section 2.1 methods on enhancement of tubular structures are discussed
and summarized. These are of particular importance, because they are directly affecting
all components required in the detection and tracking pipeline. The next part,

Section 2.2 provides an overview of work related to the detection of medical tools.
Finally, the recently growing interest of work in the field of tracking is covered in
Section 2.3.

2.1 Enhancement of Tubular Structures

Tubular structures are elongated line-like structures appearing at a specific width. These
objects are also referred to as curvilinear structures which are important for a multitude
of applications. In aerial images e.g., roads, railroads and rivers appear as curvilinear
structures. Other examples come from medical imaging. Here, tubular structures appear
oftentimes in angiograms, where vessels are visualized in 2D or 3D. In ophthalmology
fundus images are of special interest because they contain indications about diseases of
the eye and the primary diagnosis indicator are changes and abnormalities of
vascularization. Performing measurements on vascularization is based on techniques for
the analysis of tubular structures. Of most importance for this thesis is the enhancement
of medical tools and in particular the enhancement of needles, guide-wires and catheters.
Because the enhancement of tubular structures is of such importance in various
applications the topic received a considerable amount of interest in the past. The main
focus of this section are mathematical methods for enhancing the visibility of curvilinear
structures. Such an enhancement is a common pre-processing step for segmentation
methods and the enhancement can be performed such that the output image intensities
can be interpreted as likelihood values. In such images high intensities correspond to
pixels having a high probability of belonging to a line-like structure and low intensities
represent background pixels. Oftentimes, methods for extracting centerlines [44] of
tubular structures have some overlap with those enhancing the structures. For this
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thesis image processing methods enhancing those structures are of primary interest and
those are the methods which are revisited in this section.

In his work on “Finding Edges and Lines in Images” [14], Canny discussed not only edge
detection methods but also the enhancement of ridges and valleys. When interpreting
images as height fields, where the intensity value of a pixel corresponds to a height
value, curvilinear structures appear in this landscape of image intensities either as
mountain ridges or a valleys. According to Canny, “the only reason for using a ridge
detector is that there are ridges in images that are too small to be dealt with effectively
by the narrowest edge operator”. The scenario he is referring to is exactly what can be
observed for medical tools since they appear only as tiny and thin structures within the
medical images. Canny furthermore observed, that accurate estimates of ridge directions
are much harder to obtain than edge-directions. He states that the principal curvature,
while being normal to the ridge direction, is a much less reliable quantity to measure
from even in smoothed images. As a consequence Canny concludes that the detection or
enhancement of curvilinear structures requires several oriented filer masks at each point.
Since this early work, several strategies for the enhancement of ridges (or valleys) have
been investigated.

Koller et al. [39] propose to combine first and second order image filters for the
enhancement of ridges. The authors build a line enhancement function by using the first
derivative of a Gaussian G/ (x) which is a well known edge detector [13]. Given a bright
bar profile of width w which serves as an approximation of an intensity ridge, the
Gaussian derivative G/ (x) enhances the ridge edges on the left- and right-hand side of
the profile. Following this observation, one can create shifted filters £; = G7,(z — %) and
E, = =G (x + %) which, when convolved with the image, detect the left and right
profile edges at x = 0. The authors combine the convolution responses in a non-linear
way to overcome multiple line responses and sensitivity to edges, and the final
one-dimensional filter becomes

R(x) = min (pos(E; * f(z)), pos(E, * f(x))) . (2.1)

Switching from bright (ridges) to dark (valleys) profiles, affects the shifted filters in their
sign and the function pos(z) maps all negative values of = to zero and acts as an identify
operator on all other values. In 2D, the filter slightly changes because only the gradients
orthogonal to the ridges must be evaluated. To achieve this, the responses of the filters
E; and E, have to be projected on the ridge-normals which are the directions of principal
curvature of the ridge. These direction correspond to an eigenvector of the Hessian of
image intensities in each pixel which is covered in more detail in Section 3.2. Another
topic which will be covered in this section is the choice of the smoothing parameter o.
A different approach is proposed by Palti-Wasserman et al. in [58]. They suggest to use
a modified Laplacian as well as a modified Marr-Hildreth [36] operator in order to
enhance guide-wires while reducing the influence of noise. The authors achieve this
behavior by adapting the original filters such that they act more globally. Each point is
compared not to its immediate 8-neighborhood (in case of 2D data), but to more distant
points in the image. The optimal filter size is depending on the width of the guide-wire
though the authors suggest an empirical value of 11 pixels. In addition to modifying the
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filters, the method is based on a fuzzy zero-crossing detection. The detection method is
fuzzy in the sense that a pixel is marked as a zero crossing as soon as it has an intensity
value smaller or equal than a specific threshold. The authors’ second filter, the modified
Marr-Hildreth filter is a smoothed version of the modified Laplacian. It requires an
additional parameter in order to control the amount of smoothing.
Frangi et al. [22] proposed another measure, which is based on the eigenvalues of the
Hessian matrix. The Hessian matrix H describes the second-order structure of local
intensity variations around points of an image. The eigenvalues of H correspond to the
principal curvatures and for line-like structures the eigenvector corresponding to the
smallest absolute eigenvalue points along the vessel. The approach is an extension of the
works of Sato et al. [66] and Lorenz at al. [50] who also use the eigenvalues of the
Hessian to locally determine the likelihood that a vessel is present. Frangi et al.
modified these works by considering all eigenvalues and by giving the vesselness (or
line-likeliness) measure an intuitive, geometric interpretation. Their measure consists of
three components in 3D and two in 2D respectively. Assuming sorted eigenvalues
IA1] < [A2] < |As], the 3D specific component is based on the ratio of the largest absolute
eigenvalues
|z

Ra W (2.2)
The measure is used to distinguish between plate-like and line-like structures and will be
zero for the latter. The second component applies to the 2D and 3D case and measures
the deviation of the observed structure from a blob-like or circular structure. It is
computed as

A
Ry — N (2.3)

VALY '

A last component is used to evaluate the amount of information contained in the Hessian
by computing the Frobenius norm of H. For a real and symmetric matrix, the measure is
computed as S = /> A2, This value will be low in background areas where no structure
is present and it becomes larger in areas of high contrast. The final filter response is
built up by combining the values through Gaussian distributions resulting in a scalar
filter response which can directly be interpreted as a likelihood value. The problem this
filter poses for the user is the choice of three parameters (two in the 2D case) for the
Gaussians. Further details of the choice of these parameters are discussed in Section 3.2.

2.1.1 Scale-Space Theory

These days, most of the research dealing with the detection or enhancement of
curvilinear structures in 2D or 3D utilizes in some way differential geometry. Of special
interest is the Hessian matrix (here exemplary for the 2D case)

Lo T
[Iwy Iyy ( )

21



which describes the second order structure of intensities of an image Z. A first problem
is that the computation of the Hessian requires second-order differentiation of the image
intensities and this differentiation process is ill-posed. The problem is ill-posed because
of noise introduced by the acquisition process which is unavoidable. Consequently,
differentiation of images requires regularization and a detailed analysis of this
observation has been presented by Torre and Poggio [74]. The authors conclude, that
Gaussian derivative filters are nearly optimal filters for computing image derivatives. A
problem that arises in this context is how to choose the parameter o — the scale — of the
Gaussian.

Where is now the connection between scale-space and the enhancement or detection of
line-like structures? An intuitive idea, of why different scales are required here is
because line-like objects are viewed from different distances or have different physical
sizes. Both cases result in the images of the objects to be of different size. Hence, the
detection of tubular objects requires a way to define the scale, i.e. the size of the
line-like structure in the image. This scale is typically unknown and Witkin [82]
proposed to obtain a multi-scale representation of the image. This multi-scale
representation is generated by the convolution of the image with different Gaussian
filters, where the parameter o defines the scale. This pencil of filtering functions and
their responses define the scale-space.

When performing analysis in scale-space, in particular when trying to select “optimal”
scales, additional modifications are required. Lindeberg [47, 48] analyzed the problem of
optimal scale selection and introduced so called v-normalized filters. In Lindeberg’s
framework a one-dimensional y-normalized Gaussian filter is written as

2
tw/2L exp i (2.5)
V27t 2t

Here, the parameter t = o is referred to as the scale space parameter. The
normalization constant v is used, to ensure that a Gaussian based filter response yields
only a single maximum within a potentially limited scale support. In some scenarios,
the parameter can also be used to modify the response function’s shape such that the
maximum is reached exactly at a specific scale. Specific examples and mathematical
details will be presented in Section 3.1.

2.2 Detection of Guide-Wires and Needles

Tracking algorithms estimate the motion of an object between two points in time. Given
an object location at time ¢;_;, the algorithms estimate the position of the same object
at another point int time ¢;. When such an algorithm is initially executed, the spatial
information at some time ¢ty is needed. This phase, when no a priori knowledge is
available is oftentimes referred to as the initialization phase. During this phase, some
way is required to detect the object, i.e. to determine its initial position in space. In the
scenario of medical tool tracking, this means to be able to detect the object in the image
only based on limited constraints regarding its position. Due to the limited constraints,
this problem is much more difficult than the actual tracking step.
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If a fully automatic method existed to solve this problem without a priori knowledge,
tracking and other post-processing steps would not be required anymore. Unfortunately,
the problem is so ill-posed, that currently no fully automatic methods exist which
perform this task so reliably, that it could be applied in clinical practice. But why is the
problem ill-posed? And why is the problem at all underlying any constraints? The
reasons for the problem to be ill-posed are manifold. The list below gives a brief
overview of some of the reasons:

e Multiple Tools: A first problem is that during minimal invasive procedures
oftentimes multiple tools are used. Using for instance several catheters is not
uncommon during cardiac interventions. All of them might be visible and without
any user interaction it is not clear, which of these tools is the object of interest. A
possible approach to handle such a situation is to use all potential candidates.
This, however, would lead not only to a more complicated tracking algorithm but
also to reduced performance regarding the run-time. Considering the fact, that the
tracking is only one of many components required for a navigation application, it
is important to minimize computational requirements.

e Background Clutter: For a human observer, background clutter is usually not a
problem. This is especially then true, when observing dynamic scenes like for
instance a video stream as it is the case during fluoroscopy guided interventions.
For a computer on the other hand side the situation is different. In fluoroscopic
images, anatomical structures like bone-tissue interfaces can have a quite similar
appearance as guide-wires or needles. Therefore, background clutter ultimately
causes similar problems as Multiple Tools do. The initialization algorithm requires
guidance to be able to select the correct tool of interest.

e Noise: The detection process is usually based on an early preprocessing stage in
which candidate pixels potentially belonging to tools are highlighted. As has been
discussed before in Section 2.1 many methods for the enhancement of tubular
structures rely on second-order image filters. These filters get unstable in the
presence of noise which was also discussed by Canny [14] and generate spurious
responses when the SNR is low. Additional feature responses created due to noise
are more difficult to deal with than those created by multiple tools. Simply adding
all false positive responses to the tracking algorithm does not only increase the
run-time but it also leads to noise in the motion estimation. This is the case
because noisy background cannot be assumed to exhibit motion which is free of
noise.

e Tool Size: Guide-wires and interventional needles have small diameters resulting
in bad visibility within fluoroscopic sequences. The physical diameters of
guide-wires are typically in the range of 0.5 to 1.0 mm and a common biopsy
needle size is 14-gauge (i.e. 2.108 mm). The resulting projections are often just
around pixel wide and even result in multiple disconnected lines. This has
implications on image filtering techniques because scale-space filter responses or
for many methods designed such that they take their optimal response at a scale
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that corresponds to the ridge radius, i.e. half the tool diameter and thus the scale
can be as 0.5 pixels. When using such small scale values for image filtering, the
influence of discretization effects is strongly degrading the responses and results in
noisy responses.

e Temporal Averaging: In order to improve image quality hardware-vendors of
medical imaging devices such as C-arms integrate signal processing algorithms in
their machines. One common method to reduce the speckle-noise observed in
low-dose X-ray videos is the use of temporal averaging. A straight forward
approach of this methods takes a number of images in a fixed size time-window
and computes the average of these images. Indeed, this method reduces the
speckle-noise but is not without drawbacks. The main problem behind this
method is that in dynamic scenes with apparent motion, temporal averaging will
cause phantom responses of objects resulting from different spatial locations of
these objects. Such phantom locations are disturbing detection systems because
again, it is not clear which responses are the correct ones belonging to the actual
tool position.

All these issues make the detection task a difficult problem. The remainder of this
section gives a brief overview of how researchers tried to solve the aforementioned issues
or at least how to reduce their influence. The approaches are quite different ranging
from semi-automatic methods to attempts at fully-automatic procedures.
Palti-Wassermann et al. [58] propose to use a semi-automatic method for the detection
of guide-wires which is based on fitting second-degree polynomials in “limited active
windows”. Initially, the authors pre-process the input image with modified Laplacian or
Marr-Hildreth filters. The filters are modified such that they enhance intensity ridges
instead of corners. This is achieved by altering the influence range of the original filters
in combination with an adapted method for the labeling of zero crossings. A fuzzy
labeling process of zero-crossings allows to turn the image into a binary form where only
potential ridge pixels are colored white and all other pixels are marked as black. In a
next step, the authors approximate the guide-wire shaped by a second-degree
polynomial y = ax? + bc + ¢. To calculate the parameters a, b and ¢, three points
belonging to the guide-wire need to be known. This requirement can be reduced by
assuming two points, e.g. the end-points of the guide-wire are provided by the user.
Once this condition is met, guide-wire locations can be represented by a single
parameter and the authors chose to use b as their unknown variable. The parameter
estimation is performed in sub-windows along the curve by applying a Hough
transformation to the local window. After this transformation, the parameter b
corresponding to the guide-wire is selected as the value corresponding to the maximum
of the histogram of b-values in the sub-window. Given this parameter, the second-order
polynomial representing the guide-wire part passing through the sub-window is
completely known. In a next step, the sub-window is advanced further along the curve
and starting from the known two overlap points, the procedure is applied iteratively
until the local window is finally placed on the guide-wire’s end point. The authors use
further techniques such as dynamic histogram size, b-value thresholding and
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pixel-grouping to enhance the detection method. Regarding future work, the authors
argue that “time must be added” to increase the level of automation.

Carsten Steger developed a robust and fast method in his research on the detection of
curvilinear structures [70, 71]. The method results in multiple sets of points, where each
set represents one line. Multiple properties are assigned to each point. The properties
include the point’s sub-pixel location, the line normal, line width, its strength and its
type (end-point, center-point or junction-point). The algorithms starts by computing
the line’s normal directions for each point. This is done in the same way as during the
enhancement of tubular structures. The direction (n,,n,) is computed as the
eigenvector of the Hessian of image intensities which corresponds to the eigenvalue of
maximum absolute value. In a next step, the point’s sub-pixel location is computed by
inserting (d,, d,) = (t ng,tn,) into the Taylor polynomial

1
I(a+ dovy +dy) = T(.y) + (don dy) @) + 5 (e, d,) @y éfy/) (jy) (2.6)
and setting the derivative along ¢ to zero. It turns out, ¢ can be compactly represented
as a function of the line normal and first- and second-order derivatives. To ensure, that
the final pixel location is within the unit-circle centered at (z,y), only points with

te [—%; %] are accepted as line points. This first step results in a sub-set of the initial
image pixels and associated sub-pixel locations (z + d,, y + d,).

In a next step, pixels are linked together to form line segments. The system stores for
each pixel, its sub-pixel location, its direction and its ridge strength. These values are
then used to perform the actual linking. First, depending on the edge direction, the
three candidate neighbors are selected for each pixel. This procedure is depicted in
Figure 3.12. From the potential neighbors, the one that minimizes d + ¢ is chosen.
Here, d = ||p1 — p2||, is the euclidean distance between two sub-pixel points and

p = |an — as| € [0,7/2], is the angle difference between the two points. In his work,
Carsten Steger used ¢ = 1 throughout his experiments. Similar to hysteresis
thresholding, the linking process is controlled by two thresholds. A first, high threshold
is used to determine whether a new line segment is created. As long, as the system
detects a pixel with a second directional derivative being bigger or equal to the high
threshold. A second, lower threshold is used to determine when the tracing of a line
segment is terminated. In case all potential neighbors have second directional derivative
being lower than the second threshold, the current line segment tracing is stopped. The
edges and the width of line segments are determined similarly to what has been done for
the sub-pixel locations. The paper proposes additional methods in order to deal with
lines that having asymmetrical profiles. The evaluation has been primarily performed on
aerial images though the work also contains examples from a coronary angiogram. Once
correct parameters are chosen, the method is fully automatic. As it is often the case,
good parameters can be estimated from properties of the expected line profiles. The
problem on the other-hand side is that the method is detecting many points and
segments resulting from background clutter. Currently, the correct lines must be chosen
manually, or it must be accepted that only parts of the medical tools are extracted
fully-automatically. Similar to the previous approach, a stable fully-automatic system
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needs to incorporate time information during the detection process.

The algorithm presented by Can et al. [11] focuses on vessel segmentation in fundus
images. The authors propose a tracing algorithm which works recursively given a set of
initial seed points. Seed points are detected by sampling the image along a grid of
one-pixel-wide lines and by detecting local gray-level minima along these lines. This
approach will choose points lying most probably on vessels which appear as dark tubular
structures in fundus images. Once the seed points py are computed, the algorithm
continues by recursively adding new neighbors p, to the seeds. Here, k is representing
the time-step or iteration. Vessel directions s, are discretized into 16 fixed orientations,
one every 22.5°. To determine the direction s; for a point py, directional filters are
applied on the left- and right-hand side of the vessel, orthogonal to the currently probed
direction s. These filters are not only applied for different potential orientations s but
also at different distances to the current centerline location p;. The left- and right-hand
side filter searches result in responses Rpax(s) and Lyax(s). The optimal orientation is
chosen as !

shi1 = arg max (max (Rmax(s), Lmax(5))) (2.7)

and the tracing follows the strongest ridge by setting the new position vector

Pk+1 = Pr + augyq. The vector uy 1 corresponds here to the unit vector pointing in the
direction defined by si.1. The iterative procedure is stopped when a new point py; is
located outside the image or when a previously detect vessel intersects the current one,
or when the sum of the filter responses falls below a certain threshold T,

| Rinax (Sk+1) + Lmax(Sk11)] < T. Additionally, the authors took care in their method to
develop approaches to extract branching and cross-over points while aiming at a high
level of automation and robustness. To summarize, the method proposed by Can et al.
uses vessel tracing which does not require global image filtering but only local filter
application. The method is capable of extracting the whole vessel tree from fundus
images while offering good performance both in terms of robustness and run-time.
Nonetheless, the method can not be seen as a fully automatic implementation for vessel
or tool detection. The robustness is depending on the choice of several parameters such
as grid size, neighborhood size, and amongst others the step size used to select the next
neighbor. Despite the parameter choice, the algorithm is potentially detecting or
segmenting more candidates as are of interest for the application of guide-wire tracking.
No improvement has yet been made on detecting and removing false positive
segmentation results.

Another algorithm based on tracing vessels is proposed by Schneider et al. [67]. The
authors use a Hessian based algorithm for the segmentation of vessels. The method is
generic and can also be applied to the detection of medical tools such as guide-wires or
needles. The idea is based on using not only the eigenvalues of the Hessian matrix of
image intensities but also the eigenvectors as well as a likelihood image (e.g. Frangi’s
[22] vesselness). Given initial seed points, the algorithm propagates a wave front in the
direction of the eigenvector corresponding to the smallest absolute eigenvalue. The

!The formula has been slightly rewritten. Its orignal can be found in [11], in Equation (7).
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segmentation result keeps growing iteratively until the following boolean criteria is
fulfilled:

T/
(‘V1 Vi

<o) V (V< O0) A >0y, VA < 0,)) (2.8)

The first term is corresponding to a smoothness criterion and ensures that neighboring
points exhibit similar directions. The second, two-component term ensures, that either
the likelihood of the currently selected point is high enough, or that the eigenvalues
exhibit characteristics corresponding to a bifurcation. The last term, the bifurcation
check is required because it is common that eigenvalue based vesselness measures are
degraded on bifurcations. The authors coined the resulting vessel or tool representation
as streamline representation and argue that it provides additional information about the
global object shape. One example are length and density maps. The length map
associates to each pixel the length of the longest fiber crossing its location. Similarly,
the density maps represents for each pixel a counter of how many fibers passed through
its location. So far, the procedure does not result in a single pixel wide segmentation
and thus rely on additional thinning techniques to create a representation of the center
line only. The thinning is performed by iteratively removing pixels that do not fulfill
certain criteria depending on the current pixel’s density and the expected object length
and uniqueness. Finally, the authors propose a method that allows the detection of
catheters and their removal from vessel images. The idea is based on heuristics
regarding the length of the catheter and its shape. The authors claim that catheters
typically pass through the whole image and “have a rather straight shape with small
constant curvature”. The authors assess the curvature by fitting B-splines to streamline
candidates and by computing curvature responses analytically on the estimated B-spline
curves. Angular changes and the segment length are then computed against empirically
estimated values in order to classify a segment as being a guide-wire or not. Altogether,
the method is promising but still requires user interactions. In case seed points were
detected automatically, one would be facing the same problem as before — segmentation
results from the anatomical background without obvious ways to detect or remove them.
A different, learning-based approach for the detection of guide-wires has been proposed
by Mazouer et al. [54]. As opposed to their previous work [7], the authors extended the
new method such that it allows user-interactions to constrain the detection process. The
method allows to follow two distinct paths for the guide-wire detection. A first path
allows to perform a fully-automatic detection which can be refined by interactively
adding additional constraints. The second path performs already the initial detection
based on constraints provided by the user.

The overall system consists of several modules. In the beginning constant length
segment candidates are extracted by a low-level segment detector. To each segment
three parameters (z, vy, 0) are associated, where (x,y) is the segment location and

0 € [-90°;90°] the segment orientation. The segment detector is based on Haar features
and uses a probabilistic boosting tree (PBT) for the detection process. The second
component is a curve classifier, again based on a PBT. The curve classifier is used to
model the shape and appearance of an n-segment curve. In the initial work by Barbu et
al. [7], the probability of a guide-wire consisting of segments s; to s,, and end-points xp
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and xg is computed as
P(G(s1,. .., 80, 2p,25)) = P(C(s1,. .., 5:)) Pp(zp) Pe(vE) - (2.9)

The guide-wire with the highest probability is reported as the final localization result
when the fully automatic procedure is being used. For the path that allows user
interactions, Mazour et al. introduced a novel scheme. So far, the method is based on
segments s, and probabilities P(s;, s;) of connecting two segments. User inputs are
provided as two dimensional point coordinates (x,y) on the guide-wire. In order to be
now able to incorporate these coordinates into the probability framework, probabilities
of connecting a given point with already known segments is required. These
probabilities are computed based on a so called extension field (EF) introduced by Guy
et al. [30]. Once the missing probabilities are available, dynamic programming (DP) is
used to connect the segments as well as the user inputs.

In their evaluation the authors report false detection rates of below 5% as soon as five
user interactively selected points are available. Given the same number of user
interaction, the missed detection rate reaches similar values. As an average annotation
time for full guide-wires including loops the paper reports about 6.23 seconds.

The methods above represent more than 10 years of research and constitute only a
fraction of what has been done in the field of ridge detection. The applications are
various ranging from aerial image analysis over the detection of vasculature to the
detection of medical tools. The approaches range from early image processing and image
filtering techniques over approached using ridge tracing to learning based methods
including hybrid solutions which aim at utilizing the benefits from all worlds. There is
still a trend towards semi-automatic methods that allow user interactions because for
many applications the fully-automatic approaches do not yet meet the strong real-world
requirements. In particular the robustness, i.e. being able to distinguish spurious
line-like structures from the desired objects is often-times difficult. Since so far, all
methods are based on static images, future work is probably going to investigate the
integration of temporal information which might give additional clues about how to
detect and remove noisy image structures.

2.3 Tracking of Guide-Wires and Needles

In this section existing approaches are discussed which mainly deal with the problem of
tracking guide-wires during fluoroscopic interventions. The problem is yet unsolved and
in no commercially available system integrated. First publications working on the idea
of enhancing navigation during fluoroscopic interventions appeared in the mid 80s — that
means we are already looking back at a quarter century of research. Since then, a
variety of work has been performed in the direction of navigation aids and on the
enhancement and detection of medical tools. Surprisingly, image-based (deformable)
tracking of medical tools has only relative recently received growing interest and it
seems as if it still keeps growing.

Baert et al. [5, 3] propose a guide-wire tracking procedure based on energy minimization
of a B-spline parameterization. The method is stratified, i.e. the motion estimation is
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performed in two steps. At first a rigid transformation of the guide-wire is estimated
which is followed by computing the remaining deformable component.

The rigid transformation, here translation only, is determined by creating a binary
template from the currently known guide-wire positions. Once the template is given, the
optimal location in the new frame is determined by maximizing the template’s cross
correlation within a certain search region in the new image. The cross correlation can be
computed on the original image intensities or some feature image highlighting line-like
structures.

The deformable motion component is estimated by energy minimization using Powell’s
direction set method. To this end, the guide-wire shape is approximated by a
third-degree B-spline curve defined as

p
Clu) =Y Nig(w)P, 0<u<l. (2.10)

i=0
In the papers of Baert et al. [5, 3, 4] 3 or 4 control points were used to model different
guide-wire shapes. The optimization is now carried out, by finding displacements d; for
each control point P; such that the displaced curve corresponds in an optimal way to the
current fluoroscopic frame. Because mere image based constraints lead to an ill-posed
formulation, the deformed curve must adhere to additional geometric constraints. The
optimization is formulated as an energy minimization and the energy function models
the aforementioned components by external and internal forces.
The external forces are based on feature images F'. These are constructed by enhancing
line-like structures with and without using directional information of the initial spline
position. The structures are enhanced in unprocessed images, in background-subtracted
images as well as in images which are preprocessed by coherence enhancing diffusion
(CED). As the internal energy the authors have chosen to penalize the curvature s of
the curve at a given point. The overall energy is formulated as

E= f% (ar?(i) + F(i)) 1(i) - (2.11)

Here, n = 100 is the number of samples used along the spline curve. The weighting
parameter o = 6.25 is used to control the influence of the internal energy. F(i) and x(i)
are the values of the external and internal energy for the ¢-th sample point on the curve
and [(7) can be interpreted as the integration step.

For this work it is of most interest to note that the authors conclude that Hessian feature
images allow to achieve results with a precision “similar to the inter-observer variability”.
This indicates that it is not essential to use advanced preprocessing methods such as
CED which is advantageous because such methods would lead to longer processing
times. The authors report running-times of about 5 seconds per frame and suppose that
a reduction by an order of magnitude is possible after optimizing the method.

Slabaugh et al. [69] present a similar approach. The authors are also using a stratified
approach, i.e. perform a rigid as well as a deformable registration and they are also
modeling guide-wires as B-splines. Besides these similarities, the work presents various
novelties. As before, the curve locations are determined by energy minimization. Here,
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the authors propose to use two regularization terms. The first regularization term
minimizes the curve’s length while the second one tries to enforce that the curve’s length
stays as close as possible to some initial length Ly. The data term is integrated in the
same way as the one presented by Baert et al. though in this work, a different type of
image enhancement is suggested. The overall energy in this work can be expressed as

2
E:wl/Fds—i—wg/ds—i—wg(/ds—L()) , sel0,1]. (2.12)
C c C

In this equation, C' is representing the curve, s € [0, L] is the arc-length parameter and
L the contour’s length. The first addend corresponds to the external energy and ensures
that splines stick to features detected in the X-ray image. The second term is by the
authors referred to as smoothness, though it is effectively representing the curve length.
Only in combination with the third term, the length preservation, the latter ensures
some level of smoothness of the curve. To summarize, the energy term tries to guide
curves towards image features while preserving an initial curve’s length and possessing a
certain smoothness.

After derivation in a differential framework and after re-parameterizing the curves as
B-splines and discretization, the energy function can be minimized with any gradient
based optimization as e.g. gradient descent. As opposed to Frangi’s vesselness measure
or CED enhanced images as use by Baert et al., this work proposes to use phase
congruency images for the data term because they are reported to be less sensitive to
contrast than differential techniques. However, a direct comparison between different
feature images as in the previous work is not provided. The method has been evaluated
on 158 frames with a success rate of 93% and an approximate processing time of 175
milli-seconds.

A quite different, learning-based approach has recently been presented by Peng Wang et
al. [79]. Here, the authors incorporate learning-based measurements for solving the
tracking problem. Again, guide-wires are modeled by B-splines and also in this work the
guide-wire motion is decomposed into rigid and non-rigid motions which are estimated
separately.

Based on a Bayesian framework, the authors propose two energy functions which are
used for the rigid tracking and the deformable tracking, respectively. The posterior
probability is re-written as

P(Ty(x)|Z;) = P(I'¢(x)) <w1P(Zt\x1) +wyP(Z|zN) + Tmia ZP(Zt\xi)) . (2.13)

=2

In this equation, the prior P(I';(z)) is a function that penalizes the distance between the
current curve [';(z) and the previously observed curve I';_;(x). The second term
accumulates the likelihoods P(Z;|x;) of individual points x; on the guide-wire. In
addition, it introduces separate weights for the end-points of the curve. The latter is
useful to deal effectively with open curves.

Two different likelihood formulations are introduced for P(Z;|z;), a learned
measurement P%(Z;|z;) and an appearance based measurement P%(Z;|z;). The learned
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measurement is computed from the numerical output f(z,z;) of an AdaBoost classifier
for any given point x;. It takes its maximum, when the classification value of f(z,x;) is
maximal. The AdaBoost classifier is trained with a set of offline collected data.
Appearance based measurements are evaluated by the likelihood P*(Z;|x;). Here, the
likelihood becomes maximal, when the image patch centered at x; in the current frame
is most similar to the patch centered at the corresponding location in the previous (or
alternatively initial) frame. The general likelihood term is computed as

P(Z|x;) = PYZy|x:) P* + P*(Zy|x:) P, (2.14)

where P? and P? are priors for the two types of measurement models. Wang et al.
propose so called kernel-base measurement smoothing for the likelihood functions. This
additional modification allows them to perform a hierarchical and multi-resolution
tracking and the details can be found in [79).

During the solution of the rigid-tracking, the authors maximize the posteriori based on
Equations (2.13) and (2.14). This is not the case during the estimation of the
deformable component. In the latter case, additional terms for the regularization of the
problem are introduced. These terms are integrals of first- and second-order derivatives
of guide-wire curves, and act as guide-wire smoothness priors.

The algorithm has been evaluated on 47 clinical sequences. It achieves an overall
guide-wire tracking precision of 1.8 pixels and is currently processing data at 2 frames
per second (i.e. 500 ms per frame). The authors claim that near real-time speed can be
achieved with an optimized implementation based on multi-threading and GPU
accelerations. Learning appearance models or likely deformations of guide-wires seems
like a promising direction though currently they impose the additional difficulty to meet
required real-time constraints.

Table 2.1: Overview of different guide-wire tracking methods.

method parameter likelihood prior stratified fps @
estimation
Baert [3] continuous feature image (Hessian, curvature v 0.2
CED, ...)
Slabaugh [69] continuous feature image (phase curvature & v 5.7
congruency based) length changes
Wang [79] coarse-to-fine, AdaBoost classifier & displacements v 2
exhaustive intensity differences & derivative
norms
Method A discrete feature image (Hessian & length changes - 20
gradient based)
Method B discrete SVR of orthogonal intensity  length changes = 1.5
profiles

@ The given run-times cannot directly be compared since they are assessed on different systems.
They serve mainly to get an idea of the magnitude of the algorithm run-times.

To summarize, all methods dealing with guide-wire tracking are using B-splines for
modeling curvilinear medical tools (guide-wires, catheters and even needles since they
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may bend). Furthermore, it is important that the methods presented in this work as
well as the aforementioned methods are tracking a segment of a medical tool while
trying to prevent that this segment is vanishing. This implies, that all methods may
require an additional procedure to perform the full tool detection or at least the tool-tip
detection. A possible approach of dealing with this end-point detection is presented by
Baert et al. [6].

The most important differences between the individual methods are summarized in
Table 2.1. Here, the parameter estimation column is intended to provide a rough
classification of the underlying optimization process. Entries of the likelihood (external
energy, data term) column are meant to be read as “is based on” or as “is a function of”
and the entries of the prior (internal energy, regularization) column list which
geometrical properties the authors are minimizing in order to constrain the set of
possible solutions. Some approaches (so called stratified ones) decompose the problem
into a rigid and a non-rigid motion and solve both problems individually whereas others
represent the whole curve motion by a single displacement field — the second last column
stratified denotes to which of these two groups the method belongs. The last entry of
the table is intended to give the reader a rough idea of the magnitude of the individual
algorithm’s run-times. Since the experiments were performed on separate systems with
different processors and program environments, these values cannot be directly
compared. Furthermore, the different methods offer different levels of potential
regarding optimizations which follows that faster run-times may be achieved.

The key innovations of the method presented in this work can be summarized as follows.
The algorithm introduced here is using discrete optimization to solve the parameter
estimation. Discrete optimization has the advantage of being able to provide optimal
solutions within the discretized parameter space. This property reduces the likelihood of
the optimization process to get stuck in local minima.

Method A introduces a novel motion model and an adapted regularization scheme.
Related tracking algorithms try to minimize geometric properties as e.g. curvature or
the first- and second-order derivative norms of the curve in order to impose smoothness
on the resulting curves and in order to prevent over-deformation. Slabaugh et al. [69]
started to leave this path by penalizing absolute length changes, thus enforcing some
level of self-similarity between the tracked curves and the curves as they are appearing
during the initialization. This work is adapting this regularization approach and
introducing a novel deformation model which is required to properly address discrete
optimization inherent approximation errors.

A second learning based algorithm is briefly introduced in Section 6.2 and referred to as
Method B. The idea is to learn a mapping between orthogonal intensity profiles of curves
and the associated likelihood of belonging to a medical tool. This has the advantage of
being able to adapt to the tool appearance which is typical for fluoroscopic image
sequences including the influence of noise. Another advantage is that by learning an
appearance model, one overcomes the problems which are inherent to image filtering
because the learning can be performed on the raw and unprocessed image data.
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CHAPTER
THREE

TOOL DETECTION

3.1 Modeling Tubular Tools

Tubular tools, or those that appear as tubular or line-like after projection by an X-ray
system are of critical importance during the development of a tracking system. In this
chapter the mathematical properties of line-like structures are revised. Only, when a
mathematical model for line-like structures is given, it is possible to understand, analyze
and optimize enhancement, detection and tracking algorithms. Already the modeling is
not an easy task. The fact that till today, researchers have no common agreement upon
a single mathematical model is one indicator that supports this statement.

3.1.1 X-ray Attenuation

The way in which tubular objects appear in images depends on various factors.
Primarily, the appearance is defined by the physical rules underlying the imaging
process of conventional X-ray. On a modern C-arm system, two-dimensional radiographs
are acquired by an X-ray source and a planar, flat-panel detector. Image intensities are
depending on the amount by which X-rays are attenuated while passing through the
body. The attenuation of X-rays passing through a single object is an exponential
function which depends on the object’s attenuation coefficient. X-rays passing through
an object with a diameter d and with constant attenuation coefficient 1 are measured on
the detector plane with an intensity of

I = lyexp(—ud) . (3.1)

For objects with locally varying attenuation properties, this equation generalizes to

I =1Iyexp (—/,u(u)du) , (3.2)

where the parameter of the exponential term is the line integral through p(u). In both
Equations (3.1) and (3.2), I is the intensity of the incident X-ray beam. Ideal X-ray
detectors are producing images with intensities being proportional to the negative
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Figure 3.1: Idealized X-ray projection of a tubular object. The object is centered at C.
The path lengths at which X-rays are attenuated in the tubular object vary with the
projection direction «. The path length is denoted as l(c;, ¢y, 7, &) and two examples for
a =0 and a = 8° are shown in red.

logarithm of the attenuation intensities. An optimal projection image would have image
intensities corresponding to

T(z,y) = —log(l) + / p(w)du . (3.3)

Image intensities are depending on the incident X-ray beam intensity [y, the attenuation
coefficients and the distance at which X-rays are traversing objects while being
attenuated. These observations allow the formulation and analysis of a simplified
projection model for tubular objects.

3.1.2 An Idealized Tube Model

For the analysis of image intensities as generated by tubular objects, a simplified two
dimensional projection model is considered. The setup is sketched in Figure 3.1. In this
model, a coordinate system is centered in the X-ray source S. A single scan-line in the
image is generated by the attenuation responses measured on the detector row. The
measurement are assumed to be corresponding to the ideal function of Equation (3.3).
X-rays are emanating from the origin towards the detector row and the detector
excitation is depending on the projection direction a. The model is parameterized such
that for a = 0, the projection ray is passing through the center of a tubular structure.
In Figure 3.1, this ray corresponds to the bottom ray.

To be able to evaluate Equation (3.3), one needs to know for each projection direction «
the path length [ at which the rays travel through the tubular structure. In this example,
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the tubular structure is representing a cross-section of a three-dimensional object. For a
two-dimensional circular object C' with a radius r, its equation is given implicitly by

\/(cz — :1:)2 + (¢cy — y)2 =7r. (3.4)

The general line equation of a projection ray [, deviating by the ray passing through the
object center at an angle « (e.g. the upper ray from Figure 3.1) can be written as

_ —sin(a)e, + cos(a)c,

cos(a)c, + sin(a)c, (3.5)

If a projection ray [, and the object C intersect, two real-valued intersection points p;,
and poy can be computed from Equations (3.4) and (3.5). The length [ as a function of
Cz,Cy, s and «, at which X-rays are traversing the circular object is then

l(cma Cy, T, a) - ||pin - poutH (36)
=2,/r? + (cos(a)? — 1)(c2 + ¢2) . (3.7)

Combining now Equations (3.7) and (3.3) one can picture the synthetic intensity profile
generated by a perfect C-arm system when imaging a tubular structure. Before
assembling the final equation another simplification needs to be introduced. In
Equation (3.3), the general case of varying attenuation along the X-ray path is assumed
though in this example the object C'is assumed to have a constant attenuation
coefficient of p. This assumption leads to the simplified equation *

I(o) = —log(ly) + pil(cy, ¢y, 1, 1) (3.8)
= —log(lo) + 2u1/r? + (cos(a)? — 1)(c2 + c2) . (3.9)

The intensity profile from Equation (3.9) is not corresponding to reality for several
reasons — this is why it is referred to as idealized. The model depicted in Figure 3.1
makes several strong assumptions which are not true in clinical practice. First, tubular
objects are in general not perfectly tubular; they are not even elliptic because many
patients undergoing procedures from interventional radiology have calcified vessels and
suffer from stenoses, aneurisms or other diseases of the vascular system. The second
reason why the model does not hold is because it assumes that the vessel is running
parallel to the detector plane. Again, this is not true because it can be arbitrarily
oriented with respect to the detector plane. This results in Equation (3.7) being only a
rough approximation which is typically underestimating the path length. The effect,
which one observes in this case is foreshortening. A similar effect is caused by the fact,
that the typical ray direction is not depending on a single angle « as in the given
example. In order to describe a line direction passing through the origin, two angles for
the azimuth and elevation are required. There are more reasons, why the given model is
not general. They include background clutter, X-ray scattering, noise effects during the
image acquisition, just to name a few.

!The model and X-ray parameters are omitted for the sake of brevity.
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Figure 3.2: Idealized intensity responses of a tubular object with a radius » = 1 which
is located at a distance of 1 (i.e. ¢2 + cz = 1) to the X-ray source. The plot shows the
responses for a constant incident intensity of Iy = 1 for varying attenuation coefficients
p. The functions correspond to the output of Equation (3.9).

The question may arise, why the modeling is then done this way if there are so many
reason rendering it inaccurate. One of the reasons is that incorporating all phenomena
presented before is close to impossible. Let us assume for a moment a simple formula
were available that modeled actual three-dimensional projection rays by incorporating a
second angle 5. What would one gain in the analysis? In this section, our intention is to
give a rough idea about the image generation process and how close different models
proposed by different authors are to reality. It is not the intention to create a model
that perfectly resembles reality.

But there is more to ask since it could well be that a model which is closer to reality
would allow for a better modeling of the application. So again, let us assume we
incorporated the second angle 5. How could this help in a real application? There is no
obvious way how that could help because in practice we have no a priori knowledge
regarding the vessel orientation within the patient. The orientation is even subject to
change during the intervention — one of the aspects this thesis tries to recover.

To summarize, it is true, that the model is approximative but it is likewise as close to
reality as it is useful for the following comparison. Some of the properties, like e.g. the
limited support of the function will not change when moving to more realistic models.
In the next section, the curve model given by Equation (3.9) will be compared to models
proposed by different authors.

3.1.3 Typical Tube Models

During the analysis of enhancement filters which is following in the next section,
mathematical models of contour intensities are required. This is especially then true,
when the analysis is of analytical nature. Thus it is not a surprise, that already many
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different models exists in the literature. It is also no more a surprise that there is not a
single model. The previous section has given some indications why the derivation of a
generic model is hardly possible.

The different models which are used in today’s literature have different origins. Some of
them are likely to be evidence based. The investigation of image data, be it of medical
nature or not, in combination with the knowledge about what is actually being images
allows researchers to follow such a path. Other reasons may be that some models allow
for a simplified analytical investigation of model properties. Since in image processing
the convolution of image data with image filters is a fundamental procedure and because
it has been already shown that especially for the analysis of edges and ridges Gaussian
image filters are most appropriate, having Gaussian image profiles is beneficial. This is
the case because in such a scenario, the convolution can easily be expressed analytically
as it is just another Gaussian with a different mean and variance.

A commonly used (e.g. [70, 71, 39]) model is the block model or bar shaped model.
Besides its spatial location x, the model is only parameterized by a radius r and the
ridge height h. It can be defined as a piecewise function as

h, |z|<r

. 3.10
0, |z|>r (3.10)

Iy(x,r, h) = {

An extension to this model has been proposed by Carsten Steger [71]. In his works on
the detection of curvilinear structures he wanted to be able to model different contrast
levels on the two ridge sides and thus introduced what he called the “asymmetrical bar
shape” model

0, T < —r
Tav(z,rya,h) =<h, |z <r . (3.11)
ha, x>r

Another model of which we will show that it is most close to the previously derived
idealized model is a parabolic shape. As for the block model, it is only parameterized by
the object radius r and height h.

2

h(l—f—z), x| <r

. 3.12
0, lz| >r (3:12)

Z,(x,r h) = {

As opposed to the asymmetrical bar shape, the parabolic function in the form presented
here, does not support different contrast levels on the two vessel sides. The last,
commonly used model is a Gaussian model. Here, the radius is controlled by the
Gaussian’s variance, effectively controlling the radius of the function. A second
parameter is required to model the ridge height and it is incorporated as a simple
scaling. Sato et al. [66] used a similar model in their work.

2

Zg(z,0,h) =h exp(—x—) (3.13)
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Figure 3.3: The figure shows optimal fits between three different ridge models and the
idealized block model derived in Section 3.1.2. The models are (from left to right), a sym-
metric block model, an elliptical model and a Gaussian model. The red curves represent
the optimal models after fixing the width to the expected value while the green curves
show the optimal models after fixing their height to the expected value.

What is of interest for the remainder of this work is how well each model can
approximate the idealized one. This question can be analyzed by finding for each model
7. the optimal parameters p such that the following quantity gets minimal

00
2

/ (Z(2) ~ T.(z.p)) de . (3.14)

—00

In order to be able to perform this derivation analytically, one of the parameters of each
model will be fixed (e.g. the radius r) and the remaining parameter p will be computed
by solving

[e.9]

;p [ (z@) - Z.e.p) ar = 0. (3.15)

—00

The analysis has been carried out for the symmetrical profiles only. Including the
additional degree of freedom the asymmetrical bar profile is offering does not bring any
advantages in terms of error reduction — for the block model, the minimal error that can
be achieved is identical to the asymmetrical bar shape. The three models that were
analyzed are the block model (Equation (3.10)), the parabolic model (Equation (3.12))
and the Gaussian model (Equation (3.13)).

The function Z(z) = 2y/cos(z)? serves as a reference model. It is corresponding to the
idealized model response for a vessel at a 1 unit distance to the projection center, with
incident intensity of Iy = 1 and a constant attenuation of ;= 1. For this function both
parameters are known, its exact radius 7 = 7 and its height i = 2. The “optimal” model
parameters are determined by fixing one out of these two parameters. This approach
does not necessarily reveal the global optimum of Equation (3.14) but it is most closely
related to the intended interpretation of the individual parameters and serves as an
acceptable approximation.
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For the block and parabolic model, both parameters can be easily fixed and the
remaining parameter can be computed by solving Equation (3.15). Following this
approach leads to analytical solutions for the optimal height parameters
4 60
hy = — hp=

T 73

(3.16)

The resulting curves corresponding to these parameters are the red curves in Figure 3.3.
Because the Gaussian model has infinite support, it is not easily possible to fix the
model’s radius and thus the optimal height has not been computed in this case.

Fixing the height in all three cases to h = 2 leads to a different set of curves and these
are corresponding to the green curves in Figure 3.3. Here, the optimal parameters could
only be determined numerically and they resulted in

wy, ~ 1.04720 wp~ 1.51513 o~ 0.84173 . (3.17)

In Figure 3.3, the three optimal models are plot together with the reference function.
Already a visual inspection of the three plots reveals, that the parabolic model
represents the most optimal fit. The block model is used primarily because of its simple
mathematical properties but does not reflect well the physical properties. The Guassian
model on the other-hand side results in a better approximation of physical properties
but again, it is primarily chosen because of its nice mathematical properties and in
particular its infinite support does not agree with reality.

3.2 Enhancement of Tubular Structures

In this section several methods for the enhancement and detection of tubular structures
are reviewed and analyzed in a unified framework. Besides this review a novel view on
the requirement for y-normalized Gaussian derivatives is provided. So far, Lindeberg
[49] has shown that y-normalized derivatives are necessary for scale selection, when “the
scale selection mechanism should commute with re-scalings of the image pattern”. In
other places y-normalized derivatives are said to be required to ensure a “fair comparison
between different scales”. Here, we will provide an intuitive reason why and when
~v-normalization is required in the context of the enhancement of tubular structures.
Furthermore, this section will provide the required steps of an attempt at deriving
formulas to choose detection parameters in an optimal way. This is not possible in all
situations and it will be shown that a priori knowledge of the model is required. Ridge
detection and especially the scale space analysis are oftentimes used to answer two
questions.

e Where are ridges located in the image? This question is a placeholder for
the highlighting step. Each pixel in the image gets some intensity assigned which
is in the optimal case corresponding to the likelihood of that pixel to be a part of
the ridge. An optimal detector would be highlighting ridge pixels only and should
not create spurious responses as e.g. on edges.
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e What are the geometric properties of the ridge? The second question is
dealing with the model parameters. As shown in Section 3.1, different models
exhibit different parameters like the ridge height, its radius and the contrast
difference on the two sides of the ridge. The capabilities of a method to recover
the correct parameters for a specific model is what is referred to by this question.

Depending on the actual application it may be the case, that both questions are subject
of the enhancement or detection method. In some cases only this first question is of
interest and that the second question is known beforehand. It will be shown, that in such
a situation it is possible to determine some of the algorithms parameters analytically.
Most methods dealing with the topic of ridge enhancement are in some way based on
derivative filters. Even those methods that are working with steerable filters are usually
working with approximations of special directional derivative filters. Differential
geometry deals with the shape description through derivatives and thus the basic
principles of differential geometry will be shortly summarized before continuing with the
individual methods.

3.2.1 Differential Geometry in Image Processing

Differential geometry is based on the assumption that structures observed in an image
exhibit smooth, i.e. differentiable intensity profiles. The typical coordinate system used
when applying methods from differential geometry to images is depicted Figure 3.4.
Here, the special case of a tubular structure is visualized but what is in general
important is that images as those shown on the right side of Figure 3.4 are interpreted
as three-dimensional surfaces.

Figure 3.4: The two graphs in this figure depict a ridge model as it is generated by
Equation (3.9). The left-hand side figure displays the model as a three-dimensional surface
and the right-hand side figure show the corresponding two-dimensional gray-scale image.
The red coordinate system with axes p and g represents the second-order gauge coordinates
which are intrinsic to the image surface.

First and second-order derivatives are of main interest for many vision tasks and in
particular the enhancement of ridges. The entities behind these derivatives are curve or
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surface tangents as well as normals. For the formalization of derivatives the notion of an
image as a function is required. When Z(z,y) is the image intensity of a pixel located at
(z,y), derivatives with respect to the spatial coordinates x and y are written as

OL(x,y)

IL(x,y)
ox

=T7,(z,y) . (3.18)

For the sake of brevity, the spatial coordinates are usually omitted and the generalized
derivative in an arbitrary direction v is denoted as Z,. The same notation can be
extended for second-order derivatives resulting in Z,,, Z,, and Z,,, respectively.
Generalizing once more, the derivative with respect to a vector u as it changes in the
direction of v is expressed as Z,,.

Image Gradient: The first-order derivative of an image is quantified by the image
gradient and defined by

VI - H . (3.19)

Y

The general form of the first derivative, the derivative in an arbitrary direction v can be
written as

I,=v'VT. (3.20)

Geometrically, the gradient direction at a point (x,y) is the direction of steepest ascent
in that point. The steepness of the slope in the same point is given by the gradient
magnitude. Furthermore, the gradient direction is equal to the normal of the level set
curve passing through the point (x,y).

The Hessian Matrix: The equivalent to the gradient for second-order derivatives is
the Hessian matrix H. The Hessian is a symmetric real square matrix of the form

Tow L.
H= | xy] 3.21
lzxy Ly, ( )

which has been used earlier in Equation (2.4). Similar to the computation of first-oder
derivatives, second-order derivatives can be computed as

Tuw =u'Hu . (3.22)

An important property of the Hessian H is that its eigenvalues A; and Ay are invariant
to rotations.

Theorem 1. Given a Hessian matriz H, ils eigenvalues \y and Ay are invariant to any
rotation R of the underlying coordinate system.
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Proof. Since the derivative of a surface is independent of the coordinate system in which
the surface is expressed the following equation must hold.

u'Hv = (Ru) "H'(Rv) (3.23)
=u R"H'Rv (3.24)

From this equation follows, that the Hessian matrix H’ in the transformed coordinate
system can be expressed as

H =RHR' . (3.25)
Assuming the eigendecomposition of the real symmetric Hessian H is given by
H=QAQ", (3.26)
the eigendecomposition corresponding to H’' computes to
H =RQAQ'R" =QAQ'" . (3.27)

Because both matrices R and Q are orthogonal, their product Q' is orthogonal too. For
any eigenvector v of H holds Hv = Av and one can easily verify that the corresponding
equation for H' is holding as well:

H'Rv=RQAQ'R'Ruv (3.28)
= RHv = ARv. (3.29)
O

This theorem, even though well known, is of particular importance for the analysis of
functions dealing with the enhancement of line-like structures. A direct implication of
this theorem is that there exists a coordinate system transformation R for every Hessian
matrix which turns it into a diagonal matrix. Setting R = Q' in Equation (3.27) will
result in the Hessian ‘H' being a diagonal matrix where the diagonal elements are equal
to the eigenvalues.

To summarize, each Hessian H has the following mathematical properties. First, its
determinant is equal to the product of its eigenvalues and as seen before, it is invariant
to rigid transformations of the underlying coordinate system. It can similarly be shown
that its trace is invariant under rotations and equal to the sum of its eigenvalues.
Because H is real and symmetric, the matrix has real valued eigenvectors which are
mutually orthogonal and thus provide a basis of RY where N is the dimensionality — for
image processing applications common values are N =2 or N = 3.

For the analysis of ridges, geometrical interpretations of the Hessian are useful too.
Assuming, the eigendecomposition of a N-dimensional Hessian is performed such that
the eigenvalues are ordered by magnitude, i.e. |A;| > [Aa] > ...|Ay], one can use the
notion of first, second, and N-th eigenvector. Geometrically, the first eigenvector, i.e.
the one corresponding to the eigenvalue of largest absolute value, is the direction of
largest curvature. From an image processing point of view, this can be interpreted such
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that this eigenvector is pointing in the direction in the image in which the intensities
have maximal variability. The N-th eigenvector, the one corresponding to the eigenvalue
being closest to zero, is the direction of least curvature. Again, in terms of image
processing this means the N-th eigenvector is pointing in the direction with least
intensity variations.

This means for a two-dimensional ridge, that when located directly on top of the ridge,
there is in the optimal and noise free case, one eigenvector pointing along the ridge. Its
corresponding eigenvalue should be equal to zero. A second eigenvector is pointing
orthogonal to the ridge, in its normal direction and the associated eigenvector |\;| is
expected to be greater than zero.

Gauge Coordinates: A general concept of differential geometry is that surface
properties like the aforementioned curvature, can be decoupled from a global coordinate
system. These properties can be analyzed with respect to a local coordinate system
induced by the local surface of image intensities. Such coordinate systems exist for both,
first- and second-order derivatives.

The gradient direction and its normal build the basis of the first-order gauge coordinate
system. Geometrically, the normal of the gradient is corresponding to the tangent of the
level set of image intensities in the current pixel location and the gradient itself is
corresponding to the normal. The gauge coordinates can be expressed as directions
w=VI/||VI| and v =w,.

The second-order gauge coordinates are defined by the principle direction, i.e. the
eigenvectors of the Hessian matrix H. Like the first-order gauge basis, the direction of
the eigenvectors is defined by the image intensities and they are oftentimes denoted as p
and ¢. Figure 3.4, is representing a synthetic ridge and its corresponding gauge
coordinate system.

3.2.2 The Hessian and its Relation to Tube Models

In the next section this work tries to find analytical answers to questions related to the
Hessian based enhancement of line-like structures. Because of the simplified shape (a
diagonal matrix), the Hessian will be expressed in the gauge coordinate system. All
findings in this coordinate system are true for all other coordinate systems because of
the invariance of the eigenvalues to rotations.

For the analysis, an analytic form of the Hessian and therefore its eigenvalues will be
presented. Its form is depending on the line models which were introduced in

Section 3.1.2 and 3.1.3 as well as the model parameters. Given such a representation it
is then possible to perform an analysis of the vesselness responses proposed by different
authors and this analysis can be related to the model parameters.

In order to be able to derive the analytical expression of the Hessian, Gaussian
derivatives are required. In fact, because the investigation is solely carried out in the
gauge coordinate system only the second-order derivatives of that system will be needed.
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The y-normalized, one-dimensional Gaussian is defined as

~ 1 .ZUQ
g(z,t,y) =t2 NWoraaty <_2t> , (3.30)

and its derivatives have the form

dg(z,t,7)
z\ Ly ta = 3.31
ga(z,t,7) 5 (3.31)
dg(z,t,7)
T ) tu = . 332
Gealisty) = 22 (332)
Because of the separability of multi-dimensional Gaussian filters, the second-order
two-dimensional Gaussian G, can be written as
Guo(7,9,1,7) = Gua(@,,7)9(y, £,7) (3.33)
3 (t — x?) 2% + 2
S A — : 34
o exp 5 (3.34)

In all equations t = o2 represents the scale-space parameter as it was introduced by
Lindeberg [46]. For the remainder of this discussion, the derivative subscripts will be
changed to p and ¢ respectively, in order to emphasize that the remaining discussion is
carried out in the pq gauge coordinate system. The system is described in Section 3.2.1
on differential geometry and it is visualized in Figure 3.4.

Given an arbitrary function Z, representing a tubular shape’s intensity profile being
aligned with the g-coordinate axis as it is depicted in Figure 3.4, the two-dimensional
Hessian has the following form

(G *T, 0 ] [Gp*I. O
H= 0 qu*I*] _[ 0 ol - (3.35)

Without loss of generality, we assume the following ordering on eigenvalues, |A;| < |Ag
and additionally for three-dimensional cases |As| < |A3]. Given such an ordering, the
diagonalized Hessian matrix from Equation (3.35) has a single zero eigenvalue A; = 0
and a second eigenvalue \y = G, * Z,.

3.2.3 Properties of Tube Enhancement Filters

The filters and functions which are discussed in this section are well known and widely
applied — especially in the field of medical image processing. Historically, the filter and
works introduced here were developed between 1995 and 1999. Earlier works in line
enhancement exist but investigating more but a few common filters is out of the scope of
this work. The different methods are discussed in no particular order.

Sato’s Feature Enhancement

Sato et al. [66] propose a filter for the enhancement of three-dimensional tubular
structures which utilizes all three eigenvalues. Assuming eigenvalues are ordered as
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IA1] < [A2] < |As], one expects the following properties for the eigenvalues when filtering
tubular objects. First, \; is expected to be an eigenvalue close to zero. Second, the
other two eigenvalues are expected to exhibit similar values, i.e. |A2| & |A3] when
circular structures are processed.

Following these observations, Sato et al. formulated the following filter for bright lines

Ae exp(— Al ) A <0

a2
Ae = min(—MAy, —A3) Vs= 1 A\, exp(—%) A >0, (3.36)
0 Ae <0

where they chose a; = 0.5 and as = 2.0 in their experiments. In the two-dimensional
case, and in the pg-coordinate frame, the function reduces to

—Xa A <0
Vg = 2 2 o (3.37)
0 otherwise

We have seen before, that in the pg-coordinate frame H,, = Ay = G}, * Z,. Applying this
equation to the block-model from Equation (3.10) results in the following convolution

o0

H,,(x,t,y,m, h) = / / Gpp(u,v,t,7) Ly(x — u,y —v,r, h)dudo . (3.38)

—00 —00

In this equation, an additional parameter y has been added to the function Z, from
Equation (3.10) without modifying the function itself, i.e. the response is actually
independent of y — exactly what we expect to happen in the pg-coordinate frame. The
convolution result is no more depending on y and thus it has been omitted on the
right-hand side. The introduction of the second dimension is nonetheless important
because it affects the influence of v. Because Hp, = A, substituting Equation (3.38) and
(3.37) results in the following function

_pr<x>t7’77T7 h) pr(l‘7ta’yur7 h) <0

] (3.39)
0 otherwise

Vs(flf,t,’)/,r7 h) = {

which can now be analyzed for its extremal properties.
First, it is desired that the function takes a maximum when x = 0. Given the derivative,
it can easily be shown that the function is extremal at x = 0 by verifying that

NVs(x,t,y,r h)
oz

=0 (3.40)

=0

holds. In order to ensure a maximum we need to ensure in addition that the
second-derivative with respect to x is negative and it turns out that this is only the case
when —2r3 + 61t > 0. Given r is positive, which it is because curves do not have
negative radius, this is exactly true when

7“2

t>—. 3.41
3 (3.41)

45



Figure 3.5: The figure shows the vesselness response of the filter proposed by Sato et
al. for a block model Zy(x,2,2) with width and height equal to 2. The ditch for small
scale-space values of t and x = 0 indicates, that the responses are not meaningful for all
scale-space parameters.

This fact can be visually observed in Figure 3.5. Only for scale-space parameters ¢t > %
the energy function exhibits a maximum at z = 0.

The second desired property of the energy Vs(z,t,v,r, h) is that it takes its maximum
not only for x = 0 but also at a specific scale t. A popular choice in the past was to
choose t = r? which is corresponding to ¢ = 7. Being able to shape the function such
that its extremum in the scale-space is a function of the curve radius enables users to
determine the radius by searching for the optimum in scale-space. It turns out, that
exactly this property can be controlled with the scale-space normalization as introduced
by Lindeberg. Formally, we seek v such that the following equation holds

NVs(z,t,7y,c,r h)
8t =0

t=r?

—0. (3.42)

For the block model Z, it turns out, that the optimal value is v = 1. A problem is, that
both of these values are model dependent. Using a different model, as e.g. the parabolic
model I, results in different values. Table 3.1 contains exemplary 7 values for the block
and parabolic model. As mentioned earlier, these value are oftentimes chosen such that
t = r% Analytic expressions for Equations (3.38) and (3.39) as well as analytic

Table 3.1: Required parameter choices for Sato’s line enhance-

ment.
Model Type Block Model Z;  Parabolic Model Z,,
Maximum for z = 0, Vg t > g none
Maximum for t = 72 (o = 7), Vs 1 1.217474755
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expressions of the optimal v parameter for the parabolic model from Table 3.1 can be
found in the Appendix B.1.1.

Frangi’s Feature Enhancement

A different feature enhancement filter has been proposed by Frangi et al. [22]. The
authors propose a filter which utilizes all eigenvalues. In the two-dimensional case, the
filter consists of a blobness measure and a structuredness measure. The blobness term is
similar to the function proposed by Sato et al. and is based on

At

Rp ==L
B )\2

(3.43)

An object’s structuredness is measure by the Frobenius norm of the Hessian and it is

computed in 2D as
S=|H|p= A+ 3. (3.44)

In fact, this is the only term controlling the vesselness in the pg-coordinate frame
because Ry is vanishing when A\; = 0. The general vesselness is measured as

2
Ve — exp <_§BBQ> (1 — exp (—%)) A <0 (3.45)
F = . .
0 otherwise

Utilizing again that in the pg-coordinate frame H,, = Ay holds, this term reduces to

1 —exp (—7H”p(x§?’r’h)z> A2 <0

o (3.46)
0 otherwise

Ve(z,t,7v,¢c,7m, h) = {

During the analysis of Frangi’s feature enhancement, it turns out that the scale-space
parameter ¢ and the scale-space normalization value v are subject to the same
constraints as for Sato’s filter. Intuitively, this is the case because in the pg-coordinate
frame, the structuredness measure is very similar to the measure used by Sato et al. The
only difference is that Frangi formulated the problem probabilistic by modeling the
expected Frobenius norm of the Hessian by a Gaussian. Contrary to Sato’s filter, the
Gaussian modeling requires to choose an additional parameter ¢, the variance. The

Table 3.2: Required parameter choices for Frangi’s line enhance-

ment.
Model Type Block Model Z;  Parabolic Model Z,
Minimal scale parameter, Vg t> é none
Optimal v value (t =%, o0 =7), Vp 1 1.217474755

additional degree of freedom offered by Frangi’s parameter leads to the problem of
proper parameter choice. The authors propose a heuristic value equal to half of the
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Figure 3.6: This plot shows the effect of the choice of the parameter ¢ for Frangi’s struc-
turedness measure 1 — exp (—% . When c is chosen too small, the filter responses of
neighboring but large values of S are hard to distinguish.

maximum Hessian norm Sy, observed in an image. Following this advice and setting
c= % leads to the following upper bound for the structuredness response

S? S?
1 —exp (202> =1—exp (202> <1—exp(—2) ~ 0.8646647168 . (3.47)

Following this idea, a more generalized approach is to find a factor n such that for
¢ = NSmax the upper bound is defined by 1 — €. It turns out, that n can be computed as

1

From a practical point of view, this choice is similar to computing the vesselness
response for every pixel and rescaling the responses such that the maximal value is
mapped to 1 — e. What is important for the choice of ¢ is that ¢ is not chosen too small.
Figure 3.6 shows this problem. Assuming the Hessian norms are uniformly distributed
between 0 and 5 and setting ¢ = 0.5, more than 60% of the response values are mapped
so close to 1 that they can hardly be distinguished.

In both vessel-enhancement methods discussed until now, the scale-space normalization
constant v has been determined by isolating v in Equation (3.42). It is interesting to
note that this equation is depending on the side-constraint ¢ = r? and this choice is
effecting at which scale, i.e. for which ¢ the function takes its maximum. If the
constraint were generalized to t = (nr)?, it were possible to design a function taking its
maximum at a different scale which were resulting in additional smoothing. Such a
modification could be beneficial in cases where the radii are small and when the input
profiles were corrupted by noise.

Changing Equation (3.42) to the side-constraint ¢ = (nr)? instead of ¢ = r? and isolating
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(a) Frangi Features — ¢ = r? (b) Frangi Features — t = (1.5r)?

Figure 3.7: Comparison between Frangi’s vesselness enhancement with different scale-
space normalization constants. The images were created with scales o; € {0.5,1.5,2.0}
and 1.50;. The scale-space normalization constants are computed according to Equa-
tion (3.49).

v leads to

exp (—Qn%) VT
n? (—2 exp (—#) VT +V2erf (%ﬁ) mr) .

Yr(n) = (3.49)

An example of the additional smoothing effect is provided in Figure 3.7. The latter
equation is exactly then of importance, when the user desires to determine the actual
vessel width from the optimal scale.

Koller’s Feature Enhancement

The filter that has been proposed by Koller et al. [39] is following a slightly different
approach as compared to the two previously discussed filters. In this case, the idea is
based on the assumption that ridge profiles exhibit two symmetric edges located at —r
and r. The authors propose to use shifted first-derivative Gaussian filters for the
computation. In the one-dimensional case, the profile edges can be detected by a
non-linear combination of the following filters

Ri(x,t, v, h) = Gulx —Vt,t,7)* T (x,r h) (3.50)
Ry (x,t, 7,7, h) = —Go(x + V1, t,7) * T.(z,7, h) . (3.51)

A scan-line of the filter responses is depicted in Figure 3.8. Koller et al. propose several
possibilities for the non-linear combination of the responses R; and R,. The two
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combinations which are of most interest are

Ve — VRIR, R;>0and R, >0 (3 52)
=7 o otherwise ’ '
corresponding to the geometrical mean and
in(Ry, R,) Ry >0and R, >0
Vi, = 4 in (R, Re) - Ra >0 an . (3.53)
0 otherwise

The latter form is equivalent to the filter R presented by Koller et al. [39] though
Equation (3.53) is considered to be more clear. So far, there are a few differences
compared with the original work. In order to stay within the same scale-space
framework, the variable o has been substituted by v/t, where t is corresponding to the
scale-space parameter as introduced by Lindeberg [46]. The second difference is that the
shifted Gaussian derivatives are written as =G (x F v/t,t,7), i.e. with a single
scale-space parameter t.

For the extension of the filter to two dimensions, one needs to compute the first-order
derivative responses in the direction of the ridge normal. In Section 3.2.1 is explained,
that the eigenvector corresponding to the largest absolute eigenvalue is pointing in the
direction of highest curvature. For a ridge this direction is equivalent to the curve
normal and it will be denoted as n = (n,,n,). Given this normal direction, the formulas
of Equations (3.50) and (3.51) can be compactly written as

R, = nTV<G(t7 ) * I)(x —tng,y — tny) (3.54)
R, = —nTV(G(t, v) * I) (x +tng,y+1tny) . (3.55)

which is corresponding to Equation (3.20) presented in Section 3.2.1. Because of the
separability of the Gaussian GG, the same equation can be expressed more verbosely as

Ri= Gulz—tng,y—tngt,y)ng + Gy(z —tng,y —tny, t,7)n, (3.56)
R, = —Gu(x +tng, y +tny, t,v)n, — Gy(z +tng, y + tny, t,v)n, . (3.57)

The remaining discussion of extremal points of the filter is based on the

Equations (3.50) and (3.51). These equations are corresponding to the two-dimensional
filters when being applied in gauge coordinates. Similar to what has been done earlier in
this work, one needs to investigate the following functions

aVK($’t7 ,}/7 r? h) _ 8VK(:C7t7 ’.}/7 /’/.7 h)
ox ot =0

z=0 t=r2

=0. (3.58)

These equations are analyzed for both possible linear combinations Vi, as well as Vk, .
Furthermore, the optimal parameters are computed for the block model as well as the
parabolic mode. What is initially surprising is that the values computed in this work
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0.4+

Figure 3.8: Shifted first-derivative filter responses of a parabolic profile Z,, with radius
r = 1 and height h = 2. The filter response R; is depicted in blue. The red line is corre-
sponding to the filter R;. Finally, the dashed line represents the non-linear combination
Rs = VR R, in cases where || < r and zero otherwise.

differ from those presented originally by Koller et al. [39]. In the initial work, the
authors analyzed the function

7Q'Lineo— = Co (G/U <-T - 1;) - G/U <-T + 2;)) (359)

which is fundamentally different form analyzing the function Vi, or Vk,. Furthermore,
Koller et al. used a unnormalized Gaussian function which influences the choice of the
scale-space parameter v and which is unified in this work. The results of this analysis

are summarized in Table 3.3.

Table 3.3: Required parameter choices for Koller’s line enhance-

ment.
Model Type Block Model Z;,  Parabolic Model Z,
Maximum for z = 0, Vka none none
Maximum for t = r% (0 = 7), Vka 0.6565176425 0.6565176425
Maximum for z = 0, Vky, none none
Maximum for t =% (0 =71), Vkp, ~ 0.8036851245 0.8036851145

Tube Enhancement Filter Experiments

An important criterion for algorithms enhancing line-like structures is to which extend
they respond to other image features such as step edges or image noise. It can be shown
analytically, that the filter proposed by Frangi et al. exhibits three extrema for step
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(a) Toy Example (b) Frangi et al. (c) Koller et al.

Figure 3.9: Filter responses on a toy example. The scale-space responses are computed
with the optimal o values for the parabolic model. Scale values are ranging from 1 to 4
and an overall of 21 scales were probed, i.e. t € {1,1.15,1.3,...,4.0}.

edges. For a step edge Z, defined as

0 <0
T(e,h)={ "= (3.60)
h otherwise

the filter response becomes

(3.61)

472

exp (—22) h222t=3+2
V(z,t,v,c,h) =1—exp (— ( t) )

Computing the extrema of V(x,t,, ¢, h) depending on the variable x leads to three
solutions. These are

v {0,+Vt, -t} . (3.62)

These additional responses on step edges can be observed as expected in the toy
example presented in Figure 3.9(b). The second filter discussed in this section does not
exhibit such behavior on step edges. In fact, the nonlinear combination of the filter is
effectively suppressing these kind of edges. The toy example of Figure 3.9(a) contains
four edges on the horizontal and vertical image centers and these are suppressed in the
response Figure 3.9(c). The remaining noise responses in the Figure 3.9(c) are hardly
possible to remove. In the bottom right square of the toy example which show a white
curve on black background, Koller et al’’s filter produces spurious responses. However,
these responses are according to what is modeled by the filter. Close to the crossing of
the white lines, two of the path are approaching each other in a steep angle and thus
start acting as the borders of a dark line structure which is correctly detected by the
filter. A real world example of different filter responses is provided in Figure 3.10.

The above analysis provides a simple derivation for properly configuring and using two
of the most popular feature enhancement algorithms. In particular, it was derived how
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(a) Contrasted Brain Image (b) Frangi et al. (c) Koller et al.

Figure 3.10: Filter responses of a medical example. The input image on the left shows a
head in which the vessels supporting the brain are enhanced by contrast agent.

to properly normalize filter responses within the scale-space when using normalized
Gaussian derivative filters base on Euqations 3.30 to 3.32. Especially Sato’s and Frangi’s
vessel enhancement filters are commonly used in medical applications. Both algorithms
are integrated in the well known and widely used Insight Toolkit [34]. From a
mathematical point of view, Frangi’s filter is an extension to Sato’s filter because it does
not only include the structuredness but it is also modeling the blobness as the ratio
between the smallest and largest eigenvalue. This additional term acts as an additional
discrimination factor to separate line-like from blob-like structures.

Koller’s line enhancement algorithm on the other hand side seems still being less
accepted as other alternatives. Here, it has been shown that the filter has several
advantageous properties. First, the filter does not require any constraints on the
minimal scale selection in order to ensure a maximal response on ridge tops and this
independently of the ridge models analyzed in this work. Second, Koller et al’s filter
does not create any spurious responses on step-edges which means the method is causing
less spurious responses. A third advantage is the fact that the filter does not require the
choice of an additional parameter and thus no individual tuning. However, the method
is not without problems though they are primarily of practical nature. Because the filter
requires the gradient projection onto ridge normals, the method requires to calculate the
Hessian and its eigendecomposition as well as the image gradient which is not needed for
Frangi et al’s filter. The result is a slightly worse run-time behavior. Overall, it has
been decided for this work, that the advantageous outweigh the run-time impact and it
is suggested to favor the filter proposed by Koller et al.

3.3 Semi-Automatic Detection

In Section 1.4.1 two modules for motion compensation are introduced. The first model
deals with the initial tool detection and is designed to create a set of pixels

P ={p',...,pM} from a given key- or reference frame acquired at time tj,. In the
optimal case, this detection process would be fully automatic. However, currently no
method for the fully automatic detecting of guide-wires in fluoroscopy exists which
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(a) Overview (b) Close-up

Figure 3.11: Closeup of minimal initialization-graph with branching points.

produces results of sufficient accuracy [54]. In this section we present an approach for
the semi-automatic detection of guide-wires. The method is based on the second-order
structural information contained in the images which has already been used for the
enhancement of ridges. It utilizes the directional information provided by the Hessian
analysis to establish neighborhood relationships within the image and form a graph with
pixels being the nodes where the graph’s edges connect neighboring pixels. Guide-wires
are then detected by manual selection of start- and end-nodes within this graph and by
computing a shortest path [20] between these terminal nodes. The approach is similar to
the work recently presented by [67]. Other algorithms which motivated the development
this method are e.g. Livewire (also known as Intelligent Scissors) by Mortensen et al.
[56] or the point linking method Steger [71, 70] proposes.

In contrast to Livewire, the proposed method creates only a sparse graph of the pixel
neighborhoods which results in faster processing. However, the presented approach may
in some cases result in segmentation failures because it may happen that the generated
graph contains disconnected components. A prerequisite of Steger’s method is the
existence of multiple pre-detected sets of pixels, where it is assumed that all pixels
represent objects of interest. This is not the case for the method at hand. Here, it is
required that two pixels on the curve are manually selected and the algorithm tries to
establish a connection between the selected points while being guided by image features.

Graph Creation

Here, an initialization procedure is proposed that requires the user to select two points
close to the extremities or end-points of a single medical tool. The basic idea is that the
algorithm tries to connect these two points by traversing pixels supposedly belonging to
the medical tool. In fact, the algorithm traverses a graph G = (V, E) with nodes V'
corresponding to individual pixels. The edges E of the graph are connecting neighboring
pixels and to each edge e; € E is a weight w; associated which is small for those edges
belonging most likely to the medical tool.
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Given two user-selected seed points s; and ss, the system initializes a graph

G1 = (V4, Ey) with the seed point s; as its first node, i.e. V3 = {s;}. Additionally to the
graph initialization, the node initializes a stack U = {s;} of unprocessed nodes. From
here, the algorithm proceeds as follows. As long as the list of unprocessed nodes is not
empty, i.e. U # ©, a node v, is popped from the stack U. For this node, up-to three
neighbors n, ny and ng are selectively added to the graph GG;. In case a node n; is not
yet part of the graph, i.e. n; ¢ Vi, it is added to the stack of unprocessed nodes and the
stack becomes U = U U {n;}. The weighted graph itself is extended by each neighbor n;
as

Vi = ViU {n,) (3.63)
E1 = E1 U {(VC7 n;, U)Z)} . (364)

This growing process is continued until the stack U is empty and results in a first graph
(G1. In case the second seed point is already a part of the graph G, one sets G = G,
and continues with a single pair shortest-path computation. If s; ¢ Vi, the process is
repeated in the same way with the second, yet unprocessed seed point s, which will
result in a graph G5 and the final graph G becomes G = G; U GG5. The final set of pixels
P ={p!,...,pM} representing the medical tool is now computed as the solution of the
shortest path problem on G for the node pair s; and s,.

Several question are now remaining. First, it needs to be defined how the neighbor
selection is working. Next, it needs to be discussed what happens in the aforementioned
case, when G71 NGy = @. This means, G consists of two disconnected components and in
this case a special fallback routine is required. Finally, computing shortest paths
requires edge weights w; and it needs to be defined how to compute these weights.

Neighborhood Selection

During the graph creation process, a neighbor selection is required. It is claimed in the
introduction, that the method is utilizing directional information contained in the image
data. As described in Section 3.2.1, the Hessian H of image intensities is providing the
required directional information. For any point v. being currently processed by the
growing routine, the local Hessian matrix is analyzed. Its eigenvector t. corresponding
to the smallest absolute eigenvalue is equivalent to the tangential direction of the curve
in the point v.. Examples of such eigenvectors are represented by the green arrows in
Figure 3.11(Db).

The directional information of the eigenvector or tangent is then used for the neighbor
selection in the following way. Assuming the tangent t. in the current point v, is defined

as
te

where ||t.|| = 1, the corresponding direction o can be computed as a = atan2(t¥, t).
This angle will fall into one of eight quadrants each spanning 45° and each defining a
single triplet of neighbors. The quadrants and the selected neighbors n;, n, and ns for

an exemplary tangent direction are sketched in Figure 3.12.
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Figure 3.12: Neighbor selection based on tangent direction t (corresponding to the red
vector). The green squares indicate the selected neighbors.

Neighbor Saliency

As mentioned before, not all three candidate neighbors n;, n, and ns are added to the
graph but only salient ones. In order to accept all of the three following conditions must
hold:

1. n; € Q7
_ 1
3.y = arccos(”(tc,ti)H) < g

The first condition is trivial and simply preventing the selection of invalid points by
ensuring the no points outside the image domain are chosen. The second condition is
based on any vesselness measure V introduced in Section 3.2.3. In case of Frangi’s
vesselness measure, V(n?¥, n!) is non-zero if and only if the largest eigenvalue of the
Hessian at point n; is positive which ensures that we are only tracing dark and line-like
structures. This can be seen from Equation (3.45) though it is defined for bright lines as
opposed to dark lines which explains the negation of the relation. For Koller’s
vesselness, the feature value is non-zero when both side responses R; and R, are
positive (see also Equations (3.52) and (3.53)). The last condition ensures that the
eigenvectors located at v, and n; are pointing in similar directions and do not deviate
by more than 45°. This is motivated by the assumption that the object we want to
segment exhibits certain smoothness.
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Graph Dilation

The graph dilation is the aforementioned fallback routine which is used to deal with
cases in which the created graph G consists of two disjunct components. How can this
happen? During the selection of salient neighbors, some neighbors are rejected. In
particular problematic is the second saliency criterion which requires that V(n?,nY) # 0
holds for a candidate neighbor n;. Due to the noisy nature of interventional images and
due to the small size of the desired structures and partial occlusion by background
objects such as ribs or the spine, guide-wires and other medical tools sometimes appear
as disconnected objects. In cases where the object appearance is corrupted by noise, the
corruption are is most often caused by single pixels. This means, that beyond this single
corrupted pixel, the object is again visible and leads to the idea to dilate the pixel
graph. So far, the neighborhood selection considers only direct eight-neighborhood of a
pixel v.. The dilation process relaxes this neighborhood selection by extending the
neighbor search range.

The method is performed by reconfiguring the graph growing such that the eighteen
neighbor pixels around v, are investigated. Each of the leafs of graph G is pushed into
an empty stack U and the graph growing is run a third time which results in a new
graph G which may contain edges (v,, n;) of length up to 2v/2. This method is primarily
a heuristic approach giving the system a second chance to recover from initial failures.
This indicates, that even after the graph dilation it is possible to face the situation
where either s; ¢ V or sy ¢ V' which prevent the computation of a shortest path
between the nodes s; and s,. In such cases, the algorithm failed and the user is required
to choose a different set of seed points s; and s, or a different input image Z.

Edge Weights

Assuming, everything went fine and the graph G allows the computation of a shortest
path between the nodes s; and s, it is required to provide edge weights w; for every edge
e; = (nj, 04, w;). Given the tangents t; and t of the nodes n; = (nj,n?) and

n; = (nf,ny) and the feature image V, the edge weights w; are computed as

w; = <1 — V(nj)V(nk)) arccos(||<tj,tk>||) : (3.66)

This measure leads to small values when the geometric mean of the vesselness measures
at locations n; and ny, is high, i.e. when both pixel locations are likely to belonging to a
line-like structure. Furthermore, the measure gets the smaller the smoother the curve is,
which is modeled by the angle between the tangents t; and t;.

Using these edge weights w; as defined above, it is possible to Dijkstra’s [20] shortest
path algorithm and to compute an ordered set

P ={p',...,p"} (3.67)

resembling the discrete points belonging to the desired medical tool.
An overview of the basic algorithm without the second chance or graph dilation,
respectively is provided in the pseudo-code algorithm 22.
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3.4 Fully Automatic Detection

In this section, two methods for the fully automatic detection of ridge like structures are
discussed. The first method is the result of the work of Carsten Steger [71, 70] and it is
not only detecting and linking edge points but also providing a classification of the pixel
type, i.e. whether the pixel is a center curve pixel, whether it is an end-point or
belonging to a junction. Furthermore, the method computes sub-pixel locations of ridge
centers and local tube widths. The second method that is presented in this section is a
modification of Canny’s well known edge detection algorithm. The adaption replaces the
gradient magnitude by a ridge indicator and adapts the non-maximum suppression in a
way that it is performed along ridge normals.

3.4.1 Canny Ridge Detection

The well known edge detection method proposed by Canny [13] is originally based on
the computation of the image gradient VZ. It uses the gradient magnitude |VZ| as an

Algorithm 1: Semi-Automatic Tool Detection
input : Image Z, Vesselness V, Tangents T
output: Tool Pixels P

1 {S1,82} + initializeSeedPoints();
2 G« (V. E);

3 fori <+ 1to 2 do

4 U <+ {si};

5 while U # © do

6 v, + pop(U);

7 te T (ve);

8 N < computeNeighbors();

9 foreach n; € N do

10 if n; € V then continue;
11 U < push(n;,U);

12 t; < T (n;);

13 v~ arccos(”(tc,ti)H);

14 ifn,-EQI/\V(ni):0/\7§7r/2then
15 w; < computeEdgeWeight (V(n.), V(n;),7);
16 V «— VU{n};

17 E «+ EU{(n.,n;,w)};
18 end

19 end

20 end

21 end

22 P < dijkstra(G,sy,sq);
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(a) Canny Ridges (b) Steger Ridges

Figure 3.13: The figure shows two exemplary results of a fully automatic ridge detection
method. On the left-hand side, an approach derived from Canny’s edge detection algo-
rithm has been used and on the right-hand side is the method of Carsten Steger. Both
methods generate multiple responses and require additional post-processing to filter out
spurious results.

indicator of edge strength. After the computation of the gradients and gradient
magnitude, the method starts by a non-maximum suppression in the direction of the
gradient, i.e. orthogonal to edges. Gradients at a pixel location p are only then retained
when neighboring gradient magnitudes in the gradient direction +=VZ are both smaller
than the gradient magnitude located in the current pixel. This method is then followed
by a hysteresis threshold based on two threshold values tnign and 14w, where the high
threshold value is used to select salient pixels and the low threshold is used to perform a
region growing starting from this pixel and including neighbors until their gradient
magnitude is greater or equal to the lower threshold. This method ensures, that the
output of the detection algorithm are only a single pixel wide and in the original
method, these pixel sets are corresponding to edge locations.

As opposed to Steger’s method (see below), Canny’s edge detection does not provide
any ordering on the pixels nor any additional geometric information besides the fact
that pixels are located on edges. Additional methods for linking pixels to line segments
are required to generate this additional kind of information.

The adaption to the detection of ridges is straight forward and requires only two
modifications of the original algorithm. First, the gradient magnitude needs to be
replaced with a measure which indicates high likelihood for pixels belonging to ridges as
opposed to edges. Here, again any vesselness measure ) of the previously mentioned
(see Section 3.2.3) tube or ridge enhancement methods suffices. After the adaption of
the salience measure, the gradient direction need to be adapted. Non-maxima need to
be suppressed orthogonal to the object of interest. For edges, this direction is
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corresponding to the gradient

(3.68)

VT — [GI*I] ’

Gy*1

though for ridges this choice is not correct. Following the findings of Section 2.2, it is
clear that again the directional information provided by the Hessian H of image
intensities can be used to determine the normal of the ridges — it is equal to the
eigenvector p corresponding to the largest absolute eigenvalue. From a practical,
run-time point of view it is no problem that now second-order derivatives of the image
are required since the data is already computed for during the generation of the
vesselness V.

Exemplary results of this detection algorithm are shown in Figure 3.13(a). The results
indicate that additional post-processing methods are required to filter out spurious
responses. But not only does this method create false positives but it is also not
providing a segmentation of the whole guide-wire but only parts of it. Even though it
may theoretically be possible to improve the results by careful tuning of the choice of
the hysteresis parameters as well as the parameters which are required for the
generation of the feature image V the results will most likely not be generally applicable.
Consequently, so far the method requires additional user interaction in order to select
the correct line-segments or at least for the verification of the segmentation results.

3.4.2 Steger Ridge Detection

In his work on “An Unbiased Detector of Curvilinear Structures” [70], Carten Steger
proposes a method which is based on the saliency or vesselness measure introduced by
Sato et al. The algorithms consists of two phases, a first one which selects points
forming ridges and a second phase in which these points are linked to lines.
As in the “Canny Ridge Detection”, points are detected by combining a saliency
measure in combination with a hysteresis thresholding. The saliency measure Steger
proposes is identical to the measure proposed by Sato et al. presented in
Equation (3.39). Therefore, the algorithm is also bound to the same constraints as
Sato’s method and requires the same scale-space normalization and constraints on t.
Table 3.1 summarizes these results and they are corresponding in general to the findings
of C. Steger. A minor difference is that the choice of o (see Equation (10) in [70]) which
corresponds to v/t should be tightened to?

,

o> 7 (3.69)

The basic idea of the saliency measure is derived from the commonly known second
derivative test. Given a stationary point, here the ridge top, the ridge profile Z,(x, r, h)
is a local maximum (belongs to a bright line) when
OL.(x,r, h)
d%’x
2In the work of Carsten Steger, the tube radius is defined by w as opposed to r which is used in this
work.

<0. (3.70)
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For dark lines, Z, must exhibit a local minimum. In 2D, second derivatives are
represented by the Hessian matrix H and the eigenvalue of largest absolute value is
corresponding to the second derivative in the curve’s normal direction.

Steger’s method is not based on integral pixel coordinates but the author performs the
actual ridge detection at sub-pixel accuracy. Sub-pixel coordinates of an arbitrary
one-dimensional ridge profile Z, can be found by computing a solution for dz such that

od

holds. For a two-dimensional ridge profile, the offset needs to be determined in the
direction of the ridge normal n = (n,,n,)". As usual, this direction is corresponding to
the eigenvector corresponding to the largest absolute eigenvalue and Equation (3.71)
becomes

=0 (3.71)

OL.(z + dng,y + dn,)
od

The solution to this equation can be found by using a second order Taylor
approximation of Z,. The second order Taylor approximation is given by

=0. (3.72)

1
T(o +dne,y +dny) = T(e,y) +dn VL(2y) + S Hp(myn . (3.73)

Deriving Equation (3.73) for d, setting it to zero and solving for d results in

)

n

J— nVZ,(z,

- e (3.74)

)
Y
and leads to sub-pixel precise ridge centers as p = (x + dn,, y + dn,). Solutions to this
equation are only accepted it d € [—%, %] which leads to a second criterion that may
cause the rejection of points as ridges.

To summarize, the algorithms processes all pixels in the image and accepts only points
where the directional derivative in the normal direction has the correct sign and it
accepts only those points, where the optimum is located within the unit circle centered
in the current point, i.e. |d| < % All other points are assumed to belong to the
background and immediately discarded by the method.

The next step is the hysteresis thresholding. Identically to the previously introduced
method, seed points are selected as pixels having a saliency measure being higher than
some strong threshold. Neighbors are then added to the seed points by looking at
potential candidates and verifying that these candidates exhibit a salience measure
being higher than some weak threshold. In fact, the method used by Carsten Steger is
slightly more difficult because it does not only perform a simple hysteresis thresholding
but in addition the algorithm is linking neighboring pixels and thus introducing a
spatial relationship rather than a mere labeling of fore- and background pixels.
Exemplary results of Steger’s detection algorithm are shown in Figure 3.13(b). Similarly
to the “Canny Ridge Detection” the results indicate that additional post-processing
methods are required. A difference is that this method does provide additional
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information as geometric properties like the ridge width and ridge orientation as well as
semantic properties where ridge pixels are classified as center pixels, end pixels or pixels
belonging to junctions. It is not really an advantage because when looking at the
algorithm from a modular point of view, the same information can be added to the
“Canny Ridge Detection”. This is not only true for the geometric and semantic
properties but also for the sub-pixel positioning of individual pixels. For future research
it might be beneficial to replace the salience measure used by Carsten Steger by the
vesselness measure of Koller et al. because of its advantageous properties discussed at
the end of Section 3.2.3.

3.5 Discussion

In this chapter, different methods for the enhancement and the semi-automatic as well
as fully automatic detection of medical tools were discussed. It turns out, that these
days no method for the fully automatic detection of medical tools exists which performs
at a level of reliability being required in clinical practice. Actually, it is most likely a
valid assumption that simplified methods which operate only on single frames without
the consideration of temporal changes will not even in the future be capable of
performing a segmentation at the desired level of reliability. From a practical point of
view this statement is strongly supported by the fact that even human observers have
sometimes difficulties in detecting small structures in fluoroscopic image sequences when
these do not exhibit any motion.

Two ideas to tackle the problem in the future are presented in this section. In some
sense both potential approaches considered here solve a classification problem. Recently,
some authors [54, 33] proposed learning based algorithms for guide-wire detection and in
fact, these methods are already solving a fuzzy classification problem but one could
claim that even hysteresis thresholding is a crude classification method. More
interestingly, both methods mentioned before do not yet utilize the time domain which
is in this work considered crucial for the development of fully automatic methods.
Similarly to the image based methods presented in this chapter, the aforementioned
learning based methods mainly focus on appearance and intensity models.

The incorporation of the time domain is considered important for future work and what
most obviously changes in time is the spatial location of medical tools. For these objects
their location is determined by the patient motion, dynamic changes of the projection
geometry and tool interactions performed by the physician. One can observe that
background objects typically follow a different motion pattern than medical tools.
Responses caused by image noise are unlikely to exhibit regular motion but can be
assumed to follow random motion patterns. Other responses as e.g. the spinal discs as it
is observed in abdominal interventions are hardly moving at all but remaining stationary.
One possibility for the detection of medical tools within noisy background is spectral
clustering [16, 83]. The method is based on the design of an affinity function which glues
together objects belonging most likely to the same cluster. Given curves

C! (i=1,...,n) and a method for tracking curves over time, it is possible to collect
spatial information for each curve C! resulting in a set of curves
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C; = {Ct ..., CH*™). A symmetric and positive function mapping pairs of objects,
here sets of curves, to R as

is called an affinity function and large values correspond to a high likelihood that the
curve sets C; and C; belong to the same group, e.g. noisy background. Besides the curve
locations, the function f can be designed based on additional information such as the
image data Z' given at each time instant ¢. From this function an affinity matrix A is
created where

A(i, j) = f(Ci, Cj) - (3.76)

Without going into too much detail on spectral clustering, it is possible to create the so
called graph Laplacian L and a degree matrix D from the affinity matrix A. And the
first d eigenvectors of the generalized eigenvalue problem Lu = ADwu are then used to
map the objects one intends to cluster into a d-dimensional space. The first d
eigenvectors can be assembled into a matrix

U=lu,...,up] € R™*, (3.77)

Here, each of the m data points C; is corresponding to a d-dimensional point S;
represented by the i-th row of the matrix U (i.e. U(i,:) in Matlab notation). In the
optimal case the function f is designed such that the points §; form clouds and thus
enable a linear separation of individual clusters. The actual separation step is carried
out by performing a k-Means clustering and the outcome of the grouping process are C;
with i € {1,...,k}.

Before discussing problems associated to such a clustering approach, a simple affinity
function will be presented. Considering that curve motions can be approximated by
two-dimensional rotations and translations, it is possible to generate for each curve set
C; a set of angles R; = {al, !t ... a/™™} and translations 7; = {t{,t/*! ... ¢/},
Assuming further, that corresponding curves C; exhibit similar motion pattern over
time, a possible affinity function could be written as

Oa o

F((R,T)i, (R, T);) = exp (_

This function becomes 1, when the two curves have identical motions and results in
smaller values for different motions.

Initially, this clustering approach seems to be feasible but it turns out that naively
pursuing this recipe does not lead to convincing results — and this independently of the
choice of the affinity function. The problem is that the cluster K., representing the
object of interest is most often too small to justify the creation of an individual class.
Assuming the detection algorithm presented in the previous section right away detect
the medical tool, the cluster’s cardinality can become as small as 1. A possible way to
deal with this problem is to ensure that the detection algorithm splits the object of
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interest into a reasonable amount of sub-segments. This can be achieved by separating
the image Z in the initial detection step into small sub-patches and by applying the
detection method on each of these sub-patches separately.

Since the method proposed here is just a suggestion in which direction future research
might continue, no evaluation has been performed. The recipe presented above is a
simple way to incorporate information provided by the time domain. State of the art
methods aiming at the fully automatic detection of medical tools do not yet perform at
an acceptable precision and stability suitable for clinical practice which leads to the
conclusion that additional information is essential.
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CHAPTER
FOUR

TOOL TRACKING

This chapter presents a novel method for the tracking of curves modeled by B-splines.
In principle the tracking can be applied to open as well as closed curves thus enabling
the application of the method to segmentation problems where the B-spline is describing
a contour as opposed to an open line-like structure. However, in this work the focus lies
on medical tools and thus open curves.

The tracking algorithm is based on discrete optimization methods and does not rely on
gradient based formulations. This approach enables the utilization of complex models
for which derivatives can most often only be approximated by numerical methods. Such
numerical differentiation methods are sometimes difficult to handle because they are
sensitive to the discretization schemes, e.g. the step size at which derivatives are
approximated. This problem gets even more difficult for functions having a high
dimensional parameter space and parameters which live in different sub-spaces as e.g.
angles and translations which require different step sizes for a proper differentiation.
One example where discrete optimization is beneficial and where derivatives can hardly
be estimated are energy terms of cost functions which are learned with offline data.
Local minima, oftentimes caused by noise represent another problem which can be
potentially overcome by discrete optimization strategies. Because discrete optimization
methods do not rely on gradient information, they lack strong forces keeping them from
leaving local minima and have the potential to discard such configurations and converge
towards a global optimum. Global optima in discrete optimization are slightly different
from those in continuous optimization because global refers to global within the discrete
set of solutions. Especially for open curves, there exist discrete optimization strategies
that are guaranteed to find the global optimum within the discrete set of solutions, i.e.
that do not rely on any approximations.

Nonetheless, also discrete optimization techniques are not without disadvantages.
Gradient-based method intrinsically model interactions of different parameters. For
discrete optimization techniques which are based on graphs in which nodes represent
random variables and edges dependencies of these variables (or parameters) this would
be only guaranteed in cases where a node were connected to all nodes on which it is
depending. Such a procedure is in practical applications not feasible because it results in
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an explosion of the computational complexity and therefore these interactions require
approximative solutions. The efficient design of approximation schemes is an important
topic in this work and will be discussed in this chapter.

The first section of this chapter focuses on the modeling of curves and the modeling of
tool motions. Afterwards, several possibilities for the modeling of objective functions are
discussed and defined as continuous functions which could potentially be used in any
optimization framework. It is common that such cost function consist of at least two
components. A first component which drives the optimization and which is usually
referred to as data term or internal energy. These terms are usually based on some
saliency measures sometimes also called feature images or vesselness images in case of
line-like structures. The second term, the regularization is required to deal with the
ill-posedness of the optimization problem. Regularization terms are used to convexify
objective functions and are often based on geometric observations. Several methods for
the regularization are reviewed in this chapter and a group of regularization schemes is
presented.

After the introduction of the energy terms, MRFs are introduced and it is described how
to use these optimization techniques for tracking. Section 4.3 goes into detail on how to
discretize the continuous functions presented in Section 4.2. Additionally, the section will
provide details on approximation errors related to an incomplete modeling of parameter
interdependency. Various approximation schemes are introduced and evaluated.

The last part, Section 4.4 presents a variety of synthetic experiments which are in
particular used to support the validity of the approximation schemes. In addition, the
experimental section contains results on hand-labeled clinical data. The results show the
applicability of the method and its potential to correctly estimate the apparent tool
motion. Besides synthetic experiments and those on clinical data, the last section
contains a quantitative comparison of the proposed tracking algorithm with a recently
introduced learning based method.

4.1 Modeling of Guide-Wires and Needles

In this work, curves are modeled by non-uniform B-splines. The general form of a p-th
degree B-spline is

m—1

Clu) = > Nip(u)P;, (4.1)

7=

where u is a parameter defining the location on the curve. The curves which are used in
this work are not arc-length parameterized. In Equation (4.1), v = 0 and v = 1 are
corresponding to the curve’s end-points. The functions N;(u) are different B-spline basis
functions, each associated to a control point P;. In this work, the objects of interest are
observed in two-dimensional images and thus the B-spline’s control points are
two-dimensional as well, i.e. P; € R?. The i-th B-spline basis function of degree N; ,(u)
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is defined by

1 if U; <u< Ui+1
i = B 4.2
o(¥) {O otherwise (4.2)
U — Uy Uitp+1 — U
Ni = 7]\71 — - Nz - ’ 4.3
»(1) oy — P 1(u) + Uorptt — tags TP 1(u) (4.3)

which is usually referred to as the Cox-de Boor recursion formula [19]. This function is
defined by so called knots u; € R and the augmented knot-vector

U ={up,u1,..., Unip} - (4.4)

Augmented is here used because the first and last p + 1 knots are equal to 0 and 1,
respectively. For an augmented knot vector with n = m + p + 1 knots, the knots u; with
t=p+1,p+2,...,n—p— 1 are referred to as internal knots.

The utilization of B-splines is most common for the tracking of medical tools. In fact, all
other works presented in Section 2.3 are using B-splines too. In general researchers tend
to use uniform B-splines because they can be efficiently implemented since in this
special case, the basis functions are just shifted copies of each other. The uniformity of a
B-spline curve is reflected in the distribution of the knots on the interval [0; 1] since in
the uniform case, the knots are uniformly distributed on that interval. From a practical
point of view, non-uniform distributions enable better approximation of curves which
exhibit strong local variations of curvature.

Fitting of Smoothing Splines: For the task of tracking, one is initially given a list
of points

P={p',p%...,p"} (4.5)

by the detection module for which a spline function C(u) with a maximum of m control
points is sought after which obeys certain optimality criteria. The spline C'(u) should
approximate the data by finding a compromise between a close fit and a smooth solution
in the sense that discontinuities in the curve’s p-th derivative should be as small as
possible. Dierckx [17, 19] proposes to formulate this problem in terms of the following
minimization:

Minimize n:= "—sz (C(p)(u)(umL) — C(u)® (ui—))Q (4.6)
i=p+1
st. 0= Zw]- (pj — C(uj))2 <S8 (4.7)

In this equation C® is the p-th derivative with respect to u. An implementation of this
method called parcur is publicly available in the library FITPACK [18]. It does not
only compute the optimal control points P; but also allows for the computation of a
non-uniformly distributed knot vector U. In this work, the weights for individual data
points are set to w; = 1.

67



Deforming Spline Curves: Once a spline fit for the point set P and thus the
medical tool is given one needs a model of curve deformations. In fact, these
deformation can be linear and non-linear. Since for B-spline basis functions holds

S Nip(u) =1 (4.8)

=0

and because of the B-spline definition from Equation (4.1), a transformation by a matrix
R and a translation t can be written as

C(u) = RC(u) + t (4.9)
_R W'H Nip(u)Ps + E Ni(u)t (4.10)
_ n'l_l N;(w) (RP; + t) . (4.11)

This shows that applying a linear transformation and even a translation to the control
points of a spline is identical to transforming the whole curve. Non-linear
transformations are modeled slightly differently by displacing single control points.
Once the basis functions N;,(u) are fixed, the curve shape is solely defined by the
positions of the control points P;, and arbitrary deformations can be modeled by
displacing individual control points as

—_

m

Clu) = Y- Nip(u)(P; +di) (4.12)

1=0

and with this representation it is possible to model arbitrary deformations.

This equation indicates that each curve point is depending on all variables P; and d;
which in an optimization framework would imply that each variable is depending on
every other one and in case of discrete optimization this would lead to a combinatorial
explosion. Thus, a question which is of particular interest in this work is how many
control points define the spatial location of a point C'(u). From Equation (4.1) one can
see that each C'(u) is affected by every control point for which the B-spline basis
function is non-zero, i.e. N;,(u) # 0. It can be shown that for a curve of degree p this is
true for exactly p + 1 basis functions and consequently a single point C'(u) is depending
on p + 1 or for cubic splines, four control points. This observation is important because
it implies that for each curve point C(u), p + 1 variables subject to the upcoming
optimization are depending on each other as opposed to all m. As mentioned in the
introduction of this chapter, such inter-dependency of variables must either be modeled
correctly in the optimization process or, in cases where this is computationally
impractical, the error introduced by an incomplete model must be carefully handled.

In the optimization scheme which will be presented in the next sections, only the
inter-dependency of two variables will be modeled. Therefore, a deformation model of a
curve where only two variables are displaced is required. Assuming, a curve C'(u) is
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displaced in the j-th and k-th control points, the deformed curve can be written as

m—1
C(u,dj,dy) = Njp(u)(Pj + d;) + Ny p(u)(Pr + di) + Nip(u)P;
#Z;gék
= C(u) + Nj,p(u)dj + Nk,p(u)dk . (413)

In the same way, it is possible to derive the displacement in three control points i, 7 and
k as

C(u,d;, d;,dg) = C(u) + Nip(u)d; + Njp(u)d; + Nip(u)dy . (4.14)

The deformation model which is used in this work is slightly different than the one
presented in Equation (4.13). A problem caused by Equation (4.13) is the assumption
that only two control points are moving while no other control point is changing its
position. This assumption leads to intermediate curves C (u,d;,d;) which are only
roughly approximating the reality. The fact, that in reality neighboring curve points
exhibit a similar motion lead to the development of a new deformation model. In the
new model, the smoothness of the motion is incorporated by applying the displacements
of the control points P; and Py, also to their neighbors. The resulting curve being
displaced by d; and dj, is represented by

—_

C(u,d;,dy) = zij (w)(Pi+d;) + > Nip(u)(P; + dy)
=0

3

i=k
J m—1
=0 i=k

To summarize, the most important point of this section is that medical tools are
modeled with non-uniform B-splines. The non-uniformity improves the curve evaluation
because it allows a linear sampling of the domain [0; 1] while preventing linearly spaced
points on the curve — i.e. even though the domain is linearly sampled, curve points may
cluster in areas of high curvature. A second important result is the way in which tools
are deformed which is described by Equations (4.14) and in particular (4.15). Regarding
the remaining details as e.g. the efficient evaluation of B-splines the reader is kindly
asked to refer to secondary literature [61, 19].

4.2 Modeling of Objective Functions

In the following, the general continuous formulation of the curve tracking problem is
reviewed. Given an initial curve ', one wants to estimate transformation parameters
leading to a new curve C* which is conforming with observed image data Z.
Mathematically, this means one seeks to maximize the posterior probability

Cr = arg max P(C|I), (4.16)
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and in this equation C* is referred to as the MAP estimate. Based on Bayes’ theorem,
which states that

PI|C)P(C)

PCIT) = = pgr—

(4.17)
Equation (4.16) can be rewritten. Assuming a constant P(Z) is generally considered safe
and since a constant factor does not affect the result of the maximization, the problem
can be rewritten as

C* = arg max P(Z|C)P(C). (4.18)

In this equation the term P(Z | C') is referred to as the likelihood distribution and it
evaluates how well a given curve C fits the observed image Z. The second term P(C) is
called the prior distribution and models potentially available a priori knowledge. In the
case of curve tracking this term can for instance be used to encode constraints on the
geometric appearance of a curve or prior knowledge regarding the type of
transformation one expects the curve to undergo. If no a priori knowledge is available,
P(C) is assumed to be a uniform distribution where each curve configuration has the
same prior probability.

Assuming furthermore, the probability distributions of Equation (4.18) follow a Gibbs
distribution with underlying energy functions, one can rewrite the MAP estimation as
an energy minimization of the form

C* = arg 15161% E(Z|C)+E(C). (4.19)

In this case, one can interpret the likelihood energy E(Z |C'), often referred to as cost
function or data term, as measuring the quality of a certain model configuration.
Likewise the prior energy E(C) can be interpreted as a regularization (or smoothness)
term on the parameter space which allows to impose constraints on the solution.

External Energy When formulating the tracking problem based on B-spline curves
which are defined on the interval [0; 1], the likelihood term (4.20) or ezternal energy,
driving the curve to its actual position can be formulated as

Euu(Z|C) = / H(Z(C(w)) du. (4.20)

Given that the image Z is equal to one of the feature images V presented in Section 3.2,
i.,e. Z =V, the function ¢ is used to make the feature image’s values suitable for
minimization. For a feature image with intensity values normalized to the interval [0; 1],
this function can be defined as

WI)=1-1T. (4.21)

When using such a function definition, the tracking problem is said to be modeled as an
image based problem as compared to alternative, e.g. learning based models. In general,
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image based methods differ only in the type of image Z being used in Equation (4.20).
To be more precise, the methods differ in the sort of pre-processing applied to the raw
image data. For the tracking of curvilinear objects, the most important image features
are typically chosen as one of the earlier introduced ridgeness or vesselness measures
(66, 22, 39].

Several alternatives are possible too. In addition to Frangi’s vesselness filter [22], Baert
et al. evaluated vesselness images on preprocessed input images in [3, 4]. Two types of
images were evaluated. One with input images being pre-processed by some sort of
background removal and a second method where the input image was preprocessed with
coherence enhancing diffusion (CED) as proposed by Weickert [80]. According to the
experimental results of Baert et al. [3], Heassian feature images computed on
unprocessed and pre-processed images lead both to a spline localization being similar to
the inter-observer variability. These results lead to the decision to ignore minimal
potential gains of these methods while preventing their inherent run-time penalties. For
the same reason, other diffusion based filters such as the works of Canero et al. [12] and
Manniesing et al. [51] have not been adopted in this work.

Internal Energy The prior, which is also referred to as internal energy, constrains
the motion of the curve. Regularization is well known and many regularization functions
are universally applicable for a multitude of problems. Constraints on B-splines which
penalize geometric properties such as the curvature, length, or relative changes of these
values, are generically applicable to curve evolution algorithms.

Another option for regularization is regarding the curve motions. In Equation (4.12),
the curve motion is parameterized by displacements d; for each control point. Similarly
to Equations (4.14) and (4.15), the deformation can be decomposed into the original
curve C' plus some deformation field D as

C(u) = C(u) + D(u) (4.22)
- n'l_ Niy(u)Pi+ mz_j Nip(u)d; . (4.23)

These two curves have identical knots and differ only in their control points. A common
approach is to ensure smoothness of the displacement field or to penalize deviations of
neighboring displacements. In fact, it is a common assumption that both approaches
lead to the same results though this is not generally true. First, the displacement field
one observes in this application is intrinsically smooth because it is a spline of degree p
and thus CP~! continuous. Minimizing the distances of neighboring displacements leads
to a different effect causing the transformation to tend towards a pure translation. In
the latter case, the spline D exhibits multiple identical control points d; which leads to a
degree reduction of the spline curve and thus to D being a straight line and finally an
infinitesimal point which is the same effect one achieves by minimizing the length of
D(u).

Because of the natural smoothness of the displacement field, regularization approaches
trying to explicitly enforce such a smoothness are considered to be needless for the task
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of tracking and the focus will be laid on constraints of the curve’s geometry and its
changes over time.

In this work, relative changes to initially observed data are considered in order to
formulate the regularization. This is advantageous because it does not rely on fixed
values which may be subject to changes caused by a different acquisition protocol or
because of varying patient anatomy.

Investigating the curve properties being acquired during the semi-automatic detection
phase results in reference data v,;; which can be used to realistically constrain curve
deformations. Deviations of observed data values v from these values can then be
penalized by the squared relative error

v \2
p(v, Vinig) = (1 - ) : (4.24)
Vinit
During the development of the tracking algorithm, two possible ways of regularizing the
curve geometry were investigated. The first measure is based on length changes
compared to a reference curve Cj,;; observed during the detection phase and the second
measure is penalizing deviations of the curvature between the currently observed curve
C' and the reference curve.
In order to evaluate length changes, a mathematical formulation of a curve’s length is
required and from differential geometry of curves it is known that for any given curve C,
its length can be computed as

l

[lc' @l du., (4.25)

where C” is the first derivative of the curve with respect to u. This follows, that length
changes can be penalized by

1 1
Bt = ( [ 1€k au, [ '@ du> . (426)
0 0

For reasons that will be justified later, it is desired to formulate energies as integrals of
some error function and not like in Equation (4.26) as error functions taking integrals as
their parameters. Therefore, Equation (4.26) is reformulated and leads to the modified
penalty term

1
e = [ p(1C" @)l 1 Chu (1l du (4:27)
0

with p being defined as in Equation (4.24). This modification does not lead to the exact
same results but it is an acceptable approximation. In fact, it is even beneficial for the
tracking because it helps to prevent a drift of the tracked curve along the observed one.
The drift is oftentimes prevented because the measure forces tangent norms to be locally
equal.

72



The second penalty term measures differences of the curvature between the initial curve
Cinit and the currently observed one C. For a single point on the curve, the curvature is
computed as

_ |GGy () - Cw)Cy(u)
H(Gw = (O

(4.28)

Here, the indices indicate which parameter is used (z for coordinates of the x-axis and
vice versa y) and the primes indicate first- and second-derivatives of the curve C' with
respect to u. Based on this equation, the penalty term can be written as

B = [ p((Cw), /(Coe (u))) du (4.29)

This approach is not following the common methodology of minimizing the curvature to
enforce smoothness. In case of B-splines, the inherent smoothness is often sufficient and
terms such as the absolute value of the curvature can be discarded [15]. We are more
interested in modeling the fact that the curve as seen at time instant ¢ is similar to the
curve observed at a later point in time ¢ + n which is based on the assumption that the
vessel-anatomy is not changing too much during the intervention.
Experimental validation has revealed that the most important regularization component
during the tracking is the length preserving term from Equation (4.27). Using the
curvature preservation alone is not sufficient because the measure is not scale variant
and allows the curve to shrink or grow. Consequently, the only alternative to using
length preservation only, is to combine both measures. Such an approach would lead to
the following energy function

Eroat = (1= A) Bee + A (1= 7) Eig®" + y Egire) (4.30)
where A and « act as weighting factors from [0; 1] controlling the influence of external
versus internal energy and length versus curvature regularization, respectively.
Exhaustive experiments have shown that introducing the curvature preservation does not
lead to greatly improved tracking results. The main problem which arises when using
Equation (4.30) is the proper choice of the regularization weights A and . To be more
precise, even though it is possible to find specific parameters which work on a single
sequence, it is not necessarily true that the same parameters could be applied to another
sequence. These experiences lead to the choice of the follwoing energy formulation

Eiotal = (1 = \) Foxe + A Eiot®™ . (4.31)

In continuous optimization, minimizing the above energies is commonly done in a
gradient descent approach. The initial contour is updated iteratively by computing the
derivative of the energy function with respect to the model parameters. The algorithm
stops if no further improvement on the energy can be achieved, meaning the method
converges to a local minimum. Even if sometimes convenient to use, such an approach
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Figure 4.1: MRF Model of an open cubic B-spline curve C' with control points P;. A sparse
and a dense version of the discrete set of labels £ capturing the deformation space are
illustrated (each black square corresponds to a displacement plus the zero-displacement
at the control point position).

has two major drawbacks. First of all, the algorithm requires the derivation of the
energy term, which is oftentimes complex to calculate analytically and has to be done
specifically for every function. Second, a convergence to a good solution relies on the
fact that the initial contour is sufficiently close. If the gradient descent starts far away
from the structure to be tracked, chances are high for obtaining bad solutions. This may
easily happen in sequences with larger motion. Multi-resolution approaches (e.g.
Gaussian scale space) might help in certain scenarios but do not overcome this general
limitation. Discrete optimization improves these issues and a strong indication is that in
this work, as opposed to previous works, no stratified approach is used (see also

Table 2.1).

4.3 Markov Random Fields for Tracking

So far, this chapter provides a formulation of continuous energies which could
potentially be minimized by using gradient based optimization. As mentioned earlier,
this approach is difficult and can lead to problems. In order to overcome the limitations
of continuous optimization or at least in order to be able to diminish their influence, it is
proposed in this work to render the tracking problem in a discrete framework.

Discrete problems can be represented by so called probabilistic graphical models
(PGMs). The entities required to build a PGM similar to the one presented in

Figure 4.1 are nodes v € V and edges e € £ which define a graph G = (V,£). The nodes
of a PGM represent random variables of the problem being modeled which are linked by
edges representing the variable interdependency. To be more general, G can even be a
hyper-graph and in that case the edges e € £ are referred to as hyper-edges and may
contain more than just two nodes.

Markov random fields (MRFs) are a special form of a PGM and belong to the class of so
called undirected graphical models (UGMs). Over the last years, MRFs have become
increasingly popular and the reasons for this raising popularity are two fold. First,
MRFs are well suited for typical vision problems because the MRF graph structure is
directly corresponding to the image structure which makes the modeling process

74



intuitive. Second, new methods for the efficient handling and solution of MRFs emerged
recently which allow to utilize these methods in real-world applications with demanding
run-time requirements.

Let us consider a graph G = (V, ) consisting of a set of discrete variables or nodes V
and a set of edges £ connecting neighboring pairs of variables in order to represent their
dependencies. Additionally, we introduce a discrete set of labels £ capturing the search
space of the model parameters. Each label z; € L is associated with a two-dimensional
displacement vector d* from the deformation space D C R?. Two possibilities for the
discretization of the deformation space are illustrated in Figure 4.1. If we associate each
control point P; of our B-spline model with one node of our graph, the task is to assign
an optimal label to each of the nodes or a displacement to each of the control points,
respectively. A common approach for modeling the labeling task in terms of energy
minimization is the usage of first-order MRFs [45]

Bt =Y 0" (x)+ > 09 (x;, 7)) (4.32)

=Y (i.)€E

where 0% are the unary potentials and 6% are the pairwise potentials.

In most applications, the unary terms play the role of the likelihood energy.
Independently from all other nodes, the cost for an assignment of a certain label x; is
evaluated. Then, the pairwise interaction terms play the role of regularization between
neighboring nodes. However, the assumption that the likelihood of a labeling can be
computed from a sum of independent unary terms is actually not valid in our scenario.
Considering B-splines with higher-order basis functions, the effect of a single control
point onto the deformation of the curve cannot be modeled independently from its
neighbors because the basis functions overlap. Therefore, a novel MRF model is
proposed for the case of curve tracking using B-splines. First, the basis functions will be
used as weighting coefficients within the energy terms. This leads to a higher influence
on the energy for curve points close to a certain control point as compared to the
influence of points being farther away. A similar approach is used by Glocker et al. in
[24] where the authors are using MRFs for non-rigid image registration based on cubic
B-splines. Such a weighting allows a suitable approximation of the energy terms with
respect to the control points.

In conventional modeling, external energies are represented by the unary terms of
Equation (4.32). This procedure imposes difficulties because it is based on the
assumption that the energy is locally affected by a single node or control point which
were only true when also the curve location were affected by a single control point. It
has already been explained in Section 4.1 that this is not true for B-splines of degree p
which are depending on p + 1 control points.

In order to improve this approximation, it is proposed to reformulate the external
energy from the continuous domain as pairwise interaction terms and not as it is
commonly done as unary terms. Modeling the external energy as pairwise terms has big
advantages. The non-vanishing interval of basis functions along the curve domain for
control point tuples is bigger than the corresponding interval of a single control point.
Compared to unary potentials, the energy computation for the simultaneous movement
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Figure 4.2: Influence functions originating from an open cubic B-spline with seven control
points.

of a pair of control points yields a more accurate approximation of the continuous
energy. In the proposed approach both energies, the external and internal are defined as
pairwise interaction terms as

Emrf = Z (( )\) eext('xza x]) + )‘emt(xw x])) (433)
(1,5)€€

where the discrete version of Equation (4.20) is build up by the pairwise terms

1
v (Ti, T5) /Nw (Cij(xi, xj,u))) du (4.34)
0

and the internal energy from Equation (4.27) by all pairwise terms

1

ij !
elnt L (L’] / ”LJ (HCZJ<J;“ Lj, U )

0

Gl >||) du. (435)

Here, the weighting coefficient Nij (u) evaluates the influence of a curve point of the site
u to the energy of a control point pair (i, j) and the curve function Cyj(x;, z;, u)
describes the potential deformation of a curve when two control points ¢ and j are
displaced simultaneously by d* and d*/, respectively. The potential deformation can be
computed efficiently by evaluating

m—1

Cij(wi, xj,u) = Clu) + Z Ni(u)d™ + > Ni(u)d™ , (4.36)

k=j

according to Equation (4.15).
Regarding the influence functions N;;, two different versions are considered in this work.
Either through the addition of basis functions which is called the sum model

N+ N
SEETE Ni(w) + N (w)

(4.37)
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or through multiplication which is referred to as the product model

Y ST Ni(u) Nig (u)

Here, k is the index of the first non-zero basis function of a point C'(u) and p is the
degree of the curve. The number of elements in the normalization terms (denominator)
is solely depending on the curve’s degree because every point C'(u) on a curve of degree
d is defined by exactly p + 1 control points, i.e. for every point p + 1 basis functions
N;(u) are non-zero. The normalization is required in order to ensure that the discretized
version (4.33) of the energy term is correctly approximating the continuous version from
Equation (4.31).

Exemplary plots of these functions can be found in Figure 4.2. The curves in the middle
and right-hand side plot can be interpreted as weighting functions for points belonging
to curve segments defined by two control points. As can be seen in the section on
experiments in Table 4.1, the product model performs best. The reason is that the
functions are steeper than those of the sum model. In other words one can say that the
locality of the product model is better than the one of the sum model.

The performance of the two weighting functions is evaluated in Section 4.4.2 and the
results which include a comparison to the naive approach where external energies are
modeled by unary potentials, i.e.

(4.38)

e (20) = [ Ni(w) (T (Cilas, ) du (4:39)

are summarized in Table 4.1.

It is shown that the presented modeling of the tracking represents a good compromise
between model accuracy and complexity. One could claim that the approximation error
could be reduced (or even completely removed) if more complex models were used.
However, the consideration of higher-order cliques as proposed by Ramalingam et al.
[64] is even despite recent developments of Ishikawa [35] computationally too
time-consuming in order to be applicable in real-time environments.

4.3.1 Optimization

Once the problem is formulated in a discrete setting, one needs to choose an MRF
optimization strategy. Fortunately, recent advances in discrete optimization brought a
couple of very powerful techniques, mainly based on iterative graph-cuts or efficient
message passing. Regarding the proposed model, there are two properties which should
be considered when using one of the existing techniques. First, for the special case of
open curves the MRF graph from Figure 4.1 is a tree which allows the exact
computation of the global optimal labeling when using max-product algorithms [60, 81]
(e.g. Belief Propagation, TRW-S [40]). Second, the energy is nonsubmodular which is a
(theoretical) problem for some methods using graph-cuts [42]. Using certain truncation
techniques [65] on the energy terms make it still possible to use graph-cut based
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techniques (e.g. Expansion Move [10]). Another possibility for minimizing
nonsubmodular functions is described in [41] but this technique might result in
unlabeled nodes which is not appropriate in the given setting. There are also methods
based on iterative graph-cuts which can handle a wider class of MRF energies (e.g.
Swap Move [10], FastPD [43]). Especially the FastPD algorithm is interesting in this
case since a good performance with strong optimality properties is reported. In

Section 4.4 the performance of the TRW-S and the FastPD algorithms are compared as
representatives for the message-passing and graph-cut approaches. As it turns out, as
usual there is a compromise between speed and accuracy.

4.4 Experiments and Evaluation

In this section the performance analysis of the proposed tracking approach is presented.
The evaluation consists of three parts. First, it is shown based on synthetic tests that
the optimal influence function is the product model from Equation (4.38). Next, the
influence of sparse as well as dense label sets is evaluated. In parallel to the label sets
the performance of fast but approximative optimization strategies is compared to exact
though slower strategies. For this analysis, TRW-S (exact), FastPD (approximative) and
QPBO (approximative) were chosen as representatives for the two possible optimization
strategies. The last part presents evaluations of the tracking algorithm on hand-labeled
clinical data and a comparisons to the guide-wire tracking approach presented recently

by Wang et al. [79].

4.4.1 Error Assessment

Before continuing with the experiments the assessed error measures needs to be defined.
A typically used error term for measuring the similarity of curves is the Hausdorff
distance

dy(C,Cq) = max(msax min d(C’(s), Cg(t)) )
max min d(Cg(S), C’(t))) (4.40)

It is defined between a tracked curve C' and the expected ground truth curve Cg and
informally computes the maximal shortest distance between the two curves. One
problem is that the whole curve C could be displaced orthogonal by some vector of
length [ and the Hausdorff distance would report the same error as for the case in which
both curves were perfectly aligned with only a single pixel being off by a distance of [.
In other words the distance measure does not handle outliers.

Another issue is that the proposed method tracks guide-wire segments over time while
the guide-wire itself is usually advanced further through the vessel system during
interventions. As a consequence such a system may be initialized with curves being
substantially shorter than the ones observed later in the sequences. Since they are
nonetheless labeled by experts during the generation of the ground-truth data, the
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Hausdorff distance would report the length difference of the curves — even when the
tracking were perfectly working.

These constraints lead to the choice of a simple discretized and asymmetric error
measure

d(C,Cq,s) = min ( HC(S) - C’G(t)H2) (4.41)

where one computes the minimal distance between the tracked and annotated curve.
Evaluating Equation (4.41) at different sites s allows to compute statistics such as the
mean tracking error, its standard deviation or the median error.

Similarly to what has been done in the work of Wang et al. [79] additional statistics are
computed. These are the percentage of missed annotated pixels and the percentage of
false tracked pixels. The missed pixels are pixels of the annotation having a distance to
the tracked curve being higher than a specific threshold. Similarly, the false pixels are
those on the tracked curve being further away from the annotation as defined by the
same threshold. Conforming with previous works, the threshold is chosen to be equal to
3 pixels.

In the first case, regarding the missed pixels, the tracking failed to annotate
ground-truth data. It basically missed to highlight given data. An example when this
occurs is exactly the case described before where the initial curve or tracked curve is
shorter than the corresponding annotated curve. The second case, the false pixels are
those where the tracking computes a curve in locations where it actually does not
belong to. The algorithms is literally creating false or wrong results.

4.4.2 Approximation Error

The first experiment is evaluating different ways of diminishing our model inherent
approximation errors. In order to measure the influence of the approximation error
several tests are performed on synthetic data. The data is generated by randomly
deforming an initial open B-spline curve Cy,; consisting of six control points. After the
deformation, an image frame is generated by careful rasterization of the deformed curve
C;. Different sequences with different amount of deformations are generated and each
frame in every sequence is generated from the same initial curve Clyj.

In this experiment the TRW-S [40] is used as the optimization method since it can
recover the global optimal solution for tree-like MRF topologies as they occur in the
proposed model. By knowing that the exact ground truth spline Cj,;; is within the
discrete label space, it is possible to estimate the error induced by the energy
approximation only. Since furthermore each frame from every sequence is generated
from the exact same initial curve Cj,; and since in this experiment the system is
reinitialized with that specific curve in every frame, it is possible to discard the
regularization term (i.e. set A = 0) and thus an additional source which could bias the
results because regularization is mainly of interest in longer sequences where tracking
errors can accumulate over time.

As mentioned before, different amounts of maximum deformations are used in each
sequence, ranging from 6 to 20 pixels control point displacements. Both proposed
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model

max. def. unary pairwise sum  pairwise product
6 1.00(£0.43)  0.34(£0.19) 0.28(£0.17)
8 1.15(£0.52)  0.36(%0.23) 0.30(£0.19)
10 1.33(£0.60)  0.42(£0.25) 0.36(£0.22)
12 1.41(£0.70)  0.43(+0.27) 0.36(%0.23)
14 1.74(£0.82)  0.48(+£0.30) 0.43(£0.28)
16 1.79(£0.93)  0.49(+0.32) 0.43(£0.29)
18 2.00(£1.04) 0.52(£0.34) 0.47(£0.32)
20 2.19(£1.15)  0.57(£0.40) 0.52(£0.34)

Table 4.1: Synthetic experiment which assesses the
energy approximation error under different amounts
of deformation and three different likelihood models.
Reported are the average curve distances and stan-
dard deviations in pixels over one hundred frames per
sequence.

pairwise weighting functions, the sum model and the product model, are evaluated as well
as the naive approach with unary potentials for the external energy. For a quantitative
evaluation of the synthetic results, the mean of the distances (and their standard
deviations) from Equation (4.41) at different, uniformly sampled sites s are evaluated.
The results are summarized in Table 4.1. The product model performs best on all
sequences. Especially, when considering larger deformations the approximation error has
a strong influence in case of unary potentials while both pairwise models still yield good
results of always less than one pixel.

4.4.3 Deformation Space Discretization

The second experiment is intended to evaluate different discretization strategies as well
as the effect of approximative optimizers like the FastPD or QPBO. Since the number of
labels is an important parameter for the runtime of MRF optimization techniques, it is
desired to determine a reasonable compromise between speed and tracking accuracy.
Two different strategies for discretization, a sparse one and a dense one, are proposed.
They are visualized in Figure 4.1. Both versions are parametrized by two values, the
number of sampling steps along a certain displacement direction and the range which
defines the allowed maximum displacement. In case of sparse discretization, the
deformation space is sampled along eight directions, namely horizontal, vertical and
diagonal each in positive and negative direction. In case of dense sets, the complete
square space at a control point is sampled. Given the number of sample steps S, one
gets |Lsparse] = 85 + 1, i.e. eight directions with S steps and in addition the
zero-displacement. For the dense version one gets |Lgense| = (S + 1)2. Similar to the first
experiment, eight synthetic sequences are generated by assigning uniformly distributed
random displacements on the six control points of a given initial curve Ci,;. The
difference is that this time the ground truth is not covered by the label space. The range
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of the label space is set to the maximum random deformation and different values for
the number of sampling steps are tested, namely 5, 10, and 20.

sparse dense

max. def. steps TRW-S FastPD QPBO TRW-S FastPD QPBO

5 0.32(£0.11) ) (£0.11) (£0.10) (+0.12)
6 10 0.32(£0.11) ) (£0.11) (0.10) (+0.12)
20 0.31(£0.10) ) (+0.12) (0.10) (£0.11)

5 0.42(+0.13) ) (£0.20) (£0.12) (40.16)

8 10 0.41(£0.14) ) (+0.18) (£0.12) (0.15)
20 0.40(+0.14) ) ( ) ( ) ( )

5 0.52(£0.16) ) (0.23) (£0.12) (0.24)

10 10 0.51(£0.15) ) (40.23) (£0.12) (40.20)
20 0.50(0.15) ) (40.18) (£0.12) (0.22)

5 0.62(£0.24) 0.87(£0.39) 0.72(+0.34) 0.53(£0.20)  0.75(+0.33 ( )

12 10 0.60(£0.23)  0.84(£0.33) 0.69(£0.29) 0.50(£0.17)  0.70(=£0.26 0.64(+£0.38)
20 0.59(#0.22) 0.82(£0.33) 0.70(+£0.33) 0.48(+0.16)  0.73(+0.38 0.61(40.36)
( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

( ) ) ( ) ( ) ( )

) ) ) ) )

0.44(£0.14 )
)
)
)
)
)
)
)
)
)
|
5 0.75(£0.27)  0.98(£0.39)  0.85(%0.34 0.59(£0.22)  0.86(£0.39)  0.75(%0.36
)
)
)
)
)
)
)
)
)
)
)

0.43(£0.13
0.43(+£0.13
0.59(£0.28

( 0.35(£0.11
(
(
(
0.56(40.22
(
(
(
(

0.33(£0.11
0.33(£0.12
0.48(£0.20
0.45(+£0.18
0.44(£0.17
0.61(+£0.23
0.59(+£0.23
0.57(£0.18

0.30(+£0.10
0.29(+£0.10
0.29(£0.10
0.37(£0.12
0.35(£0.12
0.35(£0.12
0.48(£0.12
0.43(£0.12
0.44(+£0.12

0.41(4+0.14
0.40(+£0.12
0.39(+£0.13
0.53(+£0.18
0.48(+0.18
0.48(+0.17
0.69(£0.25

(

(

0.33(£0.12
0.33(£0.12
0.32(+0.11
0.43(£0.16
0.40(+£0.15
0.40(+£0.14
0.57(£0.24
0.54(+£0.20
0.54(+£0.22
0.65(£0.31

0.55(£0.22
0.76(£0.29
0.74(+£0.28 0.66(£0.25

0.73(£0.29 0.64(£0.26

14 10 0.71(+0.29)  0.93(£0.42)  0.84(%0.39 0.56(+0.20)  0.82(£0.42) 0.71(%0.41
20 0.71(£0.28) 0.93(£0.44) 0.82(%0.38 0.56(4£0.21)  0.79(£0.46) 0.71(%0.39
) 0.91(£0.49 1.30(£0.75 1.13(£0.75 0.69(£0.33 1.17(£0.89)  0.95(%0.70
16 10 0.88(+0.47)  1.34(£0.96 1.04(£0.65 0.67(£0.28 1.24(£0.97) 0.98(+£0.79
20 0.87(£0.48 1.33(£0.89 1.09(£0.68 0.66(£0.29 1.14(£0.89)  0.94(+0.77
5 1.11(+0.56 1.47(£0.90 1.26(+0.76 0.89(+0.54)  1.34(=£0.96 1.22(40.87
18 10 1.07(£0.56 1.20(£0.70 0.84(+£0.49 1.29(£0.95 1.18(£0.94
20 1.07(£0.59 1.25(£0.77 0.84(+£0.51 1.28(+0.93 1.13(£0.84

1.42(+0.84
1.48(+0.90
1.54(40.81

(

) 1.16(£0.64 1.38(£0.76 0.96(+£0.46 1.37(£0.86 1.20(£0.74
20 10 1.09(£0.68 1.52(£0.87) 1.27(£0.70 0.85(+£0.45 1.40(£0.98 1.16(£0.78
20 1.08(+0.63 1.51(£0.84) 1.31(%£0.69 0.83(£0.38 1.33(£0.95 1.14(40.69
5 119.49 25.80 38.15 356.00 30.55 33.61
run-time 10 493.13 39.53 51.42 >4.5-10* 71.22 70.07
20 1573.80 68.36 81.49 >1.1-10° 303.56 284.03

Table 4.2: Synthetic experiment for comparing the sparse and dense deformation space
discretization. Run-times are reported in milliseconds and assessed on a 1.6 GHz Intel
Core i7. All errors are reported in pixels. Throughout the experiment the FastPD was
configured with a maximum of 100 iterations and the QPBO with 2 outer sweeps.

Another difference is that the initial curve used during the tracking is not parameterized
in the same way as the curve used to generate the synthetic data. Therefore, the
experiment does not only reflect errors resulting from deformations which are not
covered by the label space but also those errors resulting from a sub-optimal curve
parameterization.

Again, we use the mean distance (and its standard deviation) as a measure of tracking
quality. The TRW-S optimizer is chosen since it represents a state-of-the-art algorithm
computing the optimal labeling for our energy term (recall that our MRF is a chain).
On the approximative side, we chose the FastPD and QPBO because of their speed and
good optimality properties.

81



sequence name frames spacing deformation curve length

mean max mean max
cardiac 01 55 0.184 17 28 413 438
cardiac 02 72 0.184 13 25 440 457
cardiac 03 30 0.184 16 43 505 543
cardiac 04 10 0.278 20 51 432 437
cardiac 05 11 0.278 13 49 645 665
abdominal 01 143 0.432 8 20 170 175
abdominal 02 228 0.308 8 19 78 83

Table 4.3: Sequence Properties. The pixel spacing is given in
mm and the deformation and length parameters are denoted

in pizels.
category parameter
name value
spline modeling  degree 3

control points 12
discretization search steps 40 (321 labels)

search range 15 (mm)
regularization A 0.7

Table 4.4: Tracking Parameters.

Table 4.2 shows that the use of FastPD combined with sparse label sets is extremely
efficient and reasonable tracking accuracy can be achieved. Furthermore, it shows that
the QPBO achieves tracking results which are even closer to the optimal ones while
introducing a minor runtime penalty. The difference between sparse and dense label sets
is quite small regarding the tracking error while in case of sparse sets we achieve near
real-time performance in all experiments. Expectedly, the TRW-S gives the better
results in terms of accuracy but it is not suitable for real-time applications. In the initial
work [31] these experiments lead to choosing the FastPD as the underlying optimizer
which is now changed in favor of the QPBO.

4.4.4 Experiments on clinical data

In the final experiment, the tracking is evaluated on 7 clinical sequences out of which 5
are acquired during cardiac (diagnostic catheterizations) and 2 during abdominal
(transarterial chemoembolization; TACE) interventions with an AXIOM-Artis ! system
at a cine rate of 15 frames per second. The sequences contain an overall of more than
500 frames and deformations of up to 50 pixels. More detailed properties of the
individual sequences can be found in Table 4.3.

The cardiac data sets were made available to us by Wang et al. [79] and each of the

!Siemens Healthcare, Forchheim, Germany
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sequence name mean standard deviation median

MRF-T RGWT MRF-T RGWT MRF-T RGWT
cardiac 01 (55 frames) 1.50812  1.66698 1.87401 1.63623 0.97893 1.17436
cardiac 02 (72 frames) 1.52339 1.57126 2.71825 1.80749 0.70623  0.89453
cardiac 03 (30 frames) 1.49126  1.29458 2.40836 1.50879 0.69463  0.730933
cardiac 04 (10 frames) 0.84560  0.82023 0.92164  0.732867 0.61347  0.686065
cardiac 05 (11 frames) 1.13857 1.33017 1.31548 1.4922 0.68615 0.817549
abdominal 01 (143 frames) 0.80728 n/a 0.63047 n/a 0.68212 n/a
abdominal 02 (228 frames) 1.18741 n/a 1.37192 n/a 0.78049 n/a

Table 4.5: Experimental validation between the robust guide-wire tracking (RGWT)
method of [79] and the proposed MRF based tracking (MRF-T). The last two rows
of the table show our method applied to two additional abdominal sequences where
no comparison with the robust guide-wire tracking was possible.

data sets did not only contain image data but also ground-truth annotations as well as
the tracking results of the author’s algorithm. The abdominal sequences were provided
by our clinical partners; they were acquired during TACE interventions and as the
cardiac sequences, hand-labeled by an expert.

We use a single set of parameters (see Table 4.4) throughout all experiments. The
regularization weight is set to A = 0.7 though Figure 4.3 indicates that other choices are
possible without severely decreasing the algorithm’s performance. The figure shows the
results of an experiment in which we evaluated the tracking error (the mean of false and
missed rates) for 100 different parameters A and for each medical sequence.

The labeling is configured with a search range of 15 mm and 40 search steps in each
direction resulting in an overall of 321 labels per node. The sparse labeling is chosen
accordingly to Section 4.4.3 and following the results of Section 4.4.2 the product model
is used as our influence function.

Regarding the algorithm run-time, it is useful to split the overall processing into two
steps. The first step, before the optimization is carried out, is the computation of the
feature image Z and the second step is the actual optimization process. We have
measured a mean processing time of about 33.52 ms (¢ = 13.06 ms) for the computation
of the feature image Z and a mean optimization time of 26.22 ms (¢ = 9.60 ms). This
results in an overall of about 60 ms processing time. With these processing rates this is
to the best of our knowledge the first algorithm which is capable of processing
fluoroscopic images at the same rate as they are acquired by the imaging system.

A summary of the comparison between the two methods can be found in Tables 4.5 and
4.6. The experiments show that our method is performing on average equally well as
compared to the robust guide-wire tracking (RGWT) by Wang et al. [79] while it is not
relying on any learning. Visual results of the tracking performance are depicted in
Figure 4.4. The results show that the tracking may suffer from the introduction of local
loops and foldings in areas of high curvature but it also shows corresponding images
from the same sequences in which the algorithm recovered from such intermediate
errors. The first row of Figure 4.4 shows in particular the robustness to poor features
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sequence name missed false

MRF-T RGWT MRF-T RGWT

cardiac 01 (55 frames) 10.7778  12.213 15.6204  13.5093
cardiac 02 (72 frames) 7.14789  11.3662 7.65493  9.94366
cardiac 03 (30 frames) 8.86207  9.18966 9.87931 11.1552
cardiac 04 (10 frames) 3.11111  1.44444 2 0.61111
cardiac 05 (11 frames) 9.1 10.3 8.8 11.85
abdominal 01 (143 frames) 1.86972 n/a 4.1338 n/a
abdominal 02 (228 frames) 6.14537 n/a 18.7489 n/a

Table 4.6: Experimental validation between the robust guide-
wire tracking (RGWT) method of [79] and the proposed MRF
based tracking (MRF-T). The last two rows of the table show
our method applied to two additional abdominal sequences
where no comparison with the robust guide-wire tracking was

possible.
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Figure 4.3: The plot shows the evaluation of the regularization parameter A\ and its
dependency on the mean of false and missed tracking rates. The plot indicates that a
wide variety of parameter choices is possible without dramatically hampering the tracking
quality.

where the algorithm is capable of maintaining correct curve shapes despite the lack of
image information.
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(b) noisy feature image Z  (c¢) guide-wire annotation

(e) too sparse label set (f) tracking recovered

(g) fluoro - abdominal 01

(j) fluoro - abdominal 02 (k) looped curve (1) tracking recovered

Figure 4.4: Tracking results from selected clinical sequences. The first row shows that
the algorithm is able to deal with noisy feature images and the remaining rows depict
the sources of intermediate tracking errors — a too sparse label set, foldings and the
introduction of loops. In all three cases, the algorithm was capable of recovering from
these errors.
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CHAPTER
FIVE

A SIMPLIFIED MOTION COMPENSATION SYSTEM

In this chapter, the current status of an integrated motion compensation system is
presented. The work which is described in this chapter has been carried out in close
collaboration with the Siemens Healthcare Angiography/X-Ray division (AX) located in
Forchheim, Germany and Siemens Corporate Research (SCR) in Princeton, New Jersey.
The presented motion compensation system has been integrated into InSpace, a volume
imaging application shipped with many radiologic hardware products of Siemens. The
application allows the addition of new software modules in form of plug-ins which can
be developed in C++ and added to any existing system.

The motion compensation module’s structure can be described at best with three layers.
A first layer is the actual core application hosting the plug-in, i.e. InSpace itself.
InSpace provides the infrastructure for loading different plug-ins, for generating user
interfaces and most importantly for accessing medical image and meta data. The second
layer is the actual plug-in. It is used to leverage the infrastructure provided by InSpace
in order to allow user interactions and for the generation of a user interface. Besides the
user interface and interaction, the plug-in implements a control loop in which the data
flow between InSpace and the underlying algorithmic component is handled. The third
layer is build by the actual algorithms for guide-wire, catheter and needle detection as
well as the tracking and motion estimation.

5.1 Plugin Design

Since the plug-in was designed as a research tool and not a clinical product it does not
only contain dialogs which would be required in clinical routine. The additional
interfaces allow to modify the visualization, e.g. the blending between the
two-dimensional fluoroscopic image sequence and three-dimensional image data. It also
allows the specification of offline data instead of being bound to online data which is
important to be able to evaluate different methods on identical data sets. Regarding the
online processing of data in principle only a single user input is required which allows
the user to manually enter the detection phase where user interactions are required
which are in general not available.
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Another requirement during the design of the plug-in was the ability to interchange
different tracking algorithms. To achieve this a generic programming interface was
designed which allows different researchers to implement individual approaches to solve
the detection, tracking and motion estimation. The implementation is provided in form
of a so called dynamic library which is loaded during the run-time by the plug-in, i.e.
from within the second layer. This approach allows a seamless exchange of the
underlying library and thus the used algorithms and improves future maintainability
because it separates the application interface from the underlying algorithmic
components. The developed interface is provided in Listing C.1.

The interface has been designed based on the subsequent reasons. Starting with the
requirements, it can be assumed that a motion compensation system needs to provide
the following functionality

1. algorithm configuration
2. initialization
3. tracking

4. data exchange

and these items have been directly translated into the design of the interface. Another
important factor is a strong decoupling of the second layer, i.e. the plug-in and the
algorithmic component. Its definition must not impose dependencies on user specific
data types but should be solely build upon fundamental data types or aggregates of
these. This constrained is fulfilled on the one-hand side by creating an interface which is
based on simple and well defined objects. On the other-hand side, a special
implementation method, the Pimpl idiom [72] has been used. It allows to move all
implementation details into a separate object which does not require to be exposed to
the end-user. This procedure allows to provide an implementation of the above
functionality without introducing additional dependencies. It reduces the interface to an
absolute minimum of pre-defined objects.

The interface which is provided for the first point, the algorithm configuration assumes
that all kinds of algorithms can be setup through a single configuration file. This should
even be true for learning based algorithms which do not only need to provide general
algorithmic parameters but also offline learned data and other prior information.

So far, the second point, the initialization is a semi-automatic method. Thus it requires
not only images and the associated meta data but also the data generated by the user
interaction. Currently, this data is simply a set of two user selected points but in order
to be flexible in regard to potential extensions, the data is encapsulated in a separate
class.

For the actual tracking a slightly different approach has been chosen in the sense that
the interface does not allow to provide additional information besides the evidently
required image data. The reasoning here is that even for complex algorithms,
customizations are performed either internally or the required data is provided during
the configuration phase. It is assume unlikely that a use case exists which explicitly
requires the plug-in layer to provide dynamic information during the course of tracking.
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The last point is regarding the data exchange. So far, only two use-cases are considered.
First, it is of interest to visualize the tracking results and thus the interface provides
functionality to retrieve the locations of tracked curves. Second, the plug-in layer
requires information regarding the actual motion the curves performed. This
information is provided in form of a two-dimensional transformation even though the
presented algorithms actually compute dense deformation fields. The reason is that at
the moment not all components of the system envisioned in Section 1.4 are available
which lead to the development of an intermediate and simplified visualization system.

5.2 Visualization Component

Because the current work is only dealing with the third component presented in

Section 1.4, which is the motion compensation within a fluoroscopic image sequence, a
fully featured navigation system cannot yet be provided. Instead a simpler approach for
aiding physicians during their navigation task is chosen. The approach chosen in this
work is based on the rigid alignment of a roadmap image Z.,,, and the currently
observed fluoroscopic image Z;. This is either possible by applying a rigid
transformation 7; provided by the motion estimation to the roadmap image Z,p, Or

Offline Mode
- SequenceA

4
Load Sequence.
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I

Visualization

| —— [

%0 <Blending>  100%

Update Fused Image

ETRREIEY Y I 6 62

Figure 5.1: The image shows a screenshot of InSpace. The top-left view is used to display
the actual fluoroscopic image stream including a DSA as its roadmap overlay.
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alternatively the inverse transformation to the fluoroscopic image Z;.

All choices presented here assume that the alignment between the roadmap image Zay
and a key-frame Z;,, is known and without loss of generality this transformation is
assumes to be the identity transformation. The required roadmap image can be created
in one of the following ways:

1. Based on a 3DRA: Given a pre-interventionally acquired 3D-RA, it is possible
to create a projection image Zy,, with the same projection geometry as the one of
a fluoroscopic image sequence. 3D-RAs are reconstructed from native X-ray
images generated by a calibrated C-arm system. The projection is possible
because the 3D image as well as the 2D image sequences are generated by the
same system in which all projections are performed relative to a common
coordinate frame. Modern robot controlled system do not only allow high
precision positioning of the X-ray source and the digital detector but also enable
to read out the required pose information.

2. Based on a DSA: Alternatively to 3D-RAs, the generally acquired DSA can be
used as a roadmap image. As opposed to the usage of a 3D-RA, the DSA must be
generated with the same projection configuration as the fluoroscopic sequence in
order to be able to overlay the images. Potential zooming which is oftentimes used
during fluoroscopic runs can be compensated by an additional scaling and
translation of the two-dimensional image data and the required transformation
information is provided by the C-arm systems.

Both approaches suffer from the same problem — once the two-dimensional roadmap
image is generated Zp,,;, the question remains how to choose the correct key-frame Z;,
from the fluoroscopic image sequence. The issue is that the choice is not arbitrary since
one needs to find a reference image which is optimally corresponding to the roadmap,
i.e. with an underlying physical patient geometry being as close as possible to the one
from which the roadmap was generated. A first step towards a similar patient geometry
is to find a fluoroscopic image which is acquired in the same phase of the breathing cycle
as the roadmap image Z,,,. In Section 1.4, this task is meant to be solved within the
Deformable 2D-2D Registration Module. For the task of finding a fluoroscopic image
1;,., corresponding best to a given DSA a straight forward approach were to select the
image which correlates best to the native X-ray image based on which the DSA was
generated. The so chosen image 7y, is the best candidate one can find to pursue the
missing 2D-2D registration in order to compensate additional deformations.

The only component which is missing to finalize the plug-in visualization is the actual
computation of the rigid transformation 7; which relates the guide-wire locations P,
of the key-frame to the currently observed image Z;. To this end, a method for the
least-squares estimation of transformation parameters between two points sets which is
proposed by Umeyama [76] is used. In his work Umeyama shows that for two points sets
X ={x1,Xg,...,%,} and Y = {y1,¥2,...,yn}, the transformation that minimizes

n

AR, = =3 i — (R + 0 (5.1)
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can be computed from the covariance matrix of the demeaned point sets

By = 3 (e ) ) (52)

=1

and the corresponding mean values p, and p,. Having computed the solution to this
problem, for points sets P, and P, one gets

(5.3)

[

0 1

Based on the above description a motion compensation system has been built and
integrated into InSpace. Figure 5.1 shows a screenshot of the system including a
transformed image Z; such that it optimally fits a DSA roadmap.
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CHAPTER
SIX

CONCLUSION

This thesis introduces novel methods for the semi-automatic detection of medical tools
such as guide-wires, catheters or biopsy needles. Furthermore, the work presents for the
first time an approach which solves the tracking problem for B-spline curves based on
discrete optimization. The focus of this work lies on clinical applications being guided
by fluoroscopic imaging. In particular the method has been evaluated on abdominal
data sets acquired during transarterial chemoembolization (TACE) and five clinical
cardiac sequences.

The development of the semi-automatic detection method which is based on sparse
graphs induced by the second-order structure of image intensities does not only allow a
robust but also a fast segmentation of curvilinear structures. Since full featured
applications usually consist of processing pipelines containing several algorithms at once,
run-time reduction while retaining stable algorithms is an important topic.

A new tracking approach which is based on a MRF formulation represents the main
contribution of this work. The problem is formulated as finding a solution to a discrete
labeling problem which has recently received increasing attention in many early vision
problems. In contrast to the common approach applied in vision problems, in which
MRF nodes correspond to the image lattice this work proposes to model MRF nodes as
control points of a B-spline curve. Such curves can be either open curves representing
curvilinear structures such as e.g. medical tools or they can be close curves as
parameterizations of object contours. This implies that the approach is not limited to
tracking but maybe as well applied to segmentation problems.

One of the main advantages of discrete optimization is that it is currently considered as
one of the most-powerful techniques to minimize non-convex functions. Especially in the
scenario of tracking curves in fluoroscopic image sequences non-convexity is a potential
problem. All image based data terms rely on feature images highlighting curvilinear
structures in one or the other way and these methods have no way of distinguishing
between bone interfaces and thin medical tools. As it can be seen in the examples in
Figure 3.13, the images contain many line-like structures which can potentially attract
the curves and cause local minima.

Another advantageous property of MRF based methods is that they do not rely on
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gradients. This property makes it possible to use a large variety cost functions without
being able to provide analytical derivatives and without worrying about performance or
stability degradations that might be caused by numerical differentiation. This allows for
instance to use learning based measures which offer the potential of further increasing
tracking stability.

Experiments have shown that the proposed method is performing at high-precision.
This is true for multiple sequences which are even acquired during different
interventional procedures (abdominal and cardiac). Furthermore, experiments analyzing
the behavior of the regularization revealed that the algorithm is relative stable within a
certain parameter range. Last but not least, the procedure is running near real-time
being faster than other tracking systems being presented so far without necessarily
requiring a rigid pre-registration.

6.1 Discussion

Besides the just presented advantages the approach is not without difficulties. One
problem is the incomplete modeling of the inter-dependency of individual random
variables. This problem leads to intermediate curves C'(u, d;,d;) which only
approximate the expected curve as it is depicted in Figure 6.1. Careful handling of this
approximation via weighting functions (Equations (4.37) and (4.38)) diminishes the
issue but does not completely solve it.
In the configuration depicted in Figure 6.1, a source curve consisting of control points S;
being rotated by 15° to a target curve T; is displaced in the control points S; to S, with
the expected displacements of Sy and S3 repectively. This results in and intermediate
curve where [1 = Sl + (T2 — SQ), [2 = TQ, 13 = Tg, [4 = S4 + (Tg — Sg) and I5 = 55. Such
a configuration is exactly what were evaluated by 623 and 623 from Equations (4.34)
and (4.35). The problem in this case is evident in Figure 6.1. Despite the correct
displacements being applied the control points Sy and S3 of the source curve, the
intermediate approximation does not overlap with the target.
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Figure 6.1: Approximation Errors of Intermediate Curves.

Even though a perfect alignment is not necessary it can still lead to difficulties and
hamper the convergence properties. There are two possible reasons, why the perfect
intermediate alignment is not required. First, even though thin, medical tools have a
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specific width, i.e. it exists a corridor around the target curve in which the external
energy is non-zero and where the intermediate curve does result in an energy response
which drives the optimization towards the correct solution. The second potential reason
is that the optimization algorithm can solve the problem by initially assigning wrong
intermediate results. In fact, such results will be tested and even assigned as long as
they result in a reduced energy. Since the optimization is an iterative process, upcoming
iterations can fix the initially wrong result.

Again, there may occur a potential problem with the latter solution of choosing actually
wrong intermediate results. It arises from certain regularization terms. In theory it may
happen that wrong intermediate labels are the only way to reduce the external energy
but on the other hand side such labelings may vastly increase the internal energy. An
example is a regularization term penalizing transformations varying from rigid
transformations. In case such a cost function would be evaluated on the actual spline
points the intermediate labeling would be penalized by the regularization.
Unfortunately, the situation is rather difficult to evaluate because in this case the data
term and regularization are acting against each other.

The issues above were raised for the sake of clarity and to increase awareness. The
experimental section has proven the effectiveness of the method and should encourage
future researchers to utilize the possibilities offered by discrete optimization frameworks.

6.2 Future Work

In this section an alternative learning based tracking method is provided. The work has
been developed in collaboration with Olivier Pauly and Nassir Navab [59]. In principle
this work proposes to replace the external energy function defined in Equation (4.20) by
another function which is learned from hand-labeled offline data. The proposed
modification also leads to a slight modification of the original discretization (see
Equation (4.34)).

The main idea of the approach is that instead on relying on feature image intensities V
along the curve profile C'(u), a curve descriptor is extracted from the unprocessed image
Z. To this end, so called mean orthogonal intensity profiles are used. They represent a
relatively simple descriptor for curves and the external energy can be seen as measuring
the deviation from an observed descriptor to a learned and expected descriptor.

Figure 6.2 shows a spline curve and the close-up of a ground-truth spline segment
(dashed red curve) as well as a displaced spline segment (solid red curve). In the
close-up view, the top-right plot shows the mean orthogonal profile of the ground-truth
curve (green) and the mean orthogonal profile of the displaced curve (red).

As it is expected from the derivation provided in Sections 3.1.2 and 3.1.3, the
ground-truth curve’s model is similar to a parabolic model. However, the model is not
identical since it is not symmetric in the sense that the intensities on both sides of the
medical tool are varying. For such cases, learning based methods are advantageous
because they make no prior assumptions on the actual model though they do rely on a
learning database which provides the whole variety of possible curve appearances.
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Figure 6.2: The left-hand side picture shows a guide-wire with a curve segment (dashed
red line). The curve segment corresponds to the part of the guide-wire which is influenced
by two neighboring control points. The right-hand side image shows a close-up with a
transformed spline segment and equally sampled orthogonal profiles. The top left shows
the mean profiles of the ground truth as well as the displaced curve segment.

For a curve segment C;;(x;, z;,u) orthogonal line segments of length 2r are defined as
Nij(@i, zj,u,1) = Cij(xi, xj,u) + rn(u) (6.1)

where n(u) is corresponding to the normal of the curve segment Cj; at the site u. A
mean intensity profile can then be defined as

/TI(J\/;j(xi,wj,u,r)) drdu . (6.2)

supp(Cij) —T

1

R |supp(C;)|
The mean profiles are only parameterized by the control points ¢ and j as well as the
normal radius. Given a curve C'(u) with m control points one can compute exactly
m — 1 profiles with neighboring control points which build the input data set

M = {Mi7i+1|i:0,1,...,m—2} (63)

whose elements are later evaluated by the learned cost function.

The goal is now to learn a function ¢) which maps local mean orthogonal profiles

M;; € M to a real values corresponding in some way to the expected tracking error, i.e.
1 is defined as

v MR, (6.4)

where M is the set of mean orthogonal profiles. Since such a function should be convex
and smooth, a thorough sampling of the space M is required. In [59] it is proposed to
learn a probability distribution corresponding to typical guide-wire motions from
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hand-labeled sequences to ensure a proper sampling of M. Once the probability
distribution is available it is possible to create random curve displacements exhibiting
typical guide-wire motions. Such a sampling allows the generation of pairs of mean
intensity profiles and the associated errors

{<Mi’i+l’€i)}k (65)

on which a regression can be performed to learn the actual function . Details on the
learning of typical guide-wire motions and the regression learning can be found in [59].
The actual pairwise data term is then computed as

9ij(~17i;xj) =1 (Mij($i733jar)) . (6.6)

Preliminary results have shown that the method is feasible for the tracking of
guide-wires in fluoroscopic sequences. Sub-pixel precision was achieved in different
experiments with different profile radii of » = bmm and r = 10mm on two abdominal
data sets. The experiments were carried out by learning on one abdominal sequence and
performing the tracking on the other and vice versa. The advantage of the method is
that no pre-processing of the images is required and no prior assumptions on the model
are required since its appearance is learned.

Despite the integration of a learning based cost function into a discrete framework, the
work also proposes a second novel idea. Initially, the high-dimensionality of the feature
space Ml posed a problem since it severely complicates a meaningful sampling of the
space in order to generate data for the learning process. This problem has been
overcome by fitting a mixture of Gaussian model to hand-labeled deformations which in
turn allows the random generation of deformations which are likely to occur in reality.
Future improvements can be achieved by exploring the possibility of an adapted
regularization term which could be e.g. derived from the motion distribution model.
Another improvement can probably be achieved by integrating the weighting functions
introduced in Equation (4.38). So far these are ignored and as it has been shown in this
thesis, they may increase the performance of the algorithm even further.
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APPENDIX
B

MATHEMATICAL EXTENSIONS

B.1 Enhancement of Tubular Structures

B.1.1 Sato’s and Frangi’s Feature Enhancement

The following equations represent the analytic expressions of Sato’s and Frangi’s feature
enhancement in the pg-coordinate frame which are used in Equation (3.39) and
Equation (3.46), respectively. Equation (B.1) is corresponding to the block model Z,
which is defined in Equation (3.10) and Equation (B.2) corresponds to the parabolic
model Z, defined by Equation (3.12).

1
pr<x,t,’}/,7’, h) = _\/_Tﬁ (

exp (—W) 72 h (eXp (T) (r—a)+r+ x) ) (B.1)

2t

exp (=) t7"1h
Hpp(xt,v,mh) = — ( t ) (

NG
tv/zep () <erf (gfg) o (éf;)) )
NN (exp (—TQ il x2> + exp (—TQ_MM» ) . (B.2)

2t 2t

The v value provided in Table 3.1 and Table 3.2 results form the following analytical
expression

1
B V2y/e/T erf (%ﬂ) -2

o (B.3)
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B.1.2 Koller’s Feature Enhancement

The following equations represent the analytic expressions of Koller’s feature
enhancement in the pg-coordinate frame which are used to compute Equations (3.50)
and (3.51). The formulas are computed as I, = G, * Z,.

1
[z 7t7 ) 7h' =TT = =
b == = (
2 2
V2exp (_(7”—1—2::)> 2k (exp (7:;) - 1) ) (B.4)
exp (—Z5)t7h
]z<37,t,’}/, r, h) = (—t)
r2y/2
T r+x r—x
2 — fl—=—=| —ef | —=—
\/_mvexp<t><er <\/§\/¥> er <\/§\/¥)>+
2 _ 4 2 2 2
2Vt (exp (—W) — exp (_r ;x )) ) (B.5)
The actual formulas R; and R, are computed as
Rl($7 t? ,}/7 r? h) = Ix(x - \/Z7 t? 77 r? h) (B'G)
RT(‘rut777r7 h‘) = —IZ(I—F\/Z,t,’}/,T, h) <B7)

where I, is chosen as Equation (B.4) for the block model Z, and as Equation (B.5) for
the parabolic model Z,.
The analytic equations for the « values presented in Table 3.3 are defined below.

_1 e?+1

TTge (B5)
1 4/ + V2 erf (\/5) me? — 4/me? (B.9)

1T 2./7 ++/2erf (ﬂ) me? — 2./me? .

L 1 <\/§) me! + 3v/2y/7 erf (\/5) e?(1 —e?) — 8e! + 4e* +4 (B.10)

2 erf <\/§)2 met + 2¢/2/7 erf <\/§> e2(1 —e?) — de* 4 2e* 4 2
Above, Equation (B.8) is the optimal ~ for the block model Z, for both non-linear

functions defined in Equations (3.52) and (3.53). The last two Equations are the ~
values of the parabolic model Z, belonging to Equations (3.52) and (3.53), respectively.
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APPENDIX

C

CODE SAMPLES

Listing C.1: Minimalistic but generic interface for tracking which allows the implementa-

tion and evaluation of various approaches.

class MotionEstimation

{

public:
/** Member variable initialization. */
MotionEstimation();

/** Implements memory cleanup. */
~MotionEstimation();

/** System configuration via configuration file. */
void ConfigureSystem(const char *configuration_file);

/**% Curve detection with an image and potential user interactions as its parameters. */
void Detection(const ImageContainer& image, const DetectionParameter* detection_parameter = 0);

/** Tracking based on the current image and meta data. */
void Tracking(const ImageContainer& image) ;

/** Retrieval of two-dimensional rigid motion data. */
void GetMotionEstimate(float& x, float& y, float& angle) const;

/** Retrieval of detected curves. */
void GetGWCurves(GWCurve const*& curves, int& no_curves) const;

/** Optional system reset to recover from errornous states. */
void Reset();

private:
/* Copying or cloning as well as assigning of the class are prohibited. */
MotionEstimation(const MotionEstimation&) {}
MotionEstimation& operator=(const MotionEstimation&) { return *this; }

int m_numberOfCurve; // Holds the number of tracked/detected curves.
GWCurve* m_curves; // Holds tracked curves in form of point sets.

struct MotionEstimationImpl; // Forward declaration of the implementation.
MotionEstimationImpl* m_pImpl; // A pointer to the implementation.
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Listing C.2: Eigenvalue decomposition for symmetric 2-by-2 matrices. The code requires
additional checks to prevent devision by zero.

template <typename T>
void eig(const T& xx, const T& xy, const T& yy, T evals[2], T evec[2])
{

const T root = std::sqrt( std::pow(xx-yy,2) + 4*xy*xy );

const T 11 = T(0.5)*(xx + yy - root);

const T 12 = T(0.5)*(xx + yy + root);

T ilen = 0;
if (xx-yy>=0)
{
evec[0] = 2*xy / (yy - xx - root);
evec[1] = 1;
ilen = T(1) / std::sqrt(l + evec[0]*evec[0]);
}
else
{
evec[0] = 2xxy / (yy - xx + root);
evec[1] = 1;
ilen = T(1) / std::sqrt(l + evec[1]x*evec[1]);
}

evec[0] *= ilen;
evec[1] *= ilen;

}
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