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Abstract:

For the analysis and control of large complex structures, many methods have been
developed and are used. Finite element (FE) techniques fulfill a substantial role in
structural analysis, furthermore in designing or controlling the structure. As finer
methods are and the more accurate results they can provide, the required modeling
and computational effort is larger. In particular, in space structures such as reflectors
or solar array panels, size and complexity is increasing and structural requirements are
getting stringent. Therefore, a large amount of simulation is required during the de-
sign and analysis stage. To increase computational efficiency, furthermore to enable
an analysis with extremely high computation, model order reduction (MOR) tech-
niques are developed and used; once the model has been transformed to low order
space, computational effort for each analysis diminishes. Additionally MOR is required
to design a proper controller especially in modern controller design, where the order
of controller is increased with the order of system. However, the changes in thick-
ness, material properties, and other design parameters can alter static and dynamic
properties of the structure completely. Therefore the reduced model is no longer valid
after parameter changes. In this dissertation, a method providing parameterized re-
duced models is developed so that parameter changes can be directly applied in the
reduced space. The challenging part is considering physical and geometrical param-
eters directly from a large FE model, so that the application of reduction method is
not limited for a controller design with chosen input/output configuration, instead, it
extends to the overall static and dynamic analysis and control. The main reduction
process is based on Krylov subspace iteration so that very large matrices are appli-
cable. The parametric model order reduction (PMOR) method is developed for both
static and dynamic analysis, and can be used for further application whenever a large
number of analyses subject to parameter changes are required: for instance a design
optimisation problem. A large reflector model and its shape control are examined as
an example of static analysis. An active truss structure with piezo stack actuators
and solar array panel with piezo patch actuators are shown for dynamic analysis and
vibration control. Design optimizations of a composite plate and a mirror segment
from the overwhelming large (OWL) telescope model are demonstrated using PMOR.
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Kurzfassung:

Für die Analyse und Handhabung von großen komplexen Strukturen wurden viele
Methoden entwickelt und eingesetzt. Finite Element (FE) Techniken nehmen eine
wesentliche Rolle in der Strukturanalyse, im Design und der Reglung der Struktur
ein. Je genauer die Methoden sind, desto exakter sind die Ergebnisse, die sie liefern,
jedoch steigt der benötigte Modellierungs- und Berechnungsaufwand. In Raumfahrt-
strukturen wie z.B. Reflektoren oder Solarkollektoren nimmt die Größe und Kom-
plexität zu, sodass sich die strukturellen Anforderungen verschärfen. Dies macht eine
große Anzahl von Simulationen und Auswertungen während der Design- und Analy-
sephase erforderlich. Um die Recheneffizienz zu erhöhen und darüber hinaus Analysen
mit sehr großen Berechnungen durchführen zu können werden Modellreduktionstech-
niken (Model Order Reduction, MOR) entwickelt und angewendet. Sobald das Model
in einen Raum geringerer Ordnung reduziert wurde, wird der Berechnungsaufwand
pro Analyse geringer. Zusätzlich benötigt man MOR für die Entwicklung von Reglern
für moderne Steuerungen, bei denen die Ordnung des Reglers mit der Ordnung des
Systems zunimmt. Trotzdem kann die Veränderung der Wandstärke, Materialeigen-
schaften und weiterer Parameter die statischen und dynamischen Eigenschaften einer
Struktur vollständig verändern. Deshalb ist das reduzierte Modell nach Parameter-
veränderungen nicht mehr gültig. Im Rahmen dieser Dissertation wird eine Methode
erarbeitet, die es ermöglicht, reduzierte parametrisierte Modelle zu erstellen, sodass
Parameter direkt im reduzierten Raum verändert werden können. Der schwierigste
Teil ist die Berücksichtigung physikalischer und geometrischer Parameter direkt aus
einem großen FE-Modell, sodass die Reduktionmethode nicht nur für das Regler-
Design mit ausgewählten Input/Output-Konfiguration, sondern auch für statische und
dynamische Analysen und Kontrollen des Gesamtsystems angewendet werden kann.
Der Hauptprozess der Reduktion basiert auf der Krylov-Unterraum-Iteration (Krylov
subspace iteration), sodass sehr große Matrizen anwendbar sind. Die parametrischen
Modellreduktionsmethode (Parametric Model Order Reduction, PMOR) wird sowohl
für statische als auch dynamische Analysen entwickelt und ferner benutzt, wenn um-
fangreiche Analysen durch Parameteränderungen benötigt werden: zum Beispiel ein
Design-Optimierung Problem. Ein großes Reflektormodell und seine Formkontrolle
als ein Beispiel der statische Analyse untersucht. Eine aktive Fachwerkkonstruktion
mit Piezoaktoren und Solarkollektoren mit Piezo-Patch-Aktuatoren werden für die
dynamische Analyse und Schwingungsreduktion aufgezeigt. Die Designoptimierung
eines Faserverbundplattemodell und eines Spiegel-Segments des Overwhelming Large
(OWL) Teleskop-Modell werden anhand PMOR demonstriert.
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1. Introduction

1.1. Motivation

Modeling and Simulation of structures are fundamental steps in engineering. The sys-
tem is turned into an ordinary differential equation (ODE) analytically or numerically,
and solved via various algorithms. The general approach to solve high derivative order
of ODE is transforming it into the first derivative order matrix equation. Although
the size of matrix is increased proportional to the number of variables and order
of derivatives, in the end the problem is simplified to a large first-derivative matrix
equation. After this transformation, the main problem of solving it is how large the
matrix is, not how high the derivative order is. Therefore the term ’order’ in model
order reduction (MOR) means the size of the matrix, not the order of derivatives.
As the structure or system becomes more complex, the required order of the model
becomes higher. Therefore, reducing the order of model is an useful and practical idea
to improve the computational efficiency of analyses. What Model Order Reduction
(MOR) aims for is diminishing the computational effort while the accuracy of result
remains same.
The concept of MOR is founded mathematically in eigen-value problems. Because
eigen-analysis requires considerable amount of computation, O(n3), it would be very
helpful if one could reduce the size of the model while keeping the accuracy of the
eigen-values and vectors. Fundamental ideas and theories which are used in MOR are
developed from solving eigen-problems. The application of MOR in physical problems
is done in the control engineering field because reduced order models are very conve-
nient to design a controller: in general the order of controller increases with the order
of system, and considerably high order of controller is complicated to design because
there are many poles and zeros which affect the stability of the system. Sometimes
exceedingly high order of controller cannot be physically built. Systems with relatively
small order, around a hundred, also need MOR because modern control methods such
as linear quadratic regulator (LQR) generates a controller which has the same order
as the system. Therefore, reducing the order of the system is necessary to design a
physically feasible and robust controller.
The demands for MOR also arises from structural analysis, especially in these days
as the finite element (FE) analysis is widely used. The principle of FE method is ap-
proximating a continuous physical structure by a summation of discretized elements.
As the model is divided into finer elements, the approximated model is closer to the
real structure. Therefore, to increase the accuracy of structural analysis, a complex
large structure should be divided into small elements in FE analysis. Consequently the
model has very large size, for instance several hundred thousand degrees of freedom.
Such a large model increases computational time and effort, which is undesirable in



2 CHAPTER 1. INTRODUCTION

structural analysis, optimization as well as controller design.
From the above needs, model reduction techniques are studied and used in many fields
of engineering and mathematics. Although they work well in each of their purpose,
there still remain hurdles such as parametric MOR. When parameters of a system
change, the entire system is changed. Consequently the reduced model is no longer
valid. Every time parameters of the system alter, modeling, reduction, and analysis
should be repeated as illustrated in Fig. 1.1. Since the reduction process itself requires
a considerable amount of computation, up to O(n3), parameter changes could make
MOR meaningless.
Parametric model order reduction (PMOR) makes not only the model smaller but also
the reduced model managible to its parametric effects, so that once the reduction
is done, the reduced model with different parameter values can be induced from the
reduced space only, regardless of its original large model; this ability is expected to
be very useful in optimization problems. Its concept is shown in Fig. 1.2. PMOR is
a relatively new topic and several different approaches are being investigated inten-
sively. Depending on what types of parameters are interested, for example, frequency
band, material properties, and geometrical parameters, the approaches differ, which
will be covered in the following chapters. Despite of such attempts to develope PMOR
method, there have been general difficulties: first, the computational effort required
for the reduction itself and second, the accuracy of reduced model including paramet-
ric changes. The effectivity of a method is not only how much it is mathematically
correct, but also how much the time and cost efficiency it has. Therefore in this
dissertation the computational cost and accuracy of the results from real structural
models are observed, not only the level of operational numbers. The targetted model
itself also not a state-space model which is already once formulated and reduced, but
a raw structural model from FE software. Since most previous studies focus on first
order dynamic systems in a state-space form, how to induce parameterized reduction
procedure for second order dynamic systems and static systems, which are used more
often in structural analysis, is more challenging and valuable work.

In this thesis, previous studies and theories concerning model order reduction and para-
metric model order reduction are introduced. Furthermore, improved PMOR methods
for second order dynamic analysis as well as static analysis are suggested and inves-
tigated through numerical examples. A distinguishable contribution of this thesis is
the improvement and modification of existing PMOR theory and real application of
it. A method suggested here is realized in MATLAB, a numerical algebra software.
As models, large finite element models from ANSYS, a commercial FE software,
are examined. As a result, the algorithm for practical and larges scale structures is
provided.

1.2. Literature survey

During the recent several decades, model order reduction has been investigated for
simulation, control, and optimization of mechanical and electrical systems. As men-
tioned in section 1.1, the use of the finite element method helps us to analyze complex



1.2. LITERATURE SURVEY 3

Figure 1.1.: Analysis procedure with gen-
eral Model Order Reduction
(MOR)

Figure 1.2.: Analysis procedure with
Parametric Model Order
Reduction (PMOR)

structures; however, the high computational effort associated with large models brings
the needs to study model order reduction.

In this chapter, previously studied model order reduction (MOR) and parametric
model order reduction (PMOR) theories are introduced. The flow and trend of MOR
are shown here while the essential theorems and proofs are provided in chapter 2 and
chapter 3.

1.2.1. Model order reduction (MOR)

1) Static systems

Since most of MOR theories are developed for a controller design of a dynamic system
or eigen-value problems in linear algebra, the static problem is not actively studied.
The fact that computational effort for static problem is much less than dynamic
one is another reason why MOR for static analysis is rarely investigated. However,
when the required number of analysis is high, model order reduction is helpful in static
analysis as well. There exist two basic methods: Guyan reduction and Krylov subspace
reduction. Note that these are not limited to the static problem, and applicable to
the dynamic problem as well.
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• Transformation methods

Guyan[Guy65] developed simple static reduction by integrating some dependent(slave)
degrees of freedoms(dofs) or states into independent(master) dofs or states, so that
a system is represented by master dofs or states only. Guyan reduction can be rep-
resented as a transformation from the space with full dofs or states to the space of
master dofs or states only; hence it is often called transformation based reduction.

• Projection methods

Another type of reduction mostly used in these days is a projection method. The basic
idea is projecting an original system onto a low order, compact mathematical space
reflecting all the information we want to keep. Definition and usage of the projection
matrix are written on page 11. By multiplying with the projection matrix, the mirror
image of the system or matrix is obtained as a reduced model. The main differences
between the transformation method and the projection method is that the reduced
space can be re-reflected to the full space with the projection method, which is not
possible with the transformation matrix. In [YB09], it is explained that the Krylov
subspace from a stiffness matrix is a column space where the solution of the static
problem lies; threefore, the Krylov subspace can be used as a projection space in static
MOR.

2) Dynamic systems

Since a dynamic system requires much more computational effort coping with eigen-
analysis, while a static analysis solves matrix-vector problems, order reduction for
dynamic model have been actively investigated. In early stage, methods based on
transformation are developed. But later projection based methods are preferred be-
cause of its capability to keep more information than transformation method and the
capability to bring the model back to its original space.

• Transformation methods

Guyan reduction can be also used for dynamic problems[Guy65]. The slave dofs or
states expressed with master dofs or states as in the static system are applied to
the dynamic system. The limitation of the Guyan method is that the slave dofs or
states are represented only by stiffness terms. Therefore some important terms from
the inertia matrix might be omitted in the reduced model. To solve this problem,
improved reduced system (IRS) has been developed. The IRS method uses both
inertia and stiffness terms to represent slave dofs or states by master ones. It shows
more accurate result than Guyan reduction[Fla90]. However, IRS method still has
a limitation in its accuracy; when the selection of master dofs or states are not
appropriate to reflect some modes of interest, the result is not correct.
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• Projection methods

In modern MOR methods, projection is mainly used to overcome the disadvantages of
Guyan and IRS methods. The most common method is the modal truncation method
projecting the physical coordinates into modal coordinates. The most important ad-
vantages of the modal truncation method are (1) a direct relation to the physical
system, and (2) decoupling of the system of the ordinary differential equations under
some assumptions on damping behavior. The modal truncation method is good to
preserve dynamic properties; however it cannot preserve boundary conditions. Craig
and Bampton[CB68] combined Guyan reduction and modal truncation to keep both
boundary condition and dynamic properties of a structure. Though its original inten-
tion was to connect substructures effectively, the basic idea is widely used in MOR.
These four methods, Guyan, IRS, modal truncation, and the Craig-Bampton method,
are adapted in many of commercial finite element programs such as ANSYS and
NASTRAN.

Singular value decomposition (SVD) based method
In control engineering, on the other hand, different approaches have been investigated.
Because controllability and observability of a system play important roles in controller
design, their gramians are used in many MOR theories. One of the ideas which is
called balanced truncation (BT) reduction is omitting uncontrollable and unobserv-
able states of a system. After transforming a system into a balanced form, which has
the same controllability and observability gramians, states with small Hankel singular
values are eliminated[Moo81]. Another reduction method based on Gramians is Hankel
norm approximation suggested by Gragg and Lindquist[GL83]. In [GL83], optimal re-
duction based on the largest Hankel singular value which is defined as a Hankel norm is
suggested. Both BT reduction and Hankel norm approximation methods are based on
singular value decomposition (SVD). As a benefit, the reduced system has a global
error bound, and the stability from the original model is preserved[Glo84, Enn84].
Their application is limited to the low dimension up to several hundreds because the
solution of two Lyapunov equations which causes computation order of O(n3) is in-
cluded during the reduction. Nevertheless, BT reduction is used in many academical
or practical examples[ASG01, FI01, GAB01, Ben06, YRS04]. Its limitation on the
number of dimensions can be solved by applying modal truncation before BT reduc-
tion. Many attempts exist to diminish the high computation during BT reduction; for
example, Gawronski [Gaw98] suggested an approximation of balanced representation.
From the observation that gramians have low numerical rank in many cases, low-rank
Cholesky factors are used to approximate gramians. The Smith method is used to
iteratively solve Lyapunov equations in [GSA03]. However, the computational order
increases to O(n3) for Schur decomposition shown later.

Krylov subspace based method
Apart from SVD, the Krylov subspace method is another big topic in modern model
order reduction study. The idea is to find a proper approximation of a transfer func-
tion of a system, matching the coefficients of the transfer function. Because the low
frequency range is more interested in general, the coefficients with low order Laplace
variable s are preserved.
The Padé approximant, developed by Henri Padé, is adapted for approximation. Ville-
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magne and Skelton[VS87] transformed moments of a transfer function, which is co-
efficients of Padé approximation of a transfer function, into a Krylov subspace form.
Oblique projection is applied to obtain reduced model, and moment matching prop-
erties are also proved.
Three representative algorithms for Padé approximation exist: Asymptotic waveform
evaluation (AWE), Arnoldi algorithm, and Lanczos algorithm. Furthermore, many vari-
ations of them are developed for higher accuracy or multi-input multi-output (MIMO)
application or passivity preservation or computaional efficiency. Asymptotic waveform
evaluation proposed by Pillage[PR90] is an explicit moment matching method; it is
easily understandable and implementable. But the order of transfer function which
guarantees good accuracy is very limited because of the numerical instability.
The others, Arnoldi and Lanczos, are based on the Krylov subspace. Lanczos devel-
oped an iteration method for the eigenvalue problem in 1950[Lan50]. The Lanczos
algorithm is computationally cheap, and applicable to a higher order system. How-
ever it is not always numerically stable. To prevent a break down during the itera-
tion, a look-ahead method is suggested by Freund[FGEM93], and a deflation tech-
nique is also used for better orthogonality in many cases where Lanczos algorithm is
used[LS96]. Feldmann and Freund[FR95] applied a look-ahead lanczos algorithm for
Pade approximation of a transfer function, which is called Pade via Lanczos (PVL)
method. It shows higher numerical stability and high accuracy near the Pade expan-
sion point(frequency) keeping computational cost low. For multi-input multi-output
(MIMO) system, the block Lanczos algorithm as in [GLO81, KCJ88] and matrix
Pade via Lanczos (MPVL) have been developed[SL99]. As a further improvement,
Wittig[WMSW02] suggested a two-step Lanczos method to reduce computational
cost further. After a system is reduced via normal Lanczos iteration, PVL is applied
as the second step.
The Arnoldi algorithm is another representative iterational method for Krylov sub-
space computation. Like the Lanczos algorithm, it was initially developed for eigen-
value analysis by Arnoldi[Arn51]. Silveira et al.[SKEW99] used the Arnoldi algo-
rithm to generate a Krylov subspace for moment matching model reduction. The
Arnoldi algorithm is based on the Gram-Schmidt process and is a one-side method
unlike the Lanczos method, which is a two-sided method. For a MIMO system the
block Arnoldi algorithm is suggested by Boley[Bol94]. Many attempts to improve the
Arnoldi method have also been followed. To overcome the major disadvantage of
the Krylov subspace method, loss of stability, Odabasioglu et al.[OCP98] developed
passive reduced-order interconnect macromodeling algorithm (PRIMA). It is designed
to preserve passivity during the model reduction of a RLC circuit via a block Arnoldi
algorithm, and congruence transformation. PRIMA is superior to MPVC because of
passivity preservation; however this property is limited to RLC circuit systems. On the
other hand, Salimbahrami et al.[SBLK03] achieved performance similar to Lanczos
method by developing the two-sided Arnoldi algorithm. The two-sided Arnoldi algo-
rithm uses the Arnoldi iteration twice: one for the input Krylov subspace and the other
for the output Krylov subspace. Consequently the reduced model can match twice as
many moments than the general Arnoldi method can. With the same reduced order,
there is also no numerical instability which Lanczos has. It can be further applied
to the second order dynamic system, as the most of the structural models. Several
MIMO examples are also presented[Sal05]. Bai and Su[BS05] also presented the sec-
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ond order Krylov method based on Arnoldi algorithm, which is called second order
Arnoldi reduction (SOAR). Lampe and Voss[LV] demonstrated numerical examples
with SOAR. Meanwhile Lin et al.[LBW07] extended SOAR to MIMO system calling it
as the block second order Arnoldi reduction (BSOAR). Chu[CLF06] proposed global
Arnoldi algorithm to prevent numerical ill-conditioning due to deflation. Instead of
Gram-Schmidt process, the Frobenius process is used for orthonormalization.

In [MM03] Prony’s least square approximation method is adapted instead of Pade
approximation to build a reduced model. With bilinear transformation, Prony’s method
results in smaller model matching more poles and zeros.

Proper orthogonal decomposition (POD) method
The POD method is a sampling based reduction. From snapshots of the states, the
optimal bases to describe these snapshots are found. The relation between POD and
SVD makes POD applicable for model order reduction. It is used for dynamic analysis
of structures[FK98, KF00a, KF00b, MVB01, GS99], and Micro Electro-Mechanical
Systems (MEMS)[LLL+01]. Since POD is applicable to nonlinear systems, it is desir-
able to the field of fluid dynamics or aerodynamics. In 80s Sirovich[Sir87] showed a
possible use of POD in analyzing coherent structures of a turbulent flow. Willcox and
Peraire[WP02] applied POD method to a two-dimensional airfoil model for the com-
putational fluid dynamics (CFD) analysis. However, the accuracy of reduced model
is significantly dependent on the choice of snapshots.

1.2.2. Parametric model order reduction (PMOR)

Parametric model order reduction (PMOR) is motivated from the needs of designing
structures or controllers more efficiently. During the designing process parameters of
the structure are varied; however, with general model order reduction (MOR) the
reduced model is no longer valid under parameter changes. Therefore many studies
to overcome this limitation have been investigated. The goal is including parametric
effects into the reduced space based on general MOR methods, such as SVD and
Krylov. The approaches are divided first by what kind of parameters are considered
and secondly how to treat their effects. For the case when the frequency range is
considered as parameter, rational MOR methods are developed. Focusing on system
parameters, mainly two approaches are suggested: first, extracting parametric effects
before the reduction and finding a reduced space which can keep parameter effects;
second, reducing sample models individually and approximating the reduced model
with different parameter values based on interpolation.

1) Rational model order reduction

Because Padé approximation provides high accuracy near the reference point of the
Padé expansion, the reference point which represents an interesting frequency range
could be an important parameter in some studies. Rational reduction methods are
studied for changing reference frequency after the reduction. Ruhe[Ruh84] suggested
the rational Krylov method for eigenvalue computation in 1984. The column space
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for the projection is collected from Krylov subspaces of various frequencies. Subse-
quently Ruhe and Skoop[RS98] used a rational Krylov algorithm based on shifted and
inverted Arnoldi iteration for model reduction. As a further application, Weile and
Michielssen[WM01] added two system parameters to general rational Krylov method.
Rational reduction has also been applied for optimal H2 model reduction by Guge-
crin et al.[GAB08] In the field of SVD based reduction, Phillips and Silveira[PS05]
designed Poor Man’s Truncated Balanced Representation (PMTBR) applying multi-
point rational approximation technique to BT reduction. Rational reduction is used
in controller design[Gil06]; however, rational reduction changes the expansion points,
not the system matrix itself. Consequently it should be treated as a different field of
study from PMOR concerning system parameter changes.

2) PMOR with system parameters

Parameters of interest here can alter the system matrix, such as physical or geo-
metrical parameters of structures, or parameters from electric circuits, etc. Shi et
al.[SHS06] studied Symbolic MOR; however, its application is very limited to sim-
ple analytical models. Apart from that, two major approaches exist: one is finding a
common projector, and the other is interpolating various parameter cases.

Multiparameter moment matching method
Daniel[DSC+04] suggested a multiparameter moment matching reduction method
finding a common projection space which contains parametric effects as well as the
characteristics of the original system. This method requires knowledge about how pa-
rameters affect the system, and provides an accurate result. In recent years, it has been
actively applied, especially in multi-disciplinary problems such as electro-thermal sys-
tems or electro-mechanical systems, for instance Micro Electro-Mechanical Systems
(MEMS)[MRG+05, RFS+, FRK05, FKRK05, BD05]. For the application to mechan-
ical structures, there are some disadvantages due to the existance of inversions and
limitations from the Gram-Schmidt process: Calculating and multiplying the inversion
matrix cause very high computational effort as well as a memory problem, and the
round-off errors and badly chosen basis during Krylov iteration bring the loss of or-
thogonality in the Gram-Schmidt process, which ends up with singularity of reduced
model. Through this dissertation, these problems are observed and improved.

Interpolation based method
The interpolation based PMOR method does not substract parametric effects before
reduction and preserves them during reduction as Daniel’s method does, but approx-
imates parametric effects after reduction. The models with various parameter values
are reduced individually and transformed to a proper manifold for interpolation. Ac-
cording to the space where interpolation occurs and the interpolation algorithm itself,
different methods are presented. Lohmann and Eid[LE09] suggested the state transfor-
mation to have a common physical interpretation and performed linear approximation
with weight functions. Degroote et al.[DVW09] proposed spline interpolation among
the reduced models from proper orthogonal decomposition. Both ouput space and
tangential Riemann manifolds have been tested as an interpolation space. Amsallem
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et al.[ACCF09] used modal truncation for order reduction and applied generalized
matrix interpolation. This is quite a new field of study, and there are still many open
questions, for instance which space will be optimal for the interpolation, and which
interpolation algorithm is computationally cheap but still accurate. Another concern
is the computational cost when many parameters are involved; if the required number
of reference parameter sets increases, then computation for each reduction and inter-
polation will be very high. Because the interpolation method is independent from the
reduction method itself, numerous combinations of reduction algorithm and interpo-
lation method seem to be possible.

1.2.3. Outlook from literature survey

As the demanding computational effort in analysis, design, and control of structures
increases, model order reduction methods are widely used: for instance, for faster
dynamic analysis or controller design. Responding to those needs various methods
and algorithms are developed to fulfill specific requirements, for example accuracy
of reduced model, or robustness of reduction algorithms, or preservation of control-
lability/observaility. The challenge in MOR is the adaptation of parameter changes.
Because of the high demands on parameter studies during structural design and con-
trol, the ability to change parameter values after reduction is emphasized, especially
from the fact that a reduction procedure requires considerable amount of calcula-
tions. Therefore in recent studies, various attempts to include parametric effects in
the reduced model are made. The limitation so far is that only simple models with
a few parameters are tested, and the parameters considered in previous studies are
not structural parameters such as material properties, but system parameters which
are easily seperable from structural models. Interpolation based PMOR method may
have better opportunity to use various typse of parameters; but the models from each
parameter set needs to be reduced and to which space they should be subjected and
interpolated is not clearly found yet. Therefore parametric model reduction method
which enable to track down the structural parameters merged in FE model is still in
demand and needed to be investigated.

1.3. Thesis outline

This thesis aims to develop practically efficient parametric model order reduction
(PMOR) method and show its results using some exemplary structures. First, detailed
theories in model order reduction (MOR) are shown in chapter 2. Since advanced
methods are derived from existing ones keeping its properties, it is necessary to know
fundamental theorems and proofs to support the validity of new ones. Among the
numerious variations of MOR theories, fundamental ones such as modal truncation,
balanced truncation, and the Krylov subspace method are presented.

PMOR theories are followed by chapter 3. Two main approaches, common projector
development and the interpolation based method, are presented.
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The improved method investigated in this dissertation will be shown in chapter 4
theoretically. Even for the theoretical development, methods how to handle each
physical or geometrical parameters in FE model are covered with high importance,
because the final goal is practically useful method. Improvements of methods to
solve the problems occurred during applications are also shown in chapter 4. Both
methods for static and dynamic analyses are presented. The method based on LU
decomposition is introduced to prevent calculating inversion of a matrix.

The application of the method is provided in chapter 5. In the static case, a large
reflector is used as an example. Material properties such as modulus and density,
and geometrical property such as thickness of the shell are considered as parameters.
Deflection under an arbitrary loading is observed and shape control is performed by
calculating optimal actuations. Both an active truss structure and a solar array panel
model are taken as examples for dynamic problems. Parameters are properties of the
composite material, nonstructural masses, and thicknesses. Natural frequencies and
mode shapes are examined, vibration control is performed using a positive position
feedback controller or linear quadratic regulator. Various parameter sets are applied
to examine whether the reduced model can successfully be influenced by parameter
changes or not. The potential use of PMOR in design optimization is prospected in
chapter 5 as well. Considering design variables as parameters, designing material prop-
erties and geometrical properties of mirror panels from overwhelming large telescope
(OWL) model is shown as well as designing a composite plate.

Conclusion follows in chapter 6. The models and theories requested to develop the
numerical models are provided in an Appendix A. Additional results from chapter 5
are provided in Appendix B.



2. Theories of Model Order
Reduction

As introduced in section 1.2, there are many model order reduction (MOR) methods
and variations of them. Most recent work is based on projection technique, because
it is easy to reconvert the reduced states to the full order states by back-projection.
A projection transforms a target vector or vector space into the vector or vector
space consisting only the elements in the projection space. From the target vector or
vector space, the elements which are parallel to the projection space are kept and the
elements which are orthogonal to it are removed as illustrated in Fig. 2.1.

The projection matrix P consists of row vectors which represent the projection space.
When the row vectors of P are orthogonal to each other, the projection matrix
becomes an orthogonal projector as defined in equation (2.1).

P 2 = P, P TP = I (2.1)

When the row vectors of P are not orthogonal to each other, it becomes an oblique
projector as defined in (2.2).

P 2 = P (2.2)

If the projected space has lower dimension than the original space such that P ∈ Rr×n

where r � n, we can reduce the system A by multiplying P , Ar = PA ∈ Rr×n. The
question remains is how to properly choose the projection matrix P to preserve the
most important information of the original system A. In this chapter, the kinds of
MOR techniques are reviewed according to on which space and with which method
the model is projected. The characteristics of each method are followed as well.

Figure 2.1.: Projection
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2.1. Modal truncation method

For the physical system, an equation of motion is defined as in (2.3) in time domain.

Mẍ(t) +Dẋ(t) +Kx(t) = f(t) (2.3)

where M is a mass matrix, D is a damping matrix, K is a stiffness matrix, x is a
vector of physical degrees of freedom(dofs), and f is an external force. It can be
rewritten as the first order state space equation in physical domain as in (2.4). M 0

0 I

 ż +

 D K

−I 0

 z =

 f

0

 ,where z =

 ẋ

x


ż =

 M−1 0

0 I

 −D −K
I 0

 z +

 f

0

 (2.4)

ż = Az + b

In continuous structures, M , K, and D are generally not diagonal; therefore the
degrees of freedom in x are coupled with each other.
The solution x is a combination of a homogeneous solution xc and particular solution
xp such that Mẍc + Dẋc + Kxc = 0 and Mẍp + Dẋp + Kxp = f . The dynamic
characteristics of a structure are contained in xc, the free vibration solution; therefore
we will focus on xc. Assuming that there is no damping, xc is as shown in equation
(2.5).

xc(t) =
∑
i

aiφie
λit (2.5)

where ais are scalars, λis are eigen-values, and φis are corresponding eigen-vectors

The idea of the modal truncation method comes from above equation; the dynamic
response of a structure is a linear combination of eigenforms. It means that the mode
shapes are the bases of the reponse space of a structure. Using those eigenforms
as bases of a projector, the model in physical space can be projected onto a modal
space. When damping is involved, eigen-frequencies are shifted but mode shapes
remain almost same especially when damping is small or modeled as modal damping
or proportional damping. To reduce the size of the model, not all modes but only
some of the modes are selected and the projection matrix P has chosen eigenvectors
as row vectors as shown in equation (2.6).

P =


φT1

φT2
...

φTr

 (2.6)
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Since eigen-vectors(φis) are orthogonal to each other, P becomes an orthogonal
projector. When this projector is applied to the equation of motion as in equation
(2.3), system matrices such as mass, damping, and stiffness matrices will be reduced
as in equation (2.7).

Mrẍr(t) +Drẋr(t) +Krxr(t) = fr (2.7)

where Mr = PMP T , Dr = PDP T , Kr = PKP T

P Txr = x, fr = Pf

It keeps the eigen-values (natural frequencies) and eigen-vectors (mode shapes) of the
original model for the chosen corresponding modes. As the columns of the projector
represent physically deformed form on each mode, it is easy to see how the structure
will respond even after the reduction. The challenging part in the modal truncation
method is which modes are important or not. Depending on target structures some
interesting modes are selected: for instance, the lowest some modes, or modes near a
target frequency, or modes which have high effective mass, which is explained in A.2.
The main drawback of the modal truncation method is the spill-over problem, which
is an instability caused by neglected high frequency eigenmodes. Spill-over may bring
significant structural instability when the control system excite high natural frequency
which is omitted in the reduced model. Additionally, high order of computation,
O(n3), and some boundary conditions which are not preserved in the reduced model
are other problems.
The Craig-Bampton method is a modification of modal truncation method to release
the last limitation. Degrees of freedoms (dofs) are first divided into dofs assigned for
boundary dofs xB and dofs of internal area xI . xI is expressed as a summation of
mode shape and rigid body vectors as in equation (2.8).

xr =

 xB

xI

 =

 I 0

φR φm

 xB

qI

 = Tcb

 xB

qI

 (2.8)

where xB : boundary dofs

xI : internal dofs

φR : rigid body vectors from each boundary dofs

φm : fixed base mode shapes

qI : modal dofs in internal area

Tcb : Craig-Bampton transformation matrix

By multiplying T Tcb as a projector, mass, stiffness, and damping matrices also can be
reduced as follows.

Mrẍr(t) +Drẋr(t) +Krxr(t) = fr (2.9)

where Mr = T TcbMTcb, Dr = T TcbDTcb, Kr = T TcbKTcb

Tcbxr = x, fr = T Tcbf
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Modal truncation method and Craig-Bampton method are widely used in these days.
They can provide direct insight to the physical states, and high accuracy for the
chosen modes. The high computation effort for eigen-analysis is alleviated by iterative
methods such as Lanczos method or subspace method. However, spill-over problem
still remains.

2.2. Balanced truncation method

While modal truncation method and Craig-Bampton method dominate in structural
analysis, different approaches are investigated based on controllability and observabil-
ity from control engineering side. Controllability is defined as the ability to send any
initial state to any finite state within finite time, and observability is defined as the
ability to determine a current state from the output. Their mathematical definitions
are described in Theorem 2.1 and in Theorem 2.2 accordingly.

Theorem 2.1 The following continous-time system in equation (2.10) is control-
lable, when the rank of matrix of controllability matrix R is the same with the size of
A, n.

ż = Az +Bu A ∈ Rn×n (2.10)

R =
[
B | AB | · · · | An−1B

]
(2.11)

�

Theorem 2.2 The following continous-time system in equation (2.12) is observable,
when the rank of matrix of observability matrix O is the same with the size of A, n.

ż = Az +Bu A ∈ Rn×n (2.12)

y = Cz +Du C ∈ Rm×n

O =


C

CA
...

CAn−1

 (2.13)

�

Controllability and observability represent the possible effectiveness of a controlled
system. Therefore, in controller design, controllable and observable states are desired
to be preserved during the reduction. As a means of quantifying, gramians are intro-
duced. The word gramian means a matrix composed of inner products of two vector
spaces, however in control theory it is used to show energy level of output vector,
Ec, or energy level of state of a system, Eo. For instance, the controllability gramian
is defined as an inverse of the minimum energy required to send an initial state to a
certain final state. Since the state z(t) under input u(t) is calculated as in equation
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(2.14), the required input energy Ec to drive a system to initial state z(0) is as shown
in equation (2.15).

z(t) =

∫ t

0

eA(t−τ)Bu(τ)dτ = eAtB (2.14)

Ec =

∫ ∞
0

u(τ)Tu(τ)dτ = zT0

(∫ ∞
0

eA
T tBBT eAtdt

)−1

z0 (2.15)

= zT0 W
−1
c z0 ,where z0 = z(0)

The controllability gramian Wc is defined as in equation (2.16), and its property is
directly related to the controllability of a system as described in Theorem 2.3.

Wc =

∫ ∞
0

eAtBBT eA
T tdt (2.16)

Theorem 2.3 If the controllability gramian Wc is positive definite, then a system
(A,B) is controllable.

�

For the observability, a similar definition can be drawn. Since the output y(t) is
calculated as in equation (2.17), the output energy Eo is as shown in equation (2.18).

y(t) = CeAtz0 (2.17)

Eo =

∫ ∞
0

y(τ)Ty(τ)dτ = zT0

(∫ ∞
0

eA
T tCCT eAtdt

)
z0 (2.18)

= zT0 Woz0 ,where z0 = z(0)

The observability gramian Wo is derived from Eo and defined in equation (2.19)
satisfying Theorem 2.4.

Wo =

∫ ∞
0

eA
T tCCT eAtdt (2.19)

Theorem 2.4 If the observability gramian Wo is positive definite, then a system
(A,C) is observable.

�

By differentiating each of the gramians from equation (2.16) and equation (2.19),
the following equations are obtained.

Ẇc = AWc +WcA
T +BBT (2.20)

Ẇo = ATWo +WoA+ CTC (2.21)

For a stable system, stationary solutions satisfy Ẇc = Ẇo = 0. Then, equations
(2.22)-(2.23) are derived, which are called the Lyapunov equations. Gramians are
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obtained generally from solving the Lyapunov equations instead of integration as in
equation (2.16) and equation (2.19).

AWc +WcA
T +BBT = 0 (2.22)

ATWo +WoA+ CTC = 0 (2.23)

As described, gramians are indicators of controllability and observability; therefore
they can be used as a criterion whether certain states should be preserved or not during
the reduction. A model can be reduced by removing uncontrollable and unobservable
states. However, in general, controllability and observability gramians of the system
are not the same. Therofore, which states are undesirable or desirable is not clear.
To solve this problem, a system is first transformed into balaced system, which has
same controllability and observability gramians as defined in Definition 2.1, and then
reduced. The balancing transformation algorithm suggested by Laub[LHPW87] is
described in Algorithm 2.1.

Definition 2.1 A system Σ is balanced, if Wo = Wc = diag(σ1, σ2, · · · , σn). where

Σ =

 A B

C D

 from equation (2.12), and σi’s are Hankel singular values.

�

Algorithm 2.1 For gramian matrices Wc and Wo, the following algorithm finds a
transformation matrix T which transforms a system Σ into balanced system Σbalanced.

Step 1. Compute Cholesky factors of Gramians such that

Wc = LcL
T
c , Wo = LoL

T
o (2.24)

Step 2. Compute singular value decomposition of LTo Lc.

LTo Lc = UΛV T (2.25)

Step 3. Form a balancing transformation T .

T = LcV Λ−1/2, T−1 = Λ−1/2UTLTo (2.26)

Step 4. Form a balanced system Σbalanced.

Σbalanced =

 T−1AT T−1B

CT

 =

 A,bl B,bl

C,bl

 (2.27)

After the transformation, controllability and observability gramians from the trans-
formed system, Wc,bl and Wo,bl, can also be calculated from the Lyapunov equation;
and both of them are equal to a diagonal matrix Λ in equation (2.25). The diagonal
elements, called singular values, represent the controllability and observability level of
each state. Consequently, states which have small singular values are eliminated for
the order reduction. Since the algorithm is based on singular value decomposition, it
has an important benefit on the error bound as described in Theorem 2.5.
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Theorem 2.5 Let G(s) = C(sI −A)−1B be a stable transfer function with Hankel
singular values σ1 σ2 · · · σn, and let Gr(s) be the balanced realization of G(s) for
the first r states. Then,∥∥G(s)−Gr(s)

∥∥
L∞ ≤ 2Σn

i=r+1σi (2.28)∥∥G(s)−Gr(s)
∥∥
H
≤ 2Σn

i=r+1σi (2.29)

�

On the other hand, applications of balanced truncation method are limited upto
several hundreds order model because of solving the Lyapunov equation, which re-
quires a computation of O(n3). Both balancing transformation and the Lyapunov
equation solver need O(n3) of computation; therefore a large finite element model
cannot directly use the balanced truncation method. Instead, it is reduced with modal
truncation first, and the balanced truncation is applied. Eigen-analysis to find proper
modal space is generally order of O(n3). But with a sparse matrix, which most of the
structural matrices from a finite element model are, the order of computations is re-
duced to O(kn2) or O(k2n) depending on its sparsity. Another solution to reduce the
computational order of balanced truncation method is approximating the gramians
instead of calculating them. Gawronski[Gaw98] suggested approximate Hankel singu-
lar values in modal space as in equation (2.30), and Smith method and its variations
suggest iteratively solving the Lyapunov equation in [GSA03, GL].

γi ∼=
∥∥Bi

∥∥
2

∥∥Ci∥∥2

4ξiωi
(2.30)

where A ∼= diag(Ai), B =


B1

B2

...

Bn

, C =
[
C1 C2 · · · Cn

]
.

Ai =

 −ξiωi ωi

−ωi −ξiωi


In the end, the system is projected onto the eigenspace of WcWo for some impor-
tant(largest) eigenmodes.

2.3. Krylov subspace method

The motivation of Krylov subspace reduction comes from using the Rayleigh quotient
to build a reduced column space. Similar to many other reduction methods, it aims to
find a proper projection matrix Vr ∈ Rn×r (r � n) such that V T

r AVr ≈ A. According
to Cauchy’s interlacing theorem, Vi ∈ Ri×r (i = 1, 2, · · · ) composed of orthonormal
columns satisfies following equation.

λmax
(
V T

1 AV1

)
≤ λmax

(
V T

2 AV2

)
≤ · · · ≤ λmax

(
V T
r AVr

)
≤ λmax (A) (2.31)
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Therefore, finding Vr which maximizes λmax
(
V T
r AVr

)
will be a solution for good

approximation. Since a Rayleigh quotient ρ (γi) is defined as in equation (2.32), Vi+1

containing ∇ρ (γi) = 2
γTi γi

(Aγi − ρ(γi)γi) will maximize λmax
(
V T
i+1AVi+1

)
.

ρ (γi) =
γTi Aγi
γTi γi

= λmax
(
V T
i AVi

)
(2.32)

where γi = a1v1 + · · ·+ aivi, vis are columns of V

Consequently,

span {col [v1 , · · · , vi , vi+1]} = span
{
col
[
v1 , Av1 , · · · , Aiv1

]}
(2.33)

The right hand side of equation (2.33) is defined as a Krylov subspace.

Definition 2.2 The ith order Krylov subspace is defined as

Ki(A, b) = span
{
b, Ab, · · · , Aib

}
(2.34)

where A ∈ Rn×n, and starting vector b ∈ Rn×1

�

The algorithms to find Krylov subspace bases are developed for eigen-analysis first.
After it is known that some dominant spaces of the system dynamics are preserved in
Krylov subspace form, the usage of Krylov vectors are extended to the model order
reduction area.
For the following dynamic system in equation (2.35),

Eż = Az +Bu (2.35)

y = Cz

the transfer function in Laplace domain G(s) is

G(s) = C(s) (sE(s)− A(s))−1B(s) = −C(s)A(s)−1
(
I − sE(s)A(s)−1

)−1
B(s)

= −C(s)A(s)−1

∞∑
i=0

(
sE(s)A(s)−1

)i
B(s)

= −C(s)
∞∑
i=0

(
sE(s)A(s)−1

)i
A(s)−1B(s) (2.36)

=
∞∑
i=0

mis
i where mi = −C(s)

(
E(s)A(s)−1

)i
A(s)−1B(s)

The coefficients mi for each si are called the ith moment of a transfer function.
Transfer function can be expanded from a certain frequency point s0, by replacing s
with (s − s0). In most cases s0 = 0 is observed as in equation (2.35) because the
behavior in a low frequency range is important in dynamic systems. Focusing on high
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frequency range, the moments around infinity, s0 =∞, called Markov parameters are
considered as shown in equation (2.37).

mi = −C
(
A−1E

)i
E−1B (2.37)

In both cases, it is clear that moments mis are represented as iterative forms and the
column space of mis are represented as a Krylov subspace as in equation (2.38) and
equation (2.39) accordingly.

span {m0,m1, · · · ,mi} |s0=0 = C Ki

(
A−1E,A−1B

)
(2.38)

span {m0,m1, · · · ,mi} |s0=∞ = C Ki

(
E−1A,E−1B

)
(2.39)

Consequently, if the projection space is chosen as above Krylov subspace, the re-
duced model is expected to the keep moments. The exact statement and proofs will
be provided in section 2.3.1. Two representative algorithms to calculate Krylov sub-
spaces are the Arnoldi algorithm and the Lanczos algorithm. Both use Matrix-vector
multiplication only; therefore they are computationally effective.

2.3.1. Lanczos algorithm

The Lanczos method which was originally developed by Cornelius Lanczos in 1950 is
to solve eigenvalue problems of a symmetric matrix efficiently. Starting from an initial
vector v0, the column vector of A is extracted as being orthogonal to all previously
chosen vectors, v0, v1, · · · ,vk, and named as vk+1.

rk+1 = Avk −
k∑
i=1

(
vTkAvk

)
vi (2.40)

= Avk − Vk
[
V T
k Avk

]
,where Vk = [v1 v2 · · · vk]

=
[
I − VkV T

k

]
Avk

vk+1 =
rk+1

‖rk+1‖
(2.41)

On the other way, it can be expressed as follows,

Avk =
k∑
i=1

(
vTi Avk

)
vi + ‖rk+1‖vk+1 (2.42)

=
k∑
i=1

αi,kvi + ‖rk+1‖vk+1 where αi,j = vTi Avj
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Because of the orthogonality of vi’s, αi,j = 0 for i > j + 1, and because of the
symmetricity of A, αi,j = 0 for j > i+ 1. In the end, the matrix Vk satisfies equation
(2.43).

AVk = VkHk + rke
T
k (2.43)

where Hk = V T
k AVk

=


α1 β2

β2 α2 β3

β3 α3

. . .

 ,tridiagonal matrix

If rk is small enough, Hk becomes a good approximation of A, and its tridiagonality
provides great benefits on eigenvalue calculation. And the condition for good approx-
imation is released from V T to any biorthogonal matrix W T , satisfying moment or
eigenvalue matching properties as proved in Theorem 2.6.

Theorem 2.6 If the columns of matrix V ∈ Rn×q are bases of Kq (A−1, b) from
system Σ , and the biorthogonal matrix W ∈ Rn×q is chosen such that W TAV is
nonsingular, then the first q moments of the original system Σ and those of the re-
duced order system Σr match.

Σ : ẋ = Ax+ bu, y = cTx

Σr : ẋr = W TAV xr +W T bu, y = cTV xr, where x = V xr

Proof. Based on the definition of mi = cT (A−1)i+1b, i = 0, 1, · · · , 0th moment of
reduced model becomes,

m0,r = cTr A
−1
r br = cTV

(
W TAV

)−1
W T b

Because the vector A−1b lies on the Krylov subspace, ∃ r0 ∈ C such that A−1b = V r0.

Therefore
(
W TAV

)−1
W T b =

(
W TAV

)−1
W TAA−1b =

(
W TAV

)−1
W TAV r0 =

r0

∴ m0,r = cTV r0 = cTA−1b = m0

Similarly, there exists r1 such that (A−1)2b = V r1, AV r1 = V r0. For the first
moment,

m1,r = cTV
(
W TAV

)−1 (
W TAV

)−1
W T b

= cTV
(
W TAV

)−1
W TV r0

= cTV
(
W TAV

)−1
W TAV r1

= cTV r1 = cT
(
A−1

)2
b = m1

The same procedure can continue until mi, i = q − 1. Therefore the moments m0,r

to mq−1,r match to m0 to mq−1.

�
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From the classical Lanczos process, Feldmann and Freund[FR95] pointed out that
tridiagonal matrix Hk can be composed of two Krylov subspaces from a dynamic
system, and it provides special benefits in moment matching property as follows.

Theorem 2.7 If the columns of matrix V ∈ Rn×q are bases of Kq (A−1, b), and the
columns of matrix W ∈ Rn×q are bases of Kq

(
A−T , c

)
from system Σ, then the first

2q moments of the original system Σ and those from the reduced system Σr match.
Proof. According to the previous theorem 2.6, the first q moments from m0 to mq−1

match to the first q moments of reduced model. From the definition of W , ∃ li ∈ C
such that Wli =

(
A−T

)i+1
c, where i = 0, 1, · · · , q − 1. For the next moment, mq,

following equation is satisfied.

mq,r = cTV
(
W TAV

)−1 (
W TAV

)−q
W T b

= cTA−1AV
(
W TAV

)−1 (
W TAV

)−q
W T b

= lT0 W
TAV

(
W TAV

)−1 (
W TAV

)−q
W T b

= lT0 W
T
(
A−1

)q
b = cT

(
A−1

)q−1
b = mq

Upto m2q−1, the moment matching properties are similarly proved.
Note that Kq (A−1, b) and Kq

(
A−T , c

)
are called input Krylov subspace and output

Krylov subspace accordingly.

�

As shown in Theorem 2.7, using the Lanczos algorithm, it is possible to include both
input and output Krylov matrices matching 2q moments. However, there is a risk of
break-down during the Lanczos iteration; if v

′
and w

′
are orthogonal to each other

in Algorithm 2.2, βk+1 is divided by zero and the algorithm fails. To prevent this,

deflation and look-ahead methods are used. When v
′T
w
′

is too small, near break
down, the algorithm simply skips this ill-conditioned vector and goes to the next step.
The disadvantages of the look-ahead implementation are the loss of tridiagonality of
Hk and the increase of computational complexity.

Algorithm 2.2 Step 1. With given starting vectors v1 and w1,

v1 =
b√
|cT b|

, w1 =
c

−
√
|cT b|
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Step 2. For k = 1, 2, · · ·

αk = wTkAvk

v
′
= Avk − αkvk − δkvk−1

w
′
= ATwk − αkwk − δkwk−1

δk+1 =

√
|v′Tw′ |

βk+1 =
v
′T
w
′

δk+1

vk+1 =
v
′

βk+1

wk+1 =
w
′

δk+1

2.3.2. Arnoldi algorithm

The Arnoldi algorithm is designed for applications on general nonhamiltonian matri-
ces. The fundamental idea is the same as in the Lanczos algorithm; eliminating all
the components parallel to the previously chosen bases. Starting from v1 = b/‖b‖,
the next orthogonal vector from Kq (A, b) can be collected by

vk+1 = Avk −
k∑
i=1

(
vTkAvi

)
vi

The resulting matrices Vk and Hk have the same relationship as in Lanczos. The only
difference is that Hk is not a tridiagonal matrix, but an upper Hessenberg matrix.

AVk = VkHk + rke
T
k (2.44)

V T
k AVk = Hk: upper Hessenberg matrix

In practical applications, to avoid round-off error, a normalization procedure is added.
This modified method is called Arnoldi modified Gram-Schmidt method, which is
shown in Algorithm 2.3.

Algorithm 2.3 For the matrix A ∈ Rn×n and vector b ∈ Rn×1,

Step 1. Initial vector v1 = b/‖b‖
Step 2. For k = 1, 2, · · ·

z = Avk

Step 3. For i = 1, · · · , k

hi,k = qTk z

z = z − hi,kqk
continue from Step 2.

hk+1,k = ‖z‖2

vk+1 = z/hk+1,k
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As an upper Hessenberg matrix, it is computationally easy to find the eigenvalues
of Hk, which are called the Ritz values with respect to Kq (A, b). They are good
estimates of the eigenvalues of A. The error between the actual eigenvalue of A and
the Ritz value determines the effectiveness of Arnoldi method. From numerical ex-
periments it is clear that Ritz values are close to the actual eigenvalues and converge
to them as the number of iterations increases. In a dynamic system it also guarantees
the moment matching property as proved in Theorem 2.6.

Major advantages of the Arnoldi algorithm compared to Lanczos are its simplicity in
that only single matrix is used for projection, and no risk of break down. The Lanczos
algorithm is superior with respect to the number of matching moments when both
input and output Krylov subspaces are used during the reduction. However, it also
requires twice as much computation and there is a possibility of break down from both
cases. As an alternative way, Salimbahrami[SBLK03] suggested a two-sided Arnoldi
algorithm using both input and output Krylov subspaces in the Arnoldi iteration.

2.4. Proper orthogonal decomposition method
(POD)

Proper orthogonal decomposition (POD), often called the Karhunen-Loéve method,
has been developed to find optimal series expansions of continuous time stochas-
tic process. From a given data set, so called snapshots in MOR theory, orthogonal
bases which can describe data sets well are constructed based on optimum problem.
For a Hilbert space P , let P l be a l dimensional subspace of P (l ≤ rank(P ))
and Φ = {φ1, φ2, · · · , φl} be the orthonormal bases of P l. The snapshot set χ =
{x1, x2, · · · , xm} is expressed by bases {φ1, φ2, · · · , φl} as in equation (2.45).

xi ≈ xΦ
i =

l∑
j=1

〈xi, φj〉 · φj (2.45)

where 〈a, b〉 represents an innerproduct of two vectors aT b

The goal is to find the optimum set Φ minimizing the error between xi and xΦ
i . The

projection error from data set χ is represented as in equation (2.46).

E(χ, P l) =
m∑
i=1

‖xi −
l∑

j=1

〈xi, φj〉 · φj‖2 (2.46)

The resultant bases become eigenvectors corresponding to l largest eigenvalues from
sampled space. Based on this property, POD is applied for SVD based model reduc-
tion especially when the system identification is difficult because of the nonlinearity.
Snapshot matrix χ is processed by SVD and the column vectors corresponding to
some highest singular values are assumed as a proper projector.
Sampling based method such as POD provides more flexibility on its application
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because no exact system equation is required. However it is not actual system reduc-
tion but a response approximation. Since POD is dealing with reflection (response)
only, there is always a possibility of missing important property. The accuracy of the
reduced system is exceedingly dependent on the choice of snapshots.



3. Theories of Parametric Model
Order Reduction

As the model order reduction is commonly used in structural analysis and control,
parametric model order reduction is needed to reduce computational efforts even
more, and to enable the analysis with extremely high computation caused by parame-
ter study. With general model order reduction methods, the projector matrix V is no
longer valid when some of structural parameters are changed because projector itself
is built based on the system properties. Whenever parameters are changed, from mod-
eling to reduction procedure should be repeated. To avoid this repetition, methods
to keep the parametric effects after the reduction are investigated, which are called
parametric model order reduction (PMOR). Its concept is shown in Fig. 3.1. Depend-
ing on how to treat parameters and how to keep their effects during the reduction
and how to reconnect them to the reduced model, there are various methods.

Figure 3.1.: Concept of Parametric Model Order Reduction

3.1. Symbolic method

Symbolic reduction isolates the parameters from the system as symbols, and treat
them as additional states. From the following dynamic equation (3.1), the components
in matrix E and A are divided into some parts according to the dependence on state
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z and parameter p. Then equation (3.2) are reduced via normal reduction methods
such as Pade via Lanczos or PRIMA.

E(p)ż = A(p)z +Bu (3.1) E11 E12

E21 E22

 ż

ṗ

 =

 A11 A12

A21 A22

 z

p

+

 B 0

0 0

 u

0

 (3.2)

Ê

 ż

ṗ

 = Â

 z

p

+ B̂

 u

0

 (3.3)

This approach is mathematically ideal to handle parameters; however, in reality it is
seldom to find proper analytical formulation of Ê, and Â because in most cases the
parameters are coupled with each other, and coupled with states. For the analysis of
circuit design and MEMS simulation, symbolic method is often used but its application
is very limited. Especially in a large finite element model, symbolic method is almost
impossible to be applied.

3.2. Nominal projection method

In the nominal projection method, parameter changes are treated as small perturba-
tion. Projector V is simply calculated from nominal parameter set p0, and it is applied
to the parameterized system matrices.

V = Kq

(
A(p0)−1E(p0), A(p0)−1b(p0)

)
(3.4)

Er(p)żr = Ar(p)zr +Br(p)u (3.5)

where Er(p) = V TE(p)V, Ar(p) = V TA(p)V

br(p) = V T b(p), V zr = z

In [SHS06] parameters’ effects from each of E(p), A(p), and b(p) are linearly approx-
imated, and applied in circuit analysis. The problem is laid in its accuracy; the range
where projector V is still valid is very limited from p0 and not exactly proved.

3.3. Multiparameter moment matching method

Lesson learned from nominal projection method is that projector V should either be
independent on the parameter values or include parametric effects. The possibility on
the former case is varied from model and parameters but generally rare. Changing pa-
rameters affects the model; hence, if projection matrix is independent on parameters’
change, it is not reflecting the model well. Consequently the latter case is studied
mainly. Daniel’s method in [DSC+04] is a generalized form of PMOR concerning many
numbers of parameters, not one or two as in previous studies. In the original paper,
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expansion frequency points are treated as parameters as well as spacing distance in a
circuit; which means it is designed for the rational model order reduction. However,
the same methodology can be used for structural parameters, which are covered in
Chapter 4.

For the parameterized system equation,

E(p1, p2, · · · , pnp)x = Bu (3.6)

where E ∈ Rn×n, x,B ∈ Rn×1, and pis (i = 1, · · · , np) are parameters

The effects of parameters on system matrix E can be rewritten by Taylor’s expansion
as follows.

E(p1, p2, · · · , pnp) = Ẽ0 +
∑
i

∆p̃i Ẽi +
∑
j,k

∆p̃j ∆p̃k Ẽjk

+
∑
l,m,n

∆p̃l ∆p̃m ∆p̃n Ẽlmn + · · ·
(3.7)

where Ẽ0 = E(p̄1, p̄2, · · · , p̄np) = E(p̄)

Ẽi = ∂E
∂pi
|p̄, Ẽij = ∂2E

∂pi∂pj
|p̄, Ẽijk = ∂3E

∂pi∂pj∂pk
|p̄,

∆p̃i = pi − p̄i

The goal is to find a proper projector V ∈ Rn×r (r � n) which makes the reduced
model in the form of equation (3.8) so that direct access on the parameter change
∆p̃i is possible even after the reduction.

V TEV xr =
(
V T Ẽ0V

)
xr +

∑
i

∆p̃i

(
V T ẼiV

)
xr +

∑
j,k

∆p̃j ∆p̃k

(
V T ẼjkV

)
xr + · · ·

= Ẽ0,rxr +
∑
i

∆p̃iẼi,rxr +
∑
j,k

∆p̃j ∆p̃kẼjk,rxr + · · · (3.8)

The main issue is how to calculate proper V which contains all the important infor-
mation of parametric effects as well as the system. To simplify the equation, notations
are altered as follows[DSC+04].

Ei =


Ẽi i = 0, 1, · · · , np
Ẽij i = 1, · · · , np j = 1, · · · , np
Ẽijk i = 1, · · · , np j = 1, · · · , np k = 1, · · · , np
...

∆pi =


∆p̃i i = 0, 1, · · · , np
∆p̃i∆p̃j i = 1, · · · , np j = 1, · · · , np
∆p̃i∆p̃j∆p̃k i = 1, · · · , np j = 1, · · · , np k = 1, · · · , np
...
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Then the parameterized system equation can be simplified in a linear form as in
equation (3.9).

Ex =

(
E0 +

q∑
i=1

∆piEi

)
x = Bu (3.9)

The solution x will lie on the space E−1Bu, and it can be expressed as in equation
(3.10) including parameters.

x = E−1Bu =

(
E0 +

q∑
i=1

∆piEi

)−1

Bu (3.10)

=

(
I +

q∑
i=1

∆piE
−1
0 Ei

)−1

E−1
0 Bu

=

(
I −

q∑
i=1

∆piRi

)−1

BMu

=
∞∑
j=0

(
q∑
i=1

∆pi Ri

)j

BMu

=
∞∑
j=0

j−(k3+···+kq)∑
k2=0

· · ·
j−kq∑
kq−1=0

j∑
kq=0

[
F j
k2,··· ,kq(R1, · · · , Rq)BMu

]
s
j−(k2+···+kq)
1 sk22 · · · skqq

where Ri = −E−1
0 Ei and BM = E−1

0 B

F j
k2,··· ,kq(R1, · · · , Rq) =



0 if ki /∈ {0, 1, · · · , j} , i = 2, · · · , q
0 if k2 + · · ·+ kq /∈ {0, 1, · · · , j}
I if j = 0

R1F
j−1
k2,··· ,kq(R1, · · · , Rq) +R2F

j−1
k2−1,··· ,kq(R1, · · · , Rq)

+ · · ·+RqF
j−1
k2,··· ,kq−1(R1, · · · , Rq)

The resultant column space of projector V is represented as in equation (3.11).

colspan(V ) = span


j∗⋃
j=0

j−(kq+···+k3)⋃
k2=0

· · ·
j−kq⋃
kq−1=0

j⋃
kq=0

F j
k2,··· ,kq(R1, · · · , Rq)BM


= span {BM , R1BM , R2BM , · · · , RqBM , (R1R2 +R2R1)BM , · · · ,

(R1 +Rq)(Rq +R1)BM , R
2
2BM , (R2R3 +R3R2)BM , · · ·

where j∗ is the largest order of derivative on Taylor series approximation

(3.11)

After the reduced model is derived by projector V as in equation (3.12), only V TEiV ∈
Rr×r (r � n, i = 0, · · · , q) are concerned and parameter change ∆pis are directly
managable in Rr×r.

Er(p)xr = Bru (3.12)
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where Er(p) = V TE0V +

q∑
i=1

∆pi
(
V TEiV

)
,

V xr = x, and V TB = Br.

When some of parameters are frequency points (s or si), moment matching property
is still valid as shown in Theorem 3.1. Its proof is written in [DSC+04].

Theorem 3.1 For the parametrized system equation in (3.9), if some of parameters
pis are frequency points sis and projection matrix V ∈ Rn×r is calculated from
equation (3.11), The first r moments of the transfer function from the reduced model
as in equation (3.12) match to the first r moments from the original model.

�

One concern from this method is the coupled moments; if the number of parameter
increases and they are coupled strongly, the number of parametric effectiveness matri-
ces, Eis, will increase drastically. On the other hand, if the effects of each parameter
are uncoupled or rarely coupled, multi-parameter moment matching method would
be a powerful solution. To overcome this coupled momentum problem, some of ideas
are suggested from section 3.3.1 to section 3.3.3

3.3.1. Passive reduction of multi-dimensional model

In [GN00], instead of the exact coupled moments, the moments with respect to the
single parameter change are used. For the dynamic system equation in the Laplace
domain, the parts concerning both Laplace variable s which represents frequency point
and system parameter pis are treated as a single function Υ as in equation (3.13),

(sE(p1, · · · , pnp)− A(p1, · · · , pnp))X(s) = B(s) (3.13)

where pi (i = 1, · · · , np) are parameters

Υ(s, p1, · · · , pnp) = sE(p1, · · · , pnp)− A(p1, · · · , pnp)
After setting only one parameter pk as a variable and others as a fixed value s =
s̄, pi = p̄i, (i = 1, · · · , i 6= k) corresponding moments mpk

i (i is the order of the
moment) are calculated as in equation (3.14) and collected.

Υ(s, p̄1, · · · , p̄np)m
pj
i = −

i∑
k=1

∂k

∂pkj
Υ(s, p1, · · · , pnp)|p=p̄M

pj
i−k

k!
(3.14)

Υ(s, p̄1, · · · , p̄np)m
pj
0 = b

Then column space from all collected moments will be a projection space.

V = colsp
{
mp1

0 ,m
p1
1 , · · · ,mp1

q ,m
p2
0 ,m

p2
1 , · · · ,mp2

q , · · · ,mpnp
q

}
(3.15)

It is shown that chosen moments are preserved through the reduction as well as the
passivity in [GKN+03]. Passivity preservation is very useful especially in electrical en-
gineering and control system because the stable system can be unstable by connected
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into another component if the system is not passive. A drawback of this method is the
calculation of derivatives. It obstructs the usage of this method to the more general
cases, which do not have the analytic formula with respect to the parameters, for
instance a large finite element model.

3.3.2. Random sampling of moment graph

While people are trying to use Daniel’s method[DSC+04] in real complex system, they
found that treating all the moments generated from many parameters are not very
efficient especially they are focusing on wider frequency range rather than wider sys-
tem parameter variation. The idea of random sampling of moment graph comes from
taking sets of sample parameters and frequency values and derives some moments
from them[ZP07]. From the parameterized system equation,[

s

(
E0 +

np∑
i=1

piEi

)
−

(
A0 +

np∑
i=1

piAi

)]
x = Bu (3.16)

the solution x can be formulated as in equation (3.17).

x(s, p1, · · · , pnp) =

[
I −

np∑
i=1

piA
′
i + sE ′0 + s

np∑
i=1

piE
′
i

]−1

B′u (3.17)

=
∞∑
j=0

(
np∑
i=1

piA
′
i + sE ′0 + s

np∑
i=1

piE
′
i

)j

B′u

where A′i = −A−1
0 Ai, E

′
i = −A−1

0 Ei, and B′ = −A−1
0 B

The elements of this space can be renotated as follows,

T0 = B′

T1 =

(
np∑
i=1

piA
′
i + sE ′0

)
B′ (3.18)

T2 =

(
np∑
i=1

piA
′
i + sE ′0

)2

B′ +

(
s

np∑
i=1

piE
′
i

)
B′

... (3.19)

Then, nth moment recursion term Tn is represented by equation (3.20)

Tn = M1Tn−1 +M2Tn−2 (3.20)

where M1 =

np∑
i=1

piA
′
i + sE ′0 (3.21)

M2 = s

np∑
i=1

piE
′
i
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Randomly chosen parameters and frequency points (samples) are used to calculate
M1 and M2. Projection space is composed of all Tns from each samples. With this
approach, the low order moments are more emphasized than higher order moments.
When the number of samples is larger than the resulting columns, the moments
from random sampling method are preserved as same as in normal moment matching
method. The proof is shown in [ZP07]. Additionally for a given moment match-
ing requirement, the computational complexity of random sampling method is upper
bounded by that of the normal moment matching method[ZP07]. It shows domi-
nant performance especially in computational complexity compared to PRIMA and
PMTBR. The difficulties in applying this method to a large finite element model with
many parameters will be the selection of samples and the valid variation of param-
eters’ change. Because the moment matching property on sampled point does not
guarantee the moment matching on other points, the accuracy is not clearly defined;
it is because the original method is suggested for rational reduction maching moments
on different frequency points not for structural PMOR. Moreover as the number of
parameter involved is increased and as the variation of them is increased, required
number of samples will be huge.

3.3.3. PMOR with Arnoldi and TBR

Another approach to handle parametric effects by sampling is suggested in [LK05].
The difference is that not only Krylov subspace reduction but also truncated balanced
reduction (TBR) is applied. The former part is to extract parametric effectiveness
matrices and include them into projection matrix as done in [DSC+04], and the latter
part is to leave out less important subspaces based on singular values.
For the chosen k sets of parameters, ~pi = [pi,1, pi,2, · · · , pi,np]T (i = 1, 2, · · · , k),
dynamic system equation in Laplace domain can be written as in equation (3.22).

sE|~pix = A|~pix+Bu (3.22)

where E|~pi = E0 +
∑np

j=1 pijEij and A|~pi = A0 +
∑np

j=1 pijAij.

Krylov subspace from each sample set ~pi, Qi, will be as follows,

Qi = Kq

(
A−1|~piE|~pi , A−1|~pib

)
(3.23)

The collected subspace becomes,

Qall = [Q1 Q2 · · · Qk] (3.24)

The redundant information in Qall will be filtered out based on singular value de-
composition method as same as in TBR. Finally the orthonormal projection matrix
V ∈ Rn×r (r � n) which has high singular values only is obtained. Despite of good
result from a simple example, the same problems from random sampling of moment
graph remain also here because both of them are based on sample sets of parameter
values.

Qall = USV T (3.25)
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where S = diag (sii) (s11 ≥ s22 ≥ · · · )

U = [ ~u1 ~u2 · · · ~ur]

V = [~v1 ~v2 · · · ~vr]

3.4. Interpolation based method

Two main streams of PMOR are multiparameter moment maching method introduced
in 3.3 and interpolation based method. The former is finding a common projector
which can preserves the information about both system and parameters; the latter
is reducing each system with different parameter set individually using their own
projector and approximating via interpolation as shown in Fig. 3.2.
Common projector approach starts from the Talyor series approximation of parametric
effects. Therefore as far the parameter value goes from its initial value, error will be
increased. If the system with very distinctive parameter sets is interested, or if the
system is nonlinearly dependent on parameters, the accuracy of reduced order model
will be low. Consequently the required order of projector to maintain certain level of
accuracy will be high; interpolation method starts from here. It is a combination of
two different fields of study: model reduction and interpolation method. Therefore
many variations are possible; however, the most actively investigated two methods
are presented here.

Figure 3.2.: Interpolation based Parametric Model Order Reduction
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3.4.1. Linear superposition of locally reduced model

The simplest approximation between two points is a linear approximation. Lohmann
and Eid[LE09] suggested to approximate a system with new parameter set ~p which lies
between ~p1 and ~p2 by linear approximation of a reduced system at ~p1 and a reduced
system at ~p2 based on weighting function.
First, the system equation is represented as a superposition of system matrices, Ai
and bi, from local points i as shown in equation (3.26). Note that terms Ai are
different from common projector approach.

ẋ = Ax+ bu

=

(
ns∑
i=1

wi(p)Ai

)
x+

(
ns∑
i=1

wi(p)bi

)
u (3.26)

Assigning weighting function wi(p) as in Fig. 3.3, local system matrices Ai and bi
can be directly used in equation (3.26).
The projectors to reduce the order are calculated individually at each local system.

Let Wi and Vi ∈ Rn×r are orthogonal projector of a local system ẋ = Aix + biu.
Then, the reduced system will be

ẋr,i = W T
i AiVixr,i +W T

i biu where x = Vixr (3.27)

Integrating them into overall system equation (3.26) is not simple. Since each projec-
tor transforms a original physical system into a mathematical space, each of locally
reduced model has completely different interpretation of physical states. Therefore
simply summing them up with weighting function does not make sense. In [LE09],
transformation Ti is designed to bring each locally reduced state back to physical
(but reduced) state. Some technically important q state variable, x∗, are selected,
and using R ∈ Rq×n such that x∗ = Rx transformation matrix Tis are derived as in
equation (3.28).

x∗i = RVixr,i = Tixr,i (3.28)

After then integration of locally reduced models is done as shown in equation (3.29).

ẋ∗r =
ns∑
i=1

wi(p)
[
TiV

T
i A(pi)ViT

T
i x
∗
r + TiV

T
i B(pi)u

]
(3.29)

Locally reduced model provides high accuracy on sampled points or nearby. But the
accuracy on interpolated point is still problematic. There are still open questions such
as how to define technically important q state variables and how to secure moment
matching property or stability on a interpolated model.

3.4.2. Spline interpolation after POD

Another interpolation based PMOR is investigated in [ACCF09, DVW09] more focus-
ing on nonlinear systems. Because in nonlinear systems parametric effects or system
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Figure 3.3.: Weighting function between two parameter sets

itself are hard to be formulated, proper orthogonal decomposition (POD) method in-
troduced in section 2.4 is used for local reduction. Spline interpolation is used instead
of linear interpolation. However, find a proper space to interpolate is still remained as
a main problem. In [DVW09], both direct interpolation in the reduced space and in-
terpolation in the space tangent to Riemann manifold are investigated. In former case
spline interpolation is applied to locally reduced model Air (i = 1, · · · , ns), which is
corresponding to parameter set ~pi. Let the element in the gth row and hth column of
Air as Air,gh. If samples xij are ordered in monotonically increasing order, then spline

interpolant f i for Ar,gh(x
i
j) in the interval xij ≤ xj ≤ xi+1

j is given as in equation
(3.30). The coefficients αik are calculated by boundary conditions.

f i(xj) =
3∑

k=0

αjk

(
xj − xij
xi+1
j − xij

)k

(3.30)

As long as the variation of matrix elements according to parameter changes is well
captured by the interpolants, this approach shows good results. For the other cases,
mapping reduced system into another space where the change in matrix elements
are well detected is recommendable. This second approach uses Riemann manifold as
defined in Definition 3.1 and logarithmic mapping from it.

Definition 3.1 A differentiable manifold where the tangent vectors about each point
have an inner product so defined as to allow a generalized study of distance and
orthogonality is called Riemann manifold.

�

After defining a reference reduced model A0
r, a tangential space from that point ΓA0

r

is used for interpolation. Θi is the image of Air in ΓA0
r
. Using the logarithmic mapping

and exponential mapping Air is transformed into Θi as shown in Fig. 3.4 and back to
Riemann manifold M by equations (3.31)-(3.32).

Θi = LogA0
r
(Air) = log

[
Air(A

0
r)
−1
]

(3.31)
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Air = ExpA0
r
(Θi) = exp

[
Θi(A0

r)
−1
]

(3.32)

Spline interpolation is applied to the elements of matrix Θ with the same manner.
So far it is not clear whether the interpolation on tangential space is dominant or
not. Depending on the model and parameter the results show different accuracy. The
computational effort for interpolation is not negligible since it is interpolating every
single element of the matrix. However, the combination of POD method and spline
interpolation provide a possibility of PMOR on highly nonlinear models.

3.5. Note on rational reduction

Methods developed for the rational reduction are also often called as a parametric
model order reduction treating the Laplace variable s as a parameter. Clearly rational
reduction is valuable in dynamic system because interested frequency range is impor-
tant. However, it is a totally different direction from this thesis; interested parameters
are physical or geometrical parameters of structures not a frequency range. Hence,
among discussions on rational reduction methods which are not applicable to gen-
eral parametric model order reduction are left out. Rational reduction is dealing with
changing expansion point in Pade approximation from the same physical model. In
this thesis parameters which actually change the physical model are interested.

Figure 3.4.: Transformation from Rieman Manifold to its tangential space





4. PMOR method for FE model
application

As introduced in chapter 3 most of the studies on PMOR are initiated for circuit
design or controller design from state space dynamic system. Therefore they aim
for including more frequency points to expand moments of transfer function as pa-
rameters (rational reduction), or including some system parameters from state space
model. Contrastively PMOR for structural analysis is seldom because physical or ge-
ometrical parameters of structure influence entire finite element (FE) model, which
is in most cases very large. The effects from each physical or geometrical parameters
in a complicated finite element model are not seen straightforward as in analytical
model or state space model. Therefore when parameters of structure are changed, it
is simply considered as a new structure and analyzed anew. Another difficulty is trans-
forming a parameterized second order dynamic model into a parameterized first order
state space system. In many cases of previously studied methods, the parameterized
system equation is already defined as a special form such as

ẋ = A(p)x+ bu (4.1)

But in reality the effects of parameters are hardly well organized like this. Starting
with material and geometrical parameters of a structure, the connection to the system
equation is complicated, especially through inversion.

M(p)ẍ+D(p)ẋ+K(p)x = f (4.2)

Therefore in this thesis parametric model order reduction method starting from real
physical or geomentrical parameter, dealing with huge finite element model not just
equation is investigated and tested with various examplary structures. Naturally there
are some difficulties and errors occured while applying theory to a very large FE model.
In this chapter, using the approach of common projector method, PMOR method for
large FE model is induced both for static analysis and dynamic analysis. To have
better accuracy some modification of algorithms are investigated and shown in this
chapter. Using this method a model from commertial finite element software such
as ANSYS and Nastran is reduced keeping the access to the parameters for instance
material properties. In the next chapter, computational tools for real applications and
numerical examples are shown.

4.1. Introduction of overall procedure

The overall procedure is as shown in Fig. 4.1. The parameterized system we have
until the second step is the mass and stiffness matrices. The critical part is the third
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step, finding a proper projection matrix V keeping both the parametric effects and the
important properties of the overall system, for example the moments of the transfer
function in dynamic system. The method how will be explained in static model (section
4.2) and in dynamic model (section 4.3). Skills for parameterization in step 2 will be
covered in section 4.4.

4.2. Static model

The governing equation of a static system is

Kx = f (4.3)

K : stiffness matrix ∈ Rn×n

x : displacement vector ∈ Rn×1

f : load vector ∈ Rn×1

From the finite element model, the order of system is (the number of nodes) × (the
number of degrees of freedoms (d.o.fs) at each node). When the stiffness matrix K
contains parameters, p1, p2, · · · , pnp, as in equation (4.4) it can be represented by
Talor series expansion as in equation (4.5).

K(p1, p2, · · · , pnp)x = f where pi(i = 1, · · · , np) are parameters (4.4)

K(p1, p2, · · · , pnp) =K̃0 +
∑
i

∆p̃i K̃i +
∑
j,k

∆p̃j ∆p̃k K̃jk

+
∑
l,m,n

∆p̃l ∆p̃m ∆p̃n K̃lmn + · · ·
(4.5)

where K̃0 = K(p̄1, p̄2, · · · , p̄np) = K(p̄)

K̃i = ∂K
∂pi
|p̄, K̃ij = ∂2K

∂pi∂pj
|p̄, K̃ijk = ∂3K

∂pi∂pj∂pk
|p̄,

∆p̃i = pi − p̄i

Because the actual differenciation is almost impossible to find with this huge matrix,
the first order approximation is applied.

∂K

∂pi
|p̄ ≈

∆K

∆pi
=
K(p̄j,j 6=i, p̄i + ∆pi)−K(p̄)

(p̄i + ∆pi)− p̄i
(4.6)

To simplify the formula, the notations are reorganized with the same way in 3.3.

Ki =


K̃i i = 0, 1, · · · , np
K̃ij i = 1, · · · , np j = 1, · · · , np
K̃ijk i = 1, · · · , np j = 1, · · · , np k = 1, · · · , np
...
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Figure 4.1.: Parametric Model Order Reduction Procedure
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∆pi =


∆p̃i i = 1, · · · , np
∆p̃i ∆p̃j i = 1, · · · , np j = 1, · · · , np
∆p̃i ∆p̃j ∆p̃k i = 1, · · · , np j = 1, · · · , np k = 1, · · · , np
...

Finally the static equation including parameters can be expressed as in equation (4.7)

K(p)x =

(
K0 +

q∑
i=1

∆piKi

)
x = f (4.7)

The solution x can be represented as in equation (4.8)

x = K−1f =

(
K0 +

q∑
i=1

∆piKi

)−1

f (4.8)

=

(
I +

q∑
i=1

∆piK
−1
0 Ki

)−1

K−1
0 f

=

(
I −

q∑
i=1

∆piK
′
i

)−1

fM

where K ′i = −K−1
0 Ki and fM = K−1

0 f

By changing inversion term into infinite summation, following equation is derived.

x =
∞∑
i=0

(
∆p1K

′
1 + ∆p2K

′
2 + · · ·+ ∆pqK

′
q

)i
fM (4.9)

Since parameter changes ∆pis are scalar values, the space where solution x lies on
can be expressed as in equation (4.10).

x ∈ colspan

{
∞∑
i=0

(
K ′1 +K ′2 + · · ·+K ′q

)i
fM

}
(4.10)

∈ K
(
K ′1 +K ′2 + · · ·+K ′q, fM

)
Therefore, projector V ∈ Rn×r is chosen as a matrix composed of Krylov subspace
vectors from equation (4.11), and resultant reduced order model will be as in equation
(4.12).

V = K
(
K ′1 +K ′2 + · · ·+K ′q, fM

)
(4.11)
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Kr(p)xr = fr(
V TK0V +

q∑
i=1

∆pi
(
V TKiV

))
xr = fr(

K0,r +

q∑
i=1

∆piKi,r

)
xr = fr

(4.12)

where Ki,r = V TKiV (i = 0, 1, · · · , q), V xr = x, and V Tf = fr

The application of this theory on a finite element model shows two main problems.
First, the accuracy of the reduced model is remarkably dependent on initial loading
vector. If a given loading is close to the initial load vector used in reduction process, the
result shows very good agreement to original (unreduced) model. But if loads are quite
different from initial loading accuracy is very low. Second, because of high sparsity
of the stiffness matrix from finite element model projector matrix often ends up with
singular matrix. To solve these problem following two modifications are suggested.

4.2.1. Two-step Arnoldi method

What Arnoldi or Lanczos algorithms are doing is basically collecting the column space
of matrix A in Kr (A, b). The influence of initial vector b is high while Krylov subspace
vectors are collected. Because new generated column vectors are chosen as a compo-
nent orthogonal to the previously selected bases, the initial vector determines entire
set of bases. Some suggested Block Krylov method for multi-input system; however it
increases the resultant reduced space as many times as the increased number of input
vectors. Unlike the control system, where the actuating points are already defined,
in structural analysis we want to cope with various loading conditions at different
locations. Consequently, block Krylov method cannot be a solution.
From numerical experiments it is observed that when PMOR is executed with a partic-
ular initial load, the reduced model is valid near that loading condition. Consequently
the idea of collecting various possible loads and compressing them via Gram-Schmidt
method is suggested. After that, block Krylov subspace method can be applied with
compressed input matrix. Each of those steps are illustrated in Fig. 4.2. Sampled
loading vectors and their second order Krylov subspaces are collected in the first step.
The process is the Arnoldi algorithm using modified Gram-Schmidt method as de-
scribed in Algorithm 2.3. For the second Krylov iteration, the block Arnoldi algorithm
explained in Algorithm 4.1 is used. With this treatment, the reduced model can be
used for various loading conditions and the accuracy increases remarkably. The result
of this improvement is provided in chapter 5.

4.2.2. Deflation

Another problem observed is the loss of orthogonality. With a classical Gram-Schmidt
process, the loss of orthogonality is occurred because of the round-off error. It is often
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Figure 4.2.: Two-step Arnoldi method

reported as a main disadvantage of the classical Gram-Schmidt process and it leads
to the modified Gram-Schmidt method, which is generally used in Arnoldi algorithm
in thesedays. However, even with the modified Gram-Schmidt method orthogonality
among the columns of projector V from Arnoldi algorithm is often lost. The reason
comes from the sparsity of structural matrices from finite element model. When newly
generated vector does not contain any element which is orthogonal to the previously
selected bases, after modified Gram-Schmidt process it returns to one of the previously
selected bases. This phenomenon ends up with singular matrix V ; it makes the reduced
system singular as well. To prevent the loss of orthogonality only the bases orthogonal
to each other are selected after the Arnoldi iteration. The selection is based on the
value of inner product. From the initial projector V ◦ =

[
v◦1 v

◦
2 · · · v◦q

]
, the columns

which have one or nearly one value from v◦i
Tv◦j (i 6= j) remain and columns which

have near zero value are removed.
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Algorithm 4.1 For matrix A ∈ Rn×n and vector set B = {b1 , · · · , bp} ∈ Rn×1

Step 1. Initiation

w◦1 = b1/‖b1‖
for i = 1, · · · , p− 1

z = Aw◦2i−1

for j = 1, · · · , 2i− 1

h′j,2i−1 = w◦j
T z

z = z − h′j,2i−1w
◦
j

end

h′2i,2i−1 = ‖z‖
w◦2i = z/h′2i,2i−1

z = bi+1/‖bi+1‖
for j = 1, · · · , 2i
h′j,2i = w◦j

T z

z = z − h′j,2i−1w
◦
j

end

h′2i+1,2i = ‖z‖
w◦2i+1 = z/h′2i+1,2i

end

Step2. Deflation

j = 1

W ◦ =
[
w◦1 w

◦
2 · · · w◦2p

]
ch = W ◦TW ◦

for i = 2, · · · , 2p
if |chi,1:i−1| small enough

wj = w◦i
j = j + 1

end

end

sz = j − 1
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Step 3. Block Arnoldi

for i = sz, sz + 1, · · ·
z = Awi

for j = 1, · · · , i
hj,i = wTj z

z = z − hj,iwj
end

hi+1,i = ‖z‖
wi+1 = z/hi+1,i

end

Step 4. Deflation

j = 1

W = [w1 w2 · · · ]
ch = W TW

for i = 2, · · ·
if |chi,1:i−1| small enough

vj = wi

j = j + 1

end

end
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4.3. Dynamic model

The general second order dynamic system as in equation (4.13) can be rewritten as
the first order formula as in equation (4.14), and its transfer function H(s) is derived
as in equation (4.15) by transforming inversion into infinite summation term as in
static case.

Mẍ+Dẋ+Kx = f (4.13)

M : mass matrix ∈ Rn×n

D : damping matrix ∈ Rn×n

K : stiffness matrix ∈ Rn×n

x : displacement vector ∈ Rn×1

f : force vector ∈ Rn×1

ż =

 0 I

−M−1K −M−1D

 z +

 0

M−1f


= Az + b (4.14)

y = Cz

where z =

x

ẋ

 , A =

 0 I

−M−1K −M−1D

, b =

 0

M−1f


H(s) = C (sI − A)−1 b = C

(
sA−1 − I

)−1
A−1b

= −C
∞∑
i=0

(
A−1s

)i
A−1b = −C

∞∑
i=0

mis
i (4.15)

The moments of system mi is written as in equation (4.16) in the form of Krylov
subspace.

mi =
(
A−1

)i+1
b =

−K−1D −K−1M

I 0

i−K−1f

0

 (4.16)

= Ki

(
A−1, A−1b

)
= Ki

−K−1D −K−1M

I 0

 ,
−K−1f

0




Because the lower parts of A are identity and zero matrices, the lower half of the
vector (A−1)ib is the same with the upper half of the vector from former iteration
(A−1)i−1b. Hence, the vector space of moments can be simplified with the size of n
instead of 2n concerning the upper half part only. Tracking the Krylov iterations, it
is found that the terms in moments can be represented by second order Krylov form
as in equation (4.18)[ESL+06].



46 CHAPTER 4. PMOR METHOD FOR FE MODEL APPLICATION

Definition 4.1 For the matrices A1, A2 ∈ Rn×n and vector b ∈ Rn×1, the second
order Krylove subspace is defined as,

Kr(A1, A2, b) = colspan {P0, P1, · · · , Pr−1} (4.17)

,where P0 = G1, P1 = A1P0

Pi = A1Pi−1 + A2Pi−2, i = 2, 3, · · ·

�

Ki

−K−1D −K−1M

I 0

 ,
−K−1f

0




=

 Ki(−K−1D,−K−1M,−K−1f)

Ki−1(−K−1D,−K−1M,−K−1f)

 (4.18)

Moreover, if a proportional damping, D = αM + βK (α, β are scalars), is assumed,
forementioned second order Krylov subspace can be reduced to the classical Krylov
subspace form as in equation (4.19) because scalar multiplication to vector and sum-
mation of vectors do not change their column space.

Ki(−K−1D,−K−1M,−K−1f) = Ki(−K−1M,−K−1f) (4.19)

Based on the above theory, parameterization will be applied. Using Taylor series
expansion, both the stiffness matrix K and the mass matrix M with parameters are
formulated as in static case. The simplified formulas after parameterization are as
follows.

M = M0 +
∑
i

∆pi Mi (4.20)

K = K0 +
∑
i

∆pi Ki (4.21)

Two parts in Krylov subspace of Ki(−K−1M,−K−1f) are also turned into parame-
terized form.

K−1M =

(
I +

∑
i

∆pi K
−1
0 Ki

)
K−1

0

(
M0 +

∑
i

∆pi Mi

)
(4.22)

K−1f =

(
K0 +

∑
i

∆pi Ki

)−1

f =

(
I +

∑
i

∆pi K
−1
0 Ki

)
K−1

0 f (4.23)
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By putting equation (4.22) and (4.23) together into Krylov subspace form, equation
(4.24) is derived.

Kr(−K−1M,−K−1f)

= Kr

 ∞∑
j=0

(∑
i

∆pi K
′
i

)j
(M ′

0 +
∑
i

∆pi M
′
i

)
,

 ∞∑
j=0

(∑
i

∆pi K
′
i

)j
 fM


(4.24)

where K ′i = −K−1
0 Ki, M

′
i = −K−1

0 Mi, and fM = K−1
0 f

Since the parameter changes ∆pis are scalar values, following Krylov subspace will
be taken as a projector.

V = Kr(−K−1M,−K−1f)

= Kr

 ∞∑
j=0

(∑
i

K ′i

)j
(M ′

0 +
∑
i

M ′
i

)
,

 ∞∑
j=0

(∑
i

K ′i

)j
 fM

 (4.25)

Remark: Unlike in static case, the initial loading vector is no longer significant in
dynamic PMOR, because eigen-values/-vectors are properties of the system itself,
not a response from certain input force. Therefore two-step Arnoldi is not necessary
here.

4.3.1. Reordering process

Because of the inversion term, both parts of Krylov subspace in equation (4.25) have
a infinite summation term. It makes Krylov subspace imperfect with finite number
of j. However even when any large number j is taken, still some error remains and
sometimes the error increases with larger j. The reason of this problem is that while
a sum of K ′i are multiplied j times, the order of parameter change ∆pi is also in-
creased j times. Therefore the effects of parameter changes are not fairly reflected
into Krylov subspace. As a solution, instead of taking large number j, reordering
process is suggested. The coefficients according to the order of ∆pi are as shown in
Table 4.1.

order coefficients

0 fM , M ′
0fM , (M ′

0)2 fM , · · · , (M ′
0)j fM

1 M ′
ifM , K ′iM

′
0fM , M ′

0K
′
ifM , (M ′

0)2K ′ifM , · · · ,

(M ′
0)jK ′ifM (i = 1, 2, · · · )

2 K ′iK
′
jfM , K ′i (M ′

0)kK ′jfM , (M ′
0)kK ′iK

′
jfM , K ′iM

′
lfM ,

(M ′
0)mK ′i (M ′

0)nM ′
lfM , · · · ( i, j, l = 1, 2, · · · , np ) (k,m, n = 1, 2, · · · )

Table 4.1.: The coefficients of Krylov space according to the order of ∆pi
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In order to preserve above coefficients from the lower order to the higher order,
projection matrix shown in equation (4.26) is suggested.

V = Kr

((
I +

∑
i=1

K ′i

)∑
i=0

M ′
i ,

(
I +

∑
i=1

K ′i

)
fM

)
∈ Rn×r (r � n) (4.26)

The resulting second order reduced system is in the following formular.

Mrẍr +Drẋr +Krxr = fr (4.27)

,where Mr(p) = M0,r +
∑
i=1

∆pi Mi,r

Dr(p) = D0,r +
∑
i=1

∆pi Di,r

Kr(p) = K0,r +
∑
i=1

∆pi Ki,r

x = V xr, fr = V Tf

Mi,r = V TMiV ∈ Rr×r i = 0, 1, · · ·
Di,r = V TDiV ∈ Rr×r i = 0, 1, · · ·
Ki,r = V TKiV ∈ Rr×r i = 0, 1, · · ·

As demanded, once reduced parametric model Mi,r, Di,r, and Ki,r are generated,
parameter changes are applied to them regardless of original large model.

4.4. Parameter handling

To apply this theory in real applications, how to obtain parametric effective marices,
Kis and Mis, will be an important issue. During the theoretical developement they
are simplfied by renotation, however, their actual forms are (first or several order of)
derivative forms. In this section how to handle parametric effects from finite element
(FE) model will be explained.
The benefit from FE model in PMOR is that the fundamental characteristics of its
components are already known. Because the FE model is a superposition of numerous
elements, which are defined by FE theory, how each parameter will affect the entire
structure can be analogized. The exact stiffness and mass matrices are surely in
a complex form; however with considering the tendency of parametric effects, for
instance whether they change the property of a structure linearly or quadratically,
parametrization can be performed easily. And this tendency can be revealed from
the matrix of single element. Starting from simple element like beam element, shell
element and layered shell element will be shown as well.
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4.4.1. Beam element

First by comparing the results from analytic formula and FE model, how the parameter
affects to the solution is observed. A clamped beam in Fig. 4.3 is 3m long with
square cross section of 10cm2. Its elastic modulus is 90GPa. When the force F in
+y direction is applied to the tip, the deflection δ is represented analytically as in
equation (4.28).From this equation we can easily see the effects of parameter b, h,
and E.

δ =
FL3

3EI
(4.28)

where I =
1

12
bh3, b = 10cm, h = 10cm, L = 3m

The same model can be solve with FE method as drawin in Fig. 4.4. A single element
shown in Fig. 4.5 has a stiffness matrix as in equation (4.29).

[K]elem =
EI

l3



Al2

I
0 0 −Al2

I
0 0

0 12 6l 0 −12 6l

0 6l 4l2 0 −6l 2l2

−Al2

I
0 0 Al2

I
0 0

0 −12 −6l 0 12 −6l

0 6l 2l2 0 −6l 4l2


=

M1 M
T
2

M2 M3

 (4.29)

The stiffness of the entire model is superposed as shown in Fig. 4.6, and the deflection
is solved from a static equation [K] {x} = {f}. By plotting the deflection at the tip
with various modulus E values, the effect of E on stiffness K can be approximated.
From Fig. 4.7, we can see the linear dependency, which is expeceted from both

analytical formula and individual element of FE model. To make this clear, the solution
x̌2 from a linearly approximated stiffness ǨE2(approximated stiffness with modulus
E2) will be compared to the solution x2 from an actual stiffness KE2 . The finite
difference between stiffnesses at two reference values E0 and E1 is taken as a gradient.
Then, approximated stiffness ǨE2 about modulus E2 , E1 , E0 can be expressed as
in equation (4.30).

Ǩ|E2 = (E2 − E0) · K|E1 −K|E0

E1 − E0

(4.30)

Figure 4.3.: Cantilever beam model
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Figure 4.4.: Cantilever beam model in fi-
nite element form Figure 4.5.: Single beam element

Figure 4.6.: Stiffness matrix superposed by single elements’
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The graph comparing approximated solution x̌2 = Ǩ−1
E2
{f} and exact solution x2 =

K−1
E2
{f} is shown in Fig. 4.8. The linear assumption to the effect of modulus on

stiffness matrix seems correct. The same methodology can be applied to other physical
or geometrical parameters in FE model with different element types.

4.4.2. Shell element

As an advanced example shell element is considered. Not only linearly affecting param-
eters such as modulus and density but also more complicated cases such as thickness
are studied. The material property matrix [D] of shell element is in the form of
equation (4.31)[ANS07].

[D] =



BEx B νxy Ex 0 0 0 0

B νxy Ex BEy 0 0 0 0

0 0 0 0 0 0

0 0 0 Gxy 0 0

0 0 0 0 Gyz/f 0

0 0 0 0 0 Gxz/f


(4.31)

B =
Ey

Ey − (νxy)2Ex

f =

 1.2

1 + 0.2 A
25t2


Ex : Young’s modulus in x direction

Ey : Young’s modulus in y direction

Gij : Shear modulus in ij plane (i,j = x, y, z)

νxy : Poisson’s ratio in xy plane

A : element area

t : average total thickness

Actual stiffness matrix K can be derived from [D] using following relations.

σ = [D] ε (4.32)

ε = Nu (4.33)

K =

∫
NT [D]N (4.34)

where σ : stress, ε : strain, N : strain-dispalcement matrix, and u : displacement
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Figure 4.7.: Deflections of beam tip from analytical formula and finite element method
according to elastic modulus

Figure 4.8.: Comparions of exact solution and linearly approximated solution
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Because the strain-displacement matrix N is the function of shape function and nodal
position, it is independent on the material properties or thickness of the shell. There-
fore the stiffness matrix will be affected by those parameters in the same way the
material property matrix is affected. By observing the role of each parameter in [D]
we can determine how to handle each parameter.

1) Shear modulus Gxy, Gyz, Gxz

From equation (4.31), shear moduluses are lineary affecting parameters. Their effects
are approximated by equation (4.35)

K|G2 = K|G0 +
K|G1 −K|G0

G1 −G0

· (G2 −G0) (4.35)

2) Elastic modulus Ex
By considering each element of K, the effects of Ex can be approximated as follows.

K(1,1) = BEx =
ExEy

Ey − ν2Ex
(4.36)

K(1,2) = K(2,1) = νxyBEx (4.37)

K(2,2) = BEy =
E2
y

Ey − ν2Ex
(4.38)

K(1,1)|Ex+∆Ex −K(1,1)|Ex =
∆Ex E

2
y

(Ey − ν2Ex)(Ey − ν2Ex − ν2∆Ex)
(4.39)

≈ k1∆Ex (∗) (4.40)

K(2,2)|Ex+∆Ex −K(2,2)|Ex =
ν2∆Ex E

2
y

(Ey − ν2Ex)(Ey − ν2Ex − ν2∆Ex)
(4.41)

≈ k2∆Ex (∗) (4.42)

where k1, k2 : scalar

(∗) ∵ ν1, Ey − ν2Ex � ν2∆Ex with small ∆Ex

3) Elastic modulus Ey
With the same manner in Ex case, the effect of Ey can be approximated as follows.

K(1,1)|Ey+∆Ey −K(1,1)|Ey =
−ν2 E2

x ∆Ey
(Ey − ν2Ex)(Ey + ∆Ey − ν2Ex)

(4.43)

≈ k3∆Ey (4.44)

K(2,2)|Ey+∆Ey −K(2,2)|Ey =
−ν2 Ex (∆Ey)

2 + 2Ey (Ey − ν2Ex) ∆Ey
(Ey − ν2Ex)(Ey + ∆Ey − ν2Ex)

(4.45)

≈ k4∆Ey (4.46)

where k3, k4 : scalar

(4.47)
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Figure 4.9.: Element in a stiffness matrix, K(1,1) plot depending on Ey

Figure 4.10.: Element in a stiffness matrix, K(2,2) plot depending on Ey
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This linear tendency is also graphcally checked in Fig. 4.9 and Fig. 4.10.

4) Thickness t
In a single element, if its area is bigger than 25t2, shear modulus Gyz and Gxz in
matrix [D] are devided by f = 1 + 0.2A/(25t2) instead of 1. The effect of thickness
t is shown analytically and graphically in equation (4.48) and Fig. 4.11.

G

1 + k/t2
=

G t2

t2 + k
= G− Gk

t2 + k
(4.48)

From those observations it makes more sense treating t2 as a parameter instead of t.
For such a case, chain rule is used to obtain a parametric effectiveness matrix.

dK

d(t2)
=
∂K

∂t

∂t

∂t2
=
∂K

∂t

1

2t
(4.49)

Thickness alters not only a stiffness matrix but also a mass matrix; however, the
increment or decrement in mass caused by thickness change is linear. Therefore the
effect of thickness change on a mass matrix will be linear.

5) Density ρ
Density does not change stiffness matrix but mass matrix linearly. Hence, density
doesn’t need to be treated as a parameter in static case, but it does in dynamic case.

Figure 4.11.: Shear modulus depending on thickness t
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4.4.3. Layered shell element

A layered shell element is commonly used for composite structures. Its basic formu-
lation is very similar to the normal shell element we looked in previous section 4.4.2.
The only difference is that the material property matrix from each layer is summed up
to construct the material property matrix for the entire layered element as shown in
equation (4.50). Note that the thickness which divides the shear modulus in equation
(4.31) is not a thickness of each layer but a total averatge thickness.

[D] =
nl∑
j=1

[D]j (4.50)

where [D]j is constructed as same as in equation (4.31)
and nl is the number of layers

Consequently the effect of the parameters from each layer follows the same way as
shown in section 4.4.2. If a sandwich structure is modeled, the term f in equation
(4.31) is set to 1 and Gyz and Gxz of facesheets are set to 0. Therefore the thickness
of the core is treated as a linear parameter, and Gyz and Gxz of facesheets are not
considered as parameters.
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4.5. Application of LU decomposition method

The methodology shown in previous sections, 4.2 and 4.3, is designed to find the com-
mon projector matrix V , which contains the essential information about the structure
and parameters’ effects on it. From the equation (4.11) and the equation (4.25),
which are finally used to calculate V , we can see that an inversion of stiffness ma-
trix K0 is included. Since a stiffness matrix from finite element (FE) momdel is very
sparse, inverting it is computationally expensive, and the resultant inversion is very
densed. It causes high computation on further processes in model order reduction,
because the matrices used for Krylov subspace calculation are no longer sparse af-
ter dense inversion matrix is multiplied to them. Furthermore, the inversion requires
large memory as well; for instance, an inversion from a 34380 by 34380 very sparse
stiffness matrix from FE model consumes about 10 gigabyte(GB) memory. It means
that reading and saving the matrix spend a lot of time inefficiently. This inversion
included in parametric model order reduction (PMOR) algorithm has been a major
weakness of this method as reported in [YB09]. However, we can avoid inversion
using LU decomposition method as in general matrix equation solver. Applying LU
decomposition method to the PMOR algorithm will be introduced in this section.

4.5.1. LU decomposition method

LU decomposition is a powerful method in solving large linear system equation, Ax =
b, where A ∈ Rn×n, b ∈ Rn×1, and solution x ∈ Rn×1. One can solve this equation
by Gaussian elimination and back substitution, but it requires a computation order
of n3/3; therefore when the system needs to be solved for many input bis ∈ Rn×1,
computational effort could be a major problem. One way to solve a matrix equation
easily is turning a matrix into a tridiagonal form, as in Gaussian method. But in
Gaussian method specific vector b is used during the transformation process. The
idea of LU decomposition method is to use triangular matrices which depend on the
system matrix A only, not on the input vector b. It is possible and guaranteed for any
invertible matrix A as shown in Theorem 4.1

Theorem 4.1 If matrix A ∈ Rn×n is nonsingular, there exist a lower triangular matrix
L and an upper triangular matrix U such that A = LU , and they are unique.

�

Once the system matrix A is decomposed into two triangular matrices L and U ,
the solution x can be much efficiently calculated through two times of forward- or
backward-substition as shown in Fig. 4.12.

4.5.2. Application to the PMOR algorithm

The equation (4.11) can be simplified as in equation (4.51).

V = Kr

(
K−1

0 K∗s , K
−1
0 f

)
where K∗s =

∑
i=1

−Ki
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Figure 4.12.: LU decomposition method to solve matrix equation

In the reduction of dynamic system, the equation (4.25) can be expressed as in
equation (4.51).

V = Kr

(
K−1

0 K∗dK
−1
0 M∗

d , K−1
0 K∗dK

−1
0 f

)
(4.51)

where K∗d = K0 +
∑
i=1

−Ki, M∗
d =

∑
i=0

Mi

As explained in the beginning of this subchapter, the most controversial part here
is the calculation and multiplication of K−1

0 before the Arnoldi iteration. However,
as the Krylov subspace method has a great benefit that it runs only with matrix-
vector multiplication, we can apply LU decomposition method inside of the Arnoldi
algorithm which used in PMOR so that matrix L and U play the same roles as in
solving Ax = b.
Let us take a closer look; the first Krylov vector x1 = K−1

0 f can be calculated by
solving K0x1 = f using L and U . The next Krylov vector, x2 = K−1

0 K∗s x1 can be
calculated by solving K0 x2 = K∗s x1 ∈ Rn×1. The further process will be continued
in the same manners. Extracting orthogonal basis vectors is the same as in general
Arnoldi algorithm.
In dynamic case solving matrix-vector equation with L and U should be used twice
in each iteration, because K−1

0 is used twice in each iteration. The first Krylov vector
x1 = K−1

0 K∗d K
−1
0 f will be calculated by following two steps:

1) calculate z1 = K−1
0 f by solving K0 z1 = f .
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2) calculate x1 = K−1
0 (K∗d z1) f by solving K0 x1 = K∗d z1.

The next Krylov vector x2 = K−1
0 K∗d K

−1
0 M∗

d x1 can be obtained by following two
steps:

1) calculate z2 = K−1
0 (M∗

d x1) by solving K0 z2 = M∗
d x1.

2) calculate x2 = K−1
0 (K∗d z2) by solving K0 x2 = K∗d z2.

Further iterations are continued in the same way. The algorithms including the general
Arnoldi iteration and two-step method with deflation in static case are summarized
in Algorithm 4.2 and Algorithm 4.3.
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Algorithm 4.2 For lower and upper triangular matrices L and U such that K0 =
LU ∈ Rn×n, vector set B = {b1 , · · · , bp} ∈ Rn×1, and matrix K∗s =

∑
i=1−Ki

from equation (4.51), the following algorithm is applied.

Step 1. Initiation

x = U \ (L \ b1)

w◦1 = x/‖x‖
for i = 1, · · · , p− 1

z = U \
(
L \

(
K∗s w

◦
2i−1

))
for j = 1, · · · , 2i− 1

h′j,2i−1 =
(
w◦j
)T
z

z = z − h′j,2i−1w
◦
j

end

h′2i,2i−1 = ‖z‖
w◦2i = z/h′2i,2i−1

x = U \ (L \ bi+1)

z = x/‖x‖
for j = 1, · · · , 2i

h′j,2i =
(
w◦j
)T
z

z = z − h′j,2i−1w
◦
j

end

h′2i+1,2i = ‖z‖
w◦2i+1 = z/h′2i+1,2i

end

Step2. Deflation

j = 1

W ◦ =
[
w◦1 w

◦
2 · · · w◦2p

]
ch = W ◦TW ◦

for i = 2, · · · , 2p
if |chi,1:i−1| small enough

wj = w◦i
j = j + 1

end

end

sz = j − 1
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Step 3. Block Arnoldi

for i = sz, sz + 1, · · ·
z = U \ (L \ (K∗s wi))

for j = 1, · · · , i
hj,i = wTj z

z = z − hj,iwj
end

hi+1,i = ‖z‖
wi+1 = z/hi+1,i

end

Step 4. Deflation

j = 1

W = [w1 w2 · · · ]
ch = W TW

for i = 2, · · ·
if |chi,1:i−1| small enough

vj = wi

j = j + 1

end

end
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Algorithm 4.3 For lower and upper triangular matrices L and U such that K0 =
LU ∈ Rn×n, a vector f ∈ Rn×1, and matrix K∗d = K0 +

∑
i=1−Ki and M∗

d =∑
i = 0Mi from equation (4.51), the following algorithm is applied.

Step 1. Arnoldi iteration for PMOR

x = U \ (L \ f)

z = U \ (L \ (K∗d x))

w1 = z/‖z‖
for i = 1, · · · , r

x = U \ (L \ (M∗
d wi))

z = U \ (L \ (K∗d x))

for j = 1, · · · , i
h′j,i = wTj z

z = z − h′j,iwj
end

h′i+1,i = ‖z‖
wi+1 = z/h′i+1,i

end

Step 2. Deflation

j = 1

W = [w1 w2 · · · ]
ch = W TW

for i = 2, · · ·
if |chi,1:i−1| small enough

vj = wi

j = j + 1

end

end

With this method the computational time and required memory to calculate projector
matrix V is reduced enormously. Although in the beginning quite amount of compu-
tation (2n3/3) is required to calculate L and U , it is still much less than inverting
a matrix. Considering further usauages of inversion in the Arnoldi algorithm and the
memory problem, using LU decomposition instead of inversion provides much more
effective. Moreover, the reduced model from LU method shows as accurate result as
the model from inversion, which will be shown with numerical examples in chapter 5.



5. Numerical Examples

The parametric model order reduction (PMOR) method developed in chapter 4 is
applied to a large finite element (FE) model. The main point here is 1) how much
order can be reduced 2) without losing its accuracy in a certain level 3) and the
amount of saving in computational effort. The two main types of structural analysis,
static analysis and dynamic analysis are examined. Furthermore, PMOR is used for
a design optimization problems. The target models are generated by commercial FE
program, ANSYS. Its structural matrices, stiffness matrix and mass matrix, are read
from the binary files generated by ANSYS. The modified codes from Structural Mod-
eling Interface (SMI) Toolbox developed by Institute of Lightweight Structures (LLB)
are used[MB]. After then PMOR procedure is taken place in MATLAB platform, a
numerical matrix computation program. The flowchart in Fig. 5.1 shows the overall
procedure of PMOR according to the software platform. The stiffness and mass ma-
trices extracted from ANSYS directly correspond to the stiffness and mass matrices
in the equations in chapter 4. Parametric effectiveness matrices concerning derivative
terms in equation (4.5) are calculated based on linear approximation and chain rule
as explained in section 4.4.
The results from static and dynamic analyses of reduced model are compared with

those of original large model as well as optimization problems. Not only accurate result
at the reduced point but also accurate result with many cases of parameter changes
will be achieved. Furthermore, structural control will be attempted. The final goal is
to design a controller with parameterized reduced model showing good performances
under various parameter changes. A prospect of PMOR for the optimization will also
be observed. Design variables in optimization problem can be treated as parameters;
then, each functional evaluation can be done quickly with the reduced model.
For static case large scale reflector made of carbon fiber reinforced polymer(CFRP)-
aluminum(Al) honeycomb sandwich is chosen. For dynamic case, truss structure with
some active elements and solar array panel made of 5-layered CFRP-Al honeycomb-
steel sandwich structure will be shown. Designing a composite plate under torsional
load is the first optimization example. As a more complicated example, a model of a
mirror panel of the overwhelming large (OWL) telescope developed by the European
Southern Observatory (ESO) is taken.

5.1. PMOR for static analysis and control of FE
model

Model order reduction for static analysis is often ignored because static analysis does
not require high computational effort as in dynamic analysis. In spite of that, when
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Figure 5.1.: Actual PMOR procedure in ANSYS-SMI-MATLAB platform

the model need to be evaluated many times as in optimization problems, a reduced
model is much more beneficial. Here in this chapter, large reflector model is examined
for PMOR. And the optimal control force for shape control is calculated based on the
reduced model via optimization algorithm. As the number of actuators is high, which
is common in such a large structure, the required functional evaluation is increased
drastically both from the parameter changes and from the input changes. Therefore
a reduced model can diminish a lot of computational load.

5.1.1. Large reflector

Model and parameter definition

A large scale reflector illustrated in Fig. 5.2 is modeled. Its diameter is 20m, and it
is made of CFRP-Al honeycomb sandwich. As stiffners, beam supports are located
on every 30 degrees. The center of the reflector is fixed. And the overall structure
except beam supports are modeled by layered shell element. The model is meshed
freely using smart meshing option in ANSYS except the nodes on the beam support,
where the actuators are applied later. It indicates that the PMOR method can be
applied to any types of FE model not only to manually designed FE matrices.
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Figure 5.2.: Large reflector model

A composite sandwich plate is built as shown in Fig. 5.3. The modulus and thickness
of facesheet and core are chosen as parameters. Since CFRP composite is artificially
made, the variation of its property is quite wide by adjusting fiber angles and contents
as well as selecting materials for fiber and matrix. Core has relatively limited property
variation; but still there is a possibility to change its parameter by adjusting the shape
and size of the cells in honeycomb. Therefore above parameters are reasonable choices
for parametric study. Overall there are 6 parameters concerned: elastic modulus of
facesheet Ex and Ey, shear modulus of facesheet Gxy, elastic modulus of core Ec,
thickness of facesheet tf , and thickness of core tc. Initial values of these parameter
are listed in Table 5.1. The facesheet is modeled as a carbonfiber-epoxy composite
[Hexa] with 60% fiber contents, fiber angle layup of [0/90/± 45]S. The material
properties for honeycomb are taken from Hexweb Al 5052 honeycomb (1/8-5052-
0.0001) product [Hexb].

Parametrization

To build parametric effectiveness matrices, six parameters are varied to ±50% of
their initial values. To increase the accuracy of the reduced model, both of the region
where each parameter is increasing or decreasing are considered as shown in Fig. 5.4.
However, the same projection matrix V will be applied on both regions.

Parameterization proccedure is summarized in Fig. 5.5. As examined in section 4.4.2
and 4.4.3, the effect of elastic modulus Ex and Ey from facesheet will be assumed
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Figure 5.3.: A composite structure of reflector model

Ex 62.9 (GPa)

Ey 62.9 (GPa)

Gxy 23.0 (GPa)

Ec 1.03 (GPa)

tf 1 (mm)

tc 18 (mm)

Table 5.1.: Initial parameter values for a large reflector model

Figure 5.4.: Two sections used for parameterization
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linearly. The moduluses from the core,Gxz, Gyz, and Ec changing all together pro-
portionally, are linearly approximated as well. The thicknesses are treated differently.
Within the initial variation, which is ±50% in this example, they are also assumed as
linearly affecting parameters. Over the initial variation the effects are approximated
quadratically. As shown in section 4.4.2, t2 is treated as a parameter instead of t using
chain rule. In equation (4.49) the only difference from linear approximation is that
the term 1

2t
is multiplied. Therefore, the reduction procedure itself can remain same

as with t; but when new parameter t is applied from initial value t0, the parameter
change should applied by 1

2t0
(t2− t20) instead of (t− t0). Additionally, since thickness

t is an average thickness of whole shell element, the effect of tf tc from t2 = (tf + tc)
2

should be considered as well.

Parametric model reduction

Based on the theory in section 4.2, projection matrix V is calculated from equation
(4.10). Both two-step Arnoldi algorithm and deflation process are applied. Finally
parameterized reduced model Ki,r ∈ Rr×r (i = 0, 1, · · · ) is induced by projection.
Parameter changes are applied as in equation (5.1) and the solution in the reduced
space xr can be quickly solved. Back projecting xr into the original space through
equation (5.2), we have approximated solution x in the original space.

(
K0,r +

q∑
i=1

∆piKi,r

)
xr = Kr(p)xr = fr (5.1)

x = V xr (5.2)

Analysis results and computational order

The model is reduced from the order of 17,262 to the order of 150, which is only
0.87% of the original model. Displacement caused by various loading on z-direction,
perpendicular to the surface of the reflector, is observed both from the ANSYS anal-
ysis and from the reduced model analysis. To show an exemplary case, arbitrarily

Figure 5.5.: Parameterization process
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generated forces as shown in Fig. 5.6 are applied. The accuracy of parameterized
reduced model is measured by root mean square (RMS) value of the shape defor-
mation error between the reduced model and ANSYS analysis from all nodes. The
reduced model and original model show good agreement, and parametric effects are
also reflected on the reduced model very well.
As an example, the case with 40% change of each parameter (∆pi = +40%,i =
1, · · · , 6), and the case with mixed parameter change are observed as well as no pa-
rameter change case. The parameter changes by cases are listed in Table 5.2. The
deformation RMS error values are shown in Table 5.3. It shows that the reduced
model gives acceptable results with only 150 order model, and it also reflects param-
eter changes to the model well. To present the effect of parameters’ changes more
clearly, the RMS error of shape deformation between the model without parameter
change and with parameter changes are shown in 3th column. Graphical comparison
between reduced model and original model with parameter change is also shown. Two
pathes are taken as drawn in Fig. 5.7 to observe the deformation: the first path is
along the x axis, and the second path is 60◦ apart from the first path. The deformed
shapes from the cross-section area along the path are shown in Fig. 5.8 and Fig. 5.9
from case 7 and case 8. The results from other cases (from case 0 to case 6) are
provided in Appendix B.1.

Note on the role of two-step Arnoldi method

As mentioned in 4.2.1, with single initial loading vector resultant reduced model
shows inaccurate results even without any parameter change. The comparison between
general PMOR method suggested in [DSC+04] and PMOR with two-step Arnoldi
method is presented here. If the load near the initial loading is applied or the result
near the initial loading point is interested only, the reduced model from general PMOR
method gives fairly accurate result. For instance, when a single loading vector which
gives force on (1500, 0, 0) is used for PMOR, the deflection plot along the x axis
shows acceptable result as shown in Fig. 5.10. However, the deflection along the path
2 in Fig. 5.11 shows that this reduced model gives completely wrong result. From
here we can conclude that two-step Arnoldi is necessary to be used in static PMOR.

Optimal control input design and shape control results

The parameterized low-order model can be used for a shape control of the reflector;
for exmaple, to find an optimal control input involving many actuators. For the flat
and wide structure as a large reflector, large number of actuators are required, which
means large number of design variables (actuation forces) should be considered. In
such a case finding optimal solution requires enormous computational effort because
the analysis should be repeated many times until the convergence. Therefore using
a reduced model is computationally much more beneficial than using a full order
model. The fmincon function in MATLAB is applied here. fmincon uses the Sequential
Quadratic Programming (SQP) method, and can handle upper and lower bounds of
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Figure 5.6.: Locations of the randomly chosen loading

case number parameter changes

case 0 ∆pi = 0 (i = 1, 2, · · · , 6)

case 1 ∆p1 = +40%

case 2 ∆p2 = +40%

case 3 ∆p3 = +40%

case 4 ∆p4 = +40%

case 5 ∆p5 = +40%

case 6 ∆p6 = +40%

case 7 ∆p1 = +20% , ∆p2 = +20% , ∆p3 = +20% ,

∆p4 = +20% , ∆p5 = +20%, ∆p6 = +20%

case 8 ∆p1 = −40% , ∆p2 = +40% , ∆p3 = +20% ,

∆p4 = −20% , ∆p5 = −10%, ∆p6 = +10%

Table 5.2.: Parameter changes from each cases
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case number RMS error between reduced RMS value caused by

and original model (mm) parameter changes (mm)

case 0 0.015 0

case 1 0.021 0.208

case 2 0.030 0.363

case 3 0.021 0.243

case 4 0.015 0.015

case 5 0.013 0.709

case 6 0.034 0.974

case 7 0.078 1.130

case 8 0.078 0.633

Table 5.3.: Deformation RMS error between reduced model and full model with var-
ious parameter sets

Figure 5.7.: Paths to observe the deformation on the cross section
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a) case 7

b) case 8

Figure 5.8.: Deflection plots on cross sectional area along the path 1
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a) case 7

b) case 8

Figure 5.9.: Deflection plots on cross sectional area along the path 2
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a) case 7

b) case 8

Figure 5.10.: Deflection plots on cross sectional area along the path 1 with a wrong
reduction
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a) case 7

b) case 8

Figure 5.11.: Deflection plots on cross sectional area along the path 2 with a wrong
reduction
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the design variables as well as linear and nonlinear constraints. The objective function
which will be minized is the RMS of shape deformation error between desired shape
and current shape. The current shape will be calculated from a reduced model as
described previously. The optimal input obtained will be applied to ANSYS model for
the verification. In this example actuators are located along the beam supports as
shown in Fig. 5.12; however, the location of actuators can be changed freely after
the reduction by alternating input matrix P in equation (5.3).

Krxr = fr = V T f = V T P u (5.3)

P ∈ Rn×na, u ∈ Rna×1 na : number of actuators

As an example, parabolic shape z = (x2 + y2)/9e5 (mm) is taken as a desired
shape, and case 8 in Table 5.2 is used. 60 actuators are involved, and the upper and
lower bound of control force are −500(N) and +500(N) accordingly. In each iteration,
reduced model requires only 0.06s, while calling and running ANSYS consumes 1.48s.
Considering that optimization process with 60 design parameters generally requires
several hundred thousands functional evaluations, it is clear that reduced model is
much more beneficial in optimization.
The ANSYS results after the actuation force are applied are shown in Table 5.4 and
Fig. 5.13. The RMS error remains very small, and the cross-sectional deformation
shape also shows that the control input works effectively. To observe the influence of
parameter changes, the control input is calculated from the model without parameter
change, and applied to the ANSYS model as well. The results from both cases are
compared in Table 5.5 and Fig. 5.14.

deformation RMS error with controller deformation RMS error without controller

0.80 (mm) 5.49 (mm)

Table 5.4.: Comparison of deformation RMS error without controller and with con-
toller based on parametric reduced model
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deformation RMS error with controller deformation RMS error with controller

including parameter changes excluding parameter changes

0.80 (mm) 2.47 (mm)

Table 5.5.: Comparison of deformation RMS error after control with and without
parameter changes

Figure 5.12.: Actuator locations on the reflector
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a) along the path 1

b) along the path 2

Figure 5.13.: Deflection on cross sectional area with shape control including param-
eter changes



78 CHAPTER 5. NUMERICAL EXAMPLES

a) along the path 1

b) along the path 2

Figure 5.14.: Deflection on cross sectional area with shape control excluding param-
eter changes
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5.2. PMOR for vibrational analysis and control of
FE model

In structural dynamic analysis, modal information (eigen-values and eigen-forms) is
the most important since the response of a structure is represented by them. Because
of its direct connection to the physical state, modal space is still the most preferrable
reduction space in structural engineering in these days; the loss of physical meaning in
reduced space is the biggest weakness of modern reduction theories such as balanced
truncation or Krylov subspace reduction. Therefore we will focus on obtaining accurate
modal space after the reduction. Eigen-analysis, which requires a computation order
of O(n3), will be performed in the reduced space with much less computational effort.
And then it is reprojected into physical state composing eigen-vector. The correctness
of reduced model is examined through eigen-values(natural frequencies) and eigen-
forms(mode shapes). Model with and without parmater changes are compared to
see whether parameter changes are well reflected into the reduced model. Based on
the reduced model, a vibration controller will be designed and applied to the original
model. Its simulation will be performed in SIMULINK from MATLAB.
Starting with a relatively simple and low order model, namely a truss structure, a
more complex solar array panel model will be tested.

5.2.1. Actively damped truss structure

Model and parameter definition

A truss structure is taken as a preliminary test as shown in Fig. 5.15. Since it consists
of simple beam elements, it does not need to be meshed densely; therefore the order
of original model is not extremely high. However, it would be a good example to
observe how reduced model works in dynamic analysis and to run the full order model
simulation with controller easily. The higher order application will be followed as a
next example.
The structure is 2m long, composed of trigonal pyramids. Each element is a hollow

circular beam, and connectors are spheres with threaded holes in various directions
where beams can be screwed in. Beam members are modeled as PIPE element, which
is basically a type of beam element, and connectors are modeled as nonstructural
mass in ANSYS. Following 5 parameters are considered: elastic modulus and shear
modulus of beam, density of the material, outer diameter and wall thickness of the
beam. The initial material properties are based on steel. Parameter variation of ±50%
are taken for derivative computation.

Parametric model reduction

Using parameterized mass and stiffness matrices equation, projection matrix V is
computed based on equation (4.26). Once the parameterized reduced matrices, Ki,r
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Figure 5.15.: Laboratory and FE model of active truss structure
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and Mi,r ∈ Rr×r (i = 0, 1, · · · ), are obtained, parameter changes ∆pis are directly
applied to them as in equation (5.4).

(
M0,r +

∑
i=1

∆pi Mi,r

)
ẍr +

(
D0,r +

∑
i=1

∆pi Di,r

)
ẋr

+

(
K0,r +

∑
i=1

∆pi Ki,r

)
xr = fr (5.4)

Mrẍr +Drẋr +Krxr = fr

(5.5)

The eigen-values calculated from Mr and Kr after parameter changes are applied will
remain same during back-projection as shown in equation (5.2.1). But the eigen-forms
will be in a physical state Rn×1 by back-projection as shown in equation (5.7).

[Kr − λi,rMr]φi,r = 0[
V TKV − λi,rV TMV

]
φi,r = 0 (5.6)

V T [K − λi,rM ]V φi,r = 0

where λi,r : ith eigen-value from reduced system

φi,r : ith eigen-vector from reduced system

φi ≈ φ̃i = V φi,r (5.7)

Modal analysis results

The order is reduced from 144 to 36, and the natural frequencies (Hz) are calculated
both from the reduced model and ANSYS with and without parameter changes.
Parameter cases chosen as examples are shown in Table 5.6. For the mode shape
comparison, Modal Assurance Criterion (MAC) defined in equation (5.8) is used.

MAC(~u,~v) =
|
∑n

j=1 ujvj|2(∑n
j=1 ujuj

)(∑n
j=1 vjvj

) =

(
~uT · ~v

)2

(~uT · ~u) (~vT · ~v)
(5.8)

,where uj is jth element of vector ~u

and vj is jth element of vector ~v

If two modes are same or parallel, MAC value is 1, and if two modes are orthogonal
to each other, MAC value is 0. As shown in Table 5.7, the results from the reduced
model show good agreement to the results from the full model. The frequency change
caused by parameter change is also tracked well by the reduced model. Since eigen-
analysis requires computation order of O(n3), the computational effort to obtain a
proper modal space decreases a lot by reduced model.
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a) case 6

b) case 7

Figure 5.16.: Natural frequencies of active truss model according to parameter cases
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a) case 6

b) case 7

Figure 5.17.: MAC values between reduced and full model of active truss model ac-
cording to parameter cases
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case number parameter changes

case 0 ∆pi = 0 (i = 1, 2, · · · , 5)

case 1 ∆p1 = +30%

case 2 ∆p2 = +30%

case 3 ∆p3 = +30%

case 4 ∆p4 = +30%

case 5 ∆p5 = +30%

case 6 ∆p1 = +20% , ∆p2 = +20% , ∆p3 = +20% ,

∆p4 = +20% , ∆p5 = +20%

case 7 ∆p1 = −30% , ∆p2 = +30% , ∆p3 = −20% ,

∆p4 = +20% , ∆p5 = −10%

Table 5.6.: Parameter changes from each cases

Vibration control

A control system will be designed based on the reduced model under parameter
changes. Active elements with piezo stack actuator are used; hence, forces will be
applied in a longitudinal direction of each element. Displacement information from
a laser sensor will be used for feedback. The location of actuators and sensors are
determined by the performance index (PI) from controllability gramian and by the
performance index (PI) from observability gramian accordingly. The theory behind
will be found in Appendix A.1. PI values are calculated from each element location,
and sorted by highest value as shown in Table 5.8 and Table 5.9. The element with
higher PI value means that it has higher controllability or observability on that mode.
As an example, parameter case 7 is taken. From the results it is clear that the reduced
order model gives the same results as the full order model does.

Elements number 19,2, and 5 are selected for active members, and each of them will
be used to control the first three modes accordingly. For sensors, z and y directional
deflection are observed at node 25, as well as y directional deflection at node 27. The
Fig. 5.18 represents actuator locations (red bars) and sensor locations (blue marks).
The selected actuating location from PI value corresponds to the engineering point
of view, because the elements near root experience high strain as can be seen from
ANSYS results in Fig. 5.19. Sensor points are also logically understandable, because
for the first three modes the end points show the largest displacement as you can see
in Fig. 5.20.

The PI values calculated here are from a single mode because one pair of actuator
and sensor will be applied for a single mode control using positive position feedback
(PPF) controller. However, PI values can be also calculated regarding many numbers
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case mode 1 2 3 4 5 6 7 8

0 Freq. FM 33.1 40.1 127.9 178.2 206.1 344.1 381.2 414.9

(Hz) RM 33.1 40.1 127.9 178.2 206.1 344.1 381.2 414.9

MAC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 Freq. FM 37.7 45.7 145.4 203.1 234.9 392.3 433.5 472.7

(Hz) RM 37.7 45.7 145.4 203.1 234.9 392.3 433.5 472.6

MAC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 Freq. FM 33.1 40.1 128.3 178.3 206.1 344.1 382.5 415.4

(Hz) RM 33.1 40.1 128.3 178.3 206.1 344.1 382.5 415.4

MAC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 Freq. FM 29.0 35.2 112.2 156.4 180.9 306.5 334.5 364.3

(Hz) RM 29.0 35.2 112.2 156.4 180.9 306.5 334.5 364.3

MAC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4 Freq. FM 33.2 40.2 130.6 179.6 207.6 351.5 389.9 423.6

(Hz) RM 33.2 40.3 131.3 180.1 208.2 353.3 392.4 427.4

MAC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5 Freq. FM 33.1 40.1 128.1 178.4 206.4 345.0 382.0 416.0

(Hz) RM 33.1 40.1 128.1 178.4 206.4 350.1 382.1 416.2

MAC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

6 Freq. FM 33.2 40.2 129.8 179.4 207.4 356.0 387.6 421.9

(Hz) RM 33.2 40.2 129.8 179.4 207.5 355.3 387.8 422.8

MAC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 Freq. FM 31.0 37.6 122.9 167.6 193.7 319.7 365.9 394.2

(Hz) RM 31.3 37.9 124.9 169.6 196.0 325.1 372.8 403.3

MAC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 5.7.: Comparison of natural frequencies and mode shapes between reduced
model and full model
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order 1 2 3 4

element PI element PI element PI element PI

number value number value number value number value

mode FM 19 1.00 28 0.40 4 0.17 10 0.13

1 RM 19 1.00 28 0.40 4 0.17 10 0.13

mode FM 2 1.00 4 0.84 11 0.41 13 0.40

2 RM 2 1.00 4 0.84 11 0.41 13 0.39

mode FM 5 1.00 14 0.94 23 0.62 32 0.33

3 RM 5 1.00 14 0.94 23 0.65 32 0.34

Table 5.8.: Highest performance index (PI) values from the controllability gramian
and corresponding element numbers for actuator selection

order 1 2 3 4

node PI node PI node PI node PI

and dof value and dof value and dof value and dof value

mode FM 25z 1.00 26z 0.80 27z 0.63 22z 0.49

1 RM 25z 1.00 26z 0.80 27z 0.63 22z 0.49

mode FM 25y 1.00 26y 0.99 27y 0.61 22y 0.49

2 RM 25y 1.00 26y 0.99 27y 0.61 22y 0.49

mode FM 27y 1.00 25z 0.75 24y 0.66 22z 0.62

3 RM 27y 1.00 25z 0.76 24y 0.66 22z 0.63

Table 5.9.: Highest performance index (PI) values from the observability gramian and
corresponding element numbers for sensor selection

Figure 5.18.: Actuator and sensor locations on active truss structure
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Figure 5.19.: Strain distribution of truss structure on the first three mode
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Figure 5.20.: Mode shapes of truss structure on the first three mode
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of modes to design more advanced controller. Both controllability and observability
gramians are obtained from solving Lyapunov equation. So far there is no mathemati-
cal proof about the accuracy of gramains from the reduced model; however, according
to [Gaw98] the eigen-values of gramians can be approximated using eigen-values and
eigen-vectors. Since the reduced model provides quite accurate eigen-information, it
is also reasonable that reduced model provides performance index values close to the
full model does.
Three PPF controllers tuned with the first three natural frequencies calculated from
the reduced model are used for vibration control. Fig. 5.21 shows its SIMULINK
model and Fig. 5.22 - 5.24 shows time response of displacement from each sensors.
Three cases are shown: 1) without controller, 2) with controller tuned by parameter-
ized reduced model, 3) with controller tuned by a model with no parameter influence
(badly tuned controller). It is clear that the controller designed by parameterized
reduced model declines vibration effectively while badly tuned controller shows bad
performance.
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Figure 5.21.: Simulink model for vibration control of active truss structure

Figure 5.22.: Displacement plot from sensor 1 (case 7)
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Figure 5.23.: Displacement plot from sensor 2 (case 7)

Figure 5.24.: Displacement plot from sensor 3 (case 7)
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5.2.2. Solar array panel model

Model and parameter definition

As a more complicated model, a solar array panel model designed for a laboratory
experiment is examined. The original target is 4m by 2.5m solar array panel being
developed by EADS Astrium. This laboratory model is designed for preliminary de-
signing and implementing of active damper; therefore it should have similar natural
frequencies and mode shapes from the original panel while its size is small enough to
be tested in laboratory. Although 4 panels will be packed together during launch, due
to the similarity of the behavior, a single panel model is used. The model is scaled
down to 1.5m by 1m and its configuration is shown in Fig. 5.26. To match natural
frequencies, special panel material is designed: 5 layered sandwich composite. As il-
lustrated in Fig. 5.27, it is made of glass fiber reinforced polymer (GFRP) facesheet,
aluminum honeycomb core, and a steel layer in the middle. To adjust mode shape
more correctly, dummy masses are applied in some regions.

4 parameters come from material properties, and 3 parameters come from geometrical
properties: Elastic modulus of GFRP facesheet (Ex and Ey), shear modulus of GFRP
facesheet (Gxy) and shear and elastic modulus of aluminum honeycomb core (Ec),
thickness of facesheet (tf ), thickness of core (tc), and thickness of steel layer (ts).
Additionally 3 nonstructural mass values (m1, m2, m3) are also treated as parameter;
totally 10 parameter are involved. The initial values of 10 parameters are shown in
Table 5.10.

Parametric model reduction

For each parameters, ±50% change of initial values are used for parameterization.
Same assumptions from previous cases are applied: 1) differential terms are assumed
as a linear difference within ±50% variation, 2) depending on the characteristics
of each parameter, it can be replaced in a different form (e.g. thickness). Physical
and geometrical parameters are treated in the same way as in a truss example, and
nonstructural masses are treated linearly.

Ex 21560 (MPa) tc 3 (mm)

Ey 21560 (MPa) ts 2 (mm)

Gxy 8290 (MPa) m1 200 (g)

Ec 1890 (MPa) m2 100 (g)

tf 0.95 (mm) m3 80 (g)

Table 5.10.: Initial parameter values for solar array panel model
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Figure 5.25.: Solar array panel structure from EADS
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Figure 5.26.: Solar array panel model

Figure 5.27.: A composite structure of solar panel model
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Modal analysis results

The order is reduced from 11346 to 51. Examplary parameter cases are listed in Table
5.11. The eigen-frequencies and mode shapes are calculated from both the reduced
model and ANSYS, and compared in Table 5.12 - Table 5.13 and in Fig. 5.28 - Fig.
5.29. The reduced model provides accurate results in eigen-analysis, also reflecting
parameter changes very well. As an example, parameter case 11 and case 12 are
taken. Additional graphs for other parameter cases are shown in Appendix B.3.

Vibration control

For large and complex structures showing complicated mode shapes, robust modern
controllers such as linear quadratic state feedback regulator (LQR) are recommended.
A large structure like solar panel includes some local modes; therefore which modes
are important and should be controlled is another critical issue. Effective mass, in-
troduced in Appendix A.2, is used to determine predominant modes. From the first
to the tenth modes, the effective mass on z-axis, which is the axis perpendicular to
the panel surface, are observed both from the reduced model and from ANSYS. As
shown in Table 5.14 and Table 5.15, the results from both correspond to each other
very well. Modes with the highest 5 effective mass values are selected and used for
designing a controller: mode 1, 2, 3, 6, 10.

The locations of sensor and actuator are calculated by the same way used in truss
structure; performance indexes (PIs) from controllability and observability gramians
are used. Since the actuator is a patch type piezo actuator as shown in Fig. 5.30,
actuator is modeled based on pin-force model as introduced in Appendix A.3. From
the results shown in Table 5.16 and Table 5.17, the best locations for each mode are
selected. Since the panel is symmetric on the x-axis, the PI values from each actuator
location are also symmetric. Their actual positions on the panel are illustrated in Fig.
5.31 and Fig. 5.32.

The controller is designed based on the reduced model in modal space. Simulation
test on SIMULINK platform is followed applying the controller to the full model.
Because the size of full model in physical coordinate, 11346, is too large to run a
simulation, a modal space model with the first 50 modes are used for simulation. As
a controller, linear quadratic regulator (LQR), introduced in Appendix A.4, is used.
Calculating gain factors for LQR is also done on the MATLAB using parameterized
reduced model. SIMULINK model is drawn in Fig. 5.33. Simulation results with and
without controller are compared in Fig. 5.34. The response is from the impulse force
on the middle of the panel. The controller designed from reduced model successfully
reduces the vibration both of the cases with and without parameter changes.
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case number parameter changes

case 0 ∆pi = 0 (i = 1, 2, · · · , 10)

case 1 ∆p1 = +40%

case 2 ∆p2 = +40%

case 3 ∆p3 = +40%

case 4 ∆p4 = +40%

case 5 ∆p5 = +40%

case 6 ∆p6 = +40%

case 7 ∆p7 = +40%

case 8 ∆p8 = +40%

case 9 ∆p9 = +40%

case 10 ∆p10 = +40%

case 11 ∆pi = +20% (i = 1, 2, · · · , 10)

case 12 ∆p1 = −20% , ∆p2 = −10% , ∆p3 = +30%, ∆p4 = −30%,

∆p5 = +10%, ∆p6 = +20% , ∆p7 = −20% , ∆p8 = +20%,

∆p9 = +40%, ∆p10 = −40%

Table 5.11.: Parameter changes from each cases
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a) case 11

b) case 12

Figure 5.28.: Natural frequencies of solar panel model according to parameter cases
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a) case 11

b) case 12

Figure 5.29.: MAC values between reduced and full model of solar panel model ac-
cording to parameter cases
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order mode number effective mass (kg)

FM RM FM RM

1 1 1 5.93 5.72

2 10 10 4.16 4.94

3 3 3 3.29 3.30

4 2 2 2.55 2.66

5 6 6 0.99 0.79

Table 5.14.: Order of modes with highest effective mass on z-direction (case 11)

order mode number effective mass (kg)

FM RM FM RM

1 1 1 4.48 4.27

2 3 3 2.34 2.38

3 2 2 1.91 1.99

4 10 10 0.96 1.63

5 6 6 0.67 0.50

Table 5.15.: Order of modes with highest effective mass on z-direction (case 12)

Figure 5.30.: Piezoelectric patch-type actuator
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Figure 5.31.: Actuator locations for active damping of solar panel model (case 12)

Figure 5.32.: Sensor locations for active damping of solar panel model (case 12)
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index number PI value

order FM RM FM RM

1 3, 18 3, 18 1.00 1.00

mode 1 2 62, 63 62, 63 0.79 0.67

3 44, 45 44, 45 0.78 0.66

1 487, 498 504, 517 1.00 1.00

mode 2 2 504, 517 487, 498 0.95 0.96

3 503, 518 503, 518 0.13 0.10

1 215, 226 215, 226 1.00 1.00

mode 3 2 142, 143 142, 143 0.71 0.69

3 141, 144 141, 144 0.65 0.64

1 215, 226 215, 226 1.00 1.00

mode 6 2 37, 52 196, 209 0.57 0.59

3 196, 209 37, 52 0.49 0.48

1 486, 499 486, 499 1.00 1.00

mode 10 2 487, 498 503, 518 0.52 0.54

3 503, 518 487, 498 0.46 0.52

Table 5.16.: Highest performance index (PI) values and corresponding element num-
bers for actuator selection of solar panel model (case 12)
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index number PI value

order FM RM FM RM

1 181 181 1.00 1.00

mode 1 2 180, 182 180, 182 0.97 0.97

3 179, 183 179, 183 0.90 0.90

1 82 82 1.00 1.00

mode 2 2 81, 83 81, 83 0.98 0.98

3 80, 84 80, 84 0.93 0.93

1 181 181 1.00 1.00

mode 3 2 180, 182 180, 182 0.98 0.98

3 179, 183 179, 183 0.93 0.93

1 18, 146 18, 146 1.00 1.00

mode 6 2 17, 147 17, 147 0.99 0.98

3 19, 145 19, 145 0.92 0.93

1 2, 62 2, 62 1.00 1.00

mode 10 2 63, 101 63, 101 0.90 0.90

3 64, 100 64, 100 0.81 0.80

Table 5.17.: Highest performance index (PI) values and corresponding node numbers
for sensor selection of solar panel model (case 12)
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Figure 5.33.: Simulink model for vibration control of solar panel model
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(a) sensor 1 (b) sensor 2

(c) sensor 3 (d) sensor 4

(e) sensor 5 (f) sensor 6

Figure 5.34.: Displacement plot from sensors (case 12)
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5.3. Structural design optimization

Many structural analyses are to be executed for designing a structure or a struc-
tural element such as a plate or a joint. According to its specific purpose (objective),
boundary conditions and constraints, various types of design variables from material
properties to the geometry of a structure are considered. Finding the optimal com-
bination of all design variables achieving the best value for objective function, while
satisfying a set of constraints, is called structural design optimization. Because of the
complexity of structures in these days, optimization procedure should consider wide
range of studies from material science to the control theory; therefore design op-
timization is commonly designated as multidisciplinary design optimization (MDO).
MDO is a very promising and useful method especially in aerospace engineering where
the optimal value among acute constraints is required. however, the computational
cost to find the optimal value is not cheap. Although the exact amount of computa-
tion differs among different types of optimization algorithms, in general many times
of functional evaluation is required varying design variables. As more design variables
are included, the number of functional evaluation increases geometrically.
Consequently the more cost effective model is desired in MDO. A general reduced
model can decrease computational efforts on each evaluation, however it cannot be
used for the different design variables. It means that the model should be regenerated
and re-reduced for every iteration, which is computationally not efficient at all and
sometimes even worse. Parametric model order reduction (PMOR) can be a good
solution here. The model is reduced as a function of parameters, which are design
variables in optimization problems. Then each functional evaluation will be carried
out on the reduced space only. Considering the high number of functional evaluation
generally required in optimization problem, PMOR can give a promising prospect on
computational efficiency in MDO.

5.3.1. Composite plate

As an elementary step, simple carbon-fiber reinforced polymer(CFRP) composite-
Aluminum(Al) honeycomb sandwich plate under torsional load as shown in Fig. 5.35
is optimized. Two objectives which will be minimized are the deflection under the
torsional load and the total mass of the plate. Design parameters are: the fiber volume
fraction (Vf ), the thickness of each layer (t), angles of fiber orientation (θ1, θ2),
modulus of honeycomb core (Ec, Gxz, Gyz), and the thickness of the core (tc). The
key to a successful PMOR is knowing the effect of each parameter onto the system
whether it is linear or quadratic or in other forms. Differently from the parameters
tested in previous sections, which are modulus, thickness, and mass, design variables
for a composite plate do not alter the structure in a simple formation. Instead, based
on the composite theory, the design variables Vf , t, θ1, θ2 constitute a material with
specific material properties Ex, Ey, and Gxy.

Since we have known the effects of above material properties and thickness as seen
in section 4.4, the analysis is divided into two steps as shown in Fig. 5.36. The
first step is based on rule of mixture and classical laminate theory (CLT) calculating
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Figure 5.35.: Composite plate model under the torsional load

moduluses from CFRP facesheet; details are provided in Appendix A.5. This step can
be done by simple matrix calculation, and does not require a model reduction since
it is not computationally critical. The second step relates to the finite element (FE)
model. Based on the material properties and thickness from the first step, FE model
is generated and analyzed. PMOR will be held for the second step concerning material
properties and thickness as parameters.

The optimization runs with parameterized reduced model, and the result will be
compared with the result from ANSYS for verification. To simplify the task, the layup
of the facesheet is assumed as [0/90/θ1/θ2]S. And the fiber angles θ1 and θ2 are
optimized first to minimize the deflection. After then other design parameters Vf , t,
Ec, tc are optimized to minimize the total mass taking the deflection as a constraint
(maximum deflection should be less than 6.7mm). The upper and lower bounds and
initial values are set as shown in Table 5.18. The order of the model is reduced from
16560 to 100.

Vf (%) t (mm) θ1 (deg) θ2 (deg) Ec (GPa) tc (mm)

initial value 60 0.30 -30 30 1.9 17

lower bound 50 0.28 -90 0 1.0 8

upper bound 70 0.32 0 90 2.2 25

Table 5.18.: Initial values, upper and lower bounds for design variables of composite
plate
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Figure 5.36.: A procedure of composite plate design optimization
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Computational effort

During the optimization, matlab function fmincon, a optimization algorithm based
on Sequential Quadratic Programming (SQP) method, is used. The optimal solutions
from the reduced model and from the ANSYS are listed in Table 5.19. Clearly PMOR
provides the same result as from calling and running ANSYS every time. The required
computational time for each iteration is 0.06(s) for PMOR and 1.79 (s) for ANSYS.

Vf (%) t (mm) θ1 (deg) θ2 (deg) Ec (GPa) tc (mm)

PMOR 70 0.28 -41.7 41.7 1.9 17.9

ANSYS 70 0.28 -41.4 41.4 1.8 18.0

Table 5.19.: Optimal solution of composite plate model from the reduced model and
from the ANSYS
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5.3.2. Mirror panel of the Overwhelming large (OWL)
telescope

The second example is a more complex structure: designing of the mirror segments
of the overwhelming large (OWL) telescope developed by the European Southern
Observatory (ESO). The OWL telescope aims for a very large main mirror which can
collect star light from distant places. The original design of OWL consisted of 3048
segments, half of which is shown in Fig. 5.37 [Pet05]. The diameter of entire mirror
is 100m.

As the size of mirror larger, the manufacturing cost increases. The most critical point
is the mass; many desirable consequences, for example simplified and cheaper support
structures, smaller actuator for control, will be followed by lowering the mass, finally
lowering the total cost of the telescope. Therefore optimization minimizing its areal
mass, while still maintaining a sufficient accuracy of the optical surface under a gravity
load of 1g (9.8m/s2) will be tried.
A mirror segment is modelled as a CFRP-Al honeycomb sandwich on the surface,
and aluminum on the back supporting structure. The design variables are from the
sandwich structure as in section 5.3.1. The initial values of design parameters and
their upper and lower bounds are listed in Table 5.20. Fiber angles and lay-up type
are optimized first to minimize the deformation of the surface (zRMS) assuming that
the total thickness of facesheet remains same regardless of number of layers. Type 1
with [0/90/θ1/θ2]S and type 2 with [0/90/θ1/θ2/θ1]S are considered. For the second
optimization procedure, the objective function is an areal mass, and the constraint is
the deformation of the surface (zRMS) limited to 25nm. The order of the model is
reduced from 14235 to 100.

Computational effort

The resultant optimum is shown in Table 5.21, both from the reduced model and
from the ANSYS. Parameterized reduced model gives the same result as ANSYS
does spending only 45.5 (s) of CPU time per each functional evaluation while ANSYS
requires 492.1 (s).

θ1 (deg) θ2 (deg) number of layer tf (mm) tc (mm)

initial value 0 90 8 3 17

lower bound -90 0 8 1 14

upper bound 0 90 10 4 20

Table 5.20.: Initial values, upper and lower bounds for design variables of composite
plate
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Figure 5.37.: A Mirror segment from overwhelmingly large (OWL) telescope
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θ1 (deg) θ2 (deg) number of layer tf (mm) tc (mm)

PMOR -46.1 +46.1 10 2.8 14

ANSYS -46.2 +46.8 10 2.9 14

Table 5.21.: Optimal solution of OWL telescope model from the reduced model and
from the ANSYS full model





6. Conclusion

In recent decades model order reduction (MOR) and parametric model order reduction
(PMOR) are investigated in various fields of study. For structural models such as large
finite element (FE) models, MOR based on modal space are preferred because one
can predict its physical behavior after the reduction. In control engineering, singular
value decomposition (SVD) based methods are preferred because of the preservation
of stability and existence of error bound. Multibody system, circuit design, and micro-
electro-mechanical system (MEMS) preferred Krylov subspace method since it can
handle very large size models which SVD based methods cannot. Krylov method is
often implemented to the FE model as eigen-analysis for modal transformation needs
high computational effort.

For PMOR, most of studies are focusing on rational reduction or model reduction
with a few system parameters. In this case parameters can be directly extracted from
the first order dynamic equation in state space; therefore relatively simple formulation
can be applied. However, when a large and complex FE model with various physical
or geometrical parameters are concerned, the application of formerly developed the-
ories (as shown in chapter 3) is not straight forward. Those parameters are directly
related to the structural matrices, mass and stiffness matrices, not to the state space
model. Therefore, inversions and multiplications required when they are turned into
a state space form makes the method highly complicated accompanying with very
high computational effort. It is also observed that sometime the accuracy of reduced
model is limited by a low level. This dissertation contributes to solve those problems
as well as to investigate practically efficient PMOR for large FE models.

The method driven in chapter 4 aims for the realization of mathematically developed
method, and the examination of its effectivity. Four main objectives are achieved; 1)
the parameter change can be directly applied to the reduced model, 2) the reduced
model gives fairly accurate results compared to the original model, 3) the reduced
model can reflect parametric effects well, 4) the controller designed from parametrized
reduced model works well. Both static and dynamic models are developed and tested
by numerical examples of space structures: large reflector for static case, active truss
structure and solar array panel model for dynamic case. The nature of FE model,
superposition of matrices from single elements, makes parameter handling easier;
however it also causes some technical difficulties in application of theory, which are
solved through the two-step Arnoldi method and the deflation. A disadvantage of
block Arnoldi algorithm, larger reduction space, is also solved by the deflation pro-
cess. In dynamic analysis, reordering process corrects the error caused by integrating
infinite summation term. Applying LU decomposition method into PMOR algorithm
instead of direct inversion, computational efficiency is even increased. Computational
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time and order is compared to show it.

The parametric effectivenss in this method is calculated by finite difference from two
FE models. Therefore lineary affecting parameters or polynomially affecting parame-
ters such as thickness can be well treated. However, if the parameters are nonlinearly
affecting the structure, reduced model will not be accurate. One alternative way is
transforming those parameters into linearly affecting parameters as done in compos-
ite plate example in section 5.3.1. The other remained problem is nonlinearities in
the system. Even though the parameters are linearly formulated, the reduced model
may not properly reflect the nonlinear terms in the system. To compensate this part,
adaptation of interpolation based method seems worth to investigate as a future work.



A. Appendix 1 : Theoretical
background for numerical
examples

A.1. Actuator and sensor location based on
performance index

For the better efficiency of actuation, the location which can transfer more energy into
the system is desirable; and for sensing, the location where more energy is detectable
is more desirable. Hac and Liu[HL93] presented expectation of total energy in the
form of equation (A.1).

Ei = βii/4ζiωi :expectation of total energy of the ith mode (A.1)

where βij =

q∑
q=1

Φi (Pq) Φj (Pq)

Φi : eigen function of ith mode

Pq : actuator location, q number of actuators

ζi : damping ratio on ith mode

ωi : natural frequency on ith mode

As a criterion of actuator location, following performance index PI ′ is suggested in
[HL93].

PI ′ = 2

(
n∑
i=1

Ei

)
n

√√√√ n∏
i=1

(Ei) (A.2)

If the damping ration ζi is small enough and the natural frequencies of the structure
are well spaced, then equation (A.3) is satisfied.

λc,2i−1 = λc,2i = Ei (A.3)

where λc: eigenvalues of the controllability gramian (A.4)

Therefore following performance index is finally suggested as a criterion for actuator
location.

PI =

(
2n∑
i=1

λc,i

)
2n

√√√√ 2n∏
i=1

(λc,i) (A.5)
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Applying same methodology to the obeservability gramian and energy index from it,
a criterion for sensor location is suggested as in equation (A.6).

PI =

(
2n∑
i=1

λo,i

)
2n

√√√√ 2n∏
i=1

(λo,i) (A.6)

where λo: eigenvalues of the controllability gramian (A.7)

A.2. Effective mass

Since ealry 70’s, the concept of effective mass has been used for identifying predom-
inant modes. Effective mass is a moving mass value when the structure is exposured
to a unit base excitation on a single direction under a certain mode. It is measured
as a modal reaction force to the unit base acceleration. Each of modal effective mass
is assumed to vibrate on a certain mode only; therefore the summation of effective
mass of all modes are teh same as a total mass of the structure. On the other word,
effective mass represents the contribution of each mode for the movement on a cer-
tain degree of freedom. Consequently, the mode which has high effective mass value
on the interested degree of freedom(d.o.f), it can be assumed as predominant mode
on that d.o.f.
Effective mass can be derived as in equation (A.8).

M eff
i =

LTi Li
mii

=

(
ϕTMψi

) (
ψTi Mϕ

)
ψTi Mψi

(A.8)

where ψi : ith mode shape

ϕ : rigid body mode

Li : mass modal participation vector on mode i

Note that effective mass values are not influenced by the normalization of mode
shape.

A.3. Actuator modeling for piezo-patch actuator

After a trade-off study about active damping concept for solar array panel, as a part
of solar array panel project under EADS Astrium, piezo-electric patch is chosen as
an actuator. It has a high power speicific volume or mass ration (power divided by
volume or mass); so suitable to space application. Acceptable temperature range
(−20 +120 ◦ C) and hysteresis (∼ 10%) make piezoceramic (PZT) patches desirable
than other smart materials such as shape memory alloy or piezoelectric polymer. Since
PZT has high stiffness, it can generate high force on the base structure to modify its
behavior. High bandwidth and load bearing capabiliy are also merits of PZT. As it is
made in patch type, it can be integrated very well onto the structure, especially to a
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panel without adding any spatial problems. Due to above advantages, piezoceramic
material is widely used in space application as an actuator. However, because of its
electro-mechanical property, modeling its behavior is complicated. Deppoling of ce-
ramic under high electric field, nonlinearity between strain and electric field, hysterisis,
and dependency on mechanical load and temperature increase the complexity of PZT
modeling. However, under a certain electric field range, linearized model is acceptable
and widely used. Linear theory of piezoelectricity is summarized in equation (A.9). S

D

 =

 sE d

d εT

 T

E

 (A.9)

S : strain

D : dielectric displacement (charge per unit area)

T : stress

E : electric field

sE : compliance matrix

d : piezoelectric constants

εT : permittivity constants

Based on the electrical and mechanical constitutive equation, there are several mod-
eling methods to integrate PZT actuator into the base structure. Thermo elastic
analogy treats a strain due to electric field as a thermal strain. It is easily applicable,
but it contains high modeling error and cannot be applied to the structure exposured
under an actual thermal loading. Blocking force model uses the approximated force
generated by elongation of piezo patch. It can be applied both on static and dynamic
application but still contains some errors. In reality the force from actuator is always
smaller than blocking force because the base structure is elastic, when piezo-patch
generates force, some part of the force is consumed to deform a base structure. In
the blocking force model, this effect is neglected and the base structure is assumed
to be rigid. Finally, equivalent force model, so called pin-force model, is suggested to
consider the deformation of the base structure as well.
In the pin-force model, the bonding between the actuator and the base structure
is assumed as a perfect bonding. Under this condition, the shear stress caused by
bending deformation is concentrated on the edge of the actuator behaving like a pin
connection with force and moment as drawn in Fig. A.1 [CR94].
Using the classical laminate theory (CLT), the components of stiffness matrices [A],
[B], and [D] matrices are obtained as in equation (A.10)

[A] =
∑

k [Ak] =
∑

k

[
Q̄k

]
(zk+1 − zk)

[B] =
∑

k [Bk] =
1

2

∑
k

[
Q̄k

] (
z2
k+1 − z2

k

)
(A.10)

[D] =
∑

k [Dk] =
1

3

∑
k

[
Q̄k

] (
z3
k+1 − z3

k

)
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Figure A.1.: Pin-force model for piezoelectric patch actuator

[A] : matrix of in plane stiffnesses that relates in-plane defor-
mation with in-plane forces

[B] : matrix of coupling stiffnesses that relates in-plane defor-
mation with moments and curvatures with in-plane forces

[D] : matrix of rotational stiffnesses that relates curvature with
applied moments

From the equivalent force condition as shown in equation (A.11)-(A.12), the force
and moment generated by piezo-patch actuator can be modeled by equation (A.13)
[Loc01].

∫
plate
{σ} dz +

∫
act
{σ} dz = 0 for the force (A.11)∫

plate
{σ} z dz +

∫
act
{σ} z dz = 0 for the moment

 [Aplate] [Bplate]

[Bplate] [Dplate]

 {ε0}
{χ}

 = −

 [Aact] [Bact]

[Bact] [Dact]

 {ε0}
{χ}

+

 [Aact]

[Bact]

 {Λ}

ε0 : stiffness from actuator (A.12)

χ : stiffness from total structure

Λ =

 [d]t
V

ta
: actuator layer

0 : plate
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 {Fact}{Mact}

 =

 [Aact] [Bact]

[Bact] [Dact]

 [Atot] [Btot]

[Btot] [Dtot]

−1

− 1

 [Aact]

[Bact]

Λ

act : stiffness from actuator (A.13)

tot : stiffness from total structure

The advantage of pin-force model as well as blocking force model is that the actu-
ator does not need to be integrated in a complex FE model. Instead, the existance
of actuator is counted in acuation force modeling as in equation (A.13), and only
external force and moment are applied to the base structure. It provides much more
computational efficiency especially when the base structure is large and complex, and
when the location of actuator is changed. The limitation of pin-force model is the
thickness ratio between the patch actuator and the base structure. In general, when
the base structure is more than five time thicker than the patch actuator, pin-force
model gives accurate approximation as shown in Fig. A.2 [CR94].

The distribution of force on each node is from the weight factor shown in Fig. A.3;
0.5 on the corner, 1 on the middle of the edge.

A.4. Controller design

The type of controller is selected based on the target structure. For the relatively
simple structures such as active truss structure, more direct way is preferred such as
positive position feedback (PPF) control by filtering chosen modes. For the complex
structures, modern control theory such as Linear Quadratic Regulator (LQR) is pre-
ferred in order to keep a system robust.
For a dynamic system in state space as shown in equation (A.14), if {A,B} is control-
lable, state x can be sent to zero within a finite time from any initial state z(t0) = z0.

ż = Az +Bu (A.14)

A finite energy input make this possible can be described as u = −Lz. As L be-
comes larger, z can be zero faster; however large L represents large input energy for
control Therefore trade-off between fast decay and control energy is required. Linear
Quadratic Regulator (LQR) problem is designing optimal control input u minimizing
quadratic summation J of those two factors.

J =
1

2

∫ ∞
0

(
xTQx+ uTRu

)
dt (A.15)

where Q(≥ 0), R(≥ 0) are weighting matrices

For the solar panel model, LQR controller is used. Since the aim is vibration control,
weighting factor for state, Q, is decided very large value.
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Figure A.2.: Comparison of Bernoulli-Euler model and pin-force model according to
the thickness ratio

Figure A.3.: Weighting factor for an element in pin-force model (actuator)
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A.5. Composite modeling

A composite refers a mixture of two different materials to have advantages from both
sides. Generally it consists of a ductile material (matrix) and a material with high
strength and stiffness (filler/fiber). The main puprpose of designing a composite is to
make a material with better performance and lower mass; therefore both materials are
taken from low density materials. Among the various kinds of composite depending
on which matrix and filler types are used, fiber reinforced polymer is most commonly
used. As a filler, graphite (carbon) fiver, and glass fiber are popular. The strength
and stiffness of a composite are decided by the types and amount of fiber in the resin,
arrangement and lay-up. Fundamental methods to calculate the material properties
of a composite from the properties of matrix and fibers are the rule of mixture and
classical laminate theory.

A perfect bonding between fiber and matrix is assumed; then the strains from both
matrix and fiber are same as shown in equation (A.16).

σx = Vf σfx + Vm σmx = (Vf Ef + Vm Em) εx (A.16)

Vf : fiber volume fraction

Vm : matrix volume fraction , 1− Vf
Ef : Young’s modulus of fiber

Em : Young’s modulus of matrix

σfx : stress on fiber

σmx : stress on matrix

εx : strain

Therefore the Young’s modulus of the entire structure Ex can be expressed as in
equation (A.17), which is called rule of mixture.

Ex = Vf Ef + Vm Em (A.17)

With similar manners other properties are driven as in equation (A.18)[TH80].

Poisson’s ratio : νx = Vf νf + Vm νm

Elastic modulus Ey :
1

Ey
=
Vf
Ef

+
Vm
Em

(A.18)

Shear modulus Es :
1

Es
=
Vf
Gf

+
Vm
Gm

(A.19)

Figure A.4.: Matrix-fiber composite
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Rule of mixture determines material properties of each layer according to the axis of
fiber alignment. When the layers with various fiber angle orientations are piled up,
the material properteis of the total laminates are also different. Their flexibility in
designing is one of the major advantages of composite structures.

A classical laminate theory (CLT) combines the properties of each layer based on
equilibrium equations, compatibility conditions, and Hook’s law. A perfect bond be-
tween single laminas and Kirchhoff hypothesis are assumed. A stiffness matrix Qk

from a single lamina with fiber angle αk can be transformed into a global coordinate
as shown in equation (A.20).


Q̄11

k
Q̄12

k
Q̄13

k

Q̄21
k
Q̄22

k
Q̄23

k

Q̄31
k
Q̄32

k
Q̄33

k

 =


m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2



Qk

11 Q
k
12 Q

k
13

Qk
21 Q

k
22 Q

k
23

Qk
31 Q

k
32 Q

k
33




m2 n2 2mn

n2 m2 −2mn

−mn mn m2 − n2


T

Q̄k = T k Qk
(
T k
)T

(A.20)

,where m = cosαk and n = sinαk

The resultant force-momentum equation after piling up is shown in equation (A.21).
CLT is valid only for thin laminates such that the span is at least ten times larger
than the thickness, and the transverse deflection is small.



Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A16 B11 B12 B16

A21 A22 A26 B21 B22 B26
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γ0
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(A.21)

[A] =
∑

k

[
Ak
]

=
∑

k

[
Q̄k
]

(zk+1 − zk)

[B] =
∑

k

[
Bk
]

=
1

2

∑
k

[
Q̄k
] (
z2
k+1 − z2

k

)
[D] =

∑
k

[
Dk
]

=
1

3

∑
k

[
Q̄k
] (
z3
k+1 − z3

k

)



B. Appendix 2 : Additional results

B.1. Results from static analysis and control
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B.2. Results from dynamic analysis of truss
structure
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B.3. Results from dynamic analysis of solar panel
model
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index number PI value

order FM RM FM RM

1 3, 18 3, 18 1.00 1.00

mode 1 2 44, 45 44, 45 0.74 0.61

3 28, 29 28, 29 0.73 0.59

4 62, 63 62, 63 0.66 0.55

1 504, 517 504, 517 1.00 1.00

mode 2 2 487, 498 487, 498 0.95 0.94

3 550, 551 419, 420 0.16 0.12

4 471, 482 550, 551 0.15 0.12

1 142, 143 215, 226 1.00 1.00

mode 3 2 215, 226 142, 143 0.96 0.86

3 122, 123 122, 123 0.90 0.78

4 141, 144 141, 144 0.88 0.77

1 215, 226 215, 226 1.00 1.00

mode 6 2 196, 209 196, 209 0.69 0.69

3 248, 259 37, 52 0.43 0.41

4 37, 52 248, 259 0.41 0.36

1 486, 499 486, 499 1.00 1.00

mode 10 2 503, 518 503, 518 0.56 0.53

3 487, 498 487, 498 0.51 0.52

4 504, 517 504, 517 0.49 0.47

Table B.1.: Highest performance index (PI) values and corresponding element num-
bers for actuator selection of solar panel model (case 11)
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index number PI value

order FM RM FM RM

1 181 181 1.00 1.00

mode 1 2 180, 182 180, 182 0.97 0.97

3 179, 183 179, 183 0.90 0.90

1 82 82 1.00 1.00

mode 2 2 81, 83 81, 83 0.98 0.98

3 80, 84 80, 84 0.92 0.92

1 181 181 1.00 1.00

mode 3 2 180, 182 180, 182 0.98 0.98

3 179, 183 179, 183 0.93 0.93

1 18, 146 18, 146 1.00 1.00

mode 6 2 17, 147 17, 147 0.97 0.97

3 19, 145 19, 145 0.95 0.95

1 2, 62 2, 62 1.00 1.00

mode 10 2 63, 101 63, 101 0.90 0.89

3 64, 100 64, 100 0.79 0.79

Table B.2.: Highest performance index (PI) values and corresponding node numbers
for sensor selection of solar panel model (case 11)

Figure B.14.: Actuator locations for active damping of solar panel model (case 11)
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Figure B.15.: Sensor locations for active damping of solar panel model (case 11)
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(a) sensor 1 (b) sensor 2

(c) sensor 3 (d) sensor 4

(e) sensor 5 (f) sensor 6

Figure B.16.: Displacement plot from sensors (case 11)
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