
Fakultät für Maschinenwesen
Lehrstuhl für Angewandte Mechanik

Simulation and Control of
Biped Walking Robots

Dipl.-Ing. Univ. Thomas Buschmann

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. rer. nat. Ulrich Walter

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. habil. Heinz Ulbrich

2. Univ.-Prof. Dr.-Ing. habil. Boris Lohmann

Die Dissertation wurde am 9. September 2010 bei der Technischen Universität München
eingereicht und durch die Fakultät für Maschinenwesen am 18. November 2010
angenommen.

Author

Thomas Buschmann
Lehrstuhl für Angewandte Mechanik
Technische Universität München
85747 Garching
Germany
E-Mail: ThesisThomasBuschmann@googlemail.com

©2010 Thomas Buschmann
All rights reserved.

A printed version is available from Verlag Dr. Hut, München (ISBN 978-3-86853-804-5)
An electronic version is available at http://nbn-resolving.de/urn/resolver.pl?
urn:nbn:de:bvb:91-diss-20101201-997204-1-6.

mailto:ThesisThomasBuschmann@googlemail.com
http://www.dr.hut-verlag.de/978-3-86853-804-5.html
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101201-997204-1-6
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20101201-997204-1-6

Abstract

This PhD thesis covers simulation and control of biped walking robots. Simulations
and experiments were performed with the robots Johnnie and Lola developed at the
Institute of Applied Mechanics, Technische Universität München, Germany.

The chapter on modeling and simulation describes the approach to simulating
the rigid multibody dynamics. It includes specialized models for simulating drive
friction, nonlinear drive kinematics and the unilateral ground contact. Component
models, contact and differential equation solvers are combined to a family of robot
simulations with varying modeling depth and computational cost.

The thesis also presents a hierarchical system for real-time walking control. Novel
aspects include a trajectory generator based on spline collocation and a stabilizing
controller based on hybrid position/force control. Lola’s redundant toe and pelvis
joints are used to reduce joint speeds and avoid joint limits. All methods were
verified on both robots in walking experiments and simulations. In experiments Lola
reached a maximum walking speed of 3.34 km/h. Using a computer vision system
developed at the Institute of Autonomous Systems Technology at the Universität der
Bundeswehr in Munich, Germany, Lola is also capable of safely exploring previously
unknown environments.

iii

Acknowledgments

First, I would like to thank my supervisor Professor Heinz Ulbrich for giving me the
opportunity to do this research as well as for his guidance and support throughout
the past six years. He gave me the freedom to pursue my own ideas and created an
excellent research environment at the Institute of Applied Mechanics. I feel grateful
for having had the opportunity to work on such an interesting and challenging
project. I would also like to acknowledge Professor Boris Lohmann and Professor
Ulrich Walter for serving on my thesis defense committee. This thesis would not
have been possible without the pioneering work on legged locomotion at the Institute
of Applied Mechanics led by Professor Friedrich Pfeiffer. His advice and guidance
have been invaluable.

I am deeply grateful for having had the chance to work with a number of very
talented and highly motivated people. I am especially thankful to Sebastian Lohmeier,
who was responsible for Lola’s mechatronic system architecture and who did the
detailed mechanical design (see [62]). The collaboration with him was most enjoyable,
inspiring and productive. I would like to thank Valerio Favot, who worked on Lola’s
decentral controllers and communication system, and Markus Schwienbacher, who
worked on Lola’s hardware and software. Without their terrific work, Lola would not
have taken a single step. I owe special thanks to Georg Mayr. His long experience
with legged robots, his work on Lola’s electronics and his help in maintaining the
robot Johnnie were invaluable. I would also like to thank Mathias Bachmayer for
designing Lola’s DSP boards. Experimental robotics research is impossible without
decent hardware and I am especially grateful for Wilhelm Miller, Walter Wöß, Simon
Gerer, Philip Schneider and Tobias Schmidt’s excellent work in manufacturing Lola.

Special thanks are also due to Michael Gienger and Klaus Löffler for their work in
developing the robot Johnnie that served as a research platform for many years until
Lola was fully operational. Their work was both an inspiration and the basis for the
development of Lola.

I would also like to express my gratitude to Gerhard Rohe and Felix von Hun-
delshausen from the Universität der Bundeswehr in Munich, Germany, who developed
Lola’s computer vision system. Working with both was an extremely pleasant and
rewarding experience and this thesis would have been incomplete without the research
on autonomous locomotion.

I am very grateful to Alexander Ewald for organizing the presentation of Lola at the
Hannover Messe and to Dr. Thomas Thümmel for his support and encouragement
throughout this project.

I would also like to thank my (ex-) colleagues Sebasitan Lohmeier, Markus Schwien-
bacher and Gerhard Schillhuber and my sister Kathrin for proofreading this thesis.

Finally, I would like to acknowledge the DFG‘s financial support for this research
through the research program “Natur und Technik intelligenten Laufens” (Nature
and technology of intelligent walking, DFG grant UL 105/29).

v

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Background and Related Work . 4

1.2.1 A Short History of Humanoid and Animal-Like Robots 4
1.2.2 Related Work . 5

1.3 Overview of the Thesis . 9

2 Modeling and Simulation 11
2.1 Introduction . 11

2.1.1 Related Work . 11
2.1.2 Overview . 12

2.2 Rigid Body Dynamics . 13
2.2.1 Topology and Degrees of Freedom 13
2.2.2 Recursive Kinematics Calculation . 15
2.2.3 Relative Kinematics . 17
2.2.4 Equations of Motion for the Rigid Multibody System 21

2.3 Contact and Environment Models . 21
2.3.1 Contact Dynamics . 23
2.3.2 Environment Model and Distance Computation 27

2.4 Drives . 31
2.4.1 Electrical Motor Dynamics . 31
2.4.2 Gear Friction . 32
2.4.3 Gear Elasticity . 36

2.5 Sensor Models . 37
2.5.1 Joint Sensors . 37
2.5.2 Force/Torque Sensors . 38
2.5.3 Inertial Measurement Unit . 38

2.6 Robot Models and Time Integration . 40
2.6.1 Robot Models . 40
2.6.2 Time Integration . 43

2.7 Chapter Summary . 45

3 Stability and Feasibility in Biped Walking 47
3.1 Introduction . 47
3.2 Basic Aspects of Biped Walking Dynamics 47
3.3 Zero Moment Point and Related Concepts 48

3.3.1 Zero Moment Point . 48
3.3.2 Foot Rotation Indicator and Zero Rate of Change of Angular Mo-

mentum . 50
3.3.3 Stability Criteria Based on the Contact Wrench 51
3.3.4 Remarks . 51

3.4 General Stability Criteria . 52

vii

viii Contents

3.5 Periodic Motions . 53
3.6 Chapter Summary . 54

4 Real-Time Trajectory Generation 55
4.1 Introduction . 55
4.2 Gait Coordination . 55
4.3 Step Sequence Planning . 57

4.3.1 Standard Circular Path . 59
4.3.2 Step Parameter Calculation . 61
4.3.3 Reactive Step Sequence Planning . 62
4.3.4 Higher Level Behavior . 63

4.4 Coordinate Systems and Task-Space Definition 64
4.4.1 Coordinate Systems . 65
4.4.2 Task-Space Definition . 66
4.4.3 Relative Foot Orientation . 68
4.4.4 Absolute Upper Body Orientation 69

4.5 Foot Trajectory Generation . 70
4.6 Center of Gravity Trajectory Generation . 74

4.6.1 Related Work . 75
4.6.2 Problem Statement and Analysis . 76
4.6.3 Center of Gravity Dynamics . 78
4.6.4 ZMP Reference Trajectory . 79
4.6.5 Solving the Boundary Value Problem 80

4.7 Camera Head Control . 84
4.7.1 Inverse Kinematics . 84
4.7.2 Reference Trajectory Generation . 85

4.8 Contact Force Distribution . 87
4.9 Additional Components in Trajectory Generation 89
4.10 Chapter Summary . 90

5 Feedback Control 93
5.1 Introduction . 93

5.1.1 Overview . 93
5.1.2 Background and Related Work . 93

5.2 Contact Force Modification . 95
5.3 Hybrid Position/Force Control . 98
5.4 Inverse Kinematics and Redundancy Resolution 101
5.5 Joint Position Control . 104

5.5.1 Joint Position Control for Johnnie 104
5.5.2 Joint Position Control for Lola . 106

5.6 Optimization-Based Parameter Tuning . 109
5.7 Chapter Summary . 111

6 Autonomous Walking 113
6.1 Computer Vision System . 113
6.2 Interfacing Walking Control and Computer Vision 115

7 Software System 117
7.1 Introduction . 117
7.2 Software Components . 118

Contents ix

7.3 Main Programs . 120
7.4 Real-Time System . 122
7.5 Chapter Summary . 126

8 Results 127
8.1 Biped Walking . 127

8.1.1 Walking Forward . 127
8.1.2 Walking Sideways . 130
8.1.3 Comparison of Simulation and Measurement 130

8.2 Autonomous Locomotion . 138

9 Conclusion 141
9.1 Summary . 141
9.2 Discussion . 142
9.3 Recommendations for Future Research . 143

A Lola’s Basic Technical Data 145

B Multibody System Topology of Lola 147

C Harmonic Drive Friction Model Parameters 149

D Upper Body Kinematics 153

E Cubic Splines 155

F Local Optimization of Kinematic Redundancy 159

G Experimental Results 161
G.1 Walking Forward at 0 km/h . 161
G.2 Walking Forward at 1 km/h . 163
G.3 Walking Forward at 2 km/h . 164
G.4 Walking Forward at 3 km/h . 166
G.5 Walking Sideways at 0.7 km/h . 167

Bibliography 171

1 Introduction

During the past three decades research and development in robotics has expanded
from traditional industrial robot manipulators to include autonomous and animal-like
or humanoid robots. Over the past two decades, the field of humanoid robotics has
witnessed significant advances. This development has been driven by improvements
in actuator, computer and other enabling technologies and guided by the vision of
building machines with (some) human-like capabilities.

A machine with human-like appearance and capabilities would be able to operate
in all environments designed for humans, such as factories, offices and homes. Also,
interacting with humans using natural language and gestures both simplifies the
interaction for the human and decreases the psychological barrier for the use of
such machines in service applications [19]. All this makes service robotics one of the
most promising application areas for humanoids, while the entertainment industry is
also exploring the potential of such machines. Even without high-level intelligence,
biped robots are potentially superior to wheeled or tracked vehicles in complex
and cluttered environments, since they can climb stairs or step onto or over large
obstacles.

Building truly humanoid robots will require significant advances in areas including,
among others, high-level cognition, computer vision, speech synthesis, speech recogni-
tion, manipulation and biped locomotion. Recent interest in humanoid robotics has
spawned a large number of research projects focusing either on individual problems
or on systems integration. This thesis is the result of work conducted during the
research project “Ein leistungsgesteigerter, autonomer Zweibeiner” (An autonomous
biped with enhanced performance)1. It is part of the DFG2 package proposal “Natur
und Technik intelligenten Laufens” (Nature and technology of intelligent walking)3,
which focuses on biological and technological aspects of autonomous and legged
locomotion.

1.1 Problem Statement
This thesis concerns the modeling, simulation and real-time control of a specific
kind of biped walking robot, such as Lola and Johnnie developed at the Institute of
Applied Mechanics, Technische Universität München. Figure 1.1 shows photographs
of both robots as well as some basic technical data.4 The type of robot discussed

1 DFG grant UL 105/29
2 The DFG is the “central, self-governing research funding organization in Germany.”

(http://www.dfg.de)
3 DFG grant PAK 146, http://www.uni-koeln.de/math-nat-fak/zoologie/

tierphysiologie/dfgGruppe.html
4 In addition to the 14 joints mentioned in Figure 1.1, Johnnie has two shoulder adduction

joints and one for rotating the upper body. However, they were never operational and are

1

http://www.dfg.de
http://www.uni-koeln.de/math-nat-fak/zoologie/tierphysiologie/dfgGruppe.html
http://www.uni-koeln.de/math-nat-fak/zoologie/tierphysiologie/dfgGruppe.html

2 1 Introduction

Height 1.8 m
Weight 63 kg
Driven joints 25

Height 1.75 m
Weight 50 kg
Driven joints 14

Lola Johnnie
Figure 1.1: Biped robots Lola (left) and Johnnie 4 (right)

here is actuated by electric motors and reduction gears and has position, but no force
sensing in the joints. It is equipped with force/torque sensors (FTS) in the feet, an
inertial measurement unit (IMU) mounted on the pelvis or torso and a stereo camera
system used for high-level navigation and control. The robot structure is quite rigid,
while elasticity and damping are intentionally introduced in the foot-ground contact.
Other examples of such devices include Honda’s robots, the HRP-robots and Hubo
(cf. Section 1.2.2). Figure 1.2 illustrates the basic structure of this type of robot.

Biped walking is a process of alternatingly supporting the body’s weight with
one leg while moving the other leg to a new foothold. During this activity, forces
generated by gravity and accelerated limbs must be balanced by contact forces acting
on the supporting foot or feet. Feasible contact forces are limited due to the unilateral
foot-ground contact. This strongly limits the range of physically feasible motions
and complicates the process of maintaining balance. In walking pattern generation

therefore not considered in this thesis. Also, the camera head shown on Johnnie in Figure 1.1
has two driven joints. The head was developed at a different institute and its control was
not integrated into the robot’s walking control. Instead, it was directly controlled by a vision
processing system developed by Schmidt et al. [16]. Since the head was not used for work
presented here, its joints are not considered in this thesis.

1.1 Problem Statement 3

Actuated joint with position sensor(s)

Inertial measurement unit

Force/torque sensor

Compliant foot-ground contact

Camera

Figure 1.2: Basic structure of biped robots considered in this thesis

and stabilizing control, feasibility conditions take the form of inequality constraints.
Violating these constraints is physically impossible. However, if the boundary of
the feasible region is reached, the contact state will change, i.e., the robot will
start tipping over. While controlling individual joints is straightforward, this is not
equivalent to maintaining balance, since the compliant foot-ground contact makes
the robot underactuated, i.e., the system has more degrees of freedom (DoFs) than
inputs. Real-time control is especially challenging, since the complex dynamics of the
robot must be approximated to reduce the computational cost and enable real-time
execution of planning and control algorithms. At the same time, relevant physical
effects must be taken into account in order to achieve fast and robust walking.

To enable autonomous locomotion, the robot must identify viable footstep locations.
In cluttered environments this means identifying a collision-free path from the current
to the target position. This can be achieved by combining the robot’s walking control
with a computer vision system capable of recognizing obstacles and choosing a viable
path. This thesis does not concern aspects of computer vision and path planning.
However, to enable autonomous locomotion, the real-time control system must supply
information about the robot’s state to the vision system and must be able to execute
continuously changing commands coming from the path planning module.

Systematic design of walking control algorithms is greatly simplified by dynamics
simulations, since they allow a detailed analysis of dynamics, stability issues, the
influence of sensor noise, etc. Dynamics simulations also are the basis for calculating
loads that are required for hardware design. Especially during the early stages of
hardware design a large number of different kinematic configurations, motors, gears
and other parameters must be evaluated [62]. Therefore, a library of robot models of

4 1 Introduction

varying complexity is an essential tool for analysis, hardware design and model-based
real-time control.

1.2 Background and Related Work

1.2.1 A Short History of Humanoid and Animal-Like Robots

Cultural History of Robots
There is a long history of building animal and human-like machines and an even
longer one of references to such machines in literature. Often, human-like machines
or machine-like humans are used as metaphors for the dangers of technology and
human hubris. Well-known examples include the Golem from the Bible, which is
originally described as a perfect servant, whose only fault is being too literal in
fulfilling his master’s orders, but later becomes a raging monster in the German
Expressionist film “The Golem” by Paul Boese from 1920.

In “Frankenstein: or, the Modern Prometheus” by Mary Wollstonecraft Shelly, the
Swiss scientist Victor Frankenstein creates an artificial man from pieces of corpses.
The artificial being seeks affection, but is rejected by everyone and eventually Victor
Frankenstein dies.

In Karel Čapek’s play “R.U.R.: Rossum’s Universal Robots” (published 1920,
performed 1921), a scientist succeeds in building human-like machines superior to
humans in both precision and reliability. The machines start to dominate the human
race and threaten it with extinction, but humanity is saved at the last moment. The
word “robot,” which is derived from the Czech word for forced labor, has its origin
in this play.

Only in more recent science fiction novels robots are literally meant to be human-
like machines and therefore do not necessarily have to be evil or dangerous. A prime
example are Isaak Asimov’s popular science fiction novels.

Mostly due to this history, significant parts of the general public perceive humanoid
robots either as a threat to humans or have unrealistic expectations about the abilities
of such machines. This cultural background is important, since the general public
must accept and have realistic expectation about the abilities of humanoids if they
are to become widely used. Accordingly, beyond the obvious technological hurdles
that must be overcome, the cultural history of humanoid robots poses additional
challenges to the widespread use of such devices

Technological History of Robots
In the past, there were several distinct phases in which scientist and engineers tried
to build machines with human or animal-like capabilities. Each phase corresponds to
significant advances in technology. Building such machines has been motivated both
by the hope of actually replicating human or animal-like behavior and to showcase
what is possible with cutting edge technology.

Early examples of purely mechanical, animal-like mechanisms were built in Greece
by Archytas of Tarantum in 350 BC. Automatons such as a mechanical orchestra
were also popular in imperial circles in China from the third century BC until the
13th century AD.

1.2 Background and Related Work 5

During the 1800s, significant advances in mechanical engineering lead to the
creation of many automatons in western Europe. These automatons were complex,
mainly mechanical devices that used important technological advances that also
lead to the invention of the (commercial) steam engine and the automated loom.
Interestingly, some of the most sophisticated mechanisms were designed by Jaques
de Vaucason (1709-1782), who also invented the first automated loom, which was
driven by perforated cards.

During the 1940s, advances in electronics, drives and mass production enabled
the design of much more sophisticated electromechanical robots using technologies
also found in cars and consumer goods of those days. One example is the robot
Electro, developed by Westinghouse and presented at the 1939 World’s Fair in New
York, which was driven by electric motors and controlled by vacuum tube relays.
The robot was unable to walk, but could move using small wheels attached to the
feet, smoke and emulate a conversation using a record player. Although primitive by
today’s standards, the development of Electro cost Westinghouse several hundred
thousand dollars [68].

The development of modern humanoid robots started in the late 1960s, driven
mainly by advances in sensors, actuators and computer technology that also enabled
sophisticated factory automation and complex consumer electronics.

1.2.2 Related Work
There is a large and growing body of research on humanoid and legged robots. Due
to the very large number of publications in this field, only the work considered to be
the most relevant for this thesis is summarized briefly in the following. In particular,
only work on fully actuated, three dimensional biped robots is considered. Surveys
of legged walking and running robots can be found in [60, 97, 99, 110]. Gienger
[25] and Lohmeier [62] give detailed surveys of biped robot hardware design. More
detailed reviews of specific aspects of simulation and control are given in the chapters
covering these subjects.

Waseda University
In 1973, Kato initiated modern research on biped walking robots at the Waseda
University by developing Wabot-1, the first full-scale human-like robot. It was
hydraulically powered and used a static gait. A number of advanced robots were
subsequently developed at Waseda, the latest one is Wabian-2 [79]. Its basic hardware
structure corresponds to that shown in Figure 1.2. The stability and performance
of this system has been proven in many experiments. It has been used for testing
innovative hardware concepts including passive toes and feet with a human-like arch
structure [117].

Tokyo University
In the 1980s, Miura and Shimoyama developed several very small biped robots,
notably the robot Biper-3 [64] with point feet. The robot is modeled with linearized
equations of motion (EoM) and the double support period is assumed to be instanta-
neous. The robot is stabilized by adjusting the stride length based on a limit cycle
analysis of a simplified linear robot model.

6 1 Introduction

More recently, the humanoid robots H6 and H7 [77] were designed and built by
Inoue at Tokyo University’s JSK-Laboratory in cooperation with Kawada Industries.
These robots were equipped with active toe joints, enabling them to walk faster
and climb higher stairs than would have been possible with one-segment feet. The
work on vision-guided walking [76] and whole-body motion control [78] is especially
notable.

MIT/Carnegie Mellon Leg Laboratory
Raibert developed several hopping machines in the 1980s with one, two or four legs
[34, 97]. These robots cannot walk, but are able to hop and run very fast and stably.
The robots have telescopic legs controlled by pneumatic and hydraulic actuators. An
umbilical cable transfers sensor data to an external computer and provides electrical,
hydraulic and pneumatic power. This design allows very lightweight legs that account
for only approximately 5% of the robot’s mass. This enables very simple, yet effective
balancing control based on stabilizing the limit cycle by adjusting the stride length.
Although these concepts have yet to be applied to full-sized humanoid robots able to
perform general tasks other than hopping or walking, this ground breaking work has
been very influential.

Boston Dynamics
Boston Dynamics5 recently presented a biped robot called Petman capable of walking
at 7.08 km/h6. The project is funded by DARPA (the U.S. Department of Defense’s
research and development office) and to the author’s knowledge no substantial
information on the hardware and control system has been published to date. However,
the company states that it is based on Big Dog’s technology, a quadruped robot also
developed by Boston Dynamics. Big Dog is driven by hydraulic actuators and is
equipped with an on-board internal combustion engine and pump. Publications on
Big Dog’s control system give little detail [98]. However, the available videos and
publications suggest that the same basic approach taken by Raibert in his work
on hopping robots is pursued with Big Dog and Petman: hydraulic actuation with
on-board power generation lead to a high body mass/leg mass ratio, simplifying robot
dynamics, which in turn simplifies balancing by controlling the limit cycle through
adaptation of footstep locations. Both Big Dog and Petman have a three-segmented
leg, which avoids the typical “knee singularity” of most biped robots but also leads
to a non-humanoid morphology for Petman. Furthermore, the robot does not seem
to have two-DoF ankle joints or a hip rotation joint. This reduces the leg inertia
and provides enough DoFs for straight walking. However, this makes Petman a
specialized machine for straight walking. Performing more general tasks, or even
curve walking or walking sideways, requires a minimum of six DoFs in each leg. The
video released on the company website shows the potential for this design approach
in building very fast robots. However, the design also seems to preclude the indoor
use of such a device as a general-purpose service robot.

5 Boston Dynamics was founded as a spin-off from the Massachusetts Institute of Technology
by Marc Raibert and others.

6 http://www.bostondynamics.com/robot_petman.html

http://www.bostondynamics.com/robot_petman.html

1.2 Background and Related Work 7

Honda
Honda achieved significant advances in biped walking technology during a secret
research program initiated in 1986. From 1986 to 1993 the prototypes E1 to E6 were
developed. The robot E4 reached a top speed of 4.7 km/h [35] using trajectories
generated off-line and a simple ankle joint impedance control. The robots P1 to P3,
developed from 1993 to 1997, were equipped with arms and grippers and were the
first fully self-contained humanoid robots. While the P1 robot was quite large at
190 cm, the size was reduced to 182 cm for P2, 160 cm for P3 and finally 120-130 cm
for the Asimo robots.

Honda has published very few scientific papers, but quite a bit can be learned
from patents or patent applications (for example [119, 120]). The basic technology
of the P2 robot is described in [32]. Recently, some details of trajectory planning
and control methods used for the Asimo robots, previously available only as patent
applications, were published as scientific papers [121–124].

Honda’s approach to building biped robots has been both very influential and
successful. Many researchers have adopted the same basic approach of using six-
DoF legs, force/torque sensors in the feet, an IMU in the torso and electric motors
in combination with harmonic drive gears. The same can be said for trajectory
planning and control, where using a lumped mass model and controlling upper body
orientation through contact moments has been widely adopted. At 10 km/h, Honda
currently has the fastest running biped robot [122].

Humanoid Robotics Project / AIST
The Japanese National Institute of Advanced Industrial Science and Technology
(AIST) research center developed a number of sophisticated humanoid robots together
with Kawada Industries and a number of Japanese universities. Development started
with the “humanoid robotics project” (1998 to 2002) funded by the Japanese Ministry
of Economy, Trade and Industry (METI). The project started with a P3 robot
provided by Honda which was called HRP-1. The size and basic design approach is
similar for HRP-2 [48] and HRP-3 [49]. The newest robot HRP-4 is based on the
same technology, but is distinguished by a very slender shape, a female appearance
and an 8-DoF face [47]. HRP-2’s maximum speed is 2.5 km/h [48], while HRP-3’s is
2.0 km/h [51].

Toyota
Toyota has presented several “partner robots” that can perform a number of tasks
such as walking or playing musical instruments [125]. A more notable development
is Toyota’s running robot [116]. At 7 km/h, this briefly was the world’s fastest
biped robot. It is distinguished by having active toe joints and no force/torque
sensors. Balancing is achieved by estimating the center of gravity (CoG) position and
replanning CoG trajectories and footstep locations. The very promising approach of
fast replanning of (CoG) trajectories using sensor feedback was previously proposed
by Nishiwaki and demonstrated on a modified HRP-2 robot [74].

KAIST
The Korea Advanced Institute of Science and Technology (KAIST) developed several
humanoid robots, the latest one being HUBO-2. At 130 cm it is the same size as

8 1 Introduction

Honda’s Asimo. The hardware and control follow the same basic approach taken
by Honda and AIST. Using trajectories generated off-line, the robot can walk at
1.4 km/h and run at a speed of 3.24 km/h. For both walking and running the step
length is shorter than the foot length, i.e., a statically stable trajectory can be used
in walking direction. Balance control is based on several decoupled, linear controllers
acting on individual joints [14].

Yobotics/ IHMC
Pratt et al. presented the Yobotics-IHMC (Florida Institute of Human and Machine
Cognition) lower body humanoid robot, which was developed by Yobotics, Inc. in
cooperation with several universities [93]. It uses “series elastic actuators” [101] to
drive the 6-DoF legs and “virtual model control,” i.e., technology developed for MIT’s
Spring Flamingo and M2 robots [94]. While the robot is slower and its movements
appear to be less smooth than those of, e.g., Asimo or HRP-2, this work is notable
since it deviates from the mainstream path of a position-controlled robot stabilized
using IMU and FTS data. Balancing is based on “capture points,” which are defined
as locations where “the robot can step to in order to bring itself to a complete stop.”
[95].

Institute of Applied Mechanics, Technische Universität München
Building on experience gained during the development of a six-legged, insect-like
robot and an eight-legged pipe crawling robot [89], Gienger and Löffler [25,
60] developed the biped robot Johnnie. It is actuated by brushed DC motors and
harmonic drive gears are used in all joints except the ankles, where a double spatial
slider-crank mechanism with ballscrews is used. Six-axis force/torque sensors in the
feet and an IMU in the upper body are used for stabilizing control. In the system
developed by Löffler [60], on-line trajectory generation is based on polynomial
curves for the motion of the feet. The CoG-trajectory is planned using hyperbolic
functions in the lateral plane and a fifth-order polynomial in the sagittal plane.
Balancing is achieved by controlling the upper body orientation via the contact
moments. Using this system, a maximum walking speed of 2.4 km/h was achieved.
Connected to a computer vision system developed by Schmidt et al. [16], Johnnie
was the first biped robot to autonomously navigate among obstacles using only
on-board perception and control.

University vs. Corporate Research
It is evident from the foregoing overview that currently almost all fast and sophisti-
cated biped robots are developed by companies (Honda, Toyota, Kawada Ind. and
Boston Dynamics) or national research centers (AIST and KAIST). Some informa-
tion has been published as either scientific papers or patents for most robots, but
many details are closely guarded secrets. Boston Dynamics has released almost no
substantial information on the control systems for Big Dog and Petman. While
AIST has published quite a few papers on its robots, many details of the stabilizing
controller have not been released7.

7 In his keynote presentation at the Dynamic Walking 2008 conference, Kajita said that
“So far, our controller is not designed based on solid control theory. Thus we have not yet
published the related paper.”

1.3 Overview of the Thesis 9

1.3 Overview of the Thesis
The first objective of this thesis is the development of a modular simulation system
for biped robots. On the one hand, the system should be capable of simulating all
effects that are relevant for control and hardware design. On the other hand, it
should be possible to quickly simulate global system dynamics, since this is very
important during the development of the control system.

The second objective is the development of a walking control system for biped
robots capable of achieving fast, flexible, autonomous and human-like walking. In
particular, the robot should be capable of walking in arbitrary directions: forward
and backwards, sideways and around corners. It should also be able to step over
obstacles while coping with unknown disturbances such as slight pushes or uneven
ground. Furthermore, the system should be sufficiently general to be applicable to
robots with different kinematics and mass distribution, without requiring excessive
parameter tuning. The main contributions of this thesis are:

• The development of a modular simulation system providing problem-specific
robot models, ranging from simpler ones allowing fast simulation of global
system dynamics to complex models that include gear elasticity, finite element
based-contact models and drive dynamics.

• New or improved algorithms for real-time walking control, including:
– Trajectory generation
– Balance control
– Contact force control
– Redundancy resolution
– Fast walking
– Autonomous locomotion

• Experimental verification of a control system for biped walking on two different
robots (Johnnie and Lola)

All modeling, simulation and control methods presented in this thesis were applied
to both robots Johnnie and Lola whenever possible. Successful walking experiments
were performed with both robots using the same walking control framework.

Chapter 2 describes the robot and environment models, as well as the simulation
system developed for Johnnie and Lola. Background on the stability and feasibility
in biped walking is presented in Chapter 3. The system for real-time trajectory
generation is described in Chapter 4 and the feedback control system in Chapter 5.
An overview of the computer vision system developed at the Autonomous Systems
Technology Institute, Universität der Bundeswehr8 and other control components
required for autonomous walking are given in Chapter 6. Chapter 7 gives a brief
overview of the software system developed for simulation and real-time control.
Selected results of walking experiments, simulations and experiments in autonomous

8 http://www.unibw.de/lrt8/index_html-en

http://www.unibw.de/lrt8/index_html-en

10 1 Introduction

locomotion are summarized in Chapter 8. Chapter 9 concludes the thesis with a
summary, a discussion and suggestions for future research.

2 Modeling and Simulation

2.1 Introduction
An important tool for hardware and controller design for humanoid robots is a
dynamics simulation for calculating loads and analyzing system dynamics, control
system robustness and performance. Kinematic and dynamic models are also needed
for model-based walking control. However, both required modeling depth and
acceptable computational cost vary depending on the task, e.g., when designing
stabilizing algorithms or calculating loads for dimensioning new robot hardware.
This makes a library of robot models very useful during development.

This chapter describes a modular system for simulating biped walking robots
with compliant foot-ground contacts, such as the robots Johnnie and Lola. It is an
improved version of the system the author presented in [7].

The system consists of models for the different components of a biped robot and
solvers for the resulting EoM. The model library includes rigid body mechanics,
gear friction, gear elasticity, electrical motor dynamics, nonlinear drive kinematics,
unilateral viscoelastic contacts and polygonal environment models. By combining
these elements, a family of robot simulations with varying modeling depth and
computational complexity is obtained.

2.1.1 Related Work
Due to the significance of simulation for the development of humanoid robots and
the interesting challenges in simulating such complex machines, there is a large and
growing number of publications devoted to this topic. A brief overview is given
in the following. In many cases, contacts between foot and ground or between
different bodies of the multibody system (MBS) are treated as rigid [3, 13, 72]. The
non-smooth dynamics with impacts are then described using measure differential
inclusions [1].

Nakaoka et al. [72] implemented a dynamics simulation for humanoid robots
using a rigid contact model. Rigid multibody mechanics are solved using an 𝑂(𝑁)
algorithm and the contact problem is solved using an iterative linear complementarity
problem (LCP) solver. The compliance of the rubber bushes in the simulated HRP-2
robot [48] are modeled using virtual joints with attached spring-damper systems.
Due to the very small mass of the foot’s base plate that contacts the environment,
“virtual inertia” is added to the sole to avoid high frequency oscillations and small
time steps. The system is implemented in C++ and integrated into the overall
simulation and control system via CORBA1.

1 The “Common Object Request Broker Architecture” is a standard for object oriented middle-
ware released by the Object Management Group (http://www.corba.org/)

11

http://www.corba.org/

12 2 Modeling and Simulation

Wieber et al. [132] presented a framework for simulating both humanoid robots
and biomechanical models of the human body. The system also uses a rigid contact
model. The models are generated using the computer algebra program Maple2 and
its automatic code generation and integrated into the open source Matlab3-clone
Scilab4.

Yamane [134] presented a system for simulating human figures that includes
a parallel 𝑂(log(𝑁)) algorithm for rigid multibody dynamics. Rigid contacts are
implemented using a special iterative solver that is fast but does not treat the general
case of multiple contacts exactly. Compliant contacts are simulated using a penalty
method.

2.1.2 Overview
Johnnie and Lola are both made of fairly rigid aluminum segments connected by
revolute joints and driven by electric motors. Both robots use harmonic drive gears
as speed reducers in most joints and parallel mechanisms with ballscrews or planetary
roller screws to actuate the ankle joints. Lola also uses planetary roller screw-based
mechanisms to actuate the knee joints.5 While brush DC motors are used for Johnnie,
permanent magnet synchronous motors (PMSM) are used for Lola. The feet of the
robots are equipped with viscoelastic contact elements that are deformed during
walking and have a strong influence on walking dynamics.

The major dynamical effects on biped locomotion for these robots are:

1. Rigid body mechanics

2. Drive friction

3. Gear elasticity

4. Nonlinear kinematics in ankle and knee joints

5. Unilateral, compliant foot-ground contact

6. Electrical motor dynamics

Items (1) to (4) are combined to a set of second order ODEs describing the
multibody dynamics. The contact model adds a set of first order ODEs with
complementarity conditions for unilateral contact and coulomb friction. Finally, the
electrical motor dynamics add another set of first order ODEs.

A minimal coordinate representation is used for all models in order to reduce the
computational cost of simulations and enable code reuse for real-time model-based
control. Note that the use of minimal coordinates can lead to a larger number of
bodies in the MBS than DoFs for some model types. If gear elasticity is neglected,
we have a total of 𝑛DoF = 6 + 𝑛joint DoFs for a robot with 𝑛joint joints, whereas the

2 http://www.maplesoft.com/
3 http://www.mathworks.com/
4 http://www.scilab.org/
5 For the sake of simplicity, the term “planetary roller screw” is used in the following, even if

the results are valid for Johnnie, where only ballscrews are used.

http://www.maplesoft.com/
http://www.mathworks.com/
http://www.scilab.org/

2.2 Rigid Body Dynamics 13

total number of bodies is 2𝑛joint + 1, since one segment and one motor is added for
every joint.

In order to simulate the robot, the forward dynamics model is combined with sensor
models and the walking controller. The basic control-flow of the resulting dynamics
simulation is shown in Figure 2.1. The robot state is determined by integrating a set
of ODEs modeling the system dynamics. From this information, sensor data used by
the walking controller is calculated. This in turn is fed into the walking controller,
which calculates the input for the EoM.

Initialize system state

Integrate EoM
until next control cycle Update sensor data

Call walking controller

Set control input
in EoM

Figure 2.1: Basic structure of the dynamics simulation

2.2 Rigid Body Dynamics

Table 2.1: Kinematics nomenclature

𝑘𝑟𝑜 Absolute position of the 𝑘-th body’s FoR
𝑘𝜔 Angular velocity of 𝑘-th body
𝐴𝑖𝑗 Rotation matrix transforming vectors from the 𝑗-th into the 𝑖-th FoR
𝑘𝑟𝑝𝑐 Position of the 𝑘-th body relative to its parent
𝑘𝑟CoG Center of gravity of the 𝑘-th body relative to its FoR
𝐽𝑅 := 𝜕 𝜔/𝜕 𝑞̇ Rotational Jacobian
𝐽𝑇 𝑜 := 𝜕 𝑟̇/𝜕 𝑞̇ Translational Jacobian
𝐽𝑅𝑞 := 𝜕 𝜔/𝜕 𝑞 Rotational Jacobian
𝐽𝑇 𝑞𝑜 := 𝜕 𝑟̇𝑜/𝜕 𝑞 Translational Jacobian

2.2.1 Topology and Degrees of Freedom
The robot’s main segments form an open kinematic chain with tree structure. The
upper body is chosen as the root link and positions, velocities, Jacobians and other
quantities are calculated recursively [7] following a method described, e.g., in [5].
We therefore only need to know the relative kinematics between each body and its
parent to calculate the EoM.

14 2 Modeling and Simulation

x y

z

Figure 2.2: Basic kinematic configuration of Lola with joints shown as red cylinders. Coordi-
nate systems not shown for the sake of clarity.

If motor and gear dynamics are taken into account, one body is added to the MBS
for each drive. If the gears are assumed to be rigid, this does not add DoFs to the
system, since a minimal coordinate representation is used. In the case of elastic gear
models, one DoF is added for each drive.

For joints with harmonic drive gears the tree structure is maintained, while the
ankle joints are driven by parallel mechanisms that form closed kinematic chains.
For Lola a further closed kinematic chain is introduced in the mechanisms driving
the knee joints. Formally, the tree structure can be restored by cutting the drive’s
mechanism open and adding algebraic constraints to the original EoM, which leads
to a Differential Algebraic Equation System (DAE). Fortunately, the ankle and
knee joint kinematics can be solved analytically, removing algebraic constraints and
formally restoring the system’s tree structure.

Figure 2.2 shows the kinematic configuration for Lola’s major segments. For each
body, a local frame of reference (FoR) is introduced. For all bodies except the root
link, the origin is located at the joint closest to the root link and the joint axis is
chosen as the coordinate system’s 𝑧-axis. Additionally, an inertial FoR is introduced
with the 𝑧-axis pointing upwards in the opposite direction as gravity.

The robot’s tree structure leads to the local topology shown in Figure 2.4. Due to
the tree structure, kinematic quantities for each body can be calculated from those
for its parent and the relative kinematics describing the coupling to the parent, i.e.,
the robot kinematics can be calculated recursively starting at the root link. In the
following, the basic approach to calculating the robot’s kinematics is presented.

2.2 Rigid Body Dynamics 15

Body

Frame of reference Reference point, index, etc.
b
arc

Figure 2.3: Sub- and superscripts for a variable “𝑟”

2.2.2 Recursive Kinematics Calculation

Minimal Coordinate Representation
Since the robot is modeled using a minimal coordinate representation, kinematic
quantities must be expressed as functions of the generalized coordinates 𝑞. All the
system’s constraints are scleronomic and holonomic, which leads to the following
equations for the (absolute) velocity 𝑟̇, acceleration 𝑟̈, angular velocity 𝜔 and angular
acceleration 𝜔̇ of one body in the MBS [126]:

𝑘𝑟̇ = 𝜕 𝑘𝑟̇

𝜕 𝑞̇
𝑞̇ = 𝑘𝐽𝑇 𝑜 𝑞̇ (2.1)

𝑘𝑟 = 𝜕 𝑘𝑟̇

𝜕 𝑞̇
𝑞 + 𝜕 𝑘𝑟̇

𝜕 𝑞
𝑞̇ + 𝜔 × 𝑘𝑟̇ = 𝑘𝐽𝑇 𝑜 𝑞 + 𝑘𝐽𝑇 𝑞𝑜 𝑞̇ + 𝑘𝜔 × 𝑘𝑟̇ (2.2)

𝑘𝜔 = 𝜕 𝑘𝜔

𝜕 𝑞̇
𝑞̇ = 𝑘𝐽𝑅 𝑞̇ (2.3)

𝑘𝜔̇ = 𝜕 𝑘𝜔

𝜕 𝑞̇
𝑞 + 𝜕 𝑘𝜔

𝜕 𝑞
𝑞̇ = 𝑘𝐽𝑅 𝑞 + 𝑘𝐽𝑅𝑞 𝑞̇ (2.4)

The nomenclature used for kinematic quantities of the MBS is listed in Table 2.1.

Upper Body Kinematics
As root link of the MBS, the upper body has six DoFs. Rotations are described
using 𝑧-𝑥-𝑧 Euler angles (𝜓, 𝜗, 𝜙). Translations are given by the position of the FoR
relative to the inertial FoR. The upper body’s DoFs are assigned to indices 𝑖 = 0 . . . 5
in the vector of generalized coordinates 𝑞. Therefore, the kinematic quantities for
the upper body are simply calculated from 𝑞, 𝑞̇ without further dependencies:

𝐴𝑢𝐼 = 𝐴𝑢𝐼(𝜓, 𝜗, 𝜙) (2.5)

𝑢
𝑢𝑟̇𝑜 = 𝐴𝑢𝐼

⎛
⎜⎝
𝑞3
𝑞4
𝑞5

⎞
⎟⎠ (2.6)

𝜔𝑢 = 𝜕 𝜔𝑢

𝜕 𝑞̇
𝑞̇ (2.7)

Here 𝑢 denotes the upper body reference frame. The representation of spatial
orientation used for the upper body is listed in Appendix D. Throughout this thesis,
leading subscripts denote the FoR and leading superscripts the reference body, while
normal subscripts are used for reference points and indices. The meaning of sub-
and superscripts is illustrated in Figure 2.3. In this nomenclature, 𝑢

𝑢𝑟̇𝑜 denotes the
velocity of the upper body’s origin 𝑜 described in the upper body’s FoR 𝑢.

16 2 Modeling and Simulation

b
p

c

Towards root node

Other nodes

Other nodes

k
prpc

k
krCoG

Parent body

Reference body

Figure 2.4: Local description of tree structure with pointers to parent (p), child (c) and
brother (b) nodes and vectors to the center of gravity 𝑘

𝑘𝑟CoG and from parent to child
node 𝑘

𝑝𝑟𝑝𝑐.

Kinematics of Segments and Drives
For all other bodies, kinematic quantities are calculated from those of the parent link
and equations describing the coupling to the parent (𝑝). For example, the velocity 𝑟̇
and angular velocity 𝜔 of the 𝑘-th body are given by:

𝑘
𝑘𝑟̇𝑜 = 𝑘𝐴𝑘𝑝

(︁
𝑝
𝑝𝑟̇𝑜 + 𝑝

𝑝𝜔 × 𝑘
𝑝𝑟𝑝𝑐

)︁
(2.8)

𝑘
𝑘𝜔 = 𝑘𝐴𝑘𝑝

𝑝
𝑝𝜔 + 𝑘

𝑘𝜔𝑟𝑒𝑙 (2.9)

Translational and rotational Jacobians are obtained by differentiating (2.8) and
(2.9) with respect to the generalized velocities 𝑞̇:

𝑘
𝑘𝐽𝑇 𝑜 := 𝜕 𝑘

𝑘𝑟̇𝑜

𝜕 𝑞̇
= 𝑘𝐴𝑘𝑝

(︁
𝑝
𝑝𝐽𝑇 𝑜 + 𝑝

𝑝𝐽𝑅 × 𝑘
𝑝𝑟𝑝𝑘

)︁
(2.10)

𝑘
𝑘𝐽𝑅 := 𝜕 𝑘

𝑘𝜔

𝜕 𝑞̇
= 𝑘𝐴𝑘𝑝

𝑝
𝑝𝐽𝑅 + 𝑘

𝑘𝐽𝑅𝑟𝑒𝑙 (2.11)

The generalized coordinates 𝑞 are chosen such that 𝑖 ≥ 𝑗, if 𝑞𝑖 describes the relative
motion of a body further down the forward recursion tree than 𝑞𝑗. Therefore, only
submatrices have to be calculated, greatly reducing the computational cost.

2.2 Rigid Body Dynamics 17

2.2.3 Relative Kinematics

Segments and Harmonic Drives
For both segments and harmonic drive gears, the relative kinematics with respect to
the parent link are described by a 1-DoF rotation about the body’s 𝑧-axis. Therefore,
the relative angular velocity and rotational Jacobian are given by:

𝑘
𝑘𝜔𝑟𝑒𝑙 = 𝑒𝑧𝜙̇𝑘 = 𝑒𝑧𝑁𝑘𝑞𝑖𝑘

(2.12)

𝑘
𝑘𝐽𝑅𝑟𝑒𝑙,[𝑖,𝑗] =

⎧
⎨
⎩
𝑁𝑘 for 𝑖 = 2 ∧ 𝑗 = 𝑞𝑘

0 otherwise
(2.13)

Here, 𝑁𝑘 is the gear ratio, which is equal to 1 for segments, 𝑖𝑘 is the index for the
𝑘-th body into the vector of generalized coordinates and 𝜙̇𝑘 = 𝑁𝑘𝑞𝑖𝑘

is the angular
velocity relative to the parent link.

Knee Joint Drive Kinematics

Lower leg segment (s)

s
sra

t
trb

Planetary roller screw drive

Thigh segment (t)

Figure 2.5: Knee joint drive kinematics

The knee joint is actuated by the nonlinear mechanism illustrated in Figure 2.5.
The motor drives a planetary roller screw which converts the rotation into a linear
motion. The linear motion is converted into the knee joint rotation by the 4-bar
mechanism shown in Figure 2.5. The motor and attached roller screw rotate at high
speed about the screw axis, while other components of angular velocity are much
smaller. Therefore, the dynamic effects of the rotation orthogonal to the screw axis
are neglected.

The screw’s rotation is proportional to the nut’s displacement 𝑙screw and the screw
lead 𝑃lead:

𝜙screw = 2𝜋
𝑃lead

𝑙screw (2.14)

Calculating the relative kinematics therefore requires computing 𝑙screw.

18 2 Modeling and Simulation

The vector from the pivot point on the thigh to the pivoting point on the lower
leg (𝑟screw) and the distance between these two points (𝑙screw) are given by:

𝑟screw = 𝑡
𝑡𝑟𝑏 + 𝑠𝐴𝑡𝑠

𝑠
𝑠𝑟𝑎 (2.15)

𝑙screw = ‖𝑟screw‖ (2.16)

Which yields:

𝑙screw =

(︁𝑠
𝐴̇𝑡𝑠

𝑠
𝑠𝑟𝑎

)︁𝑇
𝑟screw

𝑙screw
(2.17)

𝜙screw = 2𝜋𝑙screw

𝑃lead
(2.18)

𝜙̇screw = 2𝜋𝑙screw

𝑃lead
(2.19)

𝜔𝑟𝑒𝑙 = 𝑒𝑧𝜙̇screw (2.20)

Finally, the relative rotational Jacobian is obtained by partial differentiation:

𝐽𝑅𝑟𝑒𝑙,[𝑖,𝑗] =

⎧
⎨
⎩

2𝜋
𝑃lead𝑙screw

𝑟𝑇
screw

(︁
𝜕 𝑠𝐴𝑡𝑠

𝜕 𝑞knee
𝑠
𝑠𝑟𝑎

)︁
for 𝑖 = 2 ∧ 𝑗 = 𝑞knee

0 otherwise
(2.21)

Figure 2.6 shows the motor angle of the right knee joint drive as a function of the
knee joint angle.

−100

−50

0

m
ot
or

an
gl
e
[r
ad
]

0 0.5 1 1.5 2

joint angle [rad]

Figure 2.6: Nonlinear transmission of the right knee joint drive

Ankle Joint Drive Kinematics
Each ankle joint is driven by a pair of parallel, spatial slider-crank mechanisms,
where the linear motion of a carriage is produced by planetary roller screws. The
movement of the coupler link connecting the linear carriage to the foot segment
relative to the lower leg is comparatively slow and the coupler link is very lightweight.
Inertial effects due to the coupler link’s motion are therefore neglected and only the

2.2 Rigid Body Dynamics 19

srtop

srscrew

srcouplera
srpc

f rbot

Figure 2.7: Kinematics of the ankle drive mechanism

much larger effects due to the screw’s rotation are taken into account.
Similar to the procedure for the knee joint drive, solving the ankle joint kinematics

requires expressing the displacement 𝑙screw of the nut and rotation 𝜙screw of the screw
as a function of the generalized coordinates 𝑞.

Referring to Figure 2.7, the vector chain along the closed kinematic loop is given
by:

𝑠𝑟coupler = 𝑎
𝑠𝑟𝑝𝑐 + 𝐴𝑠𝑎

(︁
𝐴𝑎𝑓 𝑓𝑟bot + 𝑓

𝑎𝑟𝑝𝑐

)︁
− 𝑠𝑟top

⏟ ⏞
𝑠𝑟coupler,0

− 𝑠𝑟screw (2.22)

Here the letters 𝑠, 𝑎, 𝑓 and 𝑐 denote the shank, ankle, foot and coupler link respectively.
𝑓
𝑎𝑟𝑝𝑐 is the vector from the ankle to the foot frame, which is not shown in Figure 2.7,
since it is zero for Lola. However, this vector is non-zero for Johnnie.

Using the unit vector along the roller screw’s major axis 𝑠𝑒screw, the known and
constant length of the coupler link 𝑙coupler and the relationship

𝑙2coupler = 𝑠𝑟
𝑇
coupler 𝑠𝑟coupler , (2.23)

(2.22) and (2.23) can be solved for the displacement of the roller screw nut 𝑙screw:

𝑙screw = 𝑠𝑟
𝑇
coupler,0 𝑒screw ±()

√︁
𝑙2coupler − 𝑠𝑟2

coupler,0 + (𝑠𝑟𝑇
coupler,0 𝑒screw)2 (2.24)

where 𝑠𝑒screw = 𝑠𝑟screw /𝑙screw is the unit vector along the screw’s major axis. The
minus sign gives the correct solution for Johnnie’s and Lola’s kinematics, which can
be seen by studying the angle between the coupler link and the roller screw, or its
cosine 𝑒𝑇

screw𝑒coupler, for both solutions.
From 𝑙screw the rotation relative to the shank 𝜙screw and the relative angular velocity

20 2 Modeling and Simulation

ϕmot

ϕscrew

Figure 2.8: Upper part of Lola’s ankle joint drive train

𝜔screw,rel are computed as:

𝜙screw = 2𝜋𝑙coupler

𝑃lead
(2.25)

𝜙̇screw = 2𝜋𝑙coupler

𝑃lead
(2.26)

𝜔screw,rel = 𝑒𝑧𝜙̇screw (2.27)

The angular velocity, relative Jacobian, etc. are determined by straightforward
differentiation:

𝑙screw = 𝑠𝑟̇
𝑇
coupler,0 𝑒𝑠

− − 𝑠𝑟
𝑇
coupler,0 𝑠𝑟̇coupler,0 + (𝑠𝑟

𝑇
coupler,0 𝑒𝑠)(𝑠𝑟̇

𝑇
coupler,0 𝑒𝑠)√︁

𝑙2coupler − 𝑠𝑟2
coupler,0 + (𝑠𝑟𝑇

coupler,0 𝑒𝑠)2

(2.28)

𝜙̇screw = 2𝜋𝑙screw

𝑃lead
(2.29)

𝜕 𝑙screw

𝜕 𝑞̇
= 𝑒𝑇

𝑠

𝜕 𝑠𝑟̇coupler,0

𝜕 𝑞̇

−
− 𝑠𝑟

𝑇
coupler,0

𝜕 𝑠𝑟̇coupler,0
𝜕 𝑞̇

+ (𝑠𝑟
𝑇
coupler,0 𝑒𝑠)(𝑒𝑇

𝑠

𝜕 𝑠𝑟̇𝑇
coupler,0
𝜕 𝑞̇

)
√︁
𝑙2coupler − 𝑠𝑟2

coupler,0 + (𝑠𝑟𝑇
coupler,0 𝑒𝑠)2

(2.30)

For Lola, each roller screw is actuated by a motor mounted on the thigh, whose
rotation is transferred to the screw via a synchronous belt drive and a bevel gear
in the knee joint axis (cf. Figure 2.8). Therefore, the rotation of the driving motor
depends not only on the ankle joint angles, but also on the knee joint angle:

𝜙mot = 𝜙screw ± 𝜙knee (2.31)
mot𝜔mot = 𝑒𝑧 (𝜙̇screw ± 𝜙̇knee) (2.32)

The plus sign is valid for the motor driving the inner roller screw, the minus sign for
the motor on the outer side.

2.3 Contact and Environment Models 21

With the knee joint angle as the 𝑗-th entry in 𝑞, the relative rotational Jacobian
for a motor driving an ankle joint is given by:

mot𝐽𝑅𝑟𝑒𝑙 = 2𝜋
𝑃lead

𝜕 𝑙screw

𝜕 𝑞̇
±
(︁
03×(𝑗−1) 𝑒𝑧 03×(𝑛−𝑗)

)︁
(2.33)

Figure 2.9 shows the rotation of inner and outer roller screw of Lola’s ankle joint
mechanism as a function of the ankle joint adduction and flexion angles.

2.2.4 Equations of Motion for the Rigid Multibody System
Using the Newton-Euler-Jourdain principle [5, 126], the equations of motion (EoM)
for the rigid MBS can be written as:

𝑀𝑞 + ℎ = 𝑄ext (2.34)

With the mass matrix

𝑀 =
𝑁body∑︁

𝑖=0

⎧
⎨
⎩

(︃
𝐽𝑇 𝑜

𝐽𝑅

)︃𝑇 (︃
𝑚𝐸3 𝑚𝑟̃𝑇

CoG
𝑚𝑟̃CoG 𝐼𝑜

)︃(︃
𝐽𝑇 𝑜

𝐽𝑅

)︃⎫⎬
⎭

𝑖

(2.35)

and the vector of Coriolis, centrifugal and gravitational forces

ℎ =
𝑁body∑︁

𝑖=0

⎧
⎨
⎩

(︃
𝐽𝑇 𝑜

𝐽𝑅

)︃𝑇
⎡
⎣
(︃
𝑚𝐸3 𝑚𝑟̃𝑇

CoG
𝑚𝑟̃CoG 𝐼𝑜

)︃(︃
𝐽𝑇 𝑞𝑜

𝐽𝑅𝑞

)︃
𝑞̇

+
(︃
𝑚𝐸3 𝑚𝑟̃𝑇

𝑠

𝑚𝑟̃𝑠 𝐼𝑜

)︃(︃
𝜔̃𝑟̇𝑜

0

)︃
+
(︃
𝑚𝜔̃𝜔̃𝑟CoG

𝜔̃𝐼𝑜𝜔

)︃

+
(︃

𝑚𝑔
𝑚𝑟̃CoG𝑔

)︃⎤
⎦
⎫
⎬
⎭

𝑖

(2.36)

and the vector of impressed forces 𝑄ext. 𝑁body are the number of bodies in the MBS,
𝐸3 ∈ IR3×3 is a unit matrix, 𝐼𝑜 the inertia matrix with respect to the FoR, 𝑔 is the
gravitational acceleration and 𝑎̃ is a skew-symmetric matrix representing the cross
product, i.e., 𝑎̃𝑏 = 𝑎× 𝑏. The impressed forces 𝑄ext include contact forces6 acting
on the feet, gear friction and motor torque.

2.3 Contact and Environment Models
The robot’s only interaction with the environment is through its feet. Consequently,
the global dynamics, i.e., linear and angular momentum for the entire system, are
strongly influenced by contact dynamics, which makes accurate modeling essential
for dynamics simulation and control.

6 For conciseness the term “force” is used to mean “force and/or torque” throughout this
thesis.

22 2 Modeling and Simulation

ankle adduction [rad]

an
kl
e
fle
xi
on
[ra
d]

in
n
er

sc
re
w

ro
ta
ti
on

[r
ad
]

−0.5
−0.25

0
0.25

0.5

−1

−0.5

0

0.5

1

−100

−50

0

50

100

ankle adduction [rad]

an
kl
e
fle
xi
on
[ra
d]

ou
te
r
sc
re
w

ro
ta
ti
on

[r
ad
]

−0.5
−0.25

0
0.25

0.5

−1

−0.5

0

0.5

1

−100

−50

0

50

100

Figure 2.9: Nonlinear transmission of the right ankle joint drive

2.3 Contact and Environment Models 23

An in-depth presentation of contact mechanics of deformable bodies, including
geometric relations, constraints and a range of discretization and solution approaches
is given by Wriggers [133]. A detailed account of the dynamics of rigid multibody
systems with unilateral contacts is given by Pfeiffer and Glocker [91].

2.3.1 Contact Dynamics

Compliant contact elements

Figure 2.10: Feet of Lola (left) and Johnnie (right) with compliant contact elements

0

100

200

300

400

fo
rc
e
[N
]

0 0.001 0.002 0.003 0.004

displacement [m]

Linear model
Measurement

Figure 2.11: Static force-displacement relationship for one of Lola’s contact elements. The
solid line shows a least squares fit for a linear model.

Equations of Motion with Constraints

The feet of both Johnnie and Lola, shown in Figure 2.10, are equipped with viscoelastic
contact elements. The dynamics of these elements are determined by the EoM for the
compliant material and conditions for the unilateral contact with the environment.

Since the mass of the compliant material is very small, gravity and inertial forces
are negligible when compared to external loads. The contact elements are therefore
assumed to be massless. In quasi-static measurements, the contact elements show
a remarkably linear force-displacement relationship for loads of up to a multiple of
Lola’s weight, as shown in Figure 2.11. Since experiments also show that the contact
material exhibits significant damping, a linear viscoelastic material model is chosen.
For numerical simulations, the contact elements are discretized either using the finite

24 2 Modeling and Simulation

Independent contactsContinuum discretization

Node Node
Spring-damper elementFE mesh

Figure 2.12: Discretization of contact layer using FEM and independent spring-damper
systems

element method (FEM) or modeled as a set of independent spring-damper systems
(cf. Figure 2.12). A geometrically linear FE model is used, but rigid body rotations
and translations are taken into account by choosing the foot or toe frame as reference
frame for node displacements. After discretization, the EoM for both model types
can be written as

𝐵𝑑 + 𝐾𝑑 = 𝑓 (2.37)

where 𝑑 are node displacements, 𝑓 node forces, 𝐵 is a damping and 𝐾 a stiffness
matrix. 𝐾 and 𝐵 are diagonal for independent point contacts, while this is not the
case for a general FE model. Meshes and stiffness matrices for the FE model are
generated from CAD data using the commercial FEM program ANSYS7. Assuming
Rayleigh-damping, 𝐵 is then given by 𝛼𝐾, with 𝛼 > 0 a scalar.

The contact element is rigidly attached to either a heel or toe segment. The force
and torque acting from the contact element onto this segment can be calculated as

𝐹 𝐶𝐸 =
∑︁

𝑖

𝑓 𝑖 (2.38)

𝑇 𝐶𝐸 =
∑︁

𝑖

𝛥𝑟𝑖 × 𝑓 𝑖 (2.39)

Here 𝑓 𝑖 is the force of the 𝑖-th free node and 𝛥𝑟𝑖 the vector to this node from the
segment’s reference frame. The generalized force 𝑄cont acting on the MBS is then
given by:

𝑄cont =
∑︁

𝑖

𝐽𝑇
𝑇 𝑜,𝑖𝐹 𝐶𝐸,𝑖 + 𝐽𝑇

𝑅,𝑖𝑇 𝐶𝐸,𝑖 (2.40)

The unilateral contact between foot and environment imposes constraints on the
motion of contact element nodes relative to the environment and on contact forces
acting between foot and environment (cf. Figure 2.13). Normal forces 𝜆𝑁 must
be positive and the nodes may not penetrate the environment, i.e., the minimal

7 http://www.ansys.com/products/default.asp

http://www.ansys.com/products/default.asp

2.3 Contact and Environment Models 25

λT,1

λN,1

λT,2

λN,2

Body 1

Body 2gN

Figure 2.13: Unilateral contact between two bodies

distance 𝑔𝑁 must be positive. Mathematically, this is expressed by the so-called
Signiorini-Fichera condition:

𝜆𝑁 ≥ 0 ∧ 𝑔𝑁 ≥ 0 ∧ 𝜆𝑁𝑔𝑁 = 0 (2.41)

The tangential contact is modeled as Coulomb friction, which can be expressed by
the following constraints for the relative tangential velocity 𝑔̇𝑇 and tangential force
𝜆𝑇 :

𝜆𝑁 − 𝜇 ‖𝜆𝑇‖ ≥ 0 ∧ (𝜆𝑁 − 𝜇 ‖𝜆𝑇‖)𝑔̇𝑇 = 0 (2.42)

Here the static and kinetic coefficients of friction are denoted by 𝜇 and assumed to
be equal.

Due to the unilateral contact with friction, deformation rates 𝑑 and node forces
𝑓 must be determined by solving (2.41), (2.42) and (2.37) simultaneously for the
current robot state 𝑞, 𝑞̇.

General Contact Solver

For a non-diagonal matrix 𝐵, an approach based on exact regularization of the
constraints was implemented for determining 𝑑 and 𝑓 . The method has its origins
in non-smooth optimization and has been widely used for simulating non-smooth
dynamical systems (see [22] and references therein). In the following the concept of
the proximal point of a convex set 𝐶 to a point 𝑧 [102] is used. This is simply the
closest point to 𝑧 in C :

prox𝐶(𝑧) = arg min
𝑥*∈C
‖𝑧 − 𝑥*‖ , 𝑧 ∈ IR𝑛 (2.43)

Using this concept, the equality and inequality constraints are converted into a set
of non-smooth equality constraints [21, 57]:

𝜆𝑁,𝑖 = proxC𝑁
(𝜆𝑁,𝑖 − 𝑟𝑔̇𝑁,𝑖) ∀𝑖 ∈ 𝐼𝑐 (2.44)

𝜆𝑇,𝑖 = proxC𝑇 (𝜆𝑁)(𝜆𝑇,𝑖 − 𝑟𝑔̇𝑇,𝑖) ∀𝑖 ∈ 𝐼𝑐 (2.45)

26 2 Modeling and Simulation

Here 𝐼𝑐 = {𝑖|𝑔𝑁,𝑖 = 0} is the set of active contacts and 𝑟 > 0 is a numerical constant.
The sets C𝑇 ,C𝑁 respectively specify the admissible tangential and normal forces:

C𝑁 := {𝑥|𝑥 ≥ 0} (2.46)
C𝑇 (𝑁) := {𝑥| ‖𝑥‖ ≤ 𝜇𝑁} (2.47)

The distance 𝑔𝑁,𝑖 and relative velocity 𝑔̇𝑁,𝑖, 𝑔̇𝑇,𝑖 of the 𝑖-th contact point to the
environment can be calculated by a distance query using the environment model and
the kinematics of the robot (cf. Section 2.3.2). Since 𝑞, 𝑞̇ and 𝑑 are known at each
time step and 𝑑,𝑓 are linked by the contact layer’s EoM (2.37), equations (2.44) and
(2.45) can be solved using the fixed-point iteration scheme shown in Algorithm 1.

Algorithm 1 Contact force and deformation for FE contact model
1: 𝐼𝑐 ← ∅
2: for all nodes 𝑖 do
3: calculate gap function 𝑔𝑁,𝑖

4: if ‖𝑔𝑁,𝑖‖ < 𝜀gap then
5: add 𝑖 to 𝐼𝑐

6: end if
7: end for
8: repeat
9: 𝑑← 𝐵−1(𝑓 −𝐾𝑑)

10: 𝑓old ← 𝑓
11: for all contacts 𝑖 do
12: if 𝑖 ∈ 𝐼𝑐 then
13: calculate relative velocity 𝑔̇𝑁,𝑖, 𝑔̇𝑇,𝑖

14: calculate contact force components 𝜆𝑁,𝑖,𝜆𝑇,𝑖

15: calculate 𝑟𝑁,𝑖, 𝑟𝑇,𝑖

16: 𝜆𝑁,𝑖 ← proxC𝑁
(𝜆𝑁,𝑖 − 𝑟𝑁,𝑖𝑔̇𝑁,𝑖)

17: 𝜆𝑇,𝑖 ← proxC𝑇 (𝜆𝑁)(𝜆𝑇,𝑖 − 𝑟𝑇,𝑖𝑔̇𝑇,𝑖)
18: else
19: 𝜆← (𝜆𝑇

𝑇 , 𝜆𝑁)𝑇 = 0
20: end if
21: end for
22: update 𝑓 using new 𝜆𝑖

23: until ‖𝑓 − 𝑓old‖ < 𝜀f

The gap function is calculated using the environment model and the current value
of the position states 𝑞,𝑑. At each time step the iteration is started using the forces
from the last time step. In order to reduce the numerical cost for calculating 𝑑, 𝐵−1

is calculated in a pre-processing step, so only a matrix-vector multiplication must be
calculated at run-time.

The rate of convergence strongly depends on the 𝑟-factor. In [22] different strategies
are presented for selecting 𝑟 in systems with impacts. Starting from the observation
that the displacement of the 𝑖-th node has the strongest influence on the node force
𝑓 𝑖, the following local strategy for selecting 𝑟𝑁,𝑖, 𝑟𝑇,𝑖 was developed:

𝑟𝑁,𝑖 = 𝛾𝑁/(𝑒𝑇
𝑁,𝑖𝐵𝑖𝑖𝑒𝑁,𝑖) (2.48)

2.3 Contact and Environment Models 27

𝑟𝑇,𝑖 = 𝛾𝑇/
√︁

(𝑒𝑇
𝑇 1,𝑖𝐵𝑖𝑖𝑒𝑇 1,𝑖)2 + (𝑒𝑇

𝑇 2,𝑖𝐵𝑖𝑖𝑒𝑇 2,𝑖)2 (2.49)

Here 𝐵𝑖𝑖 is the 3 × 3 sub-matrix of 𝐵 determining the coupling between 𝑓 𝑖 and
𝑑𝑖 and 𝑒𝑁,𝑖, 𝑒𝑇 1,𝑖, 𝑒𝑇 2,𝑖 are unit vectors in normal and tangential directions of the
contact plane, respectively. The scalars 𝛾𝑇/𝑁 ∈ (0, 2) depend on the structure of 𝐵
and are chosen by trial and error to assure fast convergence and avoid divergence of
the iteration. In numerical experiments values of 𝛾𝑇/𝑁 ≈ 0.5 . . . 0.9 worked well.

Decoupled Contact Solver

For the special case of independent contacts, a simpler and more efficient solution is
possible, since there are only a small number of possible contact states for each node.
In this situation, explicitly checking different contact states is more efficient than
the fixed-point scheme presented above.

2.3.2 Environment Model and Distance Computation
Simulating stepping over obstacles, climbing stairs or the effects of an uneven floor
requires modeling complex environment geometries. For the compliant models
described in the previous section, such an environment can be approximated with
arbitrary precision using a triangular surface mesh. This approach is especially well
suited for objects typically used in experiments such as boards, stairs or boxes.

While complex environment geometries can be simulated, dynamic environments
that are modified by the robot’s actions are not considered. That is, all objects
in the environment are assumed to be rigid and fixed with respect to the inertial
reference frame while in contact with the robot. However, objects may move, appear
or disappear when they are not in contact with the robot.

Environment Model

More formally, the environment ℰ is modeled as a set of rigid objects 𝒪𝑖, whose
surfaces are approximated by triangular meshes (cf. Figure 2.14). Each object can
be described by a set of triangles 𝒯𝑖𝑗 , which in turn are defined by their vertices 𝑣𝑖𝑗𝑘:

ℰ := {𝒪𝑖}, 𝑖 ∈ {0 . . . 𝑛𝒪 − 1} (2.50)
𝒪𝑖 := {𝒯𝑖𝑗}, 𝑗 ∈ {0 . . . 𝑛𝒯 ,𝑖 − 1} (2.51)
𝒯𝑖𝑗 := {𝑣𝑖𝑗𝑘}, 𝑘 ∈ {0 . . . 2} (2.52)

This model is sufficiently general to cover indoor and outdoor environments,
including obstacles with complex geometries. At the same time, high-quality meshes
can easily be generated using many three-dimensional (3-D) modeling or computer
aided design (CAD) packages. For the work presented here, CAD models were
generated using CATIA V58 and exported in a standard 3-D geometry file format.

8 A 3-D CAD system by Dassault Systèmes: http://www.3ds.com/products/catia.

http://www.3ds.com/products/catia

28 2 Modeling and Simulation

Stairs

Box Beam

Bounding box

Tesselated surface

Figure 2.14: Example of an environment model used in simulations

The simulation system currently supports STL9 and VRML10 files.

Distance Computation

Calculating contact forces requires knowledge of potential contact points and surface
normals. Contact determination, also known as collision or interference detection,
is central not only to dynamics simulation, but also to other fields such as robot
motion planning [83], computer graphics, CAD and others. In many scenarios contact
determination is a major computational bottleneck. Therefore, much research has
gone into developing efficient algorithms for this task. Surveys of the field are given in
[40, 59]. In motion planning and computer graphics polygonal models are dominant,
since they enable the approximation of arbitrarily complex geometries and hardware-
accelerated rendering is enabled by modern graphics processing units (GPUs). For
the simulation of rigid multibody systems with (unilateral) contacts, the focus often
is on analytical methods for special cases, such as plane-sphere or point-line contacts
[91]. This is due to the fact that in machine dynamics a good approximation of the
contact position is often known in advance and the (local) surface geometry can be
described accurately using geometric primitives such as cylinders or planes. Finally,
for rigid body contacts the contour geometry and curvature must be accurately
modeled in order to avoid artificial impulse effects during rolling. This is not the
case for the contact model described above, since it is compliant and massless.

For the model presented here, all contact forces are assumed to act at the nodes,
i.e., collisions between the environment and edges or surfaces of the FE-mesh are
not considered. Then, contact determination amounts to checking triangular meshes
for collision with contact element nodes. This is similar to the standard problem
in computational geometry in which a number of objects approximated by polygon
meshes are checked for collision. In both cases the basic operation (calculating the
distance from a triangle to a point or a second triangle) is very simple. However, due
to the large number of point/triangle or triangle/triangle pairs, the computational

9 STL is a format originating in stereo lithography. A definition can be found at http://www.
ennex.com/~fabbers/StL.asp.

10 Virtual Reality Modeling Language is a file format for 3-D models standardized as ISO/IEC
14772-1:1997. The VRML loading code is based on work by Markus Schwienbacher.

http://www.ennex.com/~fabbers/StL.asp
http://www.ennex.com/~fabbers/StL.asp

2.3 Contact and Environment Models 29

v0 v1

v2

d0

d1
R0

R2

R4R6

R1 R3

R5

Figure 2.15: Enumeration of possible positions of 𝑝⊥ in or around a triangle

burden can be significant. A number of methods have been developed that aim at
reducing the number of necessary checks [40, 59, 83]. The basic idea is to introduce
a hierarchy of increasingly simpler models bounding the original, complex geometry
from the outside. Then, the more complex models must only be checked for collision
if a collision with the simpler bounding volume was detected. In this thesis one
axially aligned bounding box per object 𝒪, denoted by ℬ(𝒪), is used.

The shortest distance from 𝑝 to an object 𝒪 is denoted by 𝑑(𝑝,𝒪) and the closest
point to 𝑝 on 𝒪 as 𝑝min(𝑝,𝒪). The shortest distance from 𝑝 to the environment and
the normal 𝑛ℰ to the contact plane can then be calculated using Algorithm 2.

Algorithm 2 Minimal distance computation between a point 𝑝 and ℰ
1: 𝑑min ←∞
2: 𝑝min ← None
3: 𝑛min ← None
4: for all 𝒪𝑖 ∈ ℰ do
5: if 𝑝 ∈ ℬ(𝒪𝑖) then
6: for all 𝒯𝑖𝑗 ∈ 𝒪𝑖 do
7: calculate 𝑑(𝒯𝑖𝑗 ,𝑝) and 𝑝min(𝑝, 𝒯𝑖𝑗)
8: if 𝑑(𝒯𝑖𝑗 ,𝑝) < 𝑑min then
9: 𝑑min ← 𝑑(𝒯𝑖𝑗 ,𝑝)

10: 𝑝min ← 𝑝min(𝑝, 𝒯𝑖𝑗)
11: 𝑛min ← 𝑛(𝒯𝑖𝑗)
12: end if
13: end for
14: end if
15: end for
16: 𝑑(𝑝, ℰ)← 𝑑min
17: 𝑝min(𝑝, ℰ)← 𝑝min
18: 𝑛ℰ ← 𝑛min

Depending on the relative position of 𝑝 with respect to 𝒯𝑖𝑗, 𝑝min may be inside
the triangle, on an edge or on a vertex. The algorithm for calculating 𝑝min consists
of first determining which region 𝑅0 . . . 𝑅6 the projection 𝑝⊥ of 𝑝 onto the plane
defined by 𝒯𝑖𝑗 lies in. Figure 2.15 illustrates the different regions 𝑝⊥ can lie in.

30 2 Modeling and Simulation

Figure 2.16: Simulation of Lola walking over a board using FE contact and polygonal envi-
ronment model. Nodes are shown as red spheres, contact forces as red arrows.

The distance is computed by a simple point-to-plane, point-to-line or point-to-point
distance computation.

In the following, indices 𝑖𝑗 for triangles are omitted for the sake of clarity. 𝑝⊥ is
defined as the point in the plane 𝒫(𝒯) with the minimal distance to 𝑝:

𝑝⊥ = argmin
𝑟∈𝒫

1
2(𝑟 − 𝑝)2 (2.53)

Since 𝑟 ∈ 𝒫 , it can be expressed as a linear combination of two edge vectors of 𝒯 :

𝑟 = 𝑣0 + (𝑣1 − 𝑣0)𝑠0 + (𝑣2 − 𝑣0)𝑠1 = 𝑣0 + 𝐷𝑠 (2.54)

This leads to the optimization problem

1
2(𝑣0 + 𝐷𝑠− 𝑝)2 → min! (2.55)

which can be solved for 𝑠:

𝑠 =
(︁
𝐷𝑇 𝐷

)︁−1
𝐷𝑇 (𝑝− 𝑣0) = 𝑆(𝑝− 𝑣0) (2.56)

Since 𝑆 can be precomputed, calculating 𝑠 during time integration is quite efficient.
Which region 𝑝⊥ lies in can be determined by studying 𝑠. With reference to
Figure 2.15, the different cases are summarized in Table 2.2. After the contact
configuration has been determined, the actual distance computation can be calculated
using elementary vector geometry.

2.4 Drives 31

An example of a simulation using the proposed environment and FE-contact
models, in which Lola is walking over a board, is shown in Figure 2.16.

Table 2.2: Cases in the point-triangle distance computation

Region Location of 𝑝min(ℰ ,𝑝) Condition
𝑅0 Inside triangle 𝑠0 ≥ 0 ∧ 𝑠1 ≥ 0 ∧ 𝑠0 + 𝑠1 ≤ 1
𝑅1 On vertex 𝑠0 < 0 ∧ 𝑠1 < 0
𝑅2 On edge 𝑠0 > 0 ∧ 𝑠0 ≤ 1 ∧ 𝑠1 < 0
𝑅3 On vertex 𝑠0 > 1 ∧ 𝑠1 < 0
𝑅4 On edge 𝑠0 ≥ 0 ∧ 𝑠1 ≥ 0 ∧ 𝑠0 + 𝑠1 > 1
𝑅5 On vertex 𝑠0 < 0 ∧ 𝑠1 > 1
𝑅6 On edge 𝑠0 < 0 ∧ 𝑠1 > 0 ∧ 𝑠1 ≤ 1

2.4 Drives
The robots Johnnie and Lola are actuated by drives based on electric motors and
harmonic drive gears or planetary roller screws. Dynamics of the drives (besides
rigid body mechanics) are integrated into the MBS as generalized forces 𝑄drive. The
following effects are taken into account:

1. Electrical motor dynamics (𝑄mot)

2. Gear friction (𝑄gear,frict)

3. Gear elasticity (𝑄gear,elast)

2.4.1 Electrical Motor Dynamics
Johnnie is driven by brushed DC motors, while PMSM are used in Lola. Strictly
speaking, the simulation model for Lola should therefore include all three winding
currents. However, assuming the field-oriented motor control is operating properly,
the magnetizing currents 𝐼𝑑 are controlled to zero [108] and the torque producing
currents 𝐼𝑞 = 𝐼 are used for speed or position control. In fact, this is a common
simplification in simulating robotic systems also proposed by Siciliano [111]. Mea-
surements of 𝐼𝑞 and 𝐼𝑑 for Lola’s knee motor while walking on the spot, shown in
Figure 2.17, confirm that this is a reasonable assumption. Both brushed DC motors
and PMSM can then be described by the same differential equations:

𝐿𝐼 + 𝑅𝐼 + 𝑘𝑀𝜔rot = 𝑈 (2.57)

Here 𝑈 is the armature voltage, 𝜔rot the rotor’s angular velocity and 𝐿, 𝑅 and 𝑘𝑀

are diagonal matrices of inductance, resistance and motor back-EMF11 constants,

11 Electro Motive Force

32 2 Modeling and Simulation

0

5

10

cu
rr
en
t
[A
]

0 0.25 0.5 0.75 1

time [s]

Iq

Id

Figure 2.17: Active and reactive currents of the knee motor measured in an experiment
with Lola walking on the spot

respectively. The generalized actuator forces are then given by:

𝑄mot =
∑︁

𝑖

𝐽𝑇
𝑅,𝑖𝑒𝑧𝑘𝑀,𝑖𝐼𝑖 (2.58)

2.4.2 Gear Friction
Friction in harmonic drive gears and roller screws is modeled by nonlinear force laws
that output a friction torque 𝑇𝑓 acting on the motor shaft as a function of 𝑞 and
𝑞̇. Friction is integrated into the MBS model by projecting 𝑇𝑓 into the space of
generalized coordinates via the motor shaft rotational Jacobians. Summing over all
gears gives the vector of generalized gear friction forces 𝑄gear,frict to be added to the
EoM:

𝑄gear,frict =
∑︁

𝑖

𝐽𝑇
𝑅,𝑖𝑒𝑧𝑇𝑓,𝑖 (2.59)

Harmonic Drive Gears

Modeling friction in harmonic drive gears is quite complex, since it depends not
only on load, speed and temperature, but also on manufacturing and mounting
errors and flange stiffness. Accordingly, most work in this area is based on extensive
measurements of friction torques for different operating conditions [53, 87, 114].
Taghirad identifies compliance, load and speed dependent friction as the dominant
effects in harmonic drive gears [115]. In accordance with claims by Harmonic Drive,
he states that there is no stiction, but rising friction at low velocities.

In [53, 114] gear friction is modeled as load dependent Stribeck friction. Peer
uses a linear model in combination with an experimentally determined friction loss
table [87].

While models based on experimental data are more accurate, they obviously cannot
be used for simulations during the development process of a new robot. Furthermore,
since Lola and Johnnie do not have joint torque sensors, directly identifying friction

2.4 Drives 33

models is impossible. Therefore, an approach based on fitting friction models to
catalog data was chosen. For all models, a constant ambient temperature of 20 ∘C is
assumed.

Rossmann and Löffler model harmonic drive friction using three terms [60,
103]:

1. No-load starting torque/no-load backdriving torque 𝑇𝑓,0

2. Load dependent friction 𝑇𝑓,𝑠

3. Viscous friction 𝑇𝑓,𝑣

In this model, the friction torque 𝑇𝑓 is calculated using the following equation:

𝑇𝑓 = 𝑇𝑓,0 + 𝑇𝑓,𝑠 + 𝑇𝑓,𝑣 = − sign(𝜔)(𝑇𝑓,0 + 𝜇 ‖𝑇𝑙‖)− 𝑏𝜔 − 𝑔𝜔3 (2.60)

The load torque 𝑇𝑙 is defined as the torque acting at the output shaft divided by
the gear ratio 𝑁 . Model parameters 𝑇𝑓,0, 𝜇, 𝑏, 𝑔 are determined from catalog data by
least squares fitting.

Rossmann achieves a relatively good fit to catalog data for a small gear box
(HDUC-14) using this approach. However, it proved impossible to get good fits
for many gears used in Lola using the friction model (2.60). Figure 2.18 shows the
efficiency for a HFUC-25-100 harmonic drive12 as a function of load torque and wave
generator speed.

0

0.25

0.5

0.75

1

effi
ce
n
cy

10 20 30 40 50 60 70

load torque [Nm]

500 rpm (catalog)

500 rpm (model)

1000 rpm (catalog)

1000 rpm (model)

2000 rpm (catalog)

2000 rpm (model)

3500 rpm (catalog)

3500 rpm (model)

Figure 2.18: Comparison of model prediction to catalog data for a HFUC-25-100 gear using
Rossmann’s friction model (2.60)

The modeling error is quite large, because a coupled load and speed dependent term
is missing in (2.60), i.e., 𝜕2𝑇𝑓/𝜕𝑇𝑙𝜕𝜔 ≡ 0. The error is larger for larger load torques,
which is the typical operating range for the robot.

To capture the coupled load and speed dependency, an additional term 𝑇𝑓,𝑠𝑣 =
−𝛾𝜔 ‖𝑇𝑙‖ is added. Furthermore, the cubic term in (2.60) is omitted, since least

12 Nomenclature follows the Harmonic Drive catalog: Series-Size-Ratio.

34 2 Modeling and Simulation

squares fits consistently yielded very small values for 𝑔 well below the accuracy of the
friction model (often, 𝑔 ≤ 10−10). Also, most of the time 𝑔 ≤ 0, leading to 𝑇𝑓,𝑣𝜔 ≥ 0
for angular velocities above the largest velocity used for least squares fitting. This
is physically impossible and can lead to efficiencies larger than one, i.e., the model
starts to generate energy instead of dissipating it.

The author therefore proposes the following model for harmonic drive friction:

𝑇𝑓 = 𝑇𝑓,0 + 𝑇𝑓,𝑠 + 𝑇𝑓,𝑣 + 𝑇𝑓,𝑠𝑣

= − sign(𝜔)(𝑇𝑓,0 + 𝜇 ‖𝑇𝑙‖)− 𝑏𝜔 − 𝛾 ‖𝑇𝑙‖𝜔
= − sign(𝜔)(𝑇𝑓,0 + 𝜇 ‖𝑇𝑙‖)− (𝑏+ 𝛾 ‖𝑇𝑙‖)𝜔

(2.61)

The resulting efficiency is compared to catalog data in Figure 2.19. Using this
model, the maximum approximation error is decreased from 7.91 · 10−2 to 2.33 · 10−2,
or to below 30% of the original error.

0

0.25

0.5

0.75

1

effi
ce
n
cy

10 20 30 40 50 60 70

load torque [Nm]

500 rpm (catalog)

500 rpm (model)

1000 rpm (catalog)

1000 rpm (model)

2000 rpm (catalog)

2000 rpm (model)

3500 rpm (catalog)

3500 rpm (model)

Figure 2.19: Comparison of model prediction to catalog data for a HFUC-25-100 gear using
the newly developed friction model

Friction data is only available for 𝑇𝑙 up to the nominal load and wave generator
speeds up to 3500 rpm, while the robot is operated at both higher loads and speeds.
When friction parameters are calculated by simple least squares fitting, it is possible
for the model to predict efficiencies ≥ 1 at higher loads and/or speeds. A physically
consistent friction model is guaranteed by adding appropriate inequality constraints
to the parameter fitting procedure:

∑︁

𝑖

(𝜂𝑖,catalog − 𝜂𝑖,model)2 → min!

𝜇 ≥ 0
𝑏 ≥ 0
𝑇0 ≥ 0

(2.62)

Here 𝜂𝑖,catalog and 𝜂𝑖,model are efficiencies calculated from catalog data and the
friction model. The parameter optimization problem (2.62) was solved using Matlab’s

2.4 Drives 35

fmincon function. Friction parameters and a comparison to catalog data for all gears
used in Lola is given in Appendix C.

Evaluating (2.61) requires knowledge of both the relative motor shaft velocity
𝜔 and the load torque 𝑇𝑙. The angular velocity 𝜔 can easily be calculated from
generalized coordinates and velocities. The load torque 𝑇𝑙 is determined from the
torque balance at the gear box:

𝑇𝑙 = 𝑇𝑓 + 𝑇mot (2.63)

Using (2.61) this yields:

𝑇𝑙 = − sign(𝜔)𝑇𝑓,0 − 𝑏𝜔 − (sign(𝜔)𝜇+ 𝜔𝛾) ‖𝑇𝑙‖+ 𝑇mot (2.64)

This is solved for 𝑇𝑙 by studying the cases for 𝑇𝑙 > 0, 𝑇𝑙 < 0 and 𝑇𝑙 = 0.

Roller Screw Drives

Usually, friction in roller screw or ballscrew drives is modeled by some combination of
static, viscous and Stribeck friction. Papadopoulos models friction in roller screws
using a classical friction model consisting of static, viscous and Stribeck friction [84].
Riebe uses a similar approach to modeling friction in ballscrew drives of a hexapod
[100]. In both cases, parameters for the friction models are determined experimentally.
According to [50], roller screw-based actuators also exhibit significant load dependent
friction. Since the Stribeck-effect is only relevant for low-speed operation, the friction
in the robot’s roller screws could be described by the model used for harmonic
drive gears. Unfortunately, the only data provided by the manufacturer of the
roller screws used for Lola are the direct (𝜂𝐷) and indirect (𝜂𝐼) efficiencies listed in
Table 2.3. Using the Heaviside step function 𝐻(·), this data can be represented by
the following piecewise constant function:

𝜂 = 𝜂𝐷 + (𝜂𝐼 − 𝜂𝐷)𝐻(𝜔𝑇mot) (2.65)

Using friction model (2.61), the screw efficiency for 𝑇𝑙 > 0 ∧ 𝜔 > 0 is calculated
as:

𝜂𝐷 = 𝑇𝑙

𝑇𝑚

= −𝑏𝜔 − 𝑇0 + 𝑇mot

𝑇mot(1 + 𝜇+ 𝛾𝜔) (2.66)

Since 𝜂𝐷 is constant, all parameters except 𝜇 must vanish, leaving

𝜂𝐷 = 1
1 + 𝜇

(2.67)

and therefore 𝑇𝑓 ∝ 𝑇𝑙. That is, there is only load dependent friction. Consequently,
the friction torque is given by:

𝑇𝑓 = − sign(𝜔) ‖(1− 𝜂)𝑇mot‖ (2.68)

For the ankle joint drives, the efficiencies 𝜂𝐷, 𝜂𝐼 are modified to take the timing

36 2 Modeling and Simulation

Table 2.3: Friction model parameters for roller screw-based drives

Part 𝜂𝐷 𝜂𝐼

Knee joint roller screw 0.860 0.858
Ankle joint roller screw 0.855 0.839
Ankle joint timing belt 0.98 0.98

belt efficiency into account.
Experiments with Lola revealed significant differences in the friction characteristics

of roller screws. Therefore, a simple model seems to be the only sensible approach to
simulation and modeling, especially during the design of a new robot.

2.4.3 Gear Elasticity
Since planetary roller screws are very stiff, their compliance is neglected. Compliance
in harmonic drive gears is significantly higher, even if it is small in absolute terms. In
combination with link-side position sensing, compliance can lead to high frequency
vibrations or even instability of the joint servo loop. If, on the other hand, encoders
mounted on the motor shaft are used, gear elasticity degrades the accuracy of joint
position control.

In order to study such phenomena, gear elasticity is modeled using a progressive
and piecewise linear torsion/torque relationship [30]:

𝑇gear,elast =

⎧
⎪⎨
⎪⎩

𝐾0𝛥𝜙 for 𝑇gear,elast < 𝑇1
𝑇1 +𝐾1𝛥𝜙 for 𝑇1 ≤ 𝑇gear,elast < 𝑇2
𝑇2 +𝐾2𝛥𝜙 for 𝑇gear,elast ≥ 𝑇2

(2.69)

Figure 2.20 shows this model for some harmonic drive gears used in Lola.

−100

−50

0

50

100

to
rq
u
e
[N
m
]

−0.005 −0.0025 0 0.0025 0.005

torsion [rad]

HFUC-14-100
HFUC-17-100
HFUC-20-100
HFUC-25-100
HFUC-32-50

Figure 2.20: Harmonic drive gear component set elasticity according to [30]

2.5 Sensor Models 37

As with gear friction, a vector of generalized forces is added to the MBS:

𝑄gear,elast =
∑︁

motors
𝐽𝑇

𝑅𝑒𝑧𝑇gear,elast +
∑︁

segments
−𝐽𝑇

𝑅𝑒𝑧𝑇gear,elast (2.70)

2.5 Sensor Models
In order to simulate the complete system including the walking controller, sensor
data must be calculated from the system state given by the simulation model. To
obtain realistic simulation results, the sensor models should include sensor dynamics,
signal quantization, dead-time and sensor noise. Also, there should be the possibility
of introducing typical measurement errors into the simulation, in order to study the
controller’s robustness against such errors and to determine the necessary sensing
accuracy and resolution during the design phase.

2.5.1 Joint Sensors
Incremental encoders mounted on the motor shafts are used in Johnnie, while Lola has
additional absolute single turn encoders mounted on the output shafts. Both robots
have high resolution encoders — incremental encoders in Lola’s main leg joints have
11520 counts, Johnnie’s have 2000 and Lola’s absolute encoders have a resolution
of either 16 or 17 bit. Therefore, the quantization error is well below the joint
servo tracking error during walking. However, the quantization error is significantly
higher for angular velocities calculated by finite differences. For a measurement
with a resolution of 𝑄 bits, the maximum quantization error at the position level is
𝛥𝜙 = 2𝜋

2𝑄−1 , or approximately 10−4 rad for a 16 bit sensor. Calculating the velocity by
finite differences for a sampling rate 𝑇 , the maximum error is given by 𝛥𝜙̇ = 2𝜋

(2𝑄−1)𝑇 ,
which is approximately 0.1 rad/s for a 16 bit sensor at 1 kHz. Quantization errors
are therefore included in the simulation model.

While the position sensors themselves are very accurate, a static bias is introduced
due to kinematic calibration errors. Experiments have shown that such errors can
strongly degrade walking performance. A static bias can therefore be set in the
simulation model, in order to study the robustness of the walking control to such
measurement errors. The overall model of joint angle sensors is shown in Figure 2.21.

Actual joint or
motor angle Quantization

Calibration error

+
Sensor
signal

+

Figure 2.21: Simulation model for joint angle sensors

38 2 Modeling and Simulation

2.5.2 Force/Torque Sensors
The robot’s six-axis force/torque sensors (FTS) are mounted between foot and ankle
joint. Figure 2.22 shows the FTS used for Lola. Forces are measured by strain gauges
integrated into the FTS, i.e., the sensors measure forces transmitted through the
FTS and not the actual contact forces. The measured forces include contact forces
as well as gravitational and inertial forces from the foot segment below the FTS.
As part of the initialization procedure for the robot, the FTS signal is set to zero
while the robot is hanging in the air and its feet are parallel to the ground. This
adds a constant offset to the signal, so the true contact forces are obtained when
the robot is standing on the ground (cf. “FTS bias compensation” in Figure 2.23).
During walking, however, when the feet are accelerated or not parallel to the ground,
this procedure no longer reproduces the true contact forces and torques since the
constant offset added for bias compensation is no longer equal to the measurement
error.

Exactly reproducing the sensor signal would require an elastic model of the sensor
body, which would unacceptably increase simulation times. As an approximation,
the constraint forces between foot and ankle joints are used for calculating the
force sensor signal in the dynamics simulation and the same procedure for bias
compensation is used.

Additionally, anti aliasing filters, quantization and noise are included. A schematic
representation of the FTS model is shown in Figure 2.23.

Figure 2.22: Lola’s six axis force/torque sensor (bottom view)

2.5.3 Inertial Measurement Unit
An inertial measurement unit (IMU) is mounted on the upper body of both robots,
allowing estimation of angular velocity, orientation and linear acceleration based on
gyroscopes and accelerometers. The sensors are arranged in a so-called strap-down
configuration, i.e., they are fixed with respect to the robot. An overview of inertial
measurement and navigation can be found in [113].

2.5 Sensor Models 39

Ankle joint
contraint forces

Transformation
to FTS frame

Anti aliasing
filter Quantization

Calibration
error noise

FTS bias
compensation

+
Sensor
signal

+

+

+

Figure 2.23: Simulation model for force/torque sensors

Johnnie’s sensor is a custom development based on MEMS13 gyroscopes and
accelerometers, while a commercial system14 based on fiber optic gyroscopes (FOG)
is used in Lola.

Angular velocity and upper body orientation are directly calculated from the gen-
eralized coordinates 𝑞 during simulations. However, the most relevant measurement
errors are taken into account by global error models applied to the resulting upper
body orientation and angular velocity signals.

Limited bandwidth is modeled by low-pass filtering the ideal angular velocity and
orientation. When initialized correctly, the angular velocity does not show any bias.
However, the orientation signal always has a certain constant bias due to imperfect
mounting alignment of the IMU. Finally, white noise and signal quantization is taken
into account. Figure 2.24 shows the overall IMU model for dynamics simulations.

Low pass filter Quantization

Bias

Noise
Ideal
signal +

Sensor
signal

+

+

Figure 2.24: Simulation model for the inertial measurement unit

13 Micro-Electro-Mechanical-Systems
14 iVRU-FC-C167-200/2-200-24 from iMAR http://www.imar-navigation.de

http://www.imar-navigation.de

40 2 Modeling and Simulation

2.6 Robot Models and Time Integration

2.6.1 Robot Models

By combining the different models for rigid body mechanics, drive and contact
dynamics, a family of simulation models with varying modeling depth is constructed.
Table 2.4 and Table 2.5 give an overview of the different models that were implemented
for Lola and Johnnie. FE-models were not implemented for Johnnie, since a simple
point contact is a good approximation for the small contact elements used in Johnnie’s
feet (cf Figure 2.10).

For independent spring-damper contact models, one contact at the edge of each
contact element is used. The FE contact models consist of 8-node hexahedral
elements and have a total of 72 nodes for each of the four contact elements in
every foot. To decrease the computational cost, the 36 nodes rigidly attached to
the rigid foot segment are eliminated in an off-line preprocessing step, leading to a
minimal coordinate representation with 36 nodes, or 108 DoFs, per contact element.
Figure 2.25 shows the mesh of one of Lola’s contact elements.

Implementing such a large number of models is motivated by the fact that the
simulation is used for a wide range of different tasks. The detailed models are used
for calculating loads during the design phase of Lola. Here, the required accuracy is
high and detailed data, such as the required currents for different motors or actuator
torque and speed as function of drive kinematics, should be calculated. Elastic gear
models are especially useful when studying the low level joint control loop or fast
walking. The models are divided into two groups according to the structure of the
resulting EoM, which are described in the following: (1) Full models (type 2 to type
5) and (2) a reduced model (type 1).

Table 2.4: Overview of simulation models for Lola with different modeling depth

Reduced model Full models
Model component Type 1 Type 2 Type 3 Type 4 Type 5
Rigid body dynamics yes yes yes yes yes
Gear elasticity no no yes no yes
Drive dynamics no yes yes yes yes
Contact model Independent Independent Independent FEM FEM
Mechanical DoFs 6 30 46 30 46
Contact layer DoFs 48 48 48 864 864
Electrical DoFs 0 24 24 24 24
No. of 1st order ODEs 60 132 164 948 980

Full Models

The full models comprise rigid multibody dynamics, drive and contact dynamics.
Depending on which contact model is used and if gear elasticity is taken into account,

2.6 Robot Models and Time Integration 41

Table 2.5: Overview of simulation models for Johnnie with different modeling depth

Reduced model Full models
Model component Type 1 Type 2 Type 3
Rigid body dynamics yes yes yes
Gear elasticity no no yes
Drive dynamics no yes yes
Contact model Independent Independent Independent
Mechanical DoFs 6 21 26
Contact layer DoFs 24 24 24
Electrical DoFs 0 15 15
No. of 1st order ODEs 36 81 91

the number of DoFs and some components of the EoM will vary, but the basic
structure of the set of equations and constraints remains the same:

𝑀𝑞 + ℎ = 𝑄drive + 𝑄cont

𝐿𝐼 + 𝑅𝐼 + 𝑘𝑀𝜔rot = 𝑈

𝐵𝑑 + 𝐾𝑑 = 𝑓

𝜆𝑁,𝑖 = proxC𝑁
(𝜆𝑁,𝑖 − 𝑟𝑔̇𝑁,𝑖) ∀ 𝑖 ∈ 𝐼𝑐

𝜆𝑇,𝑖 = proxC𝑇 (𝜆𝑁)(𝜆𝑇,𝑖 − 𝑟𝑔̇𝑇,𝑖) ∀ 𝑖 ∈ 𝐼𝑐

(2.71)

This set of equations can be rewritten as a first order ODE:

𝑧̇ = 𝑓(𝑧) (2.72)
𝑧𝑇 = (𝑞𝑇 , 𝑞̇𝑇 , 𝐼,𝑑) (2.73)

Calculating 𝑧̇ implies solving (2.71) for 𝑞, 𝐼 and 𝑑. 𝑑 is computed together with 𝑓
in the contact solver and 𝐼 is numerically cheap to calculate, since 𝐿 is diagonal.
Explicitly solving 𝑀𝑞 + ℎ = 𝑄ext for 𝑞 could be avoided by using one of the
well-known recursive 𝑂(𝑛) algorithms proposed by Brandl, Hollerbach, Bae
and others. An overview of relevant methods is given in [107]. However, since solving
for 𝑞 using a Cholesky factorization of 𝑀 does not take up a significant percentage
of the simulation time15, such an algorithm was not considered here.

Reduced Model

Simulation times and model complexity can be reduced significantly by taking the
robot’s control architecture into account. Johnnie and Lola are controlled by a
hierarchical walking control system with a high-gain joint position control loop on
the lowest level. In deriving the reduced model, the following assumptions are made
for the sake of simplicity and without loss of generality:

15 Measurements of a “type 2” simulation with Intel’s VTune (http://software.intel.com/
en-us/intel-vtune/) profiler showed that < 1% of the time was spent calculating the
Cholesky factorization.

http://software.intel.com/en-us/intel-vtune/
http://software.intel.com/en-us/intel-vtune/

42 2 Modeling and Simulation

Figure 2.25: Mesh of the FE model for one of Lola’s contact elements consisting of 8-node
hexahedral elements.

1. A simple proportional control law is used

2. The contact state does not change

Dividing the generalized coordinates into six torso DoFs 𝑞𝑇 and (𝑛− 6) joint angles
𝑞𝐽 , the equations of motion can be rewritten as:

𝑀𝑇 𝑇 𝑞𝑇 + 𝑀𝑇 𝐽𝑞𝐽 + ℎ⋆
𝑇 = 0 (2.74)

𝑀𝐽𝑇 𝑞𝑇 + 𝑀𝐽𝐽𝑞𝐽 + ℎ⋆
𝐽 −𝐾𝛥𝑞𝐽 = 0 (2.75)

𝛥𝑞𝐽 = 𝑞𝐽 − 𝑞𝐽,𝑑 (2.76)

The vectors ℎ⋆
𝑖 include contact forces and joint torques, 𝛥𝑞𝐽 is the joint angle

tracking error, 𝑞𝐽,𝑑 are the desired joint angles and 𝐾 is a control parameter.
Since 𝐾 = 1/𝜖 is large, a reduced model can be derived using singular perturbation

theory [54]. Substituting 𝑞𝐽 = 𝑞𝐽,𝑑 + 𝛥𝑞𝐽 and a series approximation for 𝛥𝑞𝐽

𝛥𝑞𝐽 ≈𝛥𝑞𝐽,0 + 𝜖𝛥𝑞𝐽,1 (2.77)

into Equations (2.74) to (2.76) and rearranging yields:

𝑀𝑇 𝑇 𝑞𝑇 + 𝑀𝑇 𝐽(𝑞𝐽,𝑑 + 𝛥𝑞𝐽,0 + 𝜖𝛥𝑞𝐽,1) + ℎ⋆
𝑇 = 0

(2.78)
𝜖𝑀𝐽𝑇 𝑞𝑇 + 𝜖𝑀𝐽𝐽(𝑞𝐽,𝑑 + 𝛥𝑞𝐽,0 + 𝜖𝛥𝑞𝐽,1) + 𝜖ℎ⋆

𝐽 −𝛥𝑞𝐽,0 − 𝜖𝛥𝑞𝐽,1 = 0
(2.79)

The vectors 𝛥𝑞𝐽,𝑖 can be calculated by matching terms with like powers in 𝜖. By
matching terms with 𝜖0, the unperturbed solution for 𝜖→ 0 is obtained:

𝑀𝑇 𝑇 𝑞𝑇 + 𝑀𝑇 𝐽𝑞𝐽,𝑑 + ℎ⋆
𝑇 = 0 (2.80)

𝛥𝑞𝐽,0 = 0 (2.81)

That is, the time evolution of the upper body coordinates can be obtained by
integrating the six ODEs (2.80), while the joint angles follow the desired trajectories.

2.6 Robot Models and Time Integration 43

It must be emphasized that (2.80) contains the full multibody dynamics. Also,
setting up these equations is no faster than for a full model, since the contributions
of all bodies in the system are taken into account. However, since only the motion on
the slow manifold is determined, at least 10 times larger integrator step sizes can be
chosen. In fact, a reduced model for Johnnie and Lola can be simulated in real-time
on a standard PC.16 Therefore, the reduced model is very useful for quickly checking
global stability of the walking system. Also, this model enables an analysis of the
ideal case of perfect joint trajectory tracking, which is important for systems based
on an inner joint position control loop. A first order approximation of the perturbed
solution could be obtained by comparing terms with 𝜖1.

Partitioning an underactuated mechanical system into actuated (𝑞𝐽) and unac-
tuated (𝑞𝑇) DoFs is a common approach in the context of control system analysis
and design. From a control systems point of view, equation (2.80) describes the
zero dynamics of the robot with joint position control [112]. Achieving stable zero
dynamics is a major problem in biped walking control. Therefore, the reduced
model provides an efficient means for determining the performance and stability of
trajectory generation and stabilizing control.

2.6.2 Time Integration
In order to calculate the time evolution of the state variables, the equations of motion
are rewritten as a standard first order ordinary differential equation:

𝑧̇ = 𝑓(𝑧,𝑢) (2.82)

The state vector 𝑧 and input vector 𝑢 depend on the type of simulation. For the
reduced model

𝑧𝑇 =
(︁
𝑞𝑇

𝑇 𝑞̇𝑇
𝑇 𝑑𝑇

)︁
(2.83)

𝑢𝑇 =
(︁
𝑞𝑇

𝐽 , 𝑞̇
𝑇
𝐽 , 𝑞

𝑇
𝐽

)︁
(2.84)

and for the full model

𝑧𝑇 =
(︁
𝑞𝑇 𝑞̇𝑇 𝑑𝑇 𝐼𝑇

)︁
(2.85)

𝑢 = 𝑈 (2.86)

Since contact forces 𝑓 and deformation rates 𝑑 can be calculated independently of
𝑞, 𝑞̇, the contact constraints can be solved independently from time integration. The
result is then used to calculate 𝑓(𝑧,𝑢). Dry friction and the damping properties of
the contact elements make 𝑓(𝑧,𝑢) discontinuous, while the state variables remain
continuous but are non-smooth. In the terminology of non-smooth dynamics, the
robot is a Filippov-type system [57].

16 Using one core of an Intel E8400 CPU running at 3.00 GHz, Johnnie’s simulation takes 0.8×
real-time, while Lola’s takes 1.4× real-time. That is, the simulation time for the reduced
model is faster than real-time for Johnnie and a little slower for Lola. The simulation time
scales almost linearly in the number of bodies in the multibody system.

44 2 Modeling and Simulation

The basic task of the simulation program is to calculate 𝑧̇, which is then integrated
by an appropriate algorithm to obtain 𝑧(𝑡). Figure 2.26 shows the basic program
flow for calculating 𝑧̇.

Calculate sensor data

Call controller

Calculate kinematics and
kinetics for all bodies
by forward recursion

Calculate contact dynamics

Calculate
electrical ODE

Solve linear
equations for ż

z

qJ or U

ż

Figure 2.26: Program flow for calculating 𝑧̇

In general, the choice of a suitable integration algorithm depends on the properties
of the differential equation. Higher order integrators for ODEs such as Runge-
Kutta, Adams or BDF (Backward Differentiation Formula) methods are well suited
for many simulations of mechatronic systems, since highly efficient implementations
are readily available that provide very accurate results. However, these methods
assume a certain order of smoothness of the ODE. If the algorithm automatically
adjusts the step size, such an integrator might calculate a reasonably accurate
solution even if the smoothness assumptions are violated. However, this comes at
the cost of very small time steps close to discontinuities [1, 57]. Besides using an
integrator for smooth ODEs and hoping for the best, there are two main approaches
to time-integration for discontinuous ODEs: event-driven methods and time stepping
schemes [1].

Event-driven methods are very accurate and a good choice if the exact time of

2.7 Chapter Summary 45

discontinuities has a significant influence on the system’s trajectory. Since this is
not the case for the proposed robot models, an event-driven integrator was not
implemented.

Instead, both a simple explicit Euler scheme, which does not assume a smooth right
hand side, and the Livermore Solver for Ordinary Differential Equations (LSODE) [96]
with automatic step size determination were used. For a given accuracy, simulations
with LSODE are approximately 1.5 to 2.0 times slower.

2.7 Chapter Summary
This chapter gave an overview of robot models developed for Johnnie and Lola.
The simulation system is designed as a library of component models, contact and
ordinary differential equation solvers. The model library includes components for rigid
multibody dynamics, nonlinear drive mechanisms, nonlinear gear elasticity, nonlinear
friction and electrical motor dynamics. The unilateral, viscoelastic contact can be
modeled using either independent spring-damper systems or finite element models.
Sensor models were presented that include limited bandwidth, noise, quantization
and bias. Not all model components must be used in a robot simulation. Rather,
only the components required for the current simulation task can be activated. Using
this approach, either fast (and less detailed) or slower (but very detailed) simulations
can be performed. The chapter also includes the description of a detailed three-
dimensional environment model that enables simulating walking over uneven ground
or climbing onto or over objects. Finally, numerical aspects of contact solvers and
time integration were presented.

3 Stability and Feasibility in Biped Walking

3.1 Introduction
Maintaining stability is of central importance in biped locomotion. Reducing energy
consumption is often chosen as an optimization target for legged robots in the hope
of achieving “natural” movements closer to those of human beings. Nevertheless,
research has shown that stability, not energy consumption, is the most important
criterion for humans — at least when avoiding unexpected obstacles [70].

This chapter reviews basic problems in biped walking control, generating feasible
motions and maintaining balance, by examining the basic structural properties of
biped robot dynamics. Moreover, it gives an overview of concepts often used to study
the stability of biped robots.

3.2 Basic Aspects of Biped Walking Dynamics
Classical robot manipulators have bases fixed to the environment and one actuator
per joint, i.e., they are fully actuated. Control of such robots is a well established field
and stability analyses for many standard joint space and task-space control methods
have been published (see [111] for an overview). Biped robots are different from such
fixed-base manipulators, because they can only transmit forces to the environment
via unilateral contacts. These unilateral contacts impose constraints on the feasible
contact forces depending on the current robot state (cf. Section 2.3.1). Moreover,
the system is structure varying: if the contact forces are on the boundary of the set
feasible forces, the contact state can change. Such changes regularly occur during
normal walking when the stance leg switches. However, they can also be caused by
disturbances. Figure 3.1 shows an example where the contact state changes from
surface to line contact due to an external disturbance. Such involuntary changes of
the contact state can be catastrophic, since the robot looses the ability to control
one of the unactuated degrees of freedom.

If the contacts are compliant, as is the case for systems considered here, the robot
also is underactuated, since there are more degrees of freedom than actuators.

The robot’s dynamics can be partitioned into joint angles and upper body degrees
of freedom (𝑞𝑇 ∈ IR6 and 𝑞𝐽 ∈ IR𝑛−6, cf. Section 2.6.1). Stability of joint angle
trajectories 𝑞𝐽 is generally not a problem, since it can easily be achieved using control
methods developed for robot manipulators. The challenge is to stabilize the upper
body degrees of freedom or, equivalently, to stabilize the total linear (𝑝) and angular
(𝐿CoG) momentum of the robot:

𝑝̇ = 𝑚𝑔 +
2∑︁

𝑖=1
𝐹 𝑖 (3.1)

47

48 3 Stability and Feasibility in Biped Walking

Figure 3.1: Disturbances can change the contact state of a biped

𝐿̇CoG =
2∑︁

𝑖=1
(𝑇 𝑖 − 𝑟CoG,𝐹 𝑖

× 𝐹 𝑖) (3.2)

𝑝̇ = 𝑚𝑟̈CoG (3.3)

𝐼𝐿̇CoG = 𝑑

𝑑𝑡

𝑛bodies∑︁

𝑘=1

[︁
𝑚(𝑘

𝐼 𝑟𝑜 − 𝑘
𝐼 𝑟CoG)× 𝑘

𝐼 𝑟̇CoG + 𝑘𝐴𝐼𝑘
𝑘
𝑘𝐼𝑜

𝑘
𝑘𝜔
]︁

(3.4)

Here 𝑟CoG,𝐹 𝑖
denotes the vector from the CoG to the 𝑖-th external force 𝐹 𝑖 and

𝐹 𝑖,𝑇 𝑖 are the forces acting on the 𝑖-th foot. The time evolution of 𝑝 and 𝐿CoG is
determined by the contact forces, which in turn can be controlled via the joint angles
or joint torques.

3.3 Zero Moment Point and Related Concepts

3.3.1 Zero Moment Point
A widely used concept in the area of biped robots is the so-called zero moment point,
or ZMP, proposed by Vukobratović more than 30 years ago [129]. The concept of
the ZMP is only valid for a robot walking on a flat surface with sufficient friction,
i.e., it is assumed that it cannot slip [128].

All external forces acting on the robot can be summed up to the total contact force
𝐹 𝑐 and contact moment 𝑇 𝑝

𝑐 . The numerical values of 𝑇 𝑝
𝑐 depend on the position of

the chosen reference point 𝑝. The ZMP is defined as the reference point in the contact
plane, for which the horizontal components 𝑇𝑐,𝑥, 𝑇𝑐,𝑦 of the contact moment vanish.
This is equivalent to the center of pressure (CoP) widely used in biomechanics [27,
106].

If 𝐹 ,𝑇 are known for some reference point 𝑜, the position of the ZMP is computed

3.3 Zero Moment Point and Related Concepts 49

from

𝑇 zmp
𝑐 = 𝑇 𝑜

𝑐 − 𝑝× 𝐹 (3.5)

which can be solved for 𝑝𝑥, 𝑝𝑦:

𝑝𝑥 = −𝑇𝑐,𝑦

𝐹𝑐,𝑧

𝑝𝑦 = 𝑇𝑐,𝑥

𝐹𝑐,𝑧

(3.6)

The ZMP concept states that the robot is dynamically balanced if the ZMP is
within the robot’s support polygon, which is defined as the convex hull of all contact
points. Moreover, the distance from ZMP to the boundary of the support polygon
is often used as a stability measure or margin of stability [28, 36]. There is a clear
analogy between the ZMP concept and stability in the static case. In the static case
the projection of the center of gravity must lie within the convex hull of all contact
points, if the system is to remain at rest. While the term “dynamically balanced” is
acceptable (as will be explained later), some authors use stronger terms that, strictly
speaking, are incorrect. The following statement is representative: “If the ZMP is
inside the contact polygon between the foot and the ground, the biped robot is stable”
[36]. Contrary to this statement, the ZMP is not directly related to stability. The
ZMP is inside the support polygon for every physically feasible motion, as will be
shown in the following (see Section 3.3.4). Note, however, that the original wording
used by Vukobratović is correct, since the ZMP being inside the support polygon
is in fact equivalent to the robot being “dynamically balanced,” since the laws of
classical mechanics require the forces acting on the robot to be “balanced.” That is,
the ZMP concept provides a test if the motion of a biped is consistent with the basic
laws of mechanics.

To clarify the meaning of the ZMP, its relationship to the unilateral foot-ground
contact will be highlighted in the following. Denoting the contact forces acting on
the robot as 𝑓 𝑖 and assuming there are only point contacts, the total ground reaction
force and moment are given by:

𝐹 𝑐 =
𝑛𝑐∑︁

𝑖=1
𝑓 𝑖 (3.7)

𝑇 𝑜
𝑐 =

𝑛𝑐∑︁

𝑖=1
𝑟𝑜𝑖 × 𝑓 𝑖 (3.8)

where 𝑛𝑐 are the number of contact points and 𝑟𝑜𝑖 is the vector from the reference
point 𝑜 to the 𝑖-th contact point. Since the contact is unilateral, the vertical force
components must be positive:

𝑓𝑧,𝑖 ≥ 0 ∀𝑖 ∈ {1 . . . 𝑛𝑐} (3.9)

50 3 Stability and Feasibility in Biped Walking

Using (3.8), the horizontal moments can be written as:

𝑇 𝑜
𝑐,𝑥 = 𝐹𝑐,𝑧

𝑛𝑐∑︁

𝑖=1

𝑓𝑖,𝑧

𝐹𝑐,𝑧

𝑟𝑜𝑖,𝑦 (3.10)

𝑇 𝑜
𝑐,𝑦 = 𝐹𝑐,𝑧

𝑛𝑐∑︁

𝑖=1
− 𝑓𝑖,𝑧

𝐹𝑐,𝑧

𝑟𝑜𝑖,𝑥 (3.11)

Substituting 𝛼𝑖 = 𝑓𝑖,𝑧

𝐹𝑐,𝑍
and (3.6) into these equations and rearranging yields:

𝑝𝑦 =
𝑛𝑐∑︁

𝑖=1
𝛼𝑖𝑟𝑜𝑖,𝑦 (3.12)

𝑝𝑥 =
𝑛𝑐∑︁

𝑖=1
𝛼𝑖𝑟𝑜𝑖,𝑥 (3.13)

𝛼𝑖 ≥ 0 ∀𝑖 ∧
𝑛𝑐∑︁

𝑖=1
𝛼𝑖 = 1 (3.14)

Comparing these equations to the definition of the convex hull co(𝑃) of a set of
points 𝑃

co(𝑃) =
{︃∑︁

𝑖

𝛼𝑖𝑝𝑖

⃒⃒
⃒⃒ 𝑝𝑖 ∈ 𝑃 , 𝛼𝑖 ≥ 0,

∑︁

𝑖

𝛼𝑖 = 1
}︃

(3.15)

shows that the ZMP criterion is equivalent to the original unilateral constraints for
the ground contact.

Nevertheless, the ZMP has become widely used since it is easily understood and
appears to offer a straightforward extension from static to dynamic stability. Also,
the ZMP is widely used in algorithms for generating reference trajectories. Here
the ZMP criterion is indeed useful for generating feasible trajectories that can be
executed by a physical robot. Moreover, the distance of the ZMP from the boundary
of the support polygon is significant, if the robot’s posture is controlled via the
contact moments or the ZMP. In this case, the robot loses its ability to stabilize the
posture in one direction if the ZMP is on the boundary of the support polygon.

3.3.2 Foot Rotation Indicator and Zero Rate of Change of
Angular Momentum

Goswami presented the concept of the Foot-Rotation Indicator (FRI) as an extension
of the ZMP concept for a biped robot in single support [27]. The FRI is defined as
the point in the contact plane where the ground reaction force would have to act
in order to prevent the robot’s stance foot from rotating. When the foot is at rest,
the FRI is equal to the ZMP. When the foot does rotate about its edge, the FRI is
outside of the support polygon and the distance to the edge is proportional to the
moment producing the foot rotation.

More recently Goswami proposed the Zero Rate of Change of Angular Momentum
(ZRAM) as a generalization of the FRI to the case of multiple, non-coplanar contacts

3.3 Zero Moment Point and Related Concepts 51

[28]. In the cited paper it is assumed that a biped is stable, if the angular momentum
about the center of gravity 𝐿CoG is constant and that it tends to tip over otherwise.
When 𝐿̇CoG ̸= 0, the ZRAM is defined as the point where the ground reaction force
would have to act, in order to achieve 𝐿̇CoG = 0.

While the angular momentum will change if the robot falls, it is not necessarily
constant for stable gait patterns. In fact, this criterion is violated for the gaits of
Johnnie and Lola. In the author’s experience, gaits satisfying this criterion appear
very unnatural and lead to large compensating motions of arms and/or the upper
body in order to cancel the change of angular momentum produced by the legs. This
observation is confirmed by [116], where the angular momentum is not set to zero to
avoid “unusual” movements.

3.3.3 Stability Criteria Based on the Contact Wrench

Hirukawa et al. [33] propose a “universal stability criterion” based on the contact
wrench acting on the robot’s feet. This concept exploits the fact that the contact
force at each point contact must lie within the friction cone. In addition, the total
contact wrench must also lie within a convex cone defined by the location of the
point contacts and the coefficient of friction. In their derivation, Hirukawa et al.
used a linearized friction cone to obtain an equation for the polyhedral convex cone
of feasible contact wrenches. This criterion allows non-coplanar contacts and can
therefore be used in the general case of a humanoid in contact with the environment.
In the case of coplanar contacts, it is equivalent to the ZMP. Therefore, this criterion
has the same relevance to biped stability as the ZMP.

In a related approach, Takao previously proposed the “Feasible Solution of Wrench”
(FSW) [118]. However, the author does not give a mathematical representation of
the set of feasible contact wrenches and does not treat the relationship of the FSW
to contact stability.

3.3.4 Remarks

Except for FRI and ZRAM, the “stability criteria” presented above are equivalent to
the original inequality constraints on the contact forces due to the unilateral contact
with the environment. In fact, “feasibility” would be a better term than “stability,”
since satisfying these criteria does not guarantee stability.

Figure 3.2 shows two robot states for which the center of gravity 𝑥 and ZMP
position 𝑝𝑥 are both zero, but the center of gravity velocity 𝑥̇ differs.

To analyze the stability of these two configurations, the robot is modeled as an
inverted pendulum (cf. Section 4.6):

𝑥̈ = 𝑔

ℎ
(𝑥− 𝑝𝑥) = 𝛼(𝑥− 𝑝𝑥) (3.16)

Here ℎ is the height of the center of gravity. For the sake of simplicity, it is assumed
that the robot is in a standing position and 𝑝𝑥 is constant. The system trajectory is

52 3 Stability and Feasibility in Biped Walking

then given by:

𝑥(𝑡) = 𝑝𝑥 + 𝑒
√

𝛼𝑡

2
√
𝛼

(︁
𝑥̇0 +

√
𝛼(𝑥0 − 𝑝𝑥)

)︁

⏟ ⏞
𝐴

+𝑒
−√

𝛼𝑡

2
√
𝛼

(︁
−𝑥̇0 +

√
𝛼(𝑥0 − 𝑝𝑥)

)︁

⏟ ⏞
𝐵

(3.17)

Here (𝑥0, 𝑥̇0) is the system state at 𝑡 = 0. The trajectory diverges if 𝐴 cannot be
made to zero, i.e., if

𝑝⋆
𝑥 = 𝑥0 + 𝑥̇0√

𝛼
(3.18)

is not within the support polygon. That is, the robot can be stabilized, if 𝑝𝑥 can
be shifted to 𝑝⋆

𝑥 by a controller, which is impossible for 𝑥̇0 ≫ 0, irrespective of the
current ZMP and CoG positions.

This example shows that, while useful in some cases, the widely used “stability
criteria” are not suitable for determining stability or instability in biped locomotion.

3.4 General Stability Criteria

Lyapunov Stability
In the context of nonlinear systems, stability of equilibrium points and orbital
stability are usually specified in the sense of Lyapunov [63]. Lyapunov stability
theorems [86, 135] are applicable to highly complex systems and have often been
used for proving stability of control laws for robot manipulators. At the same time,
the original theorems due to Lyapunov are only applicable to smooth systems, i.e.,
not to biped robots with changing ground contacts. While there are extensions to
the non-smooth case [11, 31, 109], these have (to the author’s knowledge) not been
used in the practical synthesis or analysis of walking controllers for biped robots.

ẋ = 0

(a) Stable

ẋ ≫ 0

(b) Unstable

Figure 3.2: For given ZMP and CoG positions, a biped can be either (a) stable or (b)
unstable.

3.5 Periodic Motions 53

Viability Kernel
To rigorously define when a walking system is stable, Wieber [131] proposed the
concept of a viability kernel. Defining ℱ as the set of all system states in which the
robot has fallen, the robot is considered to be stable at 𝑡 = 𝑡0, if:

𝑥(𝑡) /∈ ℱ ∀ 𝑡 ≥ 𝑡0 (3.19)

The union of all states satisfying (3.19) is called the viability kernel. The distance of
𝑥 to the closest non-viable state, called the viability margin, is used as a measure of
stability. Wieber proposes computing the viability margin for a given control law
using numerical optimization methods. Simply put, this concept states that a robot
is unstable if it will fall.

While this definition is general and correct, it is unclear how it could be used
to solve the problem of synthesizing a better walking controller. Pragmatically,
determining whether a system state is stable or not for a given control law can also
be achieved by simply simulating the forward dynamics. A pragmatic approach to
determining a “stability margin”, which was followed in this research project, is to
intentionally introduce measurement errors, modeling errors and disturbances in the
dynamics simulation.

3.5 Periodic Motions
By considering only periodic motions, which is reasonable in the context of walking
machines, the analysis can be greatly simplified. For a T-periodic orbit of the system,
the state 𝑥 repeats every 𝑇 seconds:

𝑥(𝑡+ 𝑘𝑇) = 𝑥(𝑡), ∀ 𝑘 ∈ IN (3.20)

Periodic motion is classically studied using Poincaré maps, which relate the system
state at 𝑡 = 𝑡0 + 𝑇 to that at 𝑡 = 𝑡0. That is, 𝑇 -periodic orbits of the original system
are transformed into fixed points of the Poincaré map.

For smooth systems, the stability of periodic orbits is determined by the eigenvalues
𝜆𝑖 of the Jacobian matrix of the Poincaré map, the so-called Floquet multipliers.
If ‖𝜆𝑖‖ < 1 ∀𝑖, the trajectory is stable. It must be emphasized that this analysis is
only valid for smooth systems and cannot take into account instabilities due to early
foot-ground contact [67].

Sangho used the theory of the stability of period motions to stabilize a planar
biped on a periodic orbit [38]. Mombaur used a two-stage optimization scheme
to calculate stable periodic orbits for a biped robot model with elastic elements by
minimizing the Floquet multipliers [66, 67]. While this method has not been used to
generate trajectories for a physical robot, it is a very interesting and theoretically
sound approach to this problem. As with all off-line methods for trajectory generation,
however, this approach suffers from the “curse of dimensionality.” That is, a very
large number of trajectories must be generated off-line, if the robot is to vary its
step length and step frequency — and the size of the trajectory database increases
drastically with every new walking parameter (cf. Section 4.6).

54 3 Stability and Feasibility in Biped Walking

3.6 Chapter Summary
This chapter reviewed basic aspects of biped walking dynamics and gave an overview
of widely used stability concepts. The term “stability” is often used imprecisely. Most
concepts associated with the term stability, such as the zero moment point (ZMP),
are in fact feasibility criteria, i.e., conditions that must hold for all physically feasible
motions. Consequently, they are useful in generating feasible reference trajectories,
but are not directly related to stability. More general and theoretically sound
definitions of stability can and have been given. However, the complex, structure-
varying nature of biped walking dynamics makes it difficult to use these concepts to
assess the stability of biped robots or synthesize better walking controllers.

4 Real-Time Trajectory Generation

4.1 Introduction
This chapter describes the real-time trajectory generation system developed for this
thesis. The basic objective is to generate a stable walking motion from simple, high-
level commands such as the desired walking direction and speed. These commands
are either input by an operator using a graphical user interface (GUI) or joystick, or
obtained from a computer vision system.

Theoretically, such trajectories could be calculated by solving an optimal control
problem for a comprehensive robot model. Because of the high computational cost
this is not an option for real-time control and autonomous locomotion. The author
therefore proposes a hierarchical control system that divides the control problem
into smaller tasks that can be solved in real-time. A similar structure for real-time
walking control was also proposed by Nishiwaki for the robot H7 [75].

A model-based approach is adopted that is based on the robot models described in
Chapter 2 and the stability analysis in Chapter 3. The basic approach is similar to
that found in other large, position-controlled robots such as Asimo and HRP-2: the
controller (1) calculates ideal reference trajectories that are (2) modified in order to
stabilize the robot. The feedback control system is described in Chapter 5. Figure 4.1
illustrates the structure of the walking control system. Note that a strict separation
of trajectory planning and feedback control is not always possible, since sensor data
is used in some planning algorithms, e.g., in the generation of reference trajectories
for the camera head.

4.2 Gait Coordination
This section describes the basics of gait coordination. Since we aim for a human-like
gait, the basic structure of the gait cycle, as well as the terminology is taken from
biomechanics. Because walking is a fundamentally cyclic process, several recurring
phases of motion can be identified. Segmentation of the walking motion into phases
can occur at different levels, leading to a larger or smaller number of phases.

The basic unit of gait is a stride, which is equivalent to an entire gait cycle: it
starts with initial contact of one foot and ends when the same foot contacts the
ground the next time. A stride consists of two steps, divided by initial contact of the
second foot. The distance traveled by a foot during one gait cycle is defined as the
stride length, while the step length is the distance between two feet during double
support (cf. Figure 4.2).

A step can be further partitioned into eight phases: initial contact (IC), loading
response (LR), mid stance (MS), terminal stance (TS), pre-swing (PSW), initial swing
(ISW) and terminal swing (TSW). The first five phases are grouped into the stance

55

56 4 Real-Time Trajectory Generation

M
ot

ion
ge

ne
ra

tio
n

Fe
ed

ba
ck

co
nt

ro
l

Finite state machine
(gait coordination)

Step sequence
planner

Walking pattern
generation

Inertial
stabilization

Hybrid position/
force control

Joint position
control

Direct
kinematics

Robot and
environment

Walking command

Gait parameters

Step sequence

Ideal walking
pattern

Modified walking
pattern

Motor
commands

Motor torque

Sensor data

W
alk

in
g

st
at

e

Ta
sk

sp
ac

e
co

or
di

na
te

s

Figure 4.1: Overview of the walking control system

4.3 Step Sequence Planning 57

Step

Stride

Figure 4.2: Step and stride: a step continues until the next initial contact of the other foot,
a stride until the same foot touches the ground again [88].

phase, while the last three are part of the swing phase. Figure 4.3 and Figure 4.4
illustrate these phases. The gait cycles of the right and left leg are synchronized
at initial contact, when loading response of the ipsilateral and pre-swing of the
contralateral leg begin. In the following, the duration of the 𝑖-th phase relative to the
step length 𝑇step is denoted by 𝑝𝑖, e.g., 𝑝LR is the duration of the loading response
phase.

The full gait cycle is not always executed, since the robot can take an odd number
of steps. Therefore, the step, instead of the stride, is chosen as basic unit of gait in
the walking controller.

The basic structure of the gait cycle described above is valid for most walking
situations. However, the duration of gait phases and the boundary conditions for
trajectory generation are different for periodic, starting and stopping steps. Therefore,
the robot motion is further partitioned into standing, starting, periodic walking and
stopping phases — that is, a further level is added to the hierarchical representation
of walking given above.

Each phase corresponds to a discrete state the robot can be in. Accordingly, the
division of walking into a hierarchy of phases directly translates into a description
of walking as a hierarchical finite state machine. Figure 4.5 shows the top level of
this state machine. State transitions are always triggered by initial contact of the
swing leg. Transitions can be triggered either by a sensed ground contact or by a
timer indicating the end of the current step. The target of the state transition is
determined by the walking commands previously sent to the robot. The current state
of the finite state machine determines which parameters are set and which functions
are called in lower levels of the control system hierarchy. That is, trajectory planning
and stabilizing control are coordinated and configured by the finite state machine.

4.3 Step Sequence Planning
The first level below the finite state machine in the walking controller is a step sequence
planner. Depending on the current state and the desired walking parameters, this
module calculates a sequence of 𝑛plan walking steps.

A step 𝒮 is defined by its step parameters 𝒫 and augmented by the position and
rotation of the reference foot in the current planning frame 𝐼, which is located below

58 4 Real-Time Trajectory Generation

Stride

Stance Swing

Initial
contact

Loading
response

Mid
stance

Terminal
stance

Pre-
swing

Initial
swing

Mid
swing

Terminal
swing

Time

Figure 4.3: Division of the human gait cycle [88]

Initial contact
(0% gait cycle)

Loading response
(0-10% gait cycle)

Mid stance
(10-30% gait cycle)

Terminal stance
(30-50% gait cycle)

Pre-swing
(50-60% gait cycle)

Initial swing
(60-73% gait cycle)

Mid swing
(73-87% gait cycle)

Terminal swing
(87-100% gait cycle)

Figure 4.4: Phases of the human gait cycle. Reference limb drawn with thick lines and the
pose at the beginning of each phase in gray. Adapted from [88].

4.3 Step Sequence Planning 59

Stand

StartStop

Walk

IC [start sent]

IC

IC [stop sent]

IC

IC

IC [start sent]

IC [stop sent]

Figure 4.5: Finite state machine for gait coordination. Transitions are triggered by initial
contact (IC). Conditions for state transitions shown in brackets.

the current stance foot (see Section 4.4.1 for coordinate system definitions). The
most important parameters are listed in Table 4.1. Reference parameters 𝒫ref for the
step sequence are either set via a user interface or calculated from the input obtained
from the vision system (cf. Chapter 6). 𝒮𝑖 for the 𝑖-th step is calculated from 𝒫ref
and 𝒮𝑗 for the previous steps. Calculation of a step sequence 𝒮𝑖, 𝑖 = {0 . . . 𝑛plan − 1}
from reference parameters 𝒫ref and obstacle locations is described in the following
sections.

4.3.1 Standard Circular Path
The central part of the step sequence planner is the calculation of footstep locations.
The “standard circular path” described in the following enables a simple and intuitive
definition of simple paths such as straight lines or circles by choosing just three
walking parameters: step length in sagittal (𝐿𝑥) and lateral direction (𝐿𝑦) and
turning angle 𝜙step. In order to obtain a unified representation, a straight line is
represented as a circle with infinite radius.

If 𝒫ref is constant, the gait is perfectly periodic and the robot follows a circular
reference path. Footstep locations of the two feet lie on two concentric circles
separated by the step width𝑊step. Figure 4.6(a) illustrates the geometric relationships
for four steps. For the sake of clarity, only the reference path between the footsteps
is shown. The footsteps are located at a distance of ±𝑊step/2 from the points 𝑝𝑚,𝑘

on the reference path, either towards or away from the center of the reference circle
𝒞𝑖.

For 𝐿𝑦 = 0, the robot walks along a circular path, always looking along the tangent

60 4 Real-Time Trajectory Generation

Table 4.1: Important step parameters 𝒫

𝐿𝑥 Step length in sagittal plane
𝐿𝑦 Step length in lateral plane
𝑊step Step width
𝜙step Relative rotation between feet during double support
𝑧swing Reference height for swing foot trajectory
𝑇step Duration of one step
𝑝step Walking phase durations
𝑖𝑠 ∈ {0, 1} Index of the stance leg (0 : right leg, 1 : left leg)
𝜈𝑠 ∈ {−1, 1} Sign function (1 : for 𝑖𝑠 = 0, −1 : for 𝑖𝑠 = 1)

pm,i

pm,i+1

pm,i+2

pm,i+3

Ci

Ci+1

Ci+2

Ci+3

(a) Geometry of periodic walking along a circular path

pc,i Ii

I i+1

ϕstep

Wstep/2Wstep
/2

Wstep
/2

Ly

Ci

pm,i

pm,i+
1

(b) Geometry of one step along a circular path

Figure 4.6: Geometric relationships for the standard circular path

4.3 Step Sequence Planning 61

line. In this case, the robot’s path and all reference circles coincide. For 𝐿𝑦 ̸= 0 and
𝐿𝑥 = 0, the robot also walks along a circular path, but faces either towards or away
from the center of the circle, depending on the sign of 𝐿𝑦 and 𝜙step. If both 𝐿𝑥 and
𝐿𝑦 are zero, but 𝜙step ̸= 0, the robot turns around on the spot. When 𝜙step = 0, the
circle’s radius approaches infinity and the robot walks along a straight line.

Figure 4.6(b) illustrates the geometry of a single step in more detail. The next
footstep location relative to the current stance foot 𝛥𝑟step,𝑖 is given by:

𝑖𝛥𝑟step,𝑖 = 𝑖𝑝𝑐,𝑖 + 𝐴𝑖,𝑖+1 𝑖+1𝑟𝑜,𝑖+1

=
⎛
⎝ − sin𝜙step

(︁
𝐿𝑦 − 𝐿𝑥

𝜙step
+ 𝑊step𝜈𝑖

2

)︁

𝐿𝑥

𝜙step
+ 𝑊step𝜈𝑖

2 + cos𝜙step
(︁
𝐿𝑦 − 𝐿𝑥

𝜙step
+ 𝑊step𝜈𝑖

2

)︁
⎞
⎠ (4.1)

𝑖𝑝𝑐,𝑖 is the center of the 𝑖-th reference circle 𝒞𝑖, 𝐴𝑖,𝑖+1 is the rotation matrix
transforming vectors from the next step’s reference frame 𝐼𝑖+1 into this step’s frame
𝐼𝑖, 𝜈𝑖 = ±1 (cf. Table 4.1) and 𝑖+1𝑟𝑜,𝑖+1 is the vector from the center of 𝒞𝑖 to the
next stance foot position.

Due to the division by 𝜙step, (4.1) cannot be used to calculate 𝑖𝛥𝑟step,𝑖 for small
turning angles. However, we can obtain a good approximation by using the Taylor
series expansion of (4.1):

𝑖𝛥𝑟step,𝑖 ≈
⎛
⎝ 𝐿𝑥 −

(︁
𝐿𝑦 + 𝑊step𝜈𝑖

2

)︁
𝜙step − 1

6𝐿𝑥𝜙
2
step

𝑊step𝜈𝑖 + 𝐿𝑦 + 1
2𝐿𝑥𝜙step −

(︁
𝐿𝑦 + 𝑊step𝜈𝑖

2

)︁
𝜙2

step

⎞
⎠ (4.2)

In the controller implementation, (4.1) is used for ‖𝜙step‖ ≥ 0.1 rad and (4.2) is used
otherwise. Even for very large steps with 𝐿𝑥 = 0.7 m, 𝐿𝑦 = 0.2 m, the approximation
error is below 10−4 m. Equations (4.1) and (4.2) are applied recursively to calculate
footstep locations for all steps 𝒮𝑖.

Note that since a new circular path is calculated for each step, the robot is not
restricted to walking along circular paths. Rather, any sequence of footsteps can be
generated by changing 𝐿𝑥, 𝐿𝑦 and 𝜙step for each step.

4.3.2 Step Parameter Calculation
For calculating 𝒮𝑖, 𝒫ref is not used directly. Instead, it is modified for each step in
order to avoid self-collision and obtain the desired walking behavior.

The first modification concerns the relative rotation between two footsteps. The
rules for calculating a step sequence rotate the 𝑖-th footstep by 𝑖𝜙step. This rotation is
performed about the reference frame 𝐼𝑖 (cf. Section 4.4.1), which does not necessarily
coincide with the center of the sole. To achieve a more natural looking rotation
about the center of the foot, the parameters 𝐿𝑥 and 𝐿𝑦 are modified so that the
foot’s center 𝑝𝑓𝑐 is unchanged:

(︃
𝐿𝑥

𝐿𝑦

)︃

𝑖

=
(︃
𝐿𝑥,ref
𝐿𝑦,ref

)︃

𝑖

+ 𝑝𝑓𝑐 −𝐴𝑖,𝑖+1𝑝𝑓𝑐 (4.3)

Simply using (4.1) to calculate the step sequence can lead to overlapping footstep

62 4 Real-Time Trajectory Generation

locations, i.e., self-collisions that would damage the robot. Theoretically, self-collisions
can be avoided by many different combinations of foot rotations and translations.
However, changes that do not modify the circular reference path defined by 𝒫ref are
preferred. By only changing the step width 𝑊step, the reference path itself remains
unchanged, only the distance of the footsteps normal to the reference circle changes.

If the minimum acceptable distance between both feet for 𝐿𝑥 = 𝐿𝑦 = 𝜙step = 0 is
denoted by 𝑊step,min, the minimum distance for 𝜙step ̸= 0 is given by:

𝑊 ⋆
step,min = 𝑊step,min +

⃦⃦
⃦𝑒𝑇

𝑦 (𝑑𝑓 −𝐴𝑖,𝑖+1𝑑𝑓)
⃦⃦
⃦ (4.4)

Here 𝑑𝑓 denotes the vector along the diagonal of the foot sole. The effective step
width 𝑊step is then obtained by limiting 𝑊step,ref to 𝑊 ⋆

step,min. Equation (4.4) is a
worst case approximation that reliably avoids self-collision.

4.3.3 Reactive Step Sequence Planning

Introduction and Related Work
The general problem of navigation among obstacles is not part of this thesis. Rather,
this task is performed by a computer vision system developed in a separate project.
Currently, this system defines the desired path in 2-D using circular curve fragments.
Obstacles are avoided by choosing a path around them (cf. Chapter 6). A major
advantage of bipeds over wheeled robots is their ability to step over small objects and
climb stairs. The author proposes planning 2-D paths over small obstacles instead
of around them. The geometry and location of obstacles is sent to the robot along
with the desired circular reference path, allowing the robot to step over obstacles
based on a local, reactive step sequence planning algorithm. In this thesis, obstacles
are represented by a “triangle soup,” i.e., an unordered list of triangles tessellating
the obstacle surface. Related methods for step sequence planning were previously
proposed by Cupec [17] and Okada [81].

It must be noted that complex environments with many obstacles may require
global planning of footstep locations, since local planning methods can get trapped
in local minima. However, if the 2-D reference path is planned globally, local minima
for the step sequence planning only exist for very complex environments with few
acceptable footholds. Chestnutt et al. proposed a very general method based
on 𝐴⋆ search to globally plan a step sequence towards a goal position [12]. This
method is capable of finding viable footstep locations in very complex environments.
However, the computational cost is significantly higher. Also, the method inherently
requires a sampling of feasible footstep locations, artificially limiting the robot’s
actions.

Proposed Method
In the following, the proposed method for local step sequence planning is described.
It is assumed that the 2-D reference path minimizes the step length required for
stepping over the obstacle, i.e., the local step sequence planner does not have to
modify the reference path itself. Furthermore, the environment is assumed to be
“lightly cluttered,” allowing the robot to find viable footstep locations using a local

4.3 Step Sequence Planning 63

strategy.

Algorithm 3 Collision avoidance for small obstacles
1: Plan ideal circular reference path
2: Calculate bounding box of all footstep locations
3: if Obstacle in bounding box then
4: Find first step with obstacle collision
5: Adapt step length until obstacle
6: Plan step over obstacle
7: Plan remaining steps along ideal reference path
8: end if

The method is outlined in Algorithm 3. First, footstep locations are planned
without taking the obstacle into account and the first step with an obstacle collision
is determined. Steps before the collision are modified, such that the last foothold
has a pre-defined minimum distance to the obstacle. To avoid collisions with the
obstacle, height and position of the next two steps over the obstacle are planned
using the obstacle’s bounding box.

Figure 4.7 shows a sequence of snapshots from a dynamics simulation of Lola. In
the top row, the robot adapts the footstep locations and the swing foot trajectory in
order to step over the obstacle. The bottom row shows results from an animation
with the same walking commands, but without an obstacle. The obstacle shown
in these figures is not included in the dynamics simulation. It is only added to the
animation in order to illustrate the collision successfully avoided by the reactive step
sequence planner.

4.3.4 Higher Level Behavior
Some tasks the robot should execute have a longer planning horizon than one step
cycle. Examples include stair climbing or walking a certain distance. Such tasks
are implemented in the real-time controller as specialized “skills.” There always is
exactly one active skill and a reference to the next skill to be executed.

The basic structure of the step sequence planning remains unaltered, but two
additional functions are called during step sequence planning. The first function is
executed before the standard step sequence planner is called. This enables the skill
to set or modify walking parameters such as step length or stair height. The second
function is called after the standard planner, enabling the skill to modify the results
according to special requirements.

All skills are parameterized, allowing the robot to perform a large number of
similar actions using one skill. The implemented skills are listed in the following:

Normal Walking This is the default skill active during normal walking. No pa-
rameters are modified.

Fixed Distance Walking This skill enables the robot to walk a certain distance,
starting and stopping in a standing position. This behavior is parameterized by
the desired walking distance, the maximum speed and the desired acceleration.

64 4 Real-Time Trajectory Generation

t = 3.2 s t = 5.0 s t = 6.5 s

t = 3.2 s t = 5.0 s t = 6.5 s

With reactive step sequence planning

Without reactive step sequence planning

Figure 4.7: The top row shows an example of reactive step sequence planning for stepping
over a small obstacle. For comparison, the step sequence generated without an obstacle is
shown in the bottom row. Here the obstacle is not present in the dynamics simulation. It
is only included in the visualization to show where a collision would have occurred.

Climb on/off Platform Using this skill, the robot can climb up a single step or
onto a platform or descend from a platform or step. The motion is parameterized
by the position and height of the platform.

4.4 Coordinate Systems and Task-Space Definition
A large number of kinematic and dynamic constraints must be taken into account
during the generation of physically feasible walking trajectories. Kinematic constraints
ensure sufficient ground clearance of the swing leg, specify the correct contact
configuration and help to avoid self-collision. The unilateral ground contact limits
the set of admissible contact forces, leading to dynamic constraints on feasible
movements (cf. Chapter 3).

These constraints are, strictly speaking, independent of the mathematical repre-
sentation of the robot’s configuration. However, generating feasible trajectories can
be greatly simplified by using an adequate set of task-space coordinates.

4.4 Coordinate Systems and Task-Space Definition 65

Frontal plane

Transverse plane

Sagittal plane

Figure 4.8: Anatomical reference planes of the human body

4.4.1 Coordinate Systems
In the multibody models the position and orientation of coordinate frames are chosen
in such a way as to simplify robot simulations. Consequently, the orientation of
reference frames in upper body, right and left foot are not aligned when the robot is
in an upright standing position, which makes specifying constraints and trajectories
complex and non-intuitive.

Therefore, additional reference frames and specialized representations of spatial
rotations are introduced. All frames are chosen such that, in a perfectly upright
standing position, the unit vector 𝑒𝑥 points forward and 𝑒𝑧 points upward, i.e., in
the opposite direction as gravity.

For each foot, one additional frame is introduced which is fixed to the foot segment
for Johnnie and the toe segment for Lola. The origin is located in the center of the
sole it is attached to, i.e., in the middle of the entire foot for Johnnie and the middle
of the toe segment for Lola. These coordinate systems are denoted by the indices
𝑅𝐹 for the right and 𝐿𝐹 for the left foot.

An additional coordinate system with index 𝑇 is introduced at the origin of the
upper body. Figure 4.9 illustrates the location and orientation of foot and upper
body frames.

Calculations involving robot dynamics require an inertial reference frame. If
only one reference frame were used, calculations would be carried out relative to a

66 4 Real-Time Trajectory Generation

ex

ex

ex

ey

ey

ey

ez

ez

ez

g

Figure 4.9: Additional coordinate systems for planning and control

more and more distant reference point, potentially leading to large numerical errors.
Therefore, a new reference frame 𝐼𝑖 is introduced for every step 𝑖. When the swing
leg touches the ground, the inertial reference frame is placed below the new stance
foot, such that it coincides with the planning frame for that foot when there is full
surface contact and the foot is not deformed. Figure 4.10 shows a sequence of foot
steps and corresponding reference frames. In the following, 𝐼 signifies the current
reference frame 𝐼𝑖, if not explicitly stated otherwise.

ex

ex

ex

ey

ey
ey

ez

ez
ez

Ii−1

Ii

Ii+1

Figure 4.10: One inertial reference frame is introduced for each step.

While the walking control mainly uses the current reference frame 𝐼𝑖, the robot
also estimates its position relative to the first frame 𝐼0 by odometry, i.e., by updating
the position and rotation of 𝐼𝑖 relative to 𝐼0 every time the stance leg switches. This
establishes a common frame of reference (𝐼0) between walking control and computer
vision system during autonomous locomotion (cf. Chapter 6).

4.4.2 Task-Space Definition
The task-space coordinates 𝑥(𝑞) are composed of a sub-vector 𝑥𝑅(𝑞𝐽) depending
only on the joint angles 𝑞𝐽 and a sub-vector 𝑥𝐼(𝑞) that also depends on the upper
body position and orientation. Table 4.2 lists the components of 𝑥 used for the two
robots.

4.4 Coordinate Systems and Task-Space Definition 67

Table 4.2: Components of Johnnie’s and Lola’s task-space coordinates

Components used for both robots

𝑇 𝑟CoG−RF Right foot TCP relative to CoG in torso planning frame.
𝑇 𝑟CoG−LF Left foot TCP relative to CoG in torso planning frame.
𝑇 𝑠TRF Orientation of right foot relative to upper body.
𝑇 𝑠TLF Orientation of left foot relative to upper body.
𝐼𝑟CoG Robot CoG in inertial planning frame.
𝜙T Upper Body orientation relative to inertial planning frame.

Components used only for Johnnie
𝑞𝐽,RA Right arm joint angle.
𝑞𝐽,LA Left arm joint angle.

Components used only for Lola
𝑟CoG,RACoG Right arm CoG relative to robot CoG in torso planning frame.
𝑟CoG,LACoG Left arm CoG relative to robot CoG in torso planning frame.
𝑞𝐽,PR Pelvis rotation.
𝑞𝐽,PA Pelvis adduction.
𝑞𝐽,RTF Right toe flexion.
𝑞𝐽,LTF Left toe flexion.

For both robots, 𝑥𝐼 includes the absolute position of the center of gravity and the
upper body orientation:

𝑥𝐼 =
(︃

𝐼𝑟CoG
𝜙T

)︃
(4.5)

Since center of gravity dynamics dominate overall system dynamics, directly con-
trolling this quantity simplifies both calculating feasible reference motions and
maintaining balance.

For Johnnie, the position of the feet relative to the center of gravity and the
orientation of the feet relative to the upper body are added, together with the arm
joint angles:

𝑥𝑇
𝑅 =

(︁
𝑇 𝑟𝑇

CoG,RF 𝑇 𝑟𝑇
CoG,LF 𝑇 𝑠𝑇

TRF 𝑇 𝑠𝑇
TLF 𝑞𝐽,RA 𝑞𝐽,LA

)︁
(4.6)

Coordinates specifying the foot and center of gravity trajectories are the same for
Lola. However, arm trajectories are specified in Cartesian coordinates and the pelvis
and toe joint angles are added:

𝑥𝑇
𝑅 = (𝑇 𝑟𝑇

CoG,RF 𝑇 𝑟𝑇
CoG,LF 𝑇 𝑠𝑇

TRF 𝑇 𝑠𝑇
TLF 𝑟𝑇

CoG,RACoG · · ·
· · · 𝑟𝑇

CoG,LACoG 𝑞𝐽,PR 𝑞𝐽,PA 𝑞𝐽,RTF 𝑞𝐽,LTF) (4.7)

By controlling the foot position and orientation, premature ground contact of the
swing leg and collisions between swing and stance foot are easily avoided.

For both robots, there is a unique mapping from 𝑥 to 𝑞. For Lola, however, not
all coordinates are actively tracked. For example, by deactivating tracking for the

68 4 Real-Time Trajectory Generation

pelvis joints, these can be used for minimizing joint speeds and avoiding joint limits
(cf. Section 5.4). It is nevertheless useful to have a unique specification of the ideal
kinematic configuration, e.g., for initializing the robot controller and as a reference
for null-space optimization.

4.4.3 Relative Foot Orientation
In the field of robotics, orientations are often parameterized using Euler or Cardan
angles, the axis-angle representation or unit quaternions. However, these representa-
tions are not well suited for specifying feasible foot trajectories. For example, forward
foot roll during curve walking would lead to a complex and non-intuitive pattern of
Euler angles.

T ex

T ey

T ez

F ex

F ey

F ez

sT F,0

sT F,1

sT F,2

Figure 4.11: Coordinates specifying relative orientation of foot and upper body frames

Instead, a representation is chosen that enables direct specification of the angles
corresponding to forward roll, curve walking and walking sideways. This represen-
tation was developed by Löffler for the robot Johnnie and is based on direction
cosines between unit vectors of two reference frames. Figure 4.11 illustrates the
geometric relationships. With 𝐹 signifying either the right (𝑅𝐹) or left foot (𝐿𝐹),
the orientation is parameterized by:

𝑠𝑇 𝐹,0 = 𝑒𝑇
𝑧 𝐴𝐹 𝑇 𝑒𝑥 (4.8)

𝑠𝑇 𝐹,1 = 𝑒𝑇
𝑧 𝐴𝐹 𝑇 𝑒𝑦 (4.9)

𝑠𝑇 𝐹,2 = 𝑒𝑇
𝑦 𝐴𝐹 𝑇 𝑒𝑥 (4.10)

4.4 Coordinate Systems and Task-Space Definition 69

The term 𝑠𝑇 𝐹,0 corresponds to an up/down movement of the toe, 𝑠𝑇 𝐹,1 specifies a
sideways tilt and 𝑠𝑇 𝐹,2 the rotation required for curve walking.

4.4.4 Absolute Upper Body Orientation

Iex

Iey

Iez

T ex

T ey
T ez

α

ϕx

ϕy

T e′
x

Figure 4.12: Angles specifying the upper body orientation

Löffler proposed a special representation of the upper body rotation relative
to an inertial reference frame [60]. Using this representation, the upper body’s
inclination in the sagittal and the coronal plane, as well as the rotation about the
gravity vector can be specified independently. The kinematics of this representation
will be explained with reference to Figure 4.12. The axes of the inertial reference
frame are denoted by 𝐼𝑒𝑥 , 𝐼𝑒𝑦 , 𝐼𝑒𝑧 and those of the torso frame by 𝑇 𝑒𝑥 , 𝑇 𝑒𝑦 , 𝑇 𝑒𝑧.
The three angles 𝜙𝑇 = (𝜙𝑥 𝜙𝑦 𝛼)𝑇 are defined as:

𝜙𝑥 = ∠(𝐼𝑒𝑧 , 𝑇 𝑒𝑥) (4.11)
𝜙𝑦 = ∠(𝐼𝑒𝑧 , 𝑇 𝑒𝑦) (4.12)
𝛼 = ∠(𝐼𝑒𝑥 , 𝑇 𝑒′

𝑥) (4.13)

The vector 𝑇 𝑒′
𝑥 is the projection of 𝑇 𝑒𝑥 onto the 𝑥-𝑦 plane of the inertial reference

frame.
The multibody model uses Euler angles, so we must be able to transform (𝜙𝑥 𝜙𝑦 𝛼)𝑇

into (𝜓 𝜗 𝜙)𝑇 and vice-versa. Conversion between the two representations is per-
formed via the rotation matrix 𝐴𝐼𝑇 . For the sake of simplicity, the upper body
inclination is assumed to be less than 90∘, which seems reasonable for biped walking.

70 4 Real-Time Trajectory Generation

Calculating 𝜙𝑥, 𝜙𝑦 from the rotation matrix is straightforward:

𝜙𝑥 = acos(𝐼𝑒𝑇
𝑧 𝑇 𝑒𝑥) = acos(𝑒𝑇

𝑧 𝐴𝐼𝑇 𝑒𝑥) (4.14)
𝜙𝑦 = acos(𝐼𝑒𝑇

𝑧 𝑇 𝑒𝑦) = acos(𝑒𝑇
𝑧 𝐴𝐼𝑇 𝑒𝑦) (4.15)

Using

𝑇 𝑒′
𝑥 =

(︁
𝑒𝑇

𝑥 𝐴𝐼𝑇 𝑒𝑥 𝑒𝑇
𝑦 𝐴𝐼𝑇 𝑒𝑥 0

)︁𝑇
, (4.16)

the third angle 𝛼 is calculated as

𝛼 = atan2
(︁
𝑒𝑇

𝑦 𝐴𝐼𝑇 𝑒𝑥, 𝑒
𝑇
𝑥 𝐴𝐼𝑇 𝑒𝑥

)︁
(4.17)

The function atan2(𝑦, 𝑥) is a variant of atan(𝑦/𝑥) that returns the correct angle
between the positive 𝑥-axis and the point (𝑥, 𝑦) for all values of 𝑥, 𝑦 other than
𝑥 = 𝑦 = 0.

Löffler proposed calculating the rotational matrix from 𝜙𝑇 by solving a set
of quadratic equations. The author instead proposes a closed form solution for
calculating the rotational matrix 𝐴𝑇 𝐼 = (𝐼𝑒𝑥 𝐼𝑒𝑦 𝐼𝑒𝑧) directly. For 𝛼 = 0 the result
is immediately obtained as:

𝐼𝑒𝑥|𝛼=0 =

⎛
⎜⎝

s𝜙𝑥

0
c𝜙𝑥

⎞
⎟⎠ (4.18)

𝐼𝑒𝑦|𝛼=0 =

⎛
⎜⎝

0
s𝜙𝑦

c𝜙𝑦

⎞
⎟⎠ (4.19)

𝐼𝑒𝑧|𝛼=0 = 𝐼𝑒𝑥 × 𝐼𝑒𝑦 =

⎛
⎜⎝
− c𝜙𝑥 s𝜙𝑦

− s𝜙𝑥 c𝜙𝑦

s𝜙𝑥 s𝜙𝑦

⎞
⎟⎠ (4.20)

Here c𝑥 and s𝑥 are used to abbreviate cos𝑥 and sin 𝑥. Since 𝛼 is a rotation about
the 𝑧-axis of the coordinate system 𝐼, the final result is obtained by chaining 𝐴𝑇 𝐼 |𝛼=0
with an elementary rotation about the 𝑧-axis:

𝐴𝑇 𝐼 = 𝐴𝑧(𝛼) 𝐴𝑇 𝐼 |𝛼=0 (4.21)

The resulting matrix is listed in Appendix D, Equation (D.5).

4.5 Foot Trajectory Generation
Foot trajectories are defined by the relative position of the foot reference point from
the current planning frame and the rotation of the feet relative to the upper body.
The basic concept for designing foot trajectories follows the approach proposed by
Löffler for Johnnie [60]. However, arbitrary walking directions are considered in
this thesis, while Johnnie’s original controller did not support walking sideways. Also,

4.5 Foot Trajectory Generation 71

Lola’s controller supports the use of active toe joints. Additionally, the extensions
listed in Section 4.9 were added to improve walking performance.

Trajectory Representation
Foot trajectories are parameterized by piecewise quintic polynomials. For a compo-
nent 𝑝 with 𝑛 phases, the trajectory is given by:

𝑝(𝑡) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑︀5
𝑗=0 𝑎0,𝑗(𝑡− 𝑡0)𝑗 for 𝑡0 ≤ 𝑡 < 𝑡1∑︀5
𝑗=0 𝑎1,𝑗(𝑡− 𝑡1)𝑗 for 𝑡1 ≤ 𝑡 < 𝑡2

. . .
∑︀5

𝑗=0 𝑎𝑛−1,𝑗(𝑡− 𝑡𝑛−1)𝑗 for 𝑡𝑛−1 ≤ 𝑡 < 𝑡𝑛

(4.22)

The coefficients 𝑎𝑖,𝑗 are calculated from positions, velocities and accelerations at
phase boundaries, which guarantees 𝒞2-smooth trajectories:

𝑝(𝑡𝑖) =𝑎0,𝑖 (4.23)
𝑝̇(𝑡𝑖) =𝑎1,𝑖 (4.24)
𝑝(𝑡𝑖) =2𝑎2,𝑖 (4.25)

𝑝(𝑡𝑖+1) =
5∑︁

𝑗=0
𝑎𝑖,𝑗(𝑡− 𝑡𝑖)𝑗 (4.26)

𝑝̇(𝑡𝑖+1) =
4∑︁

𝑗=0
(𝑗 + 1)𝑎𝑖,𝑗+1(𝑡− 𝑡𝑖)𝑗 (4.27)

𝑝(𝑡𝑖+1) =
3∑︁

𝑗=0

(𝑗 + 2)!
𝑗! 𝑎𝑖,𝑗+2(𝑡− 𝑡𝑖)𝑗 (4.28)

Equations (4.23) to (4.25) directly yield 𝑎0,𝑖, 𝑎1,𝑖 and 𝑎2,𝑖. The remaining parameters
are obtained by numerically solving (4.26) to (4.28). Overall, calculation of these
coefficients has a negligible computational cost.

Translational Trajectory
The horizontal component of the swing foot trajectory uses three phases per step.
The first phase extends until 𝛥𝑇swing,lag after the double support phase ends and
the third phase starts 𝛥𝑇swing,lead before the next step begins. The foot is moved
to the next foothold during the second phase and does not move in the horizontal
direction during the first and third phases. Figure 4.13(a) shows a schematic plot of
one component of a horizontal swing foot trajectory.

Vertical Trajectory
Vertical motion of the swing foot is divided into four phases. During double support
the foot is at ground level, during the third phase it remains at a constant height
above ground and the remaining phases are used for lifting and lowering the foot. A
schematic plot of the resulting vertical foot trajectory is shown in Figure 4.13(b).

The parameters 𝛥𝑇swing,lead and 𝛥𝑇swing,lag determine if lift-off and/or landing are
vertical and how soon the desired ground clearance 𝑧swing is reached.

72 4 Real-Time Trajectory Generation

phase 1 phase 2 p
h
a
se

3

p
os
it
io
n

time

(a) Horizontal trajectory

phase 1 phase 2 p
h
a
se

3

phase 4

p
os
it
io
n

time

(b) Vertical trajectory

Figure 4.13: Design of the basic horizontal (a) and vertical (b) swing foot trajectories

Rotational Trajectory
Foot rotation about the vertical axis is added for curve walking. The trajectory
is designed with the same approach used for horizontal translation of the foot.
Additionally, the basic horizontal and vertical foot trajectories described above are
modified when forefoot roll and heel strike are used in order to satisfy the rolling
condition at the toe or heel and maintain the original velocity and position of the
foot relative to the ground.

Although not strictly necessary for walking, foot rotation orthogonal to the walking
direction has several advantages. During lift-off, foot rotation increases the maximum
possible step length by reducing ankle flexion, which is a limiting factor especially for
Johnnie. The same mechanism is used for Lola, where active toe joints additionally
allow the robot to maintain area contact during heel-off.

During the swing phase, foot rotation ensures initial contact with the heel. Both
Löffler’s walking controller [60] and Honda’s robots1 also use swing foot rotation.
Nevertheless, an analysis of its influence on walking stability has, to the author’s
knowledge, not been published previously.

Reference trajectories are planned so that, for longer steps, the center of pressure
is at the robot’s heel during initial contact. If the heel is lower than the toe, the
robot will contact the ground with the heel first even in the presence of an upper
body inclination error. If, however, the foot remains horizontal to the ground on its
ideal trajectory, initial contact will occur either with the heel or the toe, depending
on the sign of the upper body inclination error. That is, infinitely small upper body
inclination errors lead to finite errors in the position of the resulting contact force.
This is illustrated in Figure 4.14.

Toe Trajectory
For Lola, a heuristic reference trajectory for the toe joint angle is calculated using
quintic polynomials. The trajectory is set to reach the maximum toe joint angle in
the middle of the initial swing phase. The peak toe joint angle is a linear function of

1 This is from personal communication with a senior engineer in Honda’s robotics department.

4.5 Foot Trajectory Generation 73

F

(a) Foot rotation ensures heel-strike

F

(b) A flat-footed gait can lead to initial contact with the toe

Figure 4.14: A gait with heel-strike (top) is more robust against upper body inclination
errors than a flat-footed gait (bottom), because the location of the force at initial contact
does not change.

the step length:

𝜙toe,peak =

⎧
⎨
⎩

0 for 𝐿step < 𝐿foot
𝜙toe,max

𝐿max−𝐿foot
(𝐿step − 𝐿foot) for 𝐿step ≥ 𝐿foot

(4.29)

Here 𝐿foot is the foot length, 𝐿max is the maximum step length and 𝜙toe,max the
largest toe angle to be used. For the results shown in this thesis, 𝜙toe,max = 40∘ to
60∘ and 𝐿max = 0.6 to 0.8 m.

Heuristically determining the optimal speed and acceleration at the peak toe joint
angle is difficult and error prone. Therefore, only the joint angle is set and free

74 4 Real-Time Trajectory Generation

Figure 4.15: Example of a swing foot trajectory for Lola. The illustration shows snapshots
of the robot every 0.16 s. The reference leg is drawn solid, other bodies transparent. The
trajectory of the heel frame is shown in red, that of the toe in green.

parameters are determined by minimizing the required acceleration. To simplify
the optimization problem, the position 𝑝𝑖, velocity 𝑝̇𝑖 and acceleration 𝑝𝑖 at phase
boundaries 𝑡𝑖 are chosen as independent variables. The optimization problem can
then be written as:

𝜑(𝑥𝑝) = 1
2

∫︁
𝑝2𝑑𝑡→ min!

𝐺𝑥𝑝 = 𝑔0

(4.30)

Here 𝑥𝑝 is the vector of all boundary values 𝑝𝑖, 𝑝̇𝑖, 𝑝𝑖. Due to the choice of variables,
𝐺 is a binary matrix and the problem can be solved efficiently in the subspace of free
parameters. The same method of computing trajectories with minimum acceleration
can also be used for other components.

An example of a resulting swing foot trajectory for Lola is shown in Figure 4.15.

4.6 Center of Gravity Trajectory Generation
This section presents a new method for real-time walking pattern generation that
calculates stable walking patterns from given footstep locations. The system consists

4.6 Center of Gravity Trajectory Generation 75

CoG trajectory

ZMP reference

Support polygon

Foot trajectory

Figure 4.16: Visualization of real-time trajectory planning. Foot and CoG trajectories shown
in green, ZMP reference trajectory in black and support polygons in orange.

of constraint calculation, contact force trajectory generation and a method for
solving boundary value problems (BVP) for a sequence of walking steps. The author
previously published the basic concept of this method in [6]. This section describes
an extended version that can generate better trajectories for curve walking and plans
contact force trajectories in 2-D, taking the couplings between sagittal and lateral
plane into account.

4.6.1 Related Work
Optimization-based methods using comprehensive multibody models have been
presented in [3, 9, 18]. Due to the high computational cost, these methods can only
be used offline. To facilitate online planning, a large database of possible gaits must
be generated. If the solution space for a larger number of walking parameters is to
be sampled, this approach suffers from the “curse of dimensionality.” In fact, the
author implemented a system for generating walking trajectories using parameter
optimization [9]. This approach was very useful for generating realistic joint loads
in an early design stage of Lola and for systematically exploring different feasible
trajectories. Especially for autonomous walking, however, the approach proved
impractical, since providing enough step primitives leads to a combinatorial explosion

76 4 Real-Time Trajectory Generation

of the gait database. For Lola, typical ranges of the basic walking parameters are:

𝐿𝑥 = −20 . . . 66 cm
𝐿𝑦 = −20 . . . 20 cm

𝜙step = −20 . . . 20 deg
𝑇step = 0.7 . . . 1.2 s

A reasonably dense sampling of this parameter space should include gaits for step
lengths every 2 cm, turning angles every 2 deg and step periods every 0.1 s. This
leads to a total of 8.6× 104 different walking patterns. This can be reduced by, e.g.,
approximating the trajectory for 20 cm steps using an interpolation between 18 cm
and 22 cm steps. However, an even larger number of transitional gaits for switching
from one set of parameters to the next must be calculated and stored. It is not
possible to generate these transitional walking patterns by blending from one set of
parameters to the next, since the resulting trajectory often is not physically feasible.

Most authors therefore propose using real-time planning to be able to respond
more flexibly to changing commands and environments. Most work is based on a
simplified “inverted pendulum” model [41, 45, 61, 120, 121]. Proposed algorithms
using this model include analytical solutions [69], numerical solutions by finite
difference approximation [41], a kind of shooting method [120, 121] and a method
based on model predictive control [45]. A more detailed review of related work can
be found in [121].

The author proposes a method using the same basic approach as other real-time
walking pattern generators mentioned above. The novelty of the method is the
algorithm for generating reference force patterns and the approach towards solving
the equations of motion in real-time, which can handle more complex equations of
motion than previous methods. More specifically, the proposed method can solve
the trajectory generation problem for a non-constant height of the center of gravity
and arbitrary right hand sides.

4.6.2 Problem Statement and Analysis
There are two fundamental difficulties in walking pattern generation. First, feasible
contact forces and moments are strongly limited, leading to unilateral constraints (cf.
Chapter 3). Since dealing with inequalities in motion planning is computationally
expensive, the usual approach is to first generate feasible force and moment reference
patterns, effectively eliminating the inequalities. The remaining task is then to
calculate robot trajectories, often only the CoG trajectory, corresponding to the
given reference forces and moments. In this approach, forces are inputs and the
output is the robot’s CoG trajectory. However, the corresponding initial value
problem (IVP) is numerically unstable, which is the second difficulty. The obvious
solution is to solve a BVP instead of an IVP, thus preventing divergence.

In real-time planning, it is necessary to connect a newly calculated trajectory
to the one currently being executed. To avoid excessive forces that could damage
and/or destabilize the robot, connections should be 𝒞2-smooth, i.e., initial position,
velocity and acceleration must equal those of the trajectory currently being executed.

4.6 Center of Gravity Trajectory Generation 77

Additionally, constraints on the final CoG position and/or velocity are included to
achieve convergence towards a desired orbit or state. This is an ill-posed problem,
since more than two conditions are specified for a second order ODE. Therefore, to
enable 𝒞2-smooth trajectories, the reference forces and moments must be modified
to introduce additional degrees of freedom required to obtain a well-posed problem.

Kajita [45] proposed an interesting solution to this problem. By addressing
walking pattern generation as a tracking control problem for a given ZMP trajectory,
smooth solutions are obtained. However, this “preview control” method does not
allow ZMP trajectory modifications within the preview period, which is typically
set to about 1.6 s. This delay is a significant drawback for vision-guided walking.
Furthermore, in the author’s experience, large changes in the desired step length can
lead to very large deviations from the ZMP reference.

In an initial implementation of the method proposed here, a statically stable CoG
position was used as boundary condition at the end of the reference trajectory [6].
While this approach worked well, convergence towards a periodic gait could be slow.
Furthermore, this boundary condition is not well suited for curved paths, since the
curvature is not taken into account.

The author therefore proposes to first plan a periodic CoG trajectory for the third
and fourth step. For this portion of the trajectory the boundary conditions are:

𝑟(𝑡step,4)− 𝑟(𝑡step,2) = 𝛥𝑟step,2 + 𝛥𝑟step,3

𝑟̇(𝑡step,4)− 𝑟̇(𝑡step,2) = 0
(4.31)

Here index 0 is assigned to the first step of the new trajectory and 𝑡step,𝑘 is the
instant when the 𝑘-th step begins. Note that this problem is well defined and no
modification of contact force trajectories is necessary.

The initial state of the periodic solution is used as a boundary condition for the
first two steps. Denoting the trajectory currently being executed as 𝑟cur and the
periodic trajectory as 𝑟per, the boundary conditions are given by:

𝑟(𝑡step,0) = 𝑟cur(𝑡step,0)
𝑟(𝑡step,2) = 𝑟per(𝑡step,2)
𝑟̇(𝑡step,0) = 𝑟̇cur(𝑡step,0)
𝑟̇(𝑡step,2) = 𝑟̇per(𝑡step,2)

(4.32)

Periodic reference trajectories are also used for Toyota’s and Honda’s robots [116,
121]. For Honda’s robot, Takenaka proposed using not position and velocity, but
only the “divergent component” of the trajectory in the boundary condition for the
endpoint. This is a very interesting approach, since it avoids over-constraining the
system, which can lead to excessive changes in the reference ZMP in order to satisfy
the boundary conditions. This is especially true when a trajectory for only one step
is generated, as proposed by Takenaka. Contrary to this approach, we propose
generating a trajectory for two instead of only one step, spreading changes of the
ZMP over a longer period. In the author’s experience, the trajectory for the first
step, which is the only part ever executed, is very similar for both types of boundary
conditions, if the planning horizon is longer than one step.

78 4 Real-Time Trajectory Generation

4.6.3 Center of Gravity Dynamics

Calculating feasible trajectories taking a comprehensive multibody model into account
is possible [3, 9, 18], but computationally expensive. Currently, real-time calculation
is only feasible using simplified models. The required modeling depth is reduced
if details, such as individual joint torques, are not considered during trajectory
generation. To determine feasible trajectories, it is sufficient to study the overall
linear and angular momentum of the robot (cf. Chapter 3):

𝑚𝑟CoG = 𝐹 +𝑚𝑔 (4.33)

𝐿̇
CoG = 𝑇 − 𝑟CoG × 𝐹 (4.34)

Here 𝑚 is the robot gravity, 𝑔 the gravity vector, 𝐿CoG the angular momentum
about the CoG and 𝐹 , 𝑇 the total contact force and moment acting on the robot.
Eqs. (4.33)-(4.34) are exact but (4.34) is strongly nonlinear (in 𝑞), making solutions
numerically expensive. By assuming 𝐿̇

CoG ≈ 0 the much simpler EoM for the
CoG-dynamics can be derived:

𝑚𝑧 −𝑚𝑔 = 𝐹𝑧 (4.35)
𝑚𝑧𝑥̈−𝑚𝑥(𝑧 + 𝑔) = 𝑇𝑦 (4.36)
𝑚𝑧𝑦 −𝑚𝑦(𝑧 + 𝑔) = −𝑇𝑥 (4.37)

Since (4.36) and (4.37) are decoupled if 𝑧(𝑡) is assumed to be known, the further
discussion will be limited to the lateral direction. In fact, (4.36) and (4.37) can be
derived and interpreted in a number of ways. See [24, 65] for an interesting discussion
of the planar case.

Eq. (4.37) can be interpreted as the EoM of a single point mass coinciding with
the robot’s CoG and is surprisingly accurate for slow and moderate walking speeds.
However, at higher walking speeds, the influence of swing leg motion increases,
especially in the sagittal direction. This is especially true for the robots Johnnie and
Lola, since the legs account for approximately 60% of the total weight [25, 62].

To take this into account, simplified models with additional point masses repre-
senting the legs have been proposed. Takenaka [120] proposes a model with one
additional point mass per leg while Park [85] proposes only one additional point
mass representing the swing leg. The modeling error of the single point mass model
is mainly due to swing leg motion, suggesting a two-mass model. However, since
stance and swing leg switch for planning horizons of more than one step, we adopt
a model with one additional point mass per leg. The three point mass system is
described by:

𝑚𝑏𝑧𝑏𝑦𝑏 −𝑚𝑏𝑦𝑏(𝑧𝑏 + 𝑔) = −𝑇𝑥 +𝑚𝑙𝑦𝑙1(𝑧𝑙1 + 𝑔)−𝑚𝑙𝑧𝑙1𝑦𝑙1

+𝑚𝑙𝑦𝑙2(𝑧𝑙2 + 𝑔)−𝑚𝑙𝑧𝑙2𝑦𝑙2
(4.38)

where index 𝑏 denotes the body mass point, indices 𝑙1, 𝑙2 refer to the first and second
leg mass points and 𝑚𝑙 is the mass of one leg mass point.

Since the swing leg trajectory is calculated independently, (4.38) can be written in

4.6 Center of Gravity Trajectory Generation 79

−0.005

0

0.005

0.01

0.015

p
os
it
io
n
[m

]

15 15.5 16 16.5 17

time [s]

∆ϕx ml = 0.082m

∆ϕx ml = 0

Figure 4.17: A three point mass model leads to decreased upper body inclination errors
𝛥𝜙𝑥 when compared to a simple lumped mass model (𝑚𝑙 = 0). The plot shows results
from a dynamics simulation of Johnnie.

the form of (4.37) by defining the modified right hand side:

𝑇𝑥 := 𝑇𝑥 −𝑚𝑙𝑦𝑙1(𝑧𝑙1 + 𝑔) +𝑚𝑙𝑧𝑙1𝑦𝑙1 −𝑚𝑙𝑦𝑙2(𝑧𝑙2 + 𝑔) +𝑚𝑙𝑧𝑙2𝑦𝑙2 (4.39)

Figure 4.17 shows simulation results for Johnnie’s upper body inclination for 𝑚𝑙 = 0
and 𝑚𝑙 = 8.2% at a walking speed of 2.5 km/h. Evidently, oscillations of the upper
body due to swing leg motion are significantly reduced by using the improved model.

4.6.4 ZMP Reference Trajectory
This section presents a method for automatically generating ZMP reference trajecto-
ries from the foot geometry, footstep locations and a list of active contacts for each
gait phase.

Because of the unilateral ground contact, the ZMP 𝑟𝑝 must remain within the
convex hull of the support polygon at all times (cf. Chapter 3):

𝑟𝑝(𝑡) ∈ co ({𝑃 𝑖(𝑡)|𝑖 ∈ 𝐼𝑐(𝑡)}) (4.40)

Here 𝑃 𝑖(𝑡) denotes the position of the 𝑖-th contact and 𝐼𝑐(𝑡) is the set of active
contacts at time 𝑡. The set of active contacts is determined during step sequence
planning. Since 𝐼𝑐(𝑡) is constant for each phase of gait, the support polygon is a
piecewise constant function of time.

Theoretically, any feasible ZMP trajectory should be acceptable. In reality, however,
contact force and corresponding center of gravity trajectories have a strong influence
on walking stability and maximum walking speed. The author therefore proposes
using trajectories minimizing

1
2

∫︁
𝑟̇2

𝑝𝑑𝑡→ min!

𝑟𝑝(𝑡) ∈ co ({𝑃 𝑖(𝑡)|𝑖 ∈ 𝐼𝑐(𝑡)})
(4.41)

80 4 Real-Time Trajectory Generation

Such trajectories have two favorable characteristics: 1) Slowly changing contact
forces are easier to track for the contact force control and 2) they lead to smaller
center of gravity velocities and smoother walking.

In order to have 𝒞2-smooth CoG trajectories, 𝑟𝑝 must be at least 𝒞0, i.e., continuous.
Then, the solution to (4.41) is a piecewise linear function. For portions that lie on
the support polygon boundary, this is self-evident. For the remaining pieces, this is
easily verified by studying the unconstrained problem using calculus of variations.

Since kinks can only occur at boundaries between gait phases, 𝑟𝑝(𝑡) is parameterized
as a piecewise linear function with control points 𝑝𝑘 at phase boundaries. Using this
representation, (4.41) is transformed into a quadratic programming problem:

1
2𝑝𝑇

𝑥 𝑄𝑝𝑥 + 1
2𝑝𝑇

𝑦 𝑄𝑝𝑦 → min!

𝑝𝑘 ∈ co ({𝑃 𝑖(𝑡𝑘)|𝑖 ∈ 𝐼𝑐(𝑡𝑘)})
(4.42)

Here 𝑝𝑥, 𝑝𝑦 are vectors of 𝑥 and 𝑦 components of the 𝑛 control points and 𝑄 is a
tridiagonal matrix depending only on the control point distribution in time:

𝑄 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 1
ℎ0

1
ℎ0

0 . . .

− 1
ℎ0

1
ℎ0

+ 1
ℎ1

− 1
ℎ1

0 . . .

0 − 1
ℎ1

1
ℎ1

+ 1
ℎ2
− 1

ℎ2
0 . . .

...
. . . 0 − 1

ℎ𝑛−2
1

ℎ𝑛−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.43)

Here ℎ𝑖 = 𝑡𝑖+1− 𝑡𝑖 is the length of the 𝑖-th phase of gait. For given endpoint positions
𝑝0, 𝑝𝑛−1, (4.42) can be solved using a simple iterative scheme. The optimality
conditions for the unconstrained case, 𝑄𝑝𝑥 = 𝑄𝑝𝑦 = 0, are solved using a modified
Gauss-Seidel method. After each iteration, modified control points 𝑝𝑘 are projected
onto the boundary of the support polygon if they are outside. The strength of
this method is that it can handle arbitrary foot geometries. However, convergence
can be slow in some situations, even if it is faster than for a general quadratic
programming (QP) solver. Therefore, a faster method was also implemented that
directly constructs a solution for rectangular feet based on geometric reasoning.

Figure 4.16 shows results of the inequality and ZMP reference calculations for
three steps. Inequality constraints are shown in the form of support polygons in
orange, the ZMP reference trajectory in black and foot and CoG trajectories in green.

4.6.5 Solving the Boundary Value Problem
In this section we propose two methods for solving the boundary value problem.
Only the initial part of the trajectory with conditions (4.32) is presented. Calculating
the periodic reference trajectory is similar but does not require modifying ZMP
trajectories.

We first present an analytical solution. This method is very fast, but limited to a
constant CoG height and a simple inverted pendulum model. The second method
calculates an approximate solution using a collocation method. While this approach

4.6 Center of Gravity Trajectory Generation 81

is numerically more expensive, it can solve time-varying linear ODEs that arise when
the 𝑧-component is not constant and can handle arbitrary right hand sides.

Analytical Solution

Most of the time walking is a periodic motion, so (4.37) is a linear ODE where
the coefficients are periodically time-varying, i.e., (4.37) corresponds to the Hill
equation. For some special choices of 𝑧(𝑡), solutions exist, e.g., in the form of
Mathieu functions. In general, however, there is no closed form solution.

It is therefore common to assume 𝑧 = const. to allow an analytical solution. For
right hand sides composed of basic functions the solution is straightforward. An
analytical solution for piecewise polynomial right hand sides is given in [69]. In [6] the
author proposed a slightly modified method, using reference moments calculated as
shown in Section 4.6.4. For the analytical method, modified boundary conditions are
used. The initial position and velocity, along with the final position, are considered,
while the final velocity is not constrained.

To enable 𝒞2-smoothly connected trajectories, a control point 𝑇𝑥,mod of the reference
moment located at the middle of the first double support phase is modified. Since
stability margins are high at this point in the walking cycle, this leads to feasible
walking patterns even for large changes in walking parameters, e.g., when the robot
is accelerating.

For an interval 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] of the reference moment the solution of (4.37) with
𝑧 = 0, 𝑧 = const. is given by

𝑦𝑖 = 𝑎𝑖𝑒
√

𝛼𝑡 + 𝑏𝑖𝑒
−√

𝛼𝑡 − 𝑇𝑥,𝑖

𝑚𝑔
− 𝑇𝑥,𝑖+1 − 𝑇𝑥,𝑖

𝑚𝑔(𝑡𝑖+1 − 𝑡𝑖)
𝜏𝑖 (4.44)

where 𝑖 ∈ [0 . . . 𝑛− 1], 𝛼 := 𝑔/𝑧 and 𝜏𝑖 := (𝑡− 𝑡𝑖). To obtain a 𝒞2-smooth solution
of the BVP for a reference moment with 𝑛 control points, we demand continuity of
𝑦 and 𝑦̇ at the (𝑛− 2) interior points 𝑖 ∈ [1 . . . 𝑛− 2]. Adding the three boundary
conditions for 𝑦|𝑡=𝑡0 , 𝑦̇|𝑡=𝑡0 and 𝑦|𝑡=𝑡𝑛−1 leads to a total of (2𝑛− 1) linear equations
for the 2(𝑛− 1) + 1 variables, 𝑎𝑖, 𝑏𝑖 and 𝑇𝑥,mod, giving a unique solution. Figure 4.18
shows a solution for the sagittal direction for Johnnie accelerating from a previous
step length of 20 cm to 55 cm steps. Evidently, the method produces feasible and
smooth trajectories even for large and sudden changes in step length.

Solution by Spline Collocation

For general 𝑧𝑏(𝑡)-trajectories and right hand sides, (4.38) can only be solved numer-
ically. The simplest solution is to use a finite difference approximation. However,
this leads to rather large systems of equations. For Johnnie and Lola, control cycles
of 1.5 . . . 3.5 ms are used, so a trajectory for three 1 s steps requires solving a system
of up to 1500 linear equations. Using the proposed collocation method, a good
approximate solution for a 3 s trajectory can be obtained using only 30 equally
spaced control points. Russel and Shampine give the following description of the
collocation method:

82 4 Real-Time Trajectory Generation

−0.5

0

0.5

1

1.5

p
os
it
io
n
[m

]

0 0.5 1 1.5 2

time [s]

p
x

Tx,mod
Forbidden area

Figure 4.18: Example solution of analytical method for acceleration from 20 cm to 55 cm
steps. The CoG position 𝑥 is drawn with a solid, the ZMP position 𝑝 with a dashed line.
Areas outside of the support polygon are shown in gray.

“[The method involves] forming an approximate solution as a linear combination
of a convenient set of functions, the coefficients of which are determined by
requiring the combination to satisfy the differential equation at certain points
[. . .]” [104]

We use a cubic spline base, i.e., piecewise defined polynomials with continuity
conditions built in. Consequently, two small instead of one large system of equations
must be solved, which further decreases the numerical cost [104].

A cubic spline 𝑠(𝑡) on the interval 𝑡 ∈ [𝑡0, 𝑡𝑛−1] consists of a set of third order
polynomials 𝑠𝑖(𝑡) defined on 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], where 𝑡𝑖 define a partition of [𝑡0, 𝑡𝑛−1]. An
important property of cubic splines is their linearity in the control points 𝑝. Denoting
the gradient of 𝑥 with respect to 𝑦 by ∇𝑦 𝑥, the polynomial for 𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] can be
written as:

𝑠𝑖(𝑡) = (∇𝑝 𝑠𝑖(𝑡)) 𝑝 (4.45)
𝑠̇𝑖(𝑡) = (∇𝑝 𝑠̇𝑖(𝑡)) 𝑝 (4.46)
𝑠𝑖(𝑡) = (∇𝑝 𝑠𝑖(𝑡)) 𝑝 (4.47)

The matrices ∇𝑝 𝑠𝑖(𝑡),∇𝑝 𝑠̇𝑖(𝑡) and ∇𝑝 𝑠𝑖(𝑡) are independent of 𝑝. Calculating the
gradients involves solving a tridiagonal system of linear equations, which can be done
very efficiently by LR-decomposition requiring only O(𝑛− 2) operations. Relevant
equations for calculating cubic spline gradients are listed in Appendix E.

Defining 𝜂 ≈ 𝑦𝑏 as the approximate solution to (4.38) and choosing the 𝑡𝑖 as
collocation points yields:

𝑚𝑏 (𝑧𝑏,𝑖 (∇𝑝 𝜂𝑖)− (∇𝑝 𝜂𝑖) (𝑧𝑏,𝑖 + 𝑔)) 𝑝 = −𝑇𝑥,𝑖, 𝑖 ∈ [0, 𝑛− 1]. (4.48)

That is, there are 𝑛 equations for the 𝑛 spline control points 𝑝𝑖. To simplify
calculations, we use natural splines, i.e., accelerations are zero at the boundaries by
definition. To be able to represent non-zero accelerations, we introduce one virtual

4.6 Center of Gravity Trajectory Generation 83

−0.5

−0.25

0

0.25
p
os
it
io
n
[m

]

0 0.25 0.5 0.75 1 1.25 1.5

time [s]

xper
x

Figure 4.19: Center of gravity trajectory calculated using the proposed collocation method.
The dashed line is the periodic reference trajectory 𝑥ref and the solid line the resulting
trajectory 𝑥 for the next two steps.

control point before 𝑡0 and one after 𝑡𝑛−1. Thus, (4.48) leaves the two virtual control
points as free parameters, as would be expected for a second order ODE. In order to
satisfy all boundary conditions, two additional degrees of freedom are required. We
propose modifying the reference moment during the double support phases of the
first and second step, such that:

𝑇𝑥(𝑡) = 𝑇𝑥,𝑟𝑒𝑓 (𝑡) + 𝛾0𝛥𝑇𝑥,0(𝑡) + 𝛾1𝛥𝑇𝑥,1(𝑡) (4.49)

Here 𝛥𝑇𝑥,𝑖 are shape functions and 𝛾𝑖 are the additional free parameters. In the
default implementation, 𝛥𝑇𝑥,𝑖 are trapezoids with unit height that span the 𝑖-th step.
Thus, the full set of equations is:

(𝑚𝑏 (𝑧𝑏∇𝑝 𝜂 −∇𝑝 𝜂(𝑧𝑏 + 𝑔)) 𝑝)|𝑡=𝑡𝑖
= −

(︃
𝑇𝑥 +

1∑︁

𝑘=0
𝛾𝑘𝛥𝑇𝑥,𝑘

)︃⃒⃒
⃒⃒
⃒
𝑡=𝑡𝑖

𝑖 ∈ [1, 𝑛− 2]

(4.50)
∇𝑝 𝜂1𝑝 = 𝑦cur(𝑡step,0) (4.51)
∇𝑝 𝜂̇1𝑝 = 𝑦̇cur(𝑡step,0) (4.52)
∇𝑝 𝜂𝑛−2𝑝 = 𝑦per(𝑡step,2) (4.53)
∇𝑝 𝜂̇𝑛−2𝑝 = 𝑦̇per(𝑡step,2) (4.54)

Note that indices 𝑖 = 0, 𝑛− 1 are omitted in (4.50), since 𝑝0, 𝑝𝑛−1 are virtual control
points.

Figure 4.19 shows a solution obtained by the proposed method while accelerating
from 30 cm to 56 cm steps. The trajectory converges towards the periodic reference
(dashed line). Modifications to the original ZMP reference are shown in Figure 4.20.

84 4 Real-Time Trajectory Generation

−0.2

0

0.2

0.4

p
os
it
io
n
[m

]

0 0.25 0.5 0.75 1 1.25 1.5

time [s]

px
px,ref
x

Figure 4.20: Center of gravity trajectory (𝑥), reference (𝑝𝑥,ref) and modified ZMP trajecto-
ries (𝑝𝑥).

Discussion

Both methods presented generate feasible walking patterns. However, the collocation
method is more general, since it can handle complex moment reference patterns,
account for swing leg motion and vertical motion of the CoG. The benefit of using
the three point mass model, which becomes possible using the collocation method,
is visible from Figure 4.17, which shows a reduction of the torso swaying motion
by more than 45 % in sagittal direction. Of course, the more powerful solution
method comes at a certain cost. Table 4.3 shows calculation times for both methods
using Lola’s onboard PC (Intel Core 2 Duo T7600, 2.33 GHz). Calculation times for
the analytical method are negligible compared to other calculation such as inverse
kinematics. While the collocation method is slower, it is still sufficiently fast to allow
planning to complete within less than one control cycle.

4.7 Camera Head Control
Lola’s camera head has three degrees of freedom: pan, tilt and camera vergence. It
can be operated in two modes: either target joint angles are entered by a human
operator and the head executes a point-to-point trajectory, or the robot fixates a
3-D point in space, taking the kinematics of the entire robot into account. The first
mode is useful for walking experiments without computer vision, while the second
mode is used during autonomous locomotion. In the latter case, the computer vision
system determines the 3-D point 𝑃 the robot should look at (cf. Chapter 6). In the
following, the second mode of operation will be presented.

4.7.1 Inverse Kinematics
Figure 4.21 illustrates the kinematics of Lola’s camera head. Ideally, the reference
point 𝑃 should be at the center of both camera images, i.e., 𝑃 should coincide with
the intersection of the optical axes, called the fixation point. Since the head has three

4.7 Camera Head Control 85

Table 4.3: Calculation times for analytical solution and by spline collocation for 20 walking
steps

Method Max [ms] Min [ms] Average [ms]
Analytical solution 0.063 0.043 0.052
Collocation with 40 points 1.039 0.973 0.985
Collocation with 20 points 0.415 0.388 0.396

degrees of freedom, this can be achieved by controlling only the head joints, while
the remaining generalized coordinates are assumed to be given. Since the actual
robot pose is used when calculating ideal head joint angles, the robot automatically
compensates for self-motion and disturbances and inertially stabilizes the cameras.
The fixation point 𝑃 relative to the current planning frame 𝐼𝑖 can be written as:

𝐼𝑖
𝑟𝐼𝑖𝑃 = 𝐴𝐼𝑖𝐼0⏟ ⏞

odometry

(𝐼0𝑟𝑃⏟ ⏞
fixation point

− 𝐼0𝑟𝐼0𝐼𝑖⏟ ⏞
odometry

) (4.55)

The position and orientation of the current stance foot relative to the first reference
frame 𝐼0 are determined by odometry, while the fixation point 𝐼0𝑟𝑃 is given by
the computer vision system. The vector from the current planning frame to the
intersection 𝐶 of pan and tilt axes (𝐼𝑖

𝑟𝐶) is calculated using IMU and encoder data.
The vector from 𝐶 to 𝑃 in the upper body planning frame 𝑇 (𝑇 𝑟𝐶𝑃) is then given
by:

𝑇 𝑟𝐶𝑃 = 𝐴𝑇 𝐼𝑖
(𝐼𝑖

𝑟𝐼𝑖𝑃 − 𝐼𝑖
𝑟𝐶) (4.56)

From this, pan and tilt angles can be calculated using elementary geometry:

𝜃pan = − atan2 (𝑇 𝑟𝐶𝑃,𝑧 , 𝑇 𝑟𝐶𝑃,𝑥) (4.57)

𝜃tilt = atan2
(︁

𝑇 𝑟𝐶𝑃,𝑦 ,
√︁

𝑇 𝑟2
𝐶𝑃,𝑥 + 𝑇 𝑟2

𝐶𝑃,𝑧

)︁
(4.58)

For given pan and tilt angles, the vergence angle 𝜃verg can be calculated as:

𝜃verg = 2 atan2
(︃
𝐹𝐿𝐹𝑅

2 , 𝐶 ′𝑃

)︃
(4.59)

Here 𝐹𝐿𝐹𝑅 is the distance between the right (𝐹𝑅) and left (𝐹𝐿) focal points and
𝐶 ′𝑃 the distance between the midpoint 𝐶 ′ between the focal points and 𝑃 . If
𝐶 ′𝑃 ≫ 𝐹𝐿𝐹𝑅, which is always the case for autonomous locomotion, we can simplify
the calculations by setting 𝐶 ′𝑃 ≈ 𝐶𝑃 . Using this approximation, the vergence angle
becomes independent of pan and tilt angles. Ideal angular velocities 𝜃pan, 𝜃tilt and
𝜃verg are calculated in a similar fashion as joint angles.

4.7.2 Reference Trajectory Generation
The trajectory of the viewing target can be discontinuous, e.g., when attention
switches to a different object. Therefore, a simple tracking controller would have

86 4 Real-Time Trajectory Generation

θverg

θtilt

θpan

P

CJL
JR

FL

FR

rig
ht

op
tic

al
ax

is

left
optica

l axis

θverg Vergence joint angle
θpan Pan joint angle
θtilt Tilt joint angle
FL Left camera focal point
FR Right camera focal point
JL Left camera joint
JR Right camera joint
P Fixation point

Figure 4.21: Kinematics of Lola’s three degree of freedom camera head

to use very low gains to avoid damaging the robot. This, however, would lead to
unacceptable performance when tracking an object.

To solve this problem, a two-part control strategy is adopted that distinguishes
between tracking an object or moving to a new viewing target. This enables generation
of smooth trajectories for the joint position controller while achieving good tracking
of stationary or smoothly moving objects.

The strategy was designed from a control systems point of view, but there is a
remarkable similarity to eye movements in biological systems. Here there also is
a distinction between volitional saccades on the one hand and smooth pursuit or
optokinesis on the other [56].

While smooth pursuit is often studied in the context of moving objects, some
authors have suggested that it evolved to keep the point of interest at the center
of the retina during self motion [56], which is also the main purpose of this control
module for the robot. In contrast to biological systems, however, Lola uses no direct
visual feedback in the camera motion control loop.

Switching is based on the current tracking error of the viewing target: for small
tracking errors the smooth pursuit controller is selected and a saccade is initiated
otherwise.

The tracking controller calculates target angles for the joint position controller by
filtering the ideal target trajectories obtained by inverse kinematics. The controller is
implemented as a second order low-pass filter with rate limiter that outputs desired
position, velocity and acceleration.

Trajectories for moving towards a new viewing target (saccades) are parameterized
as fifth-order polynomials. The six parameters are determined from position, velocity
and acceleration at the current control cycle and at the end of the trajectory. The final
acceleration is set to zero, while the velocity and position are set to those obtained

4.8 Contact Force Distribution 87

t1 t2

t3 t4

Figure 4.22: Lola uses odometry and the full kinematic model to keep a 3-D point of inter-
est (shown as a red sphere) at the center of both camera images. Optical axis of right
and left camera (respectively shown in red and green) intersect at the target point.

from inverse kinematics. The duration of the trajectory is calculated numerically
from the maximal admissible speed for the saccadic motion.

The head trajectory is recalculated every control cycle, so the viewing target can
be switched at any time. Figure 4.22 illustrates the head movement when tracking
a static point 𝑃 . Figure 4.23 shows images taken with Lola’s left camera during
a walking experiment. The computer vision system was deactivated and Lola was
controlled using a joystick. The viewing target is kept at the center of the camera
image using only odometry, angular sensors and inertial measurements.

4.8 Contact Force Distribution
The planning methods for center of gravity and contact force trajectories presented
in the previous section only plan the total contact force acting on both feet. During
the double support phase, the total contact force 𝐹 tot and contact moment 𝑇 tot is
given by:

𝐹 tot = 𝐹 0 + 𝐹 1 (4.60)
𝑇 tot = 𝑇 0 + 𝑇 1 + 𝛥𝑟swing × 𝐹 swing (4.61)

88 4 Real-Time Trajectory Generation

t1 t2

t3 t4

Figure 4.23: Camera images taken during a walking experiment. The static fixation point is
located approximately at the center of the binder.

Here 𝐹 𝑖,𝑇 𝑖 denote the contact force and moment acting on the 𝑖-th foot and 𝛥𝑟swing
is the vector from stance to swing foot reference point. The force distribution between
left and right foot is defined by the load factors 𝜌𝑖:

𝜌𝑖 = 𝐹𝑖,𝑧

𝐹0,𝑧 + 𝐹1,𝑧

(4.62)

Here 𝐹𝑖,𝑧 is the vertical component of the contact force acting on the 𝑖-th foot.
The same load factors are used for all force components, leading to the following
equations:

𝐹 𝑖 = 𝜌𝑖𝐹 total (4.63)
𝑇 𝑖 = 𝜌𝑖 (𝑇 total −𝛥𝑟swing × 𝐹 swing) (4.64)

During the single support phase, 𝜌 = 1 for the stance leg and 𝜌 = 0 for the swing
leg. A linear interpolation between these two values is used during the double support
phase. The corner that would result at the beginning and end of the single support
phases when using a simple linear interpolation is smoothed using a fifth-order
polynomial. Figure 4.24 shows the desired and actual load factors for Lola during
periodic walking. Interestingly, load factors for humans show a very similar pattern.

4.9 Additional Components in Trajectory Generation 89

0

0.25

0.5

0.75

1

lo
ad

fa
ct
or

7 7.5 8 8.5 9 9.5 10

time [s]

ρ0
ρ1

0

0.25

0.5

0.75

1

lo
ad

fa
ct
or

7 7.5 8 8.5 9 9.5 10

time [s]

ρ0
ρ1

Figure 4.24: Desired (top) and actual load factors (bottom) for Lola walking in a dynamics
simulation

Figure 4.25 shows load patterns obtained from force plate measurements at a walking
speed of ≈ 1.8 m/s.2

4.9 Additional Components in Trajectory Generation
The basic and most important parts of the trajectory generation system were
presented in the preceding sections. This section gives an overview of additional
components that improve walking stability and smoothness, especially for faster
walking.

Compensating Foot Compliance
The foot trajectories described above satisfy the kinematic constraints when the
foot is not deformed. However, this leads to dynamically inconsistent trajectory
definitions: if the foot is undeformed, the contact forces must be zero, but non-zero

2 Experiments were performed at the Locomotion Laboratory, Institute of Sport Science,
Friedrich Schiller Universität Jena. The author would like to thank Susanne Lipfert for
kindly providing the data.

90 4 Real-Time Trajectory Generation

0

0.25

0.5

0.75

1

lo
ad

fa
ct
or

42.5 42.75 43 43.25

time [s]

ρ0
ρ1

Figure 4.25: Measured load factors for a human walking on a treadmill

contact forces are necessary during walking. Two methods of dealing with this
problem were implemented. In the first approach, the foot trajectories are modified,
such that the deformation required for the desired contact forces is included. In
the second approach, this compensation is performed by the contact force controller
(cf. Section 5.3).

Compensating Torso Inclination
The foot trajectories are controlled in the upper body planning frame. Consequently,
an error in the upper body inclination can lead to early or late ground contact of the
swing foot. This can be compensated by adding a small modification to the vertical
swing foot position and rotation. The modification term is returned to zero during
the stance phase.

Arm Swing
Especially at higher walking speeds, fast leg motion can lead to high vertical contact
moments, which in turn cause the robot to slip. This moment can be reduced by
swinging the arms back and forth opposite to the leg motion. For Lola, the arm CoG
is controlled relative to the robot CoG. The reference values are calculated from the
position of the CoG of the opposite leg relative to the robot CoG. Since the arms are
shorter than the legs, the compensating motion must be scaled down accordingly.

4.10 Chapter Summary
In Chapter 4 we presented the system for real-time gait planning and trajectory
generation. The desired walking speed and direction, as well as a viewing target are
obtained either from a computer vision system or a human operator. From these
inputs, ideal motion patterns are generated in a top-down fashion, coordinated by a
finite state machine. At the upper hierarchical levels sequences of walking steps and
the length of different phases of gait are planned. Step sequence planning includes a
reactive, model-based strategy for stepping over obstacles using a local environment
map.

4.10 Chapter Summary 91

A detailed explanation of coordinate systems and the spatial orientation represen-
tation used to describe task-space trajectories was also given.

A novel method for generating feasible center of gravity trajectories using a
simplified multi-mass model was presented. It is based on cubic spline collocation
and can generate trajectories for which the height of the center of gravity is not
constant.

Control of the three degree of freedom camera head is fully integrated into the
walking control. Reference trajectories are generated from a given 3-D fixation point,
taking the entire robot kinematics into account. This novel approach allows the robot
to compensate self-motion and to inertially stabilize the cameras. To the author’s
knowledge, this is the first time gaze control was fully integrated into a humanoid
robot’s full-body control, in order to compensate self-motion and disturbances and
to inertially stabilize the camera images.

5 Feedback Control

5.1 Introduction

5.1.1 Overview
For large bipeds such as Lola and Johnnie, simply tracking planned reference trajec-
tories does not lead to stable walking. Modeling errors of robot and environment, as
well as disturbances quickly lead to instability of the unactuated degrees of freedom.
Therefore, the reference trajectories must be adapted on-line in order to stabilize the
robot. The feedback control system can be divided into four main components:

• Contact force modification

• Hybrid position/force control

• Redundancy resolution and inverse kinematics

• Joint position control

Special emphasis is put on designing a general control method applicable to robots
with a wide range of different kinematics and mass distributions. Figure 4.1 illustrates
the structure of the walking control system with trajectory generation and feedback
control. The model-based approach presented in this chapter has been successfully
applied to both Johnnie and Lola in simulations and experiments.

5.1.2 Background and Related Work

Stabilizing Control of Biped Robots
The most common method of biped walking control is to first calculate theoretically
stable walking patterns either on-line [6, 45] or off-line [9]. The trajectory is then
modified on-line using feedback control in order to achieve stable walking. A large
number of methods for stabilizing control of bipeds have been proposed and a number
of similar ideas have been successfully implemented on human-sized humanoid robots.
In the following, a brief review of the approaches most relevant to this thesis is given.

A common strategy for stabilizing the upper body inclination is to control the
contact moments at the feet [44, 61, 119, 124]. Usually, the foot moments are measured
by six-axis force/torque sensors and controlled via position control of the ankle joints.
Another common strategy is to accelerate the center of gravity, creating a reaction
force that stabilizes the robot [74, 116].

An interesting strategy for stabilizing planar bipeds based on methods for torque-
limited control of robot manipulators [92] was proposed in [13]. By using time scaling
of the trajectory, both the geometric path and the CoP can be tracked. However,

93

94 5 Feedback Control

SS

S̄

J−1

JT

Position
control

Direct
kinematics

Force
control

Robot

xd

λd

∆x

∆λ

∆θ

∆τ

τ x

+

τ λ

+

λ
+

θ

x

+

Figure 5.1: Hybrid position/force control for torque controlled device, as proposed in [15].
𝑆,𝑆 denote respectively the selection matrices for position and force controlled dimen-
sions, 𝜆 is the contact force and 𝑥 the task-space position.

since time scaling only adds one additional control input, application to 3-D robots
is not straightforward.

In order to reduce landing impacts, many robots also incorporate an active control
of vertical contact forces. This can be achieved by measuring the contact force
and changing position set points [44, 61]. Another strategy involves reducing joint
position control gains during initial contact [73, 116], i.e., using indirect force control.

Fujimoto proposed a hybrid position/force control scheme based on task-space
position control [23]. Contact moments in the ground plane are not used for stabiliza-
tion, but for tracking a reference CoP instead. The remaining contact forces are used
for controlling the robot’s pose and torso height. Contrary to the method proposed
by the author, stabilization of the CoG trajectory is achieved by modifying the swing
leg trajectory according to Kajita’s Linear Inverted Pendulum Mode (LIPM) [43].

Löffler proposed an approach based on feedback linearization for the biped
Johnnie. Reportedly, the performance of this method was limited by the available
sensor bandwidth, computational power and accuracy of the models. In experiments,
the performance of a method based on impedance control proved to be superior [61].
The author believes that the second method was superior, because contact moments
were always actively controlled to stabilize the upper body. In the first method
based on feedback linearization, contact forces were treated as external forces to be
compensated as long as they did not reach the limit of admissible forces. In that
case the system switched to tracking the contact force to avoid a rotation of the foot
along its edge. Therefore, the basic structure of controlling contact forces to stabilize
the robot is maintained in the control system proposed in this thesis.

Hybrid Position/Force Control
Hybrid position/force control was originally proposed by Craig and Raibert for
interaction control of robot manipulators [15]. The basic approach is to partition the
task-space into force and position controlled sub-spaces according to the geometry
of the assembly or manipulation task. This allows precise motion control in uncon-
strained directions while force control allows the robot to adapt its motion to the
environment’s geometry and stiffness.

In [15] the individual joint control terms are a linear combination of contributions

5.2 Contact Force Modification 95

from a PID-type position control and direct force control, as illustrated in Figure 5.1.
More sophisticated approaches using dynamics models of the manipulator and
nonlinear decoupling were subsequently proposed by Khatib [55] and others.

Classically, hybrid position/force control was formulated for torque controlled
manipulators. However, for robots with high structural stiffness, actuated by electric
motors through reduction gears with relatively high ratios (≥ 50), such as Johnnie
and Lola, very low tracking errors can be achieved using simple decoupled joint
position control. Furthermore, direct joint position control enables good disturbance
rejection and compensation of gear friction with high bandwidth [2]. This has led to
the development of hybrid position/force control based on inner position or velocity
control loops [110, Ch. 7.4.3]. This approach is pursued in the following.

5.2 Contact Force Modification
The dynamics of a position controlled biped exhibit certain structural properties that
can be exploited in the stabilizing control. As detailed in Section 2.6.1, pp. 41 to 43,
the joint angles approximately follow the reference trajectories, while the upper body
DoFs are not directly actuated. The equations for this reduced model are given by:

(︃
𝑀𝑇 𝑇 𝑀𝑇 𝐽

𝑀𝐽𝑇 𝑀𝐽𝐽

)︃(︃
𝑞𝑇

𝑞𝐽

)︃
+
(︃

ℎ𝑇

ℎ𝐽

)︃
=
(︃

0
𝜏

)︃
+
(︃

𝐽𝜆,𝑇

𝐽𝜆,𝐽

)︃
𝜆 (5.1)

Here 𝐽𝜆 is the Jacobian projecting the contact forces 𝜆 into the space of generalized
coordinates. Since the joint angles 𝑞𝐽 are tracked accurately, only the first line
is relevant for the stabilizing controller. Assuming the robot does not slip and
the tangential contact stiffness is high, the number of unactuated DoFs is further
decreased from six to three: the vertical CoG position and the upper body inclination
in the sagittal and lateral planes. Note that errors in the CoG and upper body
position are a function of the upper body inclination error. Consequently, controlling
the upper body inclination error and the CoG error are equivalent.

Equation (5.1) shows that while the upper body DoFs are not directly actuated,
they can be controlled via the contact forces 𝜆. Moreover, according to the basic
laws of mechanics, the overall linear and angular momentum can only be influenced
via the contact forces. Stabilizing control is therefore based on modifying the contact
forces in order to control the upper body inclination error and the height of the
center of gravity.

In a first step, additional forces and moments that must act at the robot’s CoG
are calculated using a PD-type control law:

𝛥𝑇𝐶𝑜𝐺
𝑥 = 𝐾𝑃,𝑥𝛥𝜙𝑥 +𝐾𝐷,𝑥𝛥𝜙̇𝑥 (5.2)

𝛥𝑇𝐶𝑜𝐺
𝑦 = 𝐾𝑃,𝑦𝛥𝜙𝑦 +𝐾𝐷,𝑦𝛥𝜙̇𝑦 (5.3)

𝛥𝐹𝐶𝑜𝐺
𝑧 = 𝐾𝑃,𝑧𝛥𝑧𝐶𝑜𝐺 +𝐾𝐷,𝑧𝛥𝑧̇𝐶𝑜𝐺 (5.4)

The remaining components of 𝛥𝐹 𝐶𝑜𝐺 and 𝛥𝑇 𝐶𝑜𝐺 are set to zero. Denoting the
ideal force references calculated during trajectory generation as 𝐼𝐹 𝐶𝑜𝐺

𝑑0 and 𝐼𝑇 𝐶𝑜𝐺
𝑑0 ,

96 5 Feedback Control

the modified total contact force is given by:

𝐼𝐹 𝑑1 = 𝐼𝐹 𝐶𝑜𝐺
𝑑0 + 𝐼𝛥𝐹 𝐶𝑜𝐺 (5.5)

𝐼𝑇 𝑑1 = 𝐼𝑇 𝐶𝑜𝐺
𝑑0 + 𝐼𝛥𝑇 𝐶𝑜𝐺 + (𝐼𝑟𝐶𝑜𝐺 − 𝐼𝑟ref)× 𝐼𝐹 𝐶𝑜𝐺

𝑑1 (5.6)

The reference point for the total contact force and moment 𝐼𝑟ref is the sum of the
force/torque sensor positions 𝐼𝑟𝐹 𝑇 𝑆,𝑖 weighted with the corresponding load factor 𝜌𝑖

(cf. (4.62)):

𝐼𝑟ref = 𝜌0 𝐼𝑟𝐹 𝑇 𝑆,0 + 𝜌1 𝐼𝑟𝐹 𝑇 𝑆,1 (5.7)

Denoting the vector from the 𝑖-th force/torque sensor to the reference point by
𝛥𝑟ref,𝑖, the total contact force can be written as:

𝐹 tot = 𝐹 0 + 𝐹 1 (5.8)
𝑇 tot = 𝑇 0 + 𝑇 1 + 𝛥𝑟ref,0 × 𝐹 0 + 𝛥𝑟ref,1 × 𝐹 1 (5.9)

Here 𝐹 𝑖,𝑇 𝑖 are the force and moment acting on the 𝑖-th foot. The sum of vertical
contact forces 𝐹𝑧,0 + 𝐹𝑧,1 is given by (5.8), but the difference can be chosen within the
bounds admissible by the unilateral contact. Especially for longer steps, modifying
this difference is an effective means of contributing to 𝑇 tot. Since the contact moments
are limited by the size of the feet, the author proposes to maximize the contribution
of normal forces to 𝑇 tot in order to increase the moment available for stabilization.

The contribution to the horizontal contact moment obtained by adding/subtracting
𝛥𝐹𝑧,stab to the vertical component of left and right contact forces is given by:

𝛥𝑇 𝑁 = 𝛥𝑟ref,0 × 𝑒𝑧𝛥𝐹𝑧,stab + 𝛥𝑟ref,1 × 𝑒𝑧(−𝛥𝐹𝑧,stab)

= 𝛥𝐹𝑧,stab

⎛
⎜⎝

𝛥𝑟ref,0,𝑦 −𝛥𝑟ref,1,𝑦

−(𝛥𝑟ref,0,𝑥 −𝛥𝑟ref,1,𝑥)
0

⎞
⎟⎠

= 𝛥𝐹𝑧,stab

⎛
⎜⎝
𝛥𝑟ref,01,𝑦

−𝛥𝑟ref,01,𝑥

0

⎞
⎟⎠

(5.10)

That is, the additional contact moment is orthogonal to the connecting line between
left and right force sensor frame. Therefore, the contribution due to 𝛥𝐹𝑧,stab is calcu-
lated in a rotated coordinate system 𝑁 whose 𝑦-axis is aligned with the connecting
line between left and right force sensor. The total contact moment in the rotated
frame is:

𝑁𝑇 tot = 1√︁
𝛥𝑟2

ref,01,𝑥 +𝛥𝑟2
ref,01,𝑦

⎛
⎜⎝
𝛥𝑟ref,01,𝑦 −𝛥𝑟ref,01,𝑥 0
𝛥𝑟ref,01,𝑥 𝛥𝑟ref,01,𝑦 0

0 0 1

⎞
⎟⎠

⏟ ⏞
rotation matrix 𝐴𝑁𝐼

𝐼𝑇 tot (5.11)

5.2 Contact Force Modification 97

Modifying the normal force adds
√︁
𝛥𝑟2

ref,01,𝑥 +𝛥𝑟2
ref,01,𝑦𝛥𝐹𝑧,stab

to the 𝑥-component of total contact moment in the coordinate frame 𝑁 .
Normal forces must be positive and the swing leg contact force must be zero.

Additionally, the normal contact force is limited to 𝜌𝑖𝐹𝑧,max, where 𝐹𝑧,max is a bound
for the maximum normal force. This leads to the following limits for 𝛥𝐹𝑧,stab:

𝛥𝐹𝑧,stab ≥ 𝛥𝐹𝑧,stab,min = max (−𝜌0𝐹tot,𝑧, 𝜌1(𝐹tot,𝑧 − 𝐹𝑧,max))
𝛥𝐹𝑧,stab ≤ 𝛥𝐹𝑧,stab,max = min (𝜌0(𝐹𝑧,max − 𝐹tot,𝑧), 𝜌1𝐹tot,𝑧)

(5.12)

A typical value for 𝐹𝑧,max is twice the robot’s weight. The admissible normal force
modification that minimizes the necessary contact moments is then given by:

𝛥𝐹 ⋆
𝑧,stab = 𝑁𝑇tot,𝑥√︁

𝛥𝑟ref,01,𝑥
2 +𝛥𝑟ref,01,𝑦

2
(5.13)

𝛥𝐹𝑧,stab =

⎧
⎪⎪⎨
⎪⎪⎩

𝛥𝐹𝑧,stab,max if 𝛥𝐹 ⋆
𝑧,stab > 𝛥𝐹𝑧,stab,max

𝛥𝐹𝑧,stab,min if 𝛥𝐹 ⋆
𝑧,stab < 𝛥𝐹𝑧,stab,min

𝛥𝐹 ⋆
𝑧,stab else

(5.14)

Thus, the desired contact forces are calculated as follows:

𝐼𝐹 0 = 𝜌0 𝐼𝐹 tot + 𝑒𝑧𝛥𝐹𝑧,stab (5.15)
𝐼𝐹 1 = 𝜌1 𝐼𝐹 tot − 𝑒𝑧𝛥𝐹𝑧,stab (5.16)
𝐼𝑇 0 = 𝜌0 𝐼𝛥𝑇 ⋆

tot (5.17)
𝐼𝑇 1 = 𝜌1 𝐼𝛥𝑇 ⋆

tot (5.18)

𝐼𝛥𝑇 ⋆
tot =

[︂
𝐴𝐼𝑁

(︂
𝑁𝑇 tot − 𝑒𝑥𝛥𝐹𝑧,stab

√︁
𝛥𝑟ref,01,𝑥

2 +𝛥𝑟ref,01,𝑦
2
)︂]︂

(5.19)

Finally, the desired contact forces are calculated by taking the rotation of the force
sensor reference frames into account:

𝐹 𝑖𝐹 𝑖 = 𝐴𝐹 𝑖𝐼 𝐼𝐹 𝑖 (5.20)
𝐹 𝑖𝑇 𝑖 = 𝐴𝐹 𝑖𝐼 𝐼𝑇 𝑖 (5.21)

Here the 𝐹𝑖 denotes the reference frame of the 𝑖-th force/torque sensor. The vector
of modified contact forces 𝜆𝑑1 is then given by:

𝜆𝑇
𝑑1 =

(︁
𝐹 𝑖𝐹

𝑇
0 𝐹 𝑖𝑇

𝑇
0 𝐹 𝑖𝐹

𝑇
1 𝐹 𝑖𝑇

𝑇
1

)︁
(5.22)

Figure 5.2 shows results of a type 2 simulation of Lola walking at 2.2 km/h with
and without modifying normal forces for controlling the upper body inclination. By
modifying the normal forces, the peak upper body inclination error is decreased by
more than 50%.

98 5 Feedback Control

−0.015

−0.01

−0.005

0
in
cl
in
at
io
n
er
ro
r
∆
ϕ
x
[r
ad
]

12 12.5 13 13.5 14

time [s]

with ∆Fz,stab

without ∆Fz,stab

Figure 5.2: Simulation of Lola walking at 2.2 km/h with (solid line) and without (dashed
line) using normal forces for upper body stabilization

5.3 Hybrid Position/Force Control
Stabilization of the robot is based on controlling a subset of the contact forces
while tracking reference trajectories described in task-space coordinates. To control
the contact forces, the reference trajectories are modified along some task-space
dimensions. That is, a hybrid position/force control with inner position control loop
is used.

An explicit contact model is used to calculate the required trajectory modification
for tracking contact forces. This model, illustrated in Figure 5.3, consists of a set
of decoupled point contacts with stiffness 𝐶𝑖 and negligible damping. By using an
explicit contact model, changing foot geometries, contact states and contact stiffness
can easily be taken into account, which is useful for Lola during heel or toe contact.
A further advantage is the fact that the terms in the force control equations have a
clear physical meaning. More importantly, control of individual force components
is decoupled. If the foot’s “tool center point” and/or the force sensor is not at the
center of the foot or the foot’s contact stiffness is not homogeneous, controlling
only the rotation of the foot relative to the upper body or only the ankle joints
will generally alter both the contact moment and the normal contact force. This is
avoided by taking the foot geometry, contact stiffness and force sensor location into
account.

Using the known contact state, i.e., which contacts are opened or closed, the total
force 𝐹 𝑗 and moment 𝑇 𝑗 acting on foot 𝑗 are given by:

(︃
𝐹 𝑗

𝑇 𝑗

)︃
=

∑︁

𝑖∈𝐼𝑐,𝑗

(︃
𝑗𝐶𝑖 𝑑𝑐,𝑖

𝑗𝛥𝑟𝑐,𝑖 × 𝑗𝐶𝑖 𝑑𝑐,𝑖

)︃
(5.23)

Here 𝐼𝑐,𝑗 denotes the subset of 𝐼𝑐 on foot 𝑗, 𝑑𝑐,𝑖 is the deformation of the 𝑖-th contact
element and 𝑗𝛥𝑟𝑐,𝑖 is the vector from the force sensor frame to the contact element.

Similar to the use of a binary selection vector by Craig et al. to specify force or
position controlled dimensions [15], we use selection matrices to specify subsets of 𝜆

5.3 Hybrid Position/Force Control 99

Figure 5.3: Schematic representation of the contact model for real-time stabilizing control

and 𝑥 to be actively controlled:

𝜆𝑐 = 𝑆𝜆𝜆 (5.24)
𝑥𝑐 = 𝑆𝑥𝑥 (5.25)

Here the subscript 𝑐 denotes the actively controlled variables and 𝑆𝜆,𝑆𝑥 are binary
selection matrices. For this thesis, the forces normal to and the moment in the
contact plane are actively controlled.

In the non-position controlled dimensions, we allow a modification of the reference
trajectories by 𝛥𝑥𝜆 for force control. With 𝐾𝜆 as a control gain, we choose the
linear error dynamics

𝑆𝜆

(︁
𝛥𝜆̇ + 𝐾𝜆𝛥𝜆

)︁
= 0 (5.26)

for the actively controlled forces, where 𝛥𝜆 = 𝜆𝑑1 − 𝜆. With 𝑆𝑥 denoting the
complement of 𝑆𝑥, we have:

𝛥𝑥̇𝜆 = 𝑆𝑥 (∇𝑞 𝑥) 𝑞̇𝛥𝑥̇𝜆
(5.27)

From the contact model (5.23) we obtain the relationship:

𝜆̇ = (∇𝑞 𝜆) 𝑞̇ (5.28)

Substituting (5.28) into (5.26) and rearranging yields:
(︁
𝑆𝜆 (∇𝑞 𝜆)

)︁
𝑞̇ = 𝑆𝜆

(︁
𝜆̇𝑑1 + 𝐾𝜆𝛥𝜆

)︁
(5.29)

Because of the linear relationship between generalized velocities and workspace
velocities, we have 𝑞̇ = 𝑞̇𝑑0 + 𝑞̇𝛥𝑥̇𝜆

, where 𝑞̇𝑑0 are the ideal generalized velocities
corresponding to the ideal task space trajectories 𝑥𝑑0. Using this relationship and the

100 5 Feedback Control

Moore-Penrose pseudoinverse (·)# we can solve for the trajectory modification:

𝛥𝑥̇𝜆 =
[︁
𝑆𝜆 (∇𝑞 𝜆)

(︁
𝑆𝑥 (∇𝑞 𝑥)

)︁#]︁#
𝑆𝜆

(︁
𝜆̇𝑑1 + 𝐾𝜆𝛥𝜆− (∇𝑞 𝜆) 𝑞̇𝑑0

)︁
(5.30)

As detailed in Section 5.2, the desired contact forces 𝜆𝑑1 are the sum of ideal reference
forces 𝜆𝑑0 and additional forces 𝛥𝜆stab for stabilization. A time derivative for 𝜆𝑑0 is
calculated during trajectory generation, but 𝛥𝜆̇stab is not available since the robot
does not measure angular accelerations of the upper body. Therefore, 𝜆̇𝑑1 = 𝜆̇𝑑0 is
used in the controller implementation.

If the foot deformations are not taken into account during trajectory generation,
foot trajectories are planned to not penetrate the environment. This means that
for 𝑞 = 𝑞𝑑0, the contact element deformations 𝑑𝑐,𝑖 and the corresponding contact
force 𝜆 vanish and (∇𝑞 𝜆) 𝑞̇𝑑0 ≡ 0. In this case, the trajectory modification due to
𝜆̇𝑑 provides a feed-forward compensation of foot deformations. If deformations are
taken into account during trajectory planning, we have 𝜆̇𝑑0 = (∇𝑞 𝜆) 𝑞̇𝑑0. In both
cases, the trajectory generation can be written as:

𝛥𝑥̇𝜆 =
(︂

𝑆𝜆 (∇𝑞 𝜆)
(︁
𝑆𝑥 (∇𝑞 𝑥)

)︁#
)︂#

𝑆𝜆

(︁
𝐾𝜆,FF𝜆̇𝑑1 + 𝐾𝜆𝛥𝜆

)︁
(5.31)

The matrix 𝐾𝜆,FF is chosen according to the deformation compensation provided by
the trajectory generator.

Due to the varying contact state, we cannot use (5.31) directly. For the swing
leg all contacts are inactive, ∇𝑞 𝜆 becomes singular and we cannot compute the
pseudoinverse in (5.31). Since the contact force is independent of the trajectory
modification 𝛥𝑥̇𝜆, we blend from force to position control for components with
vanishing contact stiffness:

𝛥𝑥̇𝜆 =
{︂[︁

𝑆𝜆 (∇𝑞 𝜆) (𝑆𝑥 (∇𝑞 𝑥))#
]︁#

𝛼𝜆𝑆𝜆

[︁
𝐾𝜆,FF𝜆̇𝑑1 + 𝐾𝜆(𝜆𝑑 − 𝜆)

]︁}︂

+ 𝛼𝑥

[︁
𝑆𝑥𝐾𝜆𝑥(𝑥𝑑 − 𝑥)

]︁ (5.32)

Here 𝛼𝜆 + 𝛼𝑥 = 𝐸 are gain matrices with elements 𝛼𝑖,𝑗𝑘 ∈ [0, 1] that determine
which dimensions are position or force controlled. Additionally, a damping term is
added to each vanishing row of (∇𝑞 𝜆) to enable calculation of the pseudoinverse.
Since the corresponding elements in 𝛼𝜆 are zero, the magnitude of the damping term
does not influence the result of (5.32). Finally, the modified task-space trajectories
𝑥𝑑1 are calculated as:

𝑥̇𝑑1 = 𝑥̇𝑑0 + 𝑆
𝑇
𝑥 𝛥𝑥̇𝜆

𝑥𝑑1 = 𝑥𝑑0 + 𝑆
𝑇
𝑥 𝛥𝑥𝜆

𝛥𝑥𝜆 =
∫︁

𝛥𝑥̇𝜆𝑑𝑡

(5.33)

For safety reasons, 𝛥𝑥𝜆 and 𝛥𝑥̇𝜆 are limited to reasonable values. During normal
walking, these limits are not reached. The method of calculating the modified
task-space velocities 𝑥̇𝑑1 is illustrated in Figure 5.4.

5.4 Inverse Kinematics and Redundancy Resolution 101

position control

force control

Kλx S̄x αx

d
dt

(·)

Kλ

d
dt

(·) Kλ,FF

Sλ αλ

[
Sλ (∇q λ) (S̄x (∇q x))#

]#

S̄
T
x

xd0

x

−

λd1

λ

−

+

+

+

∆ẋλ

+
ẋd1

Figure 5.4: Proposed method of modifying task-space trajectories for hybrid position/force
control

5.4 Inverse Kinematics and Redundancy Resolution
In the last processing stage before joint position control, joint angles that track
the modified reference trajectories 𝑥𝑑1 are determined. That is, a solution to the
equation

𝑥(𝑞) = 𝑥𝑑1 (5.34)

is calculated. In the following, 𝑥 is a reduced vector of the full set of task-space
coordinates listed in Section 4.4.2 and Table 4.2. For Lola, the pelvis joint angles
are removed from 𝑥 in the default implementation. Then, dim(𝑥) < dim(𝑞), the
robot is kinematically redundant and there is, in general, no unique solution. This
offers the opportunity for optimization, since we can choose trajectories that not
only track 𝑥𝑑1, but also minimize a cost function 𝐻.

Minimizing 𝐻 for the entire trajectory is not possible in real-time, since it involves
solving a complex optimal control problem [71]. Therefore, a “local optimization”
[71] of kinematic redundancy is performed at the velocity level. Differentiating (5.34)
leads to a linear equation for 𝑞̇:

(∇𝑞 𝑥) 𝑞̇ = 𝐽𝑥𝑞̇ = 𝑥̇𝑑1 (5.35)

The well-established method of resolved motion rate control originally proposed by
Whitney [130] is chosen to calculate 𝑞̇. The idea is to calculate 𝑞̇ as the solution of
a constrained quadratic programming problem:

1
2 𝑞̇𝑇 𝑊 𝑞̇ → min!

𝑥̇− 𝐽𝑥𝑞̇ = 0
(5.36)

The solution to this problem minimizes the required joint velocities for tracking 𝑥̇,
where the individual joint speeds are weighted by the (usually diagonal) matrix 𝑊 .

102 5 Feedback Control

Liégeois [58] proposed minimizing a cost function 𝐻(𝑞) by modifying (5.36). The
change in 𝐻 during one control cycle is:

𝛥𝐻 = (∇𝑞 𝐻)𝛥𝑞 ≈ (∇𝑞 𝐻) 𝑞̇𝛥𝑡 (5.37)

Therefore, the largest reduction of 𝐻 during one control cycle is given by 𝑞̇ =
− (∇𝑞 𝐻)𝑇 . Instead of choosing this direction of “steepest descent” for 𝐻, a modified
cost function for minimizing both 𝐻 and the required joint speeds is chosen:

1
2 𝑞̇𝑇 𝑊 𝑞̇ − 𝛼𝑁 (∇𝑞 𝐻) 𝑞̇ → min!

𝑥̇− 𝐽𝑥𝑞̇ = 0
(5.38)

The scalar parameter 𝛼𝑁 > 0 determines the balance of priorities between minimizing
𝐻 and minimizing 1

2 𝑞̇𝑇 𝑊 𝑞̇. The solution to (5.38) can be computed using the method
of Lagrange multipliers. The closed form solution is:

𝑞̇ = 𝐽#
𝑥,𝑊 𝑥̇ +

(︁
𝐸 − 𝐽#

𝑥,𝑊 𝐽𝑥

)︁

⏟ ⏞
𝑁

𝑊 −1𝛼𝑁 ∇𝑞 𝐻
𝑇 (5.39)

Here 𝐽#
𝑥,𝑊 is the 𝑊 -weighted generalized inverse and 𝑁 a null-space projection

matrix. While this closed form solution is often used, it is significantly more efficient
to directly compute 𝑞̇ from the optimization problem without calculating 𝐽#

𝑥 and 𝑁 .
This approach, proposed by Klein and Huang (see [71]), is detailed in Appendix F.

For Lola, the objective function 𝐻 is used to avoid joint limits and to choose
symmetric and “comfortable” poses. Quadratic cost functions are chosen for both
components. However, joint limit avoidance is only activated close to the edges of
the working range. The resulting cost function is shown schematically in Figure 5.5.

qcmf

deceleration out of range

qmin qmax

H(q)

Hlimit(q)

Hcmf(q)

Figure 5.5: Schematic representation of the objective function 𝐻 = 𝐻limit + 𝐻cmf for a
single joint. 𝐻limit, 𝐻cmf are the terms for joint limit avoidance and convergence towards
the preferred joint angle 𝑞cmf , respectively.

5.4 Inverse Kinematics and Redundancy Resolution 103

0

10

20

30

40
q̇
T
q̇

[r
ad

2
/
se
c2
]

15 16 17 18 19 20

time [s]

with
redundant joints

without
redundant joints

−5

−2.5

0

2.5

5

kn
ee

jo
in
t
sp
ee
d
[r
ad
/s
ec
]

15 16 17 18 19 20

time [s]

with
redundant joints

without
redundant joints

Figure 5.6: The required angular velocities can be decreased by using redundant toe and
pelvis joints: both the square of generalized velocities 𝑞̇𝑇 𝑞̇ (top) and the knee joint
speeds (bottom) are significantly reduced.

Figure 5.6 illustrates the effect of the redundant toe and pelvis joints on the
required joint speeds. The improvement is the most pronounced for fast moving
joints such as the knee.

The desired generalized coordinates are calculated by numerically integrating
(5.39). Since the integration is not exact, simply integrating 𝑞̇𝑑1 would lead to an
unbounded error in tracking the task-space trajectories 𝑥𝑑1. To avoid this, a position
control term 𝐾𝑥(𝑥𝑑1−𝑥) is added to 𝑥̇𝑑1. Figure 5.7 illustrates the resulting inverse
kinematics algorithm with null-space optimization.

Figure 5.8 illustrates the structure of the entire stabilizing control system. Either
the measured generalized coordinates 𝑞 (feedback path 2) or the desired values
from the last control cycle 𝑞𝑑1 (feedback path 1) can be used as input to the
direct kinematics. When feedback path (1) is selected, the term 𝐾𝑥(𝑥𝑑1 − 𝑥)
compensates the numerical drift of time integration. For feedback path (2) this term
constitutes a task-space position control. Experiments with both versions showed
similar performance. In most cases, the numerical drift compensation is chosen, since

104 5 Feedback Control

nu
lls

pa
ce

op
tim

iza
tio

n

trajectory tracking

Kx

d
dt

(·)

J#
W

∫
(·)dt

x(q) I − J#
W J

∇q H

xd1

x

−

qd1
+

q

Figure 5.7: Inverse Kinematics with null-space optimization

it proved to be more robust.
A different method for local optimization of redundancy was previously proposed

by the author for controlling the robot H7 [8]. In this approach, a base of the
null-space is explicitly constructed using a singular value decomposition (SVD) of
the Jacobian matrix. This approach provides several advantages and was successfully
used for controlling a kneeling motion of H7, as shown in Figure 5.9. Having an
explicit representation of the null-space enables more fine-grained control over the
local optimization procedure. However, the numerical cost of calculating the SVD
proved too high for real-time use in the walking controller, due to the larger number
of task-space degrees of freedom.

5.5 Joint Position Control

5.5.1 Joint Position Control for Johnnie

The lowest level in the walking control system is a joint position control loop. Johnnie
does not have current sensors, so the position is directly controlled by modifying the
armature voltage 𝑈 depending on the measured (𝜙mot) and desired (𝜙mot,𝑑) angles
of the motor shafts:

𝑈 = 𝐶(𝜙mot,𝑑 −𝜙mot) + 𝐷(𝜙̇mot,𝑑 − 𝜙̇mot) + 𝑘𝑀 𝜙̇mot,𝑑 (5.40)

The gain matrices 𝐶,𝐷 are diagonal, i.e., the joint position control is decoupled.
Nevertheless, this control loop is executed on the on-board PC with the same sampling
time of 1.5 ms used for all controllers on Johnnie. Since the motor side of the joint is
controlled, the ankle joint kinematics do not have to be considered in this control
loop.

5.5 Joint Position Control 105

Contact force
calculation

Force/position
control

Inverse
kinematics

Position
controlled

robot

Direct
kinematics

λd0 λd1 xd1 qd1 q, λ

xd0

x

x

q

qd1

1

2

1 Drift compensation 2 Feedback control

Figure 5.8: Schematic overview of the stabilizing control system. When feedback path (1)
is selected, the system uses a pure inverse kinematics algorithm. Choosing feedback path
(2) leads to a task space position control.

t1 t2

t3 t4

t5 t6

Figure 5.9: A different approach to redundancy resolution was applied to H7 for generating
a kneeling motion. The rotation of the hand about the surface normal of the thigh is a
result of null-space motion and joint limit avoidance.

106 5 Feedback Control

Subsystem 1

On-board PC

Local
controller 1

Local drive
kinematics

Servo drive
controller 1.1 Motor 1.1

Servo drive
controller 1.2 Motor 1.2

Servo drive
controller 1.3 Motor 1.3

qJ,d,1, qJ,1, ϕ1

ϕ̇d,1,1 PWM ϕ1,1

qJ,1

ϕ̇d,1,2

PWM
ϕ1,2

ϕ̇d,1,3

PWM
ϕ1,3

...

Subsystem N
Local . . .

qJ,d,i Desired joint angles for i-th subsystem
qJ,i Measured joint angles for i-th subsystem
ϕd,i,j Desired motor shaft angles for j-th motor in i-th subsystem
ϕi,j Measured motor shaft angles for j-th motor in i-th subsystem
PWM Pulse width modulated input to motor windings

Figure 5.10: Schematic representation of Lola’s distributed joint control system

5.5.2 Joint Position Control for Lola
Lola’s low-level control is a distributed system with nine local controllers (custom
made PCBs), each responsible for two to three joints. The local controllers receive
joint angle targets from the on-board PC. Each local controller is connected to either
two or three commercial digital servo drive controllers1, each in turn connected to one
motor. Depending on the feedback loop used (see below), the local controllers must
calculate forward kinematics and/or Jacobians of the local drive kinematics. For the
controllers responsible for knee and ankle joints, the kinematics are quite involved

1 Whistle and Guitar modules from Elmo Motion Control Ltd. (http://www.elmomc.com/)

http://www.elmomc.com/

5.5 Joint Position Control 107

motor

link

qM , τ

qJ

K

Figure 5.11: Single elastic joint model used for stability analysis

(cf. Section 2.2.3). The controllers do not have floating point units, leading to large
rounding errors in certain calculations. Therefore, look-up tables are computed off-
line using 64-bit floating point arithmetic and converted into a scaled 32-bit integer
representation. Jacobians and motor angles are then calculated by linear interpolation.
Figure 5.10 illustrates the structure of the distributed control system. The electronics
components were developed by Georg Mayr and Mathias Bachmayer and the
local controllers were programmed by Valerio Favot.

Lola is equipped with link and motor-side position sensing. The motor-side
incremental encoder signal is connected to both servo drive controllers and the
local controller, while the link-side absolute encoder is only connected to the local
controller. The servo drive controllers are capable of current and motor-side speed
control. This structure enables a number of different control architectures.

While the stiffness of Lola’s joints is very high (cf. Section 2.4.3), the elasticity must
be taken into account for link-side position control. In the following, the stability
properties of several combinations of link and motor-side feedback are analyzed using
a simple model of a single elastic joint. For the sake of simplicity, only PD-type
control laws are considered. In the implementation, the PD-type control can also
be implemented as a cascade control with inner velocity and outer position control.
The stability analysis for various cascade control schemes with and without integral
control were performed in the same manner.

Single Elastic Joint Model
Basic stability properties of different feedback configurations will be studied using
the two mass system shown in Figure 5.11. A similar analysis for the control of
elastic joints is given in [110, Ch. 13]. To simplify the analysis and because it is the
worst case, damping will be neglected. Furthermore, and without loss of generality,
the gear ratio is set to one. With reference to Figure 5.11, the EoM can be written
as:

𝐽𝐽𝑞𝐽 +𝐾(𝑞𝐽 − 𝑞𝑀) = 0 (5.41)
𝐽𝑀𝑞𝑀 +𝐾(𝑞𝑀 − 𝑞𝐽) = 𝜏 (5.42)

Here 𝑞𝐽 is the joint angle and 𝑞𝑀 is the motor angle.

108 5 Feedback Control

Link-Side Position and Velocity Feedback

In one possible feedback configuration, only link-side sensing is used, leading to the
following control law:

𝜏 = 𝐾𝑝(𝑞𝐽,𝑑 − 𝑞𝐽) +𝐾𝑑(𝑞𝐽,𝑑 − 𝑞𝐽) (5.43)

For this arrangement, the transfer function is computed as:

𝐺𝑃 𝐷,link = 𝐾(𝐾𝑝 + 𝑠𝐾𝑑)
(𝐽𝑀𝐽𝐽)𝑠4 +𝐾(𝐽𝑀 + 𝐽𝐽)𝑠2 +𝐾𝐾𝑑𝑠+𝐾𝐾𝑝

(5.44)

Stability requires that all poles of the system lie in the left half-plane. According to
the Hurwitz criterion [37], link-side feedback is always unstable, since the coefficient
for 𝑠3 is zero. Experiments with Lola showed that joints with Harmonic Drives and
low effective inertia 𝐽𝐽 , such as the hip joints, are stable even for link-side PD control
because of the good damping characteristics of Harmonic Drive gears. However,
joints with high effective inertia and low friction, such as the knee joints, became
unstable even for low feedback gains. Interestingly, all joints could be controlled
effectively with the robot hanging in the air. When the robot is standing on the
ground, however, the effective inertia acting on the knee and ankle joints is much
higher, leading to an unstable system.

Motor Side Position and Velocity Feedback

Instability of link-side position control is due to the non-collocation of position
measurement and actuator force. Therefore, a simple solution to this problem is to
use only motor-side sensing:

𝜏 = 𝐾𝑝(𝑞𝐽,𝑑 − 𝑞𝑀) +𝐾𝑑(𝑞𝐽,𝑑 − 𝑞𝑀) (5.45)

Note that 𝑞𝐽,𝑑 = 𝑞𝑀,𝑑, since a gear ratio of one is assumed. Calculating the transfer
function yields:

𝐺𝑃 𝐷,motor = 𝐾𝑑𝐾𝑠+𝐾𝐾𝑝

(𝐽𝑀𝐽𝐽)𝑠4 + (𝐾𝑑𝐽𝐽)𝑠3 + (𝐽𝑀𝐾 +𝐾𝑝𝐽𝐽 +𝐾𝐽𝐽)𝑠2 +𝐾𝐾𝑑𝑠+𝐾𝐾𝑝

(5.46)

For this configuration all coefficients are present and positive. According to the
Hurwitz criterion, all poles are in the left half plane if the following inequalities
hold:

⃒⃒
⃒⃒
⃒
𝐾𝐾𝑑 𝐾𝑑𝐽𝐽

𝐾𝐾𝑝 𝐽𝑀𝐾 +𝐾𝑝𝐽𝐽 +𝐾𝐽𝐽

⃒⃒
⃒⃒
⃒ = 𝐾2𝐾𝑑(𝐽𝐽 + 𝐽𝑀) > 0 (5.47)

⃒⃒
⃒⃒
⃒⃒
⃒

𝐾𝐾𝑑 𝐾𝑑𝐽𝐽 0
𝐾𝐾𝑝 𝐾𝐽𝑀 +𝐾𝑝𝐽𝐽 + 𝐽𝐽𝐾 𝐽𝐽𝐽𝑀

0 𝐾𝐾𝑑 𝐾𝑑𝐽𝐽

⃒⃒
⃒⃒
⃒⃒
⃒
= 𝐾2𝐾2

𝑑𝐽
2
𝐽 > 0 (5.48)

5.6 Optimization-Based Parameter Tuning 109

That is, the system is stable for all positive gains when only motor-side feedback is
used. These positive characteristics are preserved in the full system, leading to very
robust performance. Since very high gains can be used, the motor-side tracking error
is small. However, the (small) deformations in the drive cannot be compensated
using this feedback arrangement. Note that for this arrangement tracking motor-side
errors tend to decrease with increasing gear compliance, while the link-side error
increases.

Link-Side Position and Motor-Side Velocity Feedback
One possibility of stabilizing the system while maintaining link-side position feedback
is to use the motor-side velocity signals. In this configuration, the control torque is
given by:

𝜏 = 𝐾𝑝(𝑞𝐽,𝑑 − 𝑞𝐽) +𝐾𝑑(𝑞𝐽,𝑑 − 𝑞𝑀) (5.49)

This leads to the following transfer function:

𝐺𝑃 𝐷,link,mot = (𝐾𝐾𝑑)𝑠+𝐾𝐾𝑝

(𝐽𝐽𝐽𝑀)𝑠4 + (𝐾𝑑𝐽𝐽)𝑠3 +𝐾(𝐽𝑀 + 𝐽𝐽)𝑠2 + (𝐾𝐾𝑑)𝑠+𝐾𝐾𝑝

(5.50)

Again, we can check for stability using the Hurwitz determinants:
⃒⃒
⃒⃒
⃒
𝐾𝐾𝑑 𝐾𝑑𝐽𝐽

𝐾𝐾𝑝 𝐾(𝐽𝑀 + 𝐽𝐽)

⃒⃒
⃒⃒
⃒ = 𝐾𝐾𝑑[𝐾(𝐽𝑀 + 𝐽𝐽)−𝐾𝑝𝐽𝐽] > 0 (5.51)

⃒⃒
⃒⃒
⃒⃒
⃒

𝐾𝐾𝑑 𝐾𝑑𝐽𝐽 0
𝐾𝐾𝑝 𝐾(𝐽𝑀 + 𝐽𝐽) 𝐽𝐽𝐽𝑀

0 𝐾𝐾𝑑 𝐾𝑑𝐽𝐽

⃒⃒
⃒⃒
⃒⃒
⃒
= 𝐾𝐽2

𝐽𝐾
2
𝑑(𝐾 −𝐾𝑝) > 0 (5.52)

Both inequalities hold for 𝐾𝑝 < 𝐾 and 𝐾𝑑 > 0, i.e., stable gains are limited by the
joint stiffness 𝐾. On the physical robot, stability margins are increased by viscous
gear friction, but the maximum 𝐾𝑑 is limited by finite sampling times and the fact
that derivative feedback amplifies high frequency noise. This feedback arrangement
worked well in walking experiments with Lola. However, it proved to be somewhat
more sensitive to disturbances than pure motor-side feedback.

5.6 Optimization-Based Parameter Tuning

Proposed Method
The walking control system has a large number of parameters that must be set
correctly to achieve robust and fast walking. Because of the complex, nonlinear
and non-smooth dynamics of the robot, properly setting control gains is difficult.
Moreover, there are no well-established methods for choosing many of the parameters.
Examples for such parameters include the step length for a given walking speed, the
length of the double support phase or the foot mass 𝑚𝑙 in the reduced model (4.38)
used for trajectory generation.

Therefore, initial guesses for such parameters are determined off-line by numerical

110 5 Feedback Control

Walking experiment for pk

Optimization iteration: calculate next parameter set pk+1

Walking controller Simulation / reality

Optimization
algorithm

Cost function
evaluation

Sensor
data

φ(pk)

pk+1

Motor
commands

Figure 5.12: Parameters of the trajectory generator and stabilizing controller can be tuned
using an optimization algorithm.

optimization using the comprehensive dynamics simulation. This enables a mathe-
matically optimal choice of gait and control parameters for a given objective function.
Since every model has a finite accuracy, the optimized parameters are not always
optimal for the physical robot. Therefore, the final parameters are determined by
manual tuning in walking experiments.

Figure 5.6 illustrates the method of off-line parameter optimization. The optimiza-
tion algorithm searches for an optimal vector of gait and control parameters 𝑝⋆ by
repeatedly evaluating the cost function 𝜑(𝑝).

Formally, the parameter optimization problem can be written as:

𝜑(𝑝) =
∫︁
𝑓(𝑞)𝑑𝑡→ min!

𝑝min ≤ 𝑝 ≤ 𝑝max

(5.53)

Since calculating 𝜑(𝑞) requires simulating the robot’s forward dynamics and controller
for several seconds, function evaluations are quite costly. Numerical analysis has
shown that the global behavior of many typical cost functions is convex but noisy
due to effects like friction and sensor noise. Therefore Implicit Filtering is used as
an optimization algorithm, since this method has been successfully applied to many
real world problems with noisy cost functions, where function evaluations require
expensive numerical simulations [20, 26]. Parallel and serial implementations of the
algorithm are available on-line [52].

The implemented system is not only capable of performing off-line optimizations
based on dynamics simulations (software in the loop optimization), it is also possible
to automatically execute experiments using the actual robot to evaluate the cost
function (hardware in the loop optimization). This approach was used for initial
tuning of the joint position control loop. However, for a larger number of parameters
the required number of function evaluations makes this approach impractical, since,
contrary to simulations, experiments cannot be parallelized and must be supervised.

5.7 Chapter Summary 111

Application Example
An application example for Johnnie is given in the following. The step length 𝐿𝑥, for
a given walking speed, the swing leg mass 𝑚𝑙 of the simplified model and the height
𝑧CoG of the center of gravity were chosen as free parameters. In this example, the
following cost function was evaluated for 𝑇 = 10 s after the robot had accelerated to
a periodic gait at 2.5 km/h:

𝜑 =
𝑡0+𝑇∫︁

𝑡0

(𝛥𝜙2
𝑥 +𝛥𝜙2

𝑦)𝑑𝑡 (5.54)

Here 𝛥𝜙𝑥, 𝛥𝜙𝑦 are the robot’s upper body inclination errors in the sagittal and
frontal plane respectively. For this example, optimal gait parameters are 𝐿 = 0.457 m,
𝑚𝑙/𝑚 = 0.082 and 𝐻 = 0.79 m. An optimization of only 𝐿step and 𝑧𝐶𝑜𝐺 with 𝑚𝑙 = 0
leads to an optimal cost function value of 5.70510−05, while additionally optimizing
𝑚𝑙 leads to a 35% decrease to 3.72810−05. The corresponding decrease in upper body
oscillations is shown in Figure 4.17.

5.7 Chapter Summary
In this chapter we presented a model-based approach to stabilizing biped robots by
feedback control. Standard control methods for industrial robots are not applicable,
since the system is underactuated and there are only unilateral contacts with the
environment.

The basic approach is based on an analysis of structural properties of the system
dynamics and the observation that overall linear and angular momentum are only
influenced by contact forces. Therefore, stabilization of global system dynamics is
based on controlling contact forces.

At the next level of the control hierarchy, contact forces and task space trajectories
are tracked by a position-based hybrid position/force control that uses an explicit
contact model.

Instantaneous joint angle targets for the redundant robot are generated using
resolved motion rate control with null-space optimization. This approach makes
it relatively easy to utilize redundant DoFs to avoid joint angle limits and reduce
angular velocities during walking.

Finally, we gave an overview of Lola’s and Johnnie’s joint position control with a
focus on Lola’s distributed control system and the stability properties of different
feedback arrangements with link and motor-side position sensing.

6 Autonomous Walking

Lola was developed as part of the DFG proposal “Ein leistungsgesteigerter, autonomer
Zweibeiner” (An Autonomous Biped with Enhanced Performance). One goal of this
research project is to develop a biped that can autonomously navigate in unknown
environments.

A truly autonomous robot does not require any external supply of energy, sensor
data or computing power and does not need to be supported or supervised by humans.
While integrating batteries and additional computers into the robot is an engineering
challenge, it is one that can be solved to a certain extent using current off-the-shelf
technology. Moreover, research on improved battery technology for electric and
hybrid vehicles and the continuing improvement of microprocessors will solve these
problems of “physical” autonomy in the foreseeable future. Therefore, the focus
in this research project was put on developing methods required for navigating in
unknown environments, using only on-board cameras, while the power supply and
vision processing computers are located outside of the robot. The computer vision
system itself is being developed by the Institute for Autonomous Systems Technology
at University of the Bundeswehr in Munich, Germany.

This chapter gives a brief overview of the computer vision system and describes
the integration of walking controller and computer vision.

6.1 Computer Vision System
This thesis does not cover computer vision. Nevertheless, a brief overview of the
system developed for Lola is given in order to provide the necessary context. A more
detailed overview of the approach to autonomous locomotion is given in [10].

The on-board camera system consist of two high-resolution five megapixel CCD
cameras with a maximum of 17 frames per second (Basler pilot piA2400-17gm).
Because of the very large amount of data, vision processing is performed on three
external computers with dual Intel Xeon Quad-Core CPUs (central processing units).
Camera data is sent to the external computers via two Gigabit Ethernet connections.

Most previous work on autonomous locomotion has focused on building environ-
ment models in which a planner can search for feasible paths that are then sent to
the robot controller [29, 42, 82, 105]. This requires a complex and computationally
expensive technique for simultaneous localization and mapping (SLAM). Following a
very different philosophy, Lola’s vision system instead classifies a set of pre-calculated
paths or “visual tentacles” as passable or not. Solving this classification problem
does not require building an explicit environment map or prior object models. Fur-
thermore, since no obstacle templates or color coding are used, the approach is quite
general and works for arbitrary, previously unknown objects. The approach was

113

114 6 Autonomous Walking

Figure 6.1: Example for tentacle based navigation: detected contour segment features are
shown in black, projected tentacles in blue and the actually selected tentacle in green,
surrounded by the corresponding classification area shown in red (image taken from [10]).

originally developed by von Hundelshausen et al. for autonomous vehicles [127]
and then adapted for humanoid robots.

The tentacles are circular paths with different curvatures represented in a robot-
centric coordinate system. This choice of tentacles integrates very well with the step
sequence planner of Lola’s real-time controller, which also uses piecewise circular
paths (cf. Section 4.3).

The target path is chosen by rating all tentacles using camera image data. At
the time of writing (August 2010), the lowest level of Lola’s vision system has been
completed. At this level, the robot tries to avoid all obstacles. The rationale is to
provide a robust and general obstacle avoidance mechanism that allows the robot to
safely operate in unknown environments. More complex behavior involving specific
actions for well-defined objects such as stairs or tables will be added on top of this
basic layer. Therefore, the distance to the closest obstacle is used for rating potential
paths. Tentacles outside the field of view are disabled. To avoid unnecessary changes
in the walking direction, tentacles similar to the one chosen during the last sampling
period are favored. If no feasible tentacle is found, the robot turns on the spot until
a new path is detected.

To determine the distance to potential obstacles, the 3-D tentacles are projected
into both camera images. The images are then searched in an area surrounding
the tentacle for features indicating obstacles. This is very efficient, since only
the part of an image relevant to potential actions is analyzed. Since every object
has a contour, finding obstacles is based on extracting potential contours using
edge detection. Effectively, the 3-D search for a feasible path is reduced to a 2-D
classification problem, completely avoiding SLAM. The selected path is converted
into an instantaneous linear and angular velocity and sent to the walking controller.

Figure 6.1 shows contour segment features extracted from a camera image taken
at the Hannover Messe 2010 (cf. Chapter 8) with tentacles projected into the image.

6.2 Interfacing Walking Control and Computer Vision 115

6.2 Interfacing Walking Control and Computer Vision
Both computer vision system and walking control use local coordinate systems
centered on the robot. However, since vision and control systems run on different
computers and with different cycle times, it is important to establish a common frame
of reference. Therefore, the walking controller estimates the position and orientation
of its local coordinate system 𝐼𝑖 with respect to the global frame 𝐼0 using odometry
(cf. Section 4.4.1). The estimate is sent to the vision system together with the current
robot pose. Kinematic data and camera images can be precisely synchronized and
time-stamped, since the cameras are triggered by the local controller on Lola’s head.
The physical connections of vision system and walking controller are illustrated in
Figure 6.3.

The vision system specifies motion commands in the local, robot-centric frame 𝐼𝑖,
while viewing targets are specified in the global frame 𝐼0 (cf. Section 4.7). Note that
the estimated global position is only used for communication purposes and does not
have to be exact, since both control and vision processing are performed in local
coordinate frames.

While the vision system needs some information about the robot’s configuration,
the detailed kinematic model with all DoFs is not required. Therefore, relevant
information is condensed into an abstract robot model with two cameras and telescopic
legs, whose configuration is represented by five coordinate systems: one for each foot
and each camera and one for the upper body. Figure 6.2 illustrates the kinematic
data used by the computer vision system.

Camera frames

Upper body frame

Foot frames

Figure 6.2: Kinematic data precisely synchronized with camera images is sent to the exter-
nal vision processing system.

116 6 Autonomous Walking

On-board

Off-boardSwitch

On-board
PC

Vision
PC 1

Vision
PC 2

Vision
PC 3

Local controller
(head) Camera 1 Camera 2

GigE⋆

GigEGigE

Trigger

CA
N/

Se
rc

os
-II

I

⋆ Gigabit Ethernet

Figure 6.3: Physical connections of walking control and vision processing

7 Software System

7.1 Introduction

Motivation
Simulation and control of such complex mechatronic systems as humanoid robots
requires an extensive software system. In fact, “software architecture” is a major
topic in current robotics research (IEEEXplore1 returns more than 1000 results to a
query for “software architecture” and “robotics”). This thesis does not try to develop
a generic software architecture for intelligent and/or walking robots. However, a
versatile and efficient software system is a prerequisite for both simulation-based
analysis and design and experimental research.

This chapter gives an overview of the system developed by the author for Johnnie
and Lola.

Design Approach
There are a number of conflicting requirements for the various software components:

Efficiency: Both dynamics simulation and real-time control require efficient algo-
rithms and implementations. For simulations, the emphasis is on minimizing the
total run-time of the program. For real-time control, the worst case execution
time for one control cycle must be minimized.

Portability: Software components are used for both simulation and real-time control.
While simulations are run on a general purpose operating system, the real-time
control must be executed on a real-time operating system (RTOS). Therefore,
use of platform-specific application programming interfaces (API) and libraries
must be avoided whenever possible.

Code Reuse: To minimize the amount of code, software components should not
only be reused on different operating systems (OS), but also shared among
different applications.

Flexibility: The software system is a tool for research on humanoid walking robots.
Therefore, modifying models and controllers should be as simple as possible.

Minimal Development Time: Since software is not the subject but only a neces-
sary tool for this research, development time should be minimized.

Safety: Johnnie and Lola are expensive, powerful and dangerous devices and small
errors can easily damage the robot and severely injure the operator. Therefore,
safety is essential for all real-time components.

1 http://ieeexplore.ieee.org

117

http://ieeexplore.ieee.org

118 7 Software System

All major components of simulation and control programs are written in C++ for
maximum efficiency. Smaller utility programs without high demands on efficiency are
written in Python in order to speed up development and leverage the large number
of existing Python modules.

The approach to portability is to use only standardized, non-proprietary interfaces
whenever possible. The Portable Operating System Interface (POSIX) [39] was
chosen, since it is supported to some extent by virtually all modern operating
systems. Comprehensive support is available on most UNIX-like systems, such as
Linux2 or Solaris3, and also for RTOSs such as QNX4 and VxWorks5. Microsoft
Windows supports only a small subset of the full POSIX standard. Exceptions are
made only for the low-level controller, which uses QNX-specific APIs for hardware
access, and the joystick interface, which uses the Linux joystick API.

There are two specific measures towards increasing the safety of the real-time
system. First, special care is taken to avoid common programming errors by check-
ing return values of all functions, checking for invalid pointers and violated array
boundaries. Second, each program implements one clearly defined functionality. This
leads to a system of small, cooperating programs instead of one very large program.
While this adds a certain amount of complexity and overhead, safety is increased
since errors such as invalid pointers in one part of the system cannot spread to other
parts. For example, a programming error in a logging application cannot lead to
erroneous joint target values being sent to the joint controllers. Instead, only the
logging application will crash or work incorrectly. In addition, this decomposition
greatly simplifies debugging, since the source of errors can be traced more easily.

7.2 Software Components
To facilitate code reuse, the software is organized into a number of reusable libraries.
An overview of the core libraries is given in Figure 7.1. In the following, the
functionality of the these libraries is briefly summarized.

Utilities
This library implements basic utility functions used by many other libraries and
programs. The functionality includes:

• Efficient logging during real-time execution using circular buffers and multi-
threading.

• Utility classes for inter-process communication (IPC) based on the Internet
Protocol (IP), message queues, shared memory and a custom, topic based
publish/subscribe system.

• If a program encounters an exception or error, utility functions enable it to
save the last few seconds of process data and print a stack trace. This greatly
simplifies finding both hardware and software faults.

2 http://www.kernel.org
3 http://www.oracle.com/solaris
4 http://www.qnx.com/
5 http://www.windriver.com/products/vxworks/

http://www.kernel.org
http://www.oracle.com/solaris
http://www.qnx.com/
http://www.windriver.com/products/vxworks/

7.2 Software Components 119

Utilities

Linear algebra

Models Curves

Control

Figure 7.1: Major software libraries developed for Lola and Johnnie

Vector Matrix Library
The vector matrix library is based on a library previously used for other simulation
and control applications, such as Johnnie and the eight-legged pipe crawling robot
Moritz [89]. Over the years, many people at the Institute of Applied Mechanics have
contributed to this library. It provides basic math functions such as addition and
subtraction, but also linear algebra functions for solving systems of linear equations
or computing the singular value decomposition of a matrix.

Curves
This library provides classes for piecewise fifth-order polynomials, cubic splines,
piecewise linear functions and other curves. There also are functions for analyti-
cally calculating spline gradients and optimizing parameters of piecewise fifth-order
polynomials with respect to required accelerations.

Model Library
The model library provides both generic classes for multibody systems with tree
structure and special models for Johnnie and Lola, such as harmonic drive friction
and nonlinear drive kinematics. In addition, classes for polygonal environment models
and contact solvers are part of this library. The models are implemented using an
object oriented approach and run-time polymorphism, i.e., inheritance and virtual
methods, in order to maximize code reuse and provide generic interfaces.

Controller Library
The controller library provides both basic components such as digital filters and
specific functions for biped walking such as inverse kinematics, step sequence planning
and trajectory generation. Core functionalities such as trajectory and step sequence
planning, stabilizing control and redundancy resolution only use generic interfaces
such as the “Robot” class and can be used without modification for both Johnnie
and Lola.

120 7 Software System

7.3 Main Programs
The software system includes a number of programs for simulation and control, user
interfaces and smaller utility programs. This section gives a brief overview of these
programs.

Simulation
There are programs for simulating the forward dynamics of Johnnie and Lola using
either the full or reduced models (cf. Chapter 2).

Walking Control
The walking controller is separated into walking pattern generator (cf. Chapter 4) and
stabilizing controller (cf. Chapter 5). This enables the optimal use of the on-board
computer, which is equipped with a dual-core CPU. Joint position control and/or
hardware access is performed in a third program. This low-level controller provides
a uniform interface to the other programs. This makes higher levels of the controller
independent of the robot’s electronics architecture, which is very different for Johnnie
and Lola.

Autonomous Locomotion
Interfaces to the vision processing system (cf. Chapter 6) are provided by two
programs. The first program estimates the robot state using sensor data synchronized
with the camera images. The estimated state is then sent to external vision processing
computers via UDP (User Datagram Protocol). The second program receives target
velocities and fixation points via UDP. These are checked for errors and then forwarded
to the walking controller using the publish/subscribe system described in Section 7.4.

User Interfaces
There are two programs for controlling the robot: a graphical user interface (GUI)
and a joystick interface. The joystick interface allows the operator to intuitively
control the robot by inputting the desired average angular and translational velocity.
The GUI provides graphical controls for freqently used gait and control parameters.
It also includes an interactive Python console that provides direct access to the
publish/subscribe system, allowing the operator to access seldomly used functions.
Finally, the GUI provides access to other utility programs such as a graphical plotting
application for log files written by different parts of the real-time system. Figure 7.2
shows different views of the GUI.

Analysis and Visualization
Log files written by the real-time system contain a header detailing the contents of
the file. A plotting application parses the header in order to provide a graphical
interface useful for quickly analyzing sensor data and internal controller variables.

Animation and visualization of simulation results, data gathered during exper-
iments, as well as a real-time visualization of the robot’s state is provided by an
OpenGL-based 3-D viewing application6. The program was developed in cooperation
with Markus Schwienbacher. The application itself provides basic functions for

6 OpenGL is a platform independent API for developing 2-D and 3-D graphics applications
(http://www.opengl.org).

http://www.opengl.org

7.3 Main Programs 121

(a) Graphical interface to the main walking
control parameters

(b) Graphical interface to the main joint
controller parameters

(c) Interactive Python console for accessing
all controller parameters

(d) Real-time data display

Figure 7.2: Graphical user interface for Lola and Johnnie

panning, zooming, object selection, exporting still images, movies and static 3-D
scenes. Drawing of 3-D objects such as a robot or an obstacle is implemented in
plug-ins. This modular approach makes it easy to develop small, problem-specific
plug-ins for visualizing simulation or planning results. Currently, the system includes
the following plug-ins (among others):

• Animation of Lola

• Animation of Johnnie

• Rendering of static 3-D objects such as obstacles

• Visualization of planned foot, center of gravity and center of pressure trajecto-
ries, as well as support polygons

• Animation of contact forces

122 7 Software System

loaded
plugins

available
plugins

viewing area

Figure 7.3: 3-D viewing application with a number of plug-ins loaded

Figure 7.3 shows a snapshot of the viewing application with plug-ins for Lola,
contact forces and trajectories loaded.

7.4 Real-Time System
The real-time system is organized as a group of cooperating processes. Functions
are implemented in different processes rather than threads, since the separation of
address spaces enhances the safety and reduces the probability of fatal crashes.

QNX Neutrino is chosen as RTOS, since it provides fully POSIX-compliant inter-
faces and shows excellent real-time performance, e.g., very fast context switching,
synchronization primitives and message passing. Also, as a microkernel OS, it fits well
with the design philosophy of the walking control system. Additionally, it provides
excellent development and debugging tools.

Inter-process and Intra-process Communication
Since the real-time system is composed of several different processes, it requires some
form of IPC. This could be achieved in an ad hoc manner using basic OS services.
Such an approach, however, leads to a tight coupling of all components, thereby
reducing the flexibility of the system and making changes to it more difficult.

Such concerns are addressed by middleware systems such as CORBA7 or ICE8. In
fact, CORBA is used in OpenHRP, the software system used for the HRP robots
[46]. However, such middleware systems are heavyweight and require a relatively
large amount of supporting code. Moreover, most of the functionality they provide
would not be used for Lola and Johnnie.
7 http://www.corba.org
8 http://www.zeroc.com/ice.html

http://www.corba.org
http://www.zeroc.com/ice.html

7.4 Real-Time System 123

Therefore, a simple publish/subscribe system suitable for hard real-time use was
developed. In a publish/subscribe system, the messages are not directly sent from
producers to consumers, but instead sent to an intermediary instance, called a
message broker. Clients can subscribe to certain types of messages which are then
forwarded to them by the broker.

In the following, the basic design of the system implemented for Johnnie and
Lola will be presented. Message types are encoded in a message ID that specifies a
domain and a sub-ID. Examples of domains are “logging,” “trajectory generation”
or “joint control.” The sub-IDs specify a certain parameter or event, such as “step
length,” “start walking” or “start logging data.” The system is separated into two
layers: intra-process and inter-process communication.

Within one process, objects subscribe to specific message IDs. Published messages
are directly forwarded by a message broker object (the local broker) using function
calls, which is very efficient. The advantage of this design is the loose coupling
between the objects constituting a program, which simplifies changes to the controller.
The local publish/subscribe system is also used to send events within the finite state
machines used to coordinate the walking controller.

Objects may also publish messages to other applications by marking them as global.
Global messages are forwarded by the broker object to a message broker application
(the global broker) via POSIX message queues. To receive global messages, a process
subscribes to an entire domain. Messages of this domain are sent to the local broker
via POSIX message queues, from where they are forwarded to objects that have
subscribed to the specific message ID. There is one queue per client process and one
dedicated, system-wide queue for publishing messages. There is a further, low-priority
service queue used for tasks such as registering with the broker and subscribing to
new messages. The message broker uses multiple threads to process messages or add
new subscriptions. QNX’s priority inheritance mechanism ensures that messages sent
by high-priority processes are processed first and low-priority messages and service
messages are processed later.

Applications can also communicate with the message broker using TCP (Trans-
mission Control Protocol), enabling communication among networked computers.
Figure 7.4 illustrates the structure of the publish/subscribe system.

While the publish/subscribe system is very fast, it is not well suited for large
amounts of data or data exchanged at a very high frequency. Therefore, shared
memory regions are used for sensor data and target joint angles.

System Overview
Figure 7.5 gives an overview of Lola’s run-time system. The local controllers are
connected to the on-board PC by a field bus. The results presented in this theses
were obtained using a CAN bus based system with point-to-point connections for
every controller. At the time of writing (August 2010), Lola is being equipped
with the fast, Ethernet-based Sercos-III9 interface, which will replace the CAN-bus
connections between PC and local controllers.

The walking controller runs on the on-board PC. It is divided into low-level control,
trajectory generation and stabilizing control. State estimation and a command server

9 http://www.sercos.com

http://www.sercos.com

124 7 Software System

On-board computer

External computer

Global
message
broker

Process 1

Local broker

Object 1.1 Object 1.2

Process 2

Local broker

Object 2.1 Object 2.2

message queues message queues

External, non-real time processes
(GUI, joystick,. . .)

TCP

Figure 7.4: Schematic illustration of the publish/subscribe-based communication system

for the computer vision system also run on the on-board computer. All programs
maintain a circular buffer of all relevant process data and controller variables. All
data contains a 64-bit time-stamp which is generated by the low-level controller.
This buffer is used for logging data during walking experiments and saved in the
event of unexpected errors or program crashes.

A watchdog process disables the motor power supply if it does not receive a reset
every few milliseconds. The low-level controller resets the watchdog every control
cycle. In the event of an error, controllers can also notify the watchdog to disable
the power supply.

Vision processing and user interfaces run on external computers, which are con-
nected to the robot via Gigabit Ethernet.

7.4 Real-Time System 125

Distributed electronics

Local controller 1 Local controller 2 · · ·

On-board computer

Low-level controller
and hardware I/O Watchdog

Stabilizing
controller

Trajectory
generator

State estimation
for computer vision

Computer vision
command server

M
es

sa
ge

br
ok

er

power supply

External server rack

Switch

Human operator
(GUI, joystick)

Vision processing
computers

CAN/Sercos-III CAN/Sercos-III

TCP
(GigE)

TCP (GigE)
UDP (GigE)

UD
P

(G
igE

)

UDP (G
igE

)

Figure 7.5: Overview of Lola’s and Johnnie’s real-time system

126 7 Software System

7.5 Chapter Summary
In this chapter, a brief survey of the software system developed for Johnnie and Lola
was given. The design emphasizes modularity, code reuse, flexibility, efficiency and
safety. The code is organized into libraries for physical models, mathematical tools,
controllers and utilities. The run-time system consists of a number of controllers and
supporting programs. This modularity increases both the flexibility and safety of
the system. Besides the real-time controller and simulation programs, there are user
interfaces for controlling the robot and applications for visualizing and analyzing
data.

8 Results

8.1 Biped Walking
In this section, selected results from biped walking simulations and experiments are
presented. Similar results were obtained for Johnnie and Lola, but the maximum
walking speed for Lola is higher. All results shown in this section were obtained
with Lola. Lola can walk forward, backwards, sideways and around corners. A
subset of measurements for walking forward with 2.0 km/h and walking sideways
with 0.7 km/h are shown and analyzed in the following. A more comprehensive set of
measurements for walking forward with 0.0 km/h, 1.0 km/h, 2.0 km/h and 3.0 km/h
and walking sideways with 0.7 km/h are given in Appendix G.

At the time of writing, Lola’s maximum walking speed was 3.34 km/h. Figure 8.1
shows still images of Lola walking at this velocity. This speed was reached after
less than three full weeks of walking experiments. The author believes that still
higher walking speeds are possible with the same control system. In addition, a
larger experimental area would simplify fast walking experiments. In the current
setting, the robot must accelerate to its maximum speed in approximately four steps
and decelerate just as rapidly.

According to publicly available data, Honda’s Asimo walks at a maximum speed
of 2.7 km/h1 and only Petman [4] from Boston Dynamics walks faster at 7.1 km/h.
However, this robot has non-humanoid leg kinematics and is not suitable for indoor
use (cf. Section 1.2.2, p. 6). Toyota’s running robot [116] and Honda’s prototype
robot [122] are significantly faster than Lola when running. Hubo-2 from KAIST
can run at 3.3 km/h, while its walking speed is 1.4 km/h [80]. It is worth mentioning
that all these robots are developed by companies with considerable financial support
(Honda, Toyota and Boston Dynamics) or national research organizations (KAIST),
not by universities. Summing up, Lola currently is the second fastest walking robot,
the fastest electrically actuated walking robot and the fastest biped developed at a
university.

8.1.1 Walking Forward
In this section, results from a walking experiment at 2 km/h are presented. The
robot starts in a standing position, accelerates, walks for several steps at 2.0 km/h,
decelerates and comes to a stop.

The upper body inclination error is shown in Figure 8.2. There is a small oscillation
with a maximum amplitude of approximately 0.03 rad, synchronized with the step
frequency.

1 http://asimo.honda.com/AsimoSpecs.aspx, accessed on 21/07/2010.

127

http://asimo.honda.com/AsimoSpecs.aspx

128 8 Results

t1 t2

t3 t4

t5 t6

t7 t8

Figure 8.1: Lola walking at 3.34 km/h

8.1 Biped Walking 129

−0.02

0

0.02

0.04

ϕ
x
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.04

−0.02

0

0.02

0.04

ϕ
y
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

Figure 8.2: Upper body inclination error at 2 km/h

Figure 8.3 shows the measured 𝑧-component of the right force/torque sensor along
with the reference value. The timing of ground contact and takeoff is very close to
the reference values. The controller succeeds in preventing force peaks during initial
contact. Note that the measured force is not exactly zero during the swing phase,
due to inertial forces of the toe and heel segments and imperfect bias compensation.

Angles of the redundant toe and pelvis joints are shown in Figure 8.4. The toe
joint is not used for the first and last steps, since these are only 30 cm long. During
the middle of the experiment, when the robot is walking at 2 km/h, the toe and
pelvis joints are used to increase the step length and reduce required joint velocities.
For longer steps, the pelvis adduction angle is used to increase the height of the
center of gravity without exceeding joint angle ranges.

Figure 8.5 shows the tracking error for the highly loaded knee and hip flexion
joints. The tracking error is below 8 · 10−3 rad. At the middle of the experiment,
when the walking speed is highest, the tracking error increases due to higher loads,
disturbance forces and angular velocities.

130 8 Results

−750

−500

−250

0

250

F
or
ce

[N
]

0 2.5 5 7.5 10 12.5 15

time [s]

Fz

Fz,d

Figure 8.3: Reference (𝐹𝑧,𝑑) and actual (𝐹𝑧) 𝑧-component of right force/torque sensor
signal. The timing error between desired and actual support phases is very small.

8.1.2 Walking Sideways
Figure 8.6 shows still images of Lola walking sideways. The robot starts in a standing
position, accelerates, walks sideways for several steps at 0.7 km/h, decelerates and
comes to a stop. The upper body inclination error measured during the experiment
is shown in Figure 8.7. There is a small oscillation with a maximum amplitude of
approximately 0.025 rad, again, synchronized with the step frequency.

8.1.3 Comparison of Simulation and Measurement
In this section, results from dynamics simulations of Lola walking at 1 km/h are
compared to measurements during walking experiments. The upper body inclination
and contact forces are very sensitive to changes in the stiffness and damping of
the foot-ground contact. This makes it difficult to get a perfect match between
simulations and measurements. That being said, results obtained in simulations and
experiments are very similar.

Force sensor signals and upper body inclination are shown in Figure 8.8 and
Figure 8.9. There are only very small deviations in the vertical force component
𝐹𝑧. The difference in the torques 𝑇𝑥, 𝑇𝑦 and the upper body inclination are larger.
In both cases, however, the shape and the numerical values are quite similar. The
difference for 𝜙𝑥 is mainly due to an offset of approximately 5 · 10−3 rad, which
might very well be a mounting misalignment of the IMU or a kinematic calibration
error. For 𝜙𝑦, the measured oscillations are larger than in the simulation. However,
the absolute amplitudes are very small, most probably in the range of structural
deformations not taken into account in the simulation. The measured torques have a
similar profile, but are smaller than in the simulation.

Figure 8.10 shows joint angles for hip and ankle flexion. The hip flexion angle is
virtually identical, while the measured ankle joint angle is a little larger than in the
simulation. This is correlated with the smaller measured 𝑇𝑦. This indicates that the
effective stiffness between ground contact and upper body is smaller in reality than

8.1 Biped Walking 131

−0.1

−0.05

0

0.05

0.1

p
el
vi
s
ro
ta
ti
on

[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.1

−0.05

0

0.05

0.1

p
el
vi
s
ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.6

−0.4

−0.2

0

0.2

to
e
fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

Figure 8.4: Pelvis and toe joint angles at 2 km/h

132 8 Results

−0.01

−0.005

0

0.005

0.01

h
ip

fl
ex
io
n
tr
ac
ki
n
g
er
ro
r
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.0075

−0.005

−0.0025

0

0.0025

0.005

kn
ee

fl
ex
io
n
tr
ac
ki
n
g
er
ro
r
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

Figure 8.5: Joint angle tracking errors for the highly loaded hip flexion and knee joints at
2 km/h

in the robot models. This is probably due to the carpeting in the laboratory, which
was not simulated, and the finite stiffness of bearings and links.

Figure 8.11 compares the simulated and measured tracking errors for the right
hip adduction joint. There is a small difference at the beginning of the experiment,
because the robot took several steps before the measurements began. Therefore the
initial tracking error is approximately 10−3 rad, the same value as at the end of the
experiment. In the simulation, the robot is put down onto the ground without taking
any steps prior to the time interval shown. Consequently, this difference vanishes
after the first step.

Overall, the simulation gives quite accurate results on all levels of system dynamics.
Remaining differences can be attributed to different initial conditions in simulation
and experiment and model simplifications. Including unmodeled effects such as
bearing or ground compliance is possible. However, this would increase simulation
times by orders of magnitude with only a small increase in accuracy. Moreover,
determining correct parameters for, e.g., bearing compliance is difficult at best.

8.1 Biped Walking 133

t1 t2

t3 t4

Figure 8.6: Lola walking sideways at 0.7 km/h

134 8 Results

−0.015

−0.01

−0.005

0

0.005

0.01
ϕ
x
[r
ad
]

0 5 10 15 20

time [s]

−0.02

−0.01

0

0.01

0.02

0.03

ϕ
y
[r
ad
]

0 5 10 15 20

time [s]

Figure 8.7: Upper body inclination error while walking sideways at 0.7 km/h

8.1 Biped Walking 135

−600

−400

−200

0

F
z
[N
]

5 10 15 20 25 30

time [s]

experiment

simulation

−40

−20

0

20

T
x
[N
m
]

5 10 15 20 25 30

time [s]

experiment

simulation

−75

−50

−25

0

25

50

T
y
[N
m
]

5 10 15 20 25 30

time [s]

experiment

simulation

Figure 8.8: Comparison of measured and simulated force sensor signals

136 8 Results

−0.02

−0.01

0

0.01

0.02

ϕ
x
[r
ad
]

5 10 15 20 25 30

time [s]

experiment

simulation

−0.02

−0.01

0

0.01

0.02

ϕ
y
[r
ad
]

5 10 15 20 25 30

time [s]

experiment

simulation

Figure 8.9: Comparison of measured and simulated IMU signal

8.1 Biped Walking 137

−0.8

−0.6

−0.4

−0.2

0
ri
gh

t
h
ip

fl
ex
io
n
[r
ad
]

5 10 15 20 25 30

time [s]

experiment

simulation

−0.6

−0.4

−0.2

ri
gh

t
an
kl
e
fl
ex
io
n
[r
ad
]

5 10 15 20 25 30

time [s]

experiment

simulation

Figure 8.10: Comparison of measured and simulated joint angles

−0.003

−0.002

−0.001

0

0.001

ri
gh

t
h
ip

ad
d
u
ct
io
n
tr
ac
ki
n
g
er
ro
r
[r
ad
]

5 10 15 20 25 30

time [s]

experiment

simulation

Figure 8.11: Comparison of measured and simulated joint angle tracking error

138 8 Results

8.2 Autonomous Locomotion
Lola’s capabilities of autonomous locomotion were publicly demonstrated at the
Hannover Messe 2010 2 in more than 25 presentations. The robot autonomously
explored a 4 × 7 m2 area while avoiding unknown objects of various shapes and
sizes. Such an experiment demonstrates the capabilities of both computer vision and
walking control system.

Contrary to periodic walking or executing a fixed sequence of walking steps,
autonomous locomotion requires quick reactions to a changing environment in order
to avoid collisions with obstacles. This was enabled by the real-time trajectory
generation system, which is capable of quickly generating feasible walking trajectories
(cf. Chapter 4). During reactive navigation among obstacles, the robot continuously
accelerates and decelerates, changes its walking direction, speed and the curvature
of its path. This is very demanding for both trajectory generation and stabilizing
control, since there is an implicit assumption in the trajectory generator that the
robot will eventually start a periodic gait (cf. Section 4.6). Moreover, conditions at
a trade fair are less perfect than in a laboratory. At the Hannover Messe 2010, the
tile flooring below the carpet was slightly uneven and there were a number of small
holes with an area of up to 10× 3 cm2 and a depth of 1-2cm.

The robot successfully navigated among large obstacles such as tables and chairs
(cf. Figure 8.12(a)), which were placed at arbitrary locations and moved around
during presentations. To demonstrate the fact that the robot does not use prior
knowledge about the obstacles, objects such as bags or jackets provided by the
visitors were placed in front of the robot. Thanks to the use of high-resolution
cameras, the robot is capable of detecting even small objects such as cell phones
or scissors (cf. Figure 8.12(c)). Lola’s capability of navigating in dynamic environ-
ments was demonstrated by participating researchers walking in front of the robot
(cf. Figure 8.12(b)).

2 The Hannover Messe is the world’s largest industrial trade fair
(http://www.hannovermesse.de).

http://www.hannovermesse.de

8.2 Autonomous Locomotion 139

(a) Lola navigating among furniture

(b) Lola avoiding a human being

(c) Lola avoiding a small object (scissors)

Figure 8.12: Examples of autonomous navigation among unknown obstacles

9 Conclusion

Human-like robots have great potential as general-purpose service robots. Because of
their humanoid morphology, their use requires no changes to existing infrastructure
and the human-like appearance simplifies human-machine communication and en-
hances the chances of acceptance from a psychological point of view. One of the most
basic requirements for such robots is reliable, fast and autonomous biped locomotion.
The preceding chapters of this thesis presented a framework for simulating and
controlling biped walking robots. A brief summary of key ideas and contributions is
given in the following section. Section 9.2 contains a concluding discussion and the
final section outlines suggestions for future research on biped locomotion.

9.1 Summary
This thesis covers the simulation and control of biped walking robots. In the first
part, a modular system for simulating such robots was presented. It is designed as
a library of component models, contact and ordinary differential equation solvers
that are combined to problem-specific multibody simulation programs. The library
contains models for the dynamics of tree-structured multibody systems, nonlinear
drive kinematics and electrical motor dynamics. The dynamics of harmonic drive
gears are taken into account by an improved model for load and speed dependent
friction and a nonlinear model of gear elasticity. Compliant, unilateral contacts can
be modeled using numerically efficient, decoupled spring-damper systems or linear
finite element models. Arbitrary polygonal environments are considered, enabling
simulations of uneven ground, obstacle avoidance and stair climbing.

Because of the modular design, problem-specific simulations with different balances
between modeling depth and simulation time can be constructed. At the one end of
the spectrum, a reduced order model enables (near) real-time simulation of global
dynamics in order to quickly assess the performance of trajectory generation and
stabilizing control. At the other end, a simulation including all component models
enables a detailed analysis of system dynamics. Such detailed simulations were used
for calculating loads, required motor torques and other fundamental design data for
Lola. In an iterative process, the hardware design was improved by Lohmeier [62]
to obtain a modified robot model, which was then used to assess the performance
improvements and calculate design data for the next iteration. Simulations show
good correspondence to data measured during walking experiments.

The second part of the thesis presents a hierarchical real-time walking control
system suitable for fast and autonomous biped walking. The gait is coordinated by
a finite state machine that selects and/or configures planning and control modules
according to the current robot state. At the highest level, a sequence of steps is
planned that satisfies the commands input by a human operator or a computer vision

141

142 9 Conclusion

system. At this level, a reactive step sequence planner can avoid small obstacles by
choosing parameters for stepping over them. The step sequence is used to generate
constraints and boundary conditions for the calculation of reference trajectories in
workspace coordinates. A new method for calculating center of gravity trajectories
based on spline collocation was developed. The method enables fast calculation
of reference trajectories for an enhanced inverted pendulum model with swing-leg
disturbance terms. Contrary to the most widespread prior real-time methods, a
non-constant height of the center of gravity can be taken into account.

Simply tracking joint angles for ideal reference trajectories quickly leads to insta-
bility, because the compliant unilateral contact makes the system very sensitive to
modeling errors and disturbances. A new method for stabilizing biped walking by
modifying the reference trajectories was developed. The basic approach is to control
contact forces in order to stabilize unactuated degrees of freedom. Desired contact
forces and task-space trajectories are tracked by a hybrid position/force control. A
new formulation of hybrid position/force control for biped robots based on an inner
position control loop is presented. By using an explicit contact model, arbitrary and
varying foot shapes can be taken into account. In addition, deviations from the refer-
ence trajectories required for force control can be mapped into arbitrary task-space
dimensions, as long as these are not orthogonal to the forces to be controlled.

Lola is redundant with respect to the chosen task space coordinates. The framework
proposed by Liégeois is adopted for local optimization of redundancy and joint
limit avoidance. Decoupled, high-gain joint position controllers are used at the lowest
level of the hierarchy.

Using this system, Lola reached a maximum walking speed of 3.34 km/h in experi-
ments. When combined with a computer vision system developed by the Autonomous
Systems Technology Institute, Universität der Bundeswehr, Lola is also capable of
autonomously navigating among unknown obstacles.

9.2 Discussion
Lola’s maximum walking speed currently makes it the fastest biped developed at
a university and the fastest electrically driven walking humanoid (cf. Section 8.1).
However, comparing the walking speed of humanoid robots is difficult, because there
are significant differences in the overall height, mass distribution, actuation and
electronics and the achievable walking speed does not scale linearly with the size of
the robot. Nevertheless, it seems reasonable to state that Lola’s walking performance
is at the cutting edge of current walking technology. Compared to a human being,
however, the walking speed is still quite moderate.

Walking is fairly robust to disturbances such as small obstacles of approximately
two cm height or moderate pushes. Still, it is quite possible to destabilize the
system with, e.g., large pushes during slow walking or smaller pushes during very
fast walking.

Thanks to the new trajectory planning and control algorithms, faster acceleration
and deceleration of the robot could be achieved. Still, very large accelerations and
changes in the walking direction can destabilize the machine. The capability of
quickly reacting to unexpected obstacles or disturbances by using large compensating

9.3 Recommendations for Future Research 143

motions makes biped walking of humans very versatile and reliable. This is an area
in which current biped walking technology is still lacking.

A further limitation concerns motions close to the kinematic limits such as stepping
over very large obstacles or taking extremely long steps. Since foot and center of
gravity trajectories are planned in task-space, it is difficult to take such kinematic
constraints into account. Unfortunately, planning trajectories for such motions
requires taking the full kinematics of the robot into account at the planning stage,
which is currently not possible in real-time.

9.3 Recommendations for Future Research
From the experience gained during this thesis, several suggestions for future research
on biped walking robots can be made.

Step Sequence Planning
Local step sequence planning could be improved by not only adapting the step length,
but also the walking direction and not only stepping over, but also onto obstacles.
This could be achieved by using, e.g., 𝐴⋆ search for finding an optimal step sequence
for the next few steps.

Trajectory Generation
The trajectory generation method presented here enables the use of arbitrary trajec-
tories for the vertical center of gravity position 𝑧CoG. Preliminary results suggest that
significant gains in performance and stability can be achieved by using a non-constant
𝑧CoG-trajectory. Therefore, development of a systematic method for generating such
trajectories is suggested.

Stabilizing Control
While the proposed walking controller is quite robust, large disturbances destabilize
the robot because the control authority is effectively limited by the unilateral ground
contact. The gait cycle can be stabilized by modifying the landing position of the foot.
This approach has been successfully used in various bipeds, from Raibert’s hopping
robots to Honda’s Asimo. Compared to these robots, Johnnie’s and Lola’s ratio of
upper body mass to leg mass is significantly lower. Therefore, predicting the effects
of modified foot landing positions is more difficult, complicating the application of
this control method. Nevertheless, the potential stability and performance gains
justify following this approach and faster computers should make it feasible in the
near future.

Low-Level Control
While the decoupled joint position control performs very well at low and moderate
walking speeds, tracking errors increase for very fast motions because of increased
dynamic coupling and gear friction.

Currently, the maximum sampling frequency of the controller is limited to approx-
imately 3.5 ms by the CAN-bus system. Simulations suggest that the performance of
both joint position and force control could be improved considerably by increasing

144 9 Conclusion

−0.02

−0.01

0

0.01

0.02

ϕ
x
[r
ad
]

10 10.5 11 11.5 12 12.5 13

time [s]

reference
increased inertia

Figure 9.1: Increased upper body inertia could be used to reduce upper body oscillations.
The black line shows a simulation with a thin steel torus of 0.5 m diameter weighing 10 kg
added to the upper body. No other changes were made to the model or the controller.

the sampling frequency to 1 kHz. This will be possible when the Sercos-III system
currently being implemented becomes operational.

Better tracking could also be achieved by including friction models and multi-
body dynamics into the low-level joint position control. As has been suggested
by Lohmeier [62], force sensing could be integrated into Lola’s ankle and knee
drives. This could be used to significantly improve link-side position control by using
full-state feedback for the elastic joint. In addition, such sensors would enable direct
force control with a significantly higher bandwidth than the current contact force
control.

Learning Robot and Environment Model Parameters
The model-based approach makes the system sensitive to systematic errors in robot
and environment models. Most errors, however, are due to parameter uncertainty
rather than structural errors in system models. Learning model parameters on-
line using on-board sensing would increase model fidelity and enable an automatic
adaptation, e.g., to changing ground stiffness and inclination.

Hardware
As noted above, Lola’s upper body mass and inertia are very low compared to a
human being or other biped robots. Simulations show that upper body oscillations
during periodic walking can be reduced significantly by increasing upper body inertia,
as shown in Figure 9.1. At the same time, higher inertia also increases the forces
required for stabilizing the robot. Moreover, higher mass and inertia reduce the
acceleration capabilities. A detailed study of this issue is proposed, in order to obtain
an optimal choice for the upper body inertia.

Finally, the importance of contact dynamics for walking stability suggests further
research on the design of robotic feet. This research should be tightly integrated
with efforts to optimally exploit foot dynamics in the walking controller.

Appendix A

Lola’s Basic Technical Data
44

0
43

0
11

4

246

220
280

17
27

145

146 Appendix A Lola’s Basic Technical Data

Mass 60 kg
Height 1.73 m
Active DoFs 25
Force sensing 2 6-axis force/torque sensors
Inertial sensing Orientation and angular velocity estimation

with 3 FOG and 3 MEMS accelerometers
Position sensing 25 incremental encoders (motor side) and

22 absolute encoders (link-side, all except head joints)
Actuators Permanent magnet synchronous motors

Detailed information on Lola’s hardware is given in [62], a detailed description of
Johnnie’s hardware can be found in [25, 60].

Appendix B

Multibody System Topology of Lola
The basic topology of Lola’s multibody model is listed in the following table (motors not
shown for clarity).

Body Parent Mass [kg]

Torso None 9.886 · 100

Left shoulder flexion Torso 5.610 · 10−1

Left shoulder adduction Left shoulder flexion 1.900 · 100

Left elbow flexion Left shoulder adduction 1.486 · 100

Right shoulder flexion Torso 5.610 · 10−1

Right shoulder adduction Right shoulder flexion 1.891 · 100

Right elbow flexion Right shoulder adduction 1.486 · 100

Pelvis rotation Torso 1.316 · 100

Pelvis adduction Pelvis rotation 6.283 · 100

Left hip rotation Pelvis adduction 1.844 · 100

Left hip adduction Left hip rotation 2.838 · 100

Left hip flexion Left hip adduction 6.419 · 100

Left knee flexion Left hip flexion 3.403 · 100

Left ankle adduction Left knee flexion 1.380 · 10−1

Left ankle flexion Left ankle adduction 1.643 · 100

Left toe flexion Left ankle flexion 7.970 · 10−1

Right hip rotation Pelvis adduction 1.844 · 100

Right hip adduction Right hip rotation 2.838 · 100

Right hip flexion Right hip adduction 6.503 · 100

Right knee flexion Right hip flexion 3.403 · 100

Right ankle adduction Right knee flexion 1.380 · 101

Right ankle flexion Right ankle adduction 1.648 · 100

Right toe flexion Right ankle flexion 7.970 · 10−1

Head pan Torso 2.490 · 10−1

Head tilt Head pan 1.013 · 100

147

Appendix C

Harmonic Drive Friction Model Parameters

Friction Model Parameters
Parameters for friction model (2.61) for the major gears used in Lola are given in the
following table.

Table C.1: Harmonic Drive gear friction model parameters

Type 𝑏 𝑇0 𝜇 𝛾 𝑁

HFUC-11-100 6.63 · 10−6 7.75 · 10−3 0.0 6.59 · 10−4 100
HFUC-14-100 1.04 · 10−5 1.21 · 10−2 0.0 6.59 · 10−4 100
HFUC-17-100 3.20 · 10−5 3.72 · 10−2 0.0 6.59 · 10−4 100
HFUC-20-100 5.33 · 10−5 6.20 · 10−2 0.0 6.58 · 10−4 100
HFUC-25-100 8.94 · 10−5 1.04 · 10−1 0.0 6.58 · 10−4 100
HFUC-32-50 1.52 · 10−4 2.46 · 10−1 5.49 · 10−3 6.21 · 10−4 50

Friction Model Comparison
In this section the efficiencies of harmonic drives taken from catalog data are compared to
predictions by the implemented friction model (2.61).

0

0.25

0.5

0.75

1

effi
ce
n
cy

1 2 3 4 5

load torque [Nm]

500 rpm (catalog)

500 rpm (model)

1000 rpm (catalog)

1000 rpm (model)

2000 rpm (catalog)

2000 rpm (model)

3500 rpm (catalog)

3500 rpm (model)

Figure C.1: Harmonic drive gear HFUC-11-100

149

150 Appendix C Harmonic Drive Friction Model Parameters

0

0.25

0.5

0.75

1

effi
ce
n
cy

2 4 6 8

load torque [Nm]

500 rpm (catalog)

500 rpm (model)

1000 rpm (catalog)

1000 rpm (model)

2000 rpm (catalog)

2000 rpm (model)

3500 rpm (catalog)

3500 rpm (model)

Figure C.2: Harmonic drive gear HFUC-14-100

0

0.25

0.5

0.75

1

effi
ce
n
cy

5 10 15 20 25

load torque [Nm]

500 rpm (catalog)

500 rpm (model)

1000 rpm (catalog)

1000 rpm (model)

2000 rpm (catalog)

2000 rpm (model)

3500 rpm (catalog)

3500 rpm (model)

Figure C.3: Harmonic drive gear HFUC-17-100

0

0.25

0.5

0.75

1

effi
ce
n
cy

10 20 30 40

load torque [Nm]

500 rpm (catalog)

500 rpm (model)

1000 rpm (catalog)

1000 rpm (model)

2000 rpm (catalog)

2000 rpm (model)

3500 rpm (catalog)

3500 rpm (model)

Figure C.4: Harmonic drive gear HFUC-20-100

151

0

0.25

0.5

0.75

1

effi
ce
n
cy

10 20 30 40 50 60 70

load torque [Nm]

500 rpm (catalog)

500 rpm (model)

1000 rpm (catalog)

1000 rpm (model)

2000 rpm (catalog)

2000 rpm (model)

3500 rpm (catalog)

3500 rpm (model)

Figure C.5: Harmonic drive gear HFUC-25-100

0

0.25

0.5

0.75

1

effi
ce
n
cy

10 20 30 40 50 60 70

load torque [Nm]

500 rpm (catalog)

500 rpm (model)

1000 rpm (catalog)

1000 rpm (model)

2000 rpm (catalog)

2000 rpm (model)

3500 rpm (catalog)

3500 rpm (model)

Figure C.6: Harmonic drive gear HFUC-32-50

Appendix D

Upper Body Kinematics
This appendix lists the kinematic equations for calculating upper body rotation matrices
from Euler angles or the spatial representation used for real-time control.

The transform matrix 𝐴𝑢𝐼 from the inertial coordinate system into the upper body
coordinate system is given by:

𝐴𝑢𝐼 =

⎛
⎜⎝

c𝜓 c𝜙− s𝜓 c𝜗 s𝜙 s𝜓 c𝜙+ c𝜓 c𝜗 s𝜙 s𝜗 s𝜙
− c𝜓 s𝜙− s𝜓 c𝜗 c𝜙 − s𝜓 s𝜙+ c𝜓 c𝜗 c𝜙 s𝜗 c𝜙

s𝜓 s𝜗 − c𝜓 s𝜗 c𝜗

⎞
⎟⎠ (D.1)

Here c and s are used to denote respectively sin and cos.
Assuming that the upper body is inclined by less than 𝜋/2, the Euler angles for a given

transform matrix can be calculated using the following equations:

𝜓 = atan2(𝐴𝑇 𝐼,2,0,−𝐴𝑇 𝐼,2,1) (D.2)
𝜗 = acos(𝐴𝑇 𝐼,2,2) (D.3)
𝜙 = asin(𝐴𝑇 𝐼,0,2/ sin𝜗) (D.4)

The rotation matrix from inertial reference frame into the upper body planning frame is
given by:

𝐴𝑇 𝐼 =

⎛
⎜⎝

s𝜙𝑥 c𝛼 − s𝛼 s𝜙𝑦 s𝜙𝑥 s𝛼 c𝜙𝑦 − c𝜙𝑥 s𝜙𝑦 c𝛼
s𝜙𝑥 s𝛼 c𝛼 s𝜙𝑦 − c𝜙𝑥 s𝜙𝑦 s𝛼− s𝜙𝑥 c𝜙𝑦 c𝛼

c𝜙𝑥 c𝜙𝑦 s𝜙𝑥 s𝜙𝑦c2 𝛼+ s𝜙𝑥 s𝜙𝑦s2 𝛼

⎞
⎟⎠ (D.5)

153

Appendix E

Cubic Splines

Cubic splines are defined by:

𝑠(𝑡) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑠0(𝑡) for 𝑡 ∈ [𝑡0, 𝑡1)
𝑠1(𝑡) for 𝑡 ∈ [𝑡1, 𝑡1)
. . .

𝑠𝑛−2(𝑡) for 𝑡 ∈ [𝑡𝑛−2, 𝑡𝑛−1]

(E.1)

For each interval, 𝑠𝑖 is defined by:

𝑠𝑖(𝑡) = 𝑎𝑖(𝑡− 𝑡𝑖)3 + 𝑏𝑖(𝑡− 𝑡𝑖)2 + 𝑐𝑖(𝑡− 𝑡𝑖) + 𝑑𝑖 ∀𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1] (E.2)

Calculating Coefficients
The spline passes through the control points 𝑝𝑖 at 𝑡 = 𝑡𝑖 and is 𝒞2-smooth:

𝑠(𝑡𝑖) = 𝑝𝑖 ∀𝑖 ∈ {0, . . . , 𝑛− 1} (E.3)
𝑠𝑖(𝑡𝑖+1) = 𝑠𝑖+1(𝑡𝑖+1) ∀𝑖 ∈ {0, . . . , 𝑛− 3} (E.4)
𝑠̇𝑖(𝑡𝑖+1) = 𝑠̇𝑖+1(𝑡𝑖+1) ∀𝑖 ∈ {0, . . . , 𝑛− 3} (E.5)
𝑠𝑖(𝑡𝑖+1) = 𝑠𝑖+1(𝑡𝑖+1) ∀𝑖 ∈ {0, . . . , 𝑛− 3} (E.6)

These conditions provide 4𝑛− 6 equations for the 4𝑛− 4 unknown spline parameters. A
unique solution is obtained by setting 𝑠0(𝑡0) = 𝑠𝑛−2(𝑡𝑛−1) = 0, resulting in a so-called
natural spline. To approximate functions with non-zero initial and/or terminal acceleration,
“virtual” control points are added before and/or after the time interval [𝑡0, 𝑡𝑛−1].

Denoting the distance between two control points as ℎ𝑖 := 𝑡𝑖+1 − 𝑡𝑖, we obtain the
following equations from the continuity conditions for 𝑠 and 𝑠:

𝑎𝑖 = 1
6ℎ𝑖

(𝑝𝑖+1 − 𝑝𝑖)

𝑏𝑖 = 1
2𝑝𝑖

𝑐𝑖 = 1
ℎ𝑖

(𝑝𝑖+1 − 𝑝𝑖)−
ℎ𝑖

6 (𝑝𝑖+1 + 2𝑝𝑖)

𝑑𝑖 = 𝑝𝑖

(E.7)

Continuity of 𝑠̇ finally leads to the following equations for the 𝑛 − 2 unknowns 𝑝𝑖, 𝑖 =
1 . . . 𝑛− 2:

ℎ𝑖+1𝑝𝑖−1 + 2(ℎ𝑖−1 + ℎ𝑖)𝑝𝑖 + ℎ𝑖𝑝𝑖+1 = − 6
ℎ𝑖

(𝑝𝑖+1 − 𝑝𝑖) + 6
ℎ𝑖−1

(𝑝𝑖 − 𝑝𝑖−1)

⇔𝐴𝑝 = 𝑟

(E.8)

155

156 Appendix E Cubic Splines

Since 𝐴 is tridiagonal, 𝑝 can be calculated very efficiently using LR-decomposition. The
coefficients are then calculated using (E.7).

Calculating Gradients
Gradients of cubic splines with respect to the parameters 𝑝 can be calculated using a
similar approach to that used for calculating coefficients. Differentiating (E.2) yields:

∇𝑝 𝑠 = (∇̈𝑝 𝑎) (∇𝑝 𝑝) 𝛥𝑇 3 +∇̈𝑝 𝑏 (∇𝑝 𝑝) 𝛥𝑇 2 +((∇̈𝑝 𝑐) (∇𝑝 𝑝) + (∇𝑝 𝑐)) 𝛥𝑇 +(∇𝑝 𝑑) (E.9)

Here ΔT is defined as diag(𝑡− 𝑡𝑖). Gradients of 𝑠̇ and 𝑠 are calculated by differentiating
(E.9). Differentiating (E.7) yields the gradients of spline coefficients:

𝜕 𝑎𝑖

𝜕 𝑝𝑗
=

⎧
⎪⎪⎨
⎪⎪⎩

− 1
6ℎ𝑖

for 𝑗 = 𝑖
1

6ℎ𝑖
for 𝑗 = 𝑖+ 1

0 otherwise
(E.10)

𝜕 𝑏𝑖

𝜕 𝑝𝑗
=
{︃ 1

2 for 𝑗 = 𝑖

0 otherwise
(E.11)

𝜕 𝑐𝑖

𝜕 𝑝𝑗
=

⎧
⎪⎪⎨
⎪⎪⎩

− 1
3ℎ𝑖

for 𝑗 = 𝑖

− 1
6ℎ𝑖

for 𝑗 = 𝑖+ 1
0 otherwise

(E.12)

𝜕 𝑐𝑖

𝜕 𝑝𝑗
=

⎧
⎪⎪⎨
⎪⎪⎩

− 1
ℎ𝑖

for 𝑗 = 𝑖
1
ℎ𝑖

for 𝑗 = 𝑖+ 1
0 otherwise

(E.13)

𝜕 𝑑𝑖

𝜕 𝑝𝑗
=
{︃

1 for 𝑗 = 𝑖

0 otherwise
(E.14)

Differentiating (E.8) with respect to 𝑝 yields:

𝐴 (∇𝑝 𝑝) = ∇𝑝 𝑟 (E.15)

The right hand side is given by:

∇𝑝 𝑟 =

⎛
⎜⎜⎜⎜⎝

− 6
ℎ0

6
ℎ0

+ 6
ℎ1

− 6
ℎ1

0 0 0 . . .

0 − 6
ℎ1

6
ℎ1

+ 6
ℎ2

− 6
ℎ2

0 0 . . .

0 0 − 6
ℎ2

6
ℎ2

+ 6
ℎ3
− 6

ℎ3
0 . . .

...
...

...

⎞
⎟⎟⎟⎟⎠

(E.16)

∇𝑝 𝑝 is calculated column-wise using an LR-factorization of 𝐴.
The spline coefficients are linear in the control points:

𝑎 = (∇𝑝 𝑎) 𝑝 (E.17)
𝑏 = (∇𝑝 𝑏) 𝑝 (E.18)
𝑐 = (∇𝑝 𝑐) 𝑝 (E.19)
𝑑 = (∇𝑝 𝑑) 𝑝 (E.20)

Obviously, ∇𝑝𝑑 is the unit matrix.

157

Finally, the cubic spline can be written as:

𝑠(𝑡) =
(︁
∇𝑝𝑎(𝑡− 𝑡𝑖)3 +∇𝑝𝑏(𝑡− 𝑡𝑖)2 +∇𝑝𝑐(𝑡− 𝑡𝑖) +∇𝑝𝑑

)︁
𝑝 = ∇𝑝𝑠(𝑡)𝑝 (E.21)

Appendix F

Local Optimization of Kinematic
Redundancy
In this thesis, the problem of local optimization of kinematic redundancy is given by:

𝜑 = 1
2 𝑞̇𝑇 𝑊 𝑞̇ + 𝛼𝑁 (∇𝑞 𝐻) 𝑞̇ (F.1)

𝑔 = 𝑥̇− 𝐽𝑞̇ (F.2)
𝜑→ min! ∧ 𝑔 = 0 (F.3)

Here 𝑊 is a (usually diagonal) weighting matrix, 𝛼𝑁 is a gain factor and 𝐻 is an auxiliary
function. Using the method of Lagrange multipliers, we obtain the Lagrange function:

𝐿 = 1
2 𝑞̇𝑇 𝑊 𝑞̇ + 𝛼𝑁 (∇𝑞 𝐻) 𝑞̇ + 𝜆𝑇 (𝑥̇− 𝐽𝑞̇) (F.4)

This leads to the following optimality conditions:

𝜕 𝐿

𝜕 𝑞̇

𝑇

= 𝑊 𝑞̇ + 𝛼𝑁 (∇𝑞 𝐻)𝑇 − 𝐽𝑇 𝜆 (F.5)

𝜕 𝐿

𝜕 𝜆

𝑇

= 𝑥̇− 𝐽𝑞̇ (F.6)

From (F.5) we have:

𝑞̇ = 𝑊 −1𝐽𝑇 𝜆−𝑊 −1𝛼𝑁 ∇𝑞 𝐻
𝑇

⏟ ⏞
−𝑧

(F.7)

Substituting 𝑞̇ into (F.6), we obtain:

𝑥̇ = 𝐽𝑊 −1𝐽𝑇
⏟ ⏞

𝐵

𝜆 + 𝐽𝑧. (F.8)

This equation can be solved for 𝜆, thereby obtaining the closed form solution for 𝑞̇

𝑞̇ = 𝐽#
𝑊 𝑥̇ + 𝑁𝐽 𝑧

= 𝐽#
𝑊 𝑥̇− 𝛼𝑁 𝑊 −1𝑁𝐽 (∇𝑞 𝐻)𝑇

(F.9)

as a function of the 𝑊 -weighted generalized inverse 𝐽#
𝑊 and the corresponding null-space

projection matrix 𝑁 :

𝐽#
𝑊 = 𝑊 −1𝐽𝑇

(︁
𝐽𝑊 −1𝐽𝑇

)︁−1
(F.10)

𝑁𝐽 = 𝐸 − 𝐽#
𝑊 𝐽 (F.11)

159

160 Appendix F Local Optimization of Kinematic Redundancy

In fact, this closed form solution is often used in controller implementations. However, it
is much cheaper to calculate 𝑞̇ directly by solving (F.8) for 𝜆 numerically and substituting
this into (F.7). This has been suggested by Klein and Huang [71] without a weighting
matrix 𝑊 .

Summing up, the general solution for 𝑞̇ is calculated using the following algorithm:

1: set 𝐵 = 𝐽𝑊 −1𝐽𝑇

2: set 𝑝 = 𝑥̇− 𝐽𝑧
3: solve 𝐵𝜆 = 𝑝 for 𝜆

4: set 𝑞̇ = 𝑊 −1
(︁
𝐽𝑇 𝜆− 𝑧

)︁

Note that 𝑊 is usually diagonal, which can also be exploited when calculating 𝑞̇.

Appendix G

Experimental Results

The following sections contain measurements for different walking speeds and directions
gathered in experiments with Lola. In all trials, the robot started and stopped in a standing
position. Motor-side sensing was used for joint position control and drift compensation was
used in the inverse kinematics loop (feedback path 1, see Section 5.4). Only measurements
for pelvis and right leg joints are shown for conciseness. The following table lists the basic
gait parameters used in the experiments:

Speed [km/h] Direction Step length [cm] Step duration [s]

0.0 N/A 0 1.2
1.0 forward 34 1.2
2.0 forward 50 0.9
3.0 forward 58 0.7
0.7 sideways 20 1.0

G.1 Walking Forward at 0 km/h

−750

−500

−250

0

250

F
z
[N
]

0 2.5 5 7.5 10 12.5 15

time [s]

−40

−20

0

20

T
x
[N
]

0 2.5 5 7.5 10 12.5 15

time [s]

−10

0

10

20

30

T
y
[N
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.01

−0.005

0

0.005

0.01

ϕ
x
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

161

162 Appendix G Experimental Results

−0.02

−0.01

0

0.01

0.02

ϕ
y
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.2

−0.1

0

0.1

0.2

an
kl
e
ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.56

−0.54

−0.52

−0.5

−0.48

an
kl
e
fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

0.125

0.15

0.175

0.2

0.225

h
ip

ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.425

−0.4

−0.375

−0.35

h
ip

fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.04

−0.02

0

0.02

0.04
h
ip

ro
ta
ti
on

[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

0.8

0.85

0.9

0.95

1

kn
ee

fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.1

−0.05

0

0.05

0.1

p
el
vi
s
ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.04

−0.02

0

0.02

0.04

p
el
vi
s
ro
ta
ti
on

[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.004

−0.003

−0.002

−0.001

0

0.001

to
e
fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

G.2 Walking Forward at 1 km/h 163

G.2 Walking Forward at 1 km/h

−750

−500

−250

0

250

F
z
[N
]

0 5 10 15 20 25

time [s]

−60

−40

−20

0

20

T
x
[N
]

0 5 10 15 20 25

time [s]

−50

−25

0

25

50

T
y
[N
]

0 5 10 15 20 25

time [s]

−0.02

−0.01

0

0.01

0.02

0.03

ϕ
x
[r
ad
]

0 5 10 15 20 25

time [s]

−0.02

−0.01

0

0.01

0.02

ϕ
y
[r
ad
]

0 5 10 15 20 25

time [s]

−0.2

−0.1

0

0.1

0.2

an
kl
e
ad
d
u
ct
io
n
[r
ad
]

0 5 10 15 20 25

time [s]

−0.8

−0.6

−0.4

−0.2

0

an
kl
e
fl
ex
io
n
[r
ad
]

0 5 10 15 20 25

time [s]

0.1

0.125

0.15

0.175

0.2

0.225

h
ip

ad
d
u
ct
io
n
[r
ad
]

0 5 10 15 20 25

time [s]

−0.8

−0.6

−0.4

−0.2

0

h
ip

fl
ex
io
n
[r
ad
]

0 5 10 15 20 25

time [s]

−0.05

−0.025

0

0.025

0.05

h
ip

ro
ta
ti
on

[r
ad
]

0 5 10 15 20 25

time [s]

164 Appendix G Experimental Results

0.6

0.8

1

1.2

1.4

kn
ee

fl
ex
io
n
[r
ad
]

0 5 10 15 20 25

time [s]

−0.1

−0.05

0

0.05

0.1

p
el
vi
s
ad
d
u
ct
io
n
[r
ad
]

0 5 10 15 20 25

time [s]

−0.05

−0.025

0

0.025

0.05

p
el
vi
s
ro
ta
ti
on

[r
ad
]

0 5 10 15 20 25

time [s]

−0.2

−0.15

−0.1

−0.05

0

0.05

to
e
fl
ex
io
n
[r
ad
]

0 5 10 15 20 25

time [s]

G.3 Walking Forward at 2 km/h

−750

−500

−250

0

250

F
z
[N
]

0 2.5 5 7.5 10 12.5 15

time [s]

−40

−20

0

20

40

T
x
[N
]

0 2.5 5 7.5 10 12.5 15

time [s]

−60

−40

−20

0

20

40

T
y
[N
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.02

0

0.02

0.04

ϕ
x
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

G.3 Walking Forward at 2 km/h 165

−0.04

−0.02

0

0.02

0.04

ϕ
y
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.2

−0.1

0

0.1

0.2

an
kl
e
ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.75

−0.5

−0.25

0

0.25

an
kl
e
fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

0.05

0.1

0.15

0.2

0.25

0.3

h
ip

ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−1

−0.75

−0.5

−0.25

0

0.25

h
ip

fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.1

−0.05

0

0.05

0.1

h
ip

ro
ta
ti
on

[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

0.5

0.75

1

1.25

1.5

kn
ee

fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.1

−0.05

0

0.05

0.1

p
el
vi
s
ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.1

−0.05

0

0.05

0.1

p
el
vi
s
ro
ta
ti
on

[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

−0.6

−0.4

−0.2

0

0.2

to
e
fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5 15

time [s]

166 Appendix G Experimental Results

G.4 Walking Forward at 3 km/h

−1000

−750

−500

−250

0

250

F
z
[N
]

0 2.5 5 7.5 10 12.5

time [s]

−75

−50

−25

0

25

50

T
x
[N
]

0 2.5 5 7.5 10 12.5

time [s]

−100

−50

0

50

100

T
y
[N
]

0 2.5 5 7.5 10 12.5

time [s]

−0.1

−0.05

0

0.05

0.1

ϕ
x
[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

−0.05

−0.025

0

0.025

0.05

ϕ
y
[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

−0.2

−0.1

0

0.1

0.2

an
kl
e
ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

−0.75

−0.5

−0.25

0

0.25

0.5

an
kl
e
fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

0

0.1

0.2

0.3

h
ip

ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

−1

−0.75

−0.5

−0.25

0

0.25

h
ip

fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

−0.15

−0.1

−0.05

0

0.05

0.1

h
ip

ro
ta
ti
on

[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

G.5 Walking Sideways at 0.7 km/h 167

0

0.5

1

1.5

2
kn

ee
fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

−0.1

−0.05

0

0.05

0.1

p
el
vi
s
ad
d
u
ct
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

−0.1

−0.05

0

0.05

0.1

p
el
vi
s
ro
ta
ti
on

[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

−0.75

−0.5

−0.25

0

0.25

to
e
fl
ex
io
n
[r
ad
]

0 2.5 5 7.5 10 12.5

time [s]

G.5 Walking Sideways at 0.7 km/h

−750

−500

−250

0

250

F
z
[N
]

0 5 10 15 20

time [s]

−50

−25

0

25

50

T
x
[N
]

0 5 10 15 20

time [s]

−20

−10

0

10

20

30

T
y
[N
]

0 5 10 15 20

time [s]

−0.015

−0.01

−0.005

0

0.005

0.01

ϕ
x
[r
ad
]

0 5 10 15 20

time [s]

168 Appendix G Experimental Results

−0.02

−0.01

0

0.01

0.02

0.03

ϕ
y
[r
ad
]

0 5 10 15 20

time [s]

−0.2

−0.1

0

0.1

0.2

0.3

an
kl
e
ad
d
u
ct
io
n
[r
ad
]

0 5 10 15 20

time [s]

−0.6

−0.55

−0.5

−0.45

−0.4

an
kl
e
fl
ex
io
n
[r
ad
]

0 5 10 15 20

time [s]

−0.05

0

0.05

0.1

0.15

0.2

0.25

h
ip

ad
d
u
ct
io
n
[r
ad
]

0 5 10 15 20

time [s]

−0.45

−0.4

−0.35

−0.3

−0.25

h
ip

fl
ex
io
n
[r
ad
]

0 5 10 15 20

time [s]

−0.05

0

0.05

0.1
h
ip

ro
ta
ti
on

[r
ad
]

0 5 10 15 20

time [s]

0.7

0.8

0.9

1

kn
ee

fl
ex
io
n
[r
ad
]

0 5 10 15 20

time [s]

−0.1

−0.05

0

0.05

0.1

p
el
vi
s
ad
d
u
ct
io
n
[r
ad
]

0 5 10 15 20

time [s]

−0.05

−0.025

0

0.025

0.05

p
el
vi
s
ro
ta
ti
on

[r
ad
]

0 5 10 15 20

time [s]

−0.006

−0.004

−0.002

0

0.002

to
e
fl
ex
io
n
[r
ad
]

0 5 10 15 20

time [s]

List of Abbreviations
API Application Programming Interface
BVP Boundary Value Problem
CAD Computer Aided Design
CoG Center of Gravity
CoP Center of Pressure
CPU Central Processing Unit
DoF Degree of Freedom
EoM Equation of Motion
FEM Finite Element Method
FoR Frame of Reference
FRI Foot Rotation Indicator
FTS Force/Torque Sensor
FSW Feasible Solution of Wrench
GigE Gigabit Ethernet
GUI Graphical User Interface
IP Internet Protocol
IPC Inter Process Communication
IVP Initial Value Problem
LIPM Linear Inverted Pendulum Mode
MBS Multibody System
ODE Ordinary Differential Equation
OS Operating System
PCB Printed Circuit Board
POSIX Portable Operating System Interface
PMSM Permanent Magnet Synchronous Motor
QP Quadratic Programming
RTOS Real-Time Operating System
SLAM Simultaneous Localization and Mapping
SVD Singular Value Decomposition
TCP Transmission Control Protocol

(a protocol from the Internet Protocol Suite)
TCP Tool Center Point

(usually the reference point of a robot manipulator)
UDP User Datagram Protocol
ZMP Zero Moment Point
ZRAM Zero Rate of Angular Momentum

169

Bibliography
[1] Acary, V. and Brogliato, B. Numerical Methods for Nonsmooth Dynamical

Systems. Ed. by Pfeiffer, F. and Wriggers, P. Lecture Notes in Applied and
Computational Mechanics. Springer, 2008. doi: 10.1007/978-3-540-75392-
6.

[2] Albu-Schäffer, A. and Hirzinger, G. “Cartesian impedance control techniques
for torque controlled light-weight robots”. In: vol. 1. 2002, 657 –663 vol.1.
doi: 10.1109/ROBOT.2002.1013433.

[3] Bessonnet, G., Chessé, S., and Sardain, P. “Optimal Gait Synthesis of a
Seven-Link Planar Biped”. In: The Intl Journal of Robotics Research 23, 10-11
(2004), pp. 1059–1073. doi: 10.1177/0278364904047393.

[4] BostonDynamics. Company website for the Petman robot. 2010/07/25. url:
http://www.bostondynamics.com/robot_petman.html.

[5] Bremer, H. and Pfeiffer, F. Elastische Mehrkörpersysteme. (German). Wies-
baden: B.G. Teubner Verlag, 1988.

[6] Buschmann, T., Lohmeier, S., Bachmayer, M., Ulbrich, H., and Pfeiffer, F.
“A Collocation Method for Real-Time Walking Pattern Generation”. In:
Humanoid Robots, 2007 7th IEEE-RAS International Conference on. 2007,
pp. 1 –6. doi: 10.1109/ICHR.2007.4813841.

[7] Buschmann, T., Lohmeier, S., Ulbrich, H., and Pfeiffer, F. “Dynamics simula-
tion for a biped robot: modeling and experimental verification”. In: Robotics
and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Con-
ference on. May 2006, pp. 2673 –2678. doi: 10.1109/ROBOT.2006.1642105.

[8] Buschmann, T., Nishiwaki, K., Inaba, M., and Inoue, H. “Inverse Kinematics
for Humanoid Kneeling Motion Exploiting Redundant DOFs”. In: Proc of
the Robotics Society of Japan (RSJ). 2004.

[9] Buschmann, T., Lohmeier, S., Ulbrich, H., and Pfeiffer, F. “Optimization
based gait pattern generation for a biped robot”. In: Humanoid Robots, 2005
5th IEEE-RAS International Conference on. Dec. 2005, pp. 98 –103. doi:
10.1109/ICHR.2005.1573552.

[10] Buschmann, T., Lohmeier, S., Schwienbacher, M., Favot, V., Ulbrich, H.,
Hundelshausen, F. v., Rohe, G., and Wuensche, H.-J. “Walking in Unknown
Environments – a Step Towards More Autonomy”. In: Proc IEEE-RAS Int
Conference on Humanoid Robotics (Humanoids). 2010.

[11] Chareyron, S. and Wieber, P. B. Stability and regulation of nonsmooth
dynamical systems. Tech. rep. Institut National de Recherche en Informatique
et en Automatique (INRIA), 2004.

171

http://dx.doi.org/10.1007/978-3-540-75392-6
http://dx.doi.org/10.1007/978-3-540-75392-6
http://dx.doi.org/10.1109/ROBOT.2002.1013433
http://dx.doi.org/10.1177/0278364904047393
http://www.bostondynamics.com/robot_petman.html
http://dx.doi.org/10.1109/ICHR.2007.4813841
http://dx.doi.org/10.1109/ROBOT.2006.1642105
http://dx.doi.org/10.1109/ICHR.2005.1573552

172 Bibliography

[12] Chestnutt, J., Kuffner, J., Nishiwaki, K., and Kagami, S. “Planning Biped
Navigation Strategies in Complex Environments”. In: Proc IEEE-RAS Int
Conference on Humanoid Robotics (Humanoids). 2003.

[13] Chevallereau, C., Djoudi, D., and Grizzle, J. “Stable Bipedal Walking With
Foot Rotation Through Direct Regulation of the Zero Moment Point”. In:
IEEE Trans. Robot. Automat. 24 (2008), pp. 390–401. doi: 10.1109/TRO.
2007.913563.

[14] Cho, B.-K., Park, S.-S., and Oh, J.-H. “Controllers for running in the humanoid
robot, HUBO”. In: Intl Journal of Humanoid Robotics (IJHR) (Dec. 2009),
pp. 385 –390. doi: 10.1109/ICHR.2009.5379574.

[15] Craig, J. and Raibert, M. “A Systematic Method of Hybrid Position/Force
Control of a Manipulator”. In: Computer Software and Applications Confer-
ence, IEEE Computer Society. 1979.

[16] Cupec, R., Lorch, O., and Schmidt, G. “Experiments in Vision-Guided Robot
Walking in a Structured Scenario”. In: Proc of the IEEE Intl Symposium on
Industrial Electronics. 2005.

[17] Cupec, R., Lorch, O., and Schmidt, G. “Vision-Guided Humanoid Walking –
Concepts and Experiments”. In: Proc. of the 12th International Workshop on
Robotics in Alpe-Adria-Danube Region (RAAD’03). Cassino, Italy, May 2003.

[18] Denk, J. and Schmidt, G. “Synthesis of walking primitive databases for biped
robots in 3D-environments”. In: Robotics and Automation, 2003. Proceedings.
ICRA ’03. IEEE International Conference on. Vol. 1. Sept. 2003, 1343 –1349
vol.1. doi: 10.1109/ROBOT.2003.1241778.

[19] Duffy, B. R. “Anthropomorphism and The Social Robot”. In: Robotics
and Autonomous Systems 42 (2003), pp. 177–190. doi: 10.1016/S0921-
8890(02)00374-3.

[20] Engelhardt, T., Friedrich, M., Geier, T., Lebrecht, W., Neumann, L., and
Ulbrich, H. “Modelling and optimisation of powertrains”. In: Int. J. Vehicle
Systems Modelling and Testing (2005), pp. 4–31.

[21] Förg, M. Mehrkörpersysteme mit mengenwertigen Kraftgesetzten – Theorie
und Numerik. Fortschrittberichte VDI, Reihe 20 411. (German). Düsseldorf:
VDI-Verlag, 2007. isbn: 978-3-18-341120-7.

[22] Förg, M., Geier, T., Neumann, L., and Ulbrich, H. “R-Factor Strategies for
the Augmented Lagrangian Approach in Multi-Body Contact Mechanics”. In:
III European Conference on Computational Mechanics, Solids, Structures and
Coupled Problems in Engineering. 2006.

[23] Fujimoto, Y. and Kawamura, A. “Proposal of biped walking control based
on robust hybrid position/force control”. In: Robotics and Automation, 1996.
Proceedings., 1996 IEEE International Conference on. Vol. 3. Apr. 1996, 2724
–2730 vol.3. doi: 10.1109/ROBOT.1996.506574.

[24] Furusho, J. and Masubuchi, M. “A Theoretically Motivated Reduced Order
Model for the Control of Dynamic Biped Locomotion”. In: Journal of Dynamic
Systems, Measurements, and Control 109 (1987), pp. 155–163.

http://dx.doi.org/10.1109/TRO.2007.913563
http://dx.doi.org/10.1109/TRO.2007.913563
http://dx.doi.org/10.1109/ICHR.2009.5379574
http://dx.doi.org/10.1109/ROBOT.2003.1241778
http://dx.doi.org/10.1016/S0921-8890(02)00374-3
http://dx.doi.org/10.1016/S0921-8890(02)00374-3
http://dx.doi.org/10.1109/ROBOT.1996.506574

Bibliography 173

[25] Gienger, M. Entwurf und Realisierung einer zweibeinigen Laufmaschine.
Fortschrittberichte VDI, Reihe 1 378. (German). Düsseldorf: VDI-Verlag,
2005. isbn: 3-18-337801-9.

[26] Gilmore, P., Kelley, C. T., Miller, C. T., and A., Williams G. “Implicit filtering
and optimal design problems: Proceedings of the workshop on optimal design
and control”. In: Optimal Design and Control. 1994.

[27] Goswami, A. “Foot rotation indicator (FRI) point: a new gait planning tool
to evaluate postural stability of biped robots”. In: Robotics and Automation,
1999. Proceedings. 1999 IEEE International Conference on. Vol. 1. 1999, 47
–52 vol.1. doi: 10.1109/ROBOT.1999.769929.

[28] Goswami, A. and Kallem, V. “Rate of change of angular momentum and
balance maintenance of biped robots”. In: Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004 IEEE International Conference on. Vol. 4. Apr.
2004, 3785 –3790 Vol.4. doi: 10.1109/ROBOT.2004.1308858.

[29] Gutmann, J-S., Fukuchi, M., and Fujita, M. “A Floor and Obstacle Height
Map for 3D Navigation of a Humanoid Robot”. In: Proc IEEE Int Conf
Robotics and Automation (ICRA). 2005.

[30] Harmonic Drive Catalog. Harmonic Drive AG. Limburg/Lahn, 2007.
[31] Heimsch, Thomas F. and Leine, Remco I. “Lyapunov Stability Theory for Non-

Smooth Non-Autonomous Mechanical Systems Applied to the Bouncing Ball
Problem”. In: ASME Conference Proceedings 2009, 49019 (2009), pp. 465–
473. doi: 10.1115/DETC2009-87185. url: http://link.aip.org/link/
abstract/ASMECP/v2009/i49019/p465/s1.

[32] Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T. “The development of
Honda humanoid robot”. In: Robotics and Automation, 1998. Proceedings.
1998 IEEE International Conference on. Vol. 2. May 1998, 1321 –1326 vol.2.
doi: 10.1109/ROBOT.1998.677288.

[33] Hirukawa, H., Hattori, S., Harada, K., Kajita, S., Kaneko, K., Kanehiro, F.,
K., Fujiwara., and Morisawa, M. “A Universal Stability Criterion of the Foot
Contact of Legged Robots - Adios ZMP-”. In: Proc IEEE Int Conf Robotics
and Automation (ICRA). 2006.

[34] Hodgins, J.K. and Raibert, M.N. “Adjusting step length for rough terrain
locomotion”. In: Robotics and Automation, IEEE Transactions on 7, 3 (June
1991), pp. 289 –298. issn: 1042-296X. doi: 10.1109/70.88138.

[35] Honda Motor Company. History of the Honda robots. 2010/04/29. url:
http://world.honda.com/ASIMO/history/e4_e5_e6.html.

[36] Huang, Qiang, Kajita, S., Koyachi, N., Kaneko, K., Yokoi, K., Arai, H.,
Komoriya, K., and Tanie, K. “A high stability, smooth walking pattern for a
biped robot”. In: Robotics and Automation, 1999. Proceedings. 1999 IEEE
International Conference on. Vol. 1. 1999, 65 –71 vol.1. doi: 10.1109/ROBOT.
1999.769932.

http://dx.doi.org/10.1109/ROBOT.1999.769929
http://dx.doi.org/10.1109/ROBOT.2004.1308858
http://dx.doi.org/10.1115/DETC2009-87185
http://link.aip.org/link/abstract/ASMECP/v2009/i49019/p465/s1
http://link.aip.org/link/abstract/ASMECP/v2009/i49019/p465/s1
http://dx.doi.org/10.1109/ROBOT.1998.677288
http://dx.doi.org/10.1109/70.88138
http://world.honda.com/ASIMO/history/e4_e5_e6.html
http://dx.doi.org/10.1109/ROBOT.1999.769932
http://dx.doi.org/10.1109/ROBOT.1999.769932

174 Bibliography

[37] Hurwitz, A. “Ueber die Bedingungen, unter welchen eine Gleichung nur
Wurzeln mit negativen reelen Theilen besitzt.” In: Mathematische Annalen
46 (1895). (German), pp. 273–284.

[38] Hyon, S. and Emura, T. “Symmetric Walking Control: Invariance and Global
Stability”. In: Robotics and Automation, 2005. ICRA 2005. Proceedings of
the 2005 IEEE International Conference on. Apr. 2005, pp. 1443 –1450.

[39] ISO/IEC/IEEE. “Information technology - Portable Operating System In-
terface (POSIX) Operating System Interface (POSIX)”. In: ISO/IEC/IEEE
9945 (First edition 2009-09-15) (Sept. 2009), pp. c1 –3830. doi: 10.1109/
IEEESTD.2009.5393893.

[40] Jiménez, P., Thomas, F., and Torras, C. “3D collision detection: a survey”.
In: Computers & Graphics 25 (2001), pp. 269–285.

[41] Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara, T., Inaba, M., and Inoue,
H. “A Fast Dynamically Equilibrated Walking Trajectory Generation Method
of Humanoid Robot”. In: Autonomous Robots 12 (2002), pp. 71–82. doi:
10.1023/A:1013210909840.

[42] Kagami, S., Nishiwaki, K., Kuffner, J.J., Okada, K., Inaba, M., and Inoue,
H. “Vision-based 2.5D terrain modeling for humanoid locomotion”. In:
Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on. Vol. 2. Sept. 2003, 2141 –2146 vol.2.

[43] Kajita, S. and Tani, K. “Experimental study of biped dynamic walking in
the linear inverted pendulum mode”. In: Robotics and Automation, 1995.
Proceedings., 1995 IEEE International Conference on. Vol. 3. May 1995, 2885
–2891 vol.3. doi: 10.1109/ROBOT.1995.525693.

[44] Kajita, S., Nagasaki, T., Kaneko, K., Yokoi, K., and Tanie, K. “A Running
Controller of Humanoid Biped HRP-2LR”. In: Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on.
Apr. 2005, pp. 616 –622.

[45] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and
Hirukawa, H. “Biped walking pattern generation by using preview control of
zero-moment point”. In: Robotics and Automation, 2003. Proceedings. ICRA
’03. IEEE International Conference on. Vol. 2. Sept. 2003, 1620 –1626 vol.2.

[46] Kanehiro, F., Fujiwara, K., Kajita, S., Yokoi, K., Kaneko, K., Hirukawa,
H., Nakamura, Y., and Yamane, K. “Open architecture humanoid robotics
platform”. In: Robotics and Automation, 2002. Proceedings. ICRA ’02. IEEE
International Conference on. Vol. 1. 2002, 24 –30 vol.1. doi: 10.1109/ROBOT.
2002.1013334.

[47] Kaneko, K., Kanehiro, F., Morisawa, M., Miura, K., Nakaoka, S., and Kajita,
S. “Cybernetic human HRP-4C”. In: Humanoid Robots, 2009. Humanoids
2009. 9th IEEE-RAS International Conference on. Dec. 2009, pp. 7 –14. doi:
10.1109/ICHR.2009.5379537.

http://dx.doi.org/10.1109/IEEESTD.2009.5393893
http://dx.doi.org/10.1109/IEEESTD.2009.5393893
http://dx.doi.org/10.1023/A:1013210909840
http://dx.doi.org/10.1109/ROBOT.1995.525693
http://dx.doi.org/10.1109/ROBOT.2002.1013334
http://dx.doi.org/10.1109/ROBOT.2002.1013334
http://dx.doi.org/10.1109/ICHR.2009.5379537

Bibliography 175

[48] Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H., Kawasaki, T., Hirata,
M., Akachi, K., and Isozumi, T. “Humanoid robot HRP-2”. In: Robotics
and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International
Conference on. Vol. 2. Apr. 2004, 1083 –1090 Vol.2. doi: 10.1109/ROBOT.
2004.1307969.

[49] Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., and Akachi, K. “Hu-
manoid robot HRP-3”. In: Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on. Sept. 2008, pp. 2471 –2478. doi:
10.1109/IROS.2008.4650604.

[50] Karam, W. and Mare, J.-C. “Modelling and simulation of mechanical trans-
mission in roller-screw electromechanical actuators”. In: Aircraft Engineering
and Aerospace Technology: An International Journal 81 (2009), pp. 288–298.

[51] Kawada Industries. Company website for the HRP-3 robot. 2010. url:
http://global.kawada.jp/mechatronics/hrp3.html.

[52] Kelly, T. Implicit Filtering website. 2007. url: http://www4.ncsu.edu/
~ctk/iffco.html.

[53] Kennedy, C.W. and Desai, J.P. “Modeling and control of the Mitsubishi
PA-10 robot arm harmonic drive system”. In: Mechatronics, IEEE/ASME
Transactions on 10, 3 (June 2005), pp. 263 –274. issn: 1083-4435. doi:
10.1109/TMECH.2005.848290.

[54] Khalil, H. K. Nonlinear Systems. 3rd ed. Pearson Education, 2000.
[55] Khatib, O. “A unified approach for motion and force control of robot ma-

nipulators: The operational space formulation”. In: Robotics and Automa-
tion, IEEE Journal of 3, 1 (Feb. 1987), pp. 43 –53. issn: 0882-4967. doi:
10.1109/JRA.1987.1087068.

[56] Leigh, R. J. and Zee, D. S. The Neurology of Eye Movements. Oxford
University Press, Inc., 2006.

[57] Leine, R. I. and Nijmeijer, H. Dynamics and Bifurcations of Non-smooth
Mechanical Systems. Springer, 2004.

[58] Liégeois, A. “Automatic Supervisory Control of the Configuration and Be-
havior of Multibody Mechanisms”. In: Systems, Man and Cybernetics, IEEE
Transactions on 7, 12 (Dec. 1977), pp. 868 –871. issn: 0018-9472. doi:
10.1109/TSMC.1977.4309644.

[59] Lin, M. C. and Gottschalk, S. “Collision detection between geometric models:
a survey”. In: In Proc. of IMA Conference on Mathematics of Surfaces. 1998,
pp. 37–56.

[60] Löffler, K. Dynamik und Regelung einer zweibeinigen Laufmaschine. Fortschrit-
tberichte VDI, Reihe 8 1094. (German). Düsseldorf: VDI-Verlag, 2006. isbn:
3-18-509408-5.

http://dx.doi.org/10.1109/ROBOT.2004.1307969
http://dx.doi.org/10.1109/ROBOT.2004.1307969
http://dx.doi.org/10.1109/IROS.2008.4650604
http://global.kawada.jp/mechatronics/hrp3.html
http://www4.ncsu.edu/~ctk/iffco.html
http://www4.ncsu.edu/~ctk/iffco.html
http://dx.doi.org/10.1109/TMECH.2005.848290
http://dx.doi.org/10.1109/JRA.1987.1087068
http://dx.doi.org/10.1109/TSMC.1977.4309644

176 Bibliography

[61] Löffler, K., Gienger, M., Pfeiffer, F., and Ulbrich, H. “Sensors and control
concept of a biped robot”. In: Industrial Electronics, IEEE Transactions on
51, 5 (Oct. 2004), pp. 972 –980. issn: 0278-0046. doi: 10.1109/TIE.2004.
834948.

[62] Lohmeier, S. “Design and Realization of a Performance Enhanced Humanoid
Robot”. PhD thesis. Technische Universität München, 2010.

[63] Lyapunov, A. M. The General Problem of the Stability of Motion. Taylor &
Francis, 1992.

[64] Miura, H. and Shimoyama, I. “Dynamic Walk of a Biped”. In: The Inter-
national Journal of Robotics Research 3 (1984), pp. 60–74. doi: 10.1177/
027836498400300206.

[65] Miyazaki, F. and Arimoto, S. “A Control Theoretic Study on Dynamical
Biped Locomotion”. In: Journal of Dynamic Systems, Measurement and
Control 102 (1980), pp. 233–239. doi: 10.1115/1.3149608.

[66] Mombaur, K. D. “Stability Optimization of Open-loop Controlled Walking
Robots”. PhD thesis. University of Heidelberg, 2001.

[67] Mombaur, K., Bock, H., Schlöder, J., and Longman, R. “Open-loop stable
solutions of periodic optimal control problems in robotics”. In: Zeitschrift
für Angewandte Mathematik und Mechanik 7 (2005), pp. 499–515. doi:
10.1002/zamm.200310190.

[68] Moran, M.E. “Evolution of robotic arms”. In: Journal of Robotic Surgery 1
(2007), pp. 103–111. doi: 10.1007/s11701-006-0002-x.

[69] Morisawa, M., Harada, K., Kajita, S., Kaneko, K., Kanehiro, F., Fujiwara,
K., Nakaoka, S., and Hirukawa, H. “A Biped Pattern Generation Allowing
Immediate Modification of Foot Placement in Real-time”. In: Humanoid
Robots, 2006 6th IEEE-RAS International Conference on. Dec. 2006, pp. 581
–586. doi: 10.1109/ICHR.2006.321332.

[70] Nachtigall, W. and Möhl, B. “Dynamik und Anpassungsvorgänge bei der
Laufkoordination des Menschen”. In: Autonomes Laufen. Ed. by Pfeiffer, F.
and Cruse, H. (German). Springer-Verlag Berlin Heidelberg, 2005. Chap. 6,
pp. 97–106. isbn: 978-3-540-25044-9. doi: 10.1007/3-540-26453-1_6.

[71] Nakamura, Y. Advanced Robotics: Redundancy and Optimization. Addison-
Wesley, 1991.

[72] Nakaoka, S., Hattori, S., Kanehiro, F., Kajita, S., and Hirukawa, H.
“Constraint-based dynamics simulator for humanoid robots with shock ab-
sorbing mechanisms”. In: Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on. Oct. 2007, pp. 3641 –3647. doi:
10.1109/IROS.2007.4399415.

[73] Nishiwaki, K. “Design of walking system and online control of a humanoid
robot.” in Japanese. PhD thesis. University of Tokyo, 2001.

http://dx.doi.org/10.1109/TIE.2004.834948
http://dx.doi.org/10.1109/TIE.2004.834948
http://dx.doi.org/10.1177/027836498400300206
http://dx.doi.org/10.1177/027836498400300206
http://dx.doi.org/10.1115/1.3149608
http://dx.doi.org/10.1002/zamm.200310190
http://dx.doi.org/10.1007/s11701-006-0002-x
http://dx.doi.org/10.1109/ICHR.2006.321332
http://dx.doi.org/10.1007/3-540-26453-1_6
http://dx.doi.org/10.1109/IROS.2007.4399415

Bibliography 177

[74] Nishiwaki, K. and Kagami, S. “High frequency walking pattern generation
based on preview control of ZMP”. In: Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conference on. May 2006,
pp. 2667 –2672. doi: 10.1109/ROBOT.2006.1642104.

[75] Nishiwaki, K., Kagami, S., Kuffner, J., Inaba, M., and Inoue, H. “Humanoid
“JSK-H7”: Research Platform for Autonomous Behavior and Whole Body
Motion”. In: Proc Int Workshop Humanoid and human friendly Robotics
(IARP). Tsukuba, Japan, 2002, pp. 2–9.

[76] Nishiwaki, K., Kagami, S., Kuffner, J.J., Inaba, M., and Inoue, H. “Online
humanoid walking control system and a moving goal tracking experiment”. In:
Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on. Vol. 1. Sept. 2003, 911 –916 vol.1.

[77] Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., and Inoue, H. “The
experimental humanoid robot H7: a research platform for autonomous be-
haviour”. In: Phil. Trans. R. Soc. A 365, 1850 (2006), pp. 79–107. doi:
10.1098/rsta.2006.1921.

[78] Nishiwaki, Koichi, Kuga, Mamoru, Inaba, Satoshi Kagami Masayuki, and
inoue, Hirochika. “Whole-body Cooperative Balanced Motion Generation
for Reaching”. In: Proc IEEE-RAS Int Conference on Humanoid Robotics
(Humanoids). 2004.

[79] Ogura, Y., Aikawa, H., Shimomura, K., Morishima, A., Lim, Hun ok, and
Takanishi, A. “Development of a new humanoid robot WABIAN-2”. In:
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE Inter-
national Conference on. May 2006, pp. 76 –81. doi: 10.1109/ROBOT.2006.
1641164.

[80] Oh, J.-H. Website for the Hubo2 robot. 2010. url: http://hubolab.co.kr/
hubo%28khr-4%29_Specification.php.

[81] Okada, K., Ogura, T., Haneda, A., and Inaba, M. “Autonomous 3D walking
system for a humanoid robot based on visual step recognition and 3D foot
step planner”. In: Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on. Apr. 2005, pp. 623 –628.

[82] Okada, K., Kagami, S., Inaba, M., and Inoue, H. “Plane Segment Finder:
Algorithm, Implementation and Applications”. In: Proc IEEE Int Conf
Robotics and Automation (ICRA). 2001, pp. 2120–5.

[83] Okada, K., Inaba, M., and Inoue, H. “Real-time and Precise Self Collision
Detection System for Humanoid Robots”. In: Proc IEEE Int Conf Robotics
and Automation (ICRA). 2005.

[84] Papadopoulos, E. G. and Chasparis, G. C. “Analysis and model-based control
of servomechanisms with friction”. In: Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on. Vol. 3. 2002, 2109 –2114 vol.3. doi:
10.1109/IRDS.2002.1041578.

http://dx.doi.org/10.1109/ROBOT.2006.1642104
http://dx.doi.org/10.1098/rsta.2006.1921
http://dx.doi.org/10.1109/ROBOT.2006.1641164
http://dx.doi.org/10.1109/ROBOT.2006.1641164
http://hubolab.co.kr/hubo%28khr-4%29_Specification.php
http://hubolab.co.kr/hubo%28khr-4%29_Specification.php
http://dx.doi.org/10.1109/IRDS.2002.1041578

178 Bibliography

[85] Park, Jong H. and Kim, Kyoung D. “Biped Robot Walking Using Gravity-
Compensated Inverted Pendulum Mode and Computed Torque Control”. In:
Proc IEEE Int Conf Robotics and Automation (ICRA). 1998.

[86] Parks, P. C. “A. M. Lyapunov’s stability theory – 100 years on”. In: IMA
Journal of Mathematical Control & Information 9 (1992), pp. 275–3.

[87] Peer, A., Bajcinca, N., and Schweiger, C. “Physical-based Friction Identifica-
tion of an Electro-Mechanical Actuator with Dymola/Modelica and MOPS”.
In: Proc. of the 3rd Intl. Modelica Conf. Linköping, 2003.

[88] Perry, J. Gait Analysis – Normal and Pathological Function. 3rd edition.
Thorofare, USA: Slack Inc., 1992.

[89] Pfeiffer, F. “The TUM walking machines”. In: Phil. Trans. R. Soc. A 365
(2006), pp. 109–131. doi: 10.1098/rsta.2006.1922.

[90] Pfeiffer, F. and Cruse, H., eds. Autonomes Laufen. (German). Springer-Verlag
Berlin Heidelberg, 2005. isbn: 978-3-540-25044-9. doi: 10.1007/b137612.

[91] Pfeiffer, F. and Glocker, Ch. Multibody Dynamics with Unilateral Contacts.
New York: John Wiley Inc., 1996.

[92] Pfeiffer, F. and Johanni, R. “A Concept for Manipulator Trajectory Planning”.
In: Proc IEEE Int Conf Robotics and Automation (ICRA). 1986. doi:
10.1109/JRA.1987.1087090.

[93] Pratt, J. E., Krupp, B., Ragusila, V., Rebula, J., et al. “The Yobotics-IHMC
Lower Body Humanoid Robot”. In: Intelligent Robots and Systems, 2009.
IROS 2009. IEEE/RSJ International Conference on. Oct. 2009, pp. 410 –411.
doi: 10.1109/IROS.2009.5354430.

[94] Pratt, J. Website for the M2 robot. 2001. url: http://www.ai.mit.edu/
projects/leglab/robots/m2/m2.html.

[95] Pratt, J., Carff, J., Drakunov, S., and Goswami, A. “Capture Point: A Step
toward Humanoid Push Recovery”. In: Humanoid Robots, 2006 6th IEEE-
RAS International Conference on. Genova, Dec. 2006, pp. 200–207. doi:
10.1109/ICHR.2006.321385.

[96] Radhakrishnan, K. and Hindmarsh, A. C. Description and Use of LSODE, the
Livermore Solver for Ordinary Differential Equations. Tech. rep. Lawrence
Livermore National Laboratory Report UCRL-ID-113855, 1993.

[97] Raibert, M. H. Legged Robots that Balance (Artificial Intelligence). Cambridge:
MIT Press, 1986.

[98] Raibert, M., Blankespoor, K., Nelson, G., and Playter, R. “BigDog, the
Rough-Terrain Quadruped Robot”. In: Proc. of the 17th World Congress The
International Federation of Automatic Control. 2008.

[99] Raibert, Marc. “Legged Robots”. In: Communications of the ACM 26 (1986),
pp. 499–514.

http://dx.doi.org/10.1098/rsta.2006.1922
http://dx.doi.org/10.1007/b137612
http://dx.doi.org/10.1109/JRA.1987.1087090
http://dx.doi.org/10.1109/IROS.2009.5354430
http://www.ai.mit.edu/projects/leglab/robots/m2/m2.html
http://www.ai.mit.edu/projects/leglab/robots/m2/m2.html
http://dx.doi.org/10.1109/ICHR.2006.321385

Bibliography 179

[100] Riebe, S. and Ulbrich, H. “Modelling and Control of a Low-Frequency Ac-
tive Vibration Isolation with Six Degrees-of-Freedom”. In: Proc. of the
EUROMECH Colloq. 455 on Semi-Active Vibration Suppression. Prag,
Tschechien, July 2005, pp. 1–15.

[101] Robinson, D., Pratt, J., Paluska, D., and Pratt, G. “Series Elastic Actuator
Development for a Biomimetic Walking Robot”. In: Proc. of the ASME
International Conference on Advanced Intelligent Mechatronics. Atlanta,
Georgia, USA, 1999, pp. 561–568.

[102] Rockafellar, R. T. “Augmented Lagrangians and Applications of the Proximal
Point Algorithm in Convex Programming”. In: MATHEMATICS OF OPER-
ATIONS RESEARCH 1, 2 (1976), pp. 97–116. doi: 10.1287/moor.1.2.97.

[103] Rossmann, Th. Eine Laufmaschine für Rohre. Fortschrittberichte VDI, Reihe
8 Nr. 732. (German). Düsseldorf: VDI-Verlag, 1998.

[104] Russel, R.D. and Shampine, L.F. “A Collocation Method for Boundary Value
Problems”. In: Numer. Math., Springer Verlag 19 (1972), pp. 1–28.

[105] Sabe, K., Fukuchi, M., Gutmann, J.-S., Ohashi, T., Kawamoto, K., and
Yoshigahara, T. “Obstacle avoidance and path planning for humanoid robots
using stereo vision”. In: Robotics and Automation, 2004. Proceedings. ICRA
’04. 2004 IEEE International Conference on. Vol. 1. Apr. 2004, 592 –597
Vol.1. doi: 10.1109/ROBOT.2004.1307213.

[106] Sardain, P. and Bessonnet, G. “Forces acting on a biped robot. Center of
pressure-zero moment point”. In: Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on 34, 5 (Sept. 2004), pp. 630 –637.
issn: 1083-4427. doi: 10.1109/TSMCA.2004.832811.

[107] Schiehlen, W., Guse, N., and Seifried, R. “Multibody dynamics in com-
putational mechanics and engineering applications”. In: Computer Meth-
ods in Applied Mechanics and Engineering 195, 41-43 (2006). John H. Ar-
gyris Memorial Issue. Part II, pp. 5509 –5522. issn: 0045-7825. doi: DOI:
10.1016/j.cma.2005.04.024.

[108] Schröder, D. Elektrische Antriebe – Regelung von Antriebssystemen. 3rd ed.
(German). Springer-Verlag Berlin Heidelberg, 2001.

[109] Shevitz, D. and Paden, B. “Lyapunov stability theory of nonsmooth systems”.
In: Automatic Control, IEEE Transactions on 39, 9 (Sept. 1994), pp. 1910
–1914. issn: 0018-9286. doi: 10.1109/9.317122.

[110] Siciliano, B. and Khatib, O., eds. Springer Handbook of Robotics. Springer-
Verlag Berlin Heidelberg, 2008.

[111] Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G. Robotics. Ed. by
Grimble, J. and Johnson, A. M. Springer Verlag London Ltd., 2009. doi:
10.1007/978-1-84628-642-1.

http://dx.doi.org/10.1287/moor.1.2.97
http://dx.doi.org/10.1109/ROBOT.2004.1307213
http://dx.doi.org/10.1109/TSMCA.2004.832811
http://dx.doi.org/DOI: 10.1016/j.cma.2005.04.024
http://dx.doi.org/DOI: 10.1016/j.cma.2005.04.024
http://dx.doi.org/10.1109/9.317122
http://dx.doi.org/10.1007/978-1-84628-642-1

180 Bibliography

[112] Spong, M.W. “Partial feedback linearization of underactuated mechanical
systems”. In: Intelligent Robots and Systems ’94. ’Advanced Robotic Systems
and the Real World’, IROS ’94. Proceedings of the IEEE/RSJ/GI International
Conference on. Vol. 1. Sept. 1994, 314 –321 vol.1. doi: 10.1109/IROS.1994.
407375.

[113] Stovall, S. H. Basic Inertial Navigation. Tech. rep. Naval Air Warfare Center
Weapons Division, 1997.

[114] Taghirad, H. D. and Bélanger, P. R. “Modelling and Parameter Identification
of Harmonic Drive Systems”. In: Journal of Dynamic Systems, Measurements,
and Control 120 (1998), pp. 439–444. doi: doi:10.1115/1.2801484.

[115] Taghirad, H. D. and Bélanger, P.R. “A Nonlinear Model For Harmonic Drive
Friction and Compliance”. In: Intl. Conf on Robotics and Automation. 1998.

[116] Tajima, R., Honda, D., and Suga, K. “Fast running experiments involving
a humanoid robot”. In: Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on. May 2009, pp. 1571 –1576. doi: 10.1109/
ROBOT.2009.5152404.

[117] Takanishi, A. Website of the Biped Humanoid Robot Group at Waseda Uni-
versity. 2010/07/03. url: http://www.takanishi.mech.waseda.ac.jp/
top/research/index.htm.

[118] Takao, S., Yokokohji, Y., and Yoshikawa, T. “FSW (feasible solution of wrench)
for multi-legged robots”. In: Proc. IEEE Int. Conf. Robotics and Automation
ICRA ’03. Vol. 3. 2003, pp. 3815–3820. doi: 10.1109/ROBOT.2003.1242182.

[119] Takenaka, T. Controller of Legged Mobile Robot. European Patent Application
no. EP1475198A1. 2004.

[120] Takenaka, T. Gait generation system of legged mobile robot. european patent
application no. EP1671754A2. 2004.

[121] Takenaka, T., Matsumoto, T., and Yoshiike, T. “Real time motion generation
and control for biped robot -1st report: Walking gait pattern generation-”.
In: Proc IEEE/RSJ Int Conf Intelligent Robots and Systems (IROS). Oct.
2009, pp. 1084 –1091. doi: 10.1109/IROS.2009.5354662.

[122] Takenaka, T., Matsumoto, T., Yoshiike, T., and Shirokura, S. “Real time
motion generation and control for biped robot -2nd report: Running gait
pattern generation-”. In: Proc IEEE/RSJ Int Conf Intelligent Robots and
Systems (IROS). Oct. 2009, pp. 1092 –1099. doi: 10.1109/IROS.2009.
5354654.

[123] Takenaka, T., Matsumoto, T., and Yoshiike, T. “Real time motion generation
and control for biped robot -3rd report: Dynamics error compensation-”. In:
Proc IEEE/RSJ Int Conf Intelligent Robots and Systems (IROS). Oct. 2009,
pp. 1594 –1600. doi: 10.1109/IROS.2009.5354542.

http://dx.doi.org/10.1109/IROS.1994.407375
http://dx.doi.org/10.1109/IROS.1994.407375
http://dx.doi.org/doi:10.1115/1.2801484
http://dx.doi.org/10.1109/ROBOT.2009.5152404
http://dx.doi.org/10.1109/ROBOT.2009.5152404
http://www.takanishi.mech.waseda.ac.jp/top/research/index.htm
http://www.takanishi.mech.waseda.ac.jp/top/research/index.htm
http://dx.doi.org/10.1109/ROBOT.2003.1242182
http://dx.doi.org/10.1109/IROS.2009.5354662
http://dx.doi.org/10.1109/IROS.2009.5354654
http://dx.doi.org/10.1109/IROS.2009.5354654
http://dx.doi.org/10.1109/IROS.2009.5354542

Bibliography 181

[124] Takenaka, T., Matsumoto, T., Yoshiike, T., Hasegawa, T., Shirokura, S.,
Kaneko, H., and Orita, A. “Real time motion generation and control for
biped robot -4th report: Integrated balance control-”. In: Proc IEEE/RSJ
Int Conf Intelligent Robots and Systems (IROS). Oct. 2009, pp. 1601 –1608.
doi: 10.1109/IROS.2009.5354522.

[125] Toyota Motor Corporation. Website of the Toyota Motor Corporation,
Overview of the partner robots. 2008/05/03. url: http://www.toyota.
co.jp/en/special/robot/.

[126] Ulbrich, H. Maschinendynamik. (German). Wiesbaden: B.G. Teubner Verlag,
1996.

[127] von Hundelshausen, F., Himmelsbach, M., Hecker, F., Mueller, A., and Wuen-
sche, H.-J. “Driving with tentacles: Integral structures for sensing and mo-
tion”. In: J. Field Robot. 25, 9 (2008), pp. 640–73. issn: 1556-4959. doi:
10.1002/rob.v25:9.

[128] Vukobratović, J., Borovac, B., Surla, D., and Stokic, D. Biped Locomotion:
Dynamics, Stability, Control and Applications. Berlin, Heidelberg, New York:
Springer, 1990.

[129] Vukobratović, M. and Borovac, B. “Zero-Moment Point - Thirty Five Years of
its Life”. In: Intl Journal of Humanoid Robotics (IJHR) 1, 1 (2004), pp. 157–
173. doi: 10.1142/S0219843604000083.

[130] Whitney, D. E. “Resolved Motion Rate Control of Manipulators and Human
Prostheses”. In: IEEE Transactions on Man Machine Systems 10, 2 (June
1969), pp. 47–53. issn: 0536-1540. doi: 10.1109/TMMS.1969.299896.

[131] Wieber, P. B. “On the stability of walking systems”. In: Proceedings of the
International Workshop on Humanoid and Human Friendly Robotics. 2002.

[132] Wieber, P. B., Billet, F., Boissieux, L., and Pissard-Gibollet, R. “The Hu-
MAnS toolbox, a homogeneous framework for motion capture, analysis and
simulation”. In: Proc. 9th ISB Symposium on 3D analysis of human movement.
2006.

[133] Wriggers, P. Computational Contact Mechanics. John Wiley & Sons Ltd.,
2002.

[134] Yamane, Katsu. Simulating and Generating Motions of Human Figures.
Springer-Verlag Berlin Heidelberg, 2004.

[135] Zubov, V.I. Methods of A.M. Lyapunov and their Application. Ed. by Boron,
Leo F. In AM-Bib. Noordhoff, 1964.

http://dx.doi.org/10.1109/IROS.2009.5354522
http://www.toyota.co.jp/en/special/robot/
http://www.toyota.co.jp/en/special/robot/
http://dx.doi.org/10.1002/rob.v25:9
http://dx.doi.org/10.1142/S0219843604000083
http://dx.doi.org/10.1109/TMMS.1969.299896

	Titlepage
	Abstract
	Acknowledgments
	Contents
	Introduction
	Problem Statement
	Background and Related Work
	A Short History of Humanoid and Animal-Like Robots
	Related Work

	Overview of the Thesis

	Modeling and Simulation
	Introduction
	Related Work
	Overview

	Rigid Body Dynamics
	Topology and Degrees of Freedom
	Recursive Kinematics Calculation
	Relative Kinematics
	Equations of Motion for the Rigid Multibody System

	Contact and Environment Models
	Contact Dynamics
	Environment Model and Distance Computation

	Drives
	Electrical Motor Dynamics
	Gear Friction
	Gear Elasticity

	Sensor Models
	Joint Sensors
	Force/Torque Sensors
	Inertial Measurement Unit

	Robot Models and Time Integration
	Robot Models
	Time Integration

	Chapter Summary

	Stability and Feasibility in Biped Walking
	Introduction
	Basic Aspects of Biped Walking Dynamics
	Zero Moment Point and Related Concepts
	Zero Moment Point
	Foot Rotation Indicator and Zero Rate of Change of Angular Momentum
	Stability Criteria Based on the Contact Wrench
	Remarks

	General Stability Criteria
	Periodic Motions
	Chapter Summary

	Real-Time Trajectory Generation
	Introduction
	Gait Coordination
	Step Sequence Planning
	Standard Circular Path
	Step Parameter Calculation
	Reactive Step Sequence Planning
	Higher Level Behavior

	Coordinate Systems and Task-Space Definition
	Coordinate Systems
	Task-Space Definition
	Relative Foot Orientation
	Absolute Upper Body Orientation

	Foot Trajectory Generation
	Center of Gravity Trajectory Generation
	Related Work
	Problem Statement and Analysis
	Center of Gravity Dynamics
	ZMP Reference Trajectory
	Solving the Boundary Value Problem

	Camera Head Control
	Inverse Kinematics
	Reference Trajectory Generation

	Contact Force Distribution
	Additional Components in Trajectory Generation
	Chapter Summary

	Feedback Control
	Introduction
	Overview
	Background and Related Work

	Contact Force Modification
	Hybrid Position/Force Control
	Inverse Kinematics and Redundancy Resolution
	Joint Position Control
	Joint Position Control for Johnnie
	Joint Position Control for Lola

	Optimization-Based Parameter Tuning
	Chapter Summary

	Autonomous Walking
	Computer Vision System
	Interfacing Walking Control and Computer Vision

	Software System
	Introduction
	Software Components
	Main Programs
	Real-Time System
	Chapter Summary

	Results
	Biped Walking
	Walking Forward
	Walking Sideways
	Comparison of Simulation and Measurement

	Autonomous Locomotion

	Conclusion
	Summary
	Discussion
	Recommendations for Future Research

	Lola's Basic Technical Data
	Multibody System Topology of Lola
	Harmonic Drive Friction Model Parameters
	Upper Body Kinematics
	Cubic Splines
	Local Optimization of Kinematic Redundancy
	Experimental Results
	Walking Forward at 0 km/h
	Walking Forward at 1 km/h
	Walking Forward at 2 km/h
	Walking Forward at 3 km/h
	Walking Sideways at 0.7 km/h

	List of Abbreviations
	Bibliography

