Constraint-Based Integration of Plan Tracking
and Prognosis for Autonomous Production*

Paul Maier, Martin Sachenbacher, Thomas Riihr!, and Lukas Kuhn?

1 Technische Universitét Miinchen, Department of Informatics
Boltzmanstrafe 3, 85748 Garching, Germany
{maierpa, sachenba, ruehr}@in.tum.de
2 PARC, Palo Alto, USA
Lukas.Kuhn@parc.com

Abstract. Today’s complex production systems allow to simultaneously
build different products following individual production plans. Such plans
may fail due to component faults or unforeseen behavior, resulting in
flawed products. In this paper, we propose a method to integrate diag-
nosis with plan assessment to prevent plan failure, and to gain diagnos-
tic information when needed. In our setting, plans are generated from a
planner before being executed on the system. If the underlying system
drifts due to component faults or unforeseen behavior, plans that are
ready for execution or already being executed are uncertain to succeed
or fail. Therefore, our approach tracks plan execution using probabilis-
tic hierarchical constraint automata (PHCA) models of the system. This
allows to explain past system behavior, such as observed discrepancies,
while at the same time it can be used to predict a plan’s remaining
chance of success or failure. We propose a formulation of this combined
diagnosis/assessment problem as a constraint optimization problem, and
present a fast solution algorithm that estimates success or failure prob-
abilities by considering only a limited number k of system trajectories.

1 Introduction

As markets increasingly demand for highly customized and variant-rich products,
the industry struggles to develop production systems that attain the necessary
flexibility, but maintain cost levels comparable to mass production. A main cost
driver in production is the human workforce needed for setup steps, the design
of process flows, and quality assurance systems. These high labor costs can only
be amortized by very large lot sizes. Therefore, to enable individualized produc-
tion with its typically small lot sizes, automation must reach levels of flexibility
similar to human workers. The TUM excellence cluster "Cognition for Techni-
cal Systems" (CoTeSys) [1] aims at understanding human cognition and making
its performance accessible for technical systems. The goal is to develop systems
that act robustly under high uncertainty, reliably handle unexpected events, and
quickly adapt to changing tasks and own capabilities.

* This work is supported by DFG and CoTeSys. Preprint submitted to KI 2009.

A key technology for the realization of such systems is automated planning
combined with self-diagnosis and self-assessment. These capabilities can allow
the system to plan its own actions, and also react to failures and adapt the
behavior to changing circumstances. From the point of view of planning, pro-
duction systems are a relatively rigid environment, where the necessary steps to
manufacture a product can be anticipated well ahead. However, from a diagnosis
point of view, production systems are typically equipped with only few sensors,
so it cannot be reliably observed whether an individual manufacturing step went
indeed as planned; instead, this becomes only gradually more certain while the
production plan is being executed. Therefore, in the presence of faults or other
unforeseen behaviors, which become more likely in individualized production,
the question arises whether plans that are ready for execution or already being
executed will indeed succeed, and whether it is necessary to revise a plan or even
switch to another plan.

To address this problem, we propose in this paper a model-based capability
that estimates the success probability of production plans in execution. We as-
sume that a planner provides plans given a system model. A plan is a sequence
of action and start time pairs where each action is executed at the corresponding
start time. Whenever the system produces an observation, it will be forwarded
to a module that performs simultaneous situation assessment and plan prognos-
tic using probabilistic hierarchical constraint automata (PHCA) models [2] of
the system. We propose a formulation of this problem as a soft constraint opti-
mization problem [3] over a window of N time steps that extends both into the
past and the future, and present a fast but approximate solution method that
enumerates a limited number k& of most likely system trajectories. The resulting
success or failure prognosis can then be used to autonomously react in different
ways depending on the probability estimate; for instance, continue with plan ex-
ecution, discard the plan, or augment the plan by adding observation-gathering
actions to gain further information [4].

In the remainder of the paper, we first motivate the approach informally with
an example from an automated metal machining process, and then present our
algorithmic solution and experimental results.

2 Example: Metal Machining and Assembly

As part of the CoTeSys cognitive factory test-bed, we set up a customized and
extended Flexible Manufacturing System (FMS) based on the iCim3000 from
Festo AG (see figure 1b). The system consists of a conveyor transport and three
stations: storage, machining (milling and turning), and assembly. We built a sim-
plified model of this manufacturing system (see figure la) which consists only
of the machining and the assembly station and allows to track system behav-
ior over time, including unlikely component faults. In particular, the machining
station can transition to a “cutter blunt” composite location, where abrasions
are caused during operation due to a blunt cutter. This makes it very probable
that the cutter breaks, leading to flawed products (see figure 1d). The assembly

station model contains a composite location which models occasional abrasions.
A vibration sensor at the assembly station can detect these abrasions, yielding
binary signals “abrasion occurred” and “no abrasion occurred”. However, the sig-
nal is ambiguous, since the sensor cannot differentiate between the two possible
causes.

Two products are produced using a single production plan Pp..q: a toy maze
consisting of an alloy base plate and an acrylic glass cover, and an alloy part of
a robotic arm (see figure 1c). Pproq consists of these steps: (1) cut maze into
base plate (one time step), (2) assemble base plate and cover (one time step),
(3,4,5,6) cut robot arm part (one to four time steps). The plan takes two to six
time steps (starting at ¢ = 0). The plan is considered successful if both products
are flawless. In our example, only a broken cutter causes the machined product
to be flawed, in all other cases the production plan will succeed. Now consider
the following scenario: after the second plan step (assembling the maze base
plate and its cover at ¢ = 2) an abrasion is observed. Due to sensor ambiguity
it remains unclear whether the plan is unaffected (abrasion within assembly)
or whether it might fail in the future due to a broken cutter (abrasion caused
by a blunt cutter), and the question for the planner is: How likely is it that
the current plan will still succeed? Our new capability allows to compute this
likelihood, taking into account past observations and future plan steps.

3 Plan Assessment as Constraint Optimization over
PHCA Models

Probabilistic hierarchical constraint automata (PHCA) were introduced in [2]
as a compact encoding of hidden markov models (HMMs). They allow to model
both probabilistic hardware behavior (such as likelihood of component failures)
and complex software behavior (such as high level control programs) in a uniform
way. A PHCA is a hierarchical automaton with a set of locations X, consisting
of primitive and composite locations, a set of variables II, and a probabilistic
transition function Pr(l;). I consists of dependent, observable and command-
able variables. The state of a PHCA at time ¢ is a set of marked locations, called
a marking. The execution semantics of a PHCA is defined in terms of possible
evolutions of such markings (for details see [2]).

Plan assessment requires tracking of the system’s plan-induced evolution;
in our case, it means tracking the evolution of PHCA markings. In previous
work [5], we introduced an encoding of PHCA as soft constraints and casted
the problem of tracking markings as a soft constraint optimization problem [3],
whose solutions correspond to the most likely sequences of markings given the
available observations. The encoding is parameterized by N, which is the number
of time steps considered (for a detailed description of the encoding, see [5]).

Observations made online are encoded as hard constraints specifying assign-
ments to observable variables at time ¢ (e.g., Abrasion® = OCCURRED), and
added to the constraint optimization problem.

machining

cutter blunt

cmd = noop; 1.0 emd = cut:; 0.1

idle
PF = OK
d = cut; 0.5
Abrasion = OCCURRED =
cmd_g%f)ﬁ O
emd = cut
- PF = OK
Abrasion = OCCURRED
emd =\cut; 0.5)

cutter broken o
PF = FAULTY emd = eut; 0.5
Abrasion = . OCCURRED

U

1.0 emd = cut; 0.1

emd = noop; 1.0 cmd # noop; 0.8 cmd # noop; 0.8

idle

Abrasion = NONE

cmd = noop; 1.0

emd = assemble; 1.0

cmd = noop; 1.0
abrasion
Abrasion = OCCURRED

cmd # noop; 0.2

Fig. 1: (1a) Simplified PHCA of the manufacturing system. The machining and
assembly station are modeled as parallel running composite locations (indicated
by dashed borders). Variables appearing within a location are local to this lo-
cation, i.e. machining.cmd refers globally to the command variable cmd within
composite location machining. (1b) The hardware setup used for experimen-
tation, showing storage, transport, robot and machining components. (1c¢) The
robotic arm product. (1d) Effects of cutter deterioration until breakage in ma-
chining. Images (¢) Prof. Shea TUM PE.

Plans are added analogously as assignments to commandable variables at
time ¢; for example, ag’jt and al(lts) semble AT€ assignments machining.cmd® = cut\
assembly.cmd®) = noop and assembly.cmd® = assembleAmachining.cmd® =
noop. Note that variables appear time independent in the PHCA notation (see,
e.g., figure 1a), i.e. without superscript (*).

The plan’s goal G is to produce a flawless product. We encode this informal
description as a logical constraint G = VPF(nd) ¢ RelevantFeatures(P) :
PFena) = OK over product feature variables PF®) € {OK, FAULTY} at
the end of the execution, t.,q. RelevantFeatures() is a function mapping a
production plan to all product feature variables which define the product. Each
system component is responsible for a product feature in the sense that if it fails,
the product feature is not present (PF) = FAU LTY). In our example, there is
only a single product feature PF', which is absent if the cutter is broken. The goal
constraint for the above mentioned plan (three time steps long) is accordingly
PF®) = OK.

We then enumerate the system’s k most likely marking sequences, or trajec-
tories, using a modified version of the soft constraint solver toolbar [6], which
implements A* search with mini-bucket heuristics (a dynamic programming ap-
proach that produces search heuristics with variable strength depending on a
parameter %, see [7]).

Combining Plan Tracking and Prognosis. To assess a plan’s probability
of success, we require not only to track past system behavior, but also to pre-
dict its evolution in the future. In principle, this could be accomplished in two
separate steps: first, assess the system’s state given the past behavior, and then
predict its future behavior given this belief state and the plan. However, this
two-step approach leads to a problem. Computing a belief state (complete set of
diagnoses) is intractable, thus it must be replaced by some approximation (such
as considering only k most likely diagnoses [8]). But if a plan uses a certain
component intensely, then this component’s failure probability is relevant for
assessing this plan, even if it is very low and therefore would not appear in the
approximation. In other words, the plan to be assessed determines which parts
of the belief state (diagnoses) are relevant.

To address this dependency problem, we propose a method that performs
diagnosis and plan assessment simultaneously, by framing it as a single optimiza-
tion problem. The key idea is as follows: The optimization problem formulation
is independent of where the present time point is within the N-step time window.
We therefore choose it such that the time window covers the remaining future
plan actions as well as the past behavior. Now solutions to the COP are trajec-
tories which start in the past and end in the future. We then compute a plan’s
success probability by summing over system trajectories that achieve the goal.
Again due to complexity reasons, we cannot do this exactly and approximate
the success probability by generating only the k& most probable trajectories. But
since we have only a single optimization problem now, we don’t have to prema-
turely cut off unlikely hypotheses and have only one source of error, compared

to approximating the belief state and predicting the plan’s evolution based on
this estimate.

Approximating the Plan Success Probability. We denote the set of all tra-
jectories as © and the set of the k-best trajectories as ©*. A trajectory is consid-
ered successful if it entails the plan’s goal constraint. We define SUCCESS :=
{0 € OVs € Ryo1, 8 ly=0: Fg(s) = true}, where R, is the set of all solutions
to the probabilistic constraint optimization problem, s |y their projection on
marking variables, and F(s) is the goal constraint. SUCCESS* is the set of
successful trajectories among @*. The exact success probability is computed as

P(#,0bs, P)
P E = P = o
(SUCCESS|Obs, P) > (0|Obs, P) > P{0bs. P)
0cSUCCESS 0ecSUCCESS
_ P(6,00bs,P) _ ZGESUCCESS P(0,0bs, P)
vestictnss > oco P(6,00s,P) > oco P(6,00s,P)

The approximate success probability P*(SUCCESS*|Obs,P) is computed
the same way, only SUCCESS is replaced with SUCCFESS* and © with ©*.
We define the error of the approximation as E(k) := |P(SUCCESS|Obs, P) —
P*(SUCCESS*|0bs, P)|. E(k) converges to zero as k goes to infinity. Also,
E(k) =0if P(SUCCESS|Obs,P) is 0 or 1. However, as the example in Figure
2 shows, E(k) does in general not decrease monotonically with increasing k.

Algorithm for Plan Evaluation. Plans are generated by the planner and
then advanced until they are finished or new observations are available. In the
latter case, the currently executed plan P is evaluated using our algorithm.
It first computes the & most probable trajectories by solving the optimization
problem over N time steps. Then, using these trajectories, it approximates the
success probability of plan P and compares the probability against two thresh-
olds wsyccess and weajj. We can distinguish three cases: (1) The probability is
above wWgyecess, 1-6. the plan will probably succeed, (2) the probability is below
Wrail, 1.€. the plan will probably fail or (3) the probability is in between both
thresholds, which means the case cannot be decided. In the first case we simply
continue execution. In the second case we have to adapt the plan to the new
situation. This is done by REPLAN(P, ©*), which modifies the future actions
of P taking into account the diagnostic information contained in ©*. The third
case indicates that not enough information about the system’s current state
is available. As a reaction, a procedure REPLANPERVASIVEDIAGNOSIS(P, 6*)
implements the recently developed pervasive diagnosis [4], which addresses this
problem by augmenting a plan with information gathering actions.

4 Experimental Results

We ran experiments for five small variations of our example scenario, where
Pprod uses the machining station zero to four times. The time window size N

accordingly ranges from two to six, problem sizes range from 240 to 640 variables
and 240 to 670 constraints. Figure 2 shows the success probabilities for different
Pproa and k (top), and a table of the runtime in seconds and the peak memory
consumption in megabytes (bottom) for computing success probabilities in the
planning scenarios. In addition, the table ranges over different values for the mini-
bucket parameter i. As expected, with increasing use of the machining station,
P*(SUCCESS*|Obs, Pproa) decreases. Also, runtime increases for larger time
windows. With increasing k, P*(SUCCESS*|Obs, Pproq) converges towards
the exact solution. In our example, the approximation tends to be optimistic,
which however cannot be assumed for the general case. Increasing k hardly seems
to affect the runtime, especially if the mini-bucket search heuristic is strong
(bigger i-values). For weaker heuristics the influence increases slightly. Memory
consumption is affected much stronger by k. Here also, a weaker search heuristic
means stronger influence of k.

5 Conclusion and Future Work

We presented a model-based method that combines diagnosis of past execution
steps with prognosis of future execution steps of production plans, in order to
allow the production system to autonomously react to failures and other unfore-
seen events. The method makes use of probabilistic constraint optimization to
solve this combined diagnosis/prognosis problem, and preliminary results for a
real-world machining scenario show it can indeed be used to guide the system
away from plans that rely on suspect system components. Future work will con-
cern the integration of the method into our overall planning/execution architec-
ture, and its extension to multiple simultaneous plans. We are also interested in
exploiting the plan diagnosis/prognosis results in order to update the underlying
model, for instance, to automatically adapt to parameter drifts of components.

References

1. Beetz, M., Buss, M., Wollherr, D.: Cognitive technical systems — what is the role
of artificial intelligence? In: Proc. KI-2007. (2007) 19-42

2. Williams, B.C., Chung, S., Gupta, V.: Mode estimation of model-based programs:
monitoring systems with complex behavior. In: Proc. IJCAI-2001. (2001) 579-590

3. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. In: Proc. IJCAI-1995. (1995)

4. Kuhn, L., Price, B., Kleer, J.d., Do, M.B., Zhou, R.: Pervasive diagnosis: The
integration of diagnostic goals into production plans. In: Proc. AAAI-2008. (2008)

5. Mikaelian, T., Williams, B.C., Sachenbacher, M.: Model-based Monitoring and
Diagnosis of Systems with Software-Extended Behavior. In: Proc. AAAI-05. (2005)

6. Bouveret, S., Heras, F., Givry, S., Larrosa, J., Sanchez, M., Schiex, T.: Toolbar: a
state-of-the-art platform for wesp. www.inra.fr/mia/T/degivry/ToolBar.pdf (2004)

7. Kask, K., Dechter, R.: Mini-bucket heuristics for improved search. In: Proc. UAI-
1999. (1999) 314-32

8. Kurien, J., Nayak, P.P.: Back to the future for consistency-based trajectory tracking.
In: Proc. AAAI-2000. (2000) 370-377

1
s
T 09t]
o8
_g N 5
S ost]
2 ‘
S
3 07 1
= SSeen O
Pl exact ———— ~x
Sl S | 1
: k=3 o
k=2 =
k=1 =
0.5 : ; ‘
0 1 2 3 4

No. times machining used in Pproa

No. times machining used in Pproq (window size N, #Variables, #Constraints)

k| 4]0 (2, 239, 242)[1 (3, 340, 349)[2 (4, 441, 456)[3 (5, 542, 563)[4 (6, 643, 670)
1(10|] <0.1/18 0.1/6.8 0.1 /19.0 (mem) (mem)

15 0.1/1.9 0.3 /4.2 0.5/78 0.5/ 16.6 0.8 /32.0

20 0.1/1.9 0.5 /5.2 3.7 /20.1 6.5/ 34.5 9.5 / 50.7
2|10|| <0.1/21 0.1 /11.9 0.2 /385 (mem) (mem)

15 0.1/22 0.3 /5.4 0.5 /9.7 0.6 / 28.0 0.8 / 52.0

20 0.1/22 05/64 3.7 /218 6.5 / 37.2 9.5 / 55.8
3]10{|< 0.1 /23 (e)|] 0.1 /119 0.2 /40.1 (mem) (mem)

15| 01 /24 () | 03/54 05/114 | 06/299 0.9 / 55.5

20|| 0.1 /2.4 (e) 0.5/6.4 3.7 /235 6.6 / 38.3 9.5 /574
4 (10 (e) 0.112.5 0.2 / 40.1 (mem) (mem)

15 (e) 0.3/5.9 0.5/114 0.6 / 30.9 0.9 /57.2

20 (e) 0.5 /6.9 3.7 /235 6.6 / 39.3 9.5 /59.1
5 (10 (e) 0.1 /131 0.2 / 40.7 (mem) (mem)

15 (e) 0.3/6.6 0.5 /12.0 0.6 / 33.6 0.9 / 59.5

20 (e) 05/ 7.6 3.7/24.0 | 6.6/ 428 9.5/ 63.9
10|10 (e) 0.1 /14.0 (e) | 0.2 / 43.4 (e) (mem) (mem)

15 (e) 0.3 /6.7 (e) |0.5/14.7 (e) | 0.6/ 36.2 0.9 / 64.8

20 (e) 0.6 /7.7 (e) |3.8/266(e)| 6.6/45.8 9.6 / 68.9

Fig. 2: Top: Approximate success probability (y-axis) of plan Pproq against vary-
ing usage of the machining station (x-axis) after the observation of an abrasion at
t = 2. Bottom: Runtime in seconds / peak memory consumption in megabytes.
() indicates that the exact success probability P(SUCCESS|Obs, Pproq) could
be computed with this configuration. (mem) indicates that A* ran out of mem-
ory (artificial cutoff at > 1 GB, experiments were run on a Linux computer with
a recent dual core 2.2 Ghz CPU with 2 GB RAM).

