
Technische Universität München
Fakultät für Informatik

Dissertation

Real-Time Multi-View 3D Reconstruction

for Interventional Environments

Stawros Ladikos

TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatikanwendungen in der Medizin & Augmented Reality

Real-Time Multi-View 3D Reconstruction for
Interventional Environments

Stawros Ladikos

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. M. Beetz, Ph.D.

Prüfer der Dissertation: 1. Univ.-Prof. Dr. N. Navab

2. Prof. P. Sturm, Ph.D., INRIA, Grenoble, Frankreich

Die Dissertation wurde am 30.08.2010 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 11.03.2011 angenommen.

Für Doris

Abstract

This thesis addresses the topic of real-time multi-view 3D reconstruction in interventional
environments. Due to the special working conditions in interventional rooms this is a very
challenging topic. However, the ability to recover the 3D structure of a dynamic scene in
real-time is essential for many novel and innovative interventional applications. In this the-
sis we take a step towards this goal by presenting the design of a multi-view reconstruction
system taking into consideration the conditions typically encountered in interventional en-
vironments. Two installations of the system were created: One in a laboratory environment
and one in a real interventional room. While the laboratory system was used for develop-
ment and evaluation purposes, the hospital system was used to learn about the conditions
which have to be taken into account in a clinical setting. These conditions which typically in-
clude a cluttered environment with complex lighting and occlusions are discussed in detail
and recommendations are given for dealing with them.

Based on the proposed system several applications were developed to demonstrate the ben-
efits of real-time 3D reconstruction in interventional environments. In a first application the
real-time reconstruction is used to ensure the safe operation of automated medical devices
such as C-arms by detecting potential collisions between the device and its environment
(staff, patient, utilities) in advance. A second application is aimed at estimating the physi-
cian’s radiation exposure by tracking his reconstruction and accumulating the radiation re-
ceived by each body part over time. The promising experimental results obtained using these
applications show the possible impact of our work for the medical community and illustrate
the clinical value of multi-camera systems in the development of intelligent, integrated in-
terventional suites. This is underlined by the fact that the proposed system has already been
used by other researches for recovering the workflow of surgical procedures [PMW+09].

During the course of this thesis the topic of reconstruction and organization of large im-
age collections was also investigated. This research area is gaining importance since it has
become easy and affordable to acquire large image collections due to the proliferation of
digital cameras. However, the huge amount of images available poses new challenges for
existing algorithms. The focus of this part of the thesis therefore lies on the efficient use
of large image collections. Three related problems are investigated, namely obtaining high
quality reconstructions using graph-cut methods, increasing the reconstruction efficiency by
clustering image collections and building a unified framework for various applications re-
lated to image organization, such as image-based navigation, image set reduction and scene
summarization.

i

Zusammenfassung

Diese Arbeit befasst sich mit dem Thema der Echtzeit Multi-View 3D-Rekonstruktion in In-
terventionsräumen. Aufgrund der speziellen Arbeitsbedingungen in diesem Bereich ist dies
ein sehr anspruchsvolles Thema. Nichtsdestotrotz ist die Fähigkeit die 3D-Struktur einer
Szene in Echtzeit zu erfassen essentiell für viele neuartige und innovative klinische Anwen-
dungen. In dieser Arbeit leisten wir einen Beitrag zum Erreichen dieses Ziels, indem wir das
Design eines Multi-View Rekonstruktionssystems präsentieren, welches die Bedingungen,
die in typischen Interventionsräumen herrschen, berücksichtigt. Wir haben zwei Installatio-
nen des Systems erstellt: Eine in einer Laborumgebung und eine in einem echten Interven-
tionsraum. Das Laborsystem wurde für Entwicklungs- und Versuchszwecke benutzt, woge-
gen das klinische System dazu benutzt wurde, um mehr über die Gegebenheiten zu erfah-
ren, die in einem klinischen Umfeld zu berücksichtigen sind. Diese Gegebenheiten, welche
typischerweise eine ungeordnete Arbeitsumgebung und komplexe Beleuchtungsverhältnis-
se umfassen, werden im Detail diskutiert und es werden Lösungsvorschläge zum Umgang
mit selbigen vorgestellt.

Basierend auf dem vorgestellten System wurden einige Anwendungen entwickelt, um die
Vorteile einer Echtzeit 3D-Rekonstruktion in Interventionsräumen aufzuzeigen. In einer ers-
ten Anwendung wird die Echtzeitrekonstruktion dazu benutzt, um den sicheren Betrieb von
automatisierten medizinischen Geräten sicherzustellen, indem potentielle Kollisionen zwi-
schen dem Gerät und der Umgebung frühzeitig erkannt werden. Eine zweite Anwendung
zielt darauf ab die Strahlenbelastung des Arztes zu approximieren, indem seine Rekonstruk-
tion getrackt und die Strahlung, die von jedem Körperteil empfangen wird, akkumuliert
wird. Die vielversprechenden experimentellen Ergebnisse, die in diesen Anwendungen er-
langt wurden, zeigen die Bedeutung unserer Arbeit für die medizinische Gemeinschaft und
illustrieren den klinischen Wert von Multikamerasystemen für die Entwicklung von intelli-
genten, integrierten Interventionslösungen. Dies wird durch die Tatsache unterstrichen, dass
das hier vorgestellte System schon von anderen Forschern zum Bestimmen des Arbeitsab-
laufes eines operativen Eingriffs benutzt wurde [PMW+09].

Im Laufe dieser Arbeit wurde außerdem die Rekonstruktion und Organisation von großen
Bildersammlungen untersucht. Dieser Forschungsbereich hat in den letzten Jahren an Be-
deutung gewonnen, da es aufgrund der weiten Verbreitung von Digitalkameras einfach und
günstig geworden ist große Bildersammlungen zu erstellen. Allerdings bereitet die große
Anzahl an Bildern den existierenden Algorithmen Schwierigkeiten. Der Fokus in diesem
Teil der Arbeit liegt daher auf der effizienten Nutzung großer Bildersammlungen. Dabei
werden drei miteinander verwandte Problemstellungen untersucht, nämlich das Erstellen
hochqualitativer Rekonstruktionen mittels Graph-Cut Methoden, die Steigerung der Rekon-
struktionseffizienz durch das Clustern von Bildersammlungen und das Erstellen eines ein-
heitlichen Frameworks für verschiedene Bildorganisationsanwendungen.

iii

Acknowledgments

First of all I would like to thank Professor Nassir Navab for giving me the opportunity to
work on this exiting topic and for supervising me. I’d also like to thank Selim Benhimane
who was very involved in the first part of this thesis and who helped me in finding into the
subject. Furthermore, I’m also thankful to all the people at the chair with whom I had helpful
discussions and collaborations. In particular I’d like to thank Cedric Cagniart, Ali Bigdelou,
Edmond Boyer and Slobodan Ilic. Finally I’d like to thank Martin Horn for getting all the
equipment necessary for performing this work and for helping me with the installation of
the real-time reconstruction system both in our lab and in the hospital.

v

vi

CONTENTS

Contents

I Real-Time Multi-View 3D Reconstruction for Interventional Environments 1

1 Introduction 3

1.1 Application Areas of Real-Time 3D Reconstruction 3

1.1.1 Mixed Reality . 4

1.1.2 Free Viewpoint TV . 5

1.1.3 Motion Capture . 5

1.2 Real-Time 3D Reconstruction Systems in Interventional Environments 7

1.2.1 Benefits . 7

1.2.2 Challenges . 8

1.3 Contributions . 8

1.4 Outline . 9

2 3D Reconstruction Techniques and Systems 11

2.1 3D Reconstruction Techniques . 11

2.1.1 Active Methods . 11

2.1.2 Passive Methods . 15

2.2 Multi-Camera Reconstruction Systems . 17

2.3 Conclusion . 20

3 The Visual Hull 21

3.1 Definition and Properties . 21

3.2 Visual Hull Computation . 23

3.2.1 Volumetric Approach . 23

3.2.2 Polyhedral Approach . 25

3.2.3 Other Approaches . 26

3.3 Conclusion . 29

vii

CONTENTS

4 Proposed 3D Reconstruction System 31

4.1 Overview . 31

4.2 Hardware . 31

4.2.1 PC Cluster . 31

4.2.2 Cameras . 32

4.2.3 Synchronization . 33

4.3 System Architecture . 33

4.4 Calibration . 34

4.4.1 Robust Point Extraction . 35

4.4.2 Factorization . 35

4.4.3 Euclidean Stratification . 36

4.4.4 Radial Distortion Correction . 36

4.4.5 Registration . 37

4.4.6 Results . 38

4.5 Background Subtraction . 38

4.5.1 Histogram Approach . 39

4.5.2 Gaussian Mixture Models . 40

4.5.3 Codebook Approach . 41

4.5.4 Discussion and Results . 43

4.5.5 Handling Static Occluders . 44

4.6 Visual Hull Computation . 45

4.7 Visualization . 45

4.8 Conclusion . 46

5 GPU-based Visual Hull Computation 49

5.1 Introduction . 49

5.2 Related Work . 49

5.3 Precomputation-based Algorithm . 50

5.4 Direct Algorithm . 51

5.5 Results . 52

5.6 Conclusion . 55

viii

CONTENTS

6 Incremental Visual Hull Computation 57

6.1 Related Work . 57

6.2 Incremental Reconstruction Approach . 58

6.3 Ray Casting . 59

6.4 Ray Buffers . 61

6.5 Analysis . 61

6.6 Results . 63

6.7 Conclusion . 67

7 Applications 69

7.1 Collision Avoidance in Interventional Environments 69

7.1.1 System Description . 70

7.1.2 Results . 71

7.1.3 Conclusion and Future Work . 72

7.2 Controlling Radiation Exposure in Interventional Environments 72

7.2.1 Related Work . 73

7.2.2 Reconstruction and Tracking System . 74

7.2.3 Results . 75

7.2.4 Discussion . 76

7.2.5 Conclusion and Future Work . 76

7.3 Workflow Analysis . 77

7.4 Mixed Reality Interactions . 77

7.4.1 Related Work . 78

7.4.2 Pong . 79

7.4.3 Video Compositing . 81

7.4.4 Conclusion . 82

7.5 Conclusion . 82

8 Conclusion 85

8.1 Discussion and Future Work . 85

II Multi-View 3D Reconstruction and Organisation of Image Collections 89

9 Introduction 91

9.1 Reconstructing and Organizing Large Image Collections 91

9.2 Contributions . 94

ix

CONTENTS

10 Graph-Cut-based Reconstruction 97

10.1 Introduction . 97

10.2 Related Work . 98

10.3 Volumetric Graph-Cuts . 99

10.3.1 Consistency Measure . 99

10.3.2 Surface Optimization with Graph-Cuts 100

10.4 Proposed Reconstruction Method . 101

10.4.1 Surface Normal Optimization . 101

10.4.2 Robust Visibility Test . 102

10.4.3 Narrow Band Graph-Cut . 103

10.5 Results . 104

10.6 Conclusion . 106

11 Spectral Camera Clustering 107

11.1 Introduction . 107

11.2 Related Work . 108

11.3 Camera Clustering . 110

11.4 Results . 114

11.5 Conclusion . 116

12 Region Graphs 117

12.1 Introduction . 117

12.2 Related Work . 119

12.3 Building Region Graphs . 120

12.3.1 Identifying Overlap Between Images 120

12.3.2 Identifying Overlapping Regions . 121

12.3.3 Constructing the Region Graph . 121

12.4 Using Region Graphs . 122

12.4.1 Image Set Reduction . 122

12.4.2 Canonical Views . 123

12.4.3 Image-based Navigation . 124

12.5 Experimental Results . 126

12.5.1 Image Set Reduction . 126

12.5.2 Canonical Views . 126

12.5.3 Image-based Navigation . 129

12.6 Conclusion . 130

x

CONTENTS

13 Conclusion 131

13.1 Discussion and Future Work . 131

Own Publications 133

Bibliography 135

xi

Part I

Real-Time Multi-View 3D
Reconstruction for Interventional

Environments

1

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Recovering the 3D structure of a scene from images has long been one of the core interests
of Computer Vision. While a considerable amount of work in this area has been devoted
to achieving high quality reconstructions regardless of run time, other work has focused
on the aspect of real-time reconstruction and its applications. Especially in the last decade
the interest in real-time 3D reconstruction systems has increased considerably due to the
many applications, industrial as well as scientific, which are enabled by this technology.
This thesis fits into this trend by presenting a real-time 3D reconstruction system making
use of novel and efficient reconstruction algorithms. Using this system we showcase several
innovative applications, focusing in particular on interventional settings in order to show
the advantages and benefits of including multi-camera 3D reconstruction systems in future
interventional rooms.

1.1 Application Areas of Real-Time 3D Reconstruction

Before considering the topic of real-time 3D reconstruction in interventional environments
more closely in the next section, we want to first give a brief overview of some popular uses
of 3D reconstruction systems in order to show the wide range of possible applications. In
particular we will have a look at mixed reality, 3D television and motion capture.

Figure 1.1: Small scale system for hand-based interaction with virtual objects [AMR+07].

3

CHAPTER 1. INTRODUCTION

Figure 1.2: Demonstration of the VGate system [PLBR09]. The user can interact with virtual
objects in the scene, including seeing his own reflection in a virtual mirror.

1.1.1 Mixed Reality

Mixed Reality can be considered one of the first and primary applications of real-time 3D
reconstruction. While the topic of using 3D reconstructions of events for introducing them
into virtual environments has been around for at least as long as the creation of the CMU
dome [KRN97], it has only been in the last decade that systems achieving this in real-time
have been introduced.

One application which immediately comes to mind is the interaction with virtual objects.
This is made possible by the fact that due to the real-time 3D reconstruction all the informa-
tion about the position and the intersection between virtual and real objects can be deduced.
This allows a human to touch and move virtual objects among other things without requir-
ing a complex (skeletal) tracking of the user.

In the following we will take the GrImage platform developed at INRIA Grenoble as a show-
case to highlight different mixed reality applications. The GrImage platform is a mature
multi-view 3D reconstruction system and runs at real-time frame rates. Several interactive
mixed reality applications have been built on it.

One interesting application was demonstrated at SIGGRAPH 2007[AMR+07]. In it a user is
interacting with a virtual jack in the box. The user’s hands are reconstructed in 3D and the
forces he exerts on the virtual jack in the box are computed using a physics-based interaction
framework based on the intersection of the hands and the virtual object. The result of the
reconstruction and the interaction can be observed on a screen as shown in figure 1.1.

A more immersive interaction can be achieved when using an HMD instead of a screen. This
was done in another application [PLBR09] which uses the system for full-body immersive
interactions with virtual objects. The user sees the virtual environment including himself
through an HMD (see figure 1.2). As in the previous application the user can interact with
virtual objects. In addition, new interaction metaphors such as mirrors and the cloning of
one’s own reconstruction are inserted into this application. It is clear that all these interac-
tions are only possible due to the availability of a real-time 3D reconstruction.

Another possible application is remote collaboration and telepresence [PLM+10]. In this sce-

4

CHAPTER 1. INTRODUCTION

Figure 1.3: 3D TV for a soccer game. The first image shows one of the input images, while
the other two images show two renderings of the recovered scene from novel viewpoints.
[GTH+07]

nario two multi-view reconstruction systems at different locations are linked and the users
are placed in the same virtual space. This way both users can see each other and interact
with the same virtual objects.

1.1.2 Free Viewpoint TV

The idea behind free viewpoint TV as opposed to traditional television is to let the user freely
choose his vantage point. For instance during a soccer game a user might want to place him-
self on the playing field in order to view the action more directly. In order to achieve this goal
the content (in this case the soccer game) has to be recorded in 3D. As the broadcast is usually
live the reconstruction also has to be performed at real-time. In contrast to studio-based ap-
plications which can assume favorable conditions the scenario in an outdoor sporting event
is much less restricted. For instance background subtraction is made difficult by changing
lighting conditions, changing background and the movement of the crowd. For soccer and
other ball games played on a green field the situation is slightly more advantageous since it
can be assumed that the playing field is green, which significantly improves the task of fore-
ground object extraction [GTH+07]. In the last years some solutions have been presented
which achieve a quality sufficient for broadcast (see figure 1.3). Especially the BBC has been
quite active in this area in the form of the iView project [iP] and already produced some
sporting events in 3D. While free viewpoint TV at this point in time is still not widely avail-
able, the entertainment industry is actively researching this area, which not only includes
the issue of 3D reconstruction but also the issues of transmission and display at the end user
location.

1.1.3 Motion Capture

The goal of motion capture is to transfer an actor’s motions to an animated character in order
to obtain realistic animations in movies or video games. To achieve this goal the actor’s joint
configuration needs to be recovered. This is traditionally done by attaching markers to the
actor which are tracked and used to infer the joint configuration. While common in practice
the disadvantage of these systems is that they are cumbersome to use and usually require
the actor to wear tight clothing, since a skeleton has to be fit to the observations. Ideally one
would like to remove the markers and to have the actor wear arbitrary clothing. Research
in this direction has been pushed in particular by the group around Adrian Hilton at the

5

CHAPTER 1. INTRODUCTION

Figure 1.4: Surface capture [SH07b] and subsequent correspondence labeling [SH07a] be-
tween a reference surface and the current surface.

University of Surrey. They reconstruct actors using a 3D reconstruction system and use
mesh tracking algorithms to infer the movement of the actor over time by establishing dense
correspondences between 3D reconstructions at different time steps [SH07a] which in turn
allows to recover the joint configuration (see figure 1.4). Another approach to motion capture
is to fit a skeleton to the observations (i.e. the independent 3D reconstructions) and thereby
deduces the actor’s pose [GSdA+09]. Other work yet decomposes the initial reconstruction
into patches and matches these patches to the current reconstruction [CBI10b] as shown in
figure 1.5. Based on this matching the initial reconstruction is deformed in order to match
the current one.

Motion Capture is an example of an application whose ultimate goal goes beyond the mere
reconstruction of objects, but which uses the reconstruction results for further more sophis-
ticated tasks. At this point the existing motion capture applications do not run in real-time.

Figure 1.5: Example of patch-based correspondence labeling over time for mesh-based de-
formable tracking [CBI10b].

6

CHAPTER 1. INTRODUCTION

1.2 Real-Time 3D Reconstruction Systems in Interventional Envi-

ronments

In contrast to the previously discussed application areas using a real-time 3D reconstruction
system in an interventional environment is an up to now little considered research area.
Although there are quite a few interesting challenges associated to bringing a reconstruction
system to an interventional environment, the benefits and possibilities are huge and easily
outweigh the challenges. In the following we will take a closer look at both sides of the coin,
discussing both the benefits and the challenges of bringing real-time 3D reconstruction into
an interventional setting.

1.2.1 Benefits

Bringing a real-time 3D reconstruction system into an interventional room has several ad-
vantages. By performing a 3D reconstruction of the scene many novel applications arise. For
instance it becomes possible to create a 3D video of the intervention which can be used to
train novel physicians by having them look at the intervention from several viewpoints. A
3D video could also be used to evaluate and compare the performance of several physicians
and to analyze the movement of the staff in the interventional room in order to optimize the
room layout. Another application which is based on a 3D reconstruction of the scene is col-
lision avoidance between automated devices and other objects. This issue is becoming more
important as more automated devices are introduced into the interventional environment.
Another possible application is to model the radiation exposure of the physician by consid-
ering the X-ray scatter radiation created during the intervention. Even more interesting is
the use of the 3D reconstruction for workflow analysis in order to automatically determine

Figure 1.6: Complexities in interventional rooms: The background and foreground have
similar colors, patient table and monitors as well as medical devices create occlusions and
are movable and due to the limited space the working environment becomes cluttered once
an intervention is underway.

7

CHAPTER 1. INTRODUCTION

which phase an intervention is in. This information can then be used in order to only display
information relevant to the current working step to the physician, to help in documenting
the intervention and to analyze and compare the performance of several surgeons.

1.2.2 Challenges

While the range of new applications enabled by real-time 3D reconstruction systems is big,
interventional environments also poses several challenges to existing systems. Most exist-
ing systems work in a lab environment under favorable conditions such as blue screens,
controlled illumination and with little occlusion and clutter. In a real interventional room,
however, these conditions cannot be controlled. The background often has a similar color
as the foreground objects we wish to reconstruct and is cluttered with tool tables, trays and
cupboards, which might be opened and closed or even moved during the intervention. Oc-
clusions are created by ceiling-suspended monitors and lamps and most importantly by the
patient table and automated devices such as C-arms. The fact that these objects move dur-
ing an intervention adds to the complexity of the problem. In addition, there may be several
people in the scene occluding each other. The lighting conditions can also change abruptly,
for instance by turning on spot lights. There may also be mirrors and transparent surfaces
(for instance a visitor window). Figure 1.6 shows some images taken in a real interventional
room highlighting the complexity of the environment. As we will see in the rest of this thesis
taking these conditions into account is a challenging task.

1.3 Contributions

The main contribution of this part of the thesis is the design of a real-time 3D reconstruction
system for interventional environments and the applications built on it. On the technical
side two visual hull reconstruction algorithms are presented, namely an efficient GPU-based
method and an incremental method for dynamic scenes. On the application side a partic-
ular emphasis is put on the use of the proposed system in interventional environments in
order to demonstrate the benefits of bringing a real-time 3D reconstruction system to an in-
terventional setting. The proposed applications include collision avoidance with automated
medical devices, radiation modeling and workflow analysis. In addition, the use of the sys-
tem for mixed reality applications is also investigated. Last but not least, a list of challenges
associated with bringing a 3D reconstruction system to an interventional environment is
given and possible solutions to these challenges are proposed and discussed.

The following list once more breaks down the contributions made in this part of the thesis.

• Design and implementation of a real-time 3D reconstruction system targeted at inter-
ventional environments

• Development of a fast GPU-based algorithm for visual hull computation

• Development of an incremental algorithm for visual hull computation

• Development of a collision avoidance application for interventional environments

8

CHAPTER 1. INTRODUCTION

• Development of a radiation estimation application for interventional environments

• Development of an occlusion-aware mixed reality interaction application

• Discussion of challenges in bringing a 3D reconstruction system into an interventional
environment and proposal of possible solutions

1.4 Outline

The remainder of this part of the thesis is structured as follows. In chapter 2 we discuss
different 3D reconstruction techniques and multi-camera systems. In particular we focus on
techniques which enable real-time performance. We then take a look at the visual hull - our
3D reconstruction technique of choice - and its properties in chapter 3. Our proposed 3D re-
construction system is presented in chapter 4. Chapter 5 presents the GPU-based method we
developed to achieve real-time performance on commodity hardware while chapter 6 intro-
duces a technique for incrementally updating the 3D reconstruction. In chapter 7 we present
several applications which are only made possible by the availability of a real-time 3D re-
construction, focusing mainly on interventional applications. The first application deals with
collision avoidance for automated medical devices, while the second one deals with tracking
the physician’s X-ray scatter radiation exposure. An additional application shows the use of
our system for mixed reality interactions. We conclude with chapter 8 by summarizing the
challenges encountered in interventional environments and discussing possible solutions.

9

CHAPTER 1. INTRODUCTION

10

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

Chapter 2

3D Reconstruction Techniques and
Systems

There exists a large number of 3D reconstruction techniques. Unfortunately many of these
are not real-time capable and therefore not applicable in our system. Nevertheless, we will
give a brief overview of all major 3D reconstruction techniques in this chapter in order to
give a perspective on our choice of the visual hull (see chapter 3). In addition, we will also
give an overview of past and current multi-view reconstruction studios.

2.1 3D Reconstruction Techniques

There is a wide variety of 3D reconstruction techniques. They can be divided into active
and passive methods. Active methods use active sensors (e.g. a laser) to recover the 3D
structure of the scene. Passive methods on the other hand do not interact with the scene, but
instead only use the light emitted by the scene (captured in the form of images) to perform
a reconstruction. As is to be expected active methods perform better in general, providing a
higher accuracy at the cost of more complex and sometimes impractical setups.

2.1.1 Active Methods

Active 3D reconstruction methods include laser range scanning, structured light, photomet-
ric stereo and time of flight (TOF) cameras. In the following sections each method will be
described briefly.

Laser Range Scanners

The principle behind laser range scanners is to use a laser beam to sample the scene. In its
simplest form the laser beam is projected onto the scene and creates a single dot which is
recorded by a camera calibrated to the laser source. Using the stereo geometry of the laser-
camera system the 3D position of the point can be computed by triangulation. Projecting a

11

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

Figure 2.1: Left: Laser scanner used in the Digital Michelangelo Project
[LPC+00]. Right: Result of a scan of the David statue. (Images taken from
http://graphics.stanford.edu/projects/mich/)

single dot has the disadvantage that it requires the scanner to swipe the whole scene point-
by-point. A more efficient technique is to project a line as shown in figure 2.1. This allows the
scanner to recover a bigger part of the scene in one scan, speeding up the acquisition. In gen-
eral multiple scans, which then have to be stitched together, are required to capture an object
completely. The output of a laser scan is a dense 3D point cloud of the scene. Using meshing
algorithms the point cloud can be converted into a mesh representation which can then for
instance be rendered. Figure 2.1 shows a rendering of a laser scan. Laser scanners are highly
accurate and often used for creating 3D models of real objects for use in cultural heritage
preservation [LPC+00] or the movie industry. However, since the laser has to swipe the
surface, this method is not real-time capable. In addition, reflective and (semi-)transparent
surfaces pose a problem for this method due to their optical properties.

Structured Light

The principle behind structured light [BMS98] is similar to that of laser scanning. However,
instead of projecting a single dot or a line a two-dimensional light pattern is projected onto
the object. This pattern is often chosen to be a set of parallel stripes. To help identify single
stripes in the pattern, alternating patterns are projected forming a gray code for each stripe
[SI85] (see the middle two images in figure 2.2). By observing the deformation of the light
pattern the shape of the object can be inferred. If desired the accuracy can be improved by
performing multiple acquisitions with slightly shifted light patterns.

Structured light was used for instance to obtain the ground truth for the Middlebury stereo
evaluation [SS03] which is up to this date the standard evaluation set for multi-view recon-
struction algorithms and therefore requires very accurate ground-truth. Since the projection
and the acquisition of the light pattern can be performed quite fast this method is used in
real-time industrial inspection and production processes. As with laser scanners reflective
and (semi-)transparent surfaces can be problematic.

12

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

Figure 2.2: From left to right: Projector camera system for structured light, two images
used to encode the stripe position with a gray code, reconstruction result. (Taken from
http://mesh.brown.edu/dlanman/courses/cs220/Lanman-structured-light.pdf)

Photometric Stereo

Photometric stereo [Woo80] is different from the previously discussed methods in that it only
uses photometric information for determining the shape of an object, while the previously
described active methods use geometric information (i.e. point or line correspondences) in
order to determine the object shape. The basic idea behind photometric stereo is to vary
the direction of the light source while keeping the camera viewing direction constant. This
creates different intensities at each surface element due to the reflection properties of the
surface. Since the camera viewing direction is constant pixel correspondences are given au-
tomatically and no feature matching is required. Using the recovered intensities for different
light source directions together with a reflectance model of the surface, the surface normal
can be determined at each pixel. By integrating the normals the shape of the object is recov-
ered.

In its standard form photometric stereo cannot be used to recover the shape of moving ob-
jects since it is necessary to acquire multiple images of the object under constant viewing
direction but with changing lighting direction. A solution to this problem was proposed
by Hernandez [HVC07]. They use three differently colored light sources and separate the
color channels in the image in order to simultaneously acquire three images of the object un-
der different illumination directions. This allows to also capture moving objects. Figure 2.3
shows some reconstruction results. The reconstruction times they report lie in the range of
20 seconds per frame making this method not real-time capable. In addition, the high com-
plexity of the setup and the need for controlled illumination conditions with little ambient
light make this method hard to use in a practical setting.

TOF Cameras

In contrast to laser scanners and structured light, TOF cameras do not require a complex
setup and do not illuminate the scene in the visible spectrum. Instead they come in a handy
camera-size format and can be used almost out of the box. These advantages have led to
a quick adoption of their use in the computer vision community. TOF cameras produce a
depth map of the scene by sending out a modulated infrared flash. By measuring the phase

13

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

Figure 2.3: Reconstruction results for a sweater using photometric stereo (taken from
[HVC07])

shift of the reflected flash the scene depth with respect to the camera can be computed. Cur-
rently the resolution of TOF-cameras is still rather limited (e.g. 176 × 144 for the Swissranger
SR4000, see figure 2.4) and their accuracy cannot be compared to that of laser scanners and
structured light. TOF cameras operate at real-time frame rates and are therefore also used
in real-time applications. As most active methods they have problems with objects with un-
favorable reflective properties which leads to partial outliers in the depth estimation. These
have to be corrected by appropriate post-processing. Figure 2.4 shows the result of a post-
processed depth-map obtained with a TOF camera.

Figure 2.4: Left: TOF camera SR4000 from Mesa Imaging (www.mesa-imaging.com) Right:
Depth Map produced by a TOF camera (taken from [HSJS08])

14

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

Figure 2.5: Two images from the Middlebury stereo evaluation dataset and the correspond-
ing disparity map.

2.1.2 Passive Methods

Passive 3D reconstruction methods do not actively scan the scene, but only use photometric
information. This makes these methods more general and easy to use. In contrast to active
methods there are, however, additional problem cases such as untextured objects.

Stereo

Stereo is one of the oldest methods in computer vision for recovering the 3D-structure of a
scene. In general two cameras are assembled into a stereo setup with a given baseline. To
recover the scene structure, point correspondences between the left and the right image have
to be obtained. To simplify this task the images are rectified, warping them in such a way
that corresponding points appear on the same scan line in both images. The x-displacement
along a scan line between the left and the right image is called the disparity and can be
used together with the stereo geometry to compute the point depth. Figure 2.5 gives an
example taken from the Middlebury stereo evaluation [SS02] showing two input images
and the corresponding disparity map.

Since the goal is to obtain a dense disparity map, every pixel in the first image should be
matched to a pixel in the second image assuming that there are no occlusions present. The
simplest class of matching methods uses a local window around the point of interest in the
left image and searches along the corresponding scan line in the right image to find the best
matching window. Typical similarity measures used for matching include the SSD and the
NCC. An overview of different image similarity measures used in stereo matching is given
in [HS09]. Due to their simplicity these methods are quite fast and even real-time capable.
However, their accuracy is limited, since they do not enforce any kind of regularization mak-
ing them problematic in regions of low texture. Other methods perform regularization along
the scan lines using for instance dynamic programming [Bel96]. There also exist graph-cut
and variational methods which also consider regularization between scan lines and therefore
in the whole image [KZ01]. Their results are more accurate than the results of local methods.
However, they are not real-time capable. A good overview of dense stereo algorithms is
given in [SS02]. Using a single stereo pair one can only obtain a depth map of the scene. In
order to obtain a complete 3D reconstruction multiple stereo pairs have to be acquired and
their corresponding depth maps have to be fused. This is time consuming and the merging

15

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

Figure 2.6: Input images and reconstruction results from the Middlebury multi-view evalu-
ation. Left: temple [GSC+07]. Right: dino [FP07]

of the depth maps can lead to artifacts.

Multi-View Stereo

In contrast to traditional stereo methods, multi-view stereo uses a set of images for recov-
ering the 3D structure of the scene. A recent overview of this area is given by Seitz et al.
[SCD+06]. Often an initial estimate of the scene structure is given (e.g. by the visual hull or
a bounding box). This initial estimate is then refined using different techniques.

In space carving [SD99, KS00] the scene is discretized into voxels and each voxel is checked
for photo-consistency. Inconsistent voxels are removed from the reconstruction until only
the photoconsistent part of the scene (the photo hull) remains. The drawback of this ap-
proach is that it does not contain any regularization and that it is greedy, so that a voxel
which has been removed once cannot be restored later on. This can lead to the carving of
the whole scene, when the photoconsistency model (which is lambertian in general) fails in
regions of specular reflection.

Variational methods start out with an initial mesh or a level set representation of the scene
and deform it using a gradient descent scheme based on surface photoconsistency [FK98,
PKF07]. As all gradient-descent methods variational methods are local and can fall into
local minima.

Graph-cut based methods [KZ02, VETC07] like variational approaches try to find the maxi-
mum photoconsistent reconstruction. However, they are global in nature and are therefore
less likely to fall into local minima. As with all photometric methods, an accurate photo
measure is needed and the assumptions underlying its design (such as lambertian surface
properties) have to be fulfilled.

Next to these methods which deform a given reconstruction there also exist reconstruction
methods which start by finding features on the object using feature detectors. Then patches
are grown around these features and new patches are added at the borders of the initial
ones [FP07]. If available some multi-view methods also include silhouette constraints. Yet
other methods start out using a dense stereo algorithm on image pairs and fuse the resulting
depth maps [BBH08]. Multi-view stereo methods are not real-time capable but deliver the

16

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

Figure 2.7: Visual hull of the dino dataset from the Middlebury multi-view stereo evaluation.

best possible results when using only photometric information. Some reconstruction results
on the Middlebury multi-view evaluation [SCD+06] are shown in figure 2.6.

Shape from Silhouette

In contrast to stereo and multi-view stereo, Shape-from-Silhouette methods [Lau94, Sze93]
do not directly use any photometric information about the scene and in particular are not
concerned with the photometric consistency of the reconstruction. Instead they assume the
availability of silhouette images showing the foreground objects in the scene and pose the
problem purely geometrically as that of finding the shape which is maximally consistent
with the observed silhouette images. The shape they recover is called the visual hull. Figure
2.7 shows the visual hull of the dino dataset from the Middlebury multi-view stereo evalua-
tion [SCD+06].

Due to the simplicity of the reconstruction process Shape-from-Silhouette methods are real-
time capable. However, they have the drawback that they require silhouette images, which
are not always available. In addition, the visual hull is in general only a superset of the true
reconstruction and does not have the precision reached by the previously described meth-
ods. On the other hand uniformly textured objects do not pose a problem for this method
as long as silhouette images can be obtained (e.g. by background subtraction). This makes
Shape-from-Silhouette approaches interesting for real-time systems which require speed and
robustness. More details on this method will be given in the next chapter.

2.2 Multi-Camera Reconstruction Systems

In the last decade many systems for 3D reconstruction have been proposed, most of them
using the visual hull. While early systems did not achieve real-time performance due to the
limited technology of their time, present systems can run at real-time frame rates.

17

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

Figure 2.8: Left: CMU dome. Right: CMU Virtualization Studio. Images taken from [KN07]

One early system constructed around 1995 which was using stereo instead of the visual hull
was the CMU dome [KRN97] consisting of 51 cameras mounted on a dome 5 meters in
diameter (see figure 2.8 left). The cameras were analog and used 3.6 mm lenses in order to
achieve a near 90 degree viewing field. This resulted in an overlapping area about 3m x 3m x
2m in size. The cameras were synchronized and a synchronization signal was outputted on
video. The video was recorded on S-VHS tapes for later digitization and processing. Hence,
this system was not real-time.

In 1998 the 3D room was constructed at CMU [KN07]. It used digital image acquisition using
49 color cameras. However, due to the limited memory size of the time, the recording time
was limited to about 800 frames which is about 18 seconds at 15 fps (see figure 2.8 right).

Later in 2002 the CMU Virtualization Studio was built using 48 cameras attached to 24 PCs
enabling fully digital image acquisition. The size of the acquisition space was 6.1m x 6.7m x
4.3m. The cameras were using 3CCD chips (i.e. one chip per color channel) which made the
system quite expensive.

Another multi-camera studio not directly aimed at real-time performance was proposed by
Starck et al. [SMN+09] using 8 HD cameras. They cover a working volume of 4m x 4m x

Figure 2.9: Multi-view systems at Surrey, Kyoto and INRIA respectively. Note the controlled
lighting and the uniform background to improve the background subtraction results. (Im-
ages taken from [SMN+09] and GrImage website)

18

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

Figure 2.10: Blue-c cave and blue-c power wall. Images taken from [GWN+03]

2m. For reconstruction they use a visual hull based approach. The initial visual hull is then
further refined using graph-cut techniques [SH07b]. In order to simplify the background
subtraction task controlled lighting and a blue background are used (see figure 2.9).

At Kyoto university a system consisting of 15 cameras was developed [MWTN04]. For
reconstruction a visual hull based approach is used. The visual hull is subsequently im-
proved by deforming the recovered mesh based on photoconsistency and silhouette forces
[MWTN04]. Wu et al. [WM03, WTM06] use the system with a plane intersection test for vi-
sual hull reconstruction. They report values of 12 fps with 9 cameras. This system also uses
controlled lighting and a uniform background in order to simplify the background subtrac-
tion (see figure 2.9).

INRIA Grenoble proposed the GrImage platform [AFM+06]. The GrImage platform uses a
polyhedral visual hull approach for reconstruction and achieves real-time performance. The
system is used among other things for interaction between virtual and real objects [PLBR09].
It has been commercialized and is being sold to industry and university clients. The number
of cameras is varying depending on the current setup. Franco et al. [FMBR04] parallelize
the polyhedral approach over a cluster of 8 dual Xeon 2.66 GHz PCs to achieve frame rates
of 30 fps using four cameras. Hasenfratz et al. [HLGB03, HLS04] also report frame rates of
30 fps with four cameras using a voxel-based method (resolution 643) implemented on the
GPU of a SGI Onyx IR-3000 with 8 R12000 processors. Allard et al. [AFM+06, AMR+07] use
the system with a polyhedral visual hull algorithm using 11 dual-Xeon 2.6 GHz PCs. They
report frame rates of 30 fps using 6 cameras. A controlled background and professional
lighting are used to simplify background subtraction (see figure 2.9).

The ETH Zurich developed the blue-c system [GWN+03]. It has a reconstruction area of
3m x 3m x 2.5m and uses 16 cameras. For the real-time reconstruction the visual hull is
used. On the technical side this system proposes a very interesting way to combine a cave
environment with a reconstruction system. The user is standing in a cube enclosed by large
projection screens. These screens can be switched between being transparent and displaying
the cave visualization. The cameras are synchronized with the transparent phase of the
screens. Due to the rapid switching speed the user does not notice the switching (see figure
2.10).

The Max-Planck Institute also proposed a system running in real-time. Theobalt et al. use
this system with 8 cameras [TLMpS03]. Li et al. [LMS03a] use the system with a polyhedral
visual hull reconstruction approach and report frame rates of 15 fps using 6 cameras.

19

CHAPTER 2. 3D RECONSTRUCTION TECHNIQUES AND SYSTEMS

2.3 Conclusion

There exist many techniques for 3D reconstruction. However, only structured light, time of
flight cameras and Shape from Silhouette are real-time capable. The disadvantage of struc-
tured light methods is that they usually use a light pattern in the visible spectrum which
can be seen by the user apart from requiring a complex setup. Time of Flight cameras
yield promising results but are still somewhat immature in terms of resolution and accu-
racy. Shape from Silhouette methods on the other hand are unintrusive and quite robust,
requiring only silhouette images which can be obtained by background subtraction even
for non-textured objects. The downside is that the visual hull is only an approximation to
the true shape. However for most applications this is not a major constraint which is un-
derlined by the fact that all current real-time reconstruction systems use this approach. If a
more accurate reconstruction is desired the initial visual hull can be further processed using
multi-view stereo methods in an offline step. In addition, most current systems use profes-
sional lighting and a uniform background in order to simplify the background subtraction
stage and to obtain more accurate results.

20

CHAPTER 3. THE VISUAL HULL

Chapter 3

The Visual Hull

As seen in the previous chapter the visual hull lies at the heart of almost all current 3D
reconstruction systems. In this chapter we will give a formal definition of the visual hull,
discuss its properties and present different methods for computing it in practice.

The decision to use the visual hull in our system is based on the possibility to compute it in
real-time using calibrated silhouette images, its robustness to segmentation errors and the
fact that it also works for untextured objects. Other 3D reconstruction methods targeted at
producing high quality results are too computationally expensive, since they require costly
optimizations over the shape of the object, as discussed in the previous chapter. The visual
hull on the other hand is straightforward to compute from a set of calibrated silhouette
images. Although being only an approximation to the true shape, it is sufficient for many
application areas since it captures the essence of most shapes encountered in a multi-view
studio well.

3.1 Definition and Properties

The visual hull [Lau94] is defined as the shape of maximum volume whose projection is
consistent with the silhouette images. Geometrically the visual hull is obtained by intersect-

Figure 3.1: Visual Hull construction for a 2D example.

21

CHAPTER 3. THE VISUAL HULL

Figure 3.2: Visual Hull construction for a 2D example with a concave object. Concavities not
visible in the silhouette images cannot be recovered.

ing the generalized viewing cones created by the viewing rays emanating from the camera
center and passing through the silhouette contours.

The visual hull has several important properties. We will illustrate these properties using
the simple 2D example in figure 3.1 which shows a setup with a square which is imaged by
three cameras. In 2D the generalized cones simplify to (infinite) triangles. For each camera
an infinite triangle is created by extending the rays passing through the camera center and
the silhouette borders to infinity (the dashed lines in the figure). Then all triangles are in-
tersected with each other and only the overlapping part is kept. This is the visual hull. As
can be seen from the illustration, the visual hull only approximates the shape of the object.
However, it is the best estimate of the shape which is possible given the silhouette images.

As more cameras are added the approximation becomes increasingly more accurate. If the
object is convex the visual hull will become identical to the true shape as the number of
cameras approaches infinity. This is however not the case for some non-convex objects,
because concavities not seen in the silhouette images can by construction not be recovered.
This is for instance the case for the example in figure 3.2. Since the concavity does not appear
in any silhouette images - regardless of where the cameras are placed - it is not recovered
and the reconstruction is identical to the one obtained in the previous example.

Figure 3.3: Visual Hull construction with multiple objects for a 2D example. Due to the
limited number of cameras a fourth object which does not actually exist is reconstructed.

22

CHAPTER 3. THE VISUAL HULL

Using a too small number of cameras often leads to artifacts in the reconstruction, especially
when multiple objects are part of the scene. Figure 3.3 gives an example of this problem.
Due to the limited number of cameras a fourth object is reconstructed which does not exist
in reality. This problem can usually be solved by adding more cameras.

3.2 Visual Hull Computation

Many methods have been proposed for computing the visual hull in practice. The most
popular ones are the volumetric and the polyhedral approach. Therefore, we will focus in
particular on these two methods and discuss other methods more briefly.

3.2.1 Volumetric Approach

In the volumetric approach the visual hull is computed using a voxel representation of space
[Pot87, Sze93]. The reconstruction volume is discretized into voxels. This requires the extent
and the placement of the reconstruction volume in the world coordinate system to be known.
Each voxel in the reconstruction volume is projected into all of the silhouette images using
the known camera projection matrices. If the projection of a voxel lies inside the silhouette
in all images it is marked as occupied, otherwise it is marked as empty. This is justified by
the fact, that if the projection of a voxel is outside the silhouette in even one of the silhouette
images, no object lies on the ray passing through this voxel, i.e. the voxel has to be empty.
While the fact that a voxel projects outside the silhouette in at least one of the silhouette
images is a positive proof that the voxel is indeed empty (assuming the silhouette images
are correct), the fact that a voxel projection is inside all silhouettes does not necessarily mean
that it is also occupied (think of a hollow half-sphere which will be reconstructed as a solid
half-sphere). This is the reason why the visual hull is only an approximation of the true
shape. Algorithm 1 outlines the volumetric computation approach.

The volumetric approach is very robust since it does not rely on the silhouette contours
but on the foreground regions in the silhouette images. One shortcoming of the volumetric
approach is the discretization of space. Depending on the size of the voxels discretization
artifacts can become visible in the final result. This can be seen in the example in figure 3.4.

Figure 3.4: Visual Hull discretization in the volumetric approach.

23

CHAPTER 3. THE VISUAL HULL

Algorithm 1 Volumetric Visual Hull Computation
1: for each voxel v do
2: occupied = true
3: for each silhouette image I do
4: Project v into I
5: if projection outside silhouette then
6: occupied = false
7: end if
8: end for
9: if occupied then

10: Mark voxel as occupied
11: else
12: Mark voxel as empty
13: end if
14: end for

While it is in principle possible to make each voxel small enough that discretization does not
play a significant role anymore, this is made difficult in practice due to memory and runtime
constraints. On the other hand the volumetric approach is ideal when the target application
only requires a certain accuracy (for instance for collision avoidance). In that case the voxel
size and therefore the computational load can be limited to the required accuracy.

The volumetric method as described up to now is very easy to implement. However, it
has a major problem. Every single voxel has to be tested for occupancy. Although a single
test is very fast the number of voxels required for a reasonable reconstruction (e.g. 1283 =
2, 097, 152) makes it almost impossible to achieve real-time performance. A significant speed-
up can be achieved by using an octree representation of space [Sze93]. In this case the recon-
struction volume is partitioned into an octree structure. In the beginning the whole recon-
struction volume consists of only one octree cell. Each octree cell is treated like a voxel in the
flat approach, i.e. it is projected into all silhouette images. The difference to the flat approach
is that the octree cell can be subdivided if necessary. In practice this can be achieved as fol-
lows: First it is checked whether the projection of the cell is fully outside the silhouette in
any of the silhouette images. If so the cell is considered empty and not subdivided further.

Figure 3.5: Visual Hull computation using an octree representation of space. If an octree cell
spans both foreground and background regions it is subdivided further.

24

CHAPTER 3. THE VISUAL HULL

Figure 3.6: Result of the visual hull computation using the volumetric approach on a data
set of a walking person consisting of 16 images.

The same is true if it projects inside the silhouettes in all silhouette images. In this case it
is marked as occupied and not subdivided any further. In all other cases it is subdivided
into 8 subcells (4 subcells in 2D) of equal size. The computation is finished when no cell has
to be subdivided any further or when the maximum octree depth is reached. By using this
approach the computations are significantly sped up since large empty or filled regions of
space can be quickly skipped. Figure 3.5 shows a 2D example with 4 levels. Even in this
simple example a significant improvement in the number of occupancy checks which have
to be performed can be observed. In the octree approach only 38 occupancy checks have
to be performed while in the flat approach 64 occupancy checks have to be performed. To
achieve even further speed-ups the computations can be distributed over multiple proces-
sors [SMRR07] or over a distributed system.

The output of the volumetric method is a voxel volume. Depending on the application it
might be more appropriate to have a mesh-based representation of the scene, for instance
for rendering. This can be achieved by applying the Marching Cubes [LC87] algorithm to
the voxel volume. Figure 5.4 gives an example of the visual hull obtained on a data set of a
walking person consisting of 16 images.

3.2.2 Polyhedral Approach

In the polyhedral approach geometric properties are used to compute a mesh representation
of the visual hull [MBM01, FB03, LFP07]. In [FB03], for instance, the silhouette contours
are first discretized into polygonal image contours. The vertices of the polygonal image

25

CHAPTER 3. THE VISUAL HULL

(a) (b)

Figure 3.7: (a) Illustration of viewing edge computation. Only the red segments (i.e. the
viewing edges) of the viewing ray are retained. (b) Visual Hulls obtained using the poly-
hedral approach. Note that the resulting meshes consists of quite irregular facets. Images
taken from [FB03].

contours are backprojected to space creating lines in 3D. These 3D lines are then projected
into the other silhouette images and only the segments projecting inside the silhouettes in all
other images are retained (see figure 3.7 (a)). These segments are called viewing edges and
by construction lie on the visual hull. However, they only form an unconnected subset of the
desired visual hull mesh. In a further processing step the connections between the viewing
edges as well as missing edges are found and added to the mesh. This results in a watertight
visual hull mesh which projects exactly into the polygonal image contours. In a final step
planar contours are identified for each face of the polyhedron. Typical results are shown in
figure 3.7 (b). As can be observed the facets of the recovered meshes are quite irregular. This
poses problems for certain mesh-based algorithms such as dense surface tracking [CBI10b]
or variational approaches requiring a regular sampling of the mesh.

The advantage of the polyhedral approach lies in the fact that the resolution of the recon-
struction is defined in image space. Hence, no accuracy is lost due to voxel discretization of
space as is the case for the volumetric approach. However, the computational cost increases
quickly with finer silhouette discretization and an increasing number of images. Another
shortcoming of this approach is that it is susceptible to errors in the silhouette images and
calibration errors, since the intersections of viewing cone boundaries are then not well de-
fined and sensitive to numerical instabilities. To achieve real-time performance a method for
distributing the computations over multiple processors has been proposed [FMBR04].

3.2.3 Other Approaches

There also exist other approaches for computing the visual hull. They are often targeted at
specific problem settings, which are different from the standard problem where the silhou-
ette images are considered to be binary and given in advance. The most important group of
these approaches are the implicit view-based methods, although they cannot be considered
full visual hull computation methods since they only produce a view-based representation
of the visual hull instead of recovering the full 3D shape.

26

CHAPTER 3. THE VISUAL HULL

Implicit view-based approaches

Implicit approaches [MBR+00, LMS03b, LMS03a, LMS04, MH06] do not compute the visual
hull explicitly, but only render images of the visual hull from a given viewpoint. These meth-
ods are interesting for the case where an explicit representation of the scene is not required.
This is typically the case when the goal is to render the scene from a new viewpoint. Due to
the fact that only a view-based reconstruction is performed, these methods achieve a better
performance than explicit methods. In terms of computations the implicit methods are sim-
ilar to the polyhedral approach. However, they only focus on computing line segments and
visual hull patches visible in the target view, instead of building the full mesh. This is the
reason why they are more efficient than for instance the polyhedral approach. At the same
time they are not suited for applications which require the full information about the shape
of the reconstructed objects or which need to perform post-processing on the reconstruc-
tion. Figure 3.8 shows some reconstruction results obtained using the method proposed by
[MH06].

Figure 3.8: Results of the exact view-dependent visual hull algorithm presented in [MH06].
The results visually resemble the output of the polyhedral method. However, no full recon-
struction is performed. Only the parts of the visual hull necessary for rendering the object
from the given viewpoint are computed.

Probabilistic approach

In [FB05] a probabilistic approach for computing the visual hull is presented. The segmen-
tation of the input images is not considered a binary process, but instead the probability of
every pixel being inside the silhouette is modeled explicitly. By considering the probabilities
of all pixels into which a voxel projects, a probability of occupancy is computed for every
voxel. The resulting probabilistic voxel volume is then thresholded in order to extract the
highest probability surface.

Graph-cut approach

In [SVZ00] a graph-cut based method incorporating smoothness constraints is presented.
Similar to the probabilistic approach it does not make hard decisions regarding the silhou-
ette images, but instead uses the difference between the current image and a prerecorded

27

CHAPTER 3. THE VISUAL HULL

background image to estimate the voxel occupancy. For each voxel the intensity differences
in the voxel projections are considered. Additionally, a smoothing term is used, which pe-
nalizes the assignment of different occupancy states to neighboring voxels. The cost function
optimized in the graph cut is of the form

E(f) =
∑
v∈V

Dv(fv) + λ
∑

v,v′∈N(v)

(1 − δ(fv − fv′)) (3.1)

where f is the labeling of the voxels (i.e. inside or outside the visual hull), V is the voxel
set, Dv(fv) is the cost of assigning label fv to voxel v, N(v) is the voxel neighborhood of v
(e.g. the 6 or the 27 neighborhood) and δ is the unit impulse function being 1 at zero and
0 everywhere else. λ weights the contribution of the smoothing term. The choice of Dv

is critical for the reconstruction result. It should be chosen to be large when the intensity
difference is large in all images and small otherwise.

Hybrid approach

In [BF03] a method is proposed which partially combines the polyhedral and the volumet-
ric approach. It aims at developing a space carving method which avoids the complexity
due to the regular space discretization associated with the volumetric approach by using
some techniques from the polyhedral approach. The idea behind this method is to first iden-
tify points lying on the visual hull surface. For this purpose the end points of the viewing
edges as computed in the polyhedral approach are used. Based on these points a Delaunay
tetrahedrization of space is built. In a final step each tetrahedron is checked and marked
as belonging or not belonging to the visual hull. In this approach the tetrahedrons can be
likened to the voxels in the volumetric approach. However, their shape corresponds more
closely to the actual visual hull surface and their density is only high around the actual vi-
sual hull surface and not in the whole volume as in the volumetric approach. Figure 3.9
shows some results obtained using this method.

Figure 3.9: Results of the hybrid method. From left to right: One of the input images, point
cloud obtained from viewing edges, hybrid reconstruction, reconstruction using standard
voxel-based approach (resolution 60). Images taken from [BF03].

Visual Shapes of Silhouette Sets

In [FLB06] a method is introduced which instead of only computing the visual hull computes
a whole class of visual shapes consistent with the silhouette images. In this class the visual

28

CHAPTER 3. THE VISUAL HULL

hull is the member with the maximal volume. Like the hybrid approach this method is also
based on the viewing edges used in the polyhedral approach. Instead of taking the whole
viewing edge only a thinned version or a single contact point is retained. In the case of
retaining only a single contact point a local second order assumption is made on the shape.
This yields smoother results and is in particular useful for objects of which it is known that
they are locally smooth. Figure 3.10 shows some visual shapes of a sphere obtained using
this method.

Figure 3.10: Examples of visual shapes of a sphere using 10 images. The images show: visual
hull, visual shape with slightly thinned viewing edges, visual shape with one randomly cho-
sen contact point, visual shape with one contact point and second order constraints. Image
taken from [FLB06]

3.3 Conclusion

In this chapter we discussed the visual hull which is the concept lying at the core of almost
all current real-time 3D reconstruction systems. The reason for its popularity are that it is
robust, does not rely on texture information and can be computed in real-time. However,
it is generally only an approximation to the real object shape and cannot be used to recover
concavities not seen in any of the silhouette images. For computing it, there exist several
algorithms, the most popular ones being the volumetric approach which uses a discretiza-
tion of space and the polyhedral approach which uses geometric principles. There also exist
other approaches for more specialized scenarios, most notably the implicit algorithms which
do not recover an explicit 3D representation of the visual hull, but instead only produce a
rendering showing the visual hull from a given viewpoint.

29

CHAPTER 3. THE VISUAL HULL

30

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

Chapter 4

Proposed 3D Reconstruction System

In this chapter we present our real-time 3D reconstruction system. We discuss the design
of the system, including the calibration procedure, the background subtraction stage, the re-
construction strategy and the visualization, as well as the distribution of the computational
load over a PC cluster and the software and hardware measures taken to ensure a stable and
robust operation. We also focus on the requirements for use of the system in an interven-
tional environment.

4.1 Overview

Our system is designed so that the computations are distributed over a PC cluster. This
makes the system scalable since it is always possible to add more computers in order to ac-
commodate more cameras. The whole system is controlled from a single computer which
performs the visualization of the reconstruction results and provides an interface for access-
ing the reconstructed scene by other applications. The remaining computers are dedicated to
capturing the images from the cameras and performing the steps required for reconstruction.
Since we are targeting interventional environments we also take the particular requirements
of such a setting such as constraints on camera placement and the complex nature of the
scene into account.

4.2 Hardware

We use a PC cluster consisting of five computers and a total of 16 cameras. The cameras are
synchronized using a hardware trigger signal in order to assure synchronous image acquisi-
tion. The following sections explain all the hardware aspects of the system in detail.

4.2.1 PC Cluster

There are a total of five PCs in our system. Four of these (the slaves) are dedicated to captur-
ing images from the cameras and to performing a partial reconstruction. They are equipped

31

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

Figure 4.1: Lab setup for our real-time 3D reconstruction system. The cameras are marked
with red circles (not all cameras are seen in this image).

with an Intel 2.6 GHz Quad-Core CPU (Q6700), 2 GB of main memory and a NVIDIA 8800
GTX graphics board with 768 MB of memory. In addition each PC has two IEEE 1394b
adapter cards for connecting up to four cameras. The fifth PC (the master) controls the other
PCs and visualizes the result. It is equipped with an Intel 3.0 GHz Dual-Core CPU (E6850), 2
GB of main memory and a NVIDIA 8800 GTS graphics board with 640 MB of memory. The
slave PCs have faster CPUs and GPUs because they are doing most of the processing while
the processing load of the master is application specific and usually much lower.

The PCs are connected through a switched Gigabit-Ethernet network. Data transmission
such as the sending of partial reconstructions from the slaves to the master is performed
using UDP due to the real-time requirements and for avoiding the overhead associated with
handling TCP connections. The control commands between the master and the slaves are
sent using Multicast. This lowers the burden on the network and simplifies the configuration
of the system, since a new slave machine only needs to know the address of the multicast
group.

4.2.2 Cameras

We use a total of 16 PointGrey Flea2 IEEE-1394b cameras. The cameras are mounted on a
movable aluminum frame suspended from the ceiling. This allows us to easily reconfigure
the camera positions while at the same time avoiding unintentionally moving the cameras
and thereby destroying the calibration. This is particularly important in an interventional
environment, not only to avoid a costly and time-consuming recalibration of the system in
case a camera is accidentally moved, but also to keep the cameras out of the working space
of the medical staff. Figure 4.1 shows the aluminum frame and the cameras as well as a
schematic of the camera layout. We do not use a top-down camera in the center, which is of-
ten done in other multi-view systems, since this is typically not possible in an interventional
environment due to ceiling suspended monitors and guide rails. On the cameras we use 5
mm wide angle lenses in order to cover a big working volume using a comparatively small
number of cameras. The actual working volume varies with the exact placement and orien-
tation of the cameras. It is however in general around the dimensions of 4m × 4m × 2.5m.

32

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

Figure 4.2: The trigger box used for synchronizing the cameras.

Images are acquired at a resolution of 1024 × 768 using the Bayer encoding and subsequently
converted to RGB. The frame rate of the cameras depends on the trigger rate of the external
synchronization system and can reach up to 30 Hz.

4.2.3 Synchronization

In order to obtain a consistent 3D reconstruction it is important to acquire images simultane-
ously on all cameras. This is achieved by using an external trigger signal which can be set to
the desired frame rate. The trigger signal is generated by a standalone PC and is propagated
to all cameras through a trigger box (see figure 4.2) which adjusts the trigger signal to the
electrical requirements of the cameras.

4.3 System Architecture

As previously mentioned all computations are distributed over a PC cluster in order to
achieve real-time performance. In addition to the global workload distribution each com-
puter in the cluster distributes its local computations over all available CPU cores and the
GPU.

The slave PCs are responsible for computing a partial reconstruction using their locally at-
tached cameras. This computation can be split into several substeps, namely image acqui-
sition, background subtraction, volume reconstruction and volume compression and trans-
mission. The substeps are organized into a pipeline. Each step is running in a separate
thread and therefore ideally on a separate CPU core. The reconstruction runs on the GPU.
Due to the pipelining of the computations the segmentation of the current frame can for in-
stance run in parallel with the visual hull computation of the previous frame. This increases
the throughput of the system.

33

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

Figure 4.3: System architecture: Each slave acquires images from its locally attached cameras
and computes the visual hull on the GPU. The resulting partial reconstructions are sent to
the master which combines them and visualizes the result.

The master PC is responsible for composing the partial reconstructions and visualizing them.
Here, as well, the processing is distributed into several steps. There is a separate thread for
handling network communication, compositing the partial reconstructions and visualizing
the result. In addition, an application specific stage using the reconstruction result can be
introduced. An overview of the global architecture of our system is shown in figure 4.3.

4.4 Calibration

A good calibration of the system is essential for obtaining accurate 3D reconstructions. How-
ever, standard calibration methods [Zha00] were not designed for calibrating large multi-
camera systems. They assume that a calibration object (usually a checkerboard) is visible in
all cameras simultaneously. This is hard to achieve in a multi-camera setup since the over-
lapping area of all cameras is either small leading to an unstable calibration outside this area
or there may not even be an area observed by all cameras simultaneously. To solve this prob-
lem and to allow easy and fast calibration of multi-camera systems Svoboda et al. proposed
a multi-camera calibration system [SMP05]. Their method does not require a traditional cal-
ibration target but instead relies on the availability of point correspondences between the
cameras. These can be created by moving a point light source through the room and detect-
ing it in the images. In addition, their method does not assume, that points are visible in
all cameras simultaneously. Therefore, even systems having no common overlapping region
can be calibrated. Moreover, the calibration procedure is easy to learn and can therefore be
performed by a non-expert. Typically a calibration run takes around 20 minutes. Both of
these facts, the ease of use and the short calibration time, are important in an interventional
environment.

34

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

Figure 4.4: Laser pointer used for creating the point correspondences in the images. Note
the little piece of plastic at the top which creates a diffuse point.

In the following sections the steps involved in the calibration procedure will be described in
more detail.

4.4.1 Robust Point Extraction

The first step in performing the calibration is to acquire a synchronized image set with point
correspondences. To create the point correspondences a laser pointer is modified to act as a
bright point light source by attaching a piece of plastic to it as shown in figure 4.4. During
acquisition the light in the room is dimmed in order to simplify the task of segmenting the
laser pointer in the images. Typically a sequence of about 1000 images is acquired in which
the whole reconstruction area is covered with the laser pointer. The points are extracted
with subpixel accuracy from the images by first subtracting the mean image and then fitting
a Gaussian point spread function to points considered to be created by the laser pointer.
Outliers due to misdetections are removed from the point correspondences using epipolar
constraints and RANSAC.

4.4.2 Factorization

The next step is to compute the camera extrinsic and intrinsic parameters from the 2D point
correspondences. This is done by a technique called factorization [ST96].

In the following we will assume that we have n calibration points and m cameras. Let Xj =[
Xj Yj Zj 1

]�, j = 1, ..., n be the 3D coordinates of the calibration points and let P i,
i = 1, ...,m be the projection matrices of the cameras. The projection of a point Xj into

35

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

camera i is given by

λi
j

⎡⎣ui
j

vi
j

1

⎤⎦ = λi
ju

i
j = P iXj , λi

j ∈ R
+ (4.1)

where ui
j =

[
ui

j vi
j 1

]� are the image coordinates of the point and λi
j is a projective scale

factor. We need to recover all P i and λi
j in order to calibrate the system. To accomplish this,

all measurements are assembled into the so-called scaled measurement matrix Ws:

Ws =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1
1

⎡⎣u1
1

v1
1

1

⎤⎦ . . . λ1
n

⎡⎣u1
n

v1
n

1

⎤⎦
...

. . .
...

λm
1

⎡⎣um
1

vm
1

1

⎤⎦ . . . λm
n

⎡⎣um
n

vm
n

1

⎤⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣P 1

...
Pm

⎤⎥⎦
3m×4

[
X1 . . . Xn

]
4×n

= PX (4.2)

Assuming that enough measurements are given and the λi
j are known Ws has rank 4 and can

be factorized into P and X . The unknown projective scales are determined using the method
proposed in [ST96]. For the common case that not all points are visible in all cameras (e.g.
due to occlusions) the measurement matrix contains some unknown entries which have to
be filled before factorization. This is done by applying a rank 4 constraint as proposed in
[MP02]. However, even if P and X are obtained, this still leaves an ambiguity as an arbitrary
4 × 4 matrix H can be inserted into the decomposition.

Ws = PX = PHH−1X = P̂ X̂ (4.3)

4.4.3 Euclidean Stratification

The calibration computed in the previous step is still projective. In order to obtain a Eu-
clidean calibration the transformation H fixing the projective and affine properties of the
calibration has to be recovered. This is done through self-calibration [HZ04]. Based on the
assumption that the principal points are known and that each camera has zero skew and
square pixels an equation system can be derived which is then solved yielding the stratify-
ing transformation H . At least 3 cameras are needed in order to perform the stratification.

4.4.4 Radial Distortion Correction

Up to now only a linear camera model was used. However, this is problematic when using
wide angle lenses, such as fish-eye lenses, which is common practice in multi-camera sys-
tems. Based on the initial linear calibration, the radial distortion parameters are estimated
using the MATLAB Camera Calibration Toolbox [Bou]. Using the recovered radial distor-
tion parameters the factorization is rerun using the corrected point coordinates. This can be
repeated iteratively until the calibration error converges.

36

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

Figure 4.5: Calibration target for registering the camera coordinate system to the room coor-
dinate system.

4.4.5 Registration

The camera coordinate system computed by the calibration procedure has to be registered to
the room coordinate system in order to be able to recover metric properties from the recon-
struction. As the camera coordinate system is already Euclidean we only need to determine
the similarity transformation (i.e. scaling, rotation and translation) which registers the two
coordinate systems. This is done by means of a rectangular registration target placed on
the floor of which we know the exact corner coordinates in the room coordinate system (see
figure 4.5). Images showing the target are acquired on at least two and optimally all cam-
eras which see the target completely. The corner points of the target are manually selected
in every image and their 3D coordinates are computed in the camera coordinate system by
triangulation. In the following let the projection matrices be defined as above. Further let the
2D corner points of the registration target in camera i be x1

i to x4
i with xk

i =
[
xk

i yk
i 1

]�.
Let the corresponding 3D coordinates in the room coordinate system be XR

1 to XR
4 . The

point coordinates in the camera coordinate system XC
1 to XC

4 can be obtained by linear tri-
angulation. For every camera pair (i, j) with j > i and one of the corner points (e.g. XC

k) a
submatrix Ak

ij is constructed as

Ak
ij =

⎡⎢⎢⎢⎣
xk

i P
i
3 − P i

1

yk
i P i

3 − P i
2

xk
j P

j
3 − P j

1

yk
j P j

3 − P j
2

⎤⎥⎥⎥⎦ (4.4)

37

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

Figure 4.6: Calibration results for a setup with 10 cameras. The left figure shows the re-
covered camera positions and orientations (blue circles and lines) and the positions of the
detected laser points (red circles) in the camera coordinate system. The right figure shows
the mean (blue) and the standard deviation (red) of the reprojection error for every camera.
The mean reprojection error over all cameras is 0.31 pixels and the standard deviation is 0.17
pixels.

where P i
k is the k-th row of P i. After stacking all Ak

ij in a matrix Ak the solution to the linear
equation system AkXC

k = 0 gives the solution for the 3D point XC
k . The next step is to find

the similarity transform T =
[
sR t
0 1

]
relating XC to XR. It is computed using the method

proposed in [WSV91]. Once T has been obtained the projection matrices are updated as
P i = P iT.

4.4.6 Results

The reprojection error after calibration is in general around 0.3 pixels when also correcting
for radial distortion. Figure 4.6 shows the reprojection error for each camera and the recov-
ered camera positions for a setup with 10 cameras. The calibration can be done within less
than 20 minutes by a person familiar with the system. This keeps the downtime of the system
due to recalibration small. As the cameras are mounted on the ceiling recalibration has to be
performed only very rarely when one of the cameras is actually moved, since accidentally
moving the cameras is very unlikely.

4.5 Background Subtraction

Background subtraction is concerned with detecting foreground objects in the scene. This is
necessary in order to obtain the silhouette images needed for the computation of the visual
hull. To detect foreground objects a reference image of the background is taken when the

38

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

scene is empty. At runtime the current image is compared to the reference and pixels which
changed with respect to the reference are marked as foreground.

A popular approach for background subtraction in multi-view studios is chroma keying. In
this approach the background has a uniform color (e.g. blue). Therefore, segmentation can
be achieved by mapping out the background color in the input images. The disadvantage
of this approach is, that scene objects with the same color as the background will also be
removed. In addition, chroma keying requires a very controlled environment including con-
trolled lighting in order to ensure, that the background always has the same color. While
it is possible to achieve this in a studio setting, this cannot be done in an interventional en-
vironment. We therefore cannot use chroma keying in our system and instead have to use
background subtraction methods which can deal with complex backgrounds and changing
lighting conditions.

There exist many algorithms for background subtraction in the literature. For the use in
our system we compared three approaches, namely the Gaussian mixture model (GMM)
approach presented in [ZvdH06], the codebook approach presented in [KCHD05] and a
histogram-based approach presented in [FII+06]. The criteria according to which we eval-
uated the approaches are speed, accuracy and behavior in the face of illumination changes.
All of these aspects, especially changing lighting conditions for instance due to turning on
and off the surgical lamp, are important in an interventional setting. Some background sub-
traction methods, for instance the GMM approach, update the background model over time.
This means that objects which enter the scene but stay static for a long time will become part
of the background. This is undesirable in an interventional setting. For instance a tool table
might be brought into the room at the beginning of the intervention and then stays at the
same position for the duration of the procedure. However, we still want to keep it as part
of the foreground, since for instance in a collision avoidance application it would be quite
dangerous to consider the space where the table is standing as empty. We therefore disable
background updating in the GMM approach.

In the following sections we will first describe each algorithm in more detail and then present
a comparison with respect to our evaluation criteria.

4.5.1 Histogram Approach

The key idea behind this method is to adapt the reference background image to the current
illumination conditions for every incoming frame. This allows to deal with quick illumi-
nation changes, since they are corrected for by the background adaption stage. The actual
background subtraction is based on a blockwise decomposition of the image. For each block
an adaptive threshold is used to mark it as either foreground or background. Blocks on ob-
ject boundaries are further processed at a pixel level in order to extract detailed boundaries.
In the following each processing step will be described in more detail.

Adaption of the background image

Let the background image be denoted by BG and the current image at time t by It. In order
to adapt BG to the current illumination conditions the change in the color distribution has
to be computed. Let BG(x, y) be the RGB color value of the background image at position

39

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

(x, y) and similarly It(x, y) the color value at the same position in the current image. Further
let A′

t be the estimated background region at time t. A′
t is computed by first computing the

absolute difference between It and It−1. The difference image is then thresholded to obtain
the region with the smallest differences. A′

t is obtained as the logical AND between the
thresholded region and the previous background image At−1. For the case when A′

t is the
whole image or empty (for instance due to strong illumination changes), A′

t is taken to be a
dilated version of At−1. A0 is the entire image.

Next, a conversion table between the colors in the original background image BG and the
colors in the current image It inside the region A′

t is generated by computing a histogram
containing a bin for each possible color pairing. For every pixel (x, y) inside the region the
bin (It(x, y), BG(x, y)) is incremented. This is done for all three color channels indepen-
dently. The histogram is then used to find for each color in BG the corresponding color
in It with the highest bin count. Intensities which do not have corresponding entries in the
histogram are estimated by linear interpolation between the neighboring intensities. By sub-
stituting the corrected color for the original one in BG the adapted background image BGt

is obtained.

Background subtraction

In order to obtain the new segmentation mask At, the images BGt and It have to be sub-
tracted. This is done in a block-wise fashion by computing the sum of the absolute differ-
ences for each block (per color channel). If the sum of the differences over all color channels
is below the sum of the color channel thresholds the block is considered as foreground. The
threshold is changed dynamically per block and color channel and computed based on the
intensities in the histograms obtained in the previous step, in order to accommodate dif-
ferent lighting conditions. For blocks on the boundary of the object each pixel is further
classified as inlier or outlier by the same procedure in order to obtain an accurate outline of
the object. For more details refer to [FII+06].

4.5.2 Gaussian Mixture Models

In this approach the appearance of each pixel is modeled as a mixture of Gaussians, each rep-
resenting the distribution of a color. When a new color is observed for a pixel its probability
of belonging to one of the background distributions is evaluated. If it does not match any of
the background distributions it is considered as foreground. The initial background distri-
butions are learned from a training set. In order to deal with lighting changes and changes
in the background the background color distributions are not fixed but updated over time.
This allows to incorporate objects which become part of the background during runtime (e.g.
a chair placed and left in the room). However, as previously mentioned, this is undesirable
in an interventional environment. We therefore disable background updating as described
later on.

The color distribution of a pixel with a history of colors XT = {Xt, . . . , Xt−T } over the last
T time steps is modeled using M Gaussians. The probability of observing the pixel value x
is then given by

40

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

p(x|XT) =
M∑

m=1

ωmN (x; μm, σ2
mI) (4.5)

where M is the number of components in the mixture model, ωm is the weight of each com-
ponent and μm and σm are the mean and standard deviation of the m-th Gaussian respec-
tively. I is an appropriately sized identity matrix, meaning that the dependency between
color channels is not modeled. The weights ωm are non-negative and sum up to one.

When a new observation xt is made the parameters are updated as follows:

ωm = ωm + α(ot
m − ωm) (4.6)

μm = μm + ot
m(α/ωm)δm (4.7)

σ2
m = σ2

m + ot
m(α/ωm)(δ�mδm − σ2

m) (4.8)

where δm = xt − μm and α = 1/T is the update rate based on a time interval T . The term
ot
m is one if the new sample is close (in terms of the Mahalanobis distance) to component

m and zero otherwise. If the new sample does not match any of the existing distributions
a new distribution is created with ωM+1 = α, μM+1 = xt and σM+1 = σ0 where σ0 is an
initial variance. If the maximum number of components is reached the one with the smallest
weight is discarded.

Since every new observation enters the distribution, we need to define a number B of com-
ponents representing the background model. The remaining components are not considered
part of the background model. In practice the components are sorted by descending weights
and the first B components are taken to represent the background model. If a new object
stays stationary for a long enough time its weight will increase relative to the other weights
and it will thus become part of the background model.

The method as described up to now is the classical GMM approach similar to the one pre-
sented in [SG98] and uses a fixed number of components M . We use the approach by
Zivkovic et al. [ZvdH06] who also estimate the number of components in the GMM auto-
matically. This leads to an improved performance. Since we want to disable background
updates we set α to zero after the initial training phase. For more details on automatically
estimating the number of components refer to [ZvdH06].

4.5.3 Codebook Approach

In the codebook approach every pixel is modeled by a codebook consisting of a set of code-
words. Each codeword models a certain set of allowed color and brightness variations for
a pixel. During the training phase codewords are added to the codebook based on the ob-
served pixel colors. If a new training sample does not match any existing codeword a new
codeword is added to the codebook. Each pixel can have a different number of codewords,
depending on the complexity of the background model. Each codeword ci consists of a RGB
color tuple vi = (Ri, Gi, Bi) and a 6-tuple auxi = (Ǐi, Îi, fi, λi, pi, qi). Ǐ and Î are the mini-
mum and maximum brightness, respectively, of all pixels assigned to the codeword, f is the

41

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

(a) Input images

(b) GMM approach

(c) Codebook approach

(d) Histogram-based approach

Figure 4.7: Comparison of the background subtraction results under strong illumination
changes. Only the histogram based method gives reasonable results.

frequency at which the codeword has occurred, λ is the longest interval during the training
phase in which the codeword has not reoccurred, and p and q are the first and last time step
that the codeword has occurred. During runtime the observed pixel colors are compared to
each codeword in terms of color distortion and brightness variation, i.e. the new sample has
to fall within the min and max bounds of the codeword intensities. If a match is found the

42

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

pixel is marked as background, otherwise it is marked as foreground. More details on this
approach can be found in [KCHD05].

4.5.4 Discussion and Results

In order to select the best algorithm for use in our real-time system, we compared the
three approaches described above in terms of performance and accuracy on a test sequence
recorded in our multi-camera studio. The sequence shows a person walking inside the room.

The runtime performance is 9 ms for the codebook and the histogram method and 32 ms
for the GMM approach (using the author’s reference implementation [ZvdH06]) on images
of resolution 512 × 384. The tests were performed on one of the slave PCs. This already
precludes the GMM method from use in our system, since we need a performance of at least
15 ms in order to also perform the reconstruction and still achieve real-time performance for
the whole pipeline.

In terms of segmentation quality there is not a big difference between the three approaches.
In general the GMM gives a slightly better result. However, it is too slow for our purposes.
The histogram-based method and the codebook method perform similarly with the code-
book method exhibiting more noise in general.

We also tested how the algorithms cope with (quick) illumination changes. The disadvan-
tage of GMMs is that they cannot cope with quick illumination changes since the background
color distributions cannot adapt to the change in intensities quickly enough. This would re-
quire a very high update rate which would let any object fade into the background almost
immediately. In addition, we do not want to update the background model in order to avoid
loosing objects to the background. The codebook approach has the same problem, since
the codebook built during the training phase is not valid anymore when the illumination
changes drastically, even though color normalization is applied to the input colors. There-
fore both methods are not suited for scenes with large illumination changes. The histogram-
based method on the other hand deals quite well with illumination changes since the back-

Figure 4.8: Background subtraction results on some images from our multi-view studio us-
ing the method by Fukui et al. [FII+06].

43

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

ground is always adapted to the current lighting conditions. In addition, the codebook and
the GMM method require a training sequence, while the histogram-based method only re-
quires a single frame. This combined with the fact that this method is the fastest and gives
good segmentation results, led us to adopt it in our system. Figure 4.7 shows the results
of the three methods on a sequence with strong illumination changes. Only the histogram-
based method also works under strong illumination changes. The reason for the stripes in
the segmentation results is that the user is wearing a striped pullover and the color of the
white stripes is very similar to the background color. In a real interventional setting such
problems would be avoided by having the surgeons wear distinctly colored clothes, such
as green or blue surgical robes. Figure 4.8 shows more segmentation results obtained using
the histogram-based method. Notice that even such fine details as the ceiling support of the
operating light are correctly segmented. As with any segmentation method there are small
regions which are incorrectly marked as background due to the fact that they have the same
color as the foreground. In our reconstruction approach such small segmentation errors do
not play a significant role, since the resolution of the voxels is larger than the extent of the
typical holes in the segmentation. In addition, the holes can be partially removed using a
morphological closing operator.

4.5.5 Handling Static Occluders

One problem which has to be addressed during background subtraction regardless of the
method used is the presence of static occluders in the scene. Static occluders are objects
inside the working volume which cannot be removed, such as tables mounted to the floor.
Hence static occluders are also present in the background images. This is particularly im-
portant in interventional environments, since here the operating table is usually fixed to the
floor and cannot be removed. The assumption during background subtraction, however, is
that all foreground objects are located in front of the background. This is not the case in the
presence of an occluder because a foreground object could move behind the occluder and
effectively disappear from the silhouette image as illustrated in figure 4.9. This will result
in the partial or complete removal of the object from the reconstruction. To overcome this
problem, the areas in the silhouette images corresponding to the static occluder have to be
disregarded during the visual hull computation. We achieve this goal by building a 3D rep-
resentation of the occluder and projecting it into the cameras or by manually segmenting the
occluder in the reference images. This gives us a mask for every camera in which the static
occluder is marked as foreground. This mask is then added (logical OR) to the silhouette
images computed during runtime. A similar approach was suggested in [GSFP06].

Figure 4.9: Static occluders. Left: Any object in the red area will not be visible in the silhou-
ette image. Hence it will not appear in the reconstruction. Right: Effect of the occlusions
mask. From left to right: Without occluder, with occluder, with occlusion mask.

44

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

4.6 Visual Hull Computation

In our system the visual hull is computed using the octree-based volumetric approach de-
scribed in section 3.2.1 at a voxel resolution of 1283. In a first attempt we implemented the re-
construction on the CPU exploiting the multi-core architecture. However, although heavily
optimized the implementation did not achieve real-time performance at the target resolution
of 1283 voxels. We therefore developed a GPU-based reconstruction method which achieves
real-time performance and which will be described in detail in chapter 5. In this section we
will explain the distribution of the computation of the visual hull over multiple PCs.

In the classical visual hull computation only the space in the intersection of the viewing
cones of all cameras is reconstructed. Since this overlapping volume in our case is smaller
than the desired working volume we have to apply measures to make certain that we can
have a bigger reconstruction volume without needing to use extreme wide angle lenses
which would allow every camera to observe the whole reconstruction volume. Using such
lenses would not only decrease the spatial resolution in the images but also lead to bigger
radial distortion. The way we achieve the goal of having a larger reconstruction volume than
the overlapping volume is tightly linked to the distribution of the cameras to different PCs
in the system. As mentioned previously each slave PC computes a partial reconstruction
of the scene using its locally attached cameras. Instead of applying the standard approach
of only reconstructing the overlapping volume of the local cameras, we reconstruct all ob-
jects in the union of the viewing cones of the local cameras. In practice, this means that
we do not consider voxels which project outside of the silhouette images to be empty. In-
stead, we only consider the contributions from the cameras in which the voxels project into
the silhouette image. This naturally introduces a certain amount of ghost volumes into the
partial local reconstruction. However, these partial reconstructions, which every slave PC
computes independently, are then sent to the master PC, which combines them. This is done
by performing a logical AND operation on the volumes. The effect is that only voxels which
are occupied in all partial volumes are kept in the final reconstruction. In essence this means
that an object has to be seen in at least one camera of each of the four slave PCs in order to
appear in the final reconstruction. This removes the ghosting artifacts and increases the size
of the working volume by removing the strict constraint that an object has to be seen by all
cameras in order to be part of the reconstruction.

In order to obtain nicer results during visualization as described in the next section we do
not use binary voxel volumes. Instead we compute a partial voxel occupancy, by considering
for each occupied voxel the number of pixels inside the silhouette over the total number of
pixels in the voxel projection. This way voxels on object boundaries receive only a partial
occupancy which leads to smoother results during the visualization.

4.7 Visualization

The output of the reconstruction process is a volumetric representation of the scene. Al-
though it could be rendered using volume rendering [Lev88] it is easier to first obtain a
mesh representation of the scene which can then also be used for other editing tasks. The
conversion from the volumetric to the mesh representation is performed using the Marching
Cubes algorithm [LC87]. Marching Cubes extracts the isosurface of the volume by labeling

45

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

Figure 4.10: Reconstruction and visualization of a C-arm obtained using our system.

each voxel as being either inside or outside the isosurface based on a user-defined threshold
(128 in our implementation as voxels have an occupancy value between 0 and 255). Subse-
quently a surface consisting of several triangles is placed in each imaginary cube spanned
by 8 neighboring voxels which crosses the inside-outside boundary (i.e. some of the voxels
are labeled as inside and some as outside). In our system we use the CUDA implementation
provided with the NVIDIA CUDA SDK. A CPU implementation did not work in real-time
on volumes of size 1283. Figure 4.10 shows a reconstruction of a C-arm obtained and visual-
ized using our system.

4.8 Conclusion

We presented the design of our system and highlighted the design choices taken due to the
intended use of our system in an interventional environment. Our system is based on a dis-
tributed computer system and performs the reconstruction in real-time on commodity hard-
ware by offloading the computationally expensive visual hull computation onto the GPU.
The cameras are placed on the ceiling in order to avoid accidentally moving them and to
keep them out of the working space of the medical staff. To ensure a synchronous image ac-
quisition the cameras are externally triggered. The calibration procedure is easy to learn and
only requires minimal system downtime. Since we cannot use chroma keying in an inter-
ventional environment, we use a robust background subtraction algorithm for segmenting
the foreground objects in the scene, which can deal with complex backgrounds and quick
illumination changes. In addition, it does not incorporate static foreground objects into the
background model which is also of importance in an interventional setting. Moreover, we
include a scheme for handling static occluders inside the scene, such as the surgical table.
Finally, we propose a method for increasing the size of the reconstruction volume extending

46

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

it beyond the overlapping volume of all cameras.

47

CHAPTER 4. PROPOSED 3D RECONSTRUCTION SYSTEM

48

CHAPTER 5. GPU-BASED VISUAL HULL COMPUTATION

Chapter 5

GPU-based Visual Hull Computation

As mentioned in the previous chapter we perform the visual hull computation on the GPU.
This enables us to keep the system cost low compared to other real-time 3D reconstruction
systems which are using very powerful and expensive hardware to achieve real-time frame
rates [FMBR04, AFM+06, AMR+07].

5.1 Introduction

Volumetric visual hull computation is a perfect example of a highly parallel algorithm.
Therefore, it is well suited to be implemented on the GPU. However, there are still differ-
ent design choices for performing the computations. We evaluate two different approaches.
In the first approach we precompute the bounding boxes of the voxel projections in each
image and store them in a lookup table which is used during the visual hull computation. In
the second approach we downsample the images so that a voxel approximately projects into
one pixel. This allows us to only project the voxel center point to obtain the corresponding
pixel in the image.

The first approach is most useful when the camera configuration is static which is the case for
a 3D reconstruction system. If, on the other hand, one just wants to compute the visual hull
once for a given camera configuration, the overhead in terms of memory and time that the
precomputation requires, makes this approach less attractive. The second approach does not
perform any precomputations and is therefore suited for both cases. We implemented both
an octree version and a non-octree version of each approach. Using an octree representation
of space speeds up the computations, but constrains the size of the reconstruction volume
to cubes with power of two side lengths. The non-octree version also allows to compute the
visual hull on non-cubic volumes but requires a longer computation time.

5.2 Related Work

In contrast to our proposed method, previous GPU-based methods for visual hull compu-
tation make use of hardware texturing. Hasenfratz et al. [HLGB03, HLS04] use the GPU to

49

CHAPTER 5. GPU-BASED VISUAL HULL COMPUTATION

Figure 5.1: Bounding boxes and lookup table layout used in the precomputation-based al-
gorithm.

map the silhouette images as textures onto slices through the reconstruction volume and in-
tersect them using image blending. Hornung et al. [HK06c] suggest to project every voxel
into the images using a fragment shader and texture mip-mapping. We propose a method
making use of CUDA [Nvi] to perform the reconstruction by using kernels which compute
the projection of every voxel and accumulate the occupancy information. We present two
implementations of this approach and compare them in terms of performance.

5.3 Precomputation-based Algorithm

In this algorithm, which we shall call GPU1, we first compute the bounding boxes of the
voxel projections in each image and store them in a lookup table by specifying the upper left
and lower right corner (see figure 5.1). This is done in an offline step. The memory required
by the lookup table is proportional to the number of images and the voxel resolution used.
For the octree version we compute a lookup table for every octree level. The lookup table is
copied onto the GPU during an initialization step. For every new set of silhouette images,
we first compute the corresponding integral images. The integral image S of an image I is
computed as

S(x, y) =
∑
x′≤x

∑
y′≤y

I(x′, y′) (5.1)

The integral image contains at every pixel the sum over all pixel values in the rectangle
spanned by the image origin and the considered pixel. This allows us to efficiently evaluate
the number of occupied pixels given a bounding box in the image by using only four mem-
ory accesses instead of looking at every pixel in the bounding box. The number of occupied
pixels A in the rectangular region spanned by the corner points (x1,x2,x3,x4), with x1 the
upper left corner and the other vertices listed in clockwise order, is computed as

A = S(x3) − S(x2) − S(x4) + S(x1) (5.2)

This is illustrated in figure 5.2. The time required to compute the integral images is sig-
nificantly shorter than the overhead of looking at every pixel in the bounding box. All the
before mentioned steps are performed on the CPU. To speed them up, the computations are
parallelized.

50

CHAPTER 5. GPU-BASED VISUAL HULL COMPUTATION

Figure 5.2: Illustration of the computation of voxel occupancy using integral images.

The integral images are then copied onto the GPU using page-locked memory to increase
the transfer rates. In the non-octree version, a kernel is executed for each voxel. The kernel
accesses the lookup table to find the corner points of the voxel bounding box. The corner
coordinates are used as an offset into the integral images to compute the number of occupied
pixels. The sum of occupied pixels and the sum of total pixels is accumulated over all images
and their quotient is assigned as the occupancy to the voxel. This gives smoother results than
only assigning one and zero for the voxel occupancy. If a bounding box is found to be empty
in one image the remaining images are not checked and the voxel is assigned a value of zero.

In the octree version of the algorithm (GPU1_OT) a similar procedure is executed for each
octree level. We maintain a list of active octree cells (we talk of cells instead of voxels since
an octree cell consists of multiple voxels except at the highest octree level) containing the IDs
of the cells which have to be checked at the current octree level. We start at level 4 because
the overhead of using the octree approach is higher than computing the result directly when
starting at a lower level. We therefore initialize the active cell list with the ID of every cell at
level 4 (4096 cells). We only start as many kernels as there are active octree cells and use the
ID of the kernel as an index into the active octree cell list to get the cell ID. The computation
of the occupancy is performed the same way as in the non-octree version, except that a
different lookup table is used for every level. Depending on the result of the occupancy test,
we set an entry in a cell list. If the cell is either totally occupied or totally empty, we set the
entry to zero, indicating that we are not considering the cell at the next level and then fill in
the corresponding voxels in the volume accordingly. In case of partial occupancy we mark
the eight sub-cells corresponding to this cell on the next octree level in the cell list. After the
kernel has finished executing we use the CUDPP library [SHZO07] and a small additional
kernel to compact the cell list to only contain the IDs of the active cells, which are then used
as the input to the kernel on the next level. This process is illustrated in figure 5.3. The
resulting voxel volume is copied off the GPU using page-locked memory.

5.4 Direct Algorithm

The direct algorithm, which we shall call GPU2, does not perform any precomputations.
Instead the silhouette images are downsampled so that every voxel approximately projects
into a single pixel. This allows us to only compute the projection of the voxel center point
and to perform a single memory access in the silhouette images. In the non-octree version we
downsample the image to match the voxel resolution using a Gaussian smoothing followed
by a downscaling. The kernel is then executed for every voxel. It derives the 3D position of
its corresponding voxel from its ID and projects the voxel center point into the image. The
occupancy value of the voxel is computed as the mean over the values at all voxel projec-

51

CHAPTER 5. GPU-BASED VISUAL HULL COMPUTATION

Figure 5.3: Illustration of the computation scheme for the octree versions of the proposed
algorithms. The 2D scene shown on the left is represented in the Active Cell List (ACL). For
every cell in the ACL a kernel checks the occupancy and sets the entries of the corresponding
subcells on the next level to 0 if the cell is either occupied or empty and to 1 otherwise. The
list is then compacted by an additional kernel and the corresponding cell IDs are added to
the ACL for the next level.

tions. If a value is zero in one image the remaining images are not checked anymore and the
voxel occupancy is set to zero.

In the octree version (GPU2_OT) the silhouette images are downsampled in a Gaussian pyra-
mid, so that one image is obtained for every octree level. The kernel is then executed for
every level using only the active octree cells which are determined in the same way as in the
precomputation-based algorithm. The resulting voxel volume is copied off the GPU using
page-locked memory.

5.5 Results

To evaluate the performance of the visual hull computation algorithms, we tested them on
three data sets at different voxel resolutions.

The first data set is used to assess the performance for a scene typically encountered in a
real-time 3D reconstruction system. This data set was captured with our system and shows
a person walking through the room. We first computed the visual hull using all 16 images

52

CHAPTER 5. GPU-BASED VISUAL HULL COMPUTATION

Figure 5.4: Runtimes on the person dataset consisting of 16 images (1024×768). The
precomputation-based algorithms cannot run at level 2563 due to the size of the lookup
table.

(resolution 1024×768). The runtimes are shown in figure 5.4. It can be seen that even at a res-
olution of 1283 we still achieve real-time performance using the direct algorithm (GPU2_OT)
which consistently provides the best reconstruction times at all resolutions. Also note that
the precomputation-based algorithms (GPU1, GPU1_OT) fail to run at a resolution of 2563

because the lookup table size exceeds the available storage on the GPU (768MB).

To test the scalability of the algorithms, we ran them on the same data set using different
numbers of images. Figure 5.5 shows the resulting runtimes, plotted over the number of
input images. The first plot shows the results of the non-octree algorithms. It can be seen
that the precomputation-based algorithm (GPU1) has a complexity linear in the number of
images, while the direct algorithm (GPU2) has a complexity which first increases steeply
with the number of images and then only grows very slowly. The highly linear behavior
of the precomputation-based method can be explained by the computation of the integral
images which is linear in the number of images. In the direct algorithm this step is not
necessary, so that it only grows much slower (the down-sampling of the images is very fast).

Figure 5.5: Runtimes on the person data set over number of images used. The image resolu-
tion used was 1024×768.

53

CHAPTER 5. GPU-BASED VISUAL HULL COMPUTATION

Figure 5.6: Runtimes on the dinoRing dataset consisting of 48 images (640×480). The
precomputation-based algorithms can only run at 643 due to the size of the lookup table.

It should also be noted that the probability of finding a totally empty voxel projection early
is increasing with a higher number of images, so that it is not unexpected to see only minor
changes in the runtime as the number of images increases. An interesting observation is that
the non-octree algorithms can provide real-time results. In particular the GPU1 method can
be used with four images and a resolution of 1283 to obtain reconstruction times of about
30 ms. Since no octrees are used, this means that it is also possible to reconstruct non-cubic
volumes with the same performance as long as they have a similar number of voxels. In this
case it is advisable to use the precomputation-based algorithm (GPU1) since it is faster at
higher resolutions than the direct algorithm when using a reasonable number of images.

The second plot shows the performance of the octree-based algorithms. We can observe
the same behavior as for the non-octree algorithms, albeit at a higher performance level.
The direct algorithm (GPU2_OT) exhibits a slightly higher growth rate using the octree than
without using it. This is due to the computation of the image pyramid in the octree version.
The fact that for a low number of images the runtimes of the algorithms are sometimes
decreasing when using more images can be explained by the fact, that by using more images
the visual hull will be more constrained and hence smaller. This allows the octree methods
to stop checking some octree cells at an early octree level, which increases the performance.
After a certain number of images this effect disappears, because adding new images only
changes the visual hull slightly. When using the octree version of the algorithms the direct
method should be used (GPU2_OT), because it shows a consistently better performance than
the precomputation-based method.

The second and third data set are taken from the Middlebury multi-view evaluation [SCD+06].
We use them to test how the algorithms perform with large numbers of images and complex
scenes. The results obtained on the dinoRing data set consisting of 48 images (resolution
640×480) are shown in figure 5.6. The memory requirements of the precomputation-based
algorithms were so high that they could only run at the lowest resolution. The direct octree
algorithm on the other hand computes the visual hull quite fast, at a resolution of 643 even
at 25 fps. The results obtained on the templeRing data set consisting of 47 images (resolu-
tion 640x480) are shown in figure 5.7. This data set was used to test how the performance
changes with increasing scene complexity. While the non-octree methods show a similar per-
formance as on the dinoRing data set, the octree methods have an increased runtime. This
is expected, because the probability of being able to terminate the computations on a low
octree level is lower, when the scene is more complex. It is clear from these experiments that

54

CHAPTER 5. GPU-BASED VISUAL HULL COMPUTATION

Figure 5.7: Runtimes on the templeRing dataset consisting of 47 images (640×480). The pre-
computation based algorithms can only run at 643 due to the size of the lookup table.

for large data sets and high resolutions the direct octree method (GPU2_OT) provides the
best results.

One also has to consider the precomputation times when using the precomputation-based
algorithms. They usually lie in the range of a few seconds for moderately sized data sets.
This means that if one wants to only compute the visual hull once with a given camera
configuration, it is better to use the direct method. In a real-time system where the camera
configuration does not change this is not an issue.

5.6 Conclusion

We presented two GPU-based approaches for efficient visual hull computation. One ap-
proach uses a precomputed lookup table, while the other directly computes the voxel pro-
jections. Both methods were implemented in an octree and a non-octree version on the GPU
using CUDA. We compared the performance of both methods on different data sets. Our
results indicate that for small non-cubic resolutions the precomputation-based non-octree
algorithm (GPU1) should be used, while for high resolution volumes and large numbers of
images the direct octree algorithm (GPU2_OT) performs better. We therefore use the direct
octree algorithm in our real-time system.

55

CHAPTER 5. GPU-BASED VISUAL HULL COMPUTATION

56

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

Chapter 6

Incremental Visual Hull Computation

While the GPU-based method described in the previous chapter is very fast, it can be argued
that it performs more work than necessary. This is because it does not take temporal consis-
tency in the scene into account. Instead, it highly parallelizes the computation of the visual
hull in order to obtain real-time performance.

In this chapter we propose an incremental visual hull reconstruction approach taking tem-
poral consistency into account. By exploiting the fact that there usually occur only small
changes between consecutive frames, we can reduce the runtime and calculation complexity.
This allows us to perform real-time reconstruction on a standard processor without having
to parallelize the computations.

6.1 Related Work

Although there are methods for performing time consistent reconstructions in the context
of multi-view reconstruction [SH07b, VZBH08], there is little work dealing with temporal
visual hull reconstruction. Cheung et al. [CBK05a, CBK05b] consider the problem of align-
ing multiple silhouette images of a non-rigidly moving object over time in order to improve
the quality of the visual hull. However, this is quite different from our approach. More re-
cently Aganj et al. [APSK07] proposed a method for spatio-temporally consistent visual hull
reconstruction by performing a 4D reconstruction over the whole sequence using Delaunay
meshing. The drawback of their method is that it only works offline, requiring the whole
sequence to be available for performing the reconstruction. This precludes a real-time on-
line use of their method. In addition the runtime of their method is far from real-time due
to its high computational complexity. In [Keh05] another method taking temporal consis-
tency into account is presented. At every pixel a list of voxels which projects into this pixel
is stored. At runtime the voxels which have to be checked for changes are therefore imme-
diately available given the changed pixels. However, the memory requirements for storing
the voxel list for every pixel grow rapidly with the voxel resolution. In addition for large
image resolutions the memory requirements grow even further. We avoid this overhead by
sampling the voxels along the ray going through a changed pixel at run time.

Our approach does not make any assumptions about the number or the shape of the objects
in the scene and does not use any additional information other than that provided by the

57

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

(a) (b) (c)

Figure 6.1: The rotating teapot model: (a) Rendered views from two different cameras in
three successive time steps; (b) Corresponding silhouette and difference images with high-
lighted changed areas. Red pixels have been removed from the foreground since the previ-
ous time step and green pixels have been newly added in the current time step; (c) Colored
recently removed and added voxels from two novel views.

silhouette images. Our results are identical to the results one would obtain when using
a normal reconstruction method for each frame but the computation time is considerably
reduced leading to real-time performance on off-the-shelf hardware.

6.2 Incremental Reconstruction Approach

In dynamic scenes such as those captured by multi-camera systems the changes between
frames are limited by the speed at which the objects in the scene move or deform. Hence, the
number of voxels that change in the reconstruction does not alter dramatically. Therefore, it
is inefficient to reconstruct each frame independently. Theoretically the only voxels that have
to be updated to transform the previous reconstruction into the current one, are the ones with
changed occupancy. In the following we will call this subset of voxels the Changed Set. In
practice we normally cannot compute the Changed Set directly. Therefore, we approximate it
by a superset, which we call the Search Space.

We propose a Search Space whose size is close to the Changed Set. The main idea is to con-
sider the changes in the silhouette images between the previous and the current frame, since
they are caused by the change in voxel occupancy. Using ray casting [AW87] we efficiently
find these changed voxels. Since most of the search process is done in two dimensional
image space, the required amount of operations is reduced noticeably compared to perform-
ing a full reconstruction. Figure 6.1 illustrates our method for three frames of a rotating
teapot. Figure 6.1(b) shows the change in the silhouettes (green being newly added fore-
ground pixels and red being the removed foreground pixels), while figure 6.1(c) shows the
added (green) and removed (red) voxels between the frames. It is clear that the number of
changed voxels is small compared to the total number of voxels.

The first frame of a sequence does not have a corresponding previous reconstruction which
can be updated. However, by assuming that the previous reconstruction was empty and
consequently labeling every foreground pixel as added pixel, the proposed method can also
be used. However, this is less efficient than using a standard visual hull computation method
such as the GPU-based method proposed in the previous chapter. The method proposed
here shows its true strength when only subparts of the scene are changed. This is commonly
the case between two frames of an image sequence.

58

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

(a) (b)

Figure 6.2: The voxel traversing process: (a) Rays from removed pixels. Yellow voxels are
removed; (b) Rays from new pixels. Yellow voxels are added.

In order to update the reconstruction, the difference in the silhouette images between the
previous and the current time instant have to be computed. This determines which pixels
were added or removed from the foreground with respect to the previous time step. We
then find the corresponding voxels by traversing the rays starting from the camera center
and passing through the changed pixels. However, there usually is not a one-to-one relation
between voxels and pixels due to different resolutions and the effects of perspective projec-
tion. Normally the voxel resolution is smaller than the pixel resolution; hence the projection
of most voxels extends to more than one pixel. In this situation the occupancy of each voxel
may be checked multiple times, when using ray casting. Despite that, the redundancy can
be reduced considerably by using an appropriate sub-sampling depending on the voxel and
image resolution. In other words only a subset of the pixels is used to update the changed
voxels. This is achieved by sub-sampling the silhouette images. This is similar in princi-
ple to the direct GPU method discussed in the last chapter, where the images where also
downsampled in order to match the voxel and the pixel resolution.

The information about which pixels were added and removed is used to find the set of
removed and added voxels. While the set of voxels corresponding to the removed pixels
only has to be set to empty, the set of voxels corresponding to the added pixels has to be
checked for occupancy. This is done using the original silhouette images. Since we only
change the traversing process in voxel space, the reconstructed visual hull produced by our
approach is equivalent to the one produced by other visual hull reconstruction methods.
The implementation of the deletion and addition phase depends on the algorithm used. We
have developed two different algorithms based on this approach, which we will discuss in
the following two sections.

6.3 Ray Casting

Here, we explain our first algorithm for incremental visual hull reconstruction in dynamic
scenes, which uses ray casting to update the visual hull. For each changed pixel in the
difference images, we create a ray from the optical center of the camera passing through the
pixel and traverse all voxels, which the ray passes, using ray casting [AW87]. The size of
the search space in this implementation is equal to the number of voxels projecting into the
changed regions of the difference images.

59

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

All changes after the first frame can be reconstructed by an update phase using this ap-
proach. Even in the first frame, the whole visual hull can be computed using blank silhou-
ettes as the images from the previous time step. However, using this approach for recon-
structing the whole scene is inefficient, since the search space would include every voxel.
We therefore use our GPU-based method for the first frame.

To perform the update of the reconstruction two phases are required. In a first phase newly
empty voxels are deleted from the reconstruction, while in a second phase newly occupied
voxels are added.

In the deletion phase, the occupancy of all voxels lying on rays passing through removed
pixels (red in the images such as figure 6.1) is set to empty. This is because these areas are
the projection of removed voxels since the previous time step. This is illustrated in figure
6.2(a). Algorithm 2 shows the pseudo code for the deletion process.

Algorithm 2 Pseudo code for the deletion phase in the ray casting method
1: for each image i in the sub-sampled difference image list do
2: for each removed pixel p in image i do
3: Create ray r from optical center passing through p
4: Set v to the first voxel along r in the reconstruction volume
5: repeat
6: Set occupancy state of v to empty
7: until set v to the next occupied voxel along r is unsuccessful
8: end for
9: end for

To complete the updating process, after removing deleted voxels, newly occupied voxels are
added in the addition phase. Figure 6.2(b) and the pseudo code given in algorithm 3 show
the process of creating newly occupied voxels in the reconstruction results of the previous
phase. The addition phase of this method is similar to the deletion phase. However, before
creating new voxels, their occupancy has to be checked. A voxel is marked as occupied if its
projection on all silhouette images maps to a foreground pixel.

Since ray casting is completely implementable on a GPU [SKB+06, MSE06], this algorithm
also can be implemented on modern graphical processors.

Algorithm 3 Pseudo code for the addition phase in the ray casting method
1: for each image i in the sub-sampled difference image list do
2: for each added pixel p in image i do
3: Create ray r from the optical center passing through p
4: Set v to the first voxel along r in the reconstruction volume
5: repeat
6: if v is not occupied then
7: Check voxel occupancy at v and mark v accordingly
8: end if
9: until set v to the next empty voxel along r is unsuccessful

10: end for
11: end for

60

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

6.4 Ray Buffers

Although the ray casting approach described in the previous section is already very efficient,
we can further improve the performance by storing additional data from the previous time
step. To this end we store per pixel ray information as described in [BMG05, BM06] for each
time step. The information saved includes the starting point and the direction of the ray
passing through a pixel as well as the first surface voxel hit by the ray. We call this per pixel
information ray buffers. This information allows us to directly jump to the first voxel on the
surface for a given ray without having to sample the ray first. This helps us to define an even
smaller search space. However, the information in the ray buffers has to be updated after
every update step in the voxel volume which creates additional processing overhead.

The deletion phase is similar to the ray casting method. Using the ray buffers we can directly
find the first surface voxel which should be removed. After removing a surface voxel all ray
buffers in which this voxel was visible have to be updated to the next visible voxel. In
large scenes this reduces the search space size and consequently the amount of required
computations for finding the first visible surface voxel noticeably.

On the other hand, in the addition phase, we cannot directly find new voxels using the avail-
able data in the ray buffers, because we only store information about the current surface
voxels. New voxels can however appear at any point on the ray. For improving perfor-
mance, after finding the first new voxel - using the same approach as in the addition phase
of the ray casting method - we check the neighboring voxels using a 3D region growing
method in voxel space, starting on the newly added voxel. While new voxels are found
which should be occupied we continue the region growing process and then, by projecting
the newly added voxels into the input images, mask out all corresponding changed pixels
from the difference images. The ray buffers are also updated accordingly. This helps us to
avoid further redundant processing.

6.5 Analysis

Our proposed approaches update the scene based on the changed areas in the images, so
each change in the visual hull of a model should be reflected in at least one of the silhouette
images used for reconstruction. In this section we show the correctness of this assumption.

As described before, the scene volume is divided into voxels. We define the set V such that it
contains all voxels in the scene. We will refer to each voxel with v. For constructing the visual
hull, we use n calibrated cameras viewing the scene. The set C contains all cameras and we
will refer to each individual camera in this set using c1, c2, ..., cn. Each of these cameras has
an associated projection matrix Pci . Pci(U) is the 2D projection of a 3D point U in camera
ci. Silhouette images for each of these cameras are referred to using Ici . The value in the
silhouette image at location u is given by Ici(u). In the silhouette images pixels can have two
distinct values, foreground and background. We refer to foreground with value one and to
background with value zero. Extending these notations for dynamic scenes requires adding
a time step index. For example for referring to the camera image ci in time step t we use It

ci

and so on.

61

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

Using this notation, we will represent the visual hull reconstruction process. The recon-
structed visual hull of a scene is defined as

D =
{

v ∈ V | ∀
c∈C

(Ic(Pc(v)) = 1)
}

which is a subset of V including only occupied scene voxels. D contains all voxels, whose
projections are mapped to foreground pixels in all images. The state of a voxel can change
between two time steps t and t + 1 (Changed Set). Unchanged voxels are either empty or
occupied at both times, while changed voxels are occupied at t and empty at t + 1 or vice
versa.

For creating the voxel representation of the scene at time t + 1 it is sufficient to only invert
the state of the voxels which are in the Changed Set. Formally the Changed Set is given by:

Lemma 1: The set of voxels S, defined as

S =
{

v|(v ∈ Dt) ∧ ∃
c∈C

(It+1
c (Pc(v)) = 0))

}⋃{
v|(v /∈ Dt) ∧ ∀

c∈C
(It+1

c (Pc(v)) = 1)
}

contains all voxels in the changed set.

Proof: The equation defining the set S is the union of two sets. The left is the set of voxels
occupied at time t (v ∈ Dt) and empty at time t + 1 . The second term on the left (∃

c∈C
(It

c +

1(Pc(v)) = 0)) is based on the observation that there should be at least one camera in which
the projection of v at time t + 1 is zero if this voxel is actually empty. The right part adds
the set of voxels, which are empty at time t (v /∈ Dt) and occupied at time t + 1. The second
term on the right (∀

c∈C
(It+1

c (Pc(v)) = 1)) is the set of occupied voxels, since by definition their

projection on the images of all cameras at time t + 1 is one, i.e. it falls into the foreground
region. �
Lemma 1 gives us a clear definition for the optimum set of voxels, which only contains the
changed voxels at time t + 1 with respect to time t. However, computing the subset S itself
is not possible directly. Therefore, we propose a superset, which approximates S closely.

Definition: We define two new binary images IRV
c , IAV

c for any given camera at times t and
t+1 and compute their corresponding values at the location u as described by the following
formulas:

IRV
c (u) = It

c(u) ∧ ¬It+1
c (u) , IAV

c (u) = ¬It
c(u) ∧ It+1

c (u)

IRV
c represents the projection of the removed voxels, whose disappearance causes differ-

ences between It
c and It+1

c and IAV
c represents the projection of the added voxels, whose

appearance causes differences between It
c and It+1

c . In figure 6.1(b) the red and green col-
ored areas are showing IRV

c and IAV
c respectively.

Next we will show that if any change happens in the scene, which can be captured by the vi-
sual hull, we will see it in the difference images. The next theorem proves that our proposed
search space is a superset for the Changed Set.

62

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

Theorem 2: The subset E, which is defined as described below, contains all changed voxels
between times t and t + 1:

E =

{⋃
c∈C

{
v|IRV

c (Pc(v)) = 1
}}⋃{⋃

c∈C

{
v|IAV

c (Pc(v)) = 1
}}

Proof: Again, the above equation contains the union of two sets. The left part is denoting all
voxels for which there exist at least one camera with value one at the voxel projection in the
corresponding image IRV of that camera. Similarly on the right side of the union operator,
we have a subset of voxels, denoting all voxels for which there exist at least one camera
with value one at the voxel projection in the corresponding image IAV of that camera. By
rewriting the above equation we obtain:

E =

{
v| ∃

c∈C

(
IRV

c (Pc(v)) = 1
)}⋃{

v| ∃
c∈C

(
IAV

c (Pc(v)) = 1
)}

By replacing IRV
c , IAV

c from the above definitions we get:

E =

{
v| ∃

c∈C

(
It

c(Pc(v)) = 1 ∧ It+1
c (Pc(v)) = 0

)} ∪
{

v| ∃
c∈C

(
It

c(Pc(v)) = 0 ∧ It+1
c (Pc(v)) = 1

)} ⊇

{
v| ∀

c∈C

(
It

c(Pc(v)) = 1
) ∧ ∃

c∈C

(
It+1

c (Pc(v)) = 0
)} ∪

{
v| ∃

c∈C

(
It

c(Pc(v)) = 0
) ∧ ∀

c∈C

(
It+1

c (Pc(v)) = 1
)}

=

{
v|(v ∈ Dt) ∧ ∃

c∈C

(
It+1

c (Pc(v)) = 0
)} ∪

{
v|(v /∈ Dt) ∧ ∀

c∈C

(
It+1

c Pc(v)) = 1
)}

= S

For reaching the third line, we have used the fact that if a voxel can be seen from all cameras
at time t, (∀

c∈C

(
It
c(Pc(v)) = 1

)
), it is part of the reconstructed volume at time t, which gives

v ∈ Dt. Similarly, if there exists at least one camera from which the voxel can not be seen
(∃
c∈C

(
It
c(Pc(v)) = 0

)
) at time t, that voxel is empty at time t (v /∈ Dt). Using the result of

lemma 1 and the fact that S ⊆ E the correctness of this theorem can be stated. �
Conclusion 1: For any newly removed voxel from the scene at time t + 1, which alters the
visual hull, there should be at least one IRV image, that reflects this change.

Conclusion 2: For any newly added voxel into the scene at time t+1, which alters the visual
hull, there should be at least one IAV image, that reflects the change.

This theorem helps us to define a new search space E, whose size is close to the real changed
set S as described in lemma 1. Moreover, because IAV and IRV are made up from the pro-
jection of changed portions of the scene we get a small 2D area to consider in each image. In
other words, the size of the search space is directly related to the size of the changed portion
of the scene; for instance if the scene is static, the search space will be empty because IAV

and IRV are equal to zero.

6.6 Results

We have tested our proposed incremental reconstruction approaches on a publicly avail-
able data set provided by Daniel Vlasic [VBMP08] (see figure 6.3). We compared the pro-
posed methods to existing visual hull computation approaches, such as the GPU method

63

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

(a) Crane dataset (b) Samba dataset

Figure 6.3: Data sets used for testing (provided by [VBMP08]). The first row shows sil-
houette and difference images while the second row shows the reconstruction from a novel
viewpoint.

presented in the previous chapter, on different aspects such as run time and the number of
occupancy checks with various voxel and image resolutions. The results show the signifi-
cantly improved performance of our incremental approaches. Sometime the performance of
the proposed methods even surpasses the efficient GPU-based implementation presented in
the previous chapter while only using a single CPU core.

Figure 6.4 and 6.5 shows the results we obtained on the Crane and Samba data sets with re-
spect to runtime and number of checked voxels at different voxel resolutions. Since the size
of the search space of our approach is directly related to the size of the changed portion of
the model, as expected, both the number of occupancy checks and the runtime are related
to these changes. Therefore frames with many changes take more time to compute. For
showing this, we plotted the percentage of checked voxels with respect to the total num-
ber of voxels for each model. The ray casting and ray buffer method are consistently faster
than the CPU based octree reconstruction approach even though they only use one CPU
core while the octree implementation uses four. This is expected, since we consider only the
changed parts of the scene in our computations. We even partially outperform the highly
optimized GPU-based reconstruction method presented in the previous chapter. The num-
ber of checked voxels is smaller in the ray buffer method than in the ray casting method
since we can avoid checking many voxels by directly jumping to the first surface voxel using
the information in the ray buffers.

On the other hand, as shown in figure 6.6, image resolution and the number of cameras have
little impact on the performance of the previous reconstruction methods, but they can affect
our approaches noticeably due to the 2D image based search space. Generally, without sub-
sampling the performance of our algorithms is directly related to the number of cameras and
the image resolution. To limit this effect we subsample the input images to match the voxel
resolution.

64

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

(a) Runtime (ms) 643 (b) Occupancy checks (percent) 643

(c) Runtime (ms) 1283 (d) Occupancy checks (percent) 1283

(e) Runtime (ms) 2563 (f) Occupancy checks (percent) 2563

Figure 6.4: Runtime and occupancy check count for the Crane dataset at three different voxel
resolutions. The runtime of the incremental reconstruction is consistently below the runtime
of the GPU based method.

65

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

(a) Runtime (ms) 643 (b) Occupancy checks (percent) 643

(c) Runtime (ms) 1283 (d) Occupancy checks (percent) 1283

(e) Runtime (ms) 2563 (f) Occupancy checks (percent) 2563

Figure 6.5: Runtime and occupancy check count for the Samba dataset at three different voxel
resolutions. The incremental approach performs at a similar level as the GPU-based method,
the exact runtime depending on the number of checked voxels.

66

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

Figure 6.6: The left diagram shows the effect of using different image resolutions (frame 11
of the Bouncing dataset). The right diagram shows the performance with different numbers
of cameras (frame 5 of the Teapot dataset). The volume resolution used was 2563.

6.7 Conclusion

We proposed a new incremental visual hull reconstruction approach using the difference
in the silhouette images between two frames to efficiently find potentially changed voxels
in the scene. Two ray-casting-based algorithms were proposed to this end, one of which
stores additional per-frame information for speeding up the computations. Furthermore,
the validity of our method was shown using a mathematical analysis. We demonstrated
that our incremental method significantly improves the performance of the reconstruction
process, outperforming existing reconstruction methods and making it suitable for real-time
applications.

Despite these encouraging results, we do not use this method in our system, because the
GPU-based approach performs in real-time at our target resolution of 1283 and most impor-
tantly has a constant worst case runtime compared to the variable runtime of the incremental
approach which depends on the amount of interframe changes in the scene. The worst case
runtime is a very important aspect for our system, especially when considering the intended
use of the system in an interventional environment, since we have to fulfill strict real-time
constraints.

67

CHAPTER 6. INCREMENTAL VISUAL HULL COMPUTATION

68

CHAPTER 7. APPLICATIONS

Chapter 7

Applications

Based on our 3D reconstruction system we investigated several applications which take ad-
vantage of the real-time 3D reconstruction of the scene. In particular we discuss two appli-
cations aimed at use in interventional rooms, namely a collision avoidance application for
automated medical devices and a radiation modeling application. In addition, we briefly
discuss the use of our system for clinical workflow recovery. We use these applications
to show the benefits of introducing a real-time 3D reconstruction system into the interven-
tional environment and to motivate further research in this area. Next to these interventional
applications, we also present a more general mixed-reality application for occlusion-aware
interactions.

For developing and testing the applications presented in this chapter we built two instal-
lations of our system: One in our lab and one in a real interventional room. Due to the
difficulties of running a reconstruction system in an actual interventional environment, we
performed all experiments using our lab system. The clinical setup was used to gather ex-
perience in running a multi-view 3D reconstruction system in an interventional environ-
ment. The lessons learned out of this installation will be discussed in the next chapter. In
the remainder of this chapter we will discuss the different applications we propose and the
experimental results we obtained.

7.1 Collision Avoidance in Interventional Environments

Today, it is not uncommon to have one or more automated devices, such as C-arms and med-
ical robots, inside an interventional room. However, there is a danger of collision between
these devices and other equipment such as ceiling-suspended monitor arms, radiation pro-
tection shields or the medical staff. A collision can damage both the device and the colliding
object and sometimes requires to take the device out of service until a technician has evalu-
ated the damage. The intervention may be suspended and the patient may be moved to a
different room. Such collisions could be both dangerous and costly.

Nevertheless there currently is no fully automated solution to the problem of collision avoid-
ance. Indeed, many systems rely on the discretion of the operating physician to avoid col-
lisions. Technical measures include contact sensors and reduced movement speed. Some

69

CHAPTER 7. APPLICATIONS

Figure 7.1: Left: C-arm and two cameras (red circles) in our clinical installation. Right:
Closeup of the cameras.

devices also perform a slow test run to check the trajectory for obstacles. The disadvantage
of these mechanisms is that they only detect a collision when it has already occurred. In-
deed, they are more focused on minimizing the damage than on preventing the collision in
the first place. In the case of C-arms, these safety considerations directly affect the speed
of the device for certain movements. For instance, it has been shown in [GLV+05] that 3D
rotational angiography can be performed in less time and with less contrast agent using an-
gular C-arm motions instead of orbital motions. However, the C-arm speed required for this
would cause serious injury in case of collision. With an automated collision avoidance, this
method could be used more often and with increased safety for the medical staff.

In recent years, medical robots [FFK+07, AKA+04, SWM+04] have become an active research
topic and some systems like the daVinci are regularly used in many hospitals. Sometimes
such robots are also used in conjunction with other devices such as C-arms, navigation sys-
tems and electric tools. In such environments, staff unfamiliar with the movement range of
all the devices can unknowingly enter the working volume of the device and cause an ac-
cident. This issue will become even more important in the future, since there will be many
interventional rooms where multiple imaging modalities are used.

To overcome these problems, we propose a real-time collision avoidance system to increase
the safety in the interventional room and allow faster device operation.

7.1.1 System Description

The collision avoidance system is based on the real-time 3D reconstruction system presented
in chapter 4. As we want to avoid collisions between automated devices and other objects,
the first step before running the system is to determine the working volume of the automated
device. This can be done either manually by specifying the working volume in the room
coordinate system or by reconstructing the automated device using the system itself. In
this case, since the automated device typically cannot be removed from the interventional
room, it has to be segmented in the silhouette images in order to obtain its reconstruction.
The information about the working area of the device is later used in order to decide which

70

CHAPTER 7. APPLICATIONS

Figure 7.2: Results of the collision avoidance with a C-arm. Each column shows one of the
input images in the upper row and the reconstruction in the bottom row. The first column
shows the reconstructed C-arm. The second column shows the C-arm in a safe state (green
bounding box), while the third and fourth column contain an object in the safety zone of the
C-arm (red bounding box).

areas of the room are safe for people to enter during device operation. To this end safety
zones are computed around the reconstructed objects and checked for intersections with the
working volume of the device. Currently we use the bounding box of an object as its safety
zone. If another object’s bounding box enters the operating range of the device, a warning is
given to the physician. To aid the physician in quickly finding the responsible object, we also
visualize the reconstruction. The system is only active when the device is being operated, so
that the physician is not disturbed by alarms, when it is safe to enter the working volume of
the device.

The advantage of this method compared to existing approaches is that it is fully automated
and detects possible collisions before they occur. It is also non-intrusive since the cameras
are mounted on the ceiling and are therefore not in the way of the clinical staff. This solution
works for any kind of automated device. In addition, once the system has been set up, very
little maintenance work is required. Our system also meets the requirements for the presence
of cameras in an interventional room since the images do not need to be saved. To the best of
our knowledge, no previous work has considered a multi-camera-based collision avoidance
system for an interventional room.

7.1.2 Results

For the collision avoidance application we duplicated our lab system setup in an interven-
tional room in one of our partner hospitals (see figure 7.1). This allowed us to learn about the
characteristic difficulties and challenges of working in an actual interventional room. These
include a highly complex background, changing lighting conditions and crowded scenes
among others. Due to these complexities we did not use the interventional system for our
experiments but instead used the lab system.

The working environment we used has dimensions of size 3.7 m×3.2 m×2.2 m. This corre-

71

CHAPTER 7. APPLICATIONS

sponds to voxels of approximately 2.2 cm side length at a voxel resolution of 1283. This is
sufficient in practice since we would like to maintain a security distance of at least 20 cm to
the device. The experiments were performed with a C-arm. During runtime, we compute
the bounding box for each object in the scene and test it for intersection with the working
area of the C-arm, which is modeled as a rectangular working volume that extends 20 cm
beyond the C-arm bounding box. If there is an intersection, a warning is displayed (bound-
ing box turns red) and an alarm is sounded. Figure 7.3 shows some reconstruction results
and some configurations with objects inside and outside the safety zone. All intersections
with the safety zone of the C-arm were successfully detected.

7.1.3 Conclusion and Future Work

Although we only performed experiments using the lab system, our clinical partners are
very interested in the system, which is why we were able to install it in a real interventional
room. As already mentioned, the reasons we could not use the interventional system at this
point are related to the challenging working conditions in interventional environments. The
main difficulties are obtaining a good foreground segmentation and choosing the camera
placement and the number of cameras in such a way, that ghosting artifacts in the recon-
struction are kept to a minimum. This is hard due to the presence of many people and
objects in the scene creating dynamically changing occlusions. These and further issues re-
lated to the challenges in actual interventional environments will be discussed in more detail
in chapter 8.

In the future it would be interesting to track the automated device in order to obtain more
accurate silhouette images. This could be achieved by placing optical markers on the device
which are observed by the cameras. Together with a 3D model of the device the projection
of the automated device in all silhouette images could be obtained and added as an occluder
mask. This would be more efficient than only considering the maximum working area of
the device which could be rather large. Another interesting aspect for future work would
be to directly interface with the automated device and to use its internal configuration data
in order to not only obtain the current pose without using markers, but to also know its
future trajectory. This would be of great benefit for the collision avoidance application since
it would allow to detect collisions even earlier. Finally, it would be of interest to either stop
the device automatically or to compute an alternate trajectory on the fly which avoids the
detected obstacles.

7.2 Controlling Radiation Exposure in Interventional Environments

In this application we are concerned with another important interventional topic, namely
the radiation exposure of the physician. In contrast to even 10 years ago the use of inter-
ventional X-ray imaging and therefore the dosage received by the physician has increased
dramatically, especially for fluoroscopy guided procedures. In fluoroscopy the X-ray source
may be turned on for more than 30-60 minutes [ME96] during which the physician is stand-
ing very close to the patient and therefore the X-ray source. Due to the increase in the use of
fluoroscopy guided procedures, interventional radiologists have nowadays a much greater
risk of radiation damage. Although the dose received in a single intervention is not large, it

72

CHAPTER 7. APPLICATIONS

is well known, that long-term radiation exposure even at low doses can lead to negative ef-
fects on the body, which in the extreme can lead to cell mutations and cancer. The physician
is usually protected by a lead vest and sometimes a lead collar around his neck. However,
this leaves some body parts still exposed to the radiation, most notably the head, the arms
and the hands. Especially the hands are at danger since they are used to work on the pa-
tient and therefore closest to the radiation source [ME96, TTK+08]. To control the radiation
received a dosimeter is typically worn under the lead-vest. However, since the dosimeter is
worn under the protective vest, its readings are not representative of the radiation received
by the unprotected body parts. Moreover since it is placed at the level of the chest it is fur-
ther away from the X-ray source than for instance the hands and therefore only of limited
use. We want to present a solution to physicians, especially the less experienced ones, which
allows them to quickly gauge their radiation exposure during an intervention and over the
course of a longer time frame, in order to sensibilize them for the dangers associated with
X-ray radiation and the options of limiting their exposure. To this end we propose using our
real-time 3D reconstruction system together with a geometric tracking algorithm to recon-
struct and track the physician in the interventional room during the procedure and - with
the knowledge about the position and movement of the X-ray source - to approximate his
radiation exposure.

The contributions of this work are twofold: On the technical side we adapt a powerful
methodology for tracking the physician from his real-time 3D reconstruction [CBI10a]. The
tracking is a non-trivial problem since the physician has to be tracked based only on his ge-
ometry and correspondences have to be established between corresponding body parts in
different reconstructions. In addition, the scatter radiation is simulated and the results of
this simulation are used to determine the radiation deposited in an object at a given position
relative to the C-arm, such as the physician.

On the medical side we show a concept for a system which sensibilizes the physician to his
radiation exposure and which helps him to take more informed decisions when using X-ray
devices to minimize his risk for radiation related dangers. The system displays a color-coded
map of the physician after each intervention which shows his radiation exposure during the
procedure. This allows the physician to keep track of his long-term radiation exposure. The
system can also be used for making inexperienced physicians more aware of the dangers of
radiation exposure.

7.2.1 Related Work

There have been many medical studies concerning the radiation exposure of patients and
surgeons during different interventions [SAHML07, BBT08, TTK+08, GBMR09]. In [TTK+08]
for instance the radiation exposure of the patient and the surgeon is modeled mathemati-
cally. However, only estimates about the average distance of the surgeon to the X-ray source
are used. Many studies conclude that the radiation exposure of the physician during fluo-
roscopy guided interventions is very high in the area of the hands [ME96] and in the lower
extremities [SAHML07]. This has sparked some discussion about the possibility of protect-
ing the surgeon and making him more aware of the dose he has already received. Our system
attacks at this point since it allows the physician to check his exposure easily in an everyday
setting.

73

CHAPTER 7. APPLICATIONS

There has also been work on simulating the radiation exposure for training novel physicians
[WDDB09, BWD+09]. In this work the C-arm was modeled in a simulation and the radiation
dose was measured at several spherical detectors around the C-arm. However, the position
of the physician was not taken into account and the system was not meant for use in inter-
ventional rooms but for training. We are not aware of any work which tracks the physician
during the intervention and which accumulates his radiation exposure over the course of an
intervention.

The tracking stage of our system is responsible for establishing dense correspondences be-
tween the independent 3D reconstructions of the scene computed at each time frame. As we
are interested in the movement of the physician, our work relates directly to the vast body
of literature addressing markerless human motion-capture in multi-camera environments.
Most of these vision-based tracking algorithms use kinematic models in the form of a skele-
ton as discussed in the survey by Moeslund et al. [MHK06]. Such skeletal models allow
to effectively constrain the problem and reduce its dimensionality but they usually require
manual initialization of the joint positions, as well as lengthy parametrization of the tracked
person’s body characteristics from generic mesh models. In contrast to these approaches, we
chose to use the framework recently presented by Cagniart et al. [CBI10a]. This algorithm
doesn’t rely on strong priors on the nature of the tracked object and instead deforms the first
reconstructed mesh to fit the geometry in the rest of the sequence.

7.2.2 Reconstruction and Tracking System

We use our 3D reconstruction system described in chapter 4 to reconstruct the shape of the
objects inside the interventional room in real-time. The reconstruction of the physician is
then tracked using a mesh deformation framework. In a final step, the scatter radiation
created by the C-arm is modeled and accumulated using the reconstruction of the physician.
In the following sections we will describe the tracking and radiation modeling components
of the system in more detail.

Tracking

The result of the 3D reconstruction stage is a sequence of meshes independently recon-
structed at each time frame. We use the non-rigid mesh registration framework presented
by [CBI10a] to iteratively deform a reference mesh to fit the geometry in the rest of the se-
quence. The reference mesh is taken from the first frame of the sequence. We prefer this
tracking method to skeletal-based alternatives as it does not need an initialization of the
pose and of the body characteristics of the tracked person. The only requirement is that
the tracked physician must be clearly distinct from the rest of the reconstructed geometry
in the reference frame. The tracking algorithm first divides the reference mesh into elemen-
tary surface patches. These patches are considered rigid. During runtime each patch is
tracked using an ICP-based method. However, if each patch was tracked independently the
resulting deformed mesh would not be consistent. Therefore, the predicted patch positions
are determined using a weighting scheme taking the predictions of the neighboring patches
into account. This is expressed in a global cost function based on the data term (i.e. the ICP-
based tracking score) and the rigidity constraints over neighboring patches. By optimizing

74

CHAPTER 7. APPLICATIONS

this cost function a consistent deformed mesh is obtained. More details on this method are
given in [CBI10a]. The output of the tracking algorithm is a dense trajectory for each vertex
of the reference mesh across the sequence, which is necessary to accumulate the radiation
exposure over time.

Radiation Modeling

Scatter radiation is created by the interaction of X-rays with matter due to physical pro-
cesses such as Compton Scattering, Rayleigh Scattering and the Photoelectric Effect. These
processes create secondary particles such as electrons and weaker X-rays which are deflected
into certain directions according to the scatter spectrum of the particular interaction in ques-
tion. This interaction typically occurs inside the patient’s body. We therefore assume the
source of the scatter radiation to be at the center of the patient. As the energy of an X-ray
beam decreases quadratically with the distance from the source due to the dispersion of the
particles over a larger volume we use this quadratic falloff of the energy as the primary
modeling principle. Based on an initial energy at the scatter source, we compute a radia-
tion volume which contains the energy of the particles in every voxel of the volume. This
radiation volume is precomputed using some basic settings of the C-arm (e.g. the initial ray
energy) and composed with the tracked mesh obtained in the previous step. This allows
us to accumulate the radiation received by each vertex and by interpolation the radiation
received by the whole mesh.

In order to obtain a more accurate simulation of the radiation the exact characteristics of
the X-ray source as well as the patient geometry and composition (for instance obtained by
a registered CT scan) as well as the location and composition of other objects in the room
would have to be considered. This is, however, beyond the scope of our study.

7.2.3 Results

To validate our system we recorded an interventional scenario in our lab consisting of a C-
arm, a patient and a physician. The physician is moving around the C-arm while the C-arm
is constantly radiating. This is a typical scenario for a fluoroscopy guided intervention, since
in fluoroscopy the C-arm is also almost constantly radiating. The frame rate at which the re-
construction system is running is 20 fps. Once we obtain the reconstruction of the physician,
we start the tracking algorithm. The physician is then tracked during the entire sequence.
With the knowledge of the position of the X-ray source and the patient we can compute the
source of the scatter radiation which is subsequently modeled using the radiation simula-
tion framework. Since we have the tracked mesh of the surgeon with corresponding vertices
over time, we can simply add up the radiation at each vertex position for each frame. By per-
forming this addition over the whole sequence we obtain the final radiation dose collected
by the physician for each vertex of his reconstruction. These values are then interpolated to
obtain the radiation on the whole mesh. This is reasonable since the mesh consists of only
small triangles. Finally, we visualize the accumulated radiation using a heat map (see figure
7.3). The scaling on the heat map is set so that the maximum amount of radiation received
by the physician is marked as bright red. This makes it easier to visually gauge the exposure.
It can be seen, as also observed in [TTK+08], that the hands receive most of the radiation.

75

CHAPTER 7. APPLICATIONS

Figure 7.3: Results on a sequence recorded in our lab. The three rows show the radiation
exposure at the beginning, the middle and the end of the intervention. The first column
shows one of the input images, the second column shows the tracked 3D scene and the final
column shows the physician in his reference pose with the color-coded radiation exposure.

7.2.4 Discussion

We understand our system as a proof-of-concept. Our goal was not to develop a system
which can be directly used in an operating room, but to show what problems have to be
addressed, which methods are available to solve them and how they can be combined in a
sensible way. In particular the exposure computed by our system needs to be validated by
experimental measurements and the dynamic and static environment of the interventional
room needs to be taken into account in more detail.

7.2.5 Conclusion and Future Work

We presented a system for modeling the radiation received by a physician during an in-
tervention. Our system builds on a real-time 3D reconstruction of the interventional room
which is used for tracking the 3D-mesh of the physician using a mesh deformation frame-
work. Our contribution is the combination of real-time 3D reconstruction and mesh-based

76

CHAPTER 7. APPLICATIONS

tracking to help the physician estimate his radiation exposure and to allow him to collect
statistics about his long-term exposure. Our system can also be used for making novice
physicians more aware of their radiation exposure. Future work includes validating the
radiation estimation by using sensors attached to the physician, creating profiles for each
physician and bringing the system to a real interventional room.

7.3 Workflow Analysis

Workflow analysis deals with recovering and analyzing the workflow of an intervention
[LSM+05, LNA+06, PBE+07]. This analysis is performed using signals obtained during the
intervention (e.g. the presence of certain instruments) and a model of the surgery to deter-
mine the current stage of the surgical procedure. This allows for instance to give an esti-
mate of the remaining time of the procedure or to adapt the user interface of the surgeon’s
workstation to only show the information relevant for the current step of the procedure. In
addition, workflow analysis could be used to help document the surgery and to analyze and
compare the proficiency of different surgeons in performing the same procedure. However,
all these goals can only be achieved when it is possible to automatically obtain signals which
allow to deduce the current state of the intervention. In practice these signals although
plentiful are hard to obtain in an automated fashion without user intervention and without
interfering with the surgeon’s work. The real-time 3D reconstruction provided by our sys-
tem on the other hand is non-intrusive and contains enough information to be used as an
input signal to a workflow recovery algorithm.

Consequently Padoy et al. [PMW+09] explored the use of our system for monitoring the
workflow of an interventional procedure. They use the 3D reconstruction to extract 3D mo-
tion features. These motion features are used as input to a Hidden Markov Model (HMM)
describing the surgical procedure. Using this model and the computed 3D motion features,
the current state of the surgery is determined. The 3D motion features used are based on an
extension of the Lukas-Kanade method (KLT) [BM04] to 3D. For computing them the recon-
struction volume is subdivided into a set of evenly spaced cells. For each cell a histogram
of the motion orientations - determined using KLT - are computed. In a final step the di-
mensionality of the histograms is reduced using PCA. These reduced histograms are given
as input vectors to the HMM model. They are used both to train the HMM and to determine
the current phase of the intervention at runtime.

The fact that our system was already successfully adopted by other researchers for use in
interventional environments in our opinion underlines the significance of our work for the
medical community.

7.4 Mixed Reality Interactions

Next to the interventional applications, we also developed a mixed reality application, in
order to demonstrate the wide range of uses of our 3D reconstruction system. One of the
key aspects in mixed reality is the integration of virtual objects into a real scene and their
interaction with real objects. However, this is a non-trivial problem. To create the illusion of

77

CHAPTER 7. APPLICATIONS

actually belonging to the scene, a virtual object has to behave properly in the face of occlu-
sion. Many existing systems are not capable of handling this case, leading to unconvincing
augmentations, where the virtual object appears in front of the occluder. Another important
aspect for a convincing presentation is the ability to interact with virtual objects. For in-
stance, this would allow the user to pick up a virtual object and place it at another position.

We present a system which is capable of addressing both the occlusion and the interaction
issue to create a convincing mixed reality environment. The user can interact with virtual
objects without requiring any additional tools or external tracking while at the same time
occlusions are seamlessly handled. Our system is based on the reconstruction of the 3D
shape of objects inside an interaction space. Our proposed real-time 3D reconstruction sys-
tem provides us with a 3D representation of every object in the scene, which in turn allows
us to convincingly add virtual objects and to handle occlusions automatically. One of the
key advantages of such a system over more traditional tracking-based systems is that we do
not require any a priori information about the objects in the scene. We also do not need any
prior setup or calibration for someone to use our system. There can even be multiple people
in the interaction space at the same time. This makes our system a good candidate for use
in real environments where people can just enter the interaction space, start to interact natu-
rally with the virtual scene and then leave, without having to put on any special equipment.
This significantly lowers the barrier to try the system and makes it attractive for presenting
it to a wider audience, for instance in museums.

We implemented two exemplary applications which highlight the aspects of interaction and
occlusion handling respectively. The first application is loosely based on the game Pong.
The goal of the game is to prevent a virtual ball which is bouncing between the user and a
wall from leaving the interaction space, by placing oneself in its path (see figure 7.4). This
application shows the interaction between real and virtual objects. The second application is
more focused on providing correct occlusion handling. This is done in the context of video
compositing. We record several sequences in the interaction space at different points in time
and use the depth map computed from the 3D reconstruction to join the sequences while
correctly handling occlusions.

7.4.1 Related Work

In recent years, several real-time 3D reconstruction systems which explicitly recover the vi-
sual hull have been proposed [CKBH00, BSD03, WTM06, AMR+07, HLS04, LBN08]. How-
ever, only [HLS04, AMR+07, LBN08] actually run at frame-rates which allow interactivity.
Other researchers have focused on implicitly computing the visual hull [MBR+00, PCF+02,
DMB07, LNWB03]. The main difference to the explicit systems is that they only generate
an image of the visual hull from a novel viewpoint without recovering an explicit 3D recon-
struction. This is acceptable in some cases, but does not allow any form of interaction which
requires the full 3D shape (e.g. taking the volume of the object into account). However,
it is still possible to use it for collision detection [LNWB03, DMB07]. As is to be expected
these systems run faster than comparable systems performing an explicit 3D reconstruction.
However, today explicit reconstruction systems reach real-time performance, so that there is
no drawback to making use of the additional information.

Some early work on real-time 3D content capture for mixed reality, was presented in [PCF+02].

78

CHAPTER 7. APPLICATIONS

Figure 7.4: Our system allows the user to interact with virtual objects using natural move-
ments due to a real-time 3D reconstruction. The images placed around the center show some
of the input views while the center and the left side show an orthographic and a perspective
view of the scene respectively.

In this paper a novel view generation system was used to insert 3D avatars of real objects into
a virtual environment. The system runs at approximately 25 fps using 15 cameras. However,
the aspect of interaction between real and virtual objects was not considered. In [DMB07]
the authors present a collision detection scheme which extends the work in [LNWB03] al-
lowing the interaction between real and virtual objects. However, they are also not using an
explicit 3D reconstruction. In addition their system is running at only 10 fps using 7 cameras
which is rather low for real interactivity. Petit et al. [PLBR09] as well as Hasenfratz et al.
[HLS04] also present mixed-reality applications allowing the interaction between real and
virtual objects based on the GrImage platform developed at INRIA.

Using our system we recover the explicit 3D reconstruction of all objects in the scene at a
real-time frame rate of 30 Hz using 16 cameras. This allows us to also perform interactions
with objects which are occluded by other objects and would therefore not be visible in a
system based on an implicit reconstruction.

7.4.2 Pong

The idea of using mixed reality to create a game in which users interact with virtual objects
has already been introduced with the ARHockey system [OSYT98]. The ARHockey system
used a lot of tracking devices and HMDs to enable the illusion of having a virtual puck

79

CHAPTER 7. APPLICATIONS

Figure 7.5: Our system allows the user to play Pong by interacting with a virtual ball. In the
upper left corner the player’s remaining life points are shown.

which is controlled by the hands of the users. Picking up on this idea we used our system
to implement a game which is loosely based on the game Pong. In the original game two
players each control a pad and pass a ball between each other. If a player fails to catch the
ball his opponent gains a point. We modified the game so that one player is playing against
a wall. The goal is to keep the ball from exiting the scene. The player has a certain amount
of life points and has to try to keep the ball in the game for as long as possible.

We use a video projector to display the reconstruction of the interaction space on a wall.
The user can see himself moving in 3D and he has to position himself, such that the ball is
reflected off of him (see figure 7.5). The collision test is performed between the virtual object
and the visual hull. There are two modes. In the first mode we only use the bounding box
of the visual hull to perform the collision test. This has the advantage that it is easier for the
user to hit the ball, because there is a bigger interaction area. Using the bounding box also
allows children to easily capture the ball, because they can extend their arms to compensate
for their lesser body size. The second mode performs the collision test directly between the
visual hull and the virtual object. This leads to a more natural interaction, because it is very
intuitive. However, the problem here is that it is hard for the user to estimate the height of
the virtual ball, so that it might happen that he extends his arm, but the ball passes below it.
This problem can be reduced by showing several views of the reconstruction. Optimally a

80

CHAPTER 7. APPLICATIONS

Figure 7.6: Video compositing. We created a new sequence by composing the same video six
times in 1 second intervals. Note the correct occlusion handling with respect to the virtual
ball and the different time steps of the original sequence.

stereoscopic HMD would allow the most natural interaction.

It is also possible for multiple people to play the game at the same time. Due to the use of our
reconstruction system the player can use his whole body to catch the ball. The interaction is
very natural and people intuitively know how to move to catch the ball. Their movement is
not hindered by any additional equipment as would be the case in a tracking-based solution.
Even when using a tracking-based solution it would be quite complex to correctly compute
the extents of the body. Due to its easy usability and the fact that no setup or training phase
is necessary for the user, our system is well suited for use in a real environment, for instance
in a museum.

7.4.3 Video Compositing

As a second application we implemented a video compositing system which properly han-
dles occlusions. This is an important topic in mixed and augmented reality [Ber97, KYS03].
Using our system we recorded a sequence of a person walking inside the interaction vol-
ume. The goal was to compose the same scene multiple times in one of the input cameras.

81

CHAPTER 7. APPLICATIONS

We therefore first used the reconstruction to compute the depth map for the target camera
for every frame in the sequence by tracing a ray for every pixel into the scene and finding
the distance to the first intersection point of the reconstruction. In order to compose two
different parts of the scene into one frame we first need to select one frame as the reference
frame. The foreground objects from the second frame are then transferred into the reference
frame using the segmentation as mask. For every pixel in the second frame which is marked
as foreground the depth at this pixel and the corresponding pixel in the reference image are
compared. If the depth of the pixel in the reference image is larger, the pixel from the other
image is used. Otherwise the pixel in the reference image is kept.

By using both the information from the depth map and the segmentation we created a se-
quence which shows the same scene at six time steps with an interval of one second in be-
tween at the same time (see figure 7.6). The effect is that instead of one person you can see a
queue of 6 copies of the same person walk inside the room. Due to the use of the depth map
we correctly handle the occlusion effects. In addition, we added a virtual bouncing ball to
the scene which also correctly obeys the occlusion constraints. For creating the composited
scene we currently do not apply any image-based refinement on the silhouette borders, but
this could be easily added into the system.

The compositing results we obtained would be very hard to achieve using purely image-
based techniques which do not consider any information about the 3D structure of the scene.
It would require a (manual) segmentation of the objects of interest in the entire sequence
which is extremely time consuming especially for long sequences. With our solution the
segmentation and the depth information is automatically recovered without any additional
intervention from the user.

7.4.4 Conclusion

We presented a real-time system for occlusion-aware interactions in mixed reality environ-
ments. The 3D scene reconstruction is used to allow users to interact naturally with virtual
objects inside the scene while correctly handling the problem of occlusions in the augmen-
tation. This is an important aspect in mixed and augmented reality. We demonstrated the
results of our system in two application scenarios. The first application is an interactive game
which focuses on the interaction aspect, while the second application is a video compositing
task which focuses on occlusion handling.

7.5 Conclusion

We presented several applications making use of our real-time 3D reconstruction system. In
particular we focused on interventional applications, showing how our system can be used
for collision avoidance, radiation modeling and workflow analysis. These interventional
applications demonstrate the value our system adds to an interventional environment by
enabling novel interventional applications.

We created two installations of the system: One in our lab and one in a real interventional
room. All experiments were performed using our lab system, while the clinical installation

82

CHAPTER 7. APPLICATIONS

was used to collect information for improving the design of future real-time 3D reconstruc-
tion systems used in interventional environments. This will be discussed in more detail in
the next chapter. In addition to the interventional applications we also presented a mixed
reality application which enables occlusion-aware interactions. We are certain that the en-
couraging results obtained in the presented applications as well as the fact that our system
was already used successfully by other researchers for clinical applications motivate further
research in bringing multi-camera 3D reconstruction systems into the interventional room.

83

CHAPTER 7. APPLICATIONS

84

CHAPTER 8. CONCLUSION

Chapter 8

Conclusion

We presented a real-time multi-view 3D reconstruction system for interventional environ-
ments paying particular attention to the special conditions encountered in interventional
rooms. On the algorithmic side we proposed both a high performance visual hull com-
putation algorithm running on the GPU and an incremental visual hull reconstruction ap-
proach. On the application side we focused on two interventional applications, namely col-
lision avoidance with automated medical devices and modeling the radiation exposure of
the physician due to scatter radiation. In addition, we investigated a mixed reality applica-
tion allowing interactions between virtual and real objects and shortly looked at workflow
analysis using 3D data. The main goal of this work lies in showing the many possible uses of
real-time 3D reconstruction systems in interventional environments and in paving the way
for actually bringing such systems into clinical application.

8.1 Discussion and Future Work

Bringing a multi camera system to an interventional room poses several challenges related
to the working conditions in such an environment. We therefore created two installations
of our system: one in our lab and one in a real interventional room. The lab system was
used for development and performing experiments, while the hospital system was used for
learning about the conditions in interventional environments (see figure 8.1). In the follow-
ing discussion we will list the challenges we encountered when bringing the system to the
hospital and talk about our proposed solutions to these problems.

The experience we collected with the installation of the system in an interventional room,
shows that there are several issues which are of importance in interventional environments,
but which do not typically occur in multi-camera studios. First and foremost the changing
and complex background has to be mentioned. Tooltables, cupboards and other medical
instruments and appliances are located around the patient table. These are moved, replaced
or taken away during the intervention. Often the background and foreground also have
similar colors and there may be transparent and mirroring objects inside the scene. On top
of that the lighting conditions are quite challenging since spot lights are popular and some
physicians prefer to work almost in the dark with only a few spot lights illuminating the
working space. These problems have to be addressed during the background subtraction

85

CHAPTER 8. CONCLUSION

Figure 8.1: Images of our camera setup in the interventional environment. The cameras are
highlighted with red circles. Note that the C-arm and the patient table have a similar color
as the background. The C-arm and the ceiling suspended monitors also create dynamically
changing occlusions.

stage of our system. We use a robust background subtraction algorithm which can deal with
quick illumination changes. This makes background subtraction more robust, but still does
not solve all problems. A problem which is in principle very hard to address are the sim-
ilar colors of the background and the foreground objects. One way of dealing with this
is to include TOF cameras in the interventional room, which do not depend on the color
of the background in order to perform a segmentation. They could be used to perform a
segmentation based on object depth. Additionally, the use of a multi-camera system should
be taken into account during interventional room design by making certain that the back-
ground (walls, cupboards, etc.) are of a different color than the typical grayish tones used
for medical devices.

Occlusions, such as those created by ceiling suspended devices, monitors and the patient
table, also pose problems. In addition, the medical devices (in our case the C-arm) also
dynamically occlude the scene and have to be modeled explicitly. These problems can be
addressed by adding static occlusion masks to the segmentation results in the case of static
occluders. For dynamic occluders tracking them explicitly using an articulated model is
one option. This would require to either add markers to the objects or to use a markerless

Challenge Proposed Solution

Complex and changing background Robust background subtraction, TOF cameras
Same color background TOF cameras, Design of interventional room
Transparent objects and mirrors Explicit modeling
Static Occluders Occlusions masks
Dynamic occluders Tracking and dynamic occlusion mask, TOF cameras
Changing lighting conditions Robust adaptive background subtraction
Crowded environment Careful selection of number and location of cameras

Table 8.1: List of challenges encountered in interventional environments and our proposed
solutions.

86

CHAPTER 8. CONCLUSION

tracking algorithm which focuses on some easily detectable structures on the object. Another
option would be to use TOF cameras and to segment objects inside the reconstruction area
based on their depth.

Last but not least and also related to the issue of occlusion the interventional environment is
usually quite crowded making it hard to properly reconstruct all objects without too many
ghosting artifacts. This has to be addressed by carefully choosing the location and the num-
ber of cameras based on the typical occupancy pattern of the room.

In table 8.1 the challenges and our proposed solution are summarized. It is our belief that
in order to make multi-camera reconstruction practical, the requirements of multi-view re-
construction systems have to be taken into account during the design of the interventional
room, just as the presence of automated devices had to be taken into account when they were
first introduced. The addition of TOF cameras could significantly improve the quality of the
reconstruction, since they simplify one of the most challenging aspects of a purely passive
vision-based approach, namely the difficulty of obtaining a good foreground-background
segmentation.

Despite all these challenges, we believe that it is worth to tackle this problem since the
addition of a multi-camera system adds a lot of value to the interventional environment
by providing such innovative applications as collision avoidance, radiation modeling and
workflow analysis, just to name a few.

87

CHAPTER 8. CONCLUSION

88

Part II

Multi-View 3D Reconstruction and
Organisation of Image Collections

89

CHAPTER 9. INTRODUCTION

Chapter 9

Introduction

In the second part of this thesis we will be concerned with the reconstruction and organi-
zation of (large) image collections. This topic has received increased attention in the last
years due to the advent of Internet photo sharing sites like Flickr. By searching for a certain
location on a photo sharing site a tremendous amount of images can be obtained almost in-
stantaneously. However, there is also a downside to the ready availability of large amounts
of visual data. Traditional reconstruction algorithms cannot properly deal with such huge
numbers of images, as their runtime and memory consumption quickly goes beyond accept-
able boundaries. At the same time not all images returned by a keyword search are related
to the object of interest. Searching for ’Notre Dame’ for instance not only returns images of
the cathedral in Paris, but also of the US university of the same name among many other
even totally unrelated search results. In addition, images are taken at different times of day
and in different seasons and therefore include strong illumination changes and a variable
background. Therefore, one important issue in dealing with such image collections is not
only to perform efficient reconstructions but to also deal with organizing them and remov-
ing irrelevant or duplicate images.

In the following chapters we will be dealing with these issues. First, we investigate a method
for obtaining high quality reconstructions of a scene since only using the visual hull is insuf-
ficient. Secondly, we are interested in clustering large image collections into smaller subsets,
which can in turn be reconstructed more efficiently than the whole image set. Finally, we are
interested in organizing image collections, i.e. browsing through them, finding representa-
tive images (so called canonical views) and removing redundant images for the purpose of
reconstruction. However, before discussing each of these topics in more detail in the next
chapters, we will first give a brief overview of the area of reconstructing and organizing
large image collections.

9.1 Reconstructing and Organizing Large Image Collections

When considering reconstruction from image collections two areas have to be distinguished.
The first aims at producing high-quality reconstructions using a moderate number of well-
selected images, while the second considers using thousands if not ten thousands of images
taken from Internet photo sharing sites such as Flickr for reconstruction. While the ultimate

91

CHAPTER 9. INTRODUCTION

Figure 9.1: Reconstruction results taken from [VKLP09]. The left and right show untextured
and textured reconstruction results respectively. From top to bottom: Mountain (51 images),
Sculpture (27 images), Castle (10 images), Herz-Jesu (8 images)

92

CHAPTER 9. INTRODUCTION

Figure 9.2: Examples of organizing and navigating through Internet Photo Collections taken
from [SSS08b]. The left view shows the recovered camera positions of some images, while
the right view shows the user interface for navigating through the image set.

goal of both areas is to obtain a 3D reconstruction, the challenges associated with using pho-
tos from Internet photo sharing sites are larger, since, as already mentioned, the amount of
images and their variability, do not allow to simply use a traditional reconstruction approach
without any prior preprocessing.

In the area of obtaining high-quality reconstructions there has been considerable work in the
last decade [SCD+06]. The techniques used in this category typically belong to the area of
multi view stereo and were already briefly discussed in chapter 2. Most current approaches
start from an initial approximation of the object shape as obtained for instance through the
visual hull or by triangulation and deform it until the reconstruction is maximally photo-
consistent with the input images.

Based on the representation of the reconstruction and on how the optimization is performed
several categories of methods can be distinguished. In graph-cut based approaches [BK03,
VETC07, HVC07] the reconstruction is typically represented on a voxel grid and the optimal
shape is found using a graph-cut on this grid. The advantage of this approach is that it
gives the optimal solution in theory. In practice this is not always the case. We will have a
closer look at this in the next chapter. Another shortcoming of this approach is the memory
overhead due to the spatial discretization of the scene into voxels which can quickly grow
beyond reasonable boundaries if a high-resolution reconstruction is desired.

Another class of methods are the variational approaches [FK98, PKF07, VKLP09] which it-
eratively deform a surface using gradient descent methods. The scene may be represented
as a levelset function or as a mesh. The disadvantage of this method is that the gradient
descent algorithm can fall into local minima. On top of that when using the levelset rep-
resentation the same memory concerns apply as for the voxel grids used in the graph-cut
approach. Therefore one of the currently most popular approaches is to use meshes since
the memory overhead is smaller and the resolution can be adapted to the level of detail of
the actual object being reconstructed.

One of the up to date most impressive reconstruction results was presented by Vu et al.
[VKLP09]. They reconstruct large-scale outdoor scenes using a variational approach on

93

CHAPTER 9. INTRODUCTION

meshes which is efficiently implemented on a PC cluster to obtain reasonable runtimes.
Some reconstruction results are shown in figure 9.1.

Regarding reconstruction from large Internet photo collections the Photo Tourism project
[SSS08a] can be considered as one of the first major works. In that paper a large set of
images taken from Internet photo collections is used for performing a point-based 3D re-
construction of the scene. An exhaustive pairwise matching followed by an incremental
bundle adjustment phase are used both for the reduction of the image set and for 3D re-
construction. Follow-up work focused more on the aspect of organizing image collections
for different purposes. In [SGSS08] the authors focused on navigating through large image
collections by selecting appropriate neighboring views given an initial starting image and
allowing the user to explore the scene visually by moving through the images in an intuitive
manner (see figure 9.2). In other work Simon et al. [SSS07] considered summarizing the scene
by selecting canonical views, i.e. images which contain much of the visual variance of the
scene. Later Snavely et al. [SSS08b] worked on speeding up the initial reconstruction pro-
cess by building a skeletal graph over the input image set which removes irrelevant images
in order to perform an efficient and fast initial reconstruction which can then optionally be
refined by adding back some of the removed images. Li et al. [LWZ+08] presented an appli-
cation for performing reconstruction and recognition on large image sets. They construct a
so called iconic scene graph which relates canonical views of the scene and use it for 3D re-
construction. This allows to already remove many irrelevant images before even performing
an exhaustive pairwise matching which was a significant bottleneck in the Photo Tourism
project. There have also been earlier attempts at reconstruction from unordered image col-
lections [SZ02], however the number of images used was still small compared to the Photo
Tourism project. Recently the computation time for obtaining high-quality reconstructions
has been driven down quite dramatically using smarter bundle adjustment techniques (e.g.
skeletal graphs [SSS08b]), GPUs and computer clusters [ASS+09]. Some recent quite impres-
sive results from [ASS+09] are shown in figure 9.3. Around 150,000 images of Rome, 250,000
images of Venice and 57,000 images of Dubrovnik were collected from the Internet. After
initial processing and clustering the largest connected components still contained thousands
of images, which were then used to reconstruct some of the sites shown in figure 9.3.

9.2 Contributions

The contributions made in this part of the thesis are threefold. We first present an algorithm
for obtaining high-quality reconstructions from moderately sized image sets. The proposed
method is based on the graph-cut framework for reconstruction and adds a mechanism for
preserving protrusions which are removed in the standard graph-cut formulation due to the
minimum surface bias inherent to this method. The second work deals more directly with
efficiently reconstructing large image collections. We propose a method to cluster large im-
age sets into smaller subsets which can then be reconstructed independently and merged
afterwards. This allows us to use existing reconstruction algorithms on large image col-
lections. The third work proposes a general scheme for organizing large image collections
using a spatial data structure relating scene regions across different images. Based on this
structure we propose several applications related to organizing image collections, such as
canonical view selection, image-based navigation and image set reduction, i.e. removing

94

CHAPTER 9. INTRODUCTION

Figure 9.3: Reconstruction results taken from [ASS+09]. Left (top and bottom): Two recon-
structions of Dubrovnik’s old city center (4,619 images). Right: Colosseum (2,106 images,
top) and Trevi fountain (1,936 images, bottom).

images not contributing to a 3D reconstruction. Each of these contributions directly relates
to the processing steps required for reconstructing large image collections, namely organiz-
ing the image collection, clustering it and performing the reconstruction.

95

CHAPTER 9. INTRODUCTION

96

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

Chapter 10

Graph-Cut-based Reconstruction

As seen in the first part of this thesis, the visual hull is only an approximation to the true
shape of an object. We would like to improve on this approximation in order to obtain a more
accurate 3D reconstruction. There exist many methods for this purpose as already discussed
in chapter 2. In this chapter we use the volumetric graph-cut framework [BK03] for 3D
reconstruction from multiple calibrated images and present a new algorithm for reducing the
minimal surface bias associated with this approach. Our algorithm is based on an iterative
graph-cut over narrow bands combined with an accurate surface normal estimation. At
each iteration, we first optimize the normal to each surface patch in order to obtain a precise
value for the photometric consistency measure. This helps in preserving narrow protrusions
with high curvature which are very sensitive to the choice of normal. We then apply a
volumetric graph-cut on a narrow band around the current surface estimate to determine the
optimal surface inside this band. Using graph cuts on a narrow band allows us to avoid local
minima inside the band while at the same time reducing the danger of taking "shortcuts" and
converging to a wrong "global" minimum when using a wide band. Reconstruction results
obtained on standard data sets clearly show the merits of the proposed algorithm.

10.1 Introduction

Reconstructing the shape of an object given a set of calibrated input images is a topic which
has been extensively studied in the computer vision community as recently surveyed in
[SCD+06]. A first class of methods reconstruct the visual hull of the object [Sze93, Lau94,
FB03, LFP07]. These methods exclusively use silhouette information; consequently, they do
not recover the concavities of the shape. A better shape reconstruction can be obtained using
voxel-coloring or space carving which take the photometric consistency of the surface across
the input images into account and allow the recovery of the photo-hull that contains all pos-
sible photo-consistent reconstructions [SD99, KS00, Kut00, SCM+04]. This approach works
well in general; unfortunately, if a voxel is wrongly carved, it cannot be restored in later
iterations. This can lead to the carving of the whole neighboring region (if not the whole vol-
ume). In addition, since space-carving is a greedy approach, it is hard to enforce smoothness
constraints on the reconstruction. Another class of methods optimizes the surface integral
of a consistency function over the surface shape. One way of minimizing this cost function

97

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

is the variational/level set formulation [FK98, HS04, PKF07]. In this formulation the surface
is iteratively deformed using a gradient descent method. It is also possible to add regular-
izers to the cost function, such as smoothness constraints. However, being a local method
it can fall into a local minimum. A second way of minimizing the surface integral is to use
graph cuts [BK03, SP05, VTC05, BL06, FP06, HK06b, LBI06, TD06, YAC06, HVC07, SMP07].
One problem is that the cost function which is minimized is a minimum surface functional
and hence the global solution is biased towards smaller shapes. Therefore, the global min-
imum might not correspond to the actual surface. This is also true for level set methods,
but due to the local convergence properties of level sets, the effect is not as strong as in the
case of graph-cuts. In practice this leads to the carving of narrow protrusions, since the
graph-cut solution prefers shorter cuts over long cuts. This problem has been addressed
by incorporating silhouette constraints [SP05, TD06, FP06, SMP07] or adding a ballooning
term [VTC05, HVC07]. However, using silhouette constraints is only viable when exact sil-
houettes are available and a global ballooning term has the side effect of also pushing out
concave regions of the object. In addition to the optimization method, the photometric con-
sistency measure and its accurate computation also play an important role for the quality
of the reconstruction results. In fact, an incorrect estimation may lead to overcarving the
volume and eliminating protrusions.

We propose a method to reduce the bias of graph-cuts for smaller cuts without requiring
exact silhouette images or using a ballooning term. To this end, we use iterative volumetric
graph-cuts over narrow bands to minimize the influence of shortcuts on the reconstruction
coupled with an exact normal optimization for each surface patch which is used to compute
an accurate photoconsistency score. It is through this combination that we are able to avoid
the overcarving of narrow protrusions. Using each technique by itself does not avoid the
overcarving. Using only narrow bands still allows overcarving when the photoconsistency
score is incorrectly estimated, while using an exact photoconsistency score in a wide band
also has a high probability of overcarving, because of the high variation in possible path
lengths (see figure 10.1(a)). At each iteration, we first compute the visibility of the current
surface estimate and optimize the normals to the surface in order to obtain a precise value
for the photometric consistency measure. Then, we apply a volumetric graph-cut in order to
determine the optimal surface inside a narrow band around the current surface estimate. The
band size can be adjusted to achieve a tradeoff between the ability to overcome local minima
and the ability to preserve protrusions by discouraging shortcuts. We show that iteratively
searching for the correct orientation of the surface and considering narrow bands is able to
deal with the graph-cut’s inherent bias for smaller shapes without requiring a ballooning
term or exact silhouettes. Thereby our algorithm reduces problems with overcarving and
preserves protrusions of the surface.

10.2 Related Work

The use of graph-cuts on narrow bands was proposed by Xu et al.[XBA03] in the context
of image segmentation. Hornung et al.[HK06b] suggested the use of hierarchical iterated
graph-cuts for 3D reconstruction. However, using graph-cuts on narrow bands alone does
not necessarily preserve protrusions. Another important aspect is the exact computation of
the surface consistency score. This is typically performed by computing the NCC of a small

98

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

patch in the tangent plane of the surface over several images. A critical aspect in this compu-
tation is the choice of the normal. The current surface estimate given by the graph-cut is not
well-suited to determining accurate normals to the surface due to the discretization. In ad-
dition, the current surface estimate can be quite different from the actual surface. Therefore
it is not sufficient to only evaluate the consistency measure using the normal given by the
current surface. Instead it has to be optimized in order to find the most consistent normal
over all input images in which the surface point is visible. This helps significantly in de-
termining correct consistency values even for high curvature regions which cannot be well
represented on the voxel grid. The concept of optimizing the surface normal appeared in
other work related to 3D reconstruction [GM04, FP07, HK06a, HK07, ZPQS07]. Habbecke
and Kobbelt [HK06a, HK07] use a normal optimization in order to find the orientation of 3D
patches which are combined to approximate the surface. A similar idea is used by Furukawa
et al. [FP07]. Both of these assume a reference patch with respect to which the normal is op-
timized. This is in contrast to our work which does not assume a reference view. None of
these consider the use of normal optimization in conjunction with narrow band graph-cuts.

Prior work related to reducing the minimum surface bias in graph-cut reconstructions uses
either a ballooning term [VTC05, BL06, VETC07, HVC07] or includes silhouette constraints
[TD06, FP06, SMP07]. The use of a global ballooning term as suggested in [VTC05] has the
drawback of also affecting concavities. It is often not possible to find one single value which
achieves the desired effect of preserving protrusions and not affecting concavities. Hernan-
dez et al. [HVC07] use an intelligent ballooning term which is based on the evidence of
regions being inside or outside the volume. This yields improved results over using a global
ballooning term. Boykov et al. [BL06] use the photoflux as an intelligent ballooning term
to drive the reconstruction towards the object boundaries, thereby allowing the recovery of
thin structures. The results they achieve on the Gargoyle data set are comparable to ours.
However, we achieve this by using the normal optimization which does not require to add
extra links to the graph for incorporating the intelligent ballooning term. The use of silhou-
ette constraints is only viable when exact silhouettes are available. This is not always the
case. In addition, the silhouettes only constrain the shape of the surface on the rims. The
method proposed by Yu et al. [YAC06] uses graph-cuts on surface distance grids. The draw-
back of their method is that they assume, that the initial estimate is already quite close to the
final result.

10.3 Volumetric Graph-Cuts

In this section we describe the volumetric graph-cut approach on which our reconstruction
algorithm is based. We focus in particular on the photoconsistency measure used and the
design of the graph.

10.3.1 Consistency Measure

One of the most common measures for evaluating the photo-consistency of a surface patch
in the input images is the NCC due to its invariance to linear illumination changes. Similar
to [FP06, SMP07], we compute the NCC for a surface patch over the image projection of its

99

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

tangent plane. The tangent plane is sampled with a uniform grid in 3D and each point is pro-
jected into the images in which the surface patch is visible. Since the NCC is only defined for
image pairs, it has to be extended to multiple images in order to get one consistency score.
One way of doing this is to select a reference image and to compute the NCC between this
image and all other images. Using this approach, the reliability of the score depends very
much on the reference image: If the reference image is of bad quality or if it contains occlu-
sions which have not been captured by the model, the correlation will be low. Therefore,
we choose to compute the mean of the pairwise score of all image pairs. If the NCC score
between images i and j of the voxel x is ηij(x), the photo-consistency score is given by

ρ(x) = Ψ

⎛⎝ 2
n(n − 1)

∑
i

∑
j>i

aijηij(x)

⎞⎠ (10.1)

where Ψ(x) = min(1 − x, 1) normalizes the score to the interval [0, 1]. n is the number of
images and aij is a weight depending on the angle between the two cameras. Since this
consistency measure is based on the tangent plane it is important to obtain a good normal
to the surface. A wrong normal can result in a low consistency score which in turn will lead
to overcarving. Therefore, in our algorithm, we use the normal which results in the highest
photo-consistency score as described in section 10.4.1.

In our implementation, we sample the tangent plane with a 5× 5 grid. The spacing between
the grid points is chosen so that no pixels in the image are missed. We only use views form-
ing an angle of less than 60 degrees with the surface normal. The weights aij are chosen as
the cosine of the angle between the viewing directions of camera i and j thereby penalizing
big angles.

10.3.2 Surface Optimization with Graph-Cuts

3D reconstruction can be cast as an optimization problem to find the minimum cost surface
where the cost of the surface S is modeled as the surface integral over a consistency score
ρ(x) for each surface patch x

E =
∫∫

S
ρ(x)dA (10.2)

Volumetric graph-cuts provide a way to find an approximately optimal solution to this min-
imization problem. This is done by converting the continuous problem into a discrete for-
mulation over a voxel grid [BK03].

Given an initial estimate of the surface, a band is constructed around it and the best surface
inside this band is found using a graph-cut [BVZ01, KZ04]. For every voxel x in the band
the consistency score ρ(x) is computed, where a lower cost signifies a better consistency. In
order to be able to compute the consistency for a voxel, it is necessary to know the visibility
and depending on the consistency measure also the normal of the voxel. This information
is propagated from the original surface by assigning the visibility and the normal from the
closest voxel in the original surface. Alternatively, it can also be estimated for each layer in
the band using the surface given by this layer.

Every voxel in the band is represented as a node in the graph. The source of the graph is
placed inside the object while the sink is placed outside. All voxels on the inner boundary of

100

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

(a) (b)

Figure 10.1: Figure (a) shows the advantages of using a narrow band. When using wide
bands protrusions can be totally filled out. The graph-cut will then prefer the shortcut
through the high-cost region, because its accumulated cost is less than that of the long path
through the low-cost region. When using a narrow band, the graph-cut will take the low-
cost path because there is no shortcut and any deviation from the low-cost path will incur
a high cost. Figure (b) shows the photo-consistency computation. We find the plane which
best approximates the surface passing through a voxel.

the band are connected to the source and all voxels on the outer boundary are connected to
the sink by edges of infinite weight. Neighboring voxels xk and xl are connected by edges
of weight

wkl = ckl
ρ(xk) + ρ(xl)

2
(10.3)

where the term ckl is a weight proportional to the distance between the two voxels [BK03].
Typical neighborhood systems are the 6- and the 26-neighborhood. All voxels still connected
to the source after applying the graph-cut are part of the optimal volume.

In our implementation, we use the 26-neighborhood of the voxel instead of the 6-neighborhood
when constructing the graph. This helps to avoid some of the discretization artifacts associ-
ated with graph cuts.

10.4 Proposed Reconstruction Method

We use an iterative graph-cut approach to recover the shape of the object. In each iteration,
first the surface visibility is computed. Using this information the normals to the surface
are optimized and used to compute a reliable consistency score. These scores are used in a
volumetric graph-cut over narrow bands around the current surface estimate.

10.4.1 Surface Normal Optimization

As explained in section 10.3.1, we need the normal to the surface to compute the consistency
score. The accuracy of the normal plays an important role in obtaining good reconstruction

101

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

results. If the used normals are inaccurate the computed consistency score will be low which
in turn will lead to overcarving. This is especially true for surface regions with high curva-
ture, because a small change in the normal can have a big effect on the consistency score. We
therefore find the optimal normals which lead to the highest consistency score.

Since we use a volumetric representation, we first compute the gradient in the volume for
all surface voxels, giving us the initial normals. However, the normals obtained this way
are usually not very accurate due to the discretization and because the current surface esti-
mate can be wrong. In particular, there are problems in surface regions with high curvature.
Therefore, we only use these estimated normals as a starting point for an optimization over
the surface orientation. The optimization allows us to obtain a better normal estimate and
consequently a better consistency measure.

We represent the orientation of the surface through the rotation R of a reference plane with
normal n∗ = [0, 0, 1]� (see figure 10.1(b)). The rotation is represented using a (3× 3) rotation
matrix R. The consistency score for a voxel x between images i and j depending on the
rotation R is given by

ηij(x,R) = NCC (Ii(PiM(x,R)X), Ij(PjM(x,R)X)) (10.4)

where Pi and Pj are the projection matrices for images Ii and Ij respectively. X are 3D
points (expressed in homogeneous coordinates) defined on the reference plane. The ma-
trix M(x,R) is a (4 × 4) matrix that describes the transformation of these points given the
orientation R and the voxel center x. It is defined as

M(x,R) =
[
R (I − R)x
0 1

]
(10.5)

The optimal normal and the highest consistency measure are found by determining the op-
timum of the cost function

ρ(x) = min
R

⎧⎨⎩Ψ

⎛⎝ 2
n(n − 1)

∑
i

∑
j>i

aijηij(x,R)

⎞⎠⎫⎬⎭ (10.6)

where Ψ is the normalization function defined in section 10.3.1. In practice we optimize this
cost function by discretely sampling a dense set of normals in the hemisphere into which
the initial normal is pointing. The optimization over the rotation R is restricted such that it
provides a normal vector to the tangent plane inside a cone defined by the initial normal and
an opening angle θ. In our experiments, we set θ to 60 degrees. Empirically we found that
the normal optimization is a very important factor in achieving good reconstruction results.
Without it protrusions and thin structures are carved much more often.

10.4.2 Robust Visibility Test

Determining in which input images a voxel is visible is essential for computing reliable con-
sistency scores. However, the surface of the object usually contains a lot of small bumps
and dents. This leads to problems when using a straightforward visibility test. Surface parts
which should be considered visible are occluded by little bumps in their vicinity and are
therefore marked as invisible. If a point is lying in a small dent it might not be visible in any

102

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

(a) Problem model (b) Standard Visibility (c) Robust Visibility

Figure 10.2: During the optimization, the object surface is usually not very smooth. This
leads to bad visibility estimates due to self-occlusion using a standard visibility test (dashed
lines). To avoid this problem, we compute the visibility for small spheres around the consid-
ered points (solid lines). This rendering of the visible points shows the difference between
the standard and the robust visibility test applied to the visual hull of the gargoyle data set.
The standard version contains a lot of holes while the proposed robust version contains
much less. Note that this is not the actual vantage point of the camera. The view was rotated
after the visibility calculation to highlight the differences in the visibility test.

of the cameras. A typical example of this problem and its effect on the visibility computation
is shown in figure 10.2. Any exact visibility test will mark these points as invisible. To deal
with this problem, we propose a robust visibility test.

We consider small spheres of radius r around every point and test if some part of the sphere
is visible. To reduce the computational complexity, we approximate the sphere by 6 sample
points located at the intersections of the sphere with the positive and negative coordinate
axes. In our implementation, we choose r as the side length of a voxel. Figure 10.2 shows
the difference between the results obtained using a standard visibility test and the proposed
robust visibility test.

10.4.3 Narrow Band Graph-Cut

Existing volumetric graph-cut-based methods usually perform only one cut in a fairly big
band around the initial surface estimate. By doing this, they assume that the maximum
displacement of the true surface from the initial estimate is known. This is in particular
not true if only rough silhouette estimates are available. Another disadvantage of one-shot
graph-cuts over big bands is that it is hard to reason about visibility for voxels far from
the initial surface estimate. Therefore, the consistency score computed for these voxels can
be wrong. Another problem is setting the normals for the voxels in the band. Typically,
either the normal of the closest surface point is chosen or the normal is computed using the
surface given by the layer. However, this approximation can quickly become wrong when
going further away from the original surface. Moreover, a big band can completely fill out
protrusions and narrow parts of the object. As graph-cuts prefer short cuts, these protrusions

103

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

are easily carved away. In addition, the danger of overcarving increases since, in a big band,
there are more possibilities to find a "shortcut" than in a narrow band.

We construct a narrow band by expanding the current surface estimate to the outside and
the inside. The inside layers carve inconsistent voxels while the outside layers allow us to
correct segmentation errors in the initial silhouette images. This iterative approach makes
the visibility reasoning and the normal propagation much more stable as we stay close to
the current surface estimate. Using narrow bands makes it possible to avoid the carving of
narrow parts and protrusions since they are not totally filled out. Assuming that there is a
clear low-cost path through the band (if there is one the normal optimization will find it),
the graph-cut does not deviate from this path. In fact, the differences in path length through
the band are so small, that they cannot outweigh the penalty of cutting through a high-cost
region. Using narrow bands also allows us to recover concavities. Indeed, we are able to
recover even deep concavities, as can be seen from the results we obtained on real-world
data sets. While we cannot guarantee to reach a global minimum (which might not be useful
due to the minimal surface bias of the graph-cut), we overcome local minima inside the
band, which is sufficient for most practical scenes. This is an advantage over using level sets
since by choosing the size of the band we can overcome local minima within the band and
achieve a better solution than level sets.

In our implementation, we apply the graph-cuts iteratively until the consistency score of
the surface converges. The number of iterations depends on how close the initial estimate
approximates the true surface. In most cases, less than 20 iterations are needed to converge
to a stable reconstruction.

10.5 Results

We present the evaluation of our method on two standard data sets and one custom data set
that illustrate the advantages of our algorithm. The first data set is the Gargoyle set provided
by K. Kutulakos. It shows a stone sculpture and contains 16 images with a resolution of
719 × 485 pixels. The difficulty in this data set is that it contains holes which introduce
a fair amount of self-occlusion. The input images were roughly segmented to obtain an
initial estimate of the visual hull (see figure 10.3(a)). The resolution used is 2003 voxels.
We used a 5 × 5 grid to sample the plane used for estimating the voxel score. As in all of
our experiments, we allowed a movement of one voxel layer outside and inside the current
estimate for every iteration of the graph-cut. Therefore the width of the band is three layers.
The width of the band stays unchanged during the optimization. The reconstruction time
was 60 minutes. As shown in figure 10.3(a), we obtain an accurate reconstruction of the
gargoyle. In particular, we correctly reconstruct protrusive parts of the object like the ears
and the nose without the need of an ’ad-hoc’ ballooning term. At the same time, we recover
the concavities of the object, for instance around the eyes and in particular in the region
between its body and the stick it is holding. The reconstruction converges after 19 iterations,
while most of the surface details are already recovered after 10 iterations. Only the deep
concavity between the belly and the stick requires more carving cycles. This shows that
our method is able to recover even deep concavities. Our reconstruction is of at least the
same quality as the one presented in [BL06] where the photoflux is used to preserve thin
structures.

104

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

(a) Gargoyle

(b) DinoSparseRing

(c) Shell

Figure 10.3: Reconstruction results. The first row of each result shows three input images
and three views of the visual hull which is used as a starting point for the reconstruction.
The second row shows the untextured and the textured reconstruction results.

105

CHAPTER 10. GRAPH-CUT-BASED RECONSTRUCTION

The second data set we used our method on is the DinoSparseRing data set provided by
[SCD+06]. This set contains 16 images of a plaster dinosaur model with a resolution of
640 × 480 pixels. The reconstruction time was 62 minutes. The particular difficulty of this
data set is the lack of texture. We used a resolution of 200×234×200 and a 5×5 grid for this re-
construction. The algorithm converged after 21 iterations and recovered most of the surface
details as seen in figure 10.3(b). The concavities between the legs and the scales on the back
were both recovered. The surface on the back of the model is fairly smooth while the surface
on the front is a little rough due to the very uniform intensity. When compared to the recon-
struction result of [VTC05] on the same data set, we can see a clear improvement especially
around the tail area and around the legs. Compared to [TD06], we obtain a more accurate
surface estimate with more details especially around the legs. Our reconstruction achieved
an accuracy of 0.89mm (defined as the distance that brings 90% of the reconstruction result
within the ground-truth surface) and a completeness of 95.0% (defined as the percentage of
the ground-truth that lies within 1.25mm of the reconstruction results) in the Middlebury
multi-view evaluation. These results reflect that our method provides accurate reconstruc-
tions which surpass the results of [VTC05] (using a ballooning term) (1.18mm/90.8%) and
[TD06] (using silhouette constraints) (1.26mm/89.3%) in both accuracy and completeness.

The third data set consists of 24 images of a shell at a resolution of 1600 × 1200. The recon-
struction time was 112 minutes. Since the shell has many small protrusions and concave
regions, it is a perfect test object to show the properties of our reconstruction method. We
roughly segmented the shell by drawing a bounding polygon around the object. We used
a voxel grid of size 415 × 276 × 200 and sampled the tangent plane with an 11 × 11 grid
due to the bigger image resolution. The reconstruction converged after 35 iterations because
we started far from the true surface. This also shows that the method is not critically de-
pendent on the initial surface estimate. Figure 10.3(c) shows our reconstruction results. We
correctly recover the concavities and the small protrusions on the shell. The reconstruction
also recovers the undulations on the base of the shell. This shows that our method can suc-
cessfully preserve protrusions and at the same time recover concavities without relying on a
ballooning term or on exact silhouette images.

10.6 Conclusion

We presented a novel iterative reconstruction algorithm designed to overcome problems
resulting from the graph-cut inherent bias for shorter cuts. At each iteration, we optimize
the surface normals of the current surface and apply a volumetric graph-cut over narrow
bands around the current surface estimate.

Experimental results obtained on standard and custom data sets show that our method pre-
serves protrusions and at the same time recovers concavities. We applied the proposed al-
gorithm on ground-truth data and compared the obtained results with the results of existing
volumetric graph-cut-based methods that rely on a global ballooning term [VTC05] and on
silhouette constraints [TD06]. We obtained a reconstruction with higher accuracy and com-
pleteness.

106

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

Chapter 11

Spectral Camera Clustering

Having looked at obtaining high-quality reconstructions from moderately sized image sets,
we now want to address the problem of reconstructing large image collections efficiently
since it is not possible to directly use traditional reconstruction methods such as the one pre-
sented in the previous chapter on large image collections due to memory and run time con-
straints. We therefore propose an algorithm for clustering large sets of images of a scene into
smaller subsets covering different parts of the scene suitable for 3D reconstruction. Unlike
the canonical view selection of [SSS07], we do not focus only on the visibility information,
but introduce an alternative similarity measure which takes into account the relative camera
orientations and their distance from the scene. This allows us to formalize the clustering
problem as a graph partitioning and solve it using spectral clustering. The obtained image
clusters bring down the amount of data that has to be considered by the reconstruction al-
gorithms simultaneously, thereby allowing traditional algorithms to take advantage of large
multi-view data sets processing them significantly faster and at smaller memory costs com-
pared to using the full image data sets. We tested our approach on a number of multi-view
data sets and demonstrated that the clustering we obtain is suitable for 3D reconstruction
and coincides with what a human observer would consider as a good clustering.

11.1 Introduction

The availability of high quality digital cameras at reasonable prices allows an easy acquisi-
tion of large numbers of high-quality images. This motivated Computer Vision researchers
to intensify their research on 3D reconstruction problems, proposing new solutions which
exploit those rich sources of information. The recent advances in static 3D reconstructions
from calibrated cameras exploit the spatial redundancy among the images and produce
high-quality reconstruction results [SCD+06, FP07, PKF07, HS04, HK06b]. This usually re-
quires using all available images of the objects of interest at once. This is reasonable when a
limited number of images is used, but becomes prohibitive when the number of available im-
ages is large and they are high-resolution. This is especially the case with large scenes such
as those of figure 11.5. For this reason breaking the collection of images into meaningful
clusters, ideally covering different parts of the object, has to be addressed. The community
has already addressed the problem of handling huge collections of images available on the

107

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

Internet [SSS06]. This required addressing several problems such as structure from motion
[SSS08a], summarizing images by finding canonical views [SSS07] or finding paths through
the photos and turning them into controls for image based rendering [SSS08b]. Unlike these
approaches, and similar to [ZCI+08], our objective is to cluster a collection of images of a
particular object into smaller image subsets suitable for 3D reconstruction as shown in figure
11.1. In contrast to [SSS07] and [ZCI+08], we do not focus only on the visibility of the scene
in the cameras, but introduce an alternative similarity measure which takes into account the
relative camera orientations and their distance from the scene. This measure prefers camera
configurations suitable for 3D reconstruction, i.e. those with a reasonable baseline and sim-
ilar scale. We represent the collection of images as a fully connected graph with the nodes
corresponding to the cameras and the edges between them corresponding to the introduced
similarity measure. This formulation of the problem allows us to define the clustering prob-
lem as a graph partitioning and solve it using spectral clustering. The clusters we obtain
bring down the amount of data that has to be considered by the reconstruction algorithms
simultaneously. We tested our approach on a number of multi-view data sets and demon-
strated that the clusters we obtain are suitable for 3D reconstruction and coincide with what
a human observer would consider as a good clustering. We also show that the total recon-
struction time spent when using the camera clusters to reconstruct the scene is significantly
smaller than the time spent when using all images at once. In addition, it is obvious that
the memory requirements are much smaller when clusters of cameras are used, compared
to using the full image dataset with all cameras.

The remainder of this chapter is structured as follows: In section 11.2 we discuss previous
work dealing with camera clustering. Section 11.3 introduces our proposed clustering ap-
proach, while results on clustering in general and multi-view reconstruction in particular are
presented in section 11.4. We conclude with section 11.5.

11.2 Related Work

The problem of processing large sets of images for the purpose of 3D reconstruction has
in particular been brought to the attention of the community through the Photo Tourism
project [SSS06]. This led to improved solutions for many related problems, such as struc-
ture from motion from unorganized image collections [SSS08a], scene navigation [SSS08b],
object segmentation in the scene [SS08] and scene summarization [SSS07]. In all those prob-
lems camera clustering has been considered. The SFM problem of [SSS08a] concentrates on
reducing a full set of available images to a skeletal subset which is sufficient to provide a
full sparse reconstruction, where other image views can be quickly added using pose esti-
mation. The skeletal image set is computed by a maximum leaf t-spanner [ADD+93] of the
graph with cameras at its nodes and the edges being joint position covariances between the
pairs of cameras. In the other works, especially the one of Simon et al. [SSS07], the goal is
typically not finding a good partitioning of the cameras, but instead the selection of canon-
ical views. These views are desired to be orthogonal to each other, while at the same time
showing a representative view of the object. The proposed approach of [SSS07] was used
for scene summarization through a set of orthogonal canonical views. They use point visi-
bility information in an ad-hoc greedy method to automatically find their canonical views.
While this seems to give good results they only make use of the point visibility, disregarding

108

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

Figure 11.1: Clustering on the Castle sequence. The first two rows contain images showing
representative views for each cluster. In the first image of the third row the camera clusters
found by our algorithm are depicted. The following images show the object points visible in
each cluster.

information about camera configurations. In our implementation of their greedy algorithm
the number of clusters is highly dependent on the choice of some weighting parameters pro-
posed also in the original algorithm. In [DDAS04] Denton et al. propose a method to find
canonical views for a set of silhouette images of an object, in order to use them for view-
based 3D object recognition. To solve the problem the authors use semidefinite program-
ming (SDP) on a graph which models the similarity between the views. In the context of
robot localization in [BZK06], the environment is represented by a large number of collected
images stored in a database. To speed up the search of the most similar image, the database is
reduced to the set of representative canonical views. This is done using a graph representa-
tion of the database images with weights measuring image similarity. The problem is solved

109

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

using the graph pruning technique known as the Connected Dominant Set problem in graph
theory. While we also use a graph for representing the relation between different views, we
are looking for a partitioning of the graph and not for canonical views. In addition we use
spectral clustering [vL07, SM00] based on spectral graph theory, which is significantly easier
to implement than related approaches and yields good results. Zaharescu et al. [ZCI+08]
also consider the topic of camera clustering. Similar to our approach they directly find the
clusters. However, they only use visibility information and apply the k-means algorithm
for clustering requiring advance knowledge about the number of clusters. Hornung et al.
[HZK08] also select images for multi-view reconstruction, but their focus is on removing
less useful views instead of clustering them. To be more precise they add views maximally
contributing to the quality of the initial rough reconstruction.

Compared to previous work, we perform camera clustering based on geometric information
about both the scene and the camera positions. We do not need to know the number of clus-
ters in advance and only need a rough proxy geometry, which can be obtained either by a
sparse bundle adjustment or the use of the visual hull computed from camera images. Espe-
cially in the context of multi-view reconstruction silhouettes are typically available, making
our algorithm easy to integrate into an existing reconstruction pipeline.

11.3 Camera Clustering

We represent the camera clustering problem as a graph partitioning problem by modeling
the relationship between the cameras as a graph. This allows us to apply powerful methods
from graph theory to find a solution to our problem. Each vertex in the graph represents a
camera, while the edges connecting two vertices represent the similarity between these two
views. Hence, the first step in our algorithm is to define an appropriate similarity measure.
While some existing clustering algorithms only use point visibility, we also incorporate the

(a) Spectral Camera Clustering (b) Canonical view selection [SSS07]

Figure 11.2: Comparison of the clustering given by our method (left) and the one given by
the canonical views algorithm [SSS07] (right). The canonical views fail in this case, since the
scene is planar and all cameras see the same points. Our method takes the positions of the
cameras into account and therefore performs a more reasonable clustering.

110

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

(a) (b) (c)

Figure 11.3: Eigenvalues and the clustering in the feature space of the Castle sequence of
figure 11.1. (a) The 10 smallest eigenvalues. Note the jump between eigenvalues λ3 and λ4

indicating that only two eigenvectors are needed for classification. (b) Plot of the entries
of the eigenvectors corresponding to the two smallest eigenvalues (excluding the one being
zero). (c) Same as (b) but overlayed with the Gaussian kernel used in mean-shift. Note that
the layout of (b) resembles the camera positions, and that the maxima of (c) represent the
clusters obtained by the mean-shift algorithm.

viewing angle between camera pairs and the distance to the scene to obtain more meaningful
clusters. This is demonstrated in figure 11.2 where we compare the performance of our
method to that of the canonical views algorithm [SSS07], which we extended to provide
clusters instead of only canonical views by assigning each view to its most similar canonical
view. Since the scene is mostly planar and every camera can see it, we only obtain one cluster
using the canonical views. The cameras are spatially quite well clustered, but due to the use
of the non-discriminate visibility information the algorithm cannot take advantage of this.
Our method on the other hand successfully finds the clusters, since it also takes the camera
geometry into account.

Before we introduce our similarity measure, let us first define some notation. For each cam-
era we have its projection matrix Pi, a set of surface points X and the visibility matrix V ,
which collects the information about the visibility of X in each view, i.e. the row-vector Vi

contains the visibility of the scene points with respect to camera i. In addition we also use
Vi to represent the set of points which are visible in camera i. The 3D scene points X can
be obtained in one of two ways. The first possibility is to run a bundle-adjustment proce-
dure (e.g. [FP07] or [SSS06]). However, this can be time consuming, especially for large
scenes. In order to speed this process up and since we only need a rough object proxy geom-
etry we downsample the images and use a sparse sampling (as it is possible in the Furukawa
method). The second possibility is to make use of silhouette images when available by build-
ing the object’s visual hull and then using the mesh vertices for X . Once this information
has been obtained we can compute our scene similarity measure. We want to be able to take
into account both scene geometry and camera configuration. This is achieved by using the
visibility information (scene geometry) and the viewing angles and scene distances for each
camera-point pair (camera geometry). Our similarity measure between view i and j is given
by:

Sij =
‖Vi ∩ Vj‖∑

X∈(Vi∩Vj)
αSangle + βSdistance

111

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

Sangle = abs(abs(arccos(
(Ci − X)�(Cj − X)
‖Ci − X‖‖(Cj − X‖)) − γ)

Sdistance = abs(‖Ci − X‖ − ‖Cj − X‖)
where Ci and Cj are the camera centers of view i and j respectively. The term ‖Vi ∩ Vj‖,
computed as the dot product between rows i and j of the visibility matrix, gives the number
of scene points visible in both cameras i and j at the same time. The parameters α and β are
weights to control the influence of the angular and the distance term (both α and β are set
to 1 in our experiments). The angular term is representing the angle between the viewing
directions of the two cameras Ci and Cj with respect to the point X . A small value means
that less perspective distortion will occur between the points seen in the two cameras. This
in turn will allow a more accurate and stable reconstruction. However, a too small angle
is not desired since then an accurate reconstruction becomes problematic due to the small
baseline. We therefore include the threshold γ. Angles smaller than γ will be penalized.
The distance term is meant to help with scene parts seen at different scales. Since many
image-based similarity measures are not very robust with respect to scale changes, we try to
group the cameras in such a way, that their distances to the scene are similar. This avoids
unnecessary resampling of the images leading to more accurate reconstruction results. The
nominator normalizes the score with respect to the number of common points visible in
both cameras, in order to avoid any bias towards camera pairs which have a lot of points in
common. This is desirable, since the proxy geometry we use might be more densely sampled
(i.e. contain more points) in certain scene regions. By normalizing the similarity measure we
are independent of the sampling density in the proxy geometry.

Our goal is to find the optimal partitioning of the graph, so that the nodes of the graph,
i.e. the cameras, are separated in different groups according to their similarity. In other
words, we want to find the partitioning of the graph such that the edges between the dif-
ferent graph parts have very small weight (similarity), and the edges within the same part
have high weight, i.e. the views are very similar. This problem is NP-hard, but there exist ap-
proximative algorithms based on spectral graph theory, such as the normalized cuts [SM00].
It can be shown that the graph partitioning can be computed based on the solution to the
generalized eigenvalue problem of the graph Laplacian [vL07]. Let W be the symmetric
weighting matrix describing the edge weights, i.e. Wij = Sij , and D a diagonal matrix with
Dii =

∑N
j=1 Wij . The Graph Laplacian is then defined as L = D − W . We solve the general-

ized eigenvalue problem Lv = λDv and take the eigenvectors u1, u2, . . . uk associated to the
k smallest eigenvalues λ1, λ2, . . . , λk. Typically k is determined by observing all eigenvalues
and taking the k smallest of them after which there is a visible jump in the eigenvalues (see

Algorithm 4 Method Outline
1: Compute the graph laplacian L = D − W .
2: Solve the generalized eigenvalue problem Lv = λDv.
3: Select the eigenvectors corresponding to the k smallest non-zero eigenvalues after which

there is a visible jump in the eigenvalues, disregarding the eigenvector corresponding to
λ = 0.

4: Construct the matrix E from the k smallest non-zero eigenvectors and perform a cluster-
ing on its rows using the mean-shift algorithm.

112

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

figure 11.3). This is known as the eigengap heuristic. Note that the smallest eigenvalue is
zero and its eigenvector is constant, since every row of L adds up to zero. Therefore, we
count from the first non-zero eigenvalue. In practice, we use k = 2 or k = 3 depending
on when the jump in the eigenvalues occurs. We then use the eigenvectors corresponding
to those eigenvalues, as shown in figure 11.3 for the sequence of figure 11.1, and perform a
clustering on them. As it can be seen this representation resembles the real 3D positions of
the cameras and already indicates the existence of separate clusters in this representation.
Let E be the matrix containing the eigenvectors corresponding to the k smallest non-zero
eigenvalues as its columns. Then, usually, the final step in the literature is to perform k-
means clustering on the rows of E. However, this would require us to know the number of
clusters in advance. Therefore we chose to adapt the mean-shift algorithm [CM02], which
does not need to know the number of clusters in advance. The only parameter we have to
choose is the width of the kernel. To choose the best value we applied a heuristic approach,
i.e. we choose the kernel width as the mean of the k smallest eigenvalues. This heuristic
gives very reasonable results. Our method is summarized in algorithm 4.

(a) dinoRing data set. (b) templeRing data set.

Figure 11.4: Clustering on the dinoRing and the templeRing dataset from the Middlebury
multi view evaluation. In this example we use the visual hull as a proxy geometry.

113

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

Figure 11.5: Clustering on the La Sarraz dataset. The scene is clustered into 7 separate clus-
ters, which mostly follow the streets. See figure 11.6 for representative views of each cluster
and our reconstruction results.

11.4 Results

We performed several experiments on real and synthetic datasets to validate our approach.
Since there is no commonly agreed on definition of what constitutes a "good" clustering, we
can only evaluate the obtained clusters in terms of their suitability for 3D reconstruction.
Therefore, we desire the clusters to be coherent and local with respect to the part of the scene
they are viewing. In addition, we check our results by reconstructing some datasets using
the obtained clusters and compare the results to a full reconstruction using all the images.

The first dataset we used is the Castle sequence provided by Christoph Strecha [SvHG+08]
consisting of 19 high-resolution images. We obtained a proxy geometry by reconstructing
the scene using the method of Furukawa [FP07] after downsampling the images in order
to speed up the run-time of the procedure. Our clustering algorithm finds five clusters as
shown in figure 11.1. To help assess the quality of the clustering we also colored the scene
points. A point is considered to belong to a cluster when it is seen by at least two cameras

114

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

(a) Cluster 1 (red) (b) Cluster 2 (green)

(c) Cluster 3 (blue) (d) Cluster 4 (light blue)

(e) Cluster 5 (purple) (f) Cluster 6 (turquoise)

(g) Cluster 7 (yellow)

Figure 11.6: Representative images for each cluster in the La Sarraz dataset shown in figure
11.5 together with our reconstruction results.

in the cluster. This gives a good visual indication of which parts of the scene can be recon-
structed using a cluster. The clusters exhibit a fair amount of overlap in the scene points
which is important in order to obtain a good fitting between the reconstructed scene parts.

We also ran tests on the well-known Dino and Temple sequences from the Middlebury multi-
view evaluation [SCD+06] as shown in figure 11.4(a). Here we used the visual hull, shown
in the images as a proxy geometry. This is significantly faster than performing a multi view
stereo reconstruction. For the dino we obtain three clusters, one covering each side and one
looking at the head of the dino. This makes sense because the head part contains high curva-
tures and therefore should be reconstructed independently from the sides which are mostly
planar. We reconstructed the dino model using the Furukawa method [FP07] and obtained a
runtime of 59 minutes for the full reconstruction and 42 minutes for reconstructing the three
clusters independently. This is a significant increase in performance while a visual compar-

115

CHAPTER 11. SPECTRAL CAMERA CLUSTERING

ison of the two reconstruction results shows no significant differences. For the temple we
also obtain three clusters, one covering the front, one for the back and one for the narrow
side.

To show the validity on large scale scenes, we used a sequence of 125 high-resolution images
provided by Christoph Strecha who also provides a multi view stereo reconstruction of the
scene which we use as our proxy geometry. The sequence shows streets in the town of La
Sarraz in Switzerland, where some streets have been traversed in opposite directions as indi-
cated by the camera orientations in figure 11.5. As you can see from our results in figure 11.5
and figure 11.6 we get a reasonable clustering, which mostly follows the streets. This result
would not have been possible to obtain with the canonical views algorithm, since there is
no point overlap between the first and the last views of most clusters, so that they would
not have been clustered together. Also the running time of the canonical views is prohibitive
due to the large amount of points in the scene (50,433 points). After 15 minutes of compu-
tation it still hadn’t converged to a solution. Our method on the other hand took only a few
seconds to cluster the scene. We also performed a reconstruction on this dataset using the
method of Furukawa [FP07] as shown in figure 11.6. We reconstructed each cluster we found
independently and merged the results. This took a total of 624 min. Reconstructing the full
sequence on the other hand took over 25 hours and yielded an incomplete reconstruction
with a lot of outliers. We suspect that this is due to the large number of images which lead
to a much higher probability of having incorrect matches during the feature matching stage
of the algorithm. This clearly shows that the use of good clusters not only speeds up the re-
construction times significantly, but can also help to obtain better results without having to
deal with the higher complexity of the reconstruction task at the level of the reconstruction
algorithm.

11.5 Conclusion

We presented a method for camera clustering of large image sets into subsets. We modeled
the camera clustering as a graph partitioning problem and introduced a new similarity mea-
sure which is used to weight the edges in the graph. It is based on the relative orientations
between the cameras and their distance to the scene, and naturally favors configurations
with a short baseline and similar distance from the scene. These properties are important for
obtaining a good 3D reconstruction. We then use spectral clustering to partition our graph
into suitable camera clusters. We showed that our algorithm provides reasonable results and
runs very fast on large data sets.

116

CHAPTER 12. REGION GRAPHS

Chapter 12

Region Graphs

In the previous chapter we considered the topic of reconstructing large image collections. In
doing this we assumed that all images show the scene and are relevant for the reconstruc-
tion task. This is however not the case when collecting images from Internet photo sharing
sites like Flickr since a simple keyword search will also return many irrelevant images. We
therefore need a way of organizing such image collections in order to find clusters of related
images and to remove redundant images. We tackle this problem by organizing image col-
lections into meaningful data structures upon which applications can be build (e.g. naviga-
tion or reconstruction). In contrast to structures that only reflect local relationships between
pairs of images we propose to account for the information an image brings to a collection
with respect to all other images. Our approach builds on abstracting from image domains
and focusing on image regions, hereby reducing the influence of outliers and background
clutter. We introduce a graph structure based on these regions which encodes the overlap
between them. The contribution of an image to a collection is then related to the amount
of overlap of its regions with the other images in the collection. We demonstrate our graph
based structure with several applications: image set reduction, canonical view selection and
image-based navigation. The data sets used in our experiments range from small examples
to large image collections with thousands of images.

12.1 Introduction

Dealing with large image collections has recently become a subject of interest in the vision
community. It includes such diverse topics as 3D reconstruction [SSS08a, ASS+09], canoni-
cal view selection [SSS07, LWZ+08], image-based navigation [SGSS08] and image retrieval
[JDS08, PCI+08] among others. While applications in this domain can be very different,
a key issue that all must address is how to efficiently organize and handle the available
and often redundant data. In image retrieval, for instance, state-of-the-art approaches deal
with image datasets containing up to one million images [JDS08] and even in 3D reconstruc-
tion applications the sizes of the image sets grow rapidly, reaching up to 150,000 images
[ASS+09]. Most approaches in this field organize images with graphs where edges relate
images that share information and edge weights depend on the application. For instance
[SSS08b] uses a graph where the edge weight is based on the covariance of the camera posi-

117

CHAPTER 12. REGION GRAPHS

Figure 12.1: Region graph for three images. Overlapping regions are denoted as 1, 2 and 3.

tions, while [LWZ+08] weights the edges by the number of inlier matches between images.
The resulting data structures reveal little on how informative an image is with respect to all
other images. In this work, we take a different strategy and propose a data structure, region
graphs, that encodes spatial relationships between an image and a collection of images. This
provides a basis upon which various applications can be build, navigation or reconstruction
for instance, where not all but only the most informative images are of interest.

The central idea behind our approach is to use image regions and their redundancies over
an image set to define a global hierarchy in the set. More precisely, we consider the overlap
between images, where we consider the overlap to be the image regions which contain the
same part of the scene. This is a natural criterion, based on objective evidence, that does not
require any information about the 3D structure of the scene. It also adapts to the sampling
of the scene given by the images. The overlapping regions are then used to build a graph
relating all images spatially. The graph contains two kinds of nodes, one representing images
and the other representing overlapping regions. Each region is connected with an edge to
the images it is contained in. This means that region and image nodes are alternating on
any given path through the graph. Using this graph we can efficiently represent the spatial
relationship between the regions and images and identify redundancies over regions. This
allows us to model the importance of regions shared by many images and to identify less
important regions shared only by few or even no images. These less important regions are
often small and not very essential to the scene. They typically contain background or other
irrelevant information.

Figure 12.1 shows an exemplary region graph constructed from a three image data set. There
are three image nodes and three region nodes in the graph, representing the images and the
distinct overlapping regions, i.e. regions visible in a set of images. Using the region graphs
as a basis we build applications for image set reduction, canonical view selection and image-

118

CHAPTER 12. REGION GRAPHS

based navigation. We tested our method on several real data sets ranging from a few dozen
to thousands of images. The results obtained show that the data structure we propose reveals
intrinsic properties of an image set that are useful for various applications.

In the remainder of the chapter we first discuss the related work in section 12.2. We then
proceed to describe the construction of the region graphs in section 12.3 and show some
exemplary applications built on them in section 12.4. We present results in section 12.5 and
conclude with section 12.6.

12.2 Related Work

In the last years many papers dealing with the issue of large image collections have been
published. Most of them focus on specific applications, for instance image retrieval [JDS08,
PCI+08, WSZ09] or 3D reconstruction [SSS08a, LWZ+08, ASS+09]. In the 3D reconstruction
literature one of the first major works on this topic was the Photo Tourism project [SSS08a].
In that paper a large set of images taken from Internet photo collections is used for perform-
ing a point-based 3D reconstruction of the scene. An exhaustive pairwise matching followed
by an incremental bundle adjustment phase have been used both for the reduction of the
image set and for 3D reconstruction. Follow-up work focused on navigating through large
image collections [SGSS08], summarizing the scene by selecting canonical views [SSS07] and
speeding up the initial reconstruction process by building skeletal graphs over the image set
[SSS08b]. While an image graph was used for instance in [SSS08b] it was designed for the
goal of finding a better subset of images for the initial reconstruction. Li et al. [LWZ+08]
presented an application for performing reconstruction and recognition on large image sets.
They construct a so called iconic scene graph which relates canonical views of the scene and
use it for 3D reconstruction. The edge weights used are the number of inlier matches. Re-
cently Farenzena et al. [FFG09] proposed a hierarchical image organization method based
on the overlap between images. The overlap is used as an image similarity measure used
to assemble the images into a dendrogramm. The hierarchy given by the dendrogramm is
then used for a hierarchical bundle adjustment phase. In this regard that work is interesting,
because it also considers a global criterion. However, it is focused on Structure-from-Motion
and not on defining global representations of image collections. Schaffalitzky [SZ02] et al.
also present some work dealing with handling large unordered data sets. They focus on the
task of performing a 3D reconstruction from unordered image sets and only briefly mention
image navigation, which they base on homographies.

Most existing work organizes images with respect to the application, which is often 3D re-
construction. We follow a different strategy and organize images with respect to the regions
they share only. This allows us to score images according to the information they bring
and without 3D reconstruction. Subsequent applications can then easily build on the region
graph structure, even navigation as shown later in section 12.4. We are not aware of any
attempt to build such an intermediate structure based on 2D cues only. We think that these
structures will become a key component when dealing with large and highly redundant
image datasets.

119

CHAPTER 12. REGION GRAPHS

Figure 12.2: Graph construction for a synthetic example containing five images (A to E)
which create 8 different overlap regions.

12.3 Building Region Graphs

In this section we describe how to construct region graphs. The most important construction
principle is to identify overlapping regions in the images. Overlapping regions are regions
in different images showing the same part of the scene. Figure 12.2 gives an example. For
instance region 1 is an overlapping region shared by images A, B and E. To identify this
overlapping region, the intersection of the overlap between image A and E and the overlap
between image B and E has to be computed. Each overlapping region is represented as a
region node in the graph. The images are represented in the graph as image nodes. Each region
node is connected to the images in which it is detected. In the example of figure 12.2 this
means that node 1 representing region 1 is connected to the nodes of images A, B and E.
In the following sections the graph construction process is described in more detail. The
construction process is summarized in algorithm 5.

12.3.1 Identifying Overlap Between Images

The first step in the graph construction is to identify the overlap between the images. This
is accomplished in a multi-step process. First we extract features using a scale-invariant
interest-point detector on all input images [Low04]. We then match the features among the
images. Since we are dealing with very large image sets, performing an exhaustive pair-
wise matching is computationally infeasible. Therefore we use vocabulary trees [NS06] to
perform a preselection among the images (in our experiments we use the implementation
provided by [FWFP08]). For every image we retrieve the k (we use k = 10 in all our experi-
ments) most similar images using the vocabulary tree.

This preprocessing step significantly reduces the size of the set of image pairs which have
to be matched. The matching is performed using the standard SIFT distance ratio on the
descriptors and the resulting putative matches are pruned using epipolar constraints in a

120

CHAPTER 12. REGION GRAPHS

Figure 12.3: The convex hull of the set of matched features between two images defines the
regions considered during graph construction.

RANSAC framework. Given the feature correspondences between two images we compute
the convex hull spanned by the matched features in each image. This is illustrated in figure
12.3. The area enclosed by the convex hull in each image is the overlap between the two
images.

12.3.2 Identifying Overlapping Regions

After performing the matching, we generally obtain several different convex hulls per im-
age, one per matched image. In general these convex hulls will overlap with each other. We
want to identify each overlapping region created by the intersection of these convex hulls. In
the following let CHj

i be the convex hull spanned in image i by the features matching image
j. To determine unique overlapping regions we assign each CHj

i a label (i, j) to indicate that
this region is shared by images i and j. When two regions CHk

i and CH l
i overlap, the com-

mon region will receive the label L = (i, k, l). After performing this labeling for all convex
hulls every intersection will have an associated label L. The image is then subdivided into
regions sharing the same label. While it is possible to perform these computations directly
on the image by discretizing the convex hulls, we chose to perform the computations purely
geometrically by representing the convex hulls as polygons and using CGAL to perform the
intersection operations. This has the advantage of being image resolution independent and
does not require to allocate a discretization space for every image, which would be very
memory intensive for large image data sets. Finally every identified region is merged into a
region list storing its label and the images in which it was detected.

12.3.3 Constructing the Region Graph

After all overlapping regions have been identified, the region list contains all the information
needed to build the region graph. It is constructed by inserting one image node per image
and one region node for every entry in the region list. The region nodes are subsequently
connected to the image nodes specified in the region list. The weight of the edges connecting
the region nodes to the image nodes is application specific. One generic choice is to assign

121

CHAPTER 12. REGION GRAPHS

Algorithm 5 Graph Construction
1: Extract feature points on all images I
2: Use a vocabulary tree to select the k most similar images for each image
3: Perform robust matching
4: for each image i in I do
5: for each image j matched to i do

6: Compute the convex hull CHj
i and assign it the label (i, j)

7: end for
8: Intersect the convex hulls in image i to obtain the overlapping regions
9: Add overlapping regions into region list

10: end for
11: for each image i in I do
12: Create an image node in the graph
13: end for
14: for each region entry l in the region list do
15: Create a region node and connect it to the image nodes of the images in which it was

detected
16: Set the weight of the outgoing edges according to the application criteria, e.g. the

normalized size of the region
17: end for

the normalized size of the region, defined as the size of the overlapping region divided by
the image size, as an edge weight. This is the edge weight which is used in most of our
experiments.

12.4 Using Region Graphs

In this section we discuss several applications based on the proposed region graphs. The
first application is image-based navigation which allows the user to traverse the image set
in a spatially consistent way. The second application is image set reduction. Its goal is to
reduce the size of the data set while retaining as much information as possible. The final
application we are considering is canonical view selection. In this application we want to
find a small orthogonal subset of images which summarizes the whole image set.

12.4.1 Image Set Reduction

The goal of image set reduction is to remove redundant and non-contributing images from
the data set. In [SSS08b] for instance a subset of an image set is selected for performing a 3D
reconstruction. However, the graph structure and edge-measure were application specific
and based on the covariance of the camera positions. We would like to define a more general
measure for the information content of an image. Intuitively an image which contains many
regions shared with other images is more important for the data set than an image having
little overlap with the other images in the data set. We therefore formalize an information

122

CHAPTER 12. REGION GRAPHS

Figure 12.4: Removal process on the synthetic example given in figure 12.2. The image with
the least score among all images is removed first (left). Leaf nodes created by the removal of
the image are removed (middle). Newly created duplicate paths are joined (right).

criterion for an image i and its associated image node vi in the region graph as

ρ(vi) =
∑

r∈N(vi)

∑
e∈E(r)

w(e) (12.1)

where N(vi) is the set of neighbor regions of image node vi, E(r) is the set of edges in the
region graph connected to node r and w(e) is the weight of edge e. The intuition behind this
information criterion is that an image which contains many regions which are also present
in many other images is more important than an image which only contains few regions
shared with few other images. The choice of which images to remove is directly related to
this criterion. At each step of the removal process the image with the smallest image score is
removed.

In figure 12.4 we give an example of the image removal process in the graph. Once the im-
age to be removed has been identified, its corresponding node and all incident edges are
removed from the graph. The resulting graph might then contain leaf nodes (node 8 in the
example) which are also removed. Due to the removal of an image it can also happen that
two previously distinct regions collapse into one. This can be seen in the graph through
the existence of several identical paths between two image nodes (paths E → 1 → B and
E → 2 → B in figure 12.4 (middle)). These paths are joined to obtain a region node rep-
resenting the new region. All these computations can purely be based on the graph. No
recomputations are needed. This is due to the explicit representation of regions in the graph.
If only images were represented in the graph it would have to be recomputed after every
image removal.

12.4.2 Canonical Views

Canonical views are views which are of high importance in a given image set. They show
parts of the scene which are captured in many images (e.g. because they are considered to
be very important). We want to automatically find these important parts of the scene and

123

CHAPTER 12. REGION GRAPHS

Figure 12.5: Canonical view selection on the synthetic example given in figure 12.2. The
numbers inside the image nodes indicate the image score computed according to equation
12.1. The central image has a maximum score in its neighborhood and is therefore selected
as the canonical view.

select one representative view, i.e. the canonical view, for each of them. Some previous work
on this subject was done in [SSS07]. In that work the criterion for selecting a canonical view
was based on the visibility of the points in the scene. A canonical view was defined to be an
image which is very different from all other canonical views in terms of the scene points it
observes. This criterion was optimized by a greedy approach. We have a similar definition
of canonical views. However, we do not assume any explicit visibility information to be
available. We also do not perform a greedy optimization, but instead deduce the canonical
views directly from the region graphs.

Intuitively the images having the highest amount of overlap with the image set should be
selected as canonical views. However, we would like to avoid selecting multiple images of
the same part of the scene. One natural way of including this constraint is to find maxima
over the graph. Each image node vi is assigned a weight using the score function given in
equation 12.1. Only the nodes which have a score bigger than all their neighboring image
nodes are selected. These nodes then constitute the canonical views. The neighboring image
nodes are defined to be all the image nodes which are connected to the node under consid-
eration over exactly one region node, i.e. two images are considered to be neighbors in the
graph when they share a common region. Figure 12.5 gives an example.

12.4.3 Image-based Navigation

The goal of image-based navigation is to allow the user to traverse the image set in a spa-
tially consistent order. For instance the user can choose to view the image to the right or
to the left of the current image. In order to allow such a navigation the spatial relation-
ship among the images has to be determined. While some prior work [SGSS08] assumes
the availability of a 3D scene reconstruction we base the navigation purely on the images.
This is achieved by considering the spatial positions of matching regions in the images. To
represent this information in the graph we augment the edges with information about the
spatial relationship of the associated nodes. In practice we assign each edge in the region

124

CHAPTER 12. REGION GRAPHS

Figure 12.6: Illustration of image navigation. The region graph is augmented with the rela-
tive positions of the regions within the image. For determining the relative motion between
two images all shared regions are considered and their relative motions are averaged. The
resulting relative motions between the images are shown in the table. Note that for clarity
scale is not considered in this example.

graph a three-dimensional vector
[
x y z

]� which describes the relative position and scale
of the region within the image. The position inside the image is specified with respect to the
image center and normalized to the range [−1; 1] × [−1; 1]. The first two components of the
vector describe the horizontal and vertical position, while the third one represents the scale.
They are computed by considering the position of the center of gravity of the convex hull in
the image. Let gi =

[
gx
i gy

i

]� represent the center of gravity of the region in image i and
let wi and hi be the size of the image in pixels. Then the relative position of the convex hull
inside the image is given by

pi =

(
2gx

i −wi

wi
2gy

i −hi

hi

)
(12.2)

To represent the scale we consider the relative area of the region with respect to the image
area. This makes us independent of the image resolution. Let Ai be the number of pixels in
the convex hull and Ii the total number of pixels in image i. Then the scale is given by

si =
Ai

Ii
(12.3)

The region movement (position and scale) for a region shared by images i and j is computed
as

xi−>j = −(px
j − px

i) (12.4)
yi−>j = py

j − py
i (12.5)

zi−>j = sj − si (12.6)

To navigate the user specifies a spatial movement in the image plane (two dimensions) and
a zoom-in/zoom-out movement (one dimension). This results in the desired movement vec-
tor. To find the next image to move to, the movement between the current and all neighbor-
ing images is computed. Given two images the relative movement is given by the average of

125

CHAPTER 12. REGION GRAPHS

the region movement of the regions shared by the images. The image whose region move-
ment agrees most with the user motion (in the sense of the dot-product) is then displayed
to the user. Figure 12.6 gives an example of how the relative movement between images is
computed using the shared regions. Since we explicitly represent the regions in our graph it
would also be possible for the user to select a specific region of interest inside the image and
to perform the navigation with respect to this region instead of the whole image.

12.5 Experimental Results

To validate our approach we performed experiments on several data sets of different sizes.
In the following we will first briefly describe each data set used and then show results for
the different applications we are proposing. The first two data sets we used were provided
by [FFG09]. The pozzoveggiani data set contains 54 images of a church and the piazzaerbe data
set contains 259 images of a big town square. The other data set we used was the Notre Dame
data set provided by [LWZ+08]. It contains 6,248 images of the Notre Dame cathedral in
Paris collected from Flickr.

The first step common to all application is the construction of the region graph. The con-
struction times (excluding feature extraction and matching) were 1 minute for pozzoveggiani,
3 minutes for piazzaerbe and 38 minutes for Notre Dame on a 2.66 GHz Intel QuadCore CPU
(only one core was used). Most of the time was spent on intersecting the convex hulls.

12.5.1 Image Set Reduction

To show the validity of the reduction we first perform a 3D reconstruction with the full data
set and then compare it to a reconstruction on the reduced data set. Figure 12.7 shows the
results for the pozzoveggiani data set. The first row shows two views of the reconstruction ob-
tained on the full data set, while the next two rows show the results obtained after removing
12 and 24 images respectively. While the point cloud does get sparser the whole structure is
still present.

Figure 12.8 shows the results we obtained on the Notre Dame data set. We computed the
connected components of the region graph and used the biggest one (907 images). The first
image shows the full reconstruction. Each of the following reconstructions was obtained by
removing 150 images from the previous one. Again the point cloud gets sparser, but the
overall structure of the scene is retained.

12.5.2 Canonical Views

The results of the canonical view selection on the pozzoveggiani data set are shown in figure
12.9. One view is selected for each side of the church. To compare to previous work we
implemented the canonical view selection method described by Simon et al. [SSS07]. The
results of their method are shown in figure 12.10. They are comparable to ours. The first four
canonical views are virtually identical, while the last two are not very essential to the scene.
Since Simon’s method uses two tuning parameters, it was necessary to manually adjust them
until a reasonable result was obtained. Our method on the other hand is parameter free.

126

CHAPTER 12. REGION GRAPHS

54 images

42 images

30 images

Figure 12.7: Image set reduction for the pozzoveggiani data set. The first row shows the full
reconstruction, while the second and third row show the results after removing 12 and 24 of
the 54 images respectively.

The results of the canonical view selection on the piazzaerbe data set are shown in figure 12.11.
The selected images are very distinct from each other. Only the fountain and the pagoda are
seen twice in the images. However, they are pictured from approximately opposite sides
and have a completely different background.

127

CHAPTER 12. REGION GRAPHS

907 images 757 images 607 images 457 images 307 images 157 images

Figure 12.8: Image set reduction for the Notre Dame data set. The first image shows the full
reconstruction (907 images). Each following image shows the result after 150 images were
removed from the previous reconstruction.

Figure 12.9: Canonical views for the pozzoveggiani data set. One image was selected for each
side of the church.

Figure 12.10: Canonical views for the pozzoveggiani data set as produced by [SSS07]. The
parameters for obtaining this result had to be manually adjusted until a reasonable result
was obtained.

Since we initially only use a sparse set of matches (i.e. we do not match every image to ev-
ery other image), the region graph is also only sparsely connected. This means that similar
images might not be connected in the region graph. The effect of this is that similar images
might be selected as canonical views. Therefore we apply the canonical view selection twice.
Once on the initial sparse graph and then on the obtained canonical views after performing

128

CHAPTER 12. REGION GRAPHS

Figure 12.11: Canonical views for the piazzaerbe data set.

Figure 12.12: Image-based navigation on the pozzoveggiani data set. Starting from the top left
image the user always moves to the right, thereby circling the church once.

an exhaustive pairwise matching on them. This is generally not very computationally ex-
pensive, since the number of canonical views is comparatively small compared to the size of
the original data set. Optionally a vocabulary tree could be used to speed up the matching.

12.5.3 Image-based Navigation

Figure 12.12 shows the results for image-based navigation obtained on the pozzoveggiani data
set. The user starts with the top left image and then continues to move to the right, circling
the church once.

Figure 12.13 shows the results of an image-based navigation on the Notre Dame data set. On
the left the user starts with the highlighted image and then navigates in the direction of the
arrows (left, right, up and down). On the right the user performs a zoom-in and a zoom-out
movement respectively. Note the number of scale levels traversed during the zoom-in and

129

CHAPTER 12. REGION GRAPHS

Figure 12.13: Image-based navigation on the Notre Dame data set. The user starts with the
highlighted image and then performs several navigation operations resulting in the shown
images. The images on the left show the results of a spatial navigation (left, right, up and
down) while the images on the right show the results of zooming in and out respectively.

zoom-out operation.

12.6 Conclusion

We presented a novel framework for organizing large spatially related image collections.
Our approach is based on the overlapping regions between multiple images. We repre-
sent these regions and the images in a graph and use this graph as a foundation for sev-
eral different applications related to organizing large image collections, such as image-based
navigation, image set reduction and canonical view selection. Using these applications we
presented results on several image sets of different sizes, showing the validity of our image
organization approach.

130

CHAPTER 13. CONCLUSION

Chapter 13

Conclusion

We presented several methods related to reconstructing and organizing image collections.
First we proposed a method for obtaining high-quality reconstructions using volumetric
graph-cuts while reducing the effect of the minimum surface bias by using narrow bands
and surface normal optimization. We then continued to investigate reconstructing large im-
age collections efficiently by dividing them into smaller subsets based on scene and camera
geometry criteria. Each subset is reconstructed independently making the reconstruction
significantly faster than reconstructing all images together. Finally, we introduced a new
data structure for organizing large image collections by focusing on the relation between
image regions. This is more powerful than purely focusing on images since it allows a finer
grained control over image relations and puts the actually important parts of the images into
the focus of interest disregarding background and clutter. Based on this data structure we
presented several applications related to organizing large image collections such as image-
based navigation, image set reduction and canonical view selection.

13.1 Discussion and Future Work

The presented work is a first step towards the goal of reconstructing sites automatically from
Internet photo collections. In order to get to this point more work especially on organizing
and automatically processing Internet photo collections for use in reconstruction needs to be
performed. The main challenges at this point in time are related to the size of the image
collections and the huge runtime induced by the amount of data present. One possible
solution to this issue, namely organizing and clustering image collections, was presented
in the last two chapters.

One of the most time consuming aspects of reconstructing from Internet photo collections
is establishing initial point correspondences between images. A simple minded exhaus-
tive pairwise matching is not reasonable on large image collections since the runtime grows
quadratically with the number of images. In the past several authors have proposed meth-
ods for grouping images based on color and edge descriptors [LWZ+08] and vocabulary
trees [NS06]. This already drives down the number of image-pair matchings which need
to be performed and increases the performance of the reconstruction process. One interest-
ing issue to consider would be to integrate such methods into the region graph structure to

131

CHAPTER 13. CONCLUSION

automatically obtain graphs which are sparser and therefore better suited for reconstruction.

Another interesting aspect which warrants further investigation is the matter of occlusion
handling in the region graph structure. Due to occlusions created for instance by people
standing in front of a building, the region graph creates more regions than necessary. By au-
tomatically detecting occluding objects and discarding them the region graph would become
more efficient. This would also allow to perform image-based inpainting in order to remove
the occluders from the image as for instance done in [HE07, WSZ09]. The detection of oc-
cluding objects could for instance be based on a photometric comparison between matched
regions which would identify the parts of the regions which are not photometrically consis-
tent and therefore possibly occluded. Considering photometric consistency between regions
could also be used to improve the shapes of the regions since the polygonal hull created by
the intersection of the convex hulls of matched features is only a first approximation to the
actual region shape.

Furthermore, it would be interesting to consider reconstructing only certain image regions
as represented in the region graph. This would allow a user to only reconstruct the part of
the scene he is interested in instead of reconstructing the whole scene at once. This could
possibly also speed up a global reconstruction since each region is much smaller than the
whole scene and therefore more efficient to reconstruct.

132

LIST OF (CO-)AUTHORED PUBLICATIONS

List of (Co-)Authored Publications

Related to this Thesis

A. LADIKOS, C. CAGNIART, R. GOTHBI, M. REISER, and N. NAVAB, Estimating Radiation
Exposure in Interventional Environments, in International Conference on Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI), 2010.

A. LADIKOS, E. BOYER, N. NAVAB, and S. ILIC, Region Graphs for Organizing Image Collec-
tions, in ECCV Workshop on Reconstruction and Modeling of Large-Scale 3D Virtual Envi-
ronments (RMLE), 2010.

A. LADIKOS and N. NAVAB, Real-Time 3D Reconstruction for Occlusion-aware Interactions in
Mixed Reality, in International Symposium on Visual Computing (ISVC), 2009.

A. LADIKOS, S. ILIC, and N. NAVAB, Spectral Camera Clustering, in ICCV Workshop on Emer-
gent Issues in Large Amounts of Visual Data (LAVD), 2009.

A. BIGDELOU, A. LADIKOS, and N. NAVAB, Incremental Visual Hull Reconstruction, in British
Machine Vision Conference (BMVC), 2009.

A. LADIKOS, S. BENHIMANE AND N. NAVAB, Multi-View Reconstruction using Narrow-Band
Graph-Cuts and Surface Normal Optimization, in British Machine Vision Conference (BMVC),
2008.

A. LADIKOS, S. BENHIMANE AND N. NAVAB, Real-time 3D Reconstruction for Collision Avoid-
ance in Interventional Environments, in International Conference on Medical Image Comput-
ing and Computer-Assisted Intervention (MICCAI), 2008.

A. LADIKOS, S. BENHIMANE AND N. NAVAB, Efficient Visual Hull Computation for Real-Time
3D Reconstruction using CUDA, in CVPR Workshop on Computer Vision on GPUs (CVGPU),
2008.

Other Publications

A. LADIKOS, S. BENHIMANE, and N. NAVAB, High Performance Model-Based Object Detection
and Tracking, in Computer Vision and Computer Graphics. Theory and Applications, vol. 21
of Communications in Computer and Information Science, Springer, 2008.

133

LIST OF (CO-)AUTHORED PUBLICATIONS

A. LADIKOS, S. BENHIMANE AND N. NAVAB, Model-Free Markerless Tracking for Remote Sup-
port in Unknown Environments, in International Conference on Computer Vision Theory and
Applications (VISAPP), 2008.

S. BENHIMANE, A. LADIKOS, V. LEPETIT, and N. NAVAB, Linear and Quadratic Subsets for
Template-Based Tracking, in IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2007.

A. LADIKOS, S. BENHIMANE, and N. NAVAB, A Real-Time Tracking System Combining Template-
Based and Feature-Based Approaches, in International Conference on Computer Vision Theory
and Applications (VISAPP), 2007.

G. PANIN, A. LADIKOS, and A. KNOLL, An Efficient and Robust Real-Time Contour Tracking
System, in IEEE International Conference on Computer Vision Systems (ICVS), 2006.

134

BIBLIOGRAPHY

Bibliography

[ADD+93] I. ALTHÖFER, G. DAS, D. DOBKIN, D. JOSEPH, and J. SOARES, On sparse
spanners of weighted graphs, Discrete Comput. Geom., 9 (1993), pp. 81–100.

[AFM+06] J. ALLARD, J.-S. FRANCO, C. MÉNIER, E. BOYER, and B. RAFFIN, The GrImage
Platform: A Mixed Reality Environment for Interactions, in IEEE International
Conference on Computer Vision Systems, 2006.

[AKA+04] D. ASAI, S. KATOPO, J. ARATA, S. WARISAWA, M. MITSUISHI, A. MORITA,
S. SORA, T. KIRINO, and R. MOCHIZUKI, Micro-Neurosurgical System in the
Deep Surgical Field, in Medical Image Computing and Computer-Assisted
Intervention, 2004.

[AMR+07] J. ALLARD, C. MENIER, B. RAFFIN, E. BOYER, and F. FAURE, Grimage:
Markerless 3D Interactions, in SIGGRAPH - Emerging Technologies, 2007.

[APSK07] E. AGANJ, J. PONS, F. SÉGONNE, and R. KERIVEN, Spatio-Temporal Shape from
Silhouette using Four-Dimensional Delaunay Meshing, in International
Conference on Computer Vision, IEEE, 2007.

[ASS+09] S. AGARWAL, N. SNAVELY, I. SIMON, S. M. SEITZ, and R. SZELISKI, Building
Rome in a Day, in International Conference on Computer Vision, 2009.

[AW87] J. AMANATIDES and A. WOO, A fast voxel traversal algorithm for ray tracing, in
Eurographics, 1987.

[BBH08] D. BRADLEY, T. BOUBEKEUR, and W. HEIDRICH, Accurate Multi-View
Reconstruction Using Robust Binocular Stereo and Surface Meshing, in IEEE
Conference on Computer Vision and Pattern Recognition, 2008.

[BBT08] E. BOGAERT, K. BACHER, and H. THIERENS, A large-scale multicentre study in
Belgium of dose area product values and effective doses in interventional cardiology
using contemporary X-ray equipment, Radiation Protection Dosimetry, 128
(2008), pp. 312–323.

[Bel96] P. N. BELHUMEUR, A Bayesian approach to binocular stereopsis, International
Journal of Computer Vision, 19 (1996), pp. 237–260.

[Ber97] M. BERGER, Resolving Occlusion in Augmented Reality : a Contour Based
Approach without 3D Reconstruction, in IEEE Conference on Computer Vision
and Pattern Recognition, 1997.

135

BIBLIOGRAPHY

[BF03] E. BOYER and J. S. FRANCO, A Hybrid Approach for Computing Visual Hulls of
Complex Objects, in IEEE Conference on Computer Vision and Pattern
Recognition, 2003.

[BK03] Y. BOYKOV and V. KOLMOGOROV, Computing Geodesics and Minimal Surfaces
via Graph-Cuts, in International Conference on Computer Vision, 2003.

[BL06] Y. BOYKOV and V. LEMPITSKY, From Photohulls to Photoflux Optimization, in
British Machine Vision Conference, 2006.

[BM04] S. BAKER and I. MATTHEWS, Lucas-Kanade 20 Years On: A Unifying Framework,
International Journal of Computer Vision, 56 (2004), pp. 221 – 255.

[BM06] O. BATCHELOR and R. MUKUNDAN, Ray Traversal for Incremental Voxel
Coloring, 2006. M.Sc Thesis.

[BMG05] O. BATCHELOR, R. MUKUNDAN, and R. GREEN, Ray Casting for Incremental
Voxel Colouring, in International Conference on Image and Vision Computing,
2005.

[BMS98] J. BATLLE, E. MOUADDIB, and J. SALVI, Recent progress in coded structured light
as a technique to solve the correspondence problem: a survey, Pattern Recognition,
31 (1998), pp. 963 – 982.

[Bou] J.-Y. BOUGUET, Camera calibration toolbox,
http://www.vision.caltech.edu/bouguetj/calib_doc.

[BSD03] E. BOROVIKOV, A. SUSSMAN, and L. DAVIS, A High Performance
Multi-Perspective Vision Studio, in ACM International Conference on
Supercomputing, 2003.

[BVZ01] Y. BOYKOV, O. VEKSLER, and R. ZABIH, Fast Approximate Energy Minimization
via Graph-Cuts, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23 (2001), pp. 1222–1239.

[BWD+09] O. BOTT, M. WAGNER, C. DUWENKAMP, N. HELLRUNG, and K. DRESSING,
Improving education on C-arm operation and radiation protection with a
computer-based training and simulation system, International Journal of
Computer Assisted Radiology and Surgery, 4 (2009), pp. 399–407.

[BZK06] O. BOOIJ, Z. ZIVKOVIC, and B. KRÖSE, Sparse appearance based modeling for
robot localization, in International Conference on Intelligent Robots and
Systems, 2006.

[CBI10a] C. CAGNIART, E. BOYER, and S. ILIC, Free-From Mesh Tracking: a Patch-Based
Approach, in IEEE Conference on Computer Vision and Pattern Recognition,
2010.

[CBI10b] C. CAGNIART, E. BOYER, and S. ILIC, Probabilistic Deformable Surface Tracking
From Multiple Videos, in European Conference on Computer Vision, 2010.

136

BIBLIOGRAPHY

[CBK05a] K. CHEUNG, S. BAKER, and T. KANADE, Shape-From-Silhouette Across Time
Part I: Theory and Algorithms, International Journal of Computer Vision, 62
(2005), pp. 221 – 247.

[CBK05b] K. CHEUNG, S. BAKER, and T. KANADE, Shape-From-Silhouette Across Time:
Part II: Applications to Human Modeling and Markerless Motion Tracking,
International Journal of Computer Vision, 63 (2005), pp. 225 – 245.

[CKBH00] G. CHEUNG, T. KANADE, J. Y. BOUGUET, and M. HOLLER, A Real-Time
System for Robust 3D Voxel Reconstruction of Human Motions, in IEEE
Conference on Computer Vision and Pattern Recognition, 2000.

[CM02] D. COMANICIU and P. MEER, Mean Shift: A Robust Approach Toward Feature
Space Analysis, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24 (2002), pp. 603–619.

[DDAS04] T. DENTON, M. F. DEMIRCI, J. ABRAHAMSON, and A. SHOKOUFANDEH,
Selecting Canonical Views for View-Based 3-D Object Recognition, in International
Conference on Pattern Recognition, 2004.

[DMB07] B. D. DECKER, T. MERTENS, and P. BEKAERT, Interactive Collision Detection for
Free-Viewpoint Video, in International Conference on Computer Graphics
Theory and Applications, 2007.

[FB03] J. S. FRANCO and E. BOYER, Exact Polyhedral Visual Hulls, in British Machine
Vision Conference, 2003.

[FB05] J. S. FRANCO and E. BOYER, Fusion of Multi-View Silhouette Cues Using a Space
Occupancy Grid, in International Conference on Computer Vision, 2005.

[FFG09] M. FARENZENA, A. FUSIELLO, and R. GHERARDI, Structure-and-Motion
Piepline on a Hierarchical Cluster Tree, in IEEE International Workshop on 3-D
Digital Imaging and Modeling, 2009.

[FFK+07] G. FICHTINGER, J. FIENE, C. KENNEDY, G. KRONREIF, I. IORDACHITA,
D. SONG, E. BURDETTE, and P. KAZANZIDES, Robotic Assistance for Ultrasound
Guided Prostate Brachytherapy, in Medical Image Computing and
Computer-Assisted Intervention, 2007.

[FII+06] S. FUKUI, Y. IWAHORI, H. ITOH, H. KAWANAKA, and R. WOODHAM, Robust
Background Subtraction for Quick Illumination Changes, in Pacific-Rim
Symposium on Image and Video Technology, 2006.

[FK98] O. FAUGERAS and R. KERIVEN, Variational Principles, Surface Evolution, PDE’s,
Level Set Methods, and the Stereo Problem, IEEE Transactions on Image
Processing, 7 (1998), pp. 336–344.

[FLB06] J. S. FRANCO, M. LAPIERRE, and E. BOYER, Visual Shape of Silhouette Sets, in
International Symposium on 3D Data Processing, Visualization and
Transmission, 2006.

137

BIBLIOGRAPHY

[FMBR04] J. S. FRANCO, C. MENIER, E. BOYER, and B. RAFFIN, A Distributed Approach to
Real Time 3D Modeling, in IEEE Conference on Computer Vision and Pattern
Recognition, 2004.

[FP06] Y. FURUKAWA and J. PONCE, Carved Visual Hulls for Image-Based Modeling, in
European Conference on Computer Vision, 2006.

[FP07] Y. FURUKAWA and J. PONCE, Accurate, Dense, and Robust Multi-View Stereopsis,
in IEEE Conference on Computer Vision and Pattern Recognition, 2007.

[FWFP08] F. FRAUNDORFER, C. WU, J.-M. FRAHM, and M. POLLEFEYS, Visual Word
based Location Recognition in 3D models using Distance Augmented Weighting, in
International Symposium on 3D Data Processing, Visualization and
Transmission, 2008.

[GBMR09] B. D. GIORDANO, J. F. BAUMHAUER, T. L. MORGAN, and G. R. RECHTINE,
Patient and Surgeon Radiation Exposure: Comparison of Standard and Mini-C-Arm
Fluoroscopy, Journal of Bone & Joint Surgery, 91 (2009), pp. 297–304.

[GLV+05] J.-Y. GAUVRITA, X. LECLERCA, M. VERMANDELB, B. LUBICZA,
D. DESPRETZD, J.-P. LEJEUNEC, J. ROUSSEAUB, and J.-P. PRUVOA, 3D
Rotational Angiography: Use of Propeller Rotation for the Evaluation of Intracranial
Aneurysms, American Journal of Neuroradiology, 26 (2005), pp. 163–165.

[GM04] B. GOLDLÜCKE and M. MAGNOR, Space-time Isosurface Evolution for Temporally
Coherent 3D Reconstruction, in IEEE Conference on Computer Vision and
Pattern Recognition, 2004.

[GSC+07] M. GOESELE, N. SNAVELY, B. CURLESS, H. HOPPE, and S. SEITZ, Multi-View
Stereo for community photo collections, in International Conference on Computer
Vision, 2007.

[GSdA+09] J. GALL, C. STOLL, E. DE AGUIAR, C. THEOBALT, B. ROSENHAHN, and H.-P.
SEIDEL, Motion capture using joint skeleton tracking and surface estimation., in
IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[GSFP06] L. GUAN, S. SINHA, J.-S. FRANCO, and M. POLLEFEYS, Visual Hull
Construction in the Presence of Partial Occlusion, in International Symposium on
3D Data Processing, Visualization and Transmission, 2006.

[GTH+07] O. GRAU, G. A. THOMAS, A. HILTON, J. KILNER, and J. STARCK, A Robust
Free-viewpoint Video System for Sport Scenes, in Proceedings of the 3DTV
Conference, 2007.

[GWN+03] M. GROSS, S. WÜRMLIN, M. NAEF, E. LAMBORAY, C. SPAGNO, A. KUNZ,
E. KOLLER-MEIER, T. SVOBODA, L. V. GOOL, S. LANG, K. STREHLKE, A. V.
MOERE, OLIVER, E. ZÜRICH, and O. STAADT, blue-c: A Spatially Immersive
Display and 3D Video Portal for Telepresence, in ACM Transactions on Graphics,
2003, pp. 819–827.

[HE07] J. HAYS and A. A. EFROS, Scene Completion Using Millions of Photographs, ACM
Transactions on Graphics, 26 (2007).

138

BIBLIOGRAPHY

[HK06a] M. HABBECKE and L. KOBBELT, Iterative Multi-View Plane Fitting, in
International Workshop on Vision, Modeling and Visualization, 2006.

[HK06b] A. HORNUNG and L. KOBBELT, Hierarchical Volumetric Multi-View Stereo
Reconstruction of Manifold Surfaces based on Dual Graph Embedding, in IEEE
Conference on Computer Vision and Pattern Recognition, 2006.

[HK06c] A. HORNUNG and L. KOBBELT, Robust and Efficient Photo-Consistency
Estimation for Volumetric 3D Reconstruction, in European Conference on
Computer Vision, 2006.

[HK07] M. HABBECKE and L. KOBBELT, A Surface Growing Approach to Multi-View
Stereo Reconstruction, in IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[HLGB03] J.-M. HASENFRATZ, M. LAPIERRE, J.-D. GASCUEL, and E. BOYER, Real-Time
Capture, Reconstruction and Insertion into Virtual World of Human Actors, in
Vision, Video and Graphics, 2003.

[HLS04] J. M. HASENFRATZ, M. LAPIERRE, and F. SILLION, A Real-Time System for Full
Body Interaction with Virtual Worlds, Eurographics Symposium on Virtual
Environments, (2004).

[HS04] C. HERNANDEZ and F. SCHMITT, Silhouette and Stereo Fusion for 3D Object
Modeling, Computer Vision and Image Understanding, 96 (2004), pp. 367–392.

[HS09] H. HIRSCHMÜLLER and D. SCHARSTEIN, Evaluation of Stereo Matching Costs on
Images with Radiometric Differences, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31 (2009), pp. 1582–1599.

[HSJS08] B. HUHLE, T. SCHAIRER, P. JENKE, and W. STRASSER, Robust Non-Local
Denoising of Colored Depth Data, in IEEE CVPR Workshop on Time of Flight
Camera based Computer Vision, 2008.

[HVC07] C. HERNANDEZ, G. VOGIATZIS, and R. CIPOLLA, Probabilistic Visibility for
Multi-View Stereo, in IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[HZ04] R. HARTLEY and A. ZISSERMAN, Multiple View Geometry in Computer Vision,
Cambridge University Press, second ed., 2004.

[HZK08] A. HORNUNG, B. ZENG, and L. KOBBELT, Image Selection For Improved
Multi-View Stereo, in IEEE Conference on Computer Vision and Pattern
Recognition, 2008.

[iP] IVIEW PROJECT, http://www.bbc.co.uk/rd/projects/iview.

[JDS08] H. JÉGOU, M. DOUZE, and C. SCHMID, Hamming embedding and weak geometric
consistency for large scale image search, in European Conference on Computer
Vision, 2008.

139

BIBLIOGRAPHY

[KCHD05] K. KIM, T. CHALIDABHONGSE, D. HARWOOD, and L. DAVIS, Real-time
foreground-background segmentation using codebook model, Real-Time Imaging, 11
(2005), pp. 172–185.

[Keh05] R. KEHL, Markerless Motion Capture of Complex Human Movements from Multiple
Views, PhD thesis, ETH Zurich, 2005.

[KN07] T. KANADE and P. J. NARAYANAN, Virtualized Reality: Perspectives on 4D
Digitization of Dynamic Events, IEEE Computer Graphics and Applications,
(2007), pp. 32 – 40.

[KRN97] T. KANADE, P. RANDER, and P. J. NARAYANAN, Virtualized Reality:
Constructing Virtual Worlds from Real Scenes, IEEE Multimedia, Immersive
Telepresence, 4 (1997), pp. 34–47.

[KS00] K. KUTULAKOS and S. SEITZ, A Theory of Shape by Space Carving, International
Journal of Computer Vision, 38 (2000), pp. 199–218.

[Kut00] K. KUTULAKOS, Approximate N-View Stereo, in European Conference on
Computer Vision, 2000.

[KYS03] H. KIM, S. YANG, and K. SOHN, 3D Reconstruction of Stereo Images for
Interaction between Real and Virtual Worlds, in IEEE International Symposium
on Mixed and Augmented Reality, 2003.

[KZ01] V. KOLMOGOROV and R. ZABIH, Computing Visual Correspondence with
Occlusions via Graph Cuts, in International Conference on Computer Vision,
2001.

[KZ02] V. KOLMOGOROV and R. ZABIH, Multi-Camera Scene Reconstruction via
Graph-Cuts, in European Conference on Computer Vision, 2002.

[KZ04] V. KOLMOGOROV and R. ZABIH, What Energy Functions Can Be Minimized via
Graph Cuts?, IEEE Transactions on Pattern Analysis and Machine Intelligence,
26 (2004), pp. 147–159.

[Lau94] A. LAURENTINI, The Visual Hull Concept for Silhouette-Based Image
Understanding, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 16 (1994), pp. 150–162.

[LBI06] V. LEMPITSKY, Y. BOYKOV, and D. IVANOV, Oriented Visibility for Multiview
Reconstruction, in European Conference on Computer Vision, 2006.

[LBN08] A. LADIKOS, S. BENHIMANE, and N. NAVAB, Efficient Visual Hull Computation
for Real-Time 3D Reconstruction using CUDA, in CVPR Workshop on Computer
Vision on GPUs, 2008.

[LC87] W. E. LORENSEN and H. E. CLINE, Marching cubes: A high resolution 3D surface
construction algorithm, SIGGRAPH, 21 (1987), pp. 163–169.

[Lev88] M. LEVOY, Display of Surfaces from Volume Data, IEEE Computer Graphics and
Applications, 8 (1988), pp. 29–37.

140

BIBLIOGRAPHY

[LFP07] S. LAZEBNIK, Y. FURUKAWA, and J. PONCE, Projective Visual Hulls,
International Journal of Computer Vision, 74 (2007), pp. 137–165.

[LMS03a] M. LI, M. MAGNOR, and H. SEIDEL, Hardware accelerated visual hull
reconstruction and rendering, in Graphics Interface, 2003.

[LMS03b] M. LI, M. MAGNOR, and H. SEIDEL, Improved hardware-accelerated visual hull
rendering, in International Workshop on Vision, Modeling, and Visualization,
2003.

[LMS04] M. LI, M. MAGNOR, and H.-P. SEIDEL, A hybrid hardware-accelerated algorithm
for high quality rendering of visual hulls, in Graphics Interface, 2004.

[LNA+06] J. LEONG, M. NICOLAOU, L. ATALLAH, G. MYLONAS, A. DARZI, and G.-Z.
YANG, HMM Assessment of Quality of Movement Trajectory in Laparoscopic
Surgery, in Medical Image Computing and Computer-Assisted Intervention,
2006.

[LNWB03] B. LOK, S. NAIK, M. WHITTON, and F. BROOKS, Incorporating dynamic real
objects into immersive virtual environments, in Symposium on Interactive 3D
graphics, 2003.

[Low04] D. LOWE, Distinctive Image Features from Scale-Invariant Keypoints, International
Journal of Computer Vision, 60 (2004), pp. 91–110.

[LPC+00] M. LEVOY, K. PULLI, B. CURLESS, S. RUSINKIEWICZ, D. KOLLER,
L. PEREIRA, M. GINZTON, S. ANDERSON, J. DAVIS, J. GINSBERG, J. SHADE,
and D. FULK, The Digital Michelangelo Project: 3D Scanning of Large Statues, in
SIGGRAPH, 2000.

[LSM+05] H. LIN, I. SHAFRAN, T. MURPHY, A. OKAMURA, D. YUH, and G. HAGER,
Automatic Detection and Segmentation of Robot-Assisted Surgical Motions, in
Medical Image Computing and Computer-Assisted Intervention, 2005.

[LWZ+08] X. LI, C. WU, C. ZACH, S. LAZEBNIK, and J.-M. FRAHM, Modeling and
Recognition of Landmark Image Collections Using Iconic Scene Graphs., in
European Conference on Computer Vision, 2008.

[MBM01] W. MATSUIK, C. BUEHLER, and L. MCMILLAN, Polyhedral Visual Hulls for
Real-Time Rendering, in Eurographics Workshop on Rendering, 2001.

[MBR+00] W. MATSUIK, C. BUEHLER, R. RASKAR, S. GORTLER, and L. MCMILLAN,
Image-Based Visual Hulls, in SIGGRAPH, 2000.

[ME96] M. MARX and J. ELLIS, Radiation protection of the hand in interventional
radiology: should it fit like a glove?, Radiology, 200 (1996), pp. 24–25.

[MH06] G. MILLER and A. HILTON, Exact View-Dependent Visual Hulls, in International
Conference on Pattern Recognition, 2006.

[MHK06] T. B. MOESLUND, A. HILTON, and V. KRUEGER, A survey of advances in
vision-based human motion capture and analysis, Computer Vision and Image
Understanding, 104 (2006), pp. 90–126.

141

BIBLIOGRAPHY

[MP02] D. MARTINEC and T. PAJDLA, Structure From Many Perspective Images with
Occlusions, in European Conference on Computer Vision, 2002.

[MSE06] C. MÜLLER, M. STRENGERT, and T. ERTL, Optimized Volume Raycasting for
Graphics-Hardware-based Cluster Systems, in Eurographics Symposium on
Parallel Graphics and Visualization, 2006.

[MWTN04] T. MATSUYAMA, X. WU, T. TAKAI, and S. NOBUHARA, Real-time 3D shape
reconstruction, dynamic 3D mesh deformation, and high fidelity visualization for 3D
video, Computer Vision and Image Understanding, 96 (2004), pp. 393–434.

[NS06] D. NISTÉR and H. STEWÉNIUS, Scalable Recognition with a Vocabulary Tree., in
IEEE Conference on Computer Vision and Pattern Recognition, 2006.

[Nvi] NVIDIA CUDA, http://www.nvidia.com/cuda.

[OSYT98] T. OHSHIMA, K. SATOH, H. YAMAMOTO, and H. TAMURA, AR2 Hockey: A
Case Study of Collaborative Augmented Reality, in Virtual Reality Annual
International Symposium, 1998.

[PBE+07] N. PADOY, T. BLUM, I. ESSA, H. FEUSSNER, M.-O. BERGER, and N. NAVAB,
A Boosted Segmentation Method for Surgical Workflow Analysis, in Medical Image
Computing and Computer-Assisted Intervention, 2007, pp. 102–109.

[PCF+02] S. PRINCE, A. CHEOK, F. FARBIZ, T. WILLIAMSON, N. JOHNSON,
M. BILLINGHURST, and H. KATO, 3D Live: Real Time Captured Content for
Mixed Reality, in IEEE International Symposium on Mixed and Augmented
Reality, 2002.

[PCI+08] J. PHILBIN, O. CHUM, M. ISARD, J. SIVIC, and A. ZISSERMAN, Lost in
Quantization: Improving Particular Object Retrieval in Large Scale Image Databases,
in IEEE Conference on Computer Vision and Pattern Recognition, 2008.

[PKF07] J. P. PONS, R. KERIVEN, and O. FAUGERAS, Multi-View Stereo Reconstruction
and Scene Flow Estimation with a Global Image-Based Matching Score,
International Journal of Computer Vision, 72 (2007), pp. 179–193.

[PLBR09] B. PETIT, J.-D. LESAGE, E. BOYER, and B. RAFFIN, Virtualization Gate, in
SIGGRAPH - Emerging Technologies, 2009.

[PLM+10] B. PETIT, J.-D. LESAGE, C. MÉNIER, J. ALLARD, J.-S. FRANCO, B. RAFFIN,
E. BOYER, and F. FAURE, Multi-Camera Real-Time 3D Modeling for Telepresence
and Remote Collaboration, International Journal of Digital Multimedia
Broadcasting, (2010).

[PMW+09] N. PADOY, D. MATEUS, D. WEINLAND, M.-O. BERGER, and N. NAVAB,
Workflow Monitoring based on 3D Motion Features, in ICCV IEEE Workshop on
Video-oriented Object and Event Classification, 2009.

[Pot87] M. POTMESIL, Generating octree models of 3D objects from their silhouettes in a
sequence of images, Computer Vision, Graphics and Image Processing, 40
(1987), pp. 1–29.

142

BIBLIOGRAPHY

[SAHML07] C. P. SHORTT, H. AL-HASHIMI, L. MALONE, and M. J. LEE, Staff Radiation
Doses to the Lower Extremities in Interventional Radiology, Cardiovascular
Interventional Radiology, 30 (2007), pp. 1206–1209.

[SCD+06] S. SEITZ, B. CURLES, J. DIEBEL, D. SCHARSTEIN, and R. SZELISKI, A
Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, in
IEEE Conference on Computer Vision and Pattern Recognition, 2006.

[SCM+04] G. SLABAUGH, B. CULBERTSON, T. MALZBENDER, M. STEVENS, and
R. SCHAFER, Methods for Volumetric Reconstruction of Visual Scenes,
International Journal of Computer Vision, 57 (2004), pp. 179–199.

[SD99] S. SEITZ and C. DYER, Photorealistic Scene Reconstruction by Voxel Coloring,
International Journal of Computer Vision, 25 (1999), pp. 151–173.

[SG98] C. STAUFFER and W. E. L. GRIMSON, Adaptive Background Mixture Models for
Real-Time Tracking, in IEEE Conference on Computer Vision and Pattern
Recognition, 1998.

[SGSS08] N. SNAVELY, R. GARG, S. SEITZ, and R. SZELISKI, Finding paths through the
world’s photos, ACM Transactions on Graphics, 27 (2008), pp. 1–11.

[SH07a] J. STARCK and A. HILTON, Correspondence labelling for wide-timeframe free-form
surface matching, in International Conference on Computer Vision, 2007.

[SH07b] J. STARCK and A. HILTON, Surface Capture for Performance-Based Animation,
IEEE Computer Graphics and Applications, 27 (2007), pp. 21–31.

[SHZO07] S. SENGUPTA, M. HARRIS, Y. ZHANG, and J. D. OWENS, Scan Primitives for
GPU Computing, in Graphics Hardware, ACM, 2007, pp. 97–106.

[SI85] K. SATO and S. INOKUCHI, Three-dimensional surface measurement by space
encoding range imaging, Journal of Robotic Systems, 2 (1985), pp. 27–39.

[SKB+06] M. STRENGERT, T. KLEIN, R. BOTCHEN, S. STEGMAIER, M. CHEN, , and
T. ERTL, Volume surface octrees for the representation of 3D objects, The Visual
Computer, 22 (2006), pp. 550–561.

[SM00] J. SHI and J. MALIK, Normalized Cuts and Image Segmentation, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22 (2000),
pp. 888–905.

[SMN+09] J. STARCK, A. MAKI, S. NOBUHARA, A. HILTON, and T. MATSUYAMA, The
multiple-camera 3-D production studio, IEEE Transactions on Circuits and
Systems for Video Technology, 19 (2009), pp. 856–869.

[SMP05] T. SVOBODA, D. MARTINEC, and T. PAJDLA, A Convenient Multi-Camera
Self-Calibration for Virtual Environments, Presence: Teleoperators and Virtual
Environments, 14 (2005), pp. 407–422.

[SMP07] S. SINHA, P. MORDOHAI, and M. POLLEFEYS, Multi-View Stereo via Graph Cuts
on the Dual of an Adaptive Tetrahedral Mesh, in International Conference on
Computer Vision, 2007.

143

BIBLIOGRAPHY

[SMRR07] L. SOARES, C. MÉNIER, B. RAFFIN, and J.-L. ROCH, Parallel Adaptive Octree
Carving for Real-time 3D Modeling, in IEEE Virtual Reality, 2007.

[SP05] S. SINHA and M. POLLEFEYS, Multi-View Reconstruction Using
Photo-consistency and Exact Silhouette Constraints: A Maximum-Flow
Formulation, in International Conference on Computer Vision, 2005.

[SS02] D. SCHARSTEIN and R. SZELISKI, A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms, International Journal of Computer
Vision, 47 (2002), pp. 7–42.

[SS03] D. SCHARSTEIN and R. SZELISKI, High-Accuracy Stereo Depth Maps Using
Structured Light, in IEEE Conference on Computer Vision and Pattern
Recognition, 2003.

[SS08] I. SIMON and S. M. SEITZ, Scene Segmentation Using the Wisdom of Crowds, in
European Conference on Computer Vision, 2008.

[SSS06] N. SNAVELY, S. M. SEITZ, and R. SZELISKI, Photo tourism: Exploring photo
collections in 3D, in SIGGRAPH, 2006.

[SSS07] I. SIMON, N. SNAVELY, and S. M. SEITZ, Scene Summarization for Online Image
Collections., in International Conference on Computer Vision, IEEE, 2007,
pp. 1–8.

[SSS08a] N. SNAVELY, S. M. SEITZ, and R. SZELISKI, Modeling the World from Internet
Photo Collections., International Journal of Computer Vision, 80 (2008),
pp. 189–210.

[SSS08b] N. SNAVELY, S. M. SEITZ, and R. SZELISKI, Skeletal graphs for efficient structure
from motion., in IEEE Conference on Computer Vision and Pattern
Recognition, 2008.

[ST96] P. STURM and B. TRIGGS, A Factorization Based Algorithm for Multi-Image
Projective Structure and Motion, in European Conference on Computer Vision,
1996.

[SvHG+08] C. STRECHA, W. VON HANSEN, L. J. V. GOOL, P. FUA, and
U. THOENNESSEN, On benchmarking camera calibration and multi-view stereo for
high resolution imagery., in IEEE Conference on Computer Vision and Pattern
Recognition, 2008.

[SVZ00] D. SNOW, P. VIOLA, and R. ZABIH, Exact Voxel Occupancy With Graph-Cuts, in
IEEE Conference on Computer Vision and Pattern Recognition, 2000.

[SWM+04] N. SUGITA, S. WARISAWA, M. MITSUISHI, M. SUZUKI, H. MORIYA, and
K. KURAMOTO, Development of a Novel Robot-Assisted Orthopaedic System
Designed for Total Knee Arthroplasty, in Medical Image Computing and
Computer-Assisted Intervention, 2004.

144

BIBLIOGRAPHY

[SZ02] F. SCHAFFALITZKY and A. ZISSERMAN, Multi-view Matching for Unordered
Image Sets, or "How Do I Organize My Holiday Snaps?"., in European
Conference on Computer Vision, 2002.

[Sze93] R. SZELISKI, Rapid Octree Construction from Image Sequences, Computer Vision,
Graphics and Image Processing: Image Understanding, 58 (1993), pp. 23–32.

[TD06] S. TRAN and L. DAVIS, 3D Surface Reconstruction Using Graph-Cuts with Surface
Constraints, in European Conference on Computer Vision, 2006.

[TLMpS03] C. THEOBALT, M. LI, M. A. MAGNOR, and H. PETER SEIDEL, A Flexible and
Versatile Studio for Synchronized Multi-view Video Recording, in Vision, Video,
Graphics, 2003.

[TTK+08] I. A. TSALAFOUTAS, V. TSAPAKI, A. KALIAKMANIS, S. PNEUMATICOS,
F. TSORONIS, E. D. KOULENTIANOS, and G. PAPACHRISTOU, Estimation of
Radiation Doses to Patients and Surgeons from various fluoroscopically guided
orthopedic surgeries, Radiation Protection Dosimetry, 128 (2008), pp. 112–119.

[VBMP08] D. VLASIC, I. BARAN, W. MATUSIK, and J. POPOVIĆ, Articulated Mesh
Animation from Multi-view Silhouettes, ACM Transactions on Graphics, 27
(2008), pp. 97:1–97:9.

[VETC07] G. VOGIATZIS, C. H. ESTEBAN, P. H. S. TORR, and R. CIPOLLA, Multiview
Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29 (2007),
pp. 2241–2246.

[VKLP09] H.-H. VU, R. KERIVEN, P. LABATUT, and J.-P. PONS, Towards high-resolution
large-scale multi-view stereo, in IEEE Conference on Computer Vision and
Pattern Recognition, 2009.

[vL07] U. VON LUXBURG, A tutorial on spectral clustering, Statistics and Computing, 17
(2007), pp. 395–416.

[VTC05] G. VOGIATZIS, P. H. S. TORR, and R. CIPOLLA, Multi-View Stereo via
Volumetric Graph-Cuts, in IEEE Conference on Computer Vision and Pattern
Recognition, 2005.

[VZBH08] K. VARANASI, A. ZAHARESCU, E. BOYER, and R. HORAUD, Temporal Surface
Tracking Using Mesh Evolution, in European Conference on Computer Vision,
2008.

[WDDB09] M. WAGNER, C. DUWENKAMP, K. DRESING, and O. J. BOTT, An Approach to
Calculate and Visualize Intraoperative Scattered Radiation Exposure, in MIE, 2009.

[WM03] X. WU and T. MATSUYAMA, Real-time active 3D shape reconstruction for 3D
video, in 3rd International Symposium on Image and Signal Processing and
Analysis, 2003.

[Woo80] R. WOODHAM, Photometric method for determining surface orientation from
multiple images, Optical Engineering, 19 (1980), pp. 139–144.

145

BIBLIOGRAPHY

[WSV91] M. W. WALKER, L. SHAO, and R. A. VOLZ, Estimating 3-D location parameters
using dual number quaternions, CVGIP: Image Understanding, 54 (1991),
pp. 358–367.

[WSZ09] O. WHYTE, J. SIVIC, and A. ZISSERMAN, Get Out of my Picture! Internet-based
Inpainting, in British Machine Vision Conference, 2009.

[WTM06] X. WU, O. TAKIZAWA, and T. MATSUYAMA, Parallel Pipeline Volume
Intersection for Real-Time 3D Shape Reconstruction on a PC Cluster, in IEEE
International Conference on Computer Vision Systems, 2006.

[XBA03] N. XU, R. BANSAL, and N. AHUJA, Object segmentation using graph cuts based
active contours, in IEEE Conference on Computer Vision and Pattern
Recognition, 2003.

[YAC06] T. YU, N. AHUJA, and W.-C. CHEN, SDG Cut: 3D Reconstruction of
Non-lambertian Objects Using Graph Cuts on Surface Distance Grid, in IEEE
Conference on Computer Vision and Pattern Recognition, 2006.

[ZCI+08] A. ZAHARESCU, C. CAGNIART, S. ILIC, E. BOYER, and R. P. HORAUD, Camera
Clustering for Multi-Resolution 3-D Surface Reconstruction, in ECCV Workshop
on Multi Camera and Multi-modal Sensor Fusion Algorithms and
Applications, 2008.

[Zha00] Z. ZHANG, A Flexible New Technique for Camera Calibration, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22 (2000), pp. 1330–1334.

[ZPQS07] G. ZENG, S. PARIS, L. QUAN, and F. SILLION, Accurate and Scalable Surface
Representation and Reconstruction from Images, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29 (2007), pp. 141–158.

[ZvdH06] Z. ZIVKOVIC and F. VAN DER HEIJDEN, Efficient adaptive density estimation per
image pixel for the task of background subtraction, Pattern Recognition Letters, 27
(2006), pp. 773–780.

146

