
Test Strategy Generation using Quantified CSPs

Martin Sachenbacher and Paul Maier

Technische Universität München, Institut für Informatik
Boltzmannstraße 3, 85748 Garching, Germany

{sachenba,maierpa}@in.tum.de

http://www9.in.tum.de

Abstract. Testing is the process of stimulating a system with inputs in
order to reveal hidden parts of the system state. We consider a variant of
the testing problem that was put forward in the model-based diagnosis
literature, and consists of finding input patterns that definitely discrim-
inate between different constraint-based system models. We show that
this problem can be framed as a game played between two opponents,
and naturally lends itself towards a formulation in terms of quantified
CSPs. This QCSP-based formulation is a starting point to extend testing
to a new classes of practically relevant applications – namely, systems
with limited controllability – where tests consist of stimulation strategies
instead of simple input patterns.

Key words: Test generation, adversarial planning, quantified CSPs

1 Introduction

As the complexity of technical devices grows, methods and tools that can au-
tomatically check such systems for the absence or presence of faults become
more and more important. Diagnosability asks whether a certain fault can ever
go undetected in a system due to limited observability. It has been shown how
this question can be framed and solved as a SAT-based verification problem
[2, 3]. Testing instead asks whether a certain fault will ever lead to observable
differences if the system under scrutiny is actively stimulated with inputs (test
patterns). In this paper, we study a variant of the testing problem introduced
in [1]: finding so-called definitely discriminating tests (DDTs) asks whether it is
possible to generate inputs that can unambiguously reveal a certain fault in a
system. Because DDTs allow one to definitely verify or exclude the presence of a
certain fault in a system, generating DDTs is a problem of great practical impor-
tance. For instance, in [5, 4], the framework was applied to real-world scenarios
from the domain of railway control and automotive systems. [1] also provided a
characterization of this problem in terms of relational (constraint-based) models.

In this paper, we build a bridge from this earlier, application-oriented work
to newer developments in the area of constraint programming. In particular,
we show how the DDT problem can be conveniently formulated using quanti-
fied CSPs (QCSPs). QCSPs can be viewed as an extension of CSPs to multi-
agent scenarios, and consequently, we describe how DDTs correspond to winning



2 M. Sachenbacher, P. Maier

strategies in an adversarial game. This leads to several contributions: first, it
turns out that the problem of generating definitely discriminating tests [1] is in
a different complexity class than the diagnosability problem described in [2, 3]
(PSPACE rather than NP). Second, formulating DDT generation as an instance
of QCSP solving allows to leverage recent progress in QCSP/QBF solvers in or-
der to effectively compute DDTs. Third, we observe that our QCSP (adversarial
planning) formulation of the testing problem is more powerful than previous
formalizations, as it allows to generate complex test strategies instead of simple
input patterns, thus extending testing to a new range of applications (systems
with limited controllability) that could not be handled by previous frameworks.

1.1 Discriminating Tests

We briefly review the theory of constraint-based testing of physical systems as
introduced in [1]. Testing attempts to discriminate between different hypotheses
about a system (for example, about different kinds of faults) by stimulating the
system in such a way that the hypotheses become observationally distinguish-
able. Formally, let M =

⋃
i Mi be a set of different models (hypotheses) for a sys-

tem, where each Mi is a set of constraints over variables V . Let I = {i1, . . . , in} ⊆
V be the subset of input (controllable) variables, O = {o1, . . . , om} ⊆ V the sub-
set of observable variables, and U = {u1, . . . , uk} = V − (I ∪ O) the remaining
(uncontrollable and unobservable) variables. The goal is then to find assignments
to I (input patterns) that will cause different assignments to O (output patterns)
for the different models Mi:

Definition 1 (Discriminating Tests [1]). An assignment tI to I is a possibly
discriminating test (PDT), if for all Mi there exists an assignment tO to O such
that tI ∧Mi∧ tO is consistent and for all Mj, j 6= i, tI ∧Mj ∧ tO is inconsistent.
The assignment tI is a definitely discriminating test (DDT), if for all Mi and
all assignments tO to O, if tI ∧Mi ∧ tO is consistent then for all Mj, j 6= i, it
follows that t ∧Mj ∧ o is inconsistent.

In the following, we restrict ourselves to the case where there are only two
possible hypotheses, corresponding to normal and faulty behavior of the system.
For example, consider the circuit in Fig. 1. It consists of five variables x, y, z, u, v
with domain {L,H}, where x, y, z are input variables, and v is observable. The
behavior of the two components is captured by two constraints fdiff and fadd,
respectively; for instance, values L and H can add up to the value L or H, etc. Now
assume we have two hypotheses about the system that we want to distinguish
from each other: the first hypothesis is that the system is functioning normally,
which is modeled by the constraint set M1 = {fdiff , fadd}. The second hypothesis
is that the adder is stuck-at-L, which is modeled by M2 = {fdiff , faddstuck}. Then
for example, the assignment x← L, y ← H, z ← L is a PDT for M = {M1, M2}
(it leads to the observation v ← L or v ← H for M1, and v ← L for M2),
while the assignment x ← L, y ← H, z ← H is a DDT for M (it leads to the
observation v ← H for M1, and v ← L for M2).



Test Strategy Generation using Quantified CSPs 3

x x y u u z vfdiff: f dd: u z vf dd t k:x
y u

v

fdiff

f

y

L L L
L H H
H L H

L L L
L H L
L H H

fdiff: fadd:
L L L
L H L
H L L

fadd‐stuck:

z
vfadd H L H

H H L
L H H
H L L
H L H
H H H

H L L
H H L

Fig. 1. Circuit with a possibly faulty adder.

1.2 Test Generation as QCSP Solving

It turns out that the two forms of tests in Def.1 correspond to different classes
of constraint problems. The first form of testing, finding PDTs, corresponds to
solving a CSP and is captured by the formula

∃i1 . . . in∃o1 . . . om∃u1 . . . uk.M1 ∨M2 (1)

where Mi denotes the complement of Mi. QCSPs [?] are a generalization of
CSPs where variables can be existentially or universally quantified. As this ex-
tension corresponds to a step from single-agent to multi-agent scenarios, QCSPs
are significantly more expressive than CSPs, and are suited to model problems
like two-player games. In the following, we show how the second (stronger) form
of testing, finding DDTs, can be characterized as a game played between two
opponents: the first player (∃-player) tries to reveal the fault by choosing inputs
for which the two hypotheses yield disjunct observations. The second player (∀-
player) instead tries to hide the fault by choosing observations (outputs) that
overlap for the two hypotheses. There are rules that the ∀-player must adhere
to: he can only choose among observations that are consistent with the model
of the system, as not all observations are possible in all situations. The goal of
the game is then that exactly one hypothesis becomes true. It is easy to see that
using this game-theoretic characterization, a DDT exists if and only if the first
player has a winning strategy.

There exist several approaches how problems described as games can be
turned into an equivalent QCSP or QBF (boolean version of QCSP) formulation
[6, 7]. In analogy to [?], we get the following QCSP formula to capture DDTs:

∃i1 . . . in∀o1 . . . om∀u1 . . . uk.M1 ∨M2 (2)

Note that while CSPs are in the class of NP-complete problems, QCSPs are
in the complexity class PSPACE that is believed to comprise of even harder
problems. The formulation 2 of the existing theory of testing [1] as an instance
of QCSP solving allows us to leverage recent progress in QCSP solving in order
to actually compute such tests. But it is also a starting point to extend the



4 M. Sachenbacher, P. Maier

theory to a new range of applications. In Def. 1, tests are assumed to consist of
assignments to the controllable variables; the underlying assumption is that the
these variables characterize all relevant causal inputs to the system. However,
one can conceive situations where this assumption is too restrictive; in practice,
there might be variables/parameters who influence the system’s behavior, but
whose values cannot be completely controlled. This scenario of testing under
limited controllability can be captured using a slight modification of formula 2.
Let I be partitioned into input variables Ic = {i1 . . . is} that can be controlled
(set during testing), and input variables Inc = {is+1 . . . in} that can be observed
but not controlled. Then a definitely discriminating test exists iff the following
formula is satisfiable:

∀is+1 . . . in∃i1 . . . is∀o1 . . . om∀u1 . . . uk.M1 ∨M2 (3)

Note that while solutions to Eqn. 1 and Eqn. 2 are simply assignments to the
values of the input variables, solutions to Eqn. 3 are in general more complex
and correspond to a strategy or policy that states how the values of the control-
lable variables Ic must be set depending on the values of the non-controllable
variables Inc. To illustrate this, consider again the example in Fig.1, but assume
that variable x can’t be controlled. According to Def. 1 no DDT exists in this
case, as the possible observations for v will always overlap for the two models
(hypotheses) M1 and M2. However, there exists a test strategy to distinguish
M1 from M2, which consists of setting y depending on the value of x: choose
y ← H, z ← H if x = L, and choose y ← L, z ← H if x = H). Generating such
strategies goes beyond the theory in [1], which assumed that tests consists of
assignments (patterns) for the input variables, but it is possible in our QCSP
framework.

We conducted preliminary experiments of QCSP-based DDT generation with
the solvers Qecode [7] and sKizzo [8] (since the present version of Qecode does
not allow one to extract solutions from satisfiable instances, we transform the
instance into QBF and use sKizzo to extract solutions). Figure 2 shows solutions
generated from Eqn. 3 for the example in Fig. [?]. The solutions are represented
in the form of BDDs with complemented arcs (see [8]), where ¬x stands for
x ← L, x stands for x ← H, etc. The left-hand side of the figure shows the
strategy (in this case, a simple set of assignments) that is generated if variables
x, y, z are specified as controllable (input) variables, whereas the right-hand side
of the figure shows the strategy when only y, z are controllable (in this case, y
must be set depending on the value of x). No solution (definitely discriminating
test strategy for the fault) exists if only z is assumed to be controllable.

1.3 Conclusion and Directions for Future Work

We reviewed an existing theory of testing for physical systems, which defines a
weaker (PDTs) and a stronger form (DDTs) of test inputs, and showed how it
can be framed as CSP and QCSP solving, respectively.



Test Strategy Generation using Quantified CSPs 5

¬x  y y  zz

x
1

1

Fig. 2. Test strategies generated for the circuit in Fig. 1.

Assumptions in this theory about the complete controllability of system in-
puts can be relaxed and lead to a more powerful class of tests, where inputs are
intelligently set in reaction to observed values. Such test strategies go beyond
the test pattern approach of the existing theory, but they can be captured in the
QCSP framework.

We are currently working on larger, more realistic examples to evaluate our
QCSP-based testing approach. We are also extending our framework to systems
with dynamic behavior (transition systems), in order to complement (passive)
verification tools for embedded autonomous controllers [2] with a capability to
generate test strategies to (actively) reveal faults.

References

1. Peter Struss: Testing Physical Systems, Proceedings AAAI-94, pp. 251–256, 1994.
2. Alessandro Cimatti, Charles Pecheur, and Roberto Cavada: Formal Verification of

Diagnosability via Symbolic Model Checking, Proceedings IJCAI-05, pp. 363–369,
2003.

3. Jussi Rintanen and Alban Grastien: Diagnosability Testing with Satisfiability Algo-
rithms, Proceedings IJCAI-07, pp. 532–537, 2007.

4. Michael Esser and Peter Struss: Fault-Model-Based Test Generation for Embedded
Software, Proceedings IJCAI-07, pp. 342–347, 2007.

5. Reiner Inderst: Automatische Testgenerierung auf der Basis einer qualitativen Mod-
ellierung physikalischer Systeme, Master’s thesis, Technische Universität München,
Germany, 1995.

6. Carlos Ansótegui, Carla Gomes, and Bart Selman: The Achilles’ Heel of QBF, Pro-
ceedings AAAI-05, pp. 275–281, 2005.

7. Marco Benedetti, Arnaud Lallouet, and Jérémie Vautard: QCSP Made Practical by
Virtue of Restricted Quantification, Proceedings IJCAI-07, pp. 38–43, 2007.

8. Marco Benedetti: sKizzo: A Suite to Evaluate and Certify QBFs, Proceedings
CADE-05, 2005.


